Db2 12 for z/OS

SOQL Reference
Last updated: 2024-05-14

.||I

Notes

Before using this information and the product it supports, be sure to read the general information under
"Notices" at the end of this information.

Subsequent editions of this PDF will not be delivered in IBM Publications Center. Always download the
latest edition from IBM Documentation.

2024-05-14 edition

This edition applies to Db2° 12 for z/0S® (product number 5650-DB2), Db2 12 for z/0S Value Unit Edition (product
number 5770-AF3), and to any subsequent releases until otherwise indicated in new editions. Make sure you are using
the correct edition for the level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.

© Copyright International Business Machines Corporation 1982, 2024.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html

Contents

About this INformation.......ccccieiieiieiiiiiiiiiccrcrr s ss e saanaee xxiii
Who should read this iINfOrmMation........c.eeiciie ittt erre e s e e e seaae e e raaeenns XXiV
D2 ULILItIES SUITE TOF Z/OS. .ottt et e e e et e e e e e e e sessssasab bt e e eeeeeeeesesssssssssseeeeeeesssesns XXiv
Terminology and CITAtiONS.....cuiiieiieeeeeecee et e e et e e et e e e bae e e sbe e e saee s saeesssee e ssaessseesnnens XXiV
Accessibility features for DD2 for Z/OS...... ettt st e e e ae e XXV
HOW 10 SENA COMMIEBNLS...eiiiiiiieciiiecciiee ettt ecte e e eee e e tee e ebae e ebeeeebaeesbaeesabaeesasaeesnsaessnseeesnsesesseeennes XXV
HOW 10 read SYNtaX dia@ramS. .. .cccuuieccieeciiieectie et e ettt eeste e e rte e e ste e e ate e e abe e e abae e saae e nsaeesasaeannsaesnnseesnnsns XXVi
Conventions for describing mixed data ValUeS.........cueeecieeeiieeccieeecee et e XXVil
Industry standards fOr SQL......ui ittt ee e eere e e eare e e e e e e ere e e e ree e e rae e e aee e e reeeenres XXViii

Chapter 1. Db2 for z/0S and SQL cONCePLS.....ccceuieiiuieiieiiieiiecniieniiaiiesstesrecassecsacans 1
Submitting SOL statements t0 DD2.....cccuiii et e et e e ba e e b e e e bae e eans 1

L] =N (o1 | O 1
Embedded dynamiC SQL......uii ettt ettt e e etee e e tee e et e e e ste e e e tae e et e e e ebaeesbaeeebaeeebaeeenraeeenreaas 2
DYl g gt M=t nal o Y=Y Lo [=To I T O EOu RN 2
LA = oa YT O 1 IO 2
SQL Call Level Interface and Open Database CONNECLIVItY.....ccceeecieieecieecciieecieeeeee e 3
Java database connectivity and embedded SQL fOr Java.......ceeecieeieciieiciee et et 4
USE OF OMF fOr WOTKSTATIONueeetiiiiiiiiieeeieeeeeiitee et e e e e e e e s esseaaba e e e e e eeeeeesesssassssseereeeeeeeas 4
Db2 database 0hjECTS OVEIVIEW.......ciiciieiciieccee ettt et e et e e e e e e ate e eerteeeestaesesteeeensaeeessaeennseeanns 5
Db2 schemas and SChema QUALITIEIS.....cociiiieieeecee e et e e e e e e et e e e te e e e aeeeenes 6
] o)7 =1 o] 1T 7
B o) (1YL= T TR 10
(07T 013 4= 1101 £ T TSRSt 11
B o) 1 o] (=l ot] (U] o o] o =TSPt 15
D2 INAEXES. .. utieiciee ettt ettt et eeete e ee e e e e te e e e teeeetteeeesteeeestesasstaeeasteeeansaeaassaeaastaeeanteeeansaeaantaeeantaeans 29
D2 VWS, ettt e e e e e s te e et te e seatee s stee s stee e stae e stae e st aeeasteeaasteeaasteeeasteeeastaeeanteeeantaeearteennns 30
ALISES . ettt ettt e et e et e e e te e e s e e e e te e e et e e eerteeaaataeaaatae et aeaaataeeartaeearteeeanteeearteeeastaeeanteeeantaeearteeans 32
B3 (=T SSPT 32
USEI-AEIINEU LY POS ..ttt et et e e et e e e tte e e tbe e e sbee e ateesaasae e sseeennsaeennsaeennseesnses 35
Routines in Db2 for z/OS: functions and ProCEAUIESieciieeiiieeiieecciee ettt et ecae e e sre e e saveeesaaeeea 35
Y= T U 1] o Tol= T J OO PP PP PP 37
B o YL C=Y 0 o] o] =Y 1 £ TSP 38
B o) o- Y - Lo = TSPt 38
D] o) o [T =Tox o] Y 2SR 39
ACHIVE AN ArCIIVE LOS....iiiiiie ittt et e et te e et e e s e rte e s eate e seaae e eseeesseeesseeesseeesseeeansees 40
2ToTey £ =T o XK e F=1 €= YT] O SR 40
U =T gl o oY) £ 41
Data definition control sUpport database........c.eeecviieciieiciieccee e 41
The resource limMit faCility......eeciee et e et e et e e e aa e e e ab e e enaeesnaeeas 41
Lo] Q1Yo P U= o - 11 TSR 42
Application processes and tranSACTIONS.ccccuiiieiieeciie e e ee e e e e e bee e e rae e e raeeenes 42
SUDSYSEEM PAIAMETEIS. . ciiiciiiicciiee ettt e ree e etee e e rte e e e stee e ebee e sbaeesbaeeenbaeesnbeeesnsaeesnsaesanseesnnseas a7
SEOTAEE STTUCTUIES ettt et e e e s e ettt e e e e e s e e ses s sabbeaaaeteeeeesessssssssrssntaeeeeeessssssnssnsssnnnes 48
B o) e FoY =Y o T T YT URTRPRNt 48
B o) o] (o] oX- Lod - F S 50
D2 INAEX SPACES. . eiicttieectiieectee ettt e eetteeecteeeetee e tteesesteesasteesastaesseeesastaesstaessaeesaseeesastessasseesastessnssassnns 51
Rules for primary and secondary space alloCation........cceeccuieeeiiiieciiecccie e aee e 51
Db2 hash spaces (AepreCated). ...ttt e e e e be e s re e e s be e e e bae e s beeesaraeeenneas 53
B oY Sy Co] = Y= (ol = Lo U] o1 R 54

Application processes, CONCUITENCY, AN FECOVETYuiteieecrieeeeeiiieeeeeeiireeseesrsseeeseesseeesssssssseesesssessessnnns 55

Locking, commit, aNd FOLDACK.......c.uiiiiiiiiiieeteeee e s 55
0 a1y o) ATV o TP 55
O LoV o) =T ot 1YY oSSR 56
ROLING DACK WOTK...iiiiiiiiiieiiee ettt sttt e s te e s rte e s steeseseeesasteesstaesntaesnnsaesnnsaenans 56
Packages and appliCation PLaNS. ..ottt e st e st e s abe e s aaenas 57
(04 PV = Toa (=Y g oo V=T] To T 3 FORR PRSPPI 59
Character Sets and COUE PABES....uuiiriiiiiiieieite ettt sttt sste e st e ssteessteesssteesssteesssteesssteessseeessssaessssessnnes 61
Coded character sets and CCSIDS.......coiiiiiiiiieiiiee it seiee st e st e sseeessteessteesssteessseeesssteessnsessssseesnns 62
Determining the encoding scheme and CCSID Of @ STHNG......cocviiiriiiiiivieeiriee e e e 63
EXPANING CONMVEISIONS. . ciiiiiiieiitieiieeeiteeeiteeeriteee sttt e s sseeesssteesbaeessbteesseesssseeessseeesnsseesnsseesnsseesnssassnnees 67
CONTIrACTING CONVEISIONS..cicuttiieitieeitteeitte ettt e st e sttt e s steeessseeessabeessssaessseaeesseaesssseesnssaesnssaesnsseessssnesnnses 68
Distributed relational databases.........uei i s 68
(036]] aT=Tox 4o 1= F O PPPRRPPPRRPRPRRE 68
Distributed UNIT OF WOTK....uiiieiie ettt e s te e s s be e s sba e s sba e e sbaeesabaeenane 69
REMOTE UNIT OF WOTK..iiiiiiiieiiiieiieeett ettt sttt s see e st e s aee e s be e s sab e e sssbeessabeesssbeesnaseesnases 72

Chapter 2. Language elements in SQL.....cccccccruireiiniiniinninininecnecnesnecrescessascscaccseces 15

Characters and tOKENS IN SQL...uuuueiiiiiiiiiiiiiiiiiiieeee e eeeeecirrreereeeeeeeeseeesssssssrsrerseeeseeesessssssssssresseesesesennns 75
TAENTIIEIS IN SOL. ittt e e eeeeee b e e e e e eeeesessssssasarareeseeseessesssssssraessaeseeseesensnnssssnens 77
Naming coONVENTIONS IN SOL...ciiiiiiiiieiiciee ittt ste e seee e see e sbee e ssbee s sbee e ssbeessbeeesaseessseessnseessnses 79
S]] IR o | PSRRIt 85
Unqualified 0bject NAmMeE re@SOLUTION.....cc..eiiiee et e e et e e e s e bre e e s eebaeeeeeenreeeeeennnns 86
ALISES . et tuteeeette ettt ettt ettt et e ettt e s bt e et e e e et et st e e s a et e e tae et aeeaaaeeeaaeeeeaateeeenteesenteesentaeeantaesnrtaenns 88
SYNONYMS (AEPIECATEE) . ..eiiiuiieeieeeeiee ettt e et e e rte e erte e et e e e ette e eetteeebeeeeeseeeebasesseeeenseeessesesseeesnseeennses 89
Authorization, privileges, permissions, masks, and object ownership.......ccccceveiiiriieeinieeenviee e, 90
Authorization IDs, roles, and authorization NAMES.......cuiiiciiiiiieireecee e sre e s eee e 92
Authorization IDs and statement pPreparation...........cccccieee e e e e e e e 93
Authorization IDs and dynamic SQL......cccuuiieiieciiiee et e cecitee e ectre e e eeeree e e s eenar e e s s nteae e sensaeeeeeennrens 94
Authorization IDS and remMOte EXECULION......iiciiiiciieriiteecte ettt e ssee e see e s steessaeeesseeessseeesseaesneeesn 96
D= = T Y o 1T SRR 98
N U =T g ol - U= T 1Y/ o1 RSP UROE 99
NUMEFIC NOST VANTADLES. ..ccitiiieiieietee ettt ste e st e s te e s ate e s steessabeessseaessnsaesnee 102
(0o F= Y= Tor L= AT = £ PR PRRUPURRPPPRRRRPO 102
SErNG UNIT SPECITICALIONS . ..uiiiiiiieiiieeecte ettt e s ee e st e s sab e e s beessabeessabeesnasaessaseas 106
(€T o] a1l (1Y =TRSOOSR 112
Unicode columns in EBCDIC tables.....iuciiiiciiiiiieicieeeieesctee sttt ssee st see e ssate e sssteessaeeessseaesas 113
BINAIY SEIINES.ciietiiiiiitieiie ettt se e st e e st e e s be e e s bae e sateeesabaeesaseeesbaesasbaeesssaeesnbaeessaeenseeenne 116
YN o] o =Yt Ko (M =) S 116
DAtETIME VALUEBS. . eiiiiiieieiieeeee ettt ettt e st e s bt e e s bt e e st eeesbte e s bteessaeesasbeesseaesaseaesneaenn 118
ROW ID VAlUBS...ttiieiiiieiieieiteeeit ettt et s sttt s e e e st e e s ate e s bae e s bteesbeeesbaeesssaesnstaesssaesssaesnssnesnnees 124
XML VALUBS ..ttt ctteeeite ettt ettt e st e st e s te e s st e e e sabe e s s abeeseataessaseessabeesassaessssaesnaseesnnsaesnnsaesnnsans 125
User-defined data fYPES...c ettt et e e e e rbre e e e st e e e s s e nreeeeeesanteeeesennseeeesennnens 126
DL T=] AT ot 1Y 01T SRR 126
Array TYPES AN VALUEBS......eviiee ittt ettt e e e et e e e s te e e s e e ttae e e e e nstaeesesnsaeeesennsaeeeeennssnaasaas 127
e TeTaaToldTo] alo)ile F-Y €= 10 Y/ 01T TSR 129
Casting DEtWEEN data 1Y PES..cuuiiieiiieritertteete ettt ste e st e s saee e s sabe e s saae e s sbeessabaessabaesnsseesnnees 130
Implicit cast from numeric data to StriNg data.......ccceecieiiiieiiiieeeee e sre e 141
Implicit cast from string data to NUMENC data......ccueiicieiiiieieieeeee e re e sre e 142
ASSIZNMENT AN COMPATISON..ciiitiiieiiteeittereiteeeitteessreesstteesssteessseeesasaeesssseessseeesssseesssseesssssesssseesssssesssseens 143
NUMEIIC @SSIENIMIENTS. ..ttiititieittieeiieeeite sttt e ettt e s et essteeessaaeessbeeessaeeessstaesssaeesaseeesnssaesnssaesnssnesnnsnesnnses 145
SETINE A S B NMMIENTS .ttt iiiieieiee ittt ettt e st e setre e s teeessateessteessteesseeesanteesseeesseeesansessaseeesssseesaneessnne 149
DatetiME S I ENMIENTS. . uiiiiciiiieiieeete ettt e e e st e e st e e s bt e e sbe e e sbe e e s beeesabaeessbaeesbaeessaeesraeenaee 151
ROW ID @SS ZNMIENTS...uiiieiiiieiiteeiteesitteeeiteee sttt e ettt essbae e sbeeessbee e s beeessaeessseeessseesseaesnssaesnssaesnsenesnsenns 153
DI Uo7 7= (] 41T £ PP 153
User-defined type aSSiSNMENTS......ciiiiiiiiiieiiiterriee st e ssree st e st e s st e s sbeessbeessabeessabaessaseesssseessnses 153
ASSIZNMENTS t0 LOB LOCALOIS....uiiiiiiiiiiieiiiie ettt ettt et te e s ste e s ste e s ee e s sate e s aae e saeeessneaesneas 156

NUMEIIC COMPAIISONS....utiieieeititeeeeecittreeeeiiieeeeeeiteeeeaeassteeeeesassesesseasessesasassesssssssssssessansssssssssssnssssnnes 156

SETINE COMPANISONS. ..tttiitieeetteeeitteeriteeeerteee sttt essseessteeesseeessaeessaeesseesssaessssaessssessssaesssseeesssaesnsseesnns 157
B L=y d] g gToN oo)0 gl o Y- U Yo] TSR 158
ROW ID COMPAIISONS....uiiiiiieiieieeieiiiteeeeeittteeeeeetteeeeeeesbeeeeeesstaeeesasstaesaeasssasesaasssesesesassaneessnnssenssssnnsenes 159
Do) yaY o =T =T ISR 159
(0701)T o a I VI ST (o] dlofo] o gl oX- L =Yoo SR 159
User-defined tyPe COMPATISONS.......uuiiiiieciiieeeceiireeeeectte e e e ecteee e e eesraeeeseessseeeeseesteeessennseseesessssensesannes 164
U R o =T U - L =T 1Y/ o 1SR 166
(670 01 = T | £ T TP PSPPI 170
GraphiC StrNG CONSTANTS....ccuiiiiciieiciee ettt ssre e ssbee e s bt e e sebee e sbteesbeeesebaeesbeeesseeesaseessans 173
Datetime CONSTANTS. ..ottt sttt st st b e sae e e b e sme e e b e e sneesareens 174
Y LYol = N = =) (] T ST TTPPPPR 177
General rules fOr SPECIAL FEGISTEIS. ..ciiiiiiiiiie ittt see e s ee e s sree e s ree e sbeeessbeeesnees 179
Rules for setting special registers by using profile tables.......ccovviriiiniiiiniieieee e, 181
CURRENT ACCELERATOR SPECIAL FEEISTON.cciiutiiriiiiiciieieiteesiteessiteesitessiteesiee s sreessreessseessaveesnaseas 184
CURRENT APPLICATION COMPATIBILITY special regiSter.....cccevvuerieerierieieeneeesiee e 184
CURRENT APPLICATION ENCODING SCHEME special register......ccuvirieerienieenieneenee e 185
CURRENT CLIENT_ACCTNG SPECIAl FEISTOI...ciiiiiiieiieiiiieinitessieessieessitessreessaeessreessbeesssaessssaens 186
CURRENT CLIENT_APPLNAME SPECIAl FEZISTOI . .uiiiiiiiiiiieiiiieeiiee ettt ssiee e s sae e siee e s see e s 187
CURRENT CLIENT_CORR_TOKEN SPeCial FEZIStEI . .uutirciiiiriieiriiiieeiiieeeiireeesireessineessereessveeessneeesaneens 189
CURRENT CLIENT_USERID SPECIal FEZISTEI . c.uutiiiiiiiriieiriieesieeeriteesieessiee st e sseeesseeessaeeesseeessneeas 189
CURRENT CLIENT_WRKSTNNAME SpeCial r@giSter..ccccuuiirciiiiriieeiiieesiiteeniieesieeessieesseeessveesssnesnnes 190
CURRENT DATE SPECIAL FEEISTN ccutiiieieiieiee ittt eete et e st e sste e sste e sraee e ssate e ssaee e ssaeeesseesssseeessneaesnnens 192
CURRENT DEBUG MODE SPECIal FEZISTOI..ciiicuiiiiiieiicieiiciee st scteessiee s siee s siee s sree s sneessreessbeessnees 192
CURRENT DECFLOAT ROUNDING MODE SpecCial reGISter...cccccuiiiiiiiiiieeiiieeinieesrieessieesseeesseeesnnee 193
CURRENT DEGREE SPECIAL rEEISTON.cciitiiiiiiiiiiieiiiieisieeesieessieesseee st e s ste e ssbeesseeesseeesssseessnsaesnneas 194
CURRENT EXPLAIN MODE SPeCIial FEZISTEI . uvtiiiiiiriiieiiiteeiitessitessieessreesseeessbeessareessaseessveessaneas 194
CURRENT GET_ACCEL_ARCHIVE SpPeCial r€GISTOr..ccciviiiiiieriiieiiiieenieesnieessieessveesssieessveessaeessanas 195
CURRENT LOCALE LC_CTYPE SPECIal FEGISTOI..ciiiciiiiiiieieiieeeiieeeite e ettt e siteessiteesieesssveessveeesvaeesane 196
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special register......cccecverveerieeneennnen. 197
CURRENT MEMBER SPECIAL FEZISTOI . .iiiiiiiieiiiieiieieiieesite sttt ssiae e s saee e s saee e ssaee e ssaeeessneeas 198
CURRENT OPTIMIZATION HINT SPeCial rEZIStOr . .cciiiiiiiiiiiieistee ettt see s see s svee e 198
CURRENT PACKAGE PATH SPECIal FEZISTEN.cccuvviiriiiieiiiieiriiiesieesiee st e st siee e ssee e s ae e s saae e s saeessaeas 199
CURRENT PACKAGESET SPECIAl FEGISTON...ciiiiiiiiiieiiiieiriieseitessiteeste s st e s steessbeessraessbeesssaeesasaeas 199
CURRENT PATH SPECIAL FEEISTON et ieutiiicieiiciee ittt sciee st e st e seiteessiteeserteessseeessseeessseeesseeesaseessaneessans 200
CURRENT PRECISION SPECIAl FEZISTEI .c.uuiiiiuiiiiiiiiiiiiesiiee sttt st e ssteessiteessaeessreesssteessnbeessnseesnnsaesas 201
CURRENT QUERY ACCELERATION SPeCial reZISter . .uiiiiiiiiiiieiiiieniieesiitessieessieessveessveeesaee s 202
CURRENT QUERY ACCELERATION WAITFORDATA special register......ccocceeeeereerieeneenieeseeseeene 203
CURRENT REFRESH AGE SPECIal FEEISTON.cciuviiiiiiiieiieieiieseitessitessreessiee st e s st essve e ssbaessvaessasaes 204
CURRENT ROUTINE VERSION SPECIAl FEZISTEN.ccuuiiiiceieiiiieiiiieieiiteesieessiteesieessveeesseessreessveessaveas 204
CURRENT RULES SPECIAL FEZISTEN e uviiiiieiiiiieiiteeciiee st et e st e st essiee e ssiteessateesssteesseaessssaessseesas 205
CURRENT SCHEMA SPECIAL FEEISTON.cciitieieiiiieiieieiieesiteeeite e sttt s steesssteessseesssaesssaessseesssaessssaeenane 206
CURRENT SERVER SPECIAL FEZISTOI ..utiiiiiieiiiieiiieeeiiee et e st e st siteessiteessate e ssabeesssaeessseeessneaesnseesas 207
CURRENT SQLID SPECIAl FEZISTEN e utiiiitieeiciieeiiiee sttt e sitee sttt e sttt e sereeeserteeseaeesssseeesseessaseessasseesasanesane 207
CURRENT TEMPORAL BUSINESS_TIME Special regiSter....cuuiiivieiriieiiiieisciieeeiteeeieeesieeesveeesvneeens 208
CURRENT TEMPORAL SYSTEM_TIME SpecCial r@giSter....cccutirviiiriieiniieisiieesieessieeeseeesseeesseee s 210
CURRENT TIME SPECIAL FEZISTOI ..utiiiiiiiiiiiesiiteertt et srte et s st sste e st e s be e ssabe e s sabaessabeessaseessaneas 211
CURRENT TIMESTAMP SPECIAL FEEISTON . ciiiiiiieiieiiiieieiteeeieeeette st e s st e sseeessteessseeessareesssaesssseesnnee 212
CURRENT TIME ZONE SPECIAl FEZISTEI .. utiiiiiiieiiieeiieesiiteesiiteessite e sttt e s stee e s seaeessaeeessseeesssaeessseeesnseenn 213
ENCRYPTION PASSWORD SPECIAL FEZISTOI . uuiiiciiiiriiiieitieeciitescte sttt essire st esseeeessaeeessaeeessseeesseee s 213
SESSION TIME ZONE SPECIAL FEZISTON..ciiicuiiiiciieiiciiee it ste et ste e see e s vee s sree s s et e s s aee s sbee s ssaeesanas 214
SESSION_USER SPECIAL FEZISTEN . .uiiiiiiieiieieiieeeite ettt sre e s see e ssaee e ssbee e ssaee e ssneaesnneaesnneeas 214
USER SPECIAL FEBISTOI .c.uiiiiiiiiiiiee ettt ettt ettt e e srte s st e s s bee s sbee s sabeessabeeesabaessabeessasaesnaseas 215
Special registers in a user-defined function or a stored procedure........cccecveerrieeniieesieeenieeeeienens 215
(601 (0] o I g F=Ya g LT F SRS USSP 219
QUALITIED COLUMN MAMIES ... ittt e eeeeeeebrr e e e e eeeeeeeesssbsraereeseeeeeesesassssssseeeeeeeeees 220
COrTElatiON MAMIES...ci ittt s et e st e bt e st e s bt e s ae e e s e e seesmreebeesneesareas 220
Column name qualifiers to avoid @amMbBiUITY......cciiiriieiiiieiieeree e e s be e s sbee s 221

Column name qualifiers in correlated refErENCES.. ... i e e 222

Resolution of column name qualifiers and COlUMN NAMES.......ccvviiiieciiieeecccee e e 223
VATADLES . ettt et ae e s ee e s aee e s aee e s aee e e ateeenaeeesareeeenes 225
GLOBDAL VATTADLES. .. it ittt e st e st e e s be e e s be e e s ba e e s ba e e e baeeebaeeebaeeans 225
YT (o A A= L T= 1 o] (=T T OO 227
[(01 V- LT o] (=TT PRSP 227
Variables in dyNamiC SOL......uiiiii ettt e e e rrree e e e crtee e e e e easee e e e seastaeeesenntaeeeeennsaeeesennnrenes 230
MO =1 o] L= OO PURPPR 230
LOB lOCATOr VAIIADLES. . eiiiiciieeieeeetee ettt sttt e st e s te e s ate e ssseaeseateesesteessneaesaneaesans 230
DI T T- Lo (=TT RSP PSPRPR 231
LOB or XML file reference variables ...ttt see e s evee e sree e sbee e sneeesane 232
ReSULL SET LOCALOr VANADLES....ciiiiiiiiiecee ettt s e s s ae e e be e e beeessaeeas 234
FAN g N Y T T Lo LSRN 234
Host structures in PL/I, C, anNd COBOL......coooiiiiiiiiieeeeeeeeeeeeeeee eeesaasss s anas 235
Host-variable arrays in PL/I, C, C4+4, and COBOL........uoiiiiciiieeecetieee et eeree e eevree e e vree e e e 236
(LU ot f o] o [-F PP PP PRRPURRRPRRRIRt 237
(TN TordTo] o T)Y e ToF=1 (o] o FOU T PSPPSRI 239
FUNCEION FESOLULION...ci ittt ettt sttt e s st e s ste e s sabe e e sabe e e sabeessaaaessaseessnsaesnses 239
0T (= 171 o -SSR 245
Concatenation OPerators iN EXPrESSIONS.uuuiicccireeeeeiirreeeeiirereeeeesreeeseeeseseeesasseeeessesssesesssssssnesasnnnes 247
Arithmetic OPerators iN EXPIrESSIONS.uiiiccciieeeeectteeeeeetre e e eerreeeeseeteeeeeeesteeesesstesessesnsenesesssssneesanns 250
Yo=Y L (1] 111 LT o S PSSRSO 256
Datetime operands and AUIATIONS.......cciiicciiiei et eeseee e eeerre e e e eree e e e esbeeeeeeesseeeesenseneesanns 257
TiME ZONE SPECITIC EXPIESSIONS....uviieiieiiiieeeeectieeeeeciee e e eeteeeeserteeeesestaeeesessteeeesensseeeseennseneesesssenns 258
Datetime arithmetiC iN SOL....iiii i e e e e eeeseabr e eereeeeeeeesesssssssasrerreeeeeesesennns 259
LYol Ya L= g Yoo o] 01T =1 o =TSRSS 263
(07N S o o] £ =111 o o =TSR 264
(07N) I =Y o 1= To1 | o | o] o SRR 267
D M ORI o L=t 0% o o PSSR 277
Array element SPECITICATION.......cii i rre e e e et e e e e e eabee e e e s nnteeeesenseneeeennnes 278
F N = VA oo] 13 1 U Tod o PPN 279
(O]I Y o= Tod) o= Y] o 1TSS 280
ROW CHANGE ©XPIrESSION......uiiieiieciiieeeeeiiteeeeeetteeeseeitsteeeeeaseeeessastaeessssssssesasssssssesssssseesessssseseesanasses 291
Y=o [U]=T Ao ol £ =Y =Y ol oL TSR 292
e To [0 (= J PR PP PRPPRRRPPPRIOE 296
T (ol o L= KT oF- ¥ (= TSRS 297
(O TUF= o] A1 =T I o r=Te [Tor= (TSR 300
ARRAY _EXISTS PreiCatl.uuiiiiiciiiieiicciieeiecciitee e eciiteessesteeeseeseteeessesnbeeeesssssaseessansessesssssesessenssnesnann 302
2] S IV SN T =Y T L = TSRS 303
DISTINCT PrediCate.. o cuiiieececiiieeeecieee e eecte e e e e cttee e e e e ctee e e e e ateeeesesteeeesesseaeeseanstaeeessansesessenssensesnssees 304
) I Y IS o1 =Te [o%= (YR 305
L\ o (= Te [Tox= (TSR 306
I G o] = To [o= | =R 308
VL0 o 1Yo [Tox= Y =TS 316
DI o Y B o] (= Te [To= =TSR 316
SEANCN CONITIONS. . ttiiiiiee ittt ettt e et e e st e e s tte e s sbeeesabeeesseeesbteesaseeesaseeessaeesaseessaseessans 319
(0] H T A [Ui (=To {1 F= 20 O | USRI 320
SQL processing options for dynamic StatemeNTS.....couciiiiiieiiiieiiieereee e 322
DECFLOAT rOUNAING MOUE...ciiiiiieieiieieieeeeiteesiteeesieeessreessseessseeessseesssaeesseesssseessssesssssesssssesssssaessnns 323
Decimal POiNt rePrESENTAtION. ..ccc eiiee ettt e e et e e e e tr e e e e e nbe e e e e eenbeeeeeeenseaaeesennneneas 323
Apostrophes and quotation marks as string delimiters......ccccciviveriiieriiieene e 324
Katakana characters for EBCDIC.....ciuciiiiiiiiriieiriiessieeesieesseeesseeesseeesseeesssseessaeeesnnseessasessnnsassnnenns 325
Mixed data in CharaCTer STINES....occii ettt see e s see e s see e s aee e ssbee e s aee e sbeeesbeeesnneas 325
Formatting of datetime StrNES. ..ottt e s see e s aee e saee e saeas 325
SQL StaNdard LaNGUAEE. ...ccvteieiiieeitteeite ettt et s e sree e s bee e s aae e s aee e s bbaesbbe e s aeae s ataesnsbeeenaraesnnes 326
Positioned Updates Of COLUMNS........uiiii e e e e e e e e e e b e e e e s enbeee e e e nssaeeeeeannes 326
Mappings from SQL 10 XML....iiiciiieiieieieieite et serte sttt e s st e ste e e sbe e e sbaessbaessbaeesasaeesnsaessssaeesseeanns 327

Mapping SQL character sets to XML character SEtS.....uuiiiiiiiiiiiiiiiiersieesite e 327

Mapping SQL identifiers t0 XML NamMES.......ciiiiiiiieiiiee ettt sttt see e sree s sree e s aee e snees 327
Mapping SQL data values to XML data ValUEsS.......ccuvivuiiiriiiiniiienieccriee st 328

Chapter 3. Built-in global variables and session variables.........c..ccccceereneraneene.e.. 329

BUILt-iN 8loDal VaADLES.eiiiiiei ettt ettt s e e e e s ba e e s beeenans 329
CATALOG _LEVEL. ettt ettt sttt ettt e b e et e s bt et e sae et e sat e be et e sbeeaeas 329
CLIENT_TPADDR. ...ttt ettt ettt ettt ettt et et eat et et e s bt et e sht et e sat e bt et e sbeeabesat e beeutenbesatesaeenbennean 330
DEFAULT_SOLLEVEL. ...ttt ettt ettt sttt ettt sat b st be et e sae e b e eae e be et e sbeeeesneenee 330
GET_ARCHIVE. ...ttt ettt sttt st b et h e st s bt et e e st et e st e beeab e bt et e saeenbesate bt eatesbeeneens 330
MAX_LOCKS_PER_TABLESPACE ...ttt ettt sttt sbe st sbe et bt et sae e be st e sbeeas 331
MAX_LOCKS_PER_USER.....o ittt ettt ettt ettt et et b et sat et et e b e st e sbeebesbeebe st enbenas 331
MOVE_TO_ARCHIVE..... .ottt ettt ettt ettt ee sttt s e bt et e sbesbesae e beeatesbeebesbeebesaeenbesasenean 332
PRODUCTID_EXT .. .tiitteteettetesuteteeitestestestestesut e te st e see st e st etesatebesatesseemeeeatebesatenseeatesbeeabesaeansesneenee 332
REPLICATION_OVERRIDE.....c.tiitiiteiteeteste ettt ettt sttt ee st s bt et sat et st e s bt et e sae e b e sae e beemeeee 333
TEMPORAL_LOGICAL_TRANSACTION_TIME....cccttitiiiieuteientesie et te ettt e sae st v sae st e e 334
TEMPORAL_LOGICAL_TRANSACTIONSeitietetteterteete sttt sttt ettt ettt s e b ee b e sae e 334

Rules for setting built-in global variables by using profile tables.......cccocvviriieiiiiiiniieeeeeee, 335

BUIlt-IN SESSION VAriADLeS. ..o it s s 336

Chapter 4. Built-in fuNCtions......ccccceuieiiniiieiiieiiniiiieiiieiieiinieniecsciessecessecscesseceses 341

List of supported built=in FUNCHIONS.....ciic e rre e e e e e e e e bt ee e e e e neaeeeeean 341
ABEIEBate TUNCTIONS. ..iicuiiiiiieicee ettt et e e s te e s e te e s ste e s steesssbaesssteesssteessntaesassaessssessnnes 353
ARRAY_AGG a88regate fUNCLION.....icciiiiiieeeriieectee ettt et s st e st e s sate e ssae e ssbeesssteessnbaessnraesnnsaesas 354
AVG 28Eregate TUNCLION....iiciii ittt sttt ettt ete e st e e s bee e sebee e sbteesbaeesseeesseeesseeesasaeenan 357
CORR or CORRELATION aggregate fUNCLION......ccuiiiiieeirieeeriee sttt e st e st essaeeessaaeesaeeessaeee s 358
COUNT @g8regate FUNCLION....ciiciei ittt ettt sttt e sstte s estt e e sbte e sbee e sbeeesbaeessaeesseesssaessasanesnne 358
COUNT_BIG aggregate fUNCHION......iii ittt sttt ettt iee e s ee e s siee e ssaae e s ste e ssaeeessasaesnneas 359
COVAR_POP or COVARIANCE or COVAR aggregate fUNCLION......ccccceviiieiiiieeiciee et siiee e e 360
COVAR_SAMP or COVARIANCE_SAMP aggregate fuNCLION......cceevriieriieeiiiienriee e sieessveesseee s 361
CUME _DIST . ttiitettete ettt ettt ettt s h et et e st e e e s bt et e s ae et e sut e b e eat e bt et e eht e besate bt et e sheeabesaeebeentenbesaeas 362
GROUPING aggregate fUNCHION.uiiiciiiirteeeeite ettt st st e st e st essbe e s sbe e s s be e s sbeesssbaessnbaessssaenan 363
LISTAGG @g8regate FUNCLION....ciiiiii ettt ettt ettt et e s tee e s sae e e ssaae e ssaeeessteesasaesssaesnnnaenn 364
MAX @8E8regate FUNCLION.....iiciii ettt ettt s e e s te e e ste e s sbee s sbeeesbaeesasaeesasaeesssaesssaesnns 367
MEDIAN agg8regate fUNCIION.iii ittt ettt e e e s sbe e s sabe e s sabeessabeessabeessaseas 368
MIN ag8regate fUNCIION.ttt ettt e s bee e s sbe e e s bee e sbeeesbeeesneeesnneas 369
PERCENTILE_CONT aggregate fUNCIION.....ccuii ittt site st seteesite e seiee e saee e svaeesbeeesneeesans 370
PERCENTILE_DISC aggregate fUNCION......ciciiiiiiieiciee ettt ettt s e ssite e ssiee e st essate e s s e e saeae s 371
PERCENT_RANK ... ettt ettt ettt ettt ettt et st e st et e s at et e s at e be et e sb e e besat et e s at e bt eutesbeeatesaeenbesutenbesasenaean 372
REGR_AVGX, REGR_AVGY, REGR_COUNT, ..coitiiiiienieittetestee ettt ettt st sttt et sae e 374
STDDEV_POP or STDDEV aggregate fUNCLION.......cccviiviiiiriee ettt st ssiee e ssiee s s saee e s 376
STDDEV_SAMP aggregate fUNCHION......ciiciiiiiieeteeete ettt sttt ettt et e s e e s aeeesaeee s 377
SUM aggregate fUNCIION....cii ittt sttt et e s be e s be e s s e e s s bae s s beeesabeessaseesnass 378
VAR_POP or VARIANCE or VAR aggregate fUNCLION......cceveieeiiieeriee st seiee e seeesieeesnee e 379
VAR_SAMP or VARIANCE_SAMP aggregate fUNCLION.....cccccveiiiiiiieieieeeiee e s 380
XMLAGG aggregate fUNCIION......iii ettt ee s s ee e st e s s e e s e e e sbe e e sbeeesaneas 381
SCALAN FUNCTIONS ..ttt ettt st e st e bt esae e b e e sae e e bt e saee e beesaeesaneesneesaneenne 382
ABS 0r ABSVAL SCalar FUNCTION....ciiieiieiiie ettt 382
PAY 6@ T or=Y - 1 V] [od { o KOS S TPV PRTROR 383
ADDL_DAYS... ettt ettt ettt ettt b et h et h e et e e a e beea e e bt et e e bt et e eh e e bt eat e be et e sheebeeheeabeetenbeeas 383
ADD_MONTHS SCalar fUNCIION.....coeeiiitieiieeeee et e eeeeear e e e e e e e e e e essassssaeeeeeseeeeesesnnnes 384
ARRAY _DELETE SCaAlar fUNCIION....ccc ittt eeeeebareeee e e e e e e e e s eessassssaeeeeeseeeeesennnnnes 386
ARRAY _FIRST SCAlAr fUNCHION....uuttiiiiiieiieieieecciteeee et ee e e e e e e e e e asabaraeeeeeeeeeeesessnsnsssesseeseeas 387
ARRAY _LAST SCaAlAr fUNCIION...cciiiittitiieee ettt eeeeeecarrar e e e e e e e eeeeeaasssaeseeeseeeeesesesnnnssnnes 388
ARRAY _NEXT SCAlAr fUNCHION. ...ttt ee et e e e e e e e e e eesaabaraereeeeeeeeesensasssssesseeses 389
ARRAY_PRIOR SCalar fUNCLION. . .uuiiiiiiiiiceeeccciittteee et e e e e e e e e s eesasabreeeeeeeeeeeesesssnssssseeseeeas 391
ARRAY _TRIM SCalar fUNCHION...uutiiiiiiiii ettt e e e e e e e e esababareeeeeeeeeeeseesssssseseereeeeeas 392
ASCIT SCALAr FUNCTION. c..eiieeeee ettt st st st st be e s e e b e smeeereesns 393

vii

viii

ASCII_CHR SCAlar FUNCHION...iiiii ittt e e e ee e etbrrae e e e e e e e e e seeessssaseeereeeeeesesennnns 393

ASCII_STR or ASCIISTR SCalar fUNCHION. ...ttt e e e e e e e eaarraaeeeee e 394
ASIN SCALAr TUNCTION.c.ci ittt e e e e e e e e e sesssrseaeeereeeeeseessssssssaaereeeeeeeennen 395
ATAN SCAlAr TUNCTION.c.iii ittt et e e e e e e e e e e et sabaereeeeeeeeeeesessssssseseereeeeens 395
ATANH SCALAr TUNCEHION. ... ittt e e e et e e s e e abbeeeeeeeeeeeseesssssssssaeseeeeeeeessans 395
ATANZ SCALAr FUNCIION. .. uutiiieiiiieie ettt e e e e e e eeeeassbarseeeseeeeeeesesasssssssreseeeeesseesnes 396
BIGINT SCAlar FUNCHION...iiiii ittt eeeeeeeebbar e e e e e e e e eeeeessssseareeseseeeseesasssssrnnes 396
BINARY SCAlar fUNCHION....ciiieccttteiieee ettt eeee e e e e e e e e ee e sssrsaaeereeeeeesesensnsssssesneeeeeas 397
BITAND, BITANDNOT, BITOR, BITXOR, and BITNOT scalar functions.......ccccceeeeeeeeieieeeccinneneeeeeeen. 398
BLOB SCaAlAr fUNCIION....cciecciiittiieeeee ettt e e eeee e e e e e e e e e seeeassssbaeareeeeeeeeesessssssssreareeeeens 400
oI 3 1 R 401
CARDINALITY SCaAlar fUNCHION. ...ttt ettt eeeeeerarree e e e e e e e e e eesessssssseseeeseeseesessnnsnnnes 402
CCSID_ENCODING SCalar fUNCHION....iiiiiiiicccittttieeeee et e e e e e eeesarrereeeeeeeeeseseasssssaeereeeeens 403
CEILING OF CEIL SCalar fUNCHION....cciiiiccititieeieee ettt ee e e e eeeeearreeeeeseeeeeses e ssnsssseseeseeseessenn 404
(01 S VY Yor= | T (] Tt { o] 3 VOO RSO U ORI 405
CHARO SCAlar FUNCHION...uiiiiiiiii ettt e e e e eesee e be e e e e eeeeeeesessssssseseeeseeeeesesesasnsrares 412
CHARACTER_LENGTH or CHAR_LENGTH scalar fUNCHON........uvviiieiieeiieeeicirieeeeeeeeee e 413
(010 | Yor= | = T (V] gVt £ o) o VUSROS RPN 415
CLOB SCalar FUNCIION...iii it ittt e e e ee e et e e e e e e e e e e s sabaereeeeeeeessessesssssssaseeeeeeeens 415
COALESCE SCAlar fUNCLION. .. .uuuiiiiiiiieeece ettt e ee et e e e e e e e e eeeesasssasaeeeeeeeseeesessnssssesearseeeens 417
COLLATION_KEY SCAlar fUNCEION....uuutiiiiieeei ettt ee e e e eeeececirreree e e e e e e e eeeeenssssseeeeeseeseesesssnssssssnens 418
COMPARE_DECFLOAT SCAlar fUNCHION.....uutiiiiieieeeeeeeeiecciniieeeee e e e e eeeeeerrrrreeeeeeeeeeeseesnnssssseeeeeeesseenas 421
(000])\1 07 I Yor- 1 =Y o {1] o Tex 4 (o] o VOO O RPN 422
CONTAINS SCAlar FUNCHION...iiiiii ittt e e e e e e e eeeabrbaereeeeeeeeesesesssssssessreeeeeeessennnns 422
(O[O o1 =T g (VT3 o3 4 o] HRSR U OR PR PR 425
({011 & EYor- 1 =1 o (U] oot { o] o VOSSPSR 425
DATE SCaAlAr fUNCIION. ..ottt ee e e e e e e e e e e e s e asbsbseeeeeeeeeeeseessnssssseaeseseseeseennnes 425
BN Yot | = T (V] g ox f (o 3 VUSSR 426
DAYOFMONTH SCalar fUNCHION...uuiiiiiieiiieeecctiteeeee et e e e e e e e e abarae e e e e e e e e e e sesesnssssasareeeeeeeens 428
DAYOFWEEK SCAlar fUNCEION....uuiiiiiiiieiiiceecccciittieee et ee e e e e e e e e e eababaereeeeeeeeesesenssssssseaeeeeeeeens 429
DAYOFWEEK _ISO SCalar fUNCHION....iiiii ittt eeeeeeabarree e e e e e e e e s e s nsssaneeeeeeee s 430
DAYOFYEAR SCalar fUNCIION....cciiiieititiieeee ettt e eeeecbrrrr e e e e e e e e seesasssssseeeeeeeeeeesensnnsenes 431
DAY'S SCAlAr TUNCIION...cci ittt eeeeee e e e e e e e e se e e asssabbaeeeeseeeeessessnsssssaseeeseeeessenen 432
YN AT = o AT = T 433
DBCLOB SCaAlAr fUNCIION....cciie ittt ettt e eeee b e e e e e e e e eeesssbssaeereeseeeeesesssssssrearanseeas 434
D] O S O IR Yor=1 K=Y o {11 a o { o] o FO ORI 437
DECFLOAT_FORMAT SCAlar fUNCIION.....uvuiiiiiiiieii ettt e eeeetrarre e e e e e e e e s ee s aassaareeeeeeeeeeesennnns 438
DECFLOAT_SORTKEY SCAlar fUNCHION.....uuviiiiiiiieeiiieeeiciiiiteeeee e eeeeiirrreeee e e e e e e e eeeesanasssaeseeeseseeesennnns 440
DECIMAL OF DEC SCalar fUNCEION. . .uviiiieieeiii ettt ceeeccrtrreee e e e e e e e eeesesaasssaereeeeeeeeessesssssnssnnes 441
(D] O{0]) = Yor=1 K=Y o (1] s o1 { [o FO USRI 443
DECRYPT_BINARY, DECRYPT_BIT, DECRYPT_CHAR, and DECRYPT_DB scalar functions.............. 444

DECRYPT_DATAKEY_INTEGER, DECRYPT_DATAKEY_BIGINT, DECRYPT_DATAKEY_DECIMAL,
DECRYPT_DATAKEY_VARCHAR, DECRYPT_DATAKEY_CLOB,
DECRYPT_DATAKEY_VARGRAPHIC, DECRYPT_DATAKEY_DBCLOB, and

DECRYPT_DATAKEY_BIT SCalar fUNCHIONS.....ciiiiiiiiecititteeeeee et e e eeennnraree e e e e 446
DEGREES SCalar fUNCIION.....ciiieeittieeeeee ettt ee e e e e e e e e e e eesesnssasseseeeseeeesseessnnssssrnnns 449
DIFFERENCE SCalar fUNCHION....iiiii ittt e e e e e e e e s e s e asssaaaeeeeeeeeeeeeenns 450
D) O] N ISR Yor= | T (¥ g Lot { (o 3 VTR O R PP P 450
DOUBLE_PRECISION or DOUBLE scalar fUNCHION........uvviiiiiiieeiieeccciiiteeeeeeee e eeecirreeee e e e e eeeeanes 451
DSN_XMLVALIDATE SCAlar fUNCHION.....uuvriiieiieieeeieeeeciiiriieeeee e e eeeeeirrrreeeeeeeeeeeeesssssssssseeeseseessennnnnes 452
EBCDIC_CHR SCaAlar fUNCIION....coieeeiititiieieee ettt e e eeeeceaarrree e e e e e e e e s sesesssssasereeeseeeeeseesnnsssnes 453
EBCDIC_STR SCAlar fUNCHION...uiiiiiiiiie ettt e e e eeeeessarrrrreeseeeeeeeeesssssasaeseeeeeeeeesenen 453
ENCRYPT_DATAKEY SCalar fUNCHION.....cciiiiicttiieieeee ettt e e e e e e e ee s annsraeaeeeeee s 454
ENCRYPT_TDES or ENCRYPT scalar fUNCHION. ..ottt eeeevireeeeee e e e e e e eeeannnes 456
o Yor= 1 =Y o (1] Tt £ [] TSSO UUTTRRRRRRRPRORt 458
EXTRACT SCAlAr fUNCIION. ..ottt ee et e e e e e e e e e e e aasbbaaereeeeeeeeesesssssssesenneeeas 459
FLOAT SCalar fUNCIION. c.iiii ittt et e e e e e e e e s ee s sssssaereereeeeeesesessnsssssenneeees 461
FLOOR SCAlar fUNCEION. .uutteiiieiiii ittt eeeeeeerrre e e e et e e e e e eseassbbbaaseeeeeeeeesessasssssssesseeseeseesennsnsssres 462

GENERATE_UNIQUE and GENERATE_UNIQUE_BINARY scalar functions.......ccccceeeeeeeeeeccnvnveennnnnn. 462

GETHINT SCalar fUNCHION. ..utiiiiiiiii ettt e e e e e e e e e bbb be e e e eeeeeeeesssssssssseeeeeeesssesnannes 463
GETVARIABLE SCaAlar fUNCIION....coi ittt ettt eeeeebarrre e e e e e e e e e seseasssabaeeeeeeeeeeesennnnnes 464
GRAPHIC SCAlar fUNCHION...uiiiiiii ettt e e e e e e e e seasbr e e e e e eeeeesesessssssrasreseeeeeessesnnnnns 465
GREATEST SCAlar fUNCEION. . uuiiiiiiiii ettt e e e e e e e e eaababbe e e e e eeeeeeeesnssssseseeeeeseessennnes 470
[VANS] o I Yor= 1 K=Y o (U] a Tt 4] o TR USSR 471
HASH_CRC32, HASH_MD5, HASH_SHA1, and HASH_SHA256 scalar functions.......ccccceeuvvvveeennn.. 472
=) Yor= 1 =Y (U] o Tt { [o TSRO PPt 474
(2[00 = Yor= 1F=Y o (U] aTex { o] o TR RSSO PUPPTRN 475
IDENTITY_VAL_LOCAL SCalar fUNCHION.....coiieectittieiieee e eeecirrtteee e e e e e eeeeessarareeeeseeeeesesseasssnnsennes 476
TFENULL SCaAlAr fUNCIION. ettt ettt e e et e e e e e e e e e e seesaasssseaaeereeeeeeeesesssssssesrenseeeens 479
INSERT SCalar fUNCIION....ci ittt ee e e e e e e e e e e e eeaasbsbaeereeeeeeeesessnsssseaeaseeeas 480
INSTR SCALAr fUNCHION. .ttt e e e et e e s e abbb e e e e e eeeeeseessssssssseseeeeeeeeenanns 482
INTEGER OF INT SCalar fUNCHION....iiiiiiii ettt e e e e e e e e e e e e e seesasssraaeeeeeeeens 483
LU I Y 7 R 484
LAST_DAY SCalar FUNCHION....iiiiii ittt ee e e e e e e e e e e e e eesessssssseaeeeseeeeeseesssssnes 485
[O7AN =Y of=1 F- Yol 111 [{ o o FO R USRIt 486
LEAST SCalar fUNCIION....ci ittt e e e e e e s e e s assbbaaeeeeeeeeeeesessssssseseeeseeas 486
[o I oF= 1 - Tl (V] Tod 4 o] PR O R SRR 487
[e I o Y o=1 F=Y o {11 [o o T USSR 489
[N oF=1 =T (VT o3 4 o] PR USSR 490
LOCATE SCAlar fUNCHION...uiiiiiii ettt e e e ee e e e e bbbt be e e e e e eeeeeesessssssssseeeseseeesesenssnssanes 490
LOCATE_IN_STRING SCalar fUNCHION.....iiiiii ettt eee et e e e e s e e e s eassaasaaeee s 493
LOGLO SCAlar FUNCHION. .ueiiiiiiii ettt e e et e e e e e e babbbreereeeeeeeeseessssssssasesseeeeesessnasssssenns 494
LOWER SCAlAr fUNCIION. ... uiiitiiiiiiieeee ettt ee e eee et ee e e e e e e e sesseassssaeareeseeeeeesessssssssseerreeeeeeas 495
Y D Yo | =1 o (U g et { o] VO U UU SRR 498
LTRIM SCaAlar fUNCIION. c.cii ittt e e et e e e e e e e s e s e asebabreeeeeeeeeeeseesssssssaneeereeeens 500
N PAY Yor=1 F-Y o (U1 [{ o] o FO USROS TURRRRRRRRRORt 501
MAX_CARDINALITY SCalar fUNCHION....ceiiiiii ettt e e e e e e aaabae e e e s e e e e e s ee s nnssernees 502
MICROSECOND SCalar fUNCHION...uuiiiii ettt ettt e e e e e e e rae e e e e e eeeesesessnssssereeeeeeeees 503
MIDNIGHT_SECONDS SCalar fUNCIION.....ccccciiitiieiieeec ettt eeeabareee e e e e e e e e seesssasaaeeeeeeee s 504
NN Yor= | = (] g et { o] o VOO PPPTRUN 505
NN = Yor- 1 =Y o (U] oot { o] o TSROSO RPN 505
N [OTD R Yot 1 =T (V] g e { o] VU O OO PR PPTTN 506
MONTH SCAlAr TUNCTION...ii ittt ee e e e e e e e e e eeesaasbrbaeereeeeeeeesesassssseaeneneeas 508
MONTHS_BETWEEN SCalar fUNCHION. ...ttt eeeeirreeree e e e e e s e e eanaraaaeeeeeeeeeeeens 508
MQOREAD SCaAlar TUNCIION....ciie ettt ettt e e e et e e e e e e e eeeeeenssbabaeeeeeeesesesannnsssssesnnees 510
MQREADCLOB SCAlar fUNCEHION.....uutiiiiiiiiieeiieeeicirtree e e e eeeeersrrree e e eeeeeeseesssssssseseeeseeeeesenssnssssssnees 511
MQORECEIVE SCalar fUNCHION.....ciii ittt e e arr e e e e e e e s e e esasssaaeeeeeeeeeeesesnnnnns 512
MQRECEIVECLOB SCAlar fUNCHION. ..ottt ettt e e e eeecararreee e e e e e e e e s eeessssanreseeeeeeesesennnns 514
MQOSEND SCaAlar FUNCIION....ciii ittt e eee e e e e e e e e e se s sssssbaeeeeeseeeeesesssnsssssrnens 516
MULTIPLY _ALT SCAlar fUNCEION . uttiieeieiii ettt ettt e e e e e e e e saabraae e e e e e eeeeeseeessssseseeneeeas 517
NEXT_DAY SCaAlar fUNCHION...ccciiiiieecttteteeeee ettt e e e e e eeeebarr e e e e e e e eesesessssstseseseeeeseessssnnssnnes 518
=D B N2 I PR 520
NORMALIZE_DECFLOAT SCalar fUNCHION.....iiii ittt e e e eeeeaaraaaee e e e e e e e e e sennnnns 520
NORMALIZE_STRING SCalar fUNCHION......ccoiiieetttieieeee ettt eeecirrrre e e e e e e e e e e eeeessssarnees 521
NULLIF SCAlar fUNCHION...iiiiiiii ittt e e e e e e e e eebbrbre e e e e e e e e eeseesassssssaseeseseeesessnssssssenns 522
AV I Yo- 1 F=Y o (U] o Tex { o] o VOSSP 523
OVERLAY SCalar fUNCHION...utiiiieieii ittt eeeeerrrre e e e e e e s e e e sassabaeaeeeeeeeeesesssssssssaeseeeeeeeessanns 523
PACK SCALAr FUNCEION. ..utttiiieieiie ettt e e e e e e e s e e e b bbareereeeeeeeesesssssssssseeeseseeesensasnsrnres 526
POSITION SCAlAr fUNCHION. . .uutiiiiiiieiieie ettt eeeecrrrre e e e e e e e s se e aassraaeereeeeeeeesessssssresnerneeas 529
POSSTR 0r STRPOS SCalar fUNCIION.....cooiiiiitttiieeee ettt e e e e e e e e e e asasraaeereeeee s 532
POWER 0F POW SCalar fUNCHION....uiiiiiiii ittt e e e e e eesabaer e e e e e e e e e seseeassssseaeeeseeeens 533
QUANTIZE SCAlar FUNCHION...iiiiii ittt eeeeee e brr e e e e e e e e eesensssssereeeeeeeesseesanssnnes 534
QUARTER SCAlar fUNCEION. . .uttiiiiiiiee ettt ee e e e e e e e e e e e e e esababaeaeeeeeeeeeseessssssssseereeeeesennan 535
T B) AN N IR Yor=1 F=Y g (U] [4o o FO RSO UPPTO 536
RAISE_ERROR SCaAlar fUNCIION. ... ettt ettt eeeeccirrrree e e e e e e e e seeessasstaeeeseeeeseesessnsnsssnens 536
RANDOM 0r RAND SCalar fUNCHION....uuiiiiiiii ittt e e e e e e e e srarreeereseeeeeseessssnsnenens 537

o A Y or= 1 =V (VT (o A o] o VRO 538

] = 010 1]\ 539
T oy 1\ S 2 S 541
O] = I 1 =R 543
REGEXP _REPLACE. ...ttt ettt ee ettt s s etvte e e s eeaaae e e s seabeeeessensaeeeeessaeeeesssseeressansesnessensaeneas 546
REGEXP _SUBSTR....ciiitteiie ettt ettt e e ceete e e e eette e e e eesabaeeeseebaeeeesssbeeeessasaasessasssaseesesssreeessenssreessssnnees 549
R S Y N I Yo 1 =Y o (U] g Tt { [o TSP PURTT 551
REPLACE SCalar fUNCHION....uiiiiiiiii ettt e e e e e e e e eaabbereeeeeeeeeseeesssssssaeseeeseeeessesnnnnes 552
D Yox=1 K=Y o (U] a [ox £ [o FO RSO UUETURRRRRRRRRPPRE 555
(] o W IEYor- 1 =Y (U] g ot { o] o VOO PUTUR 556
ROUND SCaAlar fUNCIION. . ietiteiiieeee ettt e eeeeebarre e e e e e e e s eeessassesaeeeeeeeseeesesssssssesneereeeeses 558
ROUND_TIMESTAMP SCalar fUNCIION.....ccoiiiirtieeeeee ettt eeeebarare e e e e e e e e e se s nssaeaeeeeeeas 559
ROWID SCaAlAr fUNCIION. ..ttt e e eeee et e e e e e e e e seseasssbaaraeeeeeeeeeesessnssssssseereeeeeas 563
A D o= 1 =T VT Yo3 1o] o RO RRR PR 563
RTRIM SCaAlAr fUNCIION....cii ittt eee e e e e e e e e e s eesessassssaeseeereeeeeseesesnsssrsrsrneeas 565
SCORE SCAlar fUNCHION. . uutiiiiiii ettt e et e e e s eeebbbe e e e e eeeeeseessessssssseseseseeseeesesnnssnses 566
SECOND SCAlar fUNCHION...ueiiiiiiie ettt e e e e e ee e sbabbereeeeeeeeeseessssssssssereeeseeeeesennnnses 568
SIGN SCALlAr FUNCHION...uieiiiiii et e ettt e e e e e e e e eeeeeeseessssssbseseeeseeeessessssssssrnees 570
SIN SCALAr TUNCIION . ..ttt e e e e e e ee e aabbbaeereeeeeeesseessssssassereeeeeeesesannns 570
SINH SCALAr FUNCEION...etttiiieiei e e et ee s e e e sabbb b e e e e e e eeeeeesessssssseseeeseseeesesenssnsranes 571
SMALLINT SCAlAr fUNCHION. ...ttt e et e e e e e e e e s eesassaabeeeeeeeesesesessnssssseseeneeeas 571
SOUNDEX SCAlAr fUNCHION. ...ttt ettt e e et eeee e e e e e eesassaseaseereeeeeesesssnssssrseaseeeeens 572
SOAPHTTPC and SOAPHTTPV scalar fUNCHION......ooeciiiirieiieee ettt eeeenraneeee e e e e e e e e e e 573
SOAPHTTPNC and SOAPHTTPNYV scalar fUNCHION......uiiiiii ittt eeaesanaees 574
] O Yo | =T (] et {0 o VOO RRRO SRR 575
SORT SCALAr FUNCHION. .etteiieiie ettt et e e e eesabb b e e e e e e eeeeeesessessssssssesresaeseesenssssssesnens 575
STRIP SCALAr TUNCIHION ... ettt e e e e e e eeeeeassbbbereeeeeeeessesssssssssseseeeeeeeeesanns 576
STRLEFT SCAlAr fUNCIION. ..ttt ee e ee e e e e e e e e e e asabasaeeeeeeeseeesessnnssssesnarseeeens 576
SR IR O I o=1 F- Y U1 [1o] o FO USSR 577
STRRIGHT SCAlAr fUNCEION. . uuteiiiiiiiee ettt e e e e e s e e rbr e e e e eeeeseesssssssssaeseeeeeeeessans 577
SUBSTR SCAlAr fUNCEION...uttiiiiiiiiii ettt eeeeerrreee e e e e e e eeeeabbraeeeeeeeeeeeeesssssssssseeeseseessennnnnes 577
SUBSTRING SCaAlar fUNCHION....iiiiii ettt e e e e e e e e e e e e sasssraaeeeeeeeeeesesennnns 579
TAN SCALAr TUNCIION. ..ttt ee et e e e e e e e e e e e s sabsbaeeeeeeeeeeeseasssssrssaeereeeeeseenan 583
BN BEYor= 1 F=Y o (U] a Tt 4 o TSR 583
TIME SCAlar fUNCHION...uiiiiiiii et e e e s e bbb e e e e e e e e e seeessssssseseeeseeeeeseesasssssrnens 584
TIMESTAMP SCAlar fUNCEION. . uueiiiiieeie ettt e e e e e e e e e earabeaeeeeeeeeeesesssssssaseaeeeeeeeens 584
TIMESTAMPADD SCalar fUNCEION....uuiiiiiiiei ettt e e e e e ee e eabarae e e e e eeeeeesesasnssseaeeeeeeas 587
TIMESTAMPDIFF SCalar fUNCHION.....iiii ittt e e e e e e e e e e s e e sassrraeeeeeeas 588
TIMESTAMP_FORMAT or TO_TIMESTAMP scalar fuNCHION.......coooeveirviiiieeeec et 591
TIMESTAMP_ISO SCAlar fUNCHION....uutitiiiiiiee ettt eeee e eeeeecirrrrre e e e e e e e e seessasssaeeeseeeeesesessnsnssseens 595
TIMESTAMP_TZ SCaAlar fUNCHION. ...ttt e e e e e e e e e e s e assssereeeeeeeeeseessnnnnnes 596
TO_CHAR SCAlar FUNCHION...iiii ittt ee e e e e e e e e e e e s eeassasseseeeseseeeseseansnssnnes 598
TO_CLOB SCAlar fUNCEION. . utttiiieiii ettt e e e e e e e ee e asbbbaeeeeeeeeeeesesssssssssresseeeesseesanns 598
TO_DATE SCAlAr fUNCEION. .. uuttitiiiiieeeie ettt eeeecerrrrree e e e e e e e eeseeasssseareereseeeesesasssssssresreeseeeens 599
TO_NUMBER SCalar fUNCIION.....ccciitittiiieeec ettt e e e eeecebarree e e e e e e e eesesssssseseeeseeeesseessssnssnsenes 599
TOTALORDER SCalar fUNCIION.....ciiiiictttttiieeee ettt e e eee e arae s e e e e e e e e ee s e asssssaeseeeeeeeeesennnes 599
TO_TIMESTAMP SCAlar fUNCHION. ..uviiiiieei ettt e e e e ee e e e e e e e e e e e s e nsnssseaeeeeeeas 600
TRANSLATE SCalar fUNCHION...uuiiiiii ittt e e e e e ee e barre e e e e e e eeeeseessssssesaeereeeeeseesas 600
TRIM SCaAlAr TUNCHION.c.ii i ittt e ee e e e e e e e e e e ee s e s ssasbaaeeeseeeesssesasnsssrsesreees 603
TRIM_ARRAY SCalar fUNCIION....ciii ittt raree e e e e e e e e e s e e snssssaaeereeeeeeesesnnns 605
TRUNCATE or TRUNC SCalar fUNCHION....cuiiiiiiiiiececciiteeeeee e eeeeecirreee e e e e e e e e eeeeenssseseseeeseeseeseeennnnsnes 606
TRUNC_TIMESTAMP SCalar fUNCHION....uiiiiii ettt ettt e e e e e eeeeaararaeeeeeseeseeseenannnsnaens 607
(01078 = Yo | =Y (U] o Tox { (o] o TR SRS ORI 610
UNICODE SCAlar fUNCHION...iiiiiiii ittt e e e e e e e ababreeeeeeeeeeesesesnssssssssseeeeeeeessenannnes 610
UNICODE_STR or UNISTR SCalar fUNCHION.....ciiiiiiiieeecciitieeeee ettt e e e e e e eeennrvaaeee e e e e e e e eeean 611
(0] o o S Y or- | = (] g et 4 o] o VOO RO 612
VALUE SCALAr TUNCEHION. .. eittiiiiiieiiie ettt eeeeeerarar e e s e e e e e e eessssssaaeeeeeseeeeeseesssssrssaesreeseeseenan 614

VARBINARY SCaAlar FUNCHION...ciiiiiiiiieeeeeeteeeeee ettt e et et ee e e s e s s e s e e e eeesasasesessessssnssnes 614

V7N {0 o VY Y or=1 = (VT Yo o] o TR 615

VARCHARO SCAlAr fUNCEION. . ettt e e e e e e e beareeeeeeeeseeesssssssaereeeeeeeeenan 620
VARCHAR_BIT_FORMAT SCalar fUNCHION. ...ttt eeeeeirrrrree e e e e e e e ee e ennaarseeeeeee s 622
VARCHAR_FORMAT SCalar fUNCIION.....ciiiiiiiitttieeiee ettt e eaarrer e e e e e e e e e e s esansareeeeeseeee s 623
VARGRAPHIC SCAlar fUNCEION...utiiiieiieeiie ettt e e e e e e eeesab e e e e s e e eeeese e nsssseseaeeeeeens 632
VERIFY_GROUP_FOR_USER scalar fUNCHION......ccoiiiciiiiiiiieee ettt eeenvaaeeeeee e e e e eeeeanas 637
VERIFY_ROLE_FOR_USER SCalar fUNCHION......uutiiieiiiiiii ettt eeeeirarreee e e e e e e e eeeeennanseaeeeee s 638
VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER scalar fUNCHION.......ccoovvueeiiiieieee e 640
WEEK SCalar fUNCIION....cii ettt e e e e e e e e e seeaasabaeeeeeeeeeeeesessssssseareneeeas 641
WEEK _ISO SCAlAr fUNCHION. . .uutiiiiiiieieii ettt eeeecbrreee e e e e e e e e s eseasssbaeereeeeesesesesnsssssesserreeeens 642
WRAP SCalAr TUNCIION...cci ittt eeeecbrrr e e e e e e e e s e e assbaaeeeeeeeeeeeesesnssssseseeeseeeens 643
XMLATTRIBUTES SCalar fUNCEION....uuiiiiiiei ettt e e e eeeeesavreee e e e s e e e e e e e annsenaeaees 644
XMLCOMMENT SCalar fUNCEION. . .uuiiiiiieii ettt e e e e e e e e eearrba e e e e eeeeeesessnssssseaeeereeas 645
XMLCONCAT SCAlAr fUNCEION. ...utiiiieiiieeii ettt eeeecrrrre e e e e ee e e e e eessasabaaaeeereeeesesesessnsssssssreeeas 645
XMLDOCUMENT SCaAlar fFUNCHION. ..ttt ettt eeeeeearrreee e e e e e e eeseassssasreeeeeeeeesesennnes 646
XMLELEMENT SCaAlar fFUNCHION. ..ottt ettt eeeecibrrree e e e e e e e s e essabaeaeeeseeeeeseeennsnsnnenns 647
XMLFOREST SCalar fUNCIION...cce ittt e e eeeeeetrarae e e e e e e e e e se s sasseseeereseeseeesessnsssrasnnes 651
XMLMODIFY SCalar fUNCHION....uiiiiiiii ettt e e e e e e e e rbe e e e e e e e eeeesssssssaseeeeeeeeeeas 653
XMLNAMESPACES SCalar fUNCHION......ciii ittt e e e e e e e e e se e nsarraeeeeeeeeas 656
XMLPARSE SCalar fUNCHION...ciiiiiii ettt ettt e e ee e e e e e e e e e e e e e anssasaereeeeeeesesennns 657
DTN o Yo 1 F= Y o (U] a Tt £ [o TSP PPN 659
XMLQUERY SCAlAr fUNCLION....uuuiiiiiiiiieeei ettt e e e eeeeeabrrre e e e e e e e e s eesnsssssareeseeseeesesesnssssssesreeeeens 659
XMLSERIALIZE SCaAlar fUNCHION....cciiiiciiiiieiieee ettt e e e ee e aabre e e s e eeeeeeeessssassereeeeeeeessennns 662
XMLTEXT SCAlar fUNCHION . .uiiiiiii ittt e e e e e e e e e ababaereeeeeeeeesesesssssssaeseeeeeeeessesnnes 665
XMLXSROBJIECTID SCAlar fUNCHION.....uutiiiiiiiiieiiie ettt e e e e e e e e e e e e esassssaereeeeeeeeesesennns 666
XSLTRANSFORM SCaAlar fUNCIION....ccoeeiiiitiiiieeee ettt eeeecarrer e e e e e e e eeseesssasaeeeeeeeeeeesenns 667
YEAR SCAlar fUNCHION. ..uiiiiiiiii ittt e e e e e e e e e bbb e e e e eeeeeeesesssssssseaeeeseeeeesensnsnssssrnens 668
101 (=T U] [£ o o U RSSO 669
ADMIN_TASK_LIST 1able fUNCHION....uuuiiiiiiiiieeei ettt e e e e e e s e e anasaareeeeeeeseeesennnes 669
ADMIN_TASK_OUTPUT table fUNCHION.....coiiieeteeeeee ettt e e e e e asnaaeae e 673
ADMIN_TASK_STATUS table fUNCHION. ..ottt e e e e e e ee e e e e e es 675
BLOCKING_THREADS 1able fUNCHION....uvtiiiiiieeeiicceceeciiteeee et e e e e e e e e eeesnsrarseeeseseeeeesennnes 678
MOREADALL table FUNCHION...iiiii ittt e e e e e e e e e e e easbaraeaeeeeeeeeesennnnnes 685
MQREADALLCLOB 1abhle fUNCHION. . .utttiiiiiiiee ettt eeeecirrrree e e e e e e e e eeesssasaraeeeseeeeesessssnssssseens 687
MQORECEIVEALL table fUNCEION. ...ttt e e ee e e e e e e e e e e e seesasnsssaaeeeeeeas 689
MQRECEIVEALLCLOB table fUNCHION. ...ttt e e e e e e e e e eenssaaaeeeeeseeeeesenns 691
XMLTABLE 1ablE fUNCHION. .. .utiitiiiiieieee ettt e e e e e abae e e e e e e e e e e sessasssssaseeeeeeeeeeas 693
RO FUNCHIONS. ...ttt e e e e e e e e e e s e abbba e e e e e e eeeeesesaassssaaseaeesaeseeeseasssssseseeereseesens 696
UNPACK FOW FUNCEION . .ttttttiiiiiii ettt eeeeeeciirree e e e e e e e e e eeesasssbaaaeeeeeeeseeesessssssssssseeseseeeseessnsnsnes 696

ADMIN_COMMAND_DB2.....eeeeeeeeeeeeeeseeeeeeeeeeeeess e sseessesesesseeeseeseessseseseseseeseseseseesseeessesseesesasseesseseseseeessenn 699
ADMIN_COMMAND_DSN....veeeeeeeeeseeoeeeeeeeseeeseeeseeeseesseesseseesseessessseeseesssesesesesseesessssessseeseesssesseeseesseseses 712
ADMIN_COMMAND_MVS....eeeeeeeeeeese e seeeeeeseeese e se e sesssessessseeseesesesseasssessesssesesasesseesesesesessessesesesesesennees 714
ADMIN_COMMAND_UNIX. oo eeeeeseeeeese s s seeeseese s seeessessseseesseessesesesesesesssesssessseseessesssesesesenns 725
ADMIN_DS_BROWSE ... eeeeeeeeeseee e eeeseeeseeeseeeesesesesseess e seesseesssessseesesssesesesesessaeesesssesssseeeesesesenseesesesene 729
ADMIN_DS_DELETE eeeeeeereeeeeeeeeeeeeeseeeseeeeeesesesseesesessesssessseseseseesssessseseessesesesesssessesessesssesssessesesenseaseeseens 732
ADMIN _DS_LIST oereeeeeeeeeeeseeeseeeeeeseeeseeeseeessessseseessessseseseseesse e eeesesaseease e ssesesesesaseseseeseseseseseeeseeessesesesenne 735
ADMIN_DS_RENAME ..o oo eeeeeeeseeeseeeeeeeeeeseeess e sseesessseseessseeeeasseese s eseeesasesese s sseeessessassesseeseasseaseneees 741
ADMIN_DS_SEARCH. ..o eeoeeeseeeeeeeeeeseeeseeeeseeeeseseeseeseseesesessseeaeseessessssss e seeeesesssesseeeseeesasseassssseesesesesesseneees 744
ADMIN_DS_WRITE ..o eeeeeeeeeeeeeeeeeeseeeseessesseesssesesesesesesssesesessesesesesessesssseesesesssessseessesesesesessesesesssaseenees 747
ADMIN_EXPLAIN MAINT oo e eeeseeese e eeeeesesesese e se e seeseseseseseeeesesesaseseseesseeeseseseseseseaeenes 751
ADMIN_INFO_ HOST oo eeeeeeeeeeeeseeeeeeeeeeseeeseeeesesesesesese e seeesessessseseseeessaseseseesesessseseeesesseeeesseseeseesssensssssrsee 760
ADMIN_INFO_IFCID ..o veteeeeeeeeseeeeeeseeeseeeseeeeeessesseesesessesesesessesesessssessseseesesessesssssssssesssesssessesseeesesseesens 763
ADMIN_INFO_SMS.....eeeeeeeeee oo eeeeeeeseeseeeeeeseeeseeeseeesseseeesesese e esesesesseese e eeeeesesesese e seeeeseseseseeeseeessenenasenee 766
ADMIN_INFO_SSID...eeeeeeeeeeeeeseeeseeseeesseesseeseesssesseeseeeseesesesesesseeeesssesesesesssasesesesasseesessesasseesesesseseeassnne 770
ADMIN_INFO_SOLeevereeeeeeeeeeeeeeeeseeeeeeeeseseee e seeeeeesseees e seesseesesses s sessesesesesesessesessseesesaseessseseseseeesessse 771

xi

ADMIN_INFO_SYSLOG vvrvereeeeeseeeeeeseeeseeeseeeseesseesseesssesseseseseseseessesssesesesesessesesesesassessesessesesessseseeeseanenee 781

ADMIN_INFO_SYSPARM. ... otttitteitteeitestte st et e s tessteesstesteesseessteesseeenteesseessseesseesssesseesseeanseenseeenseaseeanes 784
ADMIN_JOB_CANCEL...utiiitteiieecteeeieecttesieesttesee st esee s seesseesseesseessseesseessseesseesssesseesssessessssessseesssesnsennns 788
ADMIN _JOB_FETCH...uutiiiieieieieeitteeie et e ste et et e s te e veestesseessee e seesseessseesseessseeseesnseenseasseesnseesseeensensses 791
ADMIN_JOB_QUERY ...eiitiiiieeteeitte et sstteste e vt esseeesteesseesae e seessseesseesnsesseesssessseassesanseesseesnseeseesnsesnsessseeans 794
ADMIN_JOB_SUBMITttiiiieciieseeeieesteeteesteestesssessseessseesseesseessesssseasseessseassessssessseesssssnsesssessnsesssessnsen 798
ADMIN _TASK _ADD. ...ceccteeeteeeieeetteeitesseessteesttesteesseesstessseesssessseesssessseessessseessessssessseesssessseessessseessesssensns 802
ADMIN _TASK _CANCEL..c.utieieieieeieestteeit ettt et e s te s te e s ee s teessee s se e beesste e seesneesnseessaessseesseesnseeseesnsennses 808
ADMIN_TASK_REMOVE.......ccctiecieeseeeeieeieesteesteesteesteesseessessseessessseesssessessssesssesssessnseesseesssessseesssesnsennns 809
ADMIN _TASK _UPDATE......otiiteeteeeieecteeste et esteeesteesseesseesseesseesseesnseesseesssesseessssssesssssssesssssssseesseesnsennns 811
ADMIN_UPDATE_SYSPARM.....cotiitieteeseeeteesteesttesteesteeste s teesstesbeessaessseesseessseesseesnseesseesssesssessssesnsesnses 814
ADMIN _UTL_EXECUTE....tttiteecieesieeieeitteesteesteestestessseesseesseesseesseessseassessnseassessssessseessssssesssessnsessseessen 822
ADMIN_UTL_MONITOR.....cecteeieeitteeieesiteete et esteesteeseesteesseesseasseessseessessnsesseesssesseesssesnseessesssesssessnses 824
ADMIN_UTL_MODIFY...uttieieeieeiteesteeiteesteesteesseeetesssessseessseassesssseesseesssesssessnsesssessssessseesssssssesssessssesssensns 830
ADMIN_UTL_SCHEDULE.......ttiiteeiiecteeteectte et st e eee st e estessteessee s teesseesseesseessseesseessseeseesssesseessessnsesnses 832
ADMIN _UTL _SORT ..t itiieieecteeste st estteesteesteestess e e sste s seesseesbeessaeanseesseesnseasseessseaseesaseenseesssesnseesseesnsesnses 841
CREATE _WRAPPED. ... etiittecttieteesteesttessteestee s te s teesee e seesseessseesseessseesseessseeseesssesnsesssseanseesssesnsensseesnsesssees 847
DSNACCOX . ctteeteeiteeeteesteestessteesseeaseasseeatesaseasseaaseasseessseeaseessseasseesssesssessssessessssesssesssessnsesssesssseessessnees 848
DSINACICS.....eeeeteeteeetee et et e s te et estee e te et e e e teebeeasteaseeaseessseesseeansaasseeantesseeaseesnseesseeanseaseesnsesnseesnseansennns 880
DSNAIMS....c ettt ettt e et e et e et e et esaee e te e e st e s te e seeesse e seessseasseeaseeasseeasteenseeaseeenseeseessseeseesnseanseenneennses 885
DSNAIMS2..... oottt ettt ste et e s te e te e bt e e te et e eesee e seeasee s seeaseesnsaaaseeenseasseesseeenseeaseesnseenseesnseeseesnseanseensenans 889
DSNLEUSR. ... ettt ettt ettt e e st e et e et e e s st e st e e s se e s seesseesase e seessseesseesaeeenseessaeenseasnseenseaseesnsennses 893
DSNUTILS .. ieetteeieestte et et e e te et e et e et e e s see e aeessee e teeaseeesseeaseesnse e seesnseesseesnsesaseesssesnseessseenseesssesnseenseesnsennns 895
1] LU 1 PSR 906
DSNUTILY ..eeiiteettesteeeest e et e st eete s vt e s see s teeeste e seesseeesseeseessseasseeasseanseeasseanseaseessseenseesssesnseesseesnsanssesansenns 910
DSN_WLM_APPENV ..ot itteitteeieestteete et eeteeste e s ee s tessseeste e st e sssaesseesssesseessseanseesseessseesseesnseesseesnseesseesseenn 913
DSN . CREATE _DGT T .eeiitieitieeieeiteesteesteesteeesteesseestessseesseeeseesseessseesseessseasseessseesessssesssesssesssessseessensseenns 916
DSNB.DISABLE.... oo ceeeteeteee ettt ettt e te et e st e e te e sseesae e seesase e seesnseeseessseenseesnseenseeaseeenseenseesseanns 917
DSNB.ENABLE.......cicteetteeteectteete et e stessteeseeste e seesste e seessee e beessseesseessseanseeaseesnseeseesaseanseesnseenseesnsesnsennes 918
DSNB.GET_LINE.....iiitieiieiieeieecteeitessteeete e st essee e teessee s seesseesseesseesnseesseessseaseessseanseesssesnseesssesseesssesnsensns 919
DSNB.GET_LINES. .. cictteiteieieeiteeste et esttesteesteeseeesteesseeeseesseeesseesseesnseasseesnsessseessssanseesseesnseenseesnsenssesnnsenns 920
DSNB.NEW_LINE. .. .iictieiiieiteesteeeieeiteesteesteesseeeeeesseessessseasseessaeasesssseessesssseassesssssansessssesnsesssessnsesssesssenns 921
D1 AV E < 1 L N TSP 921
DSNB.PUT _LINE. .. ttietieiteeeteecteeste et esttesteesteeseeeteesseesseesseeesseasseesnsesseesssesssesssessnsessssessseessessnsessseessseans 922
Objects that are used by the sample trace stored proCedUIeS........uivvciieeeeeeciieeeecceee e eree e 923
LT 010 11V i TSRS 923
GET_MESSAGE.......otiiieeieectte et esteesteesteesteste e bt e s ee e beessee e seeaseesnseeaseesnsaaseessseasseesssesnseesseesnseesseesnsesnsennns 942
GET_SYSTEM_INFO ... iiiiiieieiiieesieeste et et e e teesteeste s beesseesseessee s seesseessseeseesnseenseesnseenseasssesnseesseesnsensens 949
SET_MAINT_MODE_RECORD_NO_TEMPORALHISTORYcccttiitiieeeieestiesieesteeseeeseeeseeeseeesseesseessnenns 962
NS B o 2 VN 1V 962
SQLIALTER _JAVA _PATH.....eteeeeeeteectteete et este et esvte s teesseeste e seesnseesseesnseesseesssesnseessaeenseasseesnsesseesnsesnses 988
SQLI.DB2_INSTALL_JAR i cteeteeteecteestee et e it eete e teesee s teesseeseeesseesnseeseeansesssaasssesnseesseesnseenseesssesnsenns 991
SQLI.DB2_REPLACE_JAR.. .ot ettt eceeete et esttesteesteesste e teesneessbeessaessseessaesnseesseesnseenseesssesssessssesnsenssens 992
SQLIINSTALL _JAR. . ettt et estte et e st e e te et e s te st e e e s ee s be e s st e s seesseessse e seesaseanseessseesseesseeenseasseesnseenseennsenn 994
SQLI.REMOVE_JAR.....iiiieteetee et eitt e e te et e s te e te e st e s teesseeeste e saesntesssessseessseasseesnseansaesnsesnseasssesnseasseesnsanns 995
SQLI.REPLACE _JAR ...ttt ettt ettt e e te et e s te e te e s eesteesseeesteesseeensaesseeansesnsaesssesnseesseesnseeseesnseensennns 996
LAV B S 2 =3 997
WLM_SET_CLIENT_INFO..cttiictiecieeieecteestessteeste et esteesseesseesseesseesssessseesssesnseesssssnsesssssesesssessnsesssesansenns 999
XSR_ADDSCHEMADOLC......cccttieieecteeeieesteeetesseestessteesstessteesseesseesseesnssasseessseessessnsesseesssesnsesssesensessseen 1000
) R 60\ o I I TSP 1002
XSR_REGISTER....ciittieieeciteette et estteetesstee s te e teesstesbeessee e beessee e seesseessseesseesnseeseesnseeseesnsesnseesssesnseesseean 1003
T R 3 =17 1 1 TSP 1005

Chapter 6. QUEKES....cccuieuieiieieitenieceniecatestecassessssesssssssssssssssscsssassssassassssassessssess L1007
F XU} 1 a (o] 2=\ { o] o T RSO P PR 1007
L8] oFY=] (=To3 ST U OO PPPTRRRRRRRRRIOt 1009

Y] (=Tor et el = YU T TP PP 1010

11 0] 0 g BT ol F= YU L=< TSR 1017

W =ClAUSE . .etiiitiee ettt ettt et e e st e e s bt e e s bt e e s bte e sbeeesabeessaseeessaeesasaeesseeesnsaeesans 1036
F=lgo U] o T o)V ol - TU =T = TSP PPUSTRP 1037
PAVING=ClaUS . ..ei ittt et e st e s st a e s st e e s s a b e e s sbaeesabaessssaessasaeesaseessnseesnnses 1043
oY e L=Y gl o) Ao - TN 1= =TSSR 1043
(oY £ ol F- T U1 TP 1046
L (o] Ao = U T OO 1047
EXaMPLES Of SUDSELECTES....uuiii ettt ree e s e et e e s e e aae e e e eenreeeeeensaneeas 1048
Examples of grouping sets, rollup, and CUDE QUETIES......cccviiriiiiriiierieeeieesre e 1054
L8] Y= LT o S U U PP P RRPPPPRURPRRN 1060
Character conversion in set operations and concatenations........ccceeecvveeeeeecieeeeeecree e eecree e e 1066
SeleCting the rESULL CCSID....cccuiiiiiieiiieeieiee sttt sste e s see e ssate e s sate e sssteessaeeessaeeesseaessssaesnneeesans 1066
Y= T LT o] - T=T0 a =T oL S OO ORI 1067
foto] 0 gl aaTeTa T = Lo LT o g o] =YY o] o U 1069
(U] o Lo FoY (T ol =TSR 1071
== Vo BT o] AVt ol =T U =TSSRt 1072
oY oA aT 4= RTol - T £ =TSSR 1073
[17o] F-1aTe]a Rl ol F- U1 TSP 1073
Lo [UT=T Y aTo BTl F= U YRSt 1075
SKIP LOCKED DATA. ...ttt etteete et e sttestesstesstesteassaesnsessseasssaasassnsesssessssesnseessessnseesseesssessessnsesnses 1076
Examples of SELECT Stat@mMENtS....cciiccuiiiieccieeee ettt e eecrre e eeetee e s e ecttee e e e ebee e e e snbeee e s eensaaeeseensaneas 1077

Chapter 7. Statements.....ccccieiiieiieiiiieniieiieniceiieteiientecestessecessessecassecssssssscassecss 1079

List Of SUPPOITEd STatEMENTS...ciii et e e et e e e s e b e e e s eabeae e s e e sseeeeesnseneeenn 1079
HOW SQL StatemMents are iNVOKEcoiiiiiiiiiieeeeee ettt e eeee e e e e s e e e seseasssraeeeeeseeeens 1086

Embedding a statement in an application Program.........cccevcveeiiieeiiieeniieenciee e ssee e sseeesree e 1087

Dynamic preparation and EXECUTION.......ccccuiieeieeiiieeecccttee e eecttee e e eecree e e e e ensee e e s seseeeeesesnsaneesessseneeaas 1088

Static invocation of @ SELECT State@ment.......iiiciiiiiieiciec ettt iee s s 1089

Dynamic invocation of @ SELECT StatemeNt.........ceeiieciiieiiecieee ettt e e e e e evaee e e 1089

INtEraCtiVE INVOCATION. ..o ittt iiiee ettt ettt se e st e s s sbe e s s be e s sbe e e sabeeesabeeesasaessssaeesasaeenaneas 1090

SQL diagnostiCs INTOIMAtiON...ciiiiiiiiiieiiiieete ettt e s e e s e e e s bee e sbee e ssbeeessreessnneas 1090

Detecting and processing error and warning conditions in host language applications............... 1091
SO COMIMIENTS.ceitttttttiiiiiiecceeeeeeee et et eeeeeeeeeeeeeeeererss s s s s s a—_a——raaaeeseeseeeeeesssssssssssesssssnsssssnnnnnnnnnseseeeeeeeseeesens 1092
ALLOCATE CURSOR Stat@mMENT.....ccieiieeeieeieeee ettt ettt ettt e et e e e sttt e s st ee s s sae e e s esnreeeeeennne 1093
ALTER DATABASE STatemMEnT.. ... ittt ettt ettt ettt e et e e et e s s e see e e e e s nneeeeesanne 1095
ALTER FUNCTION statement (external funNCtion)........ceeceeeieeciisie e e 1097
ALTER FUNCTION statement (compiled SQL scalar function)......cccceecueeeciieeciieccieecceeeecvee e 1113
ALTER FUNCTION statement (inlined SQL scalar fuNCtiON).......coccveeiiieeeeeeececeeee e e 1142
ALTER FUNCTION statement (SQL table fUNCTION)......iuiuiiiiiieeeee ettt eeavee e 1150
ALTER INDEX STatemMIENT....eeeeeeiiiiiiiieieeeeeeette ettt ettt e e e e e s e s aeee et e e e e e e e s e s msnreneeeeeeeessesaannnn 1157
ALTER MASK STAtEMENT ...ttt ettt ettt e e s et e e e e s et e e e st e ee e e e sneeeeeeenneeeeesnns 1174
ALTER PERMISSION STatE@MENt.....iiciieciieciieecieeiteeeieeteeste et ss e ssteesseeseeesseessseeseesnseesseesnsesnseessessnsennns 1177
ALTER PROCEDURE statement (external proCeAUIE).........iecuiiicieeeecieeeeieeeetee e e teeeeteeeeaeee e aeeeenes 1180
ALTER PROCEDURE statement (SQL - external procedure) (deprecated).......cccoceeeceeeeceeeccieeeccneeennee. 1189
ALTER PROCEDURE statement (SQL - Native ProCeAUIe)........ucuciieeieeeeiiieeecteeeecieeeeteeeeteeeecteeeeree s 1194
ALTER SEQUENCE StatEMENT...uuuiiiiiiiieiieeiieeeeeeeeeeeeeeeeeeeeeetaa s eeseeeeseeeeeeaeessssssssssssssssssssnnnnnnnnnnnnnns 1224
ALTER STOGROUP STatemMENT.. .. ittt ettt ettt ettt e ettt e e s et e e s e eane e e e s eneeeeseenneeeeenas 1228
ALTER TABLE STatemMENT.. .. ittt ettt et e e e et e e s s ae et e e s mee e e e s s enseeeessennreeessanns 1232
ALTER TABLESPACE Stat@mMENT.. . .ottt ettt e st e e e st e e s e et e e e e nneeeeesannee 1321
ALTER TRIGGER statement (2dvanced trigZer).....ccouiirirrreecrieeteeceeseesteeseeseeesseeseeesreesaeeseeesseeenes 1342
ALTER TRIGGER statement (DaSiC trHSZEr)...cccuiiiirieerieeieeeieecteeseeseesreeeeeesreesrseesseesssesseessaesseessenan 1365
ALTER TRUSTED CONTEXT Stat@mMENt...cueccueeeieeieeieeeieeietee e esteesseeesveesseesaeesseeseeesseesnsesnsessssessesssenns 1368
ALTER VIEW STat@MENT ...ttt ettt e e ettt e e et e e e s et e e e e s nnee e e s s areeeeseeneeeeeesanne 1378
ASSOCIATE LOCATORS Stat@meNt...cccieiieeeeeiteee ettt ettt et e s et e e e sne e e e s e e eee e s nneeeee e 1380
BEGIN DECLARE SECTION Statement......ccei ettt ettt e e st e e s s e e s eneeee e 1383
CALL STATEMIENT. ..ttt ettt ettt e sttt e e sttt e e s e euse e e e e e e asseeeeeeanreeeesenneeeeeesnnseeeeannnen 1384
CLOSE STat@MENT ... ittt et e e e et e e e ettt e e ettt e e s s ane e e e e s aneeeeesenseteeeenanseeeeesanneeas 1395

xiii

xiv

(000]\ = N IESS = Y (=T 0 4 =1 L SN 1396

(000]\ 1 =1 =X =T 0 4 = 0) U 1406
CONNECT StAtBMENT... i ieieei it reereeeeeeeeeeeeeeeeeeseesessessesssssssssnsannnnnaasseeesssaaeasesesssessenns 1409
CREATE ALIAS StatBMENT... i iiii i ittt reeee s e e e e eeeeeeeeeeseeeseseessssssssasannannaaeaseasaeaaaaaaaesaens 1415
CREATE AUXILIARY TABLE Stat@mMeENt.....cccceeeeeeeeeeeeeeeetrreeeeee s e e e e e e e e e e e eeeeeeeeeeesass s n e e e e e e as 1418
CREATE DATABASE StatemMENTt....cci i i e ettt reeee e e e e e e e e e e e e e eeeeeeeeeess s s s s eeeeeseeesaeaaaasasassenns 1421
CREATE FUNCTION Stat@ment (OVEIVIEW)....uueiiieeeeeeeiieieeeeeeeeieeeeeeesveeeesessseeesesssseressesssaessssssssesesssnses 1424
CREATE FUNCTION statement (compiled SQL scalar function).......cccececeeeeciieeecieeeecieeeeiee e 1428
CREATE FUNCTION statement (external scalar fUNCLION).....ccuveviiieeieeiiieeeee et 1453
CREATE FUNCTION statement (external table fuNCION)........oovoeeiiieeeee e 1472
CREATE FUNCTION statement (inlined SQL scalar funCtion)........coeeeeeeiieiieeeiceieeec e eeevreee e 1489
CREATE FUNCTION statement (Sourced fUNCLION).....ccuueviiieeeie ettt et 1498
CREATE FUNCTION statement (SQL table fUNCLION)......iiieeeiic et 1510
CREATE GLOBAL TEMPORARY TABLE STat@mMeNnt....cccceeeeeeeeieeiiiicccceeeeeeee e e e e e eeeeeeeeeeeeeeseessss s 1518
CREATE INDEX STAtEMEBNT. . cieeeeeeeieeieitirccceceeeeeee e e e e e e e eeeeeeeeseeeeesessssssa s aaaeesseeasaeeeeessssssssssssssssnns 1524
CREATE LOB TABLESPACE. ... utttecceieeiieeeeeeeeeeeeeeeeeeeeeeeestssssssssaanaaaaeseesaesaseessesssssssssssssssssssnsnnnnnnnnseeenns 1553
CREATE MASK SETAtBMENT.. . iiiiiiiiei ettt ccreseee e e e e e eeeeeeeeeeeseeeessessssssssn s s naaaaesseseeaesasessesseens 1562
CREATE PERMISSION Stat@mMENT.....ccciiiiieeeeeeeeeeeeeeeeeeeetteceeeeee e e e e e e e e e eeeeeeeseeeessessssass s s s annnnnaeeeesaeens 1571
CREATE PROCEDURE Stat@meNnt (OVEIVIEW).....uueiiiieieeeeeieieeeeeceeieeeeceeieeeeeeesiveeeessnseeeessnnseaeessennsnneesens 1578
CREATE PROCEDURE statement (external proCedUIe).......c.uiecuieeeceeeeciieeeceeeecieeeecteeecee e e ere e e ee e e 1580
CREATE PROCEDURE statement (SQL - external procedure) (deprecated).......cccccovveecieecceeeccreeenen. 1597
CREATE PROCEDURE statement (SQL - Native ProCeduUre)......c.uiccueeecieeecieeeeieeeeieeeeveeeeeeeeevee e 1607
CREATE ROLE STat@mMENT ..o ceeeeeeeeeeeeeitirceceeee e ee e e e e e e e e eeeeeeeeeeee s as s b e s s aeesssesseeaaaeeaessssssssssssssnssnnsnnnnn 1637
CREATE SEQUENCE STatE@MENT ..o ceeeeeeeeeeieiiiiicrcreeeeeee e e e e e e e e e eeeeeeeeeeeeessssssssas s easaeeseeseeseeeeaeassessenns 1638
CREATE STOGROURP STATEMENT...cciiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeesasssas i eeseeeeeesaeeeseessessssssssssssssnssnnnnnnnn 1645
CREATE SYNONYM statement (UNSUPPOITEA)......ccccueiieciieeeiieeeiee ettt tee e tee et e e ree e reeeaeeas 1649
CREATE TABLE STAt@MENT .. ceeeeeeeeeeeccccreeeteee e e e e e e e e e e e eeeeeeeeeee e see e s saeeseesseeeaaeeessssssssssssssssssnnns 1650
CREATE TABLESPACE STat@MENT...cciieeeeeeeeiiiiiccreeceeeseee e e e e e e eeeeeeeeeeeeeessessssan s s esseeeeeseeaeaeeaaaesssseens 1718
CREATE TRIGGER statement (2dvanced trig8er)......ciiurirrirrieeeieereeeteeseeseeesieeseeeeteesreeeeeesseeseeenes 1740
CREATE TRIGGER statement (DaSiC trISZEI)...uuuiiiiiriercieerieerieeseeeieesteeeeeesteesreesaeeseeeaeesseesseesseesnns 1769
CREATE TRUSTED CONTEXT Stat@mMENTt.. ... ccieeeieeiieeiieeeeeeeeeeeeeeeeeevttre e eeeeseeeseeeeeeeeesesesssssssssssssssssnnns 1787
CREATE TYPE STATEMENT...ccciiiiiiiiticicccciceee e ee e eeeeeeeeeeeeeeeeree e eeeeeseeeeeeeeeeesesssssssssssssssssnnnnnnnnnnnnnns 1795
CREATE TYPE statement (Array tYPe)....ueccueieccieeeeciieeeieeeeteeeette e teeeeteeeeteeeesseeesseeeesseeasasasesnseeannseeans 1795
CREATE TYPE statement (diStINCE tYPE)..ueeccuiie ettt ettt et e tee e ee et e bee e rae e aneas 1801
CREATE VARIABLE StatEMENT..cuiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeesasssa s eesseeeseeseeeeeeeaeesssssssssssssssssssnnnnnnnnnnns 1808
CREATE VIEW STat@MENT.. . iiiieeiee ittt reeeeeeeeeeeeeeeeeeaessessssssssessssssssnnnnnnnnaaeeesaesaaaaanes 1812
DECLARE CURSOR STat@MIENT...ciiiiiiiiiiiieiiieieeeeeeeeeeeeeeeeeeeeeeeeeessesaassaeeseseseesseseaeesaeesesssssssssssssssssnnnnnnnn 1819
DECLARE GLOBAL TEMPORARY TABLE State€mMeENt.. ... ccceeeeieeeiieeeeeeeeeeeeeeeeeteev e cseeee e e e e e e e eeeeaaeeeens 1830
DECLARE STATEMENT STAT@MENT...ccviiiiiiiiiiicicicieiiee e e e eeeeeeeeeeeeeeeeeeeee e eeeeeeseeseeeeaeasaesssssssssssssnns 1844
DECLARE TABLE Stat@MENT..cciiiiiiiiiiiiiiieeeieeeeeeeeeeeeeeeeeeeeeraaa s sesseeseeeeeeeeaessesssssesssssssssssssnnnnnnnnnnnns 1845
DECLARE VARIABLE StatEMENT.....ccc i ittt rreeeeee e e e e e e e e e e e e eeeeeeseeeesaa s s enneeseeeeeeaaeaaaasseens 1850
D] I =] = =] 0 1= 0 U PRRPRRRRINt 1853
DESCRIBE STatEMENT ...ttt rcrrrrreee e e e e e e e e e e e e e e e eeeeeee e se s eesaeeseeeasaeeaessssssssssssssssssssnnnnnnnn 1869
DESCRIBE CURSOR StAtEMENT... . ciiiiiiiiieiieeieeeeeeeeeeeeeeettetreeeeeeeseeeeeeeeeeeeessesssssesssssssssnsnnnnnnaaaaseeseeens 1869
DESCRIBE INPUT StatEMENT. . e i cciiiiiiieiieeeeeeeeeeeeeceeeeeeeeeetasss e eeseeeseesseseseesaessesssssssssssssssssnnnnnnnnnnnnnns 1871
DESCRIBE OUTPUT STatemMENt...ccceeeeeeeeeeeeeeettrrcecreeeeeee e e e e e e e e e eeeeeeeeeeessesssssas s snsesseesaeaeaeeasessessenns 1873
DESCRIBE PROCEDURE STAt@MENT....cciiiiiiiiiiiiiccicieiieeeeeee e e eeeeeeeeeeeeeeeeessressssanna e sesesseeseeaeaeaaessssssenns 1879
DESCRIBE TABLE StAtEMENT... i iii i eee e e e e e e e e e e eeeeeeeeeessesas s sa s neneaeeseeaaaaaaaeaaens 1881
(D] R O] =] = (=] 0 =]] SO URRPPRURRINt 1886
END DECLARE SECTION STat@MENT....cciiieeieeiiiicircccceeeeeeeeee e e eeeeeeeeeeeeeeeeersssa s eenneeeeeseeeeeeeaaasssssnnens 1907
Loy (O] VNN (€] 3 = U (=] 0 =]] SO URPURRURRNt 1908
L= =L O I] = 1 (=] 0 1= 0 O URUUUURP ROt 1909
EXECUTE IMMEDIATE STATEMENT....cceieiiiiiiicciciteeieeeeeeeeeeeeeeeeeeeeeeeeeeae e seeeseeseeeeeeeaaessessssssssesnns 1914
EXPLAIN STAtEMENT .. . ciiiiiiiie ettt eeeee e e e s e e e eeeeeeeeseeseesesss s s s s s s s s anaanaaaeseesaeeeseessesssssensessssnnns 1917
L = O o Y =Y =0 0 1= o U 1924
FREE LOCATOR Stat@mMENT... .o cieeieeeeeeeeeeeeeeetetteeeeee e e e s e e e e e eeeeeeeeesesessse s s s ssas s nneseeesaeseasesasssessenns 1949
GET DIAGNOSTICS StatEmMENT. . e cceiiiieiieeieeeeeeeeeeeeeeeeeeeeer e eseseeeeeseeeeeeeesessssssssesssssssssnsnnnnnnnnaneseens 1949
GRANT STatBMENT ... e eeee e e e e e e e e eeeeeeeeeeeee st se e s st s s s s s s aa aaaaaasaesseeeasessessesssssessssnssnnns 1963

GRANT statement (COLLECHION PrIVILEEES) . uciuuieieeieieieeeeee et este e e seeete e ee e ste e s e seeesreesteesseesneean 1967

GRANT statement (database PrivileEES)...cuiuiiriiieiiirierie ettt ee et e re e e teesaeesneeens 1968
GRANT statement (function or procedure privileges)......cccvuvirreerrierieeieeceesee et 1970
GRANT statement (Package PrivilEEES)...cuiuiiiiiirieeiecee sttt see et e ste et rae e te e e e eeeennes 1975
GRANT statement (Plan PrivileZES) ...uiciiiiieieeiieeieecteete et eseeerte e e s teesreeste e be e ssaessbeesseessteesreesnseenns 1977
GRANT statement (SCheMA PriVILEZES)...cicuieciieeieecieecte et eseeete et e steeste e s eeesre e s ae s aeesraesaseesseesnseeseens 1978
GRANT statement (SEQUENCE PrIVILEEES) ... uieriieieriiesierieerte et esteeeteesreeseeesteesaeesreesaeesseesseesnseesseens 1979
GRANT statement (SYStEM PriVILEZES)...cccuuiriiecieerieeieecte et et e ete e ste e ee s sreesreesteesreeste e beesnaeenseesseeenes 1981
GRANT statement (table OF VIEW PrIVILEEES)....uuiiiieiiecieeieeceeeie et e see et eseesteeste e saeete e sreesteessaeeneeen 1988
GRANT statement (type or JAR file PriVIlEEES)...uuirierrirrie ettt ae e s ee e saeesaaeens 1991
GRANT statement (Variable PrivilEEES) . .cuiiiiiiieieeieeete et este et et ee et ae e ae e e e st e e aeesnaeenes 1992
GRANT statement (USE PriVILEEES) . ucuuieiieceeeieereieie et eete et e eeesteesreesteesreeste e seessseeseesssesnseesseesnsennns 1993
HOLD LOCATOR Stat@mMeNTt...ccieiiieeieetiee ettt ettt ettt e s st te e s et e e e e st e e e e smneeeeessnseeeessanneeeessanns 1994
INCLUDE STatemMENT... . e eeieeeeteee ettt ettt e e ettt e e st e e e st e e e e s asee e e s e aneetessenreeeesesnnreeeeesnneees 1995
INSERT STat@MENT. ...ttt ettt e ettt e e st e e e s ase et e e seunee e e e semseeeesesseeeeseenreeeeenanne 1996
LABEL STAt@MENT ...ttt ettt et e e st e e e et e e e e st e e e e e ae e e e e e nbeeeeesnnaeeeesanneee 2015
LOCK TABLE STatemMENT. ... ittt ettt ettt ettt e e sttt e e s et e e e e s et e e e e st e e e s s meeeeeesnseeeeennnes 2017
MERGE STatEMENT.. ..ttt ettt e e sttt e e sttt e e s e se e e e s s enneeeeeeaneeeeeesanreeaeanan 2019
OPEN STAt@MENT ...ttt ettt e e et e e e e e bt e e e e e st e e e e s meeee e e nseeeeeeannneeessennnee 2037
PREPARE STAtEMIENT... .. ittt ettt ettt ettt e e sttt e e s et e e s st e e e s asaeeesesanreeeeeenneeas 2042
REFRESH TABLE STAt@MENT ...ttt ettt e e e et e e e st e e s s mne e e e s e neeeas 2062
RELEASE statement (CONNECLION)....ccuiiieecieeieeceeeie et e ee st e eeseeesteeseeereesree e reesseesneeesseesnseeseesnsenns 2063
RELEASE SAVEPOINT Stat@ment. ... ueiiiiiiiiiee ettt ettt ettt e et e e st e e s s et e e s s re e e e seeneeeeeesanne 2065
RENAME STatemMENT.... . ittt ettt e e sttt e e sttt e e s e ne e e e s e e unreeeeseaneteeeesnneeens 2066
REVOKE STAt@MENT ...ttt ettt ettt e e ettt e e sttt e e s e nee e e e s e aneeeesesneeeeeesnseeeessanne 2070
REVOKE statement (COLLECtION PriVILEEES) . ccuiicierierieeciesieestee st e stee et e e et e sae e e sraeeteesaaeeneeenes 2076
REVOKE statement (database PrivileZeS).....ccuiriiiiierieeieecieeitesiee st eseeste et este e e sraeeteesseeseaesseeens 2078
REVOKE statement (function or procedure Privileges).....cuueueruereeerierieesiesiteeseeeiesseeseeeseeesaeeneeas 2081
REVOKE statement (PACKAZE PriVILEZES)....cccuiiiieiiierieeieesteesteeseesteeteesteesteeseeeteesaaesteesseesneeeseesnns 2087
REVOKE statement (PLan PriVILEEES)....cuieiieceeeieeceeste et eseee st st e steesteesae s e e sseesseesseesnsesseesseeensesnns 2089
REVOKE statement (SChema PriVILEEES)....cuirieecireieeeeeee et ecteeste et e seesteesreesteesseeseessseesneeenseesseenns 2091
REVOKE statement (SEQUENCE PriVILEEES)....uiiiieciireieiieecee et et e e te st esteesteesre e eve e reesteesseessaeesanesneean 2093
REVOKE statement (SYSteM PrivViLEEES) . .cuierirreeeiieceeeieeseeste et e seeecteesreesteesreesaeeesseesseeeseesseesnseenees 2095
REVOKE statement (table or VIEW PrivIlEEES)...c.uiiiiiiiiriieieesee ettt sttt ste et e e es 2101
REVOKE (type 0OF JAR file PrIVILEEES)..ictieeeieiieieeeieecteeie st e steeteesreesteesreesaeebeesnaeebeessaessseessaeenseennns 2104
REVOKE (Variable PrivILEEES)...cccuiieieecieeeieeceeetieeieesieesteesteesteesteesee s seesnaessseesseeeseessaesnseesseesnseessessnses 2106
REVOKE statement (USE PriVILEEES) .. uiiiiieiieitieieectteeie et esee et e s eestessteesteeste e sreesseesseesseesnnessseenseenns 2108
ROLLBACK STATEMENT....ceeiiiiiee ettt ettt e s ettt e e e e st e e e e e e ee e s eeseeee e s s nneeeeesanneeeenss 2110
SAVEPOINT STAtEMENT. .. ittt ettt ettt e ettt e e ettt e e s e aee e e e s e neeeeeesnneeeeesanneeeeesanne 2113
SELECT STAt@MENT ...ttt ettt ettt ettt e e sttt e e s e b e e e s e e nseeeeeeaneeee e e nneeeeeaanneeeeesanne 2114
SELECT INTO Stat@m@NT...cci ittt ettt ettt e sttt e et e e e st e e e e st e e e e s enreeeesenneeeeesennenas 2117
SET CONNECTION Stat@meNt..ccc ueeeieeieiieeeeeitee ettt et te e sttt e e s et e e s e ease e e e sensbeeesesnseeeeesnneeeeens 2122
SET assignment-statement StatEMENT......cciii ittt ee e e sre e s baeesbaeessaeeas 2124
SET CURRENT ACCELERATOR Statement......uueeiiiiieeeeee ettt e e e seeecvavnne e e e e e e e s s s e saasnanneeaeeaeae s 2129
SET CURRENT APPLICATION COMPATIBILITY statement.......cueiiiiiieeeeeee e eenes 2130
SET CURRENT APPLICATION ENCODING SCHEME.....cutiiiiiiiiiiiccttreeeee s eeeccvvveeeeeee e e s e s e e sannnes 2132
SET CURRENT DEBUG MODE Stat@ment..... ...ttt e e e e e s e e eeveeeee e e e e s s s e e s nananneeeeees 2133
SET CURRENT DECFLOAT ROUNDING MODE statement......cccccciiiiiieeeeee et ee e e cvevnenees 2134
SET CURRENT DEGREE STatemMeEnt.......coe ittt ettt et e st e e st e e s e e e e e e e 2136
SET CURRENT EXPLAIN MODE Stat@mMENt......uueiiieiieiiececcitirreeee s ceeccvrteree e e e e e e s e s e saaavseaneeeeesaesenan 2137
SET CURRENT GET_ACCEL_ARCHIVE stat@ment...ccccciii ittt eeecrnrree e e e s e en e e 2138
SET CURRENT LOCALE LC_CTYPE Statement.... ..ottt ee e s veeeeree e e e e s e e s avnnnees 2139
SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION statement.......cccccovvivvveeeeeeeeeeennne 2141
SET CURRENT OPTIMIZATION HINT Stat@ment.....ueeeeeeeiii ittt eecrevnree e e e s e s e eeee s 2142
SET CURRENT PACKAGE PATH State@meNnt... ..ttt seevernrree e e e e s s e e avne e e e e e e e s 2143
SET CURRENT PACKAGESET State@meNnt......ueiiiiiieeeie ettt eetvreree e e e e s e s e e nveaneeee e e e e e seennnn 2146
SET CURRENT PRECISION Stat@mENTt......uuiiiiiieeeeeiiececccttetee e e e s seecrveeeee e e e e s e e s e s e easanneeneeeesesesnnnn 2148
SET CURRENT QUERY ACCELERATION Statement.... ...ttt eeevreneeeee e s e e s 2148

XV

xvi

SET CURRENT QUERY ACCELERATION WAITFORDATA statement......ccccceevvierineeenneenreeeeeee e 2150

SET CURRENT REFRESH AGE Stat@mMENt.....uuueeiiiiiiiiiiieeiciiriieieieeeeeeeeeeeccianrteeeeeeeeeeeeseenassssseeseeseesesssenns 2153
SET CURRENT ROUTINE VERSION Stat@mMENt.....uuueeeeeieiiiiieeiiiiirieeeeeeeeeeeeeeecnnrneereeeeeeeeesessenssssssssseeses 2154
SET CURRENT RULES Stat@mMENT... . ceiieeiiieieieeeeeeeeeeeeeteettttteeeeseeeeeeeeeeeeeeeeeesssssssesssssssssnnnnnnnnnnaesenns 2156
SET CURRENT SQLID STat@MENT...ccuiiiiiiiiiiiiiiieieeeieeeeeeeeeeeeeeeeeeeeeesstsssssnasasaeeeeseesaeseeeessesssssssssssssssssnns 2156
SET CURRENT TEMPORAL BUSINESS_TIME Stat@mMeNnt......ceeeiiiiiiiiiiiiiriireeeeeee e eeeecrreereeeeeeeeeee e 2158
SET CURRENT TEMPORAL SYSTEM_TIME Stat@mMeNT.....cccoveeciiiiiiieeeeee et eeeeecnnnnreeeeee e 2160
SET ENCRYPTION PASSWORD Stat@mMeENT....cccuueiiiiiiiieeeeieeecciiiireee e e e eeeeeennresreeeeeeeeeeesessnnssssessessees 2161
] = I AN I I3 = 0= 0 1=] SO PRPUPURRRRt 2163
SET SCHEMA STatEMIENT..cceeiicccieeeee et eeseeseeeeeeeeeeeaeessesesssesssssssssnnnnnanaseeseesaaaaaans 2166
SET SESSION TIME ZONE Stat@mMENt...cuuueuiieeiiieiiieieieeeeeeeeeeeeeeeeeeetesess i eeeeeeeseeseeseeeesssssssssssessssssssnnns 2168
SIGINAL STAtEMENT ... it rcreee e ee e e e e e e e eeeeeeeeeeeee s e e s s s s s s s s s s s aaeaseesseseaeeessssesssssessssssssnns 2169
TRANSFER OWNERSHIP Stat@mMENt...cccii ittt e seeecnrarree e e e e e s e s e se e anasseseeeeeeas 2172
TRUNCATE STAtEMEBNT... ettt crcreeee e ee e e e e e e e eeeeeeeeeeree e s e reeeeeesseeeeeeesesssssesssssssssssssnnnnnnnnnnnns 2175
UP DATE STATEMENT..ccciiiitiiccccceeeeeee e e e e e e eeeeeeeeeere e eeeeseeeeeeaeeeaaessssssessssssssssssssnnnnnnnnnaseseaeeesaeaaens 2178
VALUES STATEMEBNT ...ttt ee et e eeeseeseeeeaeeeeessesssessssessssssnsnnnnnnnnnnnnnns 2199
VALUES INTO STatEMEBNT. e eeeeeeeeeeeeetrccrreeseeeee e e e e e e e e e e eeeeeeeeee e sss s s s n s aeeeseesaeeeaeesesssssssssesssssssnnnn 2200
WHENEVER STAtEMENT.... it rre eese s s s e s s s s s s s asaeeeeesaeaassesasssesseens 2204

Chapter 8. SQL procedural language (SQL PL)......ccccccereerrnecrnncrninesinecnaccsancennceess 2207

References to SQL parameters and variables in SQL PL......coocuiieiicciiieee ettt eecveee e e eiveee e 2208
References 10 SOL CONITION NAMES.......iiiii ittt e e e e e ee e eeeeeeseeesesssssrseaeeeeeeas 2209
REfErENCES 10 SOL CUISOI MAMIES. .. . uiiiriirierieeeeeeeeeiiiirrrtrreeeeeeeeeeesessssssaeereeeeeeeessessasssssrsrssseseessessnsssnsses 2210
REfErENCES 10 SOL LADELS. .. .uuvvieieieeieeee et e e e e e e e e e e e e e e seeessssbraaeeeeeeeseeenas 2210
References t0 SOL Stat@MENT NAMES.......uviiiiiiieee ettt ee e e e e eeeeeesesssassssaereeeeeeesesennnns 2210
Summary of name scoping in nested compound StatEMENTS.....ccccviiiiiiiriiiieriiiereeee e 2210
SQL-procedure-statemMent (SOL PL).....cuie ettt e et e e teeeereeeeare e e abee e saee e abeeeeasae e nsaeeenneas 2212
ASSIGNMENT-STATEMENT. ...ttt ettt s e e e be e s st e e e s beessbee s s beeesabeessaseessaseessases 2217
(07 I] =Y (=1 0 =T | PRt 2218
(07 N =y 7= 1 (=] 1= o U 2219
fofo] 0 a] Lo TUTaTe BTy =1 {1 o g 1T o SRR 2221
O = ¢ 1 (=T L= o PSSP 2229
GET DIAGNOSTICS StatemeNnt. ettt e e e e e s e e e e r e e e e e e s e e e ses e annsaaaeeaeeeeeeseennen 2230
(1O IO IE=] =X =Y 2 0= | S UUPPPR 2231
LSy =1 (=T 0 1= o PR 2232
LT] =Y (=T 0 U= o PPN 2233
NV] = =T 0 011) USSP 2234
[0 1O =] F= Y (=Y 0 0=) S SRR 2236
L o N Y =Y (=T = 3 PR 2237
L Y]\ Y = = 1 (=T g U= o U UPPPRRE 2238
L = U V= = (=T 4 =Y o SRRt 2240
Y (TN Y I = 1 1T g U= o | SRRt 2242
LA I] = =Y 0 = o | PPN 2245

Appendix A. Limits in DbB2 for z/0S......ccciiiiiieiiniinienieceiieciceniecencessecessesscessecsss 2247

Appendix B. Reserved schema names and reserved words in Db2 for z/0S........ 2257
Reserved schema Names iN D2 fOr Z/OS.. . e e e s e e e e e e e e e e e s e e e e e e eaeeaaesaaes 2257
Reserved Words in D2 fOr Z/OS. ... ettt e e e e et e et aea s s s s s sessesaeeeasasesensenes 2258

Appendix C. Actions allowed on SQL statements......cccccceeereirncrnniniiecincincneceeenen . 2269
Appendix D. SQL statement data access classification for routines....................2275

Appendix E. SQL control statements for external SQL procedures..........cccccec.....2279
References to SQL parameters and SQL variables in external SQL procedures........ccocceeeeccvveeeeeeennenn. 2280

SQL-procedure-statement (EXIEINAL).......icc ettt et ee e e e te e e nee e aaeas 2280

assignment-statement (SQL control statements for external routings).......cccceeeeevveeeceeneeeceeseeeiens 2281
CALL STATEMIENT. ..ttt ettt ettt e e sttt e e sttt e e s e s use e e e s e e sseeeseeanreeeesenneeeeeesanseeeeennnen 2282
CASE STateMENT. ..ttt ettt e e st e e s e bt e e e s e st e e e s e re e e e e e e nreeeeeenreeeee s nnees 2284
[l 0 a] Lo TUTaTe BTy =1 {1 o g 1T o SRR URR 2286
GET DIAGNOSTICS STatemMENTottt ettt ettt e e e ettt e s sttt e e s re e e e s e sseeeesesnreeeeesanne 2290
GOTO STATEMENT. .ttt ettt ettt e ettt e e ettt e e e s abe e e e e s euseeeeesenneatessensaeeesesnsneeesesnreeeeenanne 2290
| =L (=T 0 0 T=T 0| SO OO PO TP PTRPPPPPRRIN 2292
ITERATE STAt@MENT. ...ttt ettt ettt e e st e e s e se e e e s e eanse e e e seaneeeeeeeneeeeeanas 2293
LEAVE STATEMENT...ciiiiiie ettt ettt ettt e s ettt e e s e ae et e e e s bt e e e e s st e e e e s nseeeeeeenneeaeesenneeeenas 2293
LOOP STATEMENT ...ttt ettt e e ettt e e s et e e s e sete e e e snseeeeeenneeeeeeaneeeeesanseeaennen 2294
REPEAT STAt@MENT ...ttt ettt e e ettt e e st e e e e aee e e e e e st teeeesneeeeeesnneeeessanne 2295
RESIGNAL StAt@MENT..cci ettt ettt e ettt e e e ettt e s s et e e s s ase e e e sessaeeeeesnneeeeseanne 2296
RETURN STAT@MENT...ceiiiiee ettt ettt ettt ettt e e ettt e s st e e e s e s et e e e e s nse e e e e e nneeeeeesnseeeesaannee 2298
SIGNAL STATEMENT ...ttt ettt e s ettt e s e e et e e s e s bt e e e e s nneeeeesanneeeeeesanseaeesasnnee 2299
WHILE STAtEMIENT. .. ittt ettt e e ettt e e st e e s e sb e e e s e e nse e e e e eanneeeeeeanneeeeseanneaeeanan 2302
Appendix F. SQL communication area (SQLCA)....cccccceerrerrerrncrencacencencescencsocsancns 2303
Description Of SQLCA fIELAS...ciuiiiee ittt ettt e e e e e e e e e ree e e s e abae e e s esnbee e e e s nstaeeeennssesessannnes 2303
THE INCIUAEA SQLCA ... ettt et e e e ee et eeeeeeeseses s ssbbbaaseeeeeeeeesesesssssssssaaneseeeeessennnnnes 2308
THhE REXX SOLCA. ..ttt ettt ettt sttt sttt st e b e st e e b e sae e e be e s ae e e abeesmeeeaseesmeeemneesneesnneenns 2310
Appendix G. SQL descriptor area (SQLDA)....cccccieieuirnrrecrentectentecancancsscsscsnssancans 2313
Description Of SOLDA fleldS....uuuiiiieeciieee ettt e e eerre e e e saee e s s e s te e e s essbeeeeeenbaeeeeeensraseeeennsenes 2313
THE SOLDA HEAUET ...ttt ettt e et e e ee et b e e e e e e e e s e e s ssssaseeeseeaesesesessssssstaeaereseeenas 2314
SOLVAR BNIIES.ciiiiiiiiiieeeiiiitieeee e ee e e eeeeecitrerreeeeeeeeseeessssbbrarereeeeeeeesesssssssesraeseseessesssssssrsrasereeseesenras 2315
Unrecognized and unsupported SQLTYPES.......ccuii ittt ettt e e s s see e sssee s ssiee e ssaee e snees 2325
THE INCLUAECA SQLDA. ...ttt e e e e e e e e e e s s bbbaeeeeeeeeeessessssssbssaesaeeseeeeeseesssssrseanness 2326
Identifying an SQLDA IN C OF Cuiiuiiiiicceeiieeiesseeeie et eetessteessee e teesseesteesseesnsesseessaesnseessessssessseesnsenn 2329
The REXX SOLDA. ... ettt ettt et sttt s et e st e bt e sae e s e e sae e e bt e sme e sabe e beesase e neesaneeneesnnenn 2329
Appendix H. Db2 catalog tables.......cccccceruireiiniiniiniiniiiiiiiiiienieiieiisiannnes 2333
IPLIST Catalog table. .o uiii ittt ettt ettt s e e st e e st be e ssae e snsaeesabaeesnseeesnsenenn 2348
IPNAMES Catalog table...uiii ittt ettt e st s st e s s e e s s e e e s abeeesbaeesaseas 2349
LOCATIONS Catalog table....uii ittt s st e st e s s ae e s sabe e s s ba e s s baeesabaeenaseesas 2351
LULIST Catalog table...ciicuiei i ettt ettt site s site e st e st e s sbe e s sbee s sbe e e sabaessasaessaseessaseasnnseas 2353
LUMODES Catalog table......uiiiiiiiieeciecciec ettt sttt e s te e s ee e seaee e snte e sataesnteesneaesneaesan 2353
LUNAMES Catalog table....uii ittt sttt et siee s st e s s aee s s be e e sabee s sabaessabeessanens 2354
MODESELECT Catalog table. . ..ottt sttt et e siae e sne e e saee e sneeesneaesane 2358
SYSAUDITPOLICIES Catalog table. ... ittt sttt st 2358
SYSAUTOALERTS Catalog table....ccuuiiiiiiiiiiiiieeeieesite sttt sttt e s e e st e s sate e s seesabaesasaesas 2364
SYSAUTOALERTS_OUT Catalog table.....cuiiiciiiiiieiiiei sttt sttt vee st e s s sbee s s e s 2365
SYSAUTORUNS_HIST Catalog table....iiiiiiiciieieieeceiteeeee ettt sttt ste e s see e st e s e s seaeens 2366
SYSAUTORUNS_HISTOU Catalog table.....cuiiiiiiiiiiiiiiieniieeriee sttt ssve s sre e sste e ssre e s e sseeeeas 2366
SYSAUTOTIMEWINDOWS Catalog table.......oiiiiiriiiieiieeiieceiiecett et aae s saae s 2367
SYSAUXRELS Catalog table....cccuuiiiciiiiieeiiiiecctecete ettt sttt ettt e sate e ssnte e sstaesnsaesaeaen 2368
SYSCHECKDEP Catalog table.....ii ittt sttt ettt et s e essate e ssabeessbaessaseeeas 2369
SYSCHECKS Catalog table...cicuiiieiiiiiiieieiieeeiie ettt ettt et e st e st e s s te e s sbee s sbae e sbae s sbaesssaeessaesnnns 2369
SYSCHECKS2 CAtalog table....iiiiiiieiiiiiieeite ettt sssaee s s bee s sbee e s saae e ssaeessnneas 2370
SYSCOLAUTH Catalog table...ciiciiiiiieiiieiiiecitessiee sttt sttt s st e st e s ae e s sabe e s bae s baessnsaes 2371
SYSCOLDIST Catalog table.. i cuiiieiiiieiieieiieeeite ettt sttt e st e e sbe e s sbe e s sabe e s ssteessabeessssaeenns 2373
SYSCOLDISTSTATS Catalog table...cccuiiicieiiiieiieeeiee ettt sre e st sae e e see e s sae e e saees 2375
SYSCOLDIST_HIST Catalog table.....ii ittt e s ba e e baeesaae e s 2377
SYSCOLSTATS Catalog table...ciiiieiiieiiiieeiteeriee sttt s s e s s e e s s be e s sbee e sbeessneeesanens 2379
SYSCOLUMNS Catalog table.....cii ittt sttt ettt e s eaee e saee e ssnae e sneeesneaesans 2381
SYSCOLUMNS_HIST Catalog table.. ... ittt 2395
SYSCONSTDEP Catalog table....iiiiiiiiiiieeeiteeeiteeete ettt sttt et e sre e e saae s sbae e sbae e sbaeesasaeenns 2400

xviii

SYSCONTEXT Catalog table....uii ettt ettt e e s ae e e st e s saee e snee e snneas 2401

SYSCONTEXTAUTHIDS Catalog table.....cuiiicieiiiiiiieeciee ettt see s siee s vee s s iee s sbee s s 2404
SYSCONTROLS CAtalog table....iiiciiiiieeicieecieecieesiee ettt e st e s eaee e ssite e seateeseaeeessneeeseneaesans 2405
Y 160 e - | -1 (o= - o] (= T PO TP 2408
SYSCTXTTRUSTATTRS Catalog table.....uiiiiiiiiiecieceteeee ettt s 2426
SYSDATABASE Catalog table. .. uii ittt sttt ettt e s te e s saee e ssaee e ssneaesnns 2427
SYSDATATYPES Catalog table.....uuiieiiiiiiiieeiiececieeete ettt e s saee e s sabe e ssaaaessaeas 2429
SYSDBAUTH Catalog table......uii ittt st e s sbee s s sae e s s e e e s bee s sabaeesaneas 2432
SYSDBRM Catalog table....ccuuiiiiiiiiieiiiieieitecte ettt sttt s e st s s e e st a e e s ba e et e e e s raeenraeean 2437
SYSDEPENDENCIES Catalog table....cucuiiiciiiiiiiiiiiieecieesieesree sttt e st e st essateessiae e saeeesseeesnaeaesan 2439
SYSDUMMY L Catalog table.....ii ettt e s e s aee e st e e s bae e snae e sneas 2443
SYSDUMMYA CAtalog table....iiiiiiiiieeeieceteee ettt ee e s e s aee e s saae e snaeaesnneeas 2443
SYSDUMMYE CAtalog table....iii ittt sttt s st e s e s sabe e s ba e s s baessnsae s 2444
SYSDUMMYU Catalog table....iiiiieiiieiiieiiteeite sttt s e e s e s bee s s e e e sbee e s neeessneas 2444
SYSDYNQRY Catalog table...ccccuviiiciiiiiieiieeciee ettt te e s ee e seate e saee e sateesseeesseeesneaesans 2444
SYSDYNQRYDEP Catalog table.....uii ittt s s s see e s 2446
SYSDYNQRY_EXPL CAtalog table....uiiiciiiieiieiciieeciieceiie ettt sttt st sve e s saee s sva e sra e s sba e s snraeeens 2451
SYSDYNQRY_OPL Catalog table. . .uii ettt st see s s aee s s e e s s e e s snaeesanes 2451
SYSDYNQRY_SHTEL Catalog table.... .ottt see s s e s s s e s 2451
SYSDYNQRY_SPAL Catalog table.....uiiiiiiiiiieiieecieccitcett sttt ettt s st e s be e s aaessasae s 2451
SYSDYNQRY_TXTL Catalog table...ciccuiiieiiiieiiiieiteiete ettt sttt te e s ste e s sae e s ae e s naeeas 2451
SYSENVIRONMENT Catalog table...ciiciiiieiiiiiieiieeeiee sttt sttt e s saae e ssaee e ssasaesnns 2452
SYSFIELDS Catalog table....iii ittt ettt s st e s s be e s sbae e sbae e sbaeesbaeesabaeennes 2456
SYSFOREIGNKEYS Catalog table.....ccuiiiiiiiiiiiiieiieieteeeiee ettt te e st ee e s sae e s saea e s saee s 2458
SYSINDEXCLEANUP Catalog table.. i cuiiiciiiiiiieeieeecieesie sttt et e st ssteessiae e saee e sseaessaeaesan 2458
SYSINDEXCONTROL Catalog table....iicuiiiiiiieiiieicieeeite sttt sttt e s e ssiee e ssaee e s aeesaaeesareesas 2460
SYSINDEXES Catalog table...ciicuiiieiieieiieieiieeeteee sttt et s e e sba e e sbae e sbaeesbaeesseeean 2461
SYSINDEXES_HIST Catalog table.. . cuiiiiciiiieiieieiieiciieeeiteseite sttt ste e ste e s sre e s sbe e s saa e s svaeesans 2472
SYSINDEXES_RTSECT Catalog table. ...ttt et saee e st e s e sneaesan 2474
SYSINDEXES_TREE Catalog table... ..ottt sttt e st e s s 2474
SYSINDEXPART Catalog table.....cuuiiiiieiiiieiciieieee ettt sttt sbee e e s s ae e s s bee s sbee s sasaeenanas 2474
SYSINDEXPART_HIST Catalog table....uiiiiiiiiieeciieecteeciteeete sttt site s ssvee s seee s sree s saae s svneesans 2480
SYSINDEXSPACESTATS Catalog table....iicuiiiciiiicieeiciiee ettt ste e siee e saee e saee e snee e snaaesans 2482
SYSINDEXSTATS Catalog table...cciciiiiiiiiiiiiiiieceeseit ettt sttt s st e e ba e s s e e e s e e e saseeeas 2490
SYSINDEXSTATS_HIST Catalog table...ciccuiiiiiiiieiieieiieieieeeeiee sttt et e s esste e s ee e s saeeeenaee 2492
SYSJARCLASS_SOURCE catalog table......cuiiiiiiiicieicteecteceee ettt s 2494
SYSIJARCONTENTS Catalog table.....uuiiiiiieiiiieiieiete sttt st e s sae e s s ae e s 2494
SYSIARDATA Catalog table....uii ettt s aee e s saee e saea e s aes 2495
SYSJAROBIECTS Catalog table. . .uii ittt iee s s e e s bee s s bee s s e e saneas 2495
SYSJAVAOPTS Catalog table. . .uii ittt et e s ae e s be e ssbeessaaaeeas 2496
SYSIAVAPATHS Catalog table.. ittt sttt et e s e s saae e ssaae e sbeeesneae s 2497
SYSKEYCOLUSE Catalog table....iiicuiiieiieieiieeciieeeiieeeite sttt ettt stee s iee s sva e s sva e s svae s sabaessasaeenns 2497
SYSKEYS Catalog table. . .uii ittt st e e e e e e aes 2498
SYSKEYTARGETS Catalog table....uii ittt aee s s aee e s see s s e e e s 2500
SYSKEYTARGETSTATS Catalog table. ...ttt sttt ettt sva e s seae e 2503
SYSKEYTARGETS_HIST Catalog table.. ittt iee s saae e saee s 2505
SYSKEYTGTDIST CAtalog table....uii ittt sttt e s ae e s saae e s naee s 2509
SYSKEYTGTDISTSTATS Catalog table....uiiiiiieiieieiieeeieeeeeeete ettt aae s 2511
SYSKEYTGTDIST_HIST Catalog table.....cuuiiiiiiieiiiieiieceieceeecete ettt 2513
SYSLEVELUPDATES Catalog table.....c.uiiiciiiieiiiieiieicte ettt ettt ae e s see e s sve e s e e 2515
SYSLOBSTATS CAtalog table...iiiieiiiciieieiieecte ettt ettt st e s te e s sabe e s sae e s s te e snaeeas 2516
SYSLOBSTATS_HIST Catalog table....cuciiiiiiiiiieeieecitecsee sttt et s st e s va e s baeeas 2516
SYSOBJROLEDEP Catalog table....iic i iiieiiiieiieeeiieceiieeeite sttt ae e s e ssaea e s ssaa e s saeas 2517
SYSPACKAGE Catalog table....iiiiiiieiieeeiteeeteeete ettt e s sare e s abe e s aae e s sateesssbeesnaeas 2519
SYSPACKAUTH Catalog table....uii ittt sttt sttt ettt e st essae e ssabeessabaesnaeeeeas 2536
SYSPACKCOPY Catalog table. . uii ittt eee e ste s st e sate e saee e sneeesneeesaneaesans 2538
SYSPACKDEP Catalog table.......uiiiciiiieiieieiieieiieeeteeette sttt et ste e s bae s sbe e e sra e e sbaeesasaessnsaeenns 2554
SYSPACKLIST Catalog table. . .cuuiiiiiiiiiecieecteeree ettt sttt ettt s st e st essaaeessabeesesbaesnaneesas 2558

SYSPACKSTMT Catalog table...uuiiiiiiiiiiiciieeieeetteste ettt sttt et ae e s saae e s aee e s saeessasee s 2558

SYSPACKSTMT_STMB Catalog table.. ..ottt sttt e st see e s saea e 2565
SYSPACKSTMT_STMT Catalog table......iii ittt sttt ettt e s sate e s saee e ssaeaeen 2565
SYSPARMS Catalog table..c.uuiiiiiiiiiieiieecee ettt et e s st e s e st e st e e s e e snatae s 2565
SYSPENDINGDDL Catalog table....c.uiiiiiiiiiieiieeeiee ettt ettt s e st e st e st e s e e ssabaessssaeens 2570
SYSPENDINGOBJECTS Catalog table. ...ttt 2572
SYSPKSYSTEM Catalog table...ciii ittt see e s ee e s ae e s sae e s saaa e s e 2574
SYSPLAN Catalog table...cuuiiiiiiiiiiieieieeiee ettt sttt e st e s te e s s ate e s sateessateesssteessnteessneaesnes 2575
SYSPLANAUTH Catalog table.....uiiiiiiiiieciieeeessiteete sttt st st ee s s e e s s e e e snae e sssees 2582
SYSPLANDEP Catalog table....cii ittt sttt e st e s s e s ba e s e e e 2584
SYSPLSYSTEM Catalog table....ccuuiiiiuiiiiiiiiiieiiieeite sttt s st s st s e s e e s s e e s s e e e s baessanees 2586
SYSQUERY Catalog table...iieuiiiiiiieeiieeieeeieesie ettt ettt et et s st e s e s be e s s e e s s e e e s beeesans 2587
SYSQUERYOPTS CAtalog table....iiiiiiieiiiieiteeetecete ettt e s e ssaee e sasa e snaeees 2590
SYSQUERYPLAN Catalog table....c.uiiiiiiiiiieiieecieeciee ettt ettt site e s ste e ssaee e ssateessseeeseneeesnnes 2592
SYSQUERYPREDICATE Catalog table.....uiiiiiiiiiiiiieciteeieeete sttt s st s ee s s ae e s 2606
SYSQUERYSEL Catalog table....cicieiieiiiiieeeiee ettt sttt ee s st aee s s e e s sbee e sbaeesaneas 2611
SYSQUERY_AUX Catalog table.....iii ittt s s e 2613
SYSRELS Catalog table...ciicuiiiiiiiiiiieeiciee ettt sttt ettt sste e st e e st esate e s ateesateessnbaesnnnaenan 2613
SYSRESAUTH Catalog table.....uiiiiiiiiieciee ettt saee e sate e saee e snee e sseeesneaesans 2615
SYSROLES CAtalog table....ii ittt ste e st e e st e e sbee e saee e sneeesaneas 2618
SYSROUTINEAUTH Catalog table. .. i ittt st aa e s ba e s sba e e snae e s 2619
SYSROUTINES Catalog table.....uii ittt sttt ettt s st e s e s be e s baessabaeean 2621
SYSROUTINESTEXT Catalog table....cuiiiiiiiieiieieiieceiie ettt ste e st ee e s sre e s see e s saeeesnaee 2635
SYSROUTINES_OPTS catalog table (deprecated).....cccuueiceerieiiierie et ete e ste e seee e 2635
SYSROUTINES_TREE Catalog table. ... cuiiiiiiiieiiieeiieceieeete ettt sane s e sbae e ssne s 2637
SYSROUTINES_SRC catalog table (deprecated).....cccuiiicirneeeiereecieeeeste e see e e see e sree e 2637
SYSSCHEMAAUTH Catalog table. ... cuii ettt siee s st e s sbe e s sbee s sbe e s sanees 2638
SYSSEQUENCEAUTH Catalog table....uii ettt ettt te s e st e s s ae e s 2640
SYSSEQUENCES Catalog table... ..ottt ettt e s e s s e s 2643
SYSSEQUENCESDEP Catalog table.....cuiiiiiiiiiiiiiieecieessiee sttt st e st e s sae e sste e s ste e s essareessanaeeas 2646
SYSSESSION Catalog table...ccuuiiieiiiieiiiieiieiiee ettt sttt te e s ste e s sate e s ste e ssaeeessstaessneaessneaesnn 2647
SYSSESSION_EX Catalog table....uiiiiiieiiieeiieeeieceteeet sttt s e s saee e s saae e s saeas 2648
SYSSESSION_STATUS Catalog table....c.uiiiiiiiiieecieeeiecctecete sttt et s e e saeee s 2648
SYSSTATFEEDBACK Catalog table.....cii ittt sttt st e e s 2649
SYSSTMT CAtAlOZ tADLE...ciiiiiiiiieeeeee et st e st e s aee e sssbe e s sbaesssaesanseess 2651
SYSSTOGROUP Catalog table... ..ottt et e s e s aae e s see e saeea s 2655
SYSSTRINGS CAtalog table...uiiiiiiiieiiieeieeeteeee sttt e s e s saee e s s aaaesnabaesnneeas 2656
SYSSYNONYMS Catalog table....c.uiiiiiiiiiieiiieeiiieeitessite sttt et e s s e e s s e e s s e e s saneeesanes 2658
SYSTABAUTH Catalog table.. ..ottt st see s s e s st e s s be e s s e e e sans 2659
SYSTABCONST Catalog table.....uiiiiiiiiieiiiectecte sttt sttt s e s s be e s s e e e sabaeesaseeeas 2664
SYSTABLEPART Catalog table....ccuuiiiiiiieiiieiiieeeieeeteste ettt et e s be e s s be e s sbe e s sanaessans 2665
SYSTABLEPART_HIST Catalog table....cocuiiieieieieeeeeeeeee ettt sttt st 2675
SYSTABLES Catalog table....ccuiiiiiiiiiiieieeciee ettt sttt te s st e s e st sssaae s s snee e ssnees 2678
SYSTABLESPACE Catalog table.....cuiiiiiiiiiiiiiierieeectee sttt sste st e st e st e s ae e st e ssabeesnasaeens 2688
SYSTABLESPACESTATS Catalog table....ccuiiiiiiiiiiiiieiieeeiieeeite sttt svee s sve e s sve s stee s sae e s sbeeseaee 2699
SYSTABLES_HIST Catalog table....ccuiiiieiiiiiiiieccieeeciee sttt e st e st essaee e saae e saaeesaseesneae s 2707
SYSTABLES_PROFILES Catalog table....cccuiiiciiiiciiiiiiieciiee sttt st siee e siee e ssiee s saee e sane e snaaesane 2709
SYSTABLES_PROFILE_TEXT catalog table......cccoieiiiiiieieieeteeeeiee ettt 2710
SYSTABSTATS Catalog table..cuuiiiiiiiiiieceeeeeeee sttt e st e s s be e s be e s abaessabaessssaeeas 2710
SYSTABSTATS_HIST Catalog table.....uui ittt ee s s e e s 2711
SYSTRIGGERS Catalog table....cccuiiieiiiieiiiieiieeeieceteeete sttt et e s ae e s ate e s saee e s ssaaesnaeas 2712
SYSTRIGGERS_STMT Catalog table....ci ittt st 2715
SYSUSERAUTH Catalog table....cuuiiiiiiiiiiieeiieceieceiteeett sttt ettt e st s ee e s sare e e ssae e e e 2715
SYSVARIABLEAUTH Catalog table.. .ttt s sb e s aee s 2722
SYSVARIABLES CAtalog table....ciiiiiiiiieiieeiieeeee ettt te e s sate e sste e seate e ssnee e seneeesneaesans 2724
SYSVARIABLES_DESC Catalog table....uiiiiiiiiieieiieecieeeetecste sttt sttt st sve e s sve e s sve e s savaessaee 2728
SYSVARIABLES_TEXT CAtalog table. ..ttt sttt et e s ee e ssaee e 2728
SYSVIEWDEP CAtalog table....iiiiiiieiieeciieeeteeete ettt et saee s s e e siee e s ate e ssaaaesaeas 2729

Xix

SYSVIEWS Catalog table...ccuuiiieiiiieiieeeiieeeiteeete ettt s e e s bae e s bee e saee e s saeaesnsaaesnneeas 2730

SYSVIEWS_STMT Catalog table...uuii ittt e s saee e ssaae e s 2733
SYSVIEWS_TREE Catalog table.....cii ittt ettt et e e s 2733
SYSVOLUMES Catalog table....ii ettt sttt et be e s s e e s e e e s e e s sabeassanes 2733
SYSXMLRELS Catalog table....cicuiiieiiiiiiieeiteeeeectte ettt sttt s st s st e s ba e s s e e e abaeesasae s 2734
SYSXMLSTRINGS Catalog table. . uiii ittt ee e s sare e s ee e ssaeeesnee 2735
SYSXMLTYPMOD Catalog table.....uiiiiiiciieiciieecteerte ettt st sbe e s s sae e s sba e s saae s sbaeesane 2735
SYSXMLTYPMSCHEMA Catalog table.. ..ottt sttt s s 2736
USERNAMES 1810, ittt ettt e e st e e st e e st e e s sab e e s s abeessabeeesabaessaseasnanes 2737
REOrganizing the Catalog......cccvuiiriiiiiiiei ittt ste e e s te e e s sbe e e sbte s sbee e sbeeesbaessabeeesseeenans 2738
SQL statements allowed on the Catalog......ccuuiiiiiiiiiict e e 2739
Temporal versioning for DB2 catalog tables. ...t 2742
Temporal versioning for Db2 statistics-related catalog tables.....cccccvvveeiriiiiniiinnieinieceeeee, 2742
021 =1 (oY= R T a o 1= (=T SO PSPPSRI 2744
Appendix I. Db2 directory tables......cccccceiieiiieiinieiiniiienieiecieniececiececestecascessecenns 2769
Appendix J. Performance information for SQL application programming............ 2777
Appendix K. Db2 XML schema repository tables......ccccccceieieieninieieieceniececennenes 2779
XML schema repository (XSR) table spaces and iNAEXES.....cccueeeciieecieeeiiee e ectee et ecreeeeareeeeaeee s 2779
XSRANNOTATIONINFO table..ciiuieiiiiieiiieiiee ittt e st et sste e s see e s see e s saee e s saee e ssee s sneaessseeesnneas 2780
XSRCOMPONENT £aDLE...utiietiiieiteeeteeett ettt ettt see e s aee e st e e s aae e s aba e ssaeaesnssaesnnsaesnaes 2781
XSROBIECTS taDL0.. ettt sttt ettt s he b st e bt et e s bt et e s bt e be et e sbe s 2782
XSROBJECTCOMPONENTS tabLe..ciiuiiiiiiieieiieiriieeeitesrtee st ettt e s see e s ve e s sate e s sate e ssaaeessaeasssseaesnneas 2783
XSROBJECTGRAMMAR LaDLE...ciiiiiiieiieeeiteeete sttt sttt ettt e s sate e s s te e s sate e ssateesssteessaseessssaesnns 2784
XSROBJECTHIERARCHIES table...uiiiiiiiiiieieieeceieeeetee sttt sttt ste e st e s ste e ssate e s ssae e ssataessasaesnns 2784
XSROBJIECTPROPERTY table..ciiutiiiciieiiiieeiieesiie sttt site e siee s siee s st e s st e s stee s sbee s ssbaessasaassneessanens 2785
XSRPROPERTY 1BLE.ccc i tttieiieieite ettt ettt sttt st st e s te e s sate e s saee e s sateessseaessssaesnneaesnnsaesnneeas 2785
Appendix L. EXPLAIN tables....cccciccieiiiiiieiiienieiniienieceiienetentecestecsecessecassassacenss 2787
PLAN _TABLE. ..ttt ettt ettt e e e e e s e e s e s e e et e e e eeee s e e s e s nsnreneteeeeeeeseasannnnnnnees 2787
DISN _COLDIST TABLE e eeeeeeeeeseeeeeeeeeeeeseeeeeeseeseeeseesesesessesesesseseseeseseseesesesessesesesseseseseeseseseasesessesesenennens 2809
DSN_DETCOST _TABLE. ..ttt ettt ettt ettt ettt ettt e ettt e s s et e e s e sr e e e e e s nree e e e s nneeee e e nreeeeeenneaeas 2817
DSN_FILTER _TABLE......ceeeeeeette ettt ettt ettt e e e ettt e e st e e s et e e e e anseeeeeeasreeeeeeanneeeeeesnneaeas 2827
DSN_FUNCTION _TABLE. ...ttt ettt ettt et e e ettt e e e et e e s et e e e e s eanee e e e s mreeeeeesaneeeeeasanne 2832
DSN_KEYTGTDIST_TABLE......ecei ettt ettt ettt ettt e e ettt e e s et e e e e et e e e e e st eeessaneeeeesenneeaeanan 2837
DSN_PGRANGE _TABLE.....c ettt ettt ettt e e e et e e e sttt e s s e bt e e s e sseeeeseenseeessennneeeeenannen 2844
DSN_ PGROUP _TABLE ...ttt ettt eeeeeeeeeseeeeeeseseseeseseseesesesessasesessesesessasesessasesessasesessaseseseaseseseseseseesesenes 2848
DSN_PREDICAT_TABLE.......eeeei ettt ettt e e e ettt e s sttt e e st e e e e ene e e e s s eneeeessenseeeesesnsaeeeeennnnes 2855
DSN_PREDICATE_SELECTIVITY table...uiiiiiiiiiiieiiiieniieesitesie st st e st e sste e ssae e ssaae e ssbeesssaaessnsae s 2863
DISN_ PTASK TABLE ..ttt eeeeeeeeeeeeeeeeeeeeseeeseseseseeseseseesaseseseseseseseseesaseseaseseseasesesesasesesseseneasesesenes 2869
DSN_QUERYINFO _TABLE ...ttt teeeeestseeeeeeeeeseesesessesesesseseseeseseseseesesesseseseesesesessesesessesesessasesessesesensaees 2874
DSN _QUERY _TABLE ..t eteeeeeee et et eeeeseeeeseeeeseeeseeseeeseeseseeeesaseseaseseseaseeeseeseseseasaseseseseseaseseseaseseseaseseseaens 2882
DSN_SORTKEY_TABLE....cc ettt ettt ettt e ettt e e s et e e e e et e e eeaneeeeeesnreeeeesnneaeeens 2885
DISN _ SORT _TABLE ..ttt eeeeeee et eee e e e et eeseeeeeeeeseeseseeeeseseseeseseeeesesesseseseseaseseseaseseseseseseaseseseseseseseseneeen 2891
DSN_STATEMENT_CACHE _TABLE......ceiei ettt ettt ettt e ettt e s st e s st e e s e see e e e e sanneeas 2896
DSN_STATEMNT_TABLE. ...ttt ettt e ettt e e et e e e st e e e s eanee e e e s nbeee s s asaeeeeesnnseeeaenanne 2906
DSN_STAT_FEEDBACK ... ettt ettt ettt ettt ettt e e e ettt e e s e s et e e e e s nne e e e e e nneeee s s nreeeeeeanseeeeaaannes 2915
DSN _ STRUCT TABLE e e eeeeeee ettt ee e eeeeeseeeseeseseseesesesessaseseeeeseseesasesessasesesseseseesseseseseseneesesesssenees 2920
DSN_VIEWREF TABLE..... e ettt ettt ettt ettt e e ettt e e e st e e e e se e e e s e s neeeeeesnneeeeesanneeaessanns 2926
Appendix M. Tables that support query acceleration......ccccccceeeceirereecenrecacceceacans 2931
SYSACCEL.SYSACCELERATORS table...ciiiiiiiiiiiiiiiesieesie sttt st e st e st sste e ssate e ssbe e ssavaessanaeens 2931
SYSACCEL.SYSACCELERATEDTABLES table....cicciiiiieiiiieecieccte ettt 2932
SYSACCEL.SYSACCELERATEDTABLESAUTH table....iiiciiiiiiiiiiieeieeciee et 2934

SYSACCEL.SYSACCELERATEDPACKAGES table....cc.cooiiiiiiiieeeece et 2934

Appendix N. Tables that are used for program authorization.........c.ccccceeuvieenec. 2939
Table spaces and indexes for program authorization.........c.ceeieinieniceinee e 2939
SYSIBM.DSNPROGAUTH table.....eriiieiceiiee ettt eecttee e eetee e e e te e e e seveee s s eebaee e e e snseeesssnseeeessnnns 2939

ALTDATE oot eeee e eeeeeeeeee e seeeeseseeese s es e eeeseeseesese e esaseseseeeeeseeseeeseee e eeaeeeeeesese s eeeeesaseseseeeseeeseeeeeeees 2941
ALTTIME oot se e eeeseeese e s eeesese s seeeeeesesese e eseeeseeeseee e eseeeseeeseeeseeseesesesesesesseeeseseseseeseeeeeenees 2943
BASEGAENCODE and BASEGADECODE. ... veeeeeeeeeeeeeseeeseeeeeeeseseseseeessesseesesesesessesssesesesesssseeseesssessseses 2945
CURRENCY oot eeee s se e e e eese s e e e esesese s ee e eeesesese e ee e s eeeseseseseeeeeeeeseseeeseeeesasesenseeeeseseens 2945
DAYNAME ..ot e e eeeeee e e e e e e eee e e e eeeeeeeee e eeeeeseeesase s eeeeeseeeseee e eeeeseseseee e eeeeeseeeeeseeeeeesere 2946
HDFS_READ .o eeeeee et eeese e se s e e eeese e e se e seseee e s seseeeeseseseeeeeeeeseseseseseeeeeeseeesese e se s seeeeseseseseeseeneseneeee 2947
HTTPBLOB. c1ve oot eeeeeeseee e eeeeeeesesese e seesese e se et eseeese e seeeesesesesseeeeeeesesessee e seeeeseneeesensseeesene 2948
HT TP CLOB. oot eees e ee s eeeeseseee e eeeseseseea e eeeeeseeeeeseseeseeeeeessaee e eeeeeseseseseseseeeeesesesensseesseesensens 2949
HTTPDELETEBLOB and HTTPDELETECLOB .u eueeeeeeeeeeeeseeeseeeeeeeeseseeeseeeseesesesssesseeseesesessesseesseesesesenee 2950
HTTPGETBLOB ANA HTTPGETCLOB....eeveeeveeeeeeeeeeeeeeeseeeseeeesesseeseeeseeeesessseseesseessessessseseeesseseeeseeseesssenes 2952
HTTPGETBLOBFILE and HTTPGETCLOBFILE . cv.eeeeeeeeeeeeseeeseeeseeeeeeseseseeeseeeesesseeseeesseeseesseeseeseesssessses 2954
HTTPHEAD. ..o oot seeeeee et eeesese e ee e e e e eeee e seeeeseseseee e es e esese s seeeeeeeeseseeeeseeeseseeenseneeeeeeens 2955
HTTPPOSTBLOB ANd HTTPPOSTCLOB....eeeeeeeeeeseeeeeereeeseeeseeeseesseeseesseseesseess e sseesseeseesesesseessessseneeessnns 2956
HTTPPUTBLOB ANA HTTPPUTCLOB. e eeeeeeeeeeeseeeeeeeeeeeeeseeeseeeseeseseseeessessesesesseessesssesssesseessesseeseeesenne 2957
TAQL_SUBMIT oot eeese e e e s e eseseee e eeeeese e ee e seseesesese e eeeeeeeeee e seeeeeeeesese e seeeseseseseeaseeeseee 2958
MONTHNAME ..ot e e e ee e e e eeeseeeeeeese e eeeseseeeeeee et eseeeeeeaseeeeseseseseenee et eseeaseneseaeesesesees 2959
TABLE_LOCATION ..ot veeeeeeeeeeseee st eeeeeeese s sseseseseseseseeeesesesesseeseseeessesesseeseeeesesesesesesseeesseseseseesseseseseene 2960
TABLE _NAME .ot e e eee e eeaeeseeeee e e seeeeeesese e eeeeeseseeeeeeneeeeeseesesee e seeeeseesseseseseeeesaeseaneneees 2961
TABLE_SCHEMA .. oot eee e e e e e s e e e e et eeesese e se e eseeesesesess e eseeesesseesessseeesesenenenseene 2962
URLENCODE AN URLDECODE ... eeeveeeeeeeeeee e eeeseeeseeeseessseseseseeessesssesssesesessesssessessseesesssssssesesessesesesees 2963
WEATHER e oot e e e e e e e eeese e e e e eseseeese e ee e eeesesese e eeeseeeeseseseee e eeeeesesesase e eeeeeseeeseseeeeeeesens 2964

Information resources for Db2 for z/0S and related products........cccccceveeeeeee.. 2967

[\ 0] (=Y - TSP ° | -1

Programming interface iNformMation.... ... et sbee e 2970
= (o (=100 =T OO TSUSTRSRTP 2970
Terms and conditions for product doCUMENTAtION........ciiieeciiiie e 2971
e EAVZ (oY oTo] L oa A oto] a1 [=T =X AT ISR 2971

{131 Y R RRRRRR”.L * I A

L =) .1 & -

xXXi

About this information

This book is a reference for Structured Query Language (SQL) for Db2 for z/0S, including the SQL
procedural language (SQL PL). Unless otherwise stated, references to SQL in this book imply SQL for
Db2 for z/0S, and all objects described in this book are objects of Db2 for z/OS.

The syntax and semantics of most SQL statements are essentially the same in all IBM® relational database
products, and the language elements common to the products provide a base for the definition of IBM
SQL. Consult IBM DB2 SQL Reference for Cross-Platform Development if you intend to develop applications
that adhere to IBM SOQL.

Throughout this information, "Db2" means "Db2 12 for z/OS". References to other Db2 products use
complete names or specific abbreviations.

Important: To find the most up to date content for Db2 12 for z/0OS, always use IBM Documentation
or download the latest PDF file from PDF format manuals for Db2 12 for z/OS (Db2 for z/OS in IBM
Documentation).

Most documentation topics for Db2 12 for z/OS assume that the highest available function level is
activated and that your applications are running with the highest available application compatibility level,
with the following exceptions:

« The following documentation sections describe the Db2 12 migration process and how to activate new
capabilities in function levels:

— Migrating to Db2 12 (Db2 Installation and Migration)
— What's new in Db2 12 (Db2 for z/OS What's New?)
— Adopting new capabilities in Db2 12 continuous delivery (Db2 for z/OS What's New?)

« FL 501 A label like this one usually marks documentation changed for function level 500 or higher,
with a link to the description of the function level that introduces the change in Db2 12. For more
information, see How Db2 function levels are documented (Db2 for z/OS What's New?).

The availability of new function depends on the type of enhancement, the activated function level, and
the application compatibility levels of applications. In the initial Db2 12 release, most new capabilities are
enabled only after the activation of function level 500 or higher.

Virtual storage enhancements
Virtual storage enhancements become available at the activation of the function level that introduces
them or higher. Activation of function level 100 introduces all virtual storage enhancements in
the initial Db2 12 release. That is, activation of function level 500 introduces no virtual storage
enhancements.

Subsystem parameters
New subsystem parameter settings are in effect only when the function level that introduced them or
a higher function level is activated. Many subsystem parameter changes in the initial Db2 12 release
take effect in function level 500. For more information about subsystem parameter changes in Db2
12, see Subsystem parameter changes in Db2 12 (Db2 for z/OS What's New?).

Optimization enhancements
Optimization enhancements become available after the activation of the function level that introduces
them or higher, and full prepare of the SQL statements. When a full prepare occurs depends on the
statement type:

« For static SQL statements, after bind or rebind of the package

« For non-stabilized dynamic SQL statements, immediately, unless the statement is in the dynamic
statement cache

- For stabilized dynamic SQL statements, after invalidation, free, or changed application compatibility
level

© Copyright IBM Corp. 1982, 2024 xxiii

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_12.0.0/home/src/tpc/db2z_12_prodhome.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_migrdb2.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_wnew.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_managenewcapability.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m501.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_aboutflinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_subsysparmchanges.html

Activation of function level 100 introduces all optimization enhancements in the initial Db2 12
release. That is, function level 500 introduces no optimization enhancements.

SQL capabilities
New SQL capabilities become available after the activation of the function level that introduces them
or higher, for applications that run at the equivalent application compatibility level or higher. New SQL
capabilities in the initial Db2 12 release become available in function level 500 for applications that
run at the equivalent application compatibility level or higher. You can continue to run SQL statements
compatibly with lower function levels, or previous Db2 releases, including Db2 11 and DB2° 10. For
details, see Application compatibility levels in Db2 12 (Db2 Application programming and SQL)

Who should read this information

This information is intended for end users, application programmers, system and database
administrators, and for persons involved in error detection and diagnosis.

This information is a reference rather than a tutorial. It assumes that you are already familiar with SQL
programming concepts.

When you first use this information, consider reading Chapters 1 and 2 sequentially. These chapters
describe the basic concepts of relational databases and SQL, the basic syntax of SQL, and the language
elements that are common to many SQL statements. The rest of the chapters and appendixes are
designed for the quick location of answers to specific SQL questions. They provide you with query forms,
SQL statements, SQL procedure statements, Db2 limits, SQLCA, SQLDA, catalog tables, and SQL reserved
words.

Db2 Utilities Suite for z/0S

Important: Db2 Utilities Suite for z/OS is available as an optional product. You must separately order
and purchase a license to such utilities, and discussion of those utility functions in this publication is not
intended to otherwise imply that you have a license to them.

Db2 12 utilities can use the DFSORT program regardless of whether you purchased a license for DFSORT
on your system. For more information about DFSORT, see https://www.ibm.com/support/pages/dfsort.

Db2 utilities can use IBM Db2 Sort for z/OS as an alternative to DFSORT for utility SORT and MERGE
functions. Use of Db2 Sort for z/OS requires the purchase of a Db2 Sort for z/OS license. For more
information about Db2 Sort for z/OS, see Db2 Sort for z/OS documentation.

Related concepts
Db2 utilities packaging (Db2 Utilities)

Terminology and citations

When referring to a Db2 product other than Db2 for z/0S, this information uses the product's full name to
avoid ambiguity.

The following terms are used as indicated:

Db2
Represents either the Db2 licensed program or a particular Db2 subsystem.

IBM rebranded DB2 to Db2, and Db2 for z/OS is the new name of the offering that was previously
known as "DB2 for z/OS". For more information, see Revised naming for IBM Db2 family products on
IBM z/0S platform. As a result, you might sometimes still see references to the original names, such
as "DB2 for z/0S" and "DB2", in different IBM web pages and documents. If the PID, Entitlement
Entity, version, modification, and release information match, assume that they refer to the same
product.

IBM OMEGAMON?® for Db2 Performance Expert on z/0S
Refers to any of the following products:

« IBM IBM OMEGAMON for Db2 Performance Expert on z/0OS

xxiv About this information

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applicationcompatibility.html
https://www.ibm.com/support/pages/dfsort
https://www.ibm.com/docs/en/db2-sort-for-zos
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utlpackaging.html
https://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/7/899/ENUSLP18-0047/index.html
https://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/7/899/ENUSLP18-0047/index.html

« IBM Db2 Performance Monitor on z/0S
« IBM Db2 Performance Expert for Multiplatforms and Workgroups

« IBM Db2 Buffer Pool Analyzer for z/OS
C, C++, and C language

Represent the C or C++ programming language.
CIcs®

Represents CICS Transaction Server for z/OS.

IMS
Represents the IMS Database Manager or IMS Transaction Manager.

MvVS™
Represents the MVS element of the z/OS operating system, which is equivalent to the Base Control
Program (BCP) component of the z/OS operating system.

RACF®
Represents the functions that are provided by the RACF component of the z/OS Security Server.

Accessibility features for Db2 for z/0S

Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products, including Db2 for z/OS. These
features support:

« Keyboard-only operation.

- Interfaces that are commonly used by screen readers and screen maghnifiers.

« Customization of display attributes such as color, contrast, and font size

Tip: IBM Documentation (which includes information for Db2 for z/OS) and its related publications are

accessibility-enabled for the IBM Home Page Reader. You can operate all features using the keyboard
instead of the mouse.

Keyboard navigation

For information about navigating the Db2 for z/OS ISPF panels using TSO/E or ISPF, refer to the z/0S
TSO/E Primer, the z/0S TSO/E User's Guide, and the z/OS ISPF User's Guide. These guides describe how
to navigate each interface, including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their functions.

Related accessibility information

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information about the commitment
that IBM has to accessibility.

How to send your comments about Db2 for z/0OS documentation

Your feedback helps IBM to provide quality documentation.

Send any comments about Db2 for z/OS and related product documentation by email to
db2zinfo@us.ibm.com.

To help us respond to your comment, include the following information in your email:

About this information xxv

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_12.0.0/home/src/tpc/db2z_12_prodhome.html
http://www.ibm.com/able
mailto:db2zinfo@us.ibm.com

The product name and version

The address (URL) of the page, for comments about online documentation

The book name and publication date, for comments about PDF manuals
« The topic or section title

The specific text that you are commenting about and your comment

Related concepts

About Db2 12 for z/OS product documentation (Db2 for z/OS in IBM Documentation)
Related reference

PDF format manuals for Db2 12 for z/OS (Db2 for z/OS in IBM Documentation)

How to read syntax diagrams

Certain conventions apply to the syntax diagrams that are used in IBM documentation.
Apply the following rules when reading the syntax diagrams that are used in Db2 for z/OS documentation:
 Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The = »~—— symbol indicates the beginning of a statement.

The —~ symbol indicates that the statement syntax is continued on the next line.

The ——— symbol indicates that a statement is continued from the previous line.

The —~ < symbol indicates the end of a statement.
« Required items appear on the horizontal line (the main path).

»— required_item —»<

« Optional items appear below the main path.
»— required_item >4
L optional_item J

If an optional item appears above the main path, that item has no effect on the execution of the
statement and is used only for readability.

I_ optional_item T
»— required_item >4

« If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.
»— required_item T required_choicel j—N
required_choice2
If choosing one of the items is optional, the entire stack appears below the main path.
»— required_item >4
toptional_choicel j
optional_choice2

If one of the items is the default, it appears above the main path and the remaining choices are shown
below.

xxvi About this information

https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/cmn/db2z_cmn_aboutinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html

default_choice

optional_choice j

optional_choice

»— required_item

I

T 1)

« An arrow returning to the left, above the main ling, indicates an item that can be repeated.

<
<

),.ﬁ

»— required_item repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

<
» €

),.ﬁ

»— required_item repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the stack.

- Sometimes a diagram must be split into fragments. The syntax fragment is shown separately from the
main syntax diagram, but the contents of the fragment should be read as if they are on the main path of
the diagram.

fragment-name

»— required_item >«
L optional_name —J

« For some references in syntax diagrams, you must follow any rules described in the description for that
diagram, and also rules that are described in other syntax diagrams. For example:

— For expression, you must also follow the rules described in “Expressions” on page 245.

— For references to fullselect, you must also follow the rules described in “fullselect” on page 1060.

— For references to search-condition, you must also follow the rules described in “Search conditions”
on page 319.

« With the exception of XPath keywords, keywords appear in uppercase (for example, FROM). Keywords
must be spelled exactly as shown.

« XPath keywords are defined as lowercase names, and must be spelled exactly as shown.

« Variables appear in all lowercase letters (for example, column-name). They represent user-supplied
names or values.

« If punctuation marks, parentheses, arithmetic operators, or other such symbols are shown, you must
enter them as part of the syntax.

Related concepts

Commands in Db2 (Db2 Commands)

Db2 online utilities (Db2 Utilities)

Db2 stand-alone utilities (Db2 Utilities)

Conventions for describing mixed data values

When mixed data values are shown in examples, certain conventions are used to represent these values.

At sites using a double-byte character set (DBCS), character strings can include a mixture of single-byte
and double-byte characters. When mixed data values are shown in the examples, the conventions shown
in the following example apply:

About this information xxvii

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_aboutcommands.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_onlineutilities.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_standaloneutilities.html

Convention pi

So “shift-out” control character (X’0E”), used only for EBCDIC data
SI “shift-in" control character (X’OE”), used only for EBCDIC data
shcs-string SBCS string of zero or more single-byte characters
dbcs-string DBCS string of zero or more double-byte characters

r DBCS apostrophe

G DBCS uppercase G

Figure 1. Conventions used when mixed data values are shown in examples

Industry standards for SQL

Db2 for z/OS conforms to the following industry standards for SQL:

« ISO/IEC FCD 9075-1:2016, Information technology - Database languages - SQL - Part 1: Framework
(SOL/Framework)

« ISO/IEC FCD 9075-2:2016, Information technology - Database languages - SQL - Part 2: Foundation
(SOL/Foundation)

« ISO/IEC FCD 9075-3:2016, Information technology - Database languages - SQL - Part 3: Call-Level
Interface (SQL/CLI)

« ISO/IEC FCD 9075-4:2016, Information technology - Database languages - SQL - Part 4: Persistent
Stored Modules (SQL/PSM)

« ISO/IEC FCD 9075-10:2016, Information technology - Database languages - SQL - Part 10: Object
Language Bindings (SQL/OLB)

« ISO/IEC FCD 9075-11:2016, Information technology - Database languages - SQL - Part 11: Information
and Definition Schemas (SQL/Schemata)

« ISO/IEC FCD 9075-13:2016, Information technology - Database languages - SQL - Part 13: Java
Routines and Types (SQL/JRT)

« ISO/IEC FCD 9075-14:2016, Information technology - Database languages - SQL - Part 14: XML-Related
Specifications (SQL/XML)

xxviii Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Chapter 1. Db2 for z/0S and SQL concepts

Many structures and processes are associated with a relational database. The structures are the
key components of a Db2 database system, and the processes are the interactions that occur when
applications access the database system.

In arelational database, data is perceived to exist in one or more tables. Each table contains a specific
number of columns and a number of unordered rows. Each column in a table is related in some way to the
other columns. Thinking of the data as a collection of tables gives you an easy way to visualize the data
that is stored in a Db2 database.

Tables are at the core of a Db2 database. However, a Db2 database involves more than just a collection of
tables; a Db2 database also involves other objects, such as views and indexes, and larger data containers,
such as table spaces.

With Db2 for z/OS and the other Db2 products, you can define and manipulate your data by using
structured query language (SQL). SQL is the standard language for accessing data in relational databases.

Submitting SQL statements to Db2

You can use several different methods to send SQL statements to Db2 in several ways.

You can issue SQL statements from interactively from a keyboard at a terminal or through a terminal
emulator.

Another way to issue SQL statements is through application programs. The programs can contain SQL
statements that are statically embedded in the application. Alternatively, application programs can create
their SQL statements dynamically, for example, in response to information that a user provides by filling in
a form.

The method of preparing an SQL statement for execution and the persistence of its operational form
distinguish static SQL from dynamic SQL.

Related concepts

How SQL statements are invoked

SQL statements are invoked in different ways depending on whether the statement is an executable or
nonexecutable statement or the select-statement.

Related tasks

Overview of programming applications that access Db2 for z/OS data (Db2 Application programming and

SQL)
Static SQL

The source form of a static SQL statement is embedded within an application program written in a host
language such as COBOL. The statement is prepared before the program is executed and the operational
form of the statement persists beyond the execution of the program.

Static SQL statements in a source program must be processed before the program is compiled. This
processing can be accomplished through the Db2 coprocessor or Db2 precompiler. The Db2 coprocessor
or Db2 precompiler checks the syntax of the SQL statements, turns them into host language comments,
and generates host language statements to invoke Db2.

The preparation of an SQL application program includes processing of the SQL statements, the
preparation of its static SQL statements, and compilation of the modified source program.
Related concepts

Static SQL applications (Introduction to Db2 for z/0S)

How SQL statements are invoked

© Copyright IBM Corp. 1982, 2024 1

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_writedb2application.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_writedb2application.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_staticsqlapplications.html

SQL statements are invoked in different ways depending on whether the statement is an executable or
nonexecutable statement or the select-statement.

Related tasks
Overview of programming applications that access Db2 for z/OS data (Db2 Application programming and

SQL)

Processing SQL statements for program preparation (Db2 Application programming and SQL)

Embedded dynamic SQL

Programs that contain embedded dynamic SQL statements must be precompiled like those that contain
static SQL, but unlike static SQL, the dynamic statements are constructed and prepared at run time.

The source form of a dynamic statement is a character string that is passed to Db2 by the program
using the static SQL PREPARE or EXECUTE IMMEDIATE statement. A statement that is prepared using
the PREPARE statement can be referenced in a DECLARE CURSOR, DESCRIBE, or EXECUTE statement.
Whether the operational form of the statement is persistent depends on whether dynamic statement
caching is enabled.

SQL statements embedded in a REXX application are dynamic SQL statements. SQL statements
submitted to an interactive SQL facility and to the CALL Level Interface (CLI) are also dynamic SQL.

Related concepts

Embedding a statement in an application program

You can include SQL statements in a source program that will be submitted to the Db2 precompiler

or coprocessor. Such statements are said to be embedded in the application program. An embedded
statement can be placed anywhere in the application program where a host language statement is
allowed. Each embedded statement must be preceded by a keyword (or keywords) to indicate that the
statement is an SQL statement.

Dynamic preparation and execution

Your application program can dynamically build an SQL statement in the form of a character string placed
in a host variable. In general, the statement is built from some data available to the application program
(for example, input from a workstation).

Dynamic SQL applications (Introduction to Db2 for z/0S)

Embedded dynamic SQL (Introduction to Db2 for z/0OS)

Related tasks

Including dynamic SQL in your program (Db2 Application programming and SQL)

Deferred embedded SQL
A deferred embedded SQL statement is neither fully static nor fully dynamic.

Like a static statement, it is embedded within an application, but like a dynamic statement, it is prepared
during the execution of the application. Although prepared at run time, a deferred embedded SQL
statement is processed with bind-time rules such that the authorization ID and qualifier determined

at bind time for the plan or package owner are used.

Interactive SQL

Interactive SQL refers to SQL statements that you submit to Db2 by using SPUFI (SQL processor using file
input), the command line processor, or by using a query tool, such as QMF for Workstation.

The easiest and most efficient way to run SQL is to use a query tool. QMF for Workstation is a popular
query tool that lets you enter and run your SQL statements easily. This topic acquaints you with using QMF
for Workstation to create and run SQL statements. QMF for Workstation simplifies access to Db2 from a
workstation. In fact, was QMF for Workstation built for Db2.

Although this topic focuses on QMF for Workstation, other options are available. You can use QMF for
WebSphere® to enter and run SQL statements from your web browser or useQMF for TSO/CICS to enter
and run SQL statements from TSO or CICS. In addition, you can enter and run SQL statements at a TSO

2 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_writedb2application.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_writedb2application.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_processsqlstmt.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_dynamicsqlapplications.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_dynamicsqlsql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_includedynamicsql.html

terminal by using the SPUFI (SQL processor using file input) facility. SPUFI prepares and executes these
statements dynamically. All of these tools prepare and dynamically execute the SQL statements.

The Db2 Query Management Facility (QMF) family of technologies establish pervasive production and
sharing of business intelligence for information-oriented tasks in the organization. QMF offers many
strengths, including the following:

 Support for functionality in the Db2 database, including long names, Unicode, and SQL enhancements

« Drag-and-drop capability for building OLAP analytics, SQL queries, pivot tables, and other business
analysis and reports

« Executive dashboards and data visual solutions that offer visually rich, interactive functionality and
interfaces for data analysis

« Support for QMF for WebSphere, a tool that turns any web browser into a zero-maintenance, thin client
for visual on demand access to enterprise Db2 data

« Re-engineered cross-platform development environment
« New security model for access control and personalization

The visual solutions previously provided by QMF Vision are now included in the core QMF technology.

In addition to QMF for Workstation, which this topic describes, the QMF family includes the following
editions:

- QMF Enterprise Edition provides the entire QMF family of technologies, enabling enterprise-wide
business information across user and database operating systems. This edition consists of:

— QMF for TSO/CICS

— QMF High Performance Option
QMF for Workstation

QMF for WebSphere
DataQuant for Workstation

— DataQuant for WebSphere

« QMF Classic Edition supports users who work with traditional mainframe terminals and emulators
(including WebSphere Host On Demand) to access Db2 databases. This edition consists of QMF for
TSO/CICS.

Related concepts

Interactive invocation
An SQL statement submitted to Db2 from a terminal is said to be issued interactively.

The Db2 command line processor (Db2 Commands)

Use of QMF for Workstation (Introduction to Db2 for z/OS)

Related tasks

Executing SQL by using SPUFI (Db2 Application programming and SQL)

SQL Call Level Interface and Open Database Connectivity

The Db2 Call Level Interface (CLI) is an application programming interface in which functions are provided
to application programs to process dynamic SQL statements.

Db2 CLI allows users to access SQL functions directly through a call interface. CLI programs can also be
compiled using an Open Database Connectivity (ODBC) Software Developer's Kit, available from Microsoft
or other vendors, enabling access to ODBC data sources. Unlike using embedded SQL, no precompilation
is required. Applications developed using this interface can be executed on a variety of databases without
being compiled against each of databases. Through the interface, applications use procedure calls at
execution time to connect to databases, to issue SQL statements, and to get returned data and status
information.

Chapter 1. Db2 for z/OS and SQL concepts 3

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_commandlineprocessor.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_useofqmfworkstation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_executesqlspufi.html

Related concepts

Introduction to Db2 ODBC (Db2 Programming for ODBC)

Conceptual view of a Db2 ODBC application (Db2 Programming for ODBC)
Related information

ODBC functions (Db2 Programming for ODBC)

Java database connectivity and embedded SQL for Java

Db2 provides two standards-based Java™ programming APIs: Java Database Connectivity (JDBC) and
embedded SQL for Java (SQL/OLB or SQLJ). Both can be used to create Java applications and applets that
access Db2.

Static SQL cannot be used by JDBC. SQLJ applications use JDBC as a foundation for such tasks as
connecting to databases and handling SQL errors, but can contain embedded static SQL statements in
the SQLJ source files. An SQLJ file has to be translated with the SQLJ translator before the resulting Java
source code can be compiled.

Related concepts
Java application development for IBM data servers (Db2 Application Programming for Java)
Supported drivers for JDBC and SQLJ (Db2 Application Programming for Java)

Use of QMF for Workstation

QMF for Workstation is a tool that helps you build and manage powerful queries without requiring
previous experience with SQL.

With the query-related features of Db2 Query Management Facility (QMF) and QMF for Workstation in
particular, you can perform the following tasks:

« Build powerful queries without knowing SQL
 Analyze query results onling, including OLAP analysis

Edit query results to update Db2 data

Format traditional text-based reports and reports with rich formatting

Display charts and other complex visuals
« Send query results to an application of your choice

Develop applications using robust API commands

How SQL statements are entered and processed
You can create your SQL statements using QMF for Workstation in several ways:

« Use the Database Explorer window to easily find and run saved queries that everyone at the same
database server can share.

« If you know SQL, type the SQL statement directly in the window.
- If you don't know SQL, use the prompted or diagram interface to build the SQL statement.

The Database Explorer presents the objects that are saved on a server in a tree structure. By expanding
and collapsing branches, you can easily locate and use saved queries. You can open the selected query
and see the SQL statements or run the query.

If you need to build a new query, you can enter the SQL statements directly in the query window, or you
can create the SQL statements using diagrams or prompts. As you build a query by using diagrams or
prompts, you can open a view to see the SQL that is being created.

How you can work with query results

When you finish building the query, you can click the Run Query button to execute the SQL statements.
After you run the query, QMF for Workstation returns the query results in an interactive window.

4 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/odbc/src/tpc/db2z_hdint.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/odbc/src/tpc/db2z_hdovv.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/odbc/src/tpc/db2z_hdapi.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_c0024189.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_cjvintro.html

The query results are formatted by the comprehensive formatting options of QMF for Workstation. A
robust expression language lets you conditionally format query results by retrieved column values. You
can add calculated columns to the query results and group data columns on both axes with or without

summaries. You can also use extensive drag-and-drop capabilities to easily restructure the appearance of
the query results.

In addition to formatting the query results, you can perform the following actions:

- Create traditional text-based reports or state-of-the-art reports with rich formatting.

Display query results by using charts and other complex visuals.
Share reports by storing them on the database server.
- Send query results to various applications such as Microsoft Excel or Lotus® 1-2-3.

Related reference
Db2 Query Management Facility (QMF) information

Db2 database objects overview

In Db2 for z/0S, you use database objects, such as tables, table spaces, indexes, index spaces, keys,
views, and databases to organize and access your data.

The brief descriptions here show how the structures fit into an overall view of Db2. The following figure
shows how some Db2 structures contain others. To some extent, the notion of "containment" provides a
hierarchy of structures.

Storage group G1

®Volume 3 @ \olume 2

Database

>
Table space Index space _
Table Partitioning
part 1 _indexpart1
Part 2 Part 2
Part 3 Part 3
Part 4 Part 4

| |

Storage group G2

®\Volume 1

(o |
(o |
Figure 2. A hierarchy of Db2 structures

The Db2 structures from the most to the least inclusive are:

Databases

A set of Db2 structures that include a collection of tables, their associated indexes, and the table
spaces in which they reside.

Storage groups
A set of volumes on disks that hold the data sets in which tables and indexes are stored.

Table spaces
A logical unit of storage in a database. A table space is a page set. The recommended partition-by-
growth and partition-by-range table space types always contain data for only a single table. However,
the segmented (non-UTS) and simple table space types, which are deprecated, can each contain one
or more tables. For more information, see Table space types and characteristics in Db2 for z/OS (Db2
Administration Guide).

Chapter 1. Db2 for z/OS and SQL concepts 5

https://www.ibm.com/support/knowledgecenter/SS9UMF/
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_typesofdb2tablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_typesofdb2tablespaces.html

Deprecated function: FL 504 Non-UTS table spaces for base tables are deprecated. CREATE
TABLESPACE statements that run at application compatibility level V12R1M504 or higher always
create a partition-by-growth or partition-by-range table space, and CREATE TABLE statements that
specify a non-UTS table space (including existing multi-table segmented table spaces) return an error.
However, you can use a lower application compatibility level to create table spaces of the deprecated
types if needed, such as for recovery situations. For instructions, see Creating non-UTS table spaces
(deprecated) (Db2 Administration Guide).

Tables
All data in a Db2 database is presented in tables, which are collections of rows all having the same
columns. A table that holds persistent user data is a base table. A table that stores data temporarily is
a temporary table.

Views
A view is an alternative way of representing data that exists in one or more tables. A view can include
all or some of the columns from one or more base tables.

Indexes
An index is an ordered set of pointers to the data in a Db2 table. The index is stored separately from
the table. An index is either a simple index or an extended index. An extended index is one of the
following objects:

« An expression-based index
« A spatial index
« An XML index
Related concepts
Db2 system objects (Introduction to Db2 for z/0S)

Implementing your database design (Db2 Administration Guide)
Storage structures (Introduction to Db2 for z/0OS)

Db2 schemas and schema qualifiers

The objects in a relational database are organized into sets called schemas. A schema is a collection of
named objects that provides a logical classification of objects in the database. The first part of a schema
name is the qualifier.

A schema provides a logical classification of objects in the database. The objects that a schema can
contain include tables, indexes, table spaces, distinct types, functions, stored procedures, and triggers.
An object is assigned to a schema when it is created.

The schema name of the object determines the schema to which the object belongs. A user object, such
as a distinct type, function, procedure, sequence, or trigger should not be created in a system schema,
which is any one of a set of schemas that are reserved for use by the Db2 subsystem.

When a table, index, table space, distinct type, function, stored procedure, or trigger is created, it is given
a qualified two-part name. The first part is the schema name (or the qualifier), which is either implicitly or
explicitly specified. The default schema is the authorization ID of the owner of the plan or package. The
second part is the name of the object.

In previous versions, CREATE statements had certain restrictions when the value of CURRENT SCHEMA
was different from CURRENT SQLID value. Although those restrictions no longer exist, you now must
consider how to determine the qualifier and owner when CURRENT SCHEMA and CURRENT SQLID contain
different values. The rules for how the owner is determined depend on the type of object being created.

CURRENT SCHEMA and CURRENT SQLID affect only dynamic SQL statements. Static CREATE statements
are not affected by either CURRENT SCHEMA or CURRENT SQLID.

The following table summarizes the effect of CURRENT SCHEMA in determining the schema qualifier and
owner for these objects:

« Alias

6 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createdeprecatedtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createdeprecatedtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_db2systemobjects.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implementingdesign.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_storagestructs.html

Auxiliary table

Created global temporary table
- Table

- View

Table 1. Schema qualifier and owner for objects

Specification of name for new

object being created Schema qualifier of new object Owner of new object
name (no qualifier) value of CURRENT SCHEMA value of CURRENT SQLID
abc.name (single qualifier) abc abc

...... abc.name (multiple qualifiers) abc abc

The following table summarizes the effect of CURRENT SCHEMA in determining the schema qualifier and
owner for these objects:

« User-defined type
 User-defined function
 Procedure

« Sequence

- Trigger

Table 2. Schema qualifier and owner for additional objects

Specification of name for new

object being created Schema qualifier of new object Owner of new object

name (no qualifier) value of CURRENT SCHEMA value of CURRENT SQLID
abc.name (single qualifier) abc value of CURRENT SQLID
...... abc.name (multiple qualifiers) abc value of CURRENT SQLID

Related reference

Reserved schema names in Db2 for z/OS
In general, for certain objects, schema names that begin with the prefix SYS are reserved. The schema
name for these objects cannot begin with SYS except for certain exceptions.

Db2 tables

Tables are logical structures that Db2 maintains. Db2 supports several different types of tables.

Tables are made up of columns and rows. The rows of a relational table have no fixed order. The order of
the columns, however, is always the order in which you specified them when you defined the table.

At the intersection of every column and row is a specific data item, which is called a value. A column is a
set of values of the same type. A row is a sequence of values such that the nth value is a value of the nth
column of the table. Every table must have one or more columns, but the number of rows can be zero.

Db2 accesses data by referring to its content instead of to its location or organization in storage.
Db2 supports the following types of tables:

accelerator-only table
A table that stores rows only in the accelerator, not in Db2. The table and column definition of the
accelerator-only table is contained in Db2 catalog tables. Any queries that reference the accelerator-
only table, must be executed in the accelerator. If a query that references an accelerator-only table

Chapter 1. Db2 for z/OS and SQL concepts 7

is not eligible for query acceleration, an error is issued. To change the contents of an accelerator-only
table, the data change statement must be executed in the accelerator.

archive table
A table that stores rows that are deleted from another table.

archive-enabled table
A table that has an associated archive table. When rows are deleted from an archive-enabled table,
Db2 can automatically insert those rows into an archive table.

auxiliary table
A table created with the SQL statement CREATE AUXILIARY TABLE and used to hold the data for a
column that is defined in a base table.

base table
The most common type of table in Db2. You create a base table with the SQL CREATE TABLE
statement. The Db2 catalog table, SYSIBM.SYSTABLES, stores the description of the base table. The
table description and table data are persistent. All programs and users that refer to this type of table
refer to the same description of the table and to the same instance of the table.

clone table
A table that is structurally identical to a base table. You create a clone table by using an ALTER
TABLE statement for the base table that includes an ADD CLONE clause. The clone table is created
in a different instance of the same table space as the base table, is structurally identical to the
base table in every way, and has the same indexes, before triggers, and LOB objects. In the Db2
catalog, the SYSTABLESPACE table indicates that the table space has only one table in it, but
SYSTABLESPACE.CLONE indicates that a clone table exists. Clone tables can be created only in a
partition-by range or partition-by-growth table space that is managed by Db2. The base and clone
table each have separate underlying VSAM data sets (identified by their data set instance numbers)
that contain independent rows of data.

empty table
A table with zero rows.

history table
A table that is used to store historical versions of rows from the associated system-period temporal
table.

materialized query table
A table, which you define with the SQL CREATE TABLE statement, that contains materialized data
that is derived from one or more source tables. Materialized query tables are useful for complex
queries that run on large amounts of data. Db2 can precompute all or part of such queries and use
the precomputed, or materialized, results to answer the queries more efficiently. Materialized query
tables are commonly used in data warehousing and business intelligence applications.

Several Db2 catalog tables, including SYSIBM.SYSTABLES and SYSIBM.SYSVIEWS, store the
description of the materialized query table and information about its dependency on a table, view,
or function. The attributes that define a materialized query table tell Db2 whether the table is:

« System-maintained or user-maintained.

« Refreshable: All materialized tables can be updated with the REFRESH TABLE statement. Only user-
maintained materialized query tables can also be updated with the LOAD utility and the UPDATE,
INSERT, and DELETE SQL statements.

« Enabled for query optimization: You can enable or disable the use of a materialized query table in
automatic query rewrite.

Materialized query tables can be used to improve the performance of dynamic SQL queries. If Db2
determines that a portion of a query could be resolved using a materialized query table, the query
might be rewritten by Db2 to use the materialized query table. This decision is based in part on
the settings of the CURRENT REFRESH AGE and the CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION special registers.

8 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

result table
A table that contains a set of rows that Db2 selects or generates, directly or indirectly, from one or
more base tables in response to an SQL statement. Unlike a base table or a temporary table, a result
table is not an object that you define using a CREATE statement.

sample table
One of several tables shipped with the Db2 licensed program that contains sample data. Many
examples in this information are based on sample tables.

temporal table
A table that records the period of time when a row is valid.

Db2 supports two types of periods, which are the system period (SYSTEM_TIME) and the application
period (BUSINESS_TIME). The system period consists of a pair of columns with system-maintained
values that indicates the period of time when a row is valid. The application period consists of a pair of
columns with application-maintained values that indicates the period of time when a row is valid.

system-period temporal table
A system-period temporal table is a base table that is defined with system-period data versioning.
You can modify an existing table to become a system-period temporal table by specifying the ADD
PERIOD SYSTEM_TIME clause on the ALTER TABLE statement. After creating a history table that
corresponds to the system-period temporal table, you can define system-period data versioning
on the table by issuing the ALTER TABLE ADD VERSIONING statement with the USE HISTORY
table clause.

application-period temporal table
An application-period temporal table is a base table that includes an application period
(BUSINESS_TIME). You can modify an existing table to become an application-period temporal
table by specifying the ADD PERIOD BUSINESS_TIME clause on the ALTER TABLE statement.

bitemporal table
A bitemporal table is a table that is both a system-period temporal table and an application-period
temporal table. You can use a bitemporal table to keep application period information and system-
based historical information. Therefore, you have a lot of flexibility in how you query data, based
on periods of time.

temporary table
A table that is defined by the SQL statement CREATE GLOBAL TEMPORARY TABLE or DECLARE
GLOBAL TEMPORARY TABLE to hold data temporarily. Temporary tables are especially useful when
you need to sort or query intermediate result tables that contain many rows, but you want to store
only a small subset of those rows permanently.

created global temporary table
A table that you define with the SQL CREATE GLOBAL TEMPORARY TABLE statement. The Db2
catalog table, SYSIBM.SYSTABLES, stores the description of the created temporary table. The
description of the table is persistent and shareable. However, each individual application process
that refers to a created temporary table has its own distinct instance of the table. That is, if
application process A and application process B both use a created temporary table named
TEMPTAB:

« Each application process uses the same table description.

 Neither application process has access to or knowledge of the rows in the other application
instance of TEMPTAB.

declared global temporary table
A table that you define with the SQL DECLARE GLOBAL TEMPORARY TABLE statement. The
Db2 catalog does not store a description of the declared temporary table. Therefore, the
description and the instance of the table are not persistent. Multiple application processes can
refer to the same declared temporary table by name, but they do not actually share the same
description or instance of the table. For example, assume that application process A defines
a declared temporary table named TEMP1 with 15 columns. Application process B defines a
declared temporary table named TEMP1 with five columns. Each application process uses its own

Chapter 1. Db2 for z/OS and SQL concepts 9

description of TEMP1; neither application process has access to or knowledge of rows in the other
application instance of TEMP1.

XML table
A special table that holds only XML data. When you create a table with an XML column, Db2 implicitly
creates an XML table space and an XML table to store the XML data.

Related concepts

Types of tables (Db2 Administration Guide)

Related reference

CREATE TABLE statement

The CREATE TABLE statement defines a table. The definition must include its name and the names and
attributes of its columns. The definition can include other attributes of the table, such as its primary key
and its table space.

ALTER TABLE statement
The ALTER TABLE statement changes the description of a table at the current server.

Db2 keys

A key is a column or an ordered collection of columns that is identified in the description of a table, an
index, or a referential constraint. Keys are crucial to the table structure in a relational database.

Keys are important in a relational database because they ensure that each record in a table is uniquely
identified, they help establish and enforce referential integrity, and they establish relationships between
tables. The same column can be part of more than one key.

A composite key is an ordered set of two or more columns of the same table. The ordering of the columns
is not constrained by their actual order within the table. The term value, when used with respect to a
composite key, denotes a composite value. For example, consider this rule: "The value of the foreign key
must be equal to the value of the primary key." This rule means that each component of the value of the
foreign key must be equal to the corresponding component of the value of the primary key.

Db2 supports several types of keys.

Unique keys

A unique constraint is a rule that the values of a key are valid only if they are unique. A key that is
constrained to have unique values is a unique key. Db2 uses a unique index to enforce the constraint
during the execution of the LOAD utility and whenever you use an INSERT, UPDATE, or MERGE statement
to add or modify data. Every unique key is a key of a unique index. You can define a unique key by using
the UNIQUE clause of either the CREATE TABLE or the ALTER TABLE statement. A table can have any
number of unique keys.

The columns of a unique key cannot contain null values.

Primary keys

A primary key is a special type of unique key and cannot contain null values. For example, the DEPTNO
column in the DEPT table is a primary key.

A table can have no more than one primary key. Primary keys are optional and can be defined in CREATE
TABLE or ALTER TABLE statements.

The unique index on a primary key is called a primary index. When a primary key is defined in a CREATE
TABLE statement or ALTER TABLE statement, Db2 automatically creates the primary index.

If a unique index already exists on the columns of the primary key when it is defined in the ALTER TABLE
statement, this unique index is designated as the primary index when Db2 is operating in new-function
mode and implicitly created the table space.

10 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_typesoftables.html

Parent keys

A parent key is either a primary key or a unique key in the parent table of a referential constraint. The
values of a parent key determine the valid values of the foreign key in the constraint.

Foreign keys

A foreign key is a key that is specified in the definition of a referential constraint in a CREATE or ALTER
TABLE statement. A foreign key refers to or is related to a specific parent key.

Unlike other types of keys, a foreign key does not require an index on its underlying column or columns. A
table can have zero or more foreign keys. The value of a composite foreign key is null if any component of
the value is null.

The following figure shows the relationship between some columns in the DEPT table and the EMP table.

Primary
key

v

DEPT DEPTNO DEPTNAME MGRNO ADMRDEPT
co1 INFORMATION CENTER 000030 A0O
D11 MANUFACTURING SYSTEMS 000060 D11

E21 SOFTWARE SUPPORT ------ D11
A I,
Foreign

key

Primary
key Foreign
| key
vy
EMP EMPNO LASTNAME DEPT JOB
000030 KWAN C01 MGR

000200 BROWN D11 DES
200340 ALONZO E21 FLD

Figure 3. Relationship between DEPT and EMP tables

Figure notes: Each table has a primary key:

« DEPTNO in the DEPT table
« EMPNO in the EMP table

Each table has a foreign key that establishes a relationship between the tables:

« The values of the foreign key on the DEPT column of the EMP table match values in the DEPTNO column
of the DEPT table.

« The values of the foreign key on the MGRNO column of the DEPT table match values in the EMPNO
column of the EMP table when an employee is a manager.

To see a specific relationship between rows, notice how the shaded rows for department CO1 and
employee number 000030 share common values.

Related concepts
Referential constraints (Introduction to Db2 for z/OS)

Constraints

A constraint is rules that Db2 enforces for column values to prevent duplicate values or set restrictions on
data added to a table.

Db2 uses the following types of constraints.

Chapter 1. Db2 for z/OS and SQL concepts 11

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_integrity.html

Related concepts
Ways to maintain data integrity (Db2 Application programming and SQL)

Unique constraints
A unique constraint is a rule that the values of a key are valid only if they are unique in a table.

Unique constraints are optional and can be defined in the CREATE TABLE or ALTER TABLE statements with
the PRIMARY KEY clause or the UNIQUE clause. The columns specified in a unique constraint must be
defined as NOT NULL. A unique index enforces the uniqueness of the key during changes to the columns
of the unique constraint.

A table can have an arbitrary number of unique constraints, with at most one unique constraint defined as
a primary key. A table cannot have more than one unique constraint on the same set of columns.

A unique constraint that is referenced by the foreign key of a referential constraint is called the parent key.

Referential constraints
Db2 ensures referential integrity between your tables when you define referential constraints.

Referential integrity is the state in which all values of all foreign keys are valid. Referential integrity is
based on entity integrity. Entity integrity requires that each entity have a unique key. For example, if every
row in a table represents relationships for a unique entity, the table should have one column or a set

of columns that provides a unique identifier for the rows of the table. This column (or set of columns)

is called the parent key of the table. To ensure that the parent key does not contain duplicate values,

a unique index must be defined on the column or columns that constitute the parent key. Defining the
parent key is called entity integrity.

A referential constraint is the rule that the nonnull values of a foreign key are valid only if they also appear
as values of a parent key. The table that contains the parent key is called the parent table of the referential
constraint, and the table that contains the foreign key is a dependent of that table.

The relationship between some rows of the DEPT and EMP tables, shown in the following figure,
illustrates referential integrity concepts and terminology. For example, referential integrity ensures that
every foreign key value in the DEPT column of the EMP table matches a primary key value in the DEPTNO
column of the DEPT table.

Primary
key
v E

DEPT DEPTNO DEPTNAME MGRNO ADMRDEPT

co1 INFORMATION CENTER 000030 A0

D11 MANUFACTURING SYSTEMS 000060 D11

E21 SOFTWARE SUPPORT ~ ------ D11
Foréign
key

Primary
key Foreign
k(lay
EMP EMPNO LASTNAME DEPT JOB
000030 KWAN €01 MGR

000200 BROWN D11 DES
200340 ALONZO E21 FLD

Figure 4. Referential integrity of DEPT and EMP tables

Two parent and dependent relationships exist between the DEPT and EMP tables.

12 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_waysdataintegrity.html

« The foreign key on the DEPT column establishes a parent and dependent relationship. The DEPT column
in the EMP table depends on the DEPTNO in the DEPT table. Through this foreign key relationship, the
DEPT table is the parent of the EMP table. You can assign an employee to no department (by specifying
a null value), but you cannot assign an employee to a department that does not exist.

« The foreign key on the MGRNO column also establishes a parent and dependent relationship. Because
MGRNO depends on EMPNO, EMP is the parent table of the relationship, and DEPT is the dependent
table.

You can define a primary key on one or more columns. A primary key that includes two or more columns is
called a composite key. A foreign key can also include one or more columns. When a foreign key contains
multiple columns, the corresponding primary key must be a composite key. The number of foreign key
columns must be the same as the number of columns in the parent key, and the data types of the
corresponding columns must be compatible. (The sample project activity table, DSN8C10.PROJACT, is an
example of a table with a primary key on multiple columns, PROINO, ACTNO, and ACSTDATE.)

A table can be a dependent of itself; this is called a self-referencing table. For example, the DEPT table is
self-referencing because the value of the administrative department (ADMRDEPT) must be a department
ID (DEPTNO). To enforce the self-referencing constraint, Db2 requires that a foreign key be defined.

Similar terminology applies to the rows of a parent-and-child relationship. A row in a dependent table,
called a dependent row, refers to a row in a parent table, called a parent row. But a row of a parent table is
not always a parent row—perhaps nothing refers to it. Likewise, a row of a dependent table is not always a
dependent row—the foreign key can allow null values, which refer to no other rows.

Referential constraints are optional. You define referential constraints by using CREATE TABLE and ALTER
TABLE statements.

Db2 enforces referential constraints when the following actions occur:

« An INSERT statement is applied to a dependent table.

- An UPDATE statement is applied to a foreign key of a dependent table or to the parent key of a parent
table.

« A MERGE statement that includes an insert operation is applied to a dependent table.

« A MERGE statement that includes an update operation is applied to a foreign key of a dependent table
or to the parent key of a parent table.

- ADELETE statement is applied to a parent table. All affected referential constraints and all delete rules
of all affected relationships must be satisfied in order for the delete operation to succeed.

« The LOAD utility with the ENFORCE CONSTRAINTS option is run on a dependent table.
« The CHECK DATA utility is run.

Another type of referential constraint is an informational referential constraint. This type of constraint

is not enforced by Db2 during normal operations. An application process should verify the data in the
referential integrity relationship. An informational referential constraint allows queries to take advantage
of materialized query tables.

The order in which referential constraints are enforced is undefined. To ensure that the order does not
affect the result of the operation, there are restrictions on the definition of delete rules and on the use
of certain statements. The restrictions are specified in the descriptions of the SQL statements CREATE
TABLE, ALTER TABLE, INSERT, UPDATE, MERGE, and DELETE.

The rules of referential integrity involve the following concepts and terminology:

parent key
A primary key or a unique key of a referential constraint.

parent table
A table that is a parent in at least one referential constraint. A table can be defined as a parent in an
arbitrary number of referential constraints.

Chapter 1. Db2 for z/OS and SQL concepts 13

dependent table
A table that is a dependent in at least one referential constraint. A table can be defined as a
dependent in an arbitrary number of referential constraints. A dependent table can also be a parent
table.

descendent table
A table that is a dependent of another table or a table that is a dependent of a descendent table.

referential cycle
A set of referential constraints in which each associated table is a descendent of itself.

parent row
A row that has at least one dependent row.

dependent row
A row that has at least one parent row.

descendent row
A row that is dependent on another row or a row that is a dependent of a descendent row.

self-referencing row
A row that is a parent of itself.

self-referencing table
A table that is both parent and dependent in the same referential constraint. The constraint is called a
self-referencing constraint.

A temporal referential constraint can be defined for a table that contains a BUSINESS_TIME period. The
PERIOD BUSINESS_TIME clause is used in both the FOREIGN KEY clause and the REFERENCES clause

to indicate that there must not be a row in the child table for which the period of time represented by

the BUSINESS_TIME period value for that row is not contained in the BUSINESS_TIME period of one or
more corresponding rows in the parent table. Unlike normal referential constraints, it is not necessary that
there be exactly one corresponding row in the parent table where the BUSINESS_TIME period contains
the BUSINESS_TIME period of the child row. As long as the BUSINESS_TIME period of a row in the child
table is contained in the union of the BUSINESS_TIME periods of two or more contiguous matching rows
in the parent table, the temporal referential constraint is satisfied.

Additionally, the following indexes must be defined:

« A unique index on the parent table with the BUSINESS_TIME WITHOUT OVERLAPS clause.

« A non-unique index on the child table with the BUSINESS_TIME WITH OVERLAPS clause. Alternatively,
the index on the child table, can be defined without the BUSINESS_TIME WITH OVERLAPS clause if the
end of the index key includes the end column followed by the begin column of the BUSINESS_TIME
period (both in ascending order).

The following rules provide referential integrity:

insert rule
A nonnull insert value of the foreign key must match some value of the parent key of the parent table.
The value of a composite foreign key is null if any component of the value is null.

update rule
A nonnull update value of the foreign key must match some value of the parent key of the parent
table. The value of a composite foreign key is treated as null if any component of the value is null.

delete rule
Controls what happens when a row of the parent table is deleted. The choices of action, made when
the referential constraint is defined, are RESTRICT, NO ACTION, CASCADE, or SET NULL. SET NULL
can be specified only if some column of the foreign key allows null values.

More precisely, the delete rule applies when a row of the parent table is the object of a delete or
propagated delete operation and that row has dependents in the dependent table of the referential
constraint. A propagated delete refers to the situation where dependent rows are deleted when parent
rows are deleted. Let P denote the parent table, let D denote the dependent table, and let p denote a
parent row that is the object of a delete or propagated delete operation. If the delete rule is:

« RESTRICT or NO ACTION, an error occurs and no rows are deleted.

14 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

« CASCADE, the delete operation is propagated to the dependent rows of p in D.
« SET NULL, each nullable column of the foreign key of each dependent row of p in D is set to null.

Each referential constraint in which a table is a parent has its own delete rule, and all applicable delete
rules are used to determine the result of a delete operation. Thus, a row cannot be deleted if it has
dependents in a referential constraint with a delete rule of RESTRICT or NO ACTION or the deletion
cascades to any of its descendents that are dependents in a referential constraint with the delete rule of
RESTRICT or NO ACTION.

The deletion of a row from parent table P involves other tables and can affect rows of these tables:

« If Dis a dependent of P and the delete rule is RESTRICT or NO ACTION, D is involved in the operation
but is not affected by the operation and the deletion from the parent table P does not take place.

- If Dis a dependent of P and the delete rule is SET NULL, D is involved in the operation and rows of D
might be updated during the operation.

« If Dis a dependent of P and the delete rule is CASCADE, D is involved in the operation and rows of D
might be deleted during the operation. If rows of D are deleted, the delete operation on P is said to
be propagated to D. If D is also a parent table, the actions described in this list apply, in turn, to the
dependents of D.

Any table that can be involved in a delete operation on P is said to be delete-connected to P. Thus, a
table is delete-connected to table P if it is a dependent of P or a dependent of a table to which delete
operations from P cascade.

Related concepts

Referential constraints (Db2 Application programming and SQL)

Related reference

Department table (DSN8C10.DEPT) (Introduction to Db2 for z/0S)
Employee table (DSN8C10.EMP) (Introduction to Db2 for z/0S)

Project activity table (DSN8C10.PROJACT) (Introduction to Db2 for z/0OS)

Check constraints

A check constraint is a rule that specifies the values that are allowed in one or more columns of every row
of a base table.

Like referential constraints, check constraints are optional and you define them by using the CREATE
TABLE and ALTER TABLE statements. The definition of a check constraint restricts the values that a
specific column of a base table can contain.

A table can have any number of check constraints. Db2 enforces a check constraint by applying the
restriction to each row that is inserted, loaded, or updated. One restriction is that a column name in a
check constraint on a table must identify a column of that table.

For example, you can create a check constraint to ensure that all employees earn a salary of $30,000 or
more:

CHECK (SALARY>= 30000)

Related concepts
Check constraints (Db2 Application programming and SQL)

Db2 table columns
A column definition has two basic components, the column name and the data type.

A column contains values that have the same data type. If you are familiar with the concepts of records
and fields, you can think of a value as a field in a record. A value is the smallest unit of data that you

can manipulate with SQL. For example, in the EMP table, the EMPNO column identifies all employees by
a uniqgue employee number. The HIREDATE column contains the hire dates for all employees. You cannot
overlap columns.

Chapter 1. Db2 for z/OS and SQL concepts 15

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_referentialconstraintsampapp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sampletablesdepartment.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sampletablesemployeemain.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sampletablesprojectactivity.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_checkconstraintenforcement.html

Online schema enhancements provide flexibility that lets you change a column definition. Carefully
consider the decisions that you make about column definitions. After you implement the design of your
tables, you can change a column definition with minimal disruption of applications.

Throughout the implementation phase of database design, refer to the complete descriptions of SQL
statement syntax and usage for each SQL statement that you work with.

Column names

Following column naming guidelines that are developed for your organization ensures that you make good
choices that are consistent.

Generally, the database administrator (DBA) is involved in determining the names of attributes (or
columns) during the physical database design phase. To make the right choices for column names, DBAs
follow the guidelines that the data administrators developed.

Sometimes columns need to be added to the database after the design is complete. In this case, Db2
rules for unique column names must be followed. Column names must be unique within a table, but you
can use the same column name in different tables. Try to choose a meaningful name to describe the data
in a column to make your naming scheme intuitive.

For more information, see “Column names” on page 219 and “Naming conventions in SQL” on page 79.

Related concepts

Data types

Db2 supports both IBM-supplied data types (built-in data types) and user-defined data types (distinct
types).

Related tasks

Altering the data type of a column (Db2 Administration Guide)

Related reference

Employee table (DSN8C10.EMP) (Introduction to Db2 for z/0OS)

Data types of columns

Every column in every Db2 table has a data type. The data type influences the range of values that the
column can have and the set of operators and functions that apply to it.

You specify the data type of each column at the time that you create the table. You can also change the
data type of a table column. The new data type definition is applied to all data in the associated table
when the table is reorganized.

Some data types have parameters that further define the operators and functions that apply to the
column. Db2 supports both IBM-supplied data types and user-defined data types. The data types that
IBM supplies are sometimes called built-in data types.

In Db2 for z/0S, user-defined data types are called distinct types.

How Db2 compares values of different data types

Db2 compares values of different types and lengths. A comparison occurs when both values are numeric,
both values are character strings, or both values are graphic strings. Comparisons can also occur between
character and graphic data or between character and datetime data if the character data is a valid
character representation of a datetime value. Different types of string or numeric comparisons might have
an impact on performance.

Related concepts

Entity attributes in database design (Introduction to Db2 for z/0S)
Data types of columns (Db2 Application programming and SQL)
Assignment and comparison

16 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_altercolumndatatype.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sampletablesemployeemain.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_attributesforentities.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_columndatatype.html

The basic operations of SQL are assignment and comparison.

Casting between data types
There are many occasions when a value with a given data type needs to be cast (changed) to a different
data type or to the same data type with a different length, precision, or scale.

Rules for result data types
Rules that are applied to the operands of an operation determine the data type of the result. Certain rules
apply in certain situations and apply depending on the data type of operands.

Distinct types (Introduction to Db2 for z/0S)

String data types
Db2 supports several types of string data: character strings, graphic strings, and binary strings.

Character strings contain text and can be either a fixed-length or a varying-length. Graphic strings contain
graphic data, which can also be either a fixed-length or a varying-length. Binary strings contain strings of
binary bytes and can be either a fixed-length or a varying-length. All of these types of string data can be
represented as large objects.

The following table describes the different string data types and indicates the range for the length of each
string data type.

Table 3. String data types

Data type Denotes a column of...

CHARACTER(n) Fixed-length character strings with a length of n bytes. n must be greater than
0 and not greater than 255. The default length is 1.

VARCHAR(n) Varying-length character strings with a maximum length of n bytes. n must be
greater than 0 and less than a number that depends on the page size of the
table space. The maximum length is 32704.

CLOB(n) Varying-length character strings with a maximum of n characters. n cannot
exceed 2,147,483,647. The default length is 1M.

GRAPHIC(n) Fixed-length graphic strings that contain n double-byte characters. n must be
greater than 0 and less than 128. The default length is 1.

VARGRAPHIC(n) Varying-length graphic strings. The maximum length, n, must be greater than
0 and less than a number that depends on the page size of the table space.
The maximum length is 16352,

DBCLOB(n) Varying-length strings of double-byte characters with a maximum of n
double-byte characters. n cannot exceed 1,073,741,824. The default length
is 1M.

BINARY(n) Fixed-length or varying-length binary strings with a length of n bytes. n must

be greater than 0 and not greater than 255. The default length is 1.

VARBINARY(n) Varying-length binary strings with a length of n bytes. The length of n must be
greater than 0 and less than a number that depends on the page size of the
table space. The maximum length is 32704.

BLOB(n) Varying-length binary strings with a length of n bytes. n cannot exceed
2,147,483,647. The default length is 1M.

In most cases, the content of the data that a column is to store dictates the data type that you choose.

Example

For example, assume that the DEPT table has a column, DEPTNAME. The data type of the DEPTNAME
column is VARCHAR(36). Because department names normally vary considerably in length, the choice of
a varying-length data type seems appropriate. If you choose a data type of CHAR(36), for example, the

Chapter 1. Db2 for z/OS and SQL concepts 17

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_distincttypes.html

result is a lot of wasted, unused space. In this case, Db2 assigns all department names, regardless of
length, the same amount of space (36 bytes). A data type of CHAR(6) for the employee number (EMPNO)
is a reasonable choice because all values are fixed-length values (6 bytes).

Fixed-length and variable-length character strings

Using VARCHAR saves disk space, but it incurs a 2-byte overhead cost for each value. Using VARCHAR
also requires additional processing for varying-length rows. Therefore, using CHAR is preferable to
VARCHAR, unless the space that you save by using VARCHAR is significant. The savings are not significant
if the maximum column length is small or if the lengths of the values do not have a significant variation.

Recommendation: Generally, do not define a column as VARCHAR(n) or CLOB(n) unless n is at least 18
characters.

String subtypes

If an application that accesses your table uses a different encoding scheme than your DBMS uses, the
following string subtypes can be important:

BIT
Does not represent characters.

SBCS
Represents single-byte characters.

MIXED
Represents single-byte characters and multibyte characters.

String subtypes apply only to CHAR, VARCHAR, and CLOB data types. However, the BIT string subtype is
not allowed for the CLOB data type.

Graphic and mixed data

When columns contain double-byte character set (DBCS) characters, you can define them as either
graphic data or mixed data.

Graphic data can be either GRAPHIC, VARGRAPHIC, or DBCLOB. Using VARGRAPHIC saves disk space,
but it incurs a 2-byte overhead cost for each value. Using VARGRAPHIC also requires additional
processing for varying-length rows. Therefore, using GRAPHIC data is preferable to using VARGRAPHIC
unless the space that you save by using VARGRAPHIC is significant. The savings are not significant if the
maximum column length is small or if the lengths of the values do not vary significantly.

Recommendation: Generally, do not define a column as VARGRAPHIC(n) unless n is at least 18 double-
byte characters (which is a length of 36 bytes).

Mixed-data character string columns can contain both single-byte character set (SBCS) and DBCS
characters. You can specify the mixed-data character string columns as CHAR, VARCHAR, or CLOB with
MIXED DATA.

Recommendation: If all of the characters are DBCS characters, use the graphic data types. (Kanji is an
example of a language that requires DBCS characters.) For SBCS characters, use mixed data to save 1
byte for every single-byte character in the column.

Encoding schemes for string data

For string data, all characters are represented by a common encoding representation (Unicode, ASCII,
or EBCDIC). Encoding schemes apply to string data types and to distinct types that are based on string
types.

Multinational companies that engage in international trade often store data from more than one country
in the same table. Some countries use different coded character set identifiers. Db2 for z/OS supports
the Unicode encoding scheme, which represents many different geographies and languages. If you need

18 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

to perform character conversion on Unicode data, the conversion is more likely to preserve all of your
information.

In some cases, you might need to convert characters to a different encoding representation. The process
of conversion is known as character conversion. Most users do not need a knowledge of character
conversion. When character conversion does occur, it does so automatically and a successful conversion
is invisible to the application and users.

Related concepts

Distinct types (Introduction to Db2 for z/0S)

Character strings

A character string is a sequence of bytes. The length of the string is the number of bytes in the sequence.
If the length is zero, the value is called the empty string. The empty string should not be confused with the
null value.

Graphic strings

A graphic string is a sequence of double-byte characters.

Binary strings

A binary string is a sequence of bytes.

Introduction to character conversion (Db2 Internationalization Guide)
Related reference

Department table (DSN8C10.DEPT) (Introduction to Db2 for z/0S)

Numeric data types
Db2 supports several types of numeric data types, each of which has its own characteristics.

For numeric data, use numeric columns rather than string columns. Numeric columns require less space
than string columns, and Db2 verifies that the data has the assigned type.

For example, assume that Db2 calculates a range between two numbers. If the values have a string data
type, Db2 assumes that the values can include all combinations of alphanumeric characters. In contrast, if
the values have a numeric data type, Db2 can calculate a range between the two values more efficiently.

The following table describes the numeric data types.

Table 4. Numeric data types

Data type Denotes a column of...

SMALLINT Small integers. A small integer is binary integer with a precision of 15 bits. The
range is -32768 to +32767.

Large integers. A large integer is binary integer with a precision of 31 bits. The

INTEGER

INT GERor range is -2147483648 to +2147483647.

BIGINT Big integers. A big integer is a binary integer with a precision of
63 bits. The range of big integers is -9223372036854775808 to
+9223372036854775807.

DECIMAL or A decimal number is a packed decimal number with an implicit decimal point.

NUMERIC The position of the decimal point is determined by the precision and the scale
of the number. The scale, which is the number of digits in the fractional part of
the number, cannot be negative or greater than the precision. The maximum
precision is 31 digits.

All values of a decimal column have the same precision and scale. The range
of a decimal variable or the numbers in a decimal column is -n to +n, where
nis the largest positive number that can be represented with the applicable
precision and scale. The maximum range is 1 - 103* to 103%* - 1.

Chapter 1. Db2 for z/OS and SQL concepts 19

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_distincttypes.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/char/src/tpc/db2z_introcharconv.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sampletablesdepartment.html

Table 4. Numeric data types (continued)

Data type Denotes a column of...

DECFLOAT A decimal floating-point value is an IEEE 754r number with a decimal point.
The position of the decimal point is stored in each decimal floating-point
value. The maximum precision is 34 digits.

The range of a decimal floating-point number is either 16 or 34 digits of
precision; the exponent range is respectively 10-383 to 10+384 or 10-6143
to 10+6144.

REAL A single-precision floating-point number is a short floating-point number of 32
bits. The range of single-precision floating-point numbers is approximately
-7.2E+75 to 7.2E+75. In this range, the largest negative value is about
-5.4E-79, and the smallest positive value is about 5.4E-079.

DOUBLE A double-precision floating-point number is a long floating-point number
of 64-bits. The range of double-precision floating-point numbers is
approximately -7.2E+75 to 7.2E+75. In this range, the largest negative value
is about -5.4E-79, and the smallest positive value is about 5.4E-79.

Note: IBM zSystems and z/Architecture® use the System/390° format and support IEEE floating-point
format.

For integer values, use SMALLINT, INTEGER, or BIGINT (depending on the range of the values). Do not
use DECIMAL for integer values.

You can define an exact numeric column as an identity column. An identity column has an attribute that
enables Db2 to automatically generate a unique numeric value for each row that is inserted into the table.
Identity columns are ideally suited to the task of generating unique primary-key values. Applications that
use identity columns might be able to avoid concurrency and performance problems that sometimes
occur when applications implement their own unique counters.

Date, time, and timestamp data types
Although storing dates and times as numeric values is possible, using datetime data types is
recommended. The datetime data types are DATE, TIME, and TIMESTAMP.

The following table describes the data types for dates, times, and timestamps.

Table 5. Date, time, and timestamp data types

Data type Denotes a column of...

DATE A date is a three-part value representing a year, month, and day in the range
of 0001-01-01 to 9999-12-31.

TIME A time is a three-part value representing a time of day in hours, minutes, and
seconds, in the range of 00.00.00 to 24.00.00.

TIMESTAMP A timestamp is a seven-part value representing a date and time by
year, month, day, hour, minute, second, and microsecond, in the range
of 0001-01-01-00.00.00.000000000 to 9999-12-31-24.00.00.000000000
with nanosecond precision. Timestamps can also hold timezone information.

Db2 stores values of datetime data types in a special internal format. When you load or retrieve data, Db2
can convert it to or from any of the formats in the following table.

Table 6. Date and time format options

Format name Abbreviation Typical date Typical time

International Standards Organization ISO 2003-12-25 13.30.05

20 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 6. Date and time format options (continued)

Format name Abbreviation Typical date Typical time
IBM USA standard USA 12/25/2003 1:30 PM
IBM European standard EUR 25.12.2003 13.30.05
Japanese Industrial Standard Christian ~ JIS 2003-12-25 13:30:05
Era

GUPI

Example 1

The following query displays the dates on which all employees were hired, in IBM USA standard form,
regardless of the local default:

SELECT EMPNO, CHAR(HIREDATE, USA) FROM EMP;

Example 2

When you use datetime data types, you can take advantage of Db2 built-in functions that operate
specifically on datetime values, and you can specify calculations for datetime values. Assume that
a manufacturing company has an objective to ship all customer orders within five days. You define
the SHIPDATE and ORDERDATE columns as DATE data types. The company can use datetime data
types and the DAYS built-in function to compare the shipment date to the order date. Here is how
the company might code the function to generate a list of orders that have exceeded the five-day
shipment objective:

DAYS (SHIPDATE) — DAYS(ORDERDATE)> 5

As a result, programmers do not need to develop, test, and maintain application code to perform
complex datetime arithmetic that needs to allow for the number of days in each month.

GUPI

You can use the following sample user-defined functions (which come with Db2) to modify the way dates
and times are displayed.

« ALTDATE returns the current date in a user-specified format or converts a user-specified date from one
format to another.

« ALTTIME returns the current time in a user-specified format or converts a user-specified time from one
format to another.

At installation time, you can also supply an exit routine to make conversions to and from any local
standard.

When loading date or time values from an outside source, Db2 accepts any of the date and time format
options that are listed in this information. Db2 converts valid input values to the internal format. For
retrieval, a default format is specified at Db2 installation time. You can subsequently override that default
by using a precompiler option for all statements in a program or by using the scalar function CHAR for a
particular SQL statement and by specifying the format that you want.

Related concepts

Datetime constants
A datetime constant is a character string constant of a particular format.

XML data type
The XML data type is used to define columns of a table that store XML values. This pureXML® data type
provides the ability to store well-formed XML documents in a database.

All XML data is stored in the database in an internal representation. Character data in this internal
representation is in the UTF-8 encoding scheme.

Chapter 1. Db2 for z/OS and SQL concepts 21

XML values that are stored in an XML column have an internal representation that is not a string and

not directly comparable to string values. An XML value can be transformed into a serialized string value
that represents the XML document by using the XMLSERIALIZE function or by retrieving the value into

an application variable of an XML, string, or binary type. Similarly, a string value that represents an XML
document can be transformed to an XML value by using the XMLPARSE function or by storing a value from
a string, binary, or XML application data type in an XML column.

The size of an XML value in a Db2 table has no architectural limit. However, serialized XML data that is
stored in or retrieved from an XML column is limited to 2 GB.

Validation of an XML document against an XML schema, typically performed during INSERT or UPDATE
into an XML column, is supported by the XML schema repository (XSR). If an XML column has an XML
type modifier, documents that are inserted into the column or updated in the column are automatically
validated against an XML schema.

Large object data types
You can use large object data types to store audio, video, images, and other files that are larger than 32
KB.

The VARCHAR, VARGRAPHIC, and VARBINARY data types have a storage limit of 32 KB. However,
applications often need to store large text documents or additional data types such as audio, video,
drawings, images, and a combination of text and graphics. For data objects that are larger than 32 KB, you
can use the corresponding large object (LOB) data types to store these objects.

Db2 provides three data types to store these data objects as strings of up to 2 GB in size:

Character large objects (CLOBs)
Use the CLOB data type to store SBCS or mixed data, such as documents that contain single character
set. Use this data type if your data is larger (or might grow larger) than the VARCHAR data type
permits.

Double-byte character large objects (DBCLOBs)
Use the DBCLOB data type to store large amounts of DBCS data, such as documents that use a DBCS
character set.

Binary large objects (BLOBs)
Use the BLOB data type to store large amounts of noncharacter data, such as pictures, voice, and
mixed media.

If your data does not fit entirely within a data page, you can define one or more columns as LOB columns.
An advantage to using LOBs is that you can create user-defined functions that are allowed only on LOB
data types.

Related concepts

Large objects (LOBs)

The term large object (LOB) refers to any of the following data types: CLOB, DBCLOB, or BLOB.

Related tasks

Creating large objects (Introduction to Db2 for z/0S)

ROWID data type
You use the ROWID data type to uniquely identify rows in a Db2 subsystem.

Db2 can generate a value for the column when a row is added, depending on the option that you choose
(GENERATED ALWAYS or GENERATED BY DEFAULT) when you define the column. You can use a ROWID
column in a table for several reasons.

* You can define a ROWID column to include LOB data in a table.

 You can use direct-row access so that Db2 accesses a row directly through the ROWID column. If
an application selects a row from a table that contains a ROWID column, the row ID value implicitly
contains the location of the row. If you use that row ID value in the search condition of subsequent
SELECT statements, Db2 might be able to navigate directly to the row.

22 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationoflargeobjects.html

Requirement: To use direct row access, you must use a retrieved ROWID value before you commit.
When your application commits, it releases its claim on the table space. After the commit, if a REORG is
run on your table space, the physical location of the rows might change.

 You can define a ROWID column with the IMPLICITLY HIDDEN attribute. Such columns are returned
only for SQL statements that explicitly name the column. SQL statements that only imply selection of
the column, such as statements that specify SELECT *, do not return the column.

Related concepts

Row ID values
A row ID is a value that uniquely identifies a row in a table. A column or a host variable can have a row ID
data type.

Direct row access (PRIMARY_ACCESSTYPE='D') (Db2 Performance)

Related tasks

Specifying direct row access by using row IDs (Db2 Application programming and SQL)
Related reference

ROWID scalar function
The ROWID function returns a row ID representation of its argument.

Distinct types
A distinct type is a user-defined data type that is based on existing built-in Db2 data types.

A distinct type is internally the same as a built-in data type, but Db2 treats them as a separate and
incompatible type for semantic purposes. Defining your own distinct type ensures that only functions that
are explicitly defined on a distinct type can be applied to its instances.

Examples

GUPI

Example 1
You might define a US_DOLLAR distinct type that is based on the Db2 DECIMAL data type to
identify decimal values that represent United States dollars. The US_DOLLAR distinct type does not
automatically acquire the functions and operators of its source type, DECIMAL.

Although you can have different distinct types that are based on the same built-in data types, distinct
types have the property of strong typing. With this property, you cannot directly compare instances of
a distinct type with anything other than another instance of that same type. Strong typing prevents
semantically incorrect operations (such as explicit addition of two different currencies) without first
undergoing a conversion process. You define which types of operations can occur for instances of a
distinct type.

If your company wants to track sales in many countries, you must convert the currency for each
country in which you have sales.

Example 2
You can define a distinct type for each country. For example, to create US_DOLLAR types and
CANADIAN_DOLLAR types, you can use the following CREATE DISTINCT TYPE statements:

CREATE DISTINCT TYPE US_DOLLAR AS DECIMAL (9,2);
CREATE DISTINCT TYPE CANADIAN_DOLLAR AS DECIMAL (9,2);

Example 3
After you define distinct types, you can use them in your CREATE TABLE statements:

CREATE TABLE US_SALES
(PRODUCT_ITEM_NO INTEGER,
MONTH INTEGER,
YEAR INTEGER,
TOTAL_AMOUNT US_DOLLAR) ;

CREATE TABLE CANADIAN_SALES
(PRODUCT_ITEM_NO INTEGER,
MONTH INTEGER,

Chapter 1. Db2 for z/OS and SQL concepts 23

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_directrowaccess.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_specifydirectrowaccess.html

YEAR INTEGER,
TOTAL_AMOUNT CANADIAN_DOLLAR);

GUPI

User-defined functions support the manipulation of distinct types.

Related concepts

String data types (Introduction to Db2 for z/OS)

Distinct types

A distinct type is a user-defined data type that shares its internal representation with a built-in data type
(its source type), but is considered to be a separate and incompatible data type for most operations.

User-defined type assignments
User-defined type assignments include distinct type assignments and array assignments.

User-defined type comparisons
User-defined type comparisons include distinct type comparisons and array comparisons.

Null values in table columns

Some columns cannot have a meaningful value in every row. Db2 uses a special value indicator, the null
value, to stand for an unknown or missing value. A null value is a special value that Db2 interprets to mean
that no data is present.

If you do not specify otherwise,Db2 allows any column to contain null values. Users can create rows in the
table without providing a value for the column.

Using the NOT NULL clause enables you to disallow null values in the column. Primary keys must be
defined as NOT NULL.

Example

GUPI

For example, The table definition for the DEPT table specifies when you can use a null value. Notice that
you can use nulls for the MGRNO column only:

CREATE TABLE DEPT

(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6) 0
ADMRDEPT CHAR(3) NOT NULL,
PRIMARY KEY (DEPTNO))

IN MYDB.MYTS;

GUPI

Before you decide whether to allow nulls for unknown values in a particular column, you must be aware of
how nulls affect results of a query:

Nulls in application programs
Nulls do not satisfy any condition in an SQL statement other than the special IS NULL predicate.
Db2 sorts null values differently than non-null values. Null values do not behave like other values.
For example, if you ask Db2 whether a null value is larger than a given known value, the answer is
UNKNOWN. If you then ask Db2 whether a null value is smaller than the same known value, the
answer is still UNKNOWN.

If getting a value of UNKNOWN is unacceptable for a particular column, you could define a default
value instead. Programmers are familiar with the way default values behave.

Nulls in join operations
Nulls need special handling in join operations. If you perform a join operation on a column that can
contain null values, consider using an outer join.

24 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_stringdatatypes.html

Related concepts

When to use null or default values (Introduction to Db2 for z/0S)

Data types

Db2 supports both IBM-supplied data types (built-in data types) and user-defined data types (distinct
types).

Ways to join data from more than one table (Introduction to Db2 for z/0S)

Default values for table columns (Introduction to Db2 for z/OS)

Entity attributes in database design (Introduction to Db2 for z/0S)

Related reference

CREATE TABLE statement

The CREATE TABLE statement defines a table. The definition must include its name and the names and
attributes of its columns. The definition can include other attributes of the table, such as its primary key
and its table space.

ALTER TABLE statement
The ALTER TABLE statement changes the description of a table at the current server.

Default values for table columns

Db2 defines some default values, and you define others (by using the DEFAULT clause in the CREATE
TABLE or ALTER TABLE statement).

If a column is defined as NOT NULL WITH DEFAULT or if you do not specify NOT NULL, Db2 stores a
default value for a column whenever an insert or load does not provide a value for that column. If a
column is defined as NOT NULL, Db2 does not supply a default value.

Default values defined by Db2

Db2 generates a default value for ROWID columns. Db2 also determines default values for columns that
users define with NOT NULL WITH DEFAULT, but for which no specific value is specified, as shown in the
following table.

Table 7. Db2-defined default values for data types

For columns of... Data types Default
Numbers SMALLINT, INTEGER, BIGINT, 0
DECIMAL, NUMERIC, REAL,
DOUBLE, DECFLOAT, or FLOAT
Fixed-length strings CHAR or GRAPHIC Blanks

BINARY

Hexadecimal zeros

Varying-length strings

VARCHAR, CLOB, VARGRAPHIC,
DBCLOB, VARBINARY, or BLOB

Empty string

Dates DATE CURRENT DATE
Times TIME CURRENT TIME
Timestamps TIMESTAMP CURRENT TIMESTAMP
ROWIDs ROWID Db2-generated

User-defined default values

You can specify a particular default value, such as:

DEFAULT 'N/A'

Chapter 1. Db2 for z/OS and SQL concepts 25

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_comparisonofnullvaluesanddefaultvalues.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_joindatafromtables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_defaultvalues.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_attributesforentities.html

When you choose a default value, you must be able to assign it to the data type of the column. For
example, all string constants are VARCHAR. You can use a VARCHAR string constant as the default for a
CHAR column even though the type isn't an exact match. However, you could not specify a default value of
'NA' for a column with a numeric data type.

In the next example, the columns are defined as CHAR (fixed length). The special registers (USER and
CURRENT SQLID) that are referenced contain varying length values.

For example, if you want a record of each user who inserts any row of a table, define the table with two
additional columns:

PRIMARY_ID CHAR(8) WITH DEFAULT USER,
SQL_ID CHAR(8) WITH DEFAULT CURRENT SQLID,

You can then create a view that omits those columns and allows users to update the view instead of the
base table. Db2 then adds, by default, the primary authorization ID and the SQLID of the process.

When you add columns to an existing table, you must define them as nullable or as not null with default.
Assume that you add a column to an existing table and specify not null with default. If Db2 reads from the
table before you add data to the column, the column values that you retrieve are the default values. With
few exceptions, the default values for retrieval are the same as the default values for insert.

Default values for ROWID

Db2 always generates the default values for ROWID columns.

Related concepts

When to use null or default values (Introduction to Db2 for z/OS)

Authorization and security mechanisms for data access (Introduction to Db2 for z/0S)
Null values in table columns (Introduction to Db2 for z/OS)

Related reference

CREATE TABLE statement

The CREATE TABLE statement defines a table. The definition must include its name and the names and
attributes of its columns. The definition can include other attributes of the table, such as its primary key
and its table space.

ALTER TABLE statement
The ALTER TABLE statement changes the description of a table at the current server.

Related information
Implementing Db2 tables (Db2 Administration Guide)

When to use null or default values
Using a null value is easier and better than using a default value in some situations.

Suppose that you want to find out the average salary for all employees in a department. The salary
column does not always need to contain a meaningful value, so you can choose between the following
options:

« Allowing null values for the SALARY column
« Using a non-null default value (such as, 0)

By allowing null values, you can formulate the query easily, and Db2 provides the average of all known or
recorded salaries. The calculation does not include the rows that contain null values. In the second case,
you probably get a misleading answer unless you know the nonnull default value for unknown salaries and
formulate your query accordingly.

The following figure shows two scenarios. The table in the figure excludes salary data for employee
number 200440, because the company just hired this employee and has not yet determined the salary.
The calculation of the average salary for department E21 varies, depending on whether you use null
values or nonnull default values.

26 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_comparisonofnullvaluesanddefaultvalues.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_authandsecurityfordataaccess.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_nullvalues.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_tableimplementation.html

 The left side of the figure assumes that you use null values. In this case, the calculation of average
salary for department E21 includes only the three employees (000320, 000330, and 200340) for whom
salary data is available.

« The right side of the figure assumes that you use a nonnull default value of zero (0). In this case, the
calculation of average salary for department E21 includes all four employees, although valid salary
information is available for only three employees.

As you can see, only the use of a null value results in an accurate average salary for department E21.

SELECT DEPT, AVG (SALARY)
FROM EMP
GROUP BY DEPT;

With null value With default value of 0
EMPNO DEPT SALARY EMPNO DEPT SALARY
000320 E21 19950.00 000320 E21 19950.00
000330 E21 25370.00 000330 E21 25370.00
200340 E21 23840.00 200340 E21 23840.00
200440 E21 @ -------- 200440 E21 0.00
DEPT AVG(SALARY) DEPT ~ AVG(SALARY)
E21 23053.33 E21 17290.00

(Average of
nonnull salaries)

Figure 5. When nulls are preferable to default values

Null values are distinct in most situations so that two null values are not equal to each other.

Example

GUPI

The following example shows how to compare two columns to see if they are equal or if both columns are
null:

WHERE E1.DEPT IS NOT DISTINCT FROM E2.DEPT

GUPI
Related concepts

Null values in table columns (Introduction to Db2 for z/OS)
Default values for table columns (Introduction to Db2 for z/0OS)

Assignment and comparison
The basic operations of SQL are assignment and comparison.

Check constraints for column values

You can use check constraints to ensure that only values from the domain for the column or attribute are
allowed.

By using check constraints, programmers can avoid developing, testing, and maintaining application code
that performs these checks.

Chapter 1. Db2 for z/OS and SQL concepts 27

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_nullvalues.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_defaultvalues.html

You can choose to define check constraints by using the SQL CREATE TABLE statement or ALTER TABLE
statement. For example, you might want to ensure that each value in the SALARY column of the EMP table
contains more than a certain minimum amount.

Db2 enforces a check constraint by applying the relevant search condition to each row that is inserted,
updated, or loaded. An error occurs if the result of the search condition is false for any row.

Check constraints that insert table rows

When you use the INSERT statement or the MERGE statement to add a row to a table, Db2 automatically
enforces all check constraints for that table. If the data violates any check constraint that is defined on
that table, Db2 does not insert the row.

GUPI

Example 1
Assume that the NEWEMP table has the following two check constraints:

- Employees cannot receive a commission that is greater than their salary.
« Department numbers must be between '001' to '100," inclusive.

Consider this INSERT statement, which adds an employee who has a salary of $65,000 and a
commission of $6000:

INSERT INTO NEWEMP
(EMPNO, FIRSTNME, LASTNAME, DEPT, JOB, SALARY, COMM)
VALUES ('100125', 'MARY', 'SMITH','055', 'SLS', 65000.00, 6000.00);

The INSERT statement in this example succeeds because it satisfies both constraints.

Example 2
Consider this INSERT statement:

INSERT INTO NEWEMP
(EMPNO, FIRSTNME, LASTNAME, DEPT, JOB, SALARY, COMM)
VALUES ('120026', 'JOHN', 'SMITH','055', 'DES', 5000.00, 55000.00);

The INSERT statement in this example fails because the $55,000 commission is higher than the
$5,000 salary. This INSERT statement violates a check constraint on NEWEMP.

GUPI

Check constraints that update tables

Db2 automatically enforces all check constraints for a table when you use the UPDATE statement or the
MERGE statement to change a row in the table. If the intended update violates any check constraint that
is defined on that table, Db2 does not update the row.

GUPI

Example 1
Assume that the NEWEMP table has the following two check constraints:

« Employees cannot receive a commission that is greater than their salary.
« Department numbers must be between '001' to '100," inclusive.

Consider this UPDATE statement:

UPDATE NEWEMP
SET DEPT = '011'
WHERE FIRSTNME = 'MARY' AND LASTNAME= 'SMITH';

This update succeeds because it satisfies the constraints that are defined on the NEWEMP table.

28 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 2
Consider this UPDATE statement:

UPDATE NEWEMP
SET DEPT = '166'
WHERE FIRSTNME = 'MARY' AND LASTNAME= 'SMITH';

This update fails because the value of DEPT is '166,' which violates the check constraint on NEWEMP
that DEPT values must be between '001' and '100.

GUPI
Related concepts
Check constraints (Db2 Application programming and SQL)
Related tasks
Adding or dropping table check constraints (Db2 Administration Guide)
Related reference

CREATE TABLE statement

The CREATE TABLE statement defines a table. The definition must include its name and the names and
attributes of its columns. The definition can include other attributes of the table, such as its primary key
and its table space.

Db2 indexes

An index is an ordered set of pointers to rows of a table. Db2 can use indexes to improve performance
and ensure uniqueness. Understanding the structure of Db2 indexes can help you achieve the best
performance for your system.

Conceptually, you can think of an index to the rows of a Db2 table like you think of an index to the pages of
a book. Each index is based on the values of data in one or more columns of a table.

The main purpose of an index is to improve performance for access to the data. In most cases, access
to data is faster with an index than with a scan of the data. For example, you can create an index on the
DEPTNO column of the sample DEPT table so that Db2 can easily locate a specific department and avoid
reading through each row of, or scanning, the table.

An index is stored separately from the data in the table. Each index is physically stored in its own index
space. When you define an index by using the CREATE INDEX statement, Db2 builds this structure and

maintains it automatically. However, you can perform necessary maintenance such as reorganizing it or
recovering the index.

Another purpose of an index is to ensure uniqueness. For example, a unique index on the employee table
ensures that no two employees have the same employee number.

In most cases, the users of an index are unaware that it is being used because Db2 decides whether to
use the index to access the table.

Db2 supports simple indexes and extended indexes. An extended index is one of the following objects:

= An expression-based index
« A spatial index
« An XML index

Be aware that indexes have both benefits and disadvantages. A greater number of indexes can
simultaneously improve the access performance of a particular transaction and require additional
processing for inserting, updating, and deleting index keys.

Related concepts

Creation of indexes (Introduction to Db2 for z/OS)
Related reference

CREATE INDEX statement

Chapter 1. Db2 for z/OS and SQL concepts 29

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_checkconstraintenforcement.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_addordroptablecheckconstraints.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationofindexes.html

The CREATE INDEX statement creates a partitioning index or a secondary index and an index space at the
current server. The columns included in the key of the index are columns of a table at the current server.

Db2 views

A view is an alternative way of representing data that exists in one or more tables. A view can include all
or some of the columns from one or more base tables.

A view is a named specification of a result table. Conceptually, creating a view is somewhat like using
binoculars. You might look through binoculars to see an entire landscape or to look at a specific image
within the landscape, such as a tree.

You can create Db2 views that achieve the following goals:

- Combines data from different base tables

 Based on other views or on a combination of views and tables

« Omit certain data, thereby shielding some table data from users

In fact, these are common underlying reasons to use a view. Combining information from base tables and
views simplifies retrieving data for a user, and limiting the data that a user can see is useful for security.
You can use views for a number of different purposes. A view can:

« Control access to a table
Make data easier to use

Simplify authorization by granting access to a view without granting access to the table

Show only portions of data in the table
« Show summary data for a given table

Combine two or more tables in meaningful ways

Show only the selected rows that are pertinent to the process that uses the view

How to access data in Db2 views

To retrieve or access information from a view, you use views like you use base tables. You can use a
SELECT statement to show the information from the view. The SELECT statement can hame other views
and tables, and it can use the WHERE, GROUP BY, and HAVING clauses. It cannot use the ORDER BY
clause or name a host variable.

Whether a view can be used in an insert, update, or delete operation depends on its definition. For
example, if a view includes a foreign key of its base table, INSERT and UPDATE operations that use the
view are subject to the same referential constraint as the base table. Likewise, if the base table of a view
is a parent table, DELETE operations that use the view are subject to the same rules as DELETE operations
on the base table. Read-only views cannot be used for insert, update, and delete operations.

How to create Db2 views

To define a view, you use the CREATE VIEW statement and assign a name (up to 128 characters in
length) to the view. Specifying the view in other SQL statements is effectively like running an SQL SELECT
statement. At any time, the view consists of the rows that would result from the SELECT statement that it
contains. You can think of a view as having columns and rows just like the base table on which the view is
defined.

You also can specify a period specification for a view, subject to certain restrictions.

Examples of creating Db2 views

GUPI

30 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 1
The following figure shows a view of the EMP table that omits sensitive employee information and
renames some of the columns.
Base table, EMP:

EMPNO : FIRSTNME : LASTNAME : DEPT : HIREDATE : JOB : EDL: SALARY : COMM

“View of EMP, named EMPINFO:

EMPLOYEE EFIRSTNAMEE LASTNAME ETEAME JOBTITLE

Figure 6. A view of the EMP table

Figure note: The EMPINFO view represents a table that includes columns named EMPLOYEE,
FIRSTNAME, LASTNAME, TEAM, and JOBTITLE. The data in the view comes from the columns
EMPNO, FIRSTNME, LASTNAME, DEPT, and JOB of the EMP table.

Example 2
The following CREATE VIEW statement defines the EMPINFO view that is shown in the preceding
figure:
CREATE VIEW EMPINFO (EMPLOYEE, FIRSTNAME, LASTNAME, TEAM, JOBTITLE)

AS SELECT EMPNO, FIRSTNME, LASTNAME, DEPT, JOB
FROM EMP;

When you define a view, Db2 stores the definition of the view in the Db2 catalog. However, Db2 does
not store any data for the view itself, because the data exists in the base table or tables.

Example 3
You can narrow the scope of the EMPINFO view by limiting the content to a subset of rows and
columns that includes departments AOO and CO1 only:

CREATE VIEW EMPINFO (EMPLOYEE, FIRSTNAME, LASTNAME, TEAM, JOBTITLE)
AS SELECT EMPNO, FIRSTNME, LASTNAME, WORKDEPT, JOB
FROM EMP
WHERE WORKDEPT = 'AGO' OR WORKDEPT = 'CO1°';

GUPI

In general, a view inherits the attributes of the object from which it is derived. Columns that are added to
the tables after the view is defined on those tables do not appear in the view.

Restriction: You cannot create an index for a view. In addition, you cannot create any form of a key or
a constraint (referential or otherwise) on a view. Such indexes, keys, or constraints must be built on the
tables that the view references.

Related concepts

Creation of views (Introduction to Db2 for z/OS)

Related reference

Employee table (DSN8C10.EMP) (Introduction to Db2 for z/0OS)

CREATE VIEW statement
The CREATE VIEW statement creates a view on tables or views at the current server.

Views on the sample tables (Introduction to Db2 for z/0OS)
Related information
Implementing Db2 views (Db2 Administration Guide)

Chapter 1. Db2 for z/OS and SQL concepts 31

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationofviews.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sampletablesemployeemain.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sampletablesview.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_viewimplementation.html

Aliases

An alias is a substitute for the three-part name of a table or view.

An alias can be defined at a local server and can refer to a table or view that is at the current server or a
remote server. The alias name can be used wherever the table name or view name can be used to refer to
the table or view in an SQL statement.

Suppose that data is occasionally moved from one Db2 subsystem to another. Ideally, users who query
that data are not affected when this activity occurs. They always want to log on to the same system and
access the same table or view, regardless of where the data resides. You can achieve this result by using
an alias for an object name.

An alias can be a maximum of 128 characters, qualified by an owner ID. You use the CREATE ALIAS and
DROP ALIAS statements to manage aliases.

GUPI For example, assume that you create an alias with the following statement:

CREATE ALIAS TESTTAB FOR USIBMSTODB22.IDEMPO1.EMP;

If a user with the ID JONES dynamically creates the alias, JONES owns the alias, and you query the table
like this:

SELECT SUM(SALARY), SUM(BONUS), SUM(COMM)
FROM JONES.TESTTAB;

GUPI

The object for which you are defining an alias does not need to exist when you execute the CREATE ALIAS
statement. However, the object must exist when a statement that refers to the alias executes.

When you want an application to access a server other than the server that is specified by a location
name, you do not need to change the location name. Instead, you can use a location alias to override the
location name that an application uses to access a server. As a result, a Db2 for z/OS requester can access
multiple Db2 databases that have the same name but different network addresses. Location aliases allow
easier migration to a Db2 server and minimize application changes.

After you create an alias, anyone who has authority over the object that the alias is referencing can use
that alias. A user does not need a separate privilege to use the alias.

Related reference

CREATE ALIAS statement

The CREATE ALIAS statement defines an alias for a table, a view, or a sequence. The definition is recorded
in the Db2 catalog at the current server.

Triggers

A trigger defines a set of actions that are executed when a delete, insert, or update operation occurs on a
specified table or view. When such an operation is executed, the trigger is said to be activated.

Db2 supports two types of triggers, basic and advanced:

 Basic triggers support a limited set of SQL statements, and require the MODE DB2SQL clause on the
CREATE TRIGGER statement. You can identify basic triggers by querying the SYSIBM.SYSTRIGGERS
catalog table. Blank values in the SQLPL column identify basic triggers. For more information, see
“CREATE TRIGGER statement (basic trigger)” on page 1769.

« Advanced triggers support a larger set of SQL statements, including SQL procedure language (SQL
PL). A CREATE TRIGGER statement for an advanced trigger must not specify the MODE DB2SQL
clause. Advanced triggers are supported at application compatibility level V12R1M500 or higher. You
can identify advanced triggers by querying the SYSIBM.SYSTRIGGERS catalog table. 'Y' values in the
SQLPL column identify advanced triggers. For more information about advanced triggers, see “CREATE
TRIGGER statement (advanced trigger)” on page 1740.

32 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

For a detailed comparison of the types, see “Basic and advanced triggers” on page 34.

You can use triggers along with referential constraints and check constraints to enforce data integrity
rules. Triggers are more powerful than constraints because you can use them to do the following things:

« Update other tables
- Automatically generate or transform values for inserted or updated rows
« Invoke functions that perform operations both inside and outside of Db2

For example, assume that you need to prevent an update to a column when a new value exceeds a certain
amount. Instead of preventing the update, you can use a trigger. The trigger can substitute a valid value
and invoke a procedure that sends a notice to an administrator about the attempted invalid update.

You define triggers with the CREATE TRIGGER statement.

Triggers move the business rule application logic into the database, which results in faster application
development and easier maintenance. The business rule is no longer repeated in several applications,
and the rule is centralized to the trigger. For example, Db2 can check the validity of the changes that any
application makes to a salary column, and you are not required to change application programs when the
logic changes.

There are a number of criteria that are defined when creating a trigger, which are used to determine when
a trigger should be activated.

« The subject table (also known as the triggering table) defines the table or view for which the trigger is
defined.

- The trigger event defines a specific SQL operation that modifies the subject table. The operation could
be a delete, insert, or update.

- The trigger activation time defines whether the trigger should be activated before or after the trigger
event is performed on the subject table.

The statement that causes a trigger to be activated includes a set of affected rows. These are the rows of
the subject table that are being deleted, inserted or updated. The trigger granularity defines whether the
actions of the trigger are to be performed once for the statement, or once for each of the rows in the set of
affected rows.

The trigger action consists of an optional search condition and a set of SQL statements that are executed
whenever the trigger is activated. The SQL statements are only executed if no search condition is
specified, or the specified search condition evaluates to true.

The triggered action can refer to the values in the set of affected rows. This is supported through the use
of transition variables. Transition variables use the names of the columns in the subject table, qualified by
a specified name that identifies whether the reference is to the old value (prior to the update) or the new
value (after the update). The new value can also be changed using an assignment in a before update or
insert trigger.

Another means of referring to the values in the set of affected rows is by using transition tables. Transition
tables also use the names of the columns of the subject table, but have a name specified that allows the
complete set of affected rows to be treated as a table. Transition tables can only be used in after triggers,
and cannot be modified. Separate transition tables can be defined for old and new values.

Multiple triggers can be specified for a combination of table, event, or activation time. The order in which
the triggers are activated is the same as the order in which they were created. Thus, the most recently
created trigger is the last trigger that is activated.

The activation of a trigger might cause trigger cascading. This is the result of the activation of one trigger
that executes SQL statements that cause the activation of other triggers, or even the same trigger again.
The triggered actions might also cause updates as a result of the original modification, which might
result in the activation of additional triggers. With trigger cascading, a significant chain of triggers might
be activated, causing significant change to the database as a result of a single delete, insert or update
statement.

Chapter 1. Db2 for z/OS and SQL concepts 33

The actions that are performed in the trigger are considered to be part of the operation that caused the
trigger to be executed.

- The database manager ensures that the operation and the triggers that are executed as a result of
that operation either all complete or are all backed out. Operations that occurred prior to the triggering
operation are not affected.

- The database manager effectively checks all constraints (except for a constraint with a RESTRICT delete
rule) after the operation and the associated triggers have been executed.

Basic and advanced triggers

Basic and advanced triggers offer different functionality. See the corresponding syntax diagrams for the
CREATE TRIGGER (basic) and CREATE TRIGGER (advanced) SQL statements for more information. The
following table identifies some behavioral differences between the two types of triggers.

Table 8. Behavioral differences of basic and advanced triggers

Behavior Basic Trigger Advanced Trigger
CREATE or ALTER CREATE or ALTER TRIGGER (basic) CREATE or ALTER TRIGGER (advanced)
TRIGGER statement can be embedded in statement can be issued interactively.
statement an application program or issued It is an executable statement that
invocation interactively. It is an executable can be dynamically prepared only if
statement that can be dynamically DYNAMICRULES run behavior is implicitly
prepared only if DYNAMICRULES run or explicitly specified.
behavior is implicitly or explicitly
specified.

Authorization The privilege set must include SYSADM The privilege set must include SYSADM
requirement or the SELECT privilege on the table or or the SELECT privilege for the triggering
view on which the trigger is defined, if the table or view on which the trigger is
REFERENCING clause is included in the defined.
trigger definition.

Default encoding The default encoding scheme is Unicode. The default encoding scheme is

scheme determined from the value of the
DEFAULT APPLICATION ENCODING
SCHEME field on the installation panel

DSNTIPF.

Null attribute for A transition variable is defined with the All transition variables are nullable.
transition same null attribute as the column it is
variables associated with.
Unhandled Unhandled warnings are not returned to Unhandled warnings are returned to the
warnings at the statement that activated a trigger. statement that activated a trigger. When
completionofa When processing in a trigger completes processing in a trigger completes with a
trigger with a warning, the warning is not warning, the warning is returned to the

returned to the statement that activated = statement that activated the trigger.

the trigger.
Transition Changes to transition variables in a Changes to transition variables in a
variables passed procedure are not visible on return to procedure are visible on return to the

as OUT or INOUT the invoking environment, and changes to invoking environment, and changes to
argumentstoa transition variables (for an AFTER trigger) transition variables (for an AFTER trigger)

procedure are not disallowed. are disallowed.

Stand-alone Supported. Not supported. Use a SELECT INTO
fullselect and statement or VALUES INTO statement
VALUES instead.

statements

34 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Related concepts
Creation of triggers (Introduction to Db2 for z/OS)

User-defined types

A user-defined data type is a data type that is defined to the database using a CREATE statement.
A user-defined data type is a distinct type or an array type.

A distinct type is a user-defined type that shares its internal representation with a built-in data type
(its source type), but is considered to be a separate and incompatible data type for most operations. A
distinct type is created with an SQL CREATE TYPE (distinct) statement. A distinct type can be used to
define a column of a table, or a parameter of a routine.

An array type is a user-defined data type that consists of an ordered set of elements of a single built-in
data type. Elements can be accessed and modified by their index position. An array type is created with
an SQL CREATE TYPE (array) statement. An array type can be used as a parameter of an SQL routine, as a
variable in an SQL routine, and as a global variable.

Related concepts

Array types and values

A user-defined array type is a data type that is defined as an array of elements. A user-defined array type
can be either an ordinary array or associative array.

Distinct types
A distinct type is a user-defined data type that shares its internal representation with a built-in data type
(its source type), but is considered to be a separate and incompatible data type for most operations.

Related reference

CREATE TYPE statement
The CREATE TYPE statement defines a user-defined data type at the current server.

Routines in Db2 for z/0S: functions and procedures

A routine is an executable SQL object. The two types of routines in Db2 for z/OS are functions and stored
procedures.

Functions

A function is a routine that can be invoked from within other SQL statements and that returns a value or a
table.

Functions are classified as either SQL functions or external functions. SQL functions are written using SQL
statements, including SQL procedural language (SQL PL). External functions reference a host language
program. The host language program can contain SQL, but does not require SQL.

You define functions by using the CREATE FUNCTION statement. You can classify functions as built-in
functions, user-defined functions, or cast functions that are generated for distinct types. Functions can
also be classified as aggregate, scalar, or table functions, depending on the input data values, result
values, and the context in which they can be invoked.

For more information, see “Functions” on page 237.

Procedures

A procedure, also known as a stored procedure, is a routine that you can call to perform operations that
can include SQL statements.

Chapter 1. Db2 for z/OS and SQL concepts 35

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationoftriggers.html

Procedures are classified as either SQL procedures or external procedures. SQL procedures contain
only SQL statements, including SQL procedural language (SQL PL). External procedures reference a host
language program that might or might not contain SQL statements.

Db2 for z/OS supports the following types of procedures:

Native SQL procedures
The procedure body is written exclusively in SQL statements, including SQL procedural language (SQL
PL) statements. The procedure body is contained and specified in the procedure definition along with
various attributes of the procedure. A package is generated for a native SQL procedure. It contains the
procedure body, including control statements. It might sometimes also include statements generated
by Db2. Each time that the procedure is invoked, the package executes one or more times.

All SQL procedures that are created with a CREATE PROCEDURE statement that does not specify

the FENCED or EXTERNAL options are native SQL procedures. More capabilities are supported for
native SQL procedures, they usually perform better than external SQL procedures, and no associated
C program is generated for them.

See “CREATE PROCEDURE statement (SQL - native procedure)” on page 1607.

External stored procedures
The procedure body is an external program that is written in a programming language such as C,
C++, COBOL, or Java and it can contain SQL statements. The source code for an external stored
procedure is separate from the procedure definition and is bound into a package. The name of the
external executable is specified as part of the procedure definition along with various attributes of
the procedure. All programs must be designed to run using Language Environment. Your COBOL and
C++ stored procedures can contain object-oriented extensions. Each time that the stored procedure is
invoked, the logic in the procedure controls whether the package executes and how many times.

For more information, see Creating external stored procedures (Db2 Application programming and

SQL).
See “CREATE PROCEDURE statement (external procedure)” on page 1580.

External SQL procedures (deprecated)
The procedure body is written exclusively in SQL statements, including SQL procedural language
(SQL PL) statements. The procedure body is specified in the procedure definition along with various
attributes of the procedure. A C program and an associated package are generated for an external
SQL procedure. It contains the procedure body, including control statements. It might sometimes also
include statements generated by Db2.Each time that the procedure is invoked, the package executes
one or more times.

Native SQL procedures are more fully supported, easier to maintain, and typically perform better than
external SQL procedures, which are deprecated.

See “CREATE PROCEDURE statement (SQL - external procedure) (deprecated)” on page 1597.

SQL control statements are supported in SQL procedures. Control statements are SQL statements that
allow SQL to be used in a manner similar to writing a program in a structured programming language. SQL
control statements provide the capability to control the logic flow, declare and set variables, and handle
warnings and exceptions. Some SQL control statements include other nested SQL statements.

SQL procedures provide the same benefits as procedures in a host language. That is, a common piece of
code needs to be written and maintained only once and can be called from several programs.

SQL procedures provide additional benefits when they contain SQL statements. In this case, SQL
procedures can reduce or eliminate network delays that are associated with communication between

the client and server and between each SQL statement. SQL procedures can improve security by providing
a user the ability to invoke only a procedure instead of providing them with the ability to execute the SQL
that the procedure contains.

You define procedures by using the CREATE PROCEDURE statement.

Related concepts
Functions

36 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createexternalsp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createexternalsp.html

A function is an operation denoted by a function name followed by zero or more operands that are
enclosed in parentheses. It represents a relationship between a set of input values and a set of result
values.

Creation of user-defined functions (Introduction to Db2 for z/OS)

Use of an application program as a stored procedure (Introduction to Db2 for z/0S)

External stored procedures (Db2 Application programming and SQL)

SQL control statements for external SQL procedures

SQL control statements for external SQL procedures can be used only with SQL procedures that are
created with the FENCED or EXTERNAL clause. SQL control statements provide the capability to control
the logic flow, declare and set variables, and handle warnings and exceptions. Some SQL control
statements include other nested SQL statements.

SQL procedural language (SQL PL)

Related tasks

Creating a user-defined function (Db2 Application programming and SQL)
Implementing Db2 stored procedures (Stored procedures provided by Db2)
Related reference

Procedures that are supplied with Db2

A procedure is an application program that can be started through the SQL CALL statement. The
procedure is specified by a procedure name, which may be followed by arguments that are enclosed
within parentheses. This information contains syntax diagrams, semantic descriptions, rules, and
examples of the use of the system supplied procedures.

Sequences

A sequence is a stored object that simply generates a sequence of numbers in a monotonically ascending
(or descending) order. A sequence provides a way to have Db2 automatically generate unique integer
primary keys and to coordinate keys across multiple rows and tables.

A sequence can be used to exploit parallelization, instead of programmatically generating unique
numbers by locking the most recently used value and then incrementing it.

Sequences are ideally suited to the task of generating unique key values. One sequence can be used for
many tables, or a separate sequence can be created for each table requiring generated keys. A sequence
has the following properties:

Guaranteed, unique values, assuming that the sequence is not reset and does not allow the values to
cycle

Monotonically increasing or decreasing values within a defined range
« Can increment with a value other than 1 between consecutive values (the default is 1).

« Recoverable. If Db2 should fail, the sequence is reconstructed from the logs so that Db2 guarantees
that unique sequence values continue to be generated across a Db2 failure.

Values for a given sequence are automatically generated by Db2. Use of Db2 sequences avoids the
performance bottleneck that results when an application implements sequences outside the database.
The counter for the sequence is incremented (or decremented) independently of the transaction. In some
cases, gaps can be introduced in a sequence. A gap can occur when a given transaction increments a
sequence two times. The transaction might see a gap in the two numbers that are generated because
there can be other transactions concurrently incrementing the same sequence. A user might not realize
that other users are drawing from the same sequence. Furthermore, it is possible that a given sequence
can appear to have generated gaps in the numbers, because a transaction that might have generated a
sequence number might have rolled back or the Db2 subsystem might have failed. Updating a sequence is
not part of a transaction's unit of recovery.

A sequence is created with a CREATE SEQUENCE statement. A sequence can be referenced using a
sequence-reference. A sequence reference can appear most places that an expression can appear. A
sequence reference can specify whether the value to be returned is a newly generated value, or the
previously generated value.

Chapter 1. Db2 for z/OS and SQL concepts 37

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationofudfs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_applicationprogramasstoredprocedure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_externalsp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_defineudf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sproc/src/tpc/db2z_implementstoredprocedure.html

Although there are similarities, a sequence is different than an identity column. A sequence is an object,
whereas an identity column is a part of a table. A sequence can be used with multiple tables, but an
identity column is tied to a single table.

Related reference

CREATE SEQUENCE statement
The CREATE SEQUENCE statement creates a sequence at the current server.

Db2 system objects

Unlike the Db2 data structures that users create and access, Db2 controls and accesses system objects.

Db2 has a comprehensive infrastructure that enables it to provide data integrity, performance, and the
ability to recover user data. In addition, Parallel Sysplex® data sharing uses shared system objects.

Related concepts
Db2 database objects overview (Introduction to Db2 for z/0OS)

Db2 catalog

Db2 maintains a set of tables that contain information about the data that Db2 controls. These tables are
collectively known as the catalog.

The catalog tables contain information about Db2 objects such as tables, views, and indexes. When you
create, alter, or drop an object, Db2 inserts, updates, or deletes rows of the catalog that describe the
object.

The Db2 catalog consists of tables of data about everything defined to the Db2 system, including table
spaces, indexes, tables, copies of table spaces and indexes, and storage groups. The system database
DSNDBO6 contains the Db2 catalog.

When you create, alter, or drop any structure, Db2 inserts, updates, or deletes rows of the catalog
that describe the structure and tell how the structure relates to other structures. For example,
SYSIBM.SYSTABLES is one catalog table that records information when a table is created. Db2 inserts
a row into SYSIBM.SYSTABLES that includes the table name, its owner, its creator, and the name of its
table space and its database.

To understand the role of the catalog, consider what happens when the EMP table is created. Db2 records
the following data:

Table information
To record the table name and the name of its owner, its creator, its type, the name of its table space,
and the name of its database, Db2 inserts a row into the catalog.

Column information
To record information about each column of the table, Db2 inserts the name of the table to which the
column belongs, its length, its data type, and its sequence number by inserting a row into the catalog
for each column of the table.

Authorization information
To record that the owner of the table has authorization to create the table, Db2 inserts a row into the
catalog.

Tables in the catalog are like any other database tables with respect to retrieval. If you have authorization,
you can use SQL statements to look at data in the catalog tables in the same way that you retrieve

data from any other table in the Db2 database. Db2 ensures that the catalog contains accurate object
descriptions. If you are authorized to access the specific tables or views on the catalog, you can use
SELECT on the catalog. You can use INSERT, UPDATE, and DELETE statements on updatable catalog
tables, but you cannot use TRUNCATE or MERGE on the catalog.

The communications database (CDB) is part of the Db2 catalog. The CDB consists of a set of tables
that establish conversations with remote database management systems (DBMSs). The distributed data
facility (DDF) uses the CDB to send and receive distributed data requests.

38 Db2 12 for z/0OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_db2datastructures.html

Tip: For best results, check the consistency of the Db2 catalog and directory regularly, even outside of
the migration process. For detailed instructions, see Verify the integrity of Db2 table spaces and Check for
consistency between catalog tables.

Related reference

Db2 catalog tables
Db2 for z/OS maintains a set of tables (in database DSNDBO06) called the Db2 catalog.

Db2 directory

The Db2 directory contains information that Db2 uses during normal operation.

You can use SQL to retrieve data only from the directory tables that are listed in Appendix I, “Db2
directory tables,” on page 2769. You can submit queries against the Db2 catalog for Db2 directory objects.

The directory consists of a set of Db2 tables that are stored in table spaces in system database DSNDBO1.
Each of the table spaces that are listed in the following table is contained in a VSAM linear data set.

Table 9. Directory table spaces

Table space name Description

SCT02 Contains the internal form of SQL statements that are
contained in an application. If you bound a plan with SQL
statements in a prior release, Db2 created a structure in
SCTO02.

SPTO1 Contains the internal form of SQL statements that are

Skeleton package contained in a package.

SYSSPUXA Contains the contents of a package selection.

SYSSPUXB Contains the contents of a package explain block.
Tracks the opening and closing of table spaces, indexes,

SYSLGRNX " . o . e

Log range or partitions. By tracking this information and associating
it with relative byte addresses (RBAs) as contained in the
Db2 log, Db2 can reduce recovery time by reducing the
amount of log that must be scanned for a particular table
space, index, or partition.

SYSUTILX Contains a row for every utility job that is running. The

row persists until the utility is finished. If the utility
terminates without completing, Db2 uses the information
in the row when you restart the utility.

System utilities

DBDO1 Contains internal information, called database descriptors
Database descriptor (DBD) (DBDs), about the databases that exist within the Db2
subsystem.

Each database has exactly one corresponding DBD that
describes the database, table spaces, tables, table check
constraints, indexes, and referential relationships. A DBD
also contains other information about accessing tables in
the database. Db2 creates and updates DBDs whenever
their corresponding databases are created or updated.

SYSDBDXA Contains the contents of a DBD section.

Tip: For best results, check the consistency of the Db2 catalog and directory regularly, even outside of
the migration process. For detailed instructions, see Verify the integrity of Db2 table spaces and Check for
consistency between catalog tables.

Chapter 1. Db2 for z/OS and SQL concepts 39

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_runlinkchkr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_chkctlgconsistency.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_chkctlgconsistency.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_runlinkchkr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_chkctlgconsistency.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_chkctlgconsistency.html

Active and archive logs
Db2 records all data changes and other significant events in a log.

If you keep these logs, Db2 can re-create those changes for you in the event of a failure or roll the
changes back to a previous point in time.

Db2 writes each log record to a disk data set called the active log. When the active log is full, Db2 copies
the contents of the active log to a disk or magnetic tape data set called the archive log.

You can choose either single logging or dual logging.

« A single active log contains up to 93 active log data sets.
- With dual logging, the active log has twice the capacity for active log data sets, because two identical
copies of the log records are kept.

Each Db2 subsystem manages multiple active logs and archive logs. The following facts are true about
each Db2 active log:

« Each log can be duplexed to ensure high availability.

« Each active log data set is a VSAM linear data set (LDS).

« Db2 supports striped active log data sets, however striping is generally unnecessary with the latest
devices, and is not recommended in most cases.

Important: Do not use striped active logs for disaster recovery.

Related tasks

Managing the log and the bootstrap data set (Db2 Administration Guide)
Improving Db2 log performance (Db2 Performance)

Related information

Reading log records (Db2 Administration Guide)

Bootstrap data set

The bootstrap data set (BSDS) is a VSAM key-sequenced data set (KSDS). This KSDS contains information
that is critical to Db2, such as the names of the logs. Db2 uses information in the BSDS for system restarts
and for any activity that requires reading the log.

Specifically, the BSDS contains:

- Aninventory of all active and archive log data sets that are known to Db2. Db2 uses this information to
track the active and archive log data sets. Db2 also uses this information to locate log records to satisfy
log read requests during normal Db2 system activity and during restart and recovery processing.

« A wrap-around inventory of all recent Db2 checkpoint activity. Db2 uses this information during restart
processing.

« The distributed data facility (DDF) communication record, which contains information that is necessary
to use Db2 as a distributed server or requester.

« Information about buffer pools.

Because the BSDS is essential to recovery in the event of subsystem failure, during installation Db2
automatically creates two copies of the BSDS and, if space permits, places them on separate volumes.

The BSDS can be duplexed to ensure availability.

For instructions, see Convert BSDS records to the extended 10-byte format: DSNTIJCB (Db2 Installation
and Migration).

Related tasks

Managing the log and the bootstrap data set (Db2 Administration Guide)

Convert BSDS records to the extended 10-byte format: DSNTIJCB (Db2 Installation and Migration)

40 Db2 12 for z/0OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_managebsds.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_improvedb2logperf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_logrecord.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_convertbsdsinst.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_convertbsdsinst.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_managebsds.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_convertbsdsinst.html

Buffer pools
Buffer pools are areas of virtual storage that temporarily store pages of table spaces or indexes.

When an application program accesses a row of a table, Db2 places the page that contains that row in
a buffer. Access to data in this temporary storage is faster than accessing data on a disk. If the required
data is already in a buffer, the application program does not need to wait for it to be retrieved from disk,
so the time and cost of retrieving the page is reduced.

Buffer pools require monitoring and tuning. Buffer pool sizes are critical to the performance
characteristics of an application or group of applications that access data in those buffer pools.

You can specify default buffer pools for user data and for indexes. A special type of buffer pool that is
used only in Parallel Sysplex data sharing is the group buffer pool, which resides in the coupling facility.
Group buffer pools reside in a special PR/SM LPAR logical partition called a coupling facility, which
enables several Db2 subsystems to share information and control the coherency of data.

Buffer pools reside in the database services address space (ssnmDBM1). The maximum size of a buffer
pool is 16 TB.

Related concepts

The role of buffer pools in caching data (Introduction to Db2 for z/0OS)
Related tasks

Tuning database buffer pools (Db2 Performance)

Calculating buffer pool size (Db2 Installation and Migration)

Enabling automatic buffer pool size management (Db2 Performance)

Data definition control support database

The data definition control support (DDCS) database refers to a user-maintained collection of tables that
are used by data definition control support to restrict the submission of specific Db2 DDL (data definition
language) statements to selected application identifiers (plans or collections of packages).

This database is automatically created during installation. After this database is created, you must
populate the tables to use this facility. The system name for this database is DSNRGFDB.

The resource limit facility

The resource limit facility (sometimes abbreviated RLF) enables you to control the amount of processor
resources that are used by SQL statements.

GUPI

Resource limits apply to the following types of SQL statements:
« SELECT

« INSERT

- UPDATE

« MERGE

TRUNCATE

« DELETE

You can specify resource limits for dynamic SQL statements and static SQL statements. Resource limits
apply to SQL statement regardless of whether they are issued locally or remotely. The resource limit
facility does not apply to primary or secondary authorization IDs that have installation SYSADM or
installation SYSOPR authority.

You can establish a single limit for all users, different limits for individual users, or both. You can choose
to have these limits applied before the statement is executed through predictive governing, or while a
statement is running, through reactive governing. You can also use reactive and predictive governing

Chapter 1. Db2 for z/OS and SQL concepts 41

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_bufferpoolsanddatacaching.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_tunedbbufferpools.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_calcbpsize.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_enableautobpsize.html

in combination. You define these limits in one or more resource limit tables, named DSNRLSTxx or
DSNRLMTxx, depending on the monitoring purpose. GUPI

Related concepts

Resource limit facility controls (Db2 Performance)

Related tasks

Setting limits for system resource usage by using the resource limit facility (Db2 Performance)
Related reference

Resource limit facility tables (Db2 Performance)

-START RLIMIT command (Db2) (Db2 Commands)

Work file database

Use the work file database as storage for processing SQL statements that require working space, such as
that required for a sort.

The work file database is used as storage for Db2 work files for processing SQL statements that require
working space (such as the space that is required for a sort), and as storage for created global temporary
tables and declared global temporary tables.

Db2 creates a work file database and some table spaces in it for you at installation time. You can create
additional work file table spaces at any time. You can drop, re-create, and alter the work file database or
the table spaces in it, or both, at any time.

In a non-data-sharing environment, the work file database is named DSNDBO7. In a data sharing
environment, each Db2 member in the data sharing group has its own work file database.

You can also use the work file database for all temporary tables.

Related concepts

How sort work files are allocated (Db2 Performance)

Related reference

SEPARATE WORK FILES field (WFDBSEP subsystem parameter) (Db2 Installation and Migration)

Application processes and transactions

An application process involves running one or more programs. Different application processes might
involve running different programs or running the same program at different times. When an application
interacts with a Db2 database, a transaction begins.

Many different types of programs access Db2 data: user-written applications, SQL statements that users
enter dynamically, and even utilities. The single term that describes any type of access to Db2 data is
called an application process. All SQL programs run as part of an application process.

A transaction is a sequence of actions between the application and the database; the sequence begins
when data in the database is read or written. A transaction is also known as a unit of work.

For example, Consider what happens when you access funds in a bank account. A banking transaction
might involve the transfer of funds from one account to another. During the transaction, an application
program first subtracts the funds from the first account, and then it adds the funds to the second account.
Following the subtraction step, the data is inconsistent. Consistency is reestablished after the funds are
added to the second account.

To ensure data consistency, Db2 uses a variety of techniques that include a commit operation, a rollback
operation, and locking.

When the subtraction and addition steps of the banking transaction are complete, the application can use
the commit operation to end the transaction, thereby making the changes available to other application
processes. The commit operation makes the database changes permanent.

Consider what happens if more than one application process requests access to the same data at the
same time. Or, under certain circumstances, an SQL statement might run concurrently with a utility on

42 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_controlgovernor.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_setsystemresourcelimit.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_resourcelimittables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_startrlimit.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_sortfilesallocated.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_wfdbsep.html

the same table space. Db2 uses locks to maintain data integrity under these conditions to prevent, for
example, two application processes from updating the same row of data simultaneously.

Db2 acquires locks to prevent uncommitted changes that are made by one application process from
being perceived by any other. Db2 automatically releases all locks that it has acquired on behalf of an
application process when that process ends, but an application process can also explicitly request that
locks be released sooner. A commit operation releases locks that an application process has acquired and
commits database changes that were made by the same process.

Db2 also provides a way to back out uncommitted changes that an application process makes. A back

out might be necessary in the event of a failure on the part of an application process or in a deadlock
situation. Deadlock occurs when contention for the use of a resource, such as a table, cannot be resolved.
An application process, however, can explicitly request that its database changes be backed out. This
operation is called rollback. The interface that an SQL program uses to explicitly specify these commit and
rollback operations depends on the environment. For example, in the JDBC environment, applications use
commit and rollback methods to commit or roll back transactions.

Related concepts
Programming for Db2 for z/OS (Introduction to Db2 for z/0OS)

Application processes, concurrency, and recovery

AlL SQL programs execute as part of an application process. An application process involves the execution
of one or more programs, and it is the unit to which Db2 allocates resources and locks.

Different application processes might involve the execution of different programs, or different executions
of the same program. The means of initiating and terminating an application process are dependent on
the environment.

Locking, commit, and rollback

More than one application process might request access to the same data at the same time. Furthermore,
under certain circumstances, an SQL statement can execute concurrently with a utility on the same table
space. Locking is used to maintain data integrity under such conditions, preventing, for example, two
application processes from updating the same row of data simultaneously.

Db2 implicitly acquires locks to prevent uncommitted changes made by one application process from
being perceived by any other. Db2 will implicitly release all locks it has acquired on behalf of an
application process when that process ends, but an application process can also explicitly request that
locks be released sooner. A commit operation releases locks acquired by the application process and
commits database changes made by the same process.

Db2 provides a way to back out uncommitted changes made by an application process. This might be
necessary in the event of a failure on the part of an application process, or in a deadlock situation.

An application process, however, can explicitly request that its database changes be backed out. This
operation is called rollback.

The interface used by an SQL program to explicitly specify these commit and rollback operations depends
on the environment. If the environment can include recoverable resources other than Db2 databases, the
SQL COMMIT and ROLLBACK statements cannot be used. Thus, these statements cannot be used in an
IMS, CICS, or WebSphere environment.

Unit of work

A unit of work is a recoverable sequence of operations within an application process. A unit of work is
sometimes called a logical unit of work.

At any time, an application process has a single unit of work, but the life of an application process can
involve many units of work as a result of commit or full rollback operations.

A unit of work is initiated when an application process is initiated. A unit of work is also initiated when the
previous unit of work is ended by something other than the end of the application process. A unit of work
is ended by a commit operation, a full rollback operation, or the end of an application process. A commit
or rollback operation affects only the database changes made within the unit of work it ends. While

Chapter 1. Db2 for z/OS and SQL concepts 43

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_applicationprogrammingfordb2.html

these changes remain uncommitted, other application processes are unable to perceive them unless
they are running with an isolation level of uncommitted read. The changes can still be backed out. Once
committed, these database changes are accessible by other application processes and can no longer
be backed out by a rollback. Locks acquired by Db2 on behalf of an application process that protects
uncommitted data are held at least until the end of a unit of work.

The initiation and termination of a unit of work define points of consistency within an application process.
A point of consistency is a claim by the application that the data is consistent. For example, a banking
transaction might involve the transfer of funds from one account to another. Such a transaction would
require that these funds be subtracted from the first account, and added to the second. Following the
subtraction step, the data is inconsistent. Only after the funds have been added to the second account is
consistency reestablished. When both steps are complete, the commit operation can be used to end the
unit of work, thereby making the changes available to other application processes. The following figure
illustrates this concept.

Point of Next point of
consistency consistency

fi One unit of work 4>‘

Time
line
I Database updates T
Begin COMMIT;
unit of work End unit
of work

Figure 7. Unit of work with a commit operation

Unit of recovery
A Db2 unit of recovery is a recoverable sequence of operations executed by Db2 for an application
process.

If a unit of work involves changes to other recoverable resources, the unit of work will be supported by
other units of recovery. If relational databases are the only recoverable resources used by the application
process, then the scope of the unit of work and the unit of recovery are the same and either term can be
used.

Rolling back work
Db2 can back out all changes made in a unit of recovery or only selected changes. Only backing out all
changes results in a point of consistency.

Rolling back all changes

The SQL ROLLBACK statement without the TO SAVEPOINT clause specified causes a full rollback
operation. If such a rollback operation is successfully executed, Db2 backs out uncommitted changes
to restore the data consistency that existed when the unit of work was initiated.

That is, Db2 undoes the work, as shown in the following figure:

44 Db2 12 for z/0OS: SQL Reference (Last updated: 2024-05-14)

Point of New point of
consistency consistency

k— Unit of work :l

Time
line
A
‘ Database updates T Back out updates T
Begin ROLLBACK, Data is returned
unit of work failure, or to its initial state;
deadlock; end unit of work

begin rollback

Figure 8. Rolling back all changes from a unit of work

Rolling back selected changes using savepoints

A savepoint represents the state of data at some particular time during a unit of work. An application
process can set savepoints within a unit of work, and then as logic dictates, roll back only the changes
that were made after a savepoint was set.

For example, part of a reservation transaction might involve booking an airline flight and then a hotel
room. If a flight gets reserved but a hotel room cannot be reserved, the application process might want to
undo the flight reservation without undoing any database changes made in the transaction prior to making
the flight reservation. SQL programs can use the SQL SAVEPOINT statement to set savepoints, the SQL
ROLLBACK statement with the TO SAVEPOINT clause to undo changes to a specific savepoint or the last
savepoint that was set, and the SQL RELEASE SAVEPOINT statement to delete a savepoint. The following
figure illustrates this concept.

|< Unit of work :I
Time
line
Begin Savepoint A Rollback to A; COMMIT
unit of work database updates End unit of work

made between
times T1 and T2
are rolled back

Figure 9. Rolling back changes to a savepoint within a unit of work

Packages and application plans
A package contains control structures that Db2 uses when it runs SQL statements. An application plan
relates an application process to a local instance of Db2 and specifies processing options.

Packages are produced during program preparation. You can think of the control structures as the bound
or operational form of SQL statements. All control structures in a package are derived from the SQL
statements that are embedded in a single source program.

An application plan contains a list of package names.

Db2 applications require an application plan. Packages make application programs more flexible and
easier to maintain.

In general, you create plans and packages by using the Db2 commands BIND PLAN and BIND PACKAGE.

Chapter 1. Db2 for z/OS and SQL concepts 45

Example

The following figure shows an application plan that contains two packages. Suppose that you decide to
change the SELECT statement in package AA to select data from a different table. In this case, you need
to bind only package AA again and not package AB.

GUPI
Package AA
Plan A
SELECT * FROM/\-——----«y
TABLE3
Package AA
Package AB

Package AB

SELECT * FROM TABLE2

Figure 10. Application plan and packages

GUPI

Packages for triggers and routines

A trigger package is a special type of package that is created when you issue a CREATE TRIGGER
statement. It contains the trigger body and the WHEN clause for the trigger. When the trigger activates,
the package executes one or more times.

Packages are also generated, or explicitly created for certain SQL routines, including stored procedures
and certain types of user defined functions. The package for a routine contains the routine body, including
control statements. The package might also contain statements that are generated by Db2. Each time that
the routine is invoked, the package executes one or more times.

Specifically, Db2 generates a package automatically for the following types of SQL routines:

« External scalar functions

External table functions

Compiled SQL scalar functions

Native SQL procedures

External SQL procedures

For external stored procedures, you explicitly bind the source code for the stored procedure into a
package before or you issue the CREATE PROCEDURE statement. Each time that the external procedure is
invoked, the package executes one or more times.

Packages for JDBC, SQLJ, and ODBC applications

Packages for JDBC, SQLJ, and ODBC applications serve different purposes. For more information, see
Preparing and running JDBC and SQLJ programs (Db2 Application Programming for Java) and Db2 ODBC
run time environment setup (Db2 Programming for ODBC).

Related concepts
Programming for Db2 for z/OS (Introduction to Db2 for z/0OS)

46 Db2 12 for z/0OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_javaprepexec.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/odbc/src/tpc/db2z_setup.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/odbc/src/tpc/db2z_setup.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_applicationprogrammingfordb2.html

Preparation process for an application program (Introduction to Db2 for z/OS)
Related reference

SET CURRENT PACKAGE PATH statement
The SET CURRENT PACKAGE PATH statement assigns a value to the CURRENT PACKAGE PATH special
register.

SET CURRENT PACKAGESET statement
The SET CURRENT PACKAGESET statement assigns a value to the CURRENT PACKAGESET special
register.

CREATE FUNCTION statement (overview)
The CREATE FUNCTION statement registers a user-defined function with a database server. Each type of
function that you can register with this statement is described separately.

CREATE PROCEDURE statement (overview)
The CREATE PROCEDURE statement registers a stored procedure with a database server. You can register
the following types of procedures with this statement, each of which is described separately.

CREATE TRIGGER statement (basic trigger)

Subsystem parameters

Subsystem parameters are settings that apply to a Db2 for z/OS subsystem. For example, the AUTH
subsystem parameter controls whether Db2 checks authorizations. Many users colloquially refer to
subsystem parameters as zparms.

Generally, system administrators set the value of subsystem parameters when they install or migrate Db2.
After installation or migration, a system administrator can change the values of subsystem parameters

if needed. However, because these parameters can affect the entire subsystem, system administrators
should first carefully evaluate and plan for the impact of any changed values. In some cases, changing the
value of a subsystem parameter requires Db2 to be stopped and restarted.

Most subsystem parameters are listed on installation panels. However, some parameters are not. For

a list of subsystem parameters, including those parameters that are not on panels, see Directory of
subsystem parameters, panel fields, and application default values (Db2 Installation and Migration). This
list includes important characteristics of each parameter, including whether changing a the parameter
requires you to stop and restart Db2.

Subsystem parameter values are contained in a load module that is generated by installation job
DSNTIJUZ. The name of this subsystem parameters load module is specified in the PARAMETER MODULE
field of installation panel DSNTIPO3. The default name is DSNZPARM. However, to avoid naming conflicts
with other members, you should use a different name. Sometimes the naming convention DSNZPxxx is
used. In a data sharing environment, each member must have its own subsystem parameter load module.

One way to check the subsystem parameter values is to call stored procedure
SYSPROC.ADMIN_INFO_SYSPARM by running sample job DSNTEJ6Z.

Some Db2subsystem parameters are considered security parameters. These parameters can be updated
only by processes with a privilege set that includes installation SYSADM authority or SECADM authority.
for more information, see Security parameters in Db2 for z/OS (Db2 Installation and Migration).

Related concepts

Subsystem parameters and application defaults in a data sharing environment (Db2 Installation and
Migration)

Application programming default values (Introduction to Db2 for z/0S)

The Db2 installation CLIST panel session (Db2 Installation and Migration)

Related reference

PARAMETER MODULE field (Db2 Installation and Migration)

Chapter 1. Db2 for z/OS and SQL concepts 47

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_programprepprocesses.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_zparmdir.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_zparmdir.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntej6z.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_securityparm.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_chooseparamsmembers.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_chooseparamsmembers.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_decp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_clistpanelsession.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_parametermodule.html

Storage structures

In Db2, a storage structure is a set of one or more VSAM data sets that hold Db2 tables or indexes. A
storage structure is also called a page set.

The two primary types of storage structures in Db2 for z/OS are table spaces and index spaces.

Related concepts

Db2 database objects overview (Introduction to Db2 for z/0S)
Implementing Db2 indexes (Db2 Administration Guide)
Related information

Implementing Db2 table spaces (Db2 Administration Guide)

Db2 databases

Db2 databases are a set of Db2 structures that include a collection of tables, their associated indexes,
and the table spaces in which they reside. You define a database by using the CREATE DATABASE
statement.

Whenever a table space is created, it is explicitly or implicitly assigned to an existing database. If you
create a table space and do not specify a database name, the table space is created in the default
database, DSNDBO4. In this case, Db2 implicitly creates a database or uses an existing implicitly created
database for the table. All users who have the authority to create table spaces or tables in database
DSNDBO04 have authority to create tables and table spaces in an implicitly created database. If the table
space is implicitly created, and you do not specify the IN clause in the CREATE TABLE statement, Db2
implicitly creates the database to which the table space is assigned.

A single database, for example, can contain all the data that is associated with one application or with

a group of related applications. Collecting that data into one database allows you to start or stop access
to all the data in one operation. You can also grant authorization for access to all the data as a single
unit. Assuming that you are authorized to access data, you can access data that is stored in different
databases.

Generally, it is best to minimize the number of table spaces in each database. For the recommended
partition-by-range and partition-by-growth table space types, each table space contains only a single
table. However, if you do use multi-table segmented (non-UTS) table spaces, which are deprecated,
minimize the number of tables in each table space. Too many table spaces and tables in a database can
cause decreases in performance and manageability issues. If you reduce the number of table spaces
and tables in a database, you improve performance, minimize maintenance, increase concurrency, and
decrease log volume.

Deprecated function: FL 504 Non-UTS table spaces for base tables are deprecated. CREATE
TABLESPACE statements that run at application compatibility level V12R1M504 or higher always create

a partition-by-growth or partition-by-range table space, and CREATE TABLE statements that specify a
non-UTS table space (including existing multi-table segmented table spaces) return an error. However,
you can use a lower application compatibility level to create table spaces of the deprecated types if
needed, such as for recovery situations. For instructions, see Creating non-UTS table spaces (deprecated)

(Db2 Administration Guide).

The following figure shows how the main Db2 data structures fit together. Two databases, A and B,

are represented as squares. Each database contains a table space and index space. Each index space
contains one index. In database B, the table space is partitioned and contains table B1, partitions 1-4.
The index space contains one partitioning index, parts 1-4.

48 Db2 12 for z/0OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_db2datastructures.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_indeximplementation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_tablespaceimplentation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createdeprecatedtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createdeprecatedtablespace.html

Database A
Table space 1

Table A1

Index space

Index
on Table
Al

Database B

Table space 2
P Index space

(partitioned)
Table B1 Partitioning
Part 1 index part 1
Part 2 Part 2
Part 3 Part 3
Part 4 Part 4

Figure 11. Data structures in a Db2 database

When you migrate Db2 12, Db2 adopts the default database and default storage group that you used in
the previous version. You have the same authority for the Db2 12 as you did in the previous version.

Reasons to define a database

In Db2 for z/0S, a database is a logical collection of table spaces and index spaces. Consider the following
factors when deciding whether to define a new database for a new set of objects:

« You can start and stop an entire database as a unit; you can display the statuses of all its objects by
using a single command that names only the database. Therefore, place a set of tables that are used
together into the same database. (The same database holds all indexes on those tables.)

= Some operations lock an entire database. For example, some phases of the LOAD utility prevent some
SQL statements (CREATE, ALTER, and DROP) from using the same database concurrently. Therefore,
placing many unrelated tables in a single database is often inconvenient.

When one user is executing a CREATE, ALTER, or DROP statement for a table, no other user can access
the database that contains that table. QMF users, especially, might do a great deal of data definition;
the QMF operations SAVE DATA and ERASE data-object are accomplished by creating and dropping Db2
tables. For maximum concurrency, create a separate database for each QMF user.

« The internal database descriptors (DBDs) might become inconveniently large. DBDs grow as new
objects are defined, but they do not immediately shrink when objects are dropped; the DBD space
for a dropped object is not reclaimed until the MODIFY RECOVERY utility is used to delete records of
obsolete copies from SYSIBM.SYSCOPY. DBDs occupy storage and are the objects of occasional input
and output operations. Therefore, limiting the size of DBDs is another reason to define new databases.

Related concepts
Creation of databases (Introduction to Db2 for z/OS)

Chapter 1. Db2 for z/OS and SQL concepts 49

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationofdatabases.html

Db2 table spaces

A Db2 table space is a set of volumes on disks that hold the data sets in which tables are actually stored.
Every table is stored in table space.

A table space consists of a number of VSAM linear data sets. Table spaces are divided into equal-sized
units, called pages. Each page is read from disk to the assigned buffer pool, or written from the buffer pool
to disk, in a single operation. The page size is controlled by the buffer pool that you assign to the table
space (4 KB, 8 KB, 16 KB, or 32 KB in size) for the data. The default page size is 4 KB.

Data in most table spaces can be compressed, which can allow you to store more data on each data page.

You can let Db2 create and manage the table space for you by issuing a CREATE TABLE statement that
does not specify an existing table space. Db2 creates a partition-by-growth or partition-by-range table
space. For more information, see Creation of table spaces (Introduction to Db2 for z/0S).

You can also explicitly define table spaces by issuing CREATE TABLESPACE statements. You specify the
database that the table space belongs to, and the storage group that it uses. When you create a table
space, certain options that you specify control the type of table space that is created.

Deprecated function: FL 504 Non-UTS table spaces for base tables are deprecated. CREATE
TABLESPACE statements that run at application compatibility level V12R1M504 or higher always create

a partition-by-growth or partition-by-range table space, and CREATE TABLE statements that specify a
non-UTS table space (including existing multi-table segmented table spaces) return an error. However,
you can use a lower application compatibility level to create table spaces of the deprecated types if
needed, such as for recovery situations. For instructions, see Creating non-UTS table spaces (deprecated)
(Db2 Administration Guide).

For descriptions of the various table space types, see Table space types and characteristics in Db2 for
z/0S (Db2 Administration Guide).

Segmented non-UTS table spaces, which are deprecated, can contain more than one table. However, with
the recommended partition-by-growth and partition-by-range table spaces, each table space contains
only a single table.

Related tasks

Creating table spaces explicitly (Db2 Administration Guide)

Choosing data page sizes (Db2 Performance)

Related reference

ALTER TABLESPACE statement

The ALTER TABLESPACE statement changes the description of a table space at the current server.

CREATE TABLESPACE statement
The CREATE TABLESPACE statement defines a table space at the current server. The type of table space
depends on the keywords specified.

Related information
Implementing Db2 table spaces (Db2 Administration Guide)
Conversion from index-controlled partitioning to Universal Table Space (UTS)

Partitions

A partition is a page set that corresponds to a single data set that can be processed or extended
independently.

Db2 usually distributes the data evenly across the partitions of a table space when it is created. However,
the distribution of the data might become uneven over time, as inserts and deletes occur. You can
rebalance data among the partitions by redefining partition boundaries with no impact to availability. You
can also add a partition to the table and to each partitioned index on the table; the new partition becomes
available immediately.

You can spread the partitions of a large table over several Db2 storage groups or data sets. The partitions
of the table do not all need to use the same storage group.

50 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationoftablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createdeprecatedtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createdeprecatedtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_typesofdb2tablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_typesofdb2tablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createtablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_pagesizerecommendations.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_tablespaceimplentation.html
http://www-01.ibm.com/support/docview.wss?uid=swg27047046&aid=1

You can also put different partitions on different device types, which means that you can put frequently
accessed data in separate partitions and place these partitions on faster devices.

You can use separate jobs for mass update, delete, or insert operations instead of using one large job;
each smaller job can work on a different partition. Separating the large job into several smaller jobs that
run concurrently can reduce the elapsed time for the whole task.

For certain read-only queries, Db2 can use parallel processing on more than one partition. Parallel
processing (for read-only queries) is most efficient when you spread the partitions over different disk
volumes and allow each I/0O stream to operate on a separate channel. Use the Parallel Sysplex data
sharing technology to process a single read-only query across many Db2 subsystems in a data sharing
group. You can optimize Parallel Sysplex query processing by placing each Db2 subsystem on a separate
central processor complex.

Certain table space types do not have partitions, including segmented (non-UTS) table spaces and simple
table spaces. However, all such table spaces are deprecated.

Growth-based partitions

Related concepts

Partition-by-range table spaces (Db2 Administration Guide)
Partition-by-growth table spaces (Db2 Administration Guide)

Partitioned (non-UTS) table spaces (deprecated) (Db2 Administration Guide)

Segments

A segment is a group of pages that holds the rows of a single table. All segments in a table space are the
same size.
Related reference

DEFAULT PARTITION SEGSIZE field (DPSEGSZ subsystem parameter) (Db2 Installation and Migration)

Db2 index spaces
An index space is a Db2 storage structure that contains a single index.

When you create an index by using the CREATE INDEX statement, an index space is automatically defined
in the same database as the table. You can define a unique name for the index space, or Db2 can derive a
unique name for you. Under certain circumstances, Db2 implicitly creates index spaces.

Rules for primary and secondary space allocation

You can specify the primary and secondary space allocation or let Db2 choose them. Having Db2 choose
the values, especially the secondary space quantity, increases the possibility of reaching the maximum
data set size before running out of extents.
In the following rules that describe how allocation works, these terms are used:
PRIQTY, SECQTY

The keywords for CREATE TABLESPACE, ALTER TABLESPACE, CREATE INDEX, and ALTER INDEX.

specified-priqty
The user-specified value for PRIQTY.

specified-secqty
The user-specified value for SECQTY.

actual-priqty
The actual primary space allocation, in kilobytes.

actual-priqty-cylinders
The actual primary space allocation, in cylinders.

Chapter 1. Db2 for z/OS and SQL concepts 51

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_rangepartitionedtablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_partitionbygrowthtablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_partitionedtablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_dpsegsz.html

actual-secqty
The actual secondary space allocation, in kilobytes.

actual-secqty-cylinders
The actual secondary space allocation, in cylinders.

calculated-extent-cylinders
A value that is calculated by Db2 using a sliding scale. A sliding scale means that the first secondary
extent allocations are smaller than later secondary allocations. For example, Figure 12 on page 52
shows the sliding scale of secondary extent allocations that Db2 uses for a 64-GB data set. The size
of each secondary extent is larger for each secondary extent that is allocated up to the 127th extent.
For the 127th secondary extent and any subsequent extents, the secondary size allocation is 559
cylinders.

Sliding scale for a 64-GB data set

600

500

400

300

Extent size (CYLS)

200

100

1 17 22 48 66 81 87 112 127 146 161 177 182 208 226 241
Extent number

Figure 12. Sliding scale allocation of secondary extents for a 64 GB data set

Rules

Rule 1: (for primary space allocation)
If PRIQTY is specified and specified-prigty is not equal to -1, actual-priqty is at least specified-prigty
KB.

If PRIQTY is not specified or specified-prigty is equal to -1, actual-prigty is determined as follows:

« For atable space, if the TSQTY subsystem parameter value is specified and is greater than 0,
actual-prigty is at least the value of TSQTY.

If the TSQTY subsystem parameter is not specified or is 0, actual-prigty is one cylinder for a
non-LOB table space. actual-prigty is 10 cylinders for a LOB table space.

- Foranindex, if the IXQTY subsystem parameter value is specified and is greater than 0, actual-
priqty is at least the value of IXQTY.

If the IXQTY subsystem parameter is not specified or is 0, actual-prigty is one cylinder.

Rule 2: (for secondary space allocation)
If SECQTY is not specified, the following formulas determine actual-secqty:

« If the maximum size of a data set in the table space or index is less than 32 GB, the formula is:

actual-secqty-cylinders=
MAX(@.1*%actual-priqty-cylinders, MIN(calculated-extent-cylinders, 127))

- If the maximum size of a data set in the table space or index is 32 GB or greater, the formula is:

actual-secqty-cylinders=
MAX(@.1*actual-priqty-cylinders, MIN(calculated-extent-cylinders, 559))

52 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Rule 3 (for secondary space allocation)
If SECQTY is 0, actual-secqty is 0.

Rule 4 (for secondary space allocation)
If SECQTY is specified and specified-secqty is not equal to -1 or 0, the following formulas determine
actual-secqty. If the maximum size of a data set in the table space or index is less 32 GB, the formula
is:

actual-secqty-cylinders=
MAX(MIN(calculated-extent-cylinders, 127),specified-secqty-cylinders)

If the maximum size of a data set in the table space orindex is 32 GB or greater, the formula is:

actual-secqgty-cylinders=
MAX(MIN(calculated-extent-cylinders, 559),specified-secqty-cylinders)

Rule 5 (for secondary space allocation):
When a table space requires a new piece, the primary allocation quantity of the new piece is
determined by using the maximum of the following values:

- The quantity that is calculated through sliding scale methodology
« The primary quantity from rule 1
« The specified SECQTY value

Related reference

CREATE TABLESPACE statement
The CREATE TABLESPACE statement defines a table space at the current server. The type of table space
depends on the keywords specified.

ALTER TABLESPACE statement
The ALTER TABLESPACE statement changes the description of a table space at the current server.

CREATE INDEX statement
The CREATE INDEX statement creates a partitioning index or a secondary index and an index space at the
current server. The columns included in the key of the index are columns of a table at the current server.

ALTER INDEX statement
The ALTER INDEX statement changes the description of an index at the current server.

| Db2 hash spaces (deprecated)

A hash space is a defined disk space that organizes table data for hash access. Hash-organized table
spaces are deprecated and likely to be unsupported in the future.

Deprecated function:

FL 504 Hash-organized tables are deprecated. Beginning in Db2 12, packages that are bound with
APPLCOMPAT(V12R1M504) or higher cannot create hash-organized tables or alter existing tables to
use hash-organization. Existing hash-organized tables remain supported, but they are likely to be
unsupported in the future.

When you organize a table for hash access, Db2 requires a defined amount of disk space to contain
table data. You can specify the amount of disk space to allocate to the hash space when you create a
table or alter an existing table. The hash space on a table must be large enough to contain new rows
that are added to the table. If a hash space is full, new rows are relocated to the overflow index, which
reduces the performance of hash access on that table. Hash spaces can contain only a single table in a
partition-by-range or partition-by-growth table space.

Related concepts

Hash access paths (deprecated) (Introduction to Db2 for z/0S)

Related tasks

Managing space and page size for hash-organized tables (deprecated) (Db2 Performance)
Monitoring hash access (deprecated) (Db2 Performance)

Chapter 1. Db2 for z/OS and SQL concepts 53

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_hashaccess.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_managehashspace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_monitoringhashaccess.html

Db2 storage groups

Db2 storage groups are a set of volumes on disks that hold the data sets in which tables and indexes are
stored.

The description of a storage group names the group and identifies its volumes and the VSAM (Virtual
Storage Access Method) catalog that records the data sets. The default storage group, SYSDEFLT, is
created when you install Db2.

Within the storage group, Db2 does the following actions:

« Allocates storage for table spaces and indexes
« Defines the necessary VSAM data sets

- Extends and deletes VSAM data sets

- Alters VSAM data sets

All volumes of a given storage group must have the same device type. However, parts of a single database
can be stored in different storage groups.

Db2 can manage the auxiliary storage requirements of a database by using Db2 storage groups. Data sets
in these Db2 storage groups are called "Db2-managed data sets."

These Db2 storage groups are not the same as storage groups that are defined by the DFSMS storage
management subsystem (DFSMSsms).

You have several options for managing Db2 data sets:
« Let Db2 manage the data sets. This option means less work for Db2 database administrators.

After you define a Db2 storage group, Db2 stores information about it in the Db2 catalog. (This catalog is
not the same as the integrated catalog facility catalog that describes Db2 VSAM data sets). The catalog
table SYSIBM.SYSSTOGROUP has a row for each storage group, and SYSIBM.SYSVOLUMES has a row for
each volume. With the proper authorization, you can retrieve the catalog information about Db2 storage
groups by using SQL statements.

When you create table spaces and indexes, you name the storage group from which space is to be
allocated. You can also assign an entire database to a storage group. Try to assign frequently accessed
objects (indexes, for example) to fast devices, and assign seldom-used tables to slower devices. This
approach to choosing storage groups improves performance.

If you are authorized and do not take specific steps to manage your own storage, you can still define
tables, indexes, table spaces, and databases. A default storage group, SYSDEFLT, is defined when
Db2 is installed. Db2 uses SYSDEFLT to allocate the necessary auxiliary storage. Information about
SYSDEFLT, as with any other storage group, is kept in the catalog tables SYSIBM.SYSSTOGROUP and
SYSIBM.SYSVOLUMES.

For both user-managed and Db2-managed data sets, you need at least one integrated catalog facility
(ICF) catalog; this catalog can be either a user catalog or a master catalog. These catalogs are created
with the ICF. You must identify the catalog of the ICF when you create a storage group or when you
create a table space that does not use storage groups.

« Let SMS manage some or all the data sets, either when you use Db2 storage groups or when you
use data sets that you have defined yourself. This option offers a reduced workload for Db2 database
administrators and storage administrators. You can specify SMS classes when you create or alter a
storage group.

« Define and manage your own data sets using VSAM Access Method Services. This option gives you the
most control over the physical storage of tables and indexes.

Recommendation: Use Db2 storage groups and whenever you can, either specifically or by default. Also
use SMS managed Db2 storage groups whenever you can.

Related tasks
Choosing data page sizes for LOB data (Db2 Performance)

54 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_lobpagesize.html

Application processes, concurrency, and recovery

AlL SQL programs execute as part of an application process. An application process involves the execution
of one or more programs, and it is the unit to which Db2 allocates resources and locks.

Different application processes might involve the execution of different programs, or different executions
of the same program. The means of initiating and terminating an application process are dependent on
the environment.

Locking, commit, and rollback

More than one application process might request access to the same data at the same time. Furthermore,
under certain circumstances, an SQL statement can execute concurrently with a utility on the same table
space. Locking is used to maintain data integrity under such conditions, preventing, for example, two
application processes from updating the same row of data simultaneously.

Db2 implicitly acquires locks to prevent uncommitted changes made by one application process from
being perceived by any other. Db2 will implicitly release all locks it has acquired on behalf of an
application process when that process ends, but an application process can also explicitly request that
locks be released sooner. A commit operation releases locks acquired by the application process and
commits database changes made by the same process.

Db2 provides a way to back out uncommitted changes made by an application process. This might be
necessary in the event of a failure on the part of an application process, or in a deadlock situation.

An application process, however, can explicitly request that its database changes be backed out. This
operation is called rollback.

The interface used by an SQL program to explicitly specify these commit and rollback operations depends
on the environment. If the environment can include recoverable resources other than Db2 databases, the
SQL COMMIT and ROLLBACK statements cannot be used. Thus, these statements cannot be used in an
IMS, CICS, or WebSphere environment.

Unit of work

A unit of work is a recoverable sequence of operations within an application process. A unit of work is
sometimes called a logical unit of work.

At any time, an application process has a single unit of work, but the life of an application process can
involve many units of work as a result of commit or full rollback operations.

A unit of work is initiated when an application process is initiated. A unit of work is also initiated when the
previous unit of work is ended by something other than the end of the application process. A unit of work
is ended by a commit operation, a full rollback operation, or the end of an application process. A commit
or rollback operation affects only the database changes made within the unit of work it ends. While

these changes remain uncommitted, other application processes are unable to perceive them unless
they are running with an isolation level of uncommitted read. The changes can still be backed out. Once
committed, these database changes are accessible by other application processes and can no longer

be backed out by a rollback. Locks acquired by Db2 on behalf of an application process that protects
uncommitted data are held at least until the end of a unit of work.

The initiation and termination of a unit of work define points of consistency within an application process.
A point of consistency is a claim by the application that the data is consistent. For example, a banking
transaction might involve the transfer of funds from one account to another. Such a transaction would
require that these funds be subtracted from the first account, and added to the second. Following the
subtraction step, the data is inconsistent. Only after the funds have been added to the second account is
consistency reestablished. When both steps are complete, the commit operation can be used to end the
unit of work, thereby making the changes available to other application processes. The following figure
illustrates this concept.

Chapter 1. Db2 for z/OS and SQL concepts 55

Point of Next point of
consistency consistency

fi One unit of work 4>‘

Time
line
I Database updates T
Begin COMMIT;
unit of work End unit
of work

Figure 13. Unit of work with a commit operation

Unit of recovery

A Db2 unit of recovery is a recoverable sequence of operations executed by Db2 for an application
process.

If a unit of work involves changes to other recoverable resources, the unit of work will be supported by
other units of recovery. If relational databases are the only recoverable resources used by the application
process, then the scope of the unit of work and the unit of recovery are the same and either term can be
used.

Rolling back work

Db2 can back out all changes made in a unit of recovery or only selected changes. Only backing out all
changes results in a point of consistency.

Rolling back all changes

The SQL ROLLBACK statement without the TO SAVEPOINT clause specified causes a full rollback
operation. If such a rollback operation is successfully executed, Db2 backs out uncommitted changes
to restore the data consistency that existed when the unit of work was initiated.

That is, Db2 undoes the work, as shown in the following figure:

Point of New point of
consistency consistency
}4— Unit of work :I
v v
Time
line
A
‘ Database updates T Back out updates T
Begin ROLLBACK, Data is returned
unit of work failure, or to its initial state;
deadlock; end unit of work

begin rollback

Figure 14. Rolling back all changes from a unit of work

Rolling back selected changes using savepoints

A savepoint represents the state of data at some particular time during a unit of work. An application
process can set savepoints within a unit of work, and then as logic dictates, roll back only the changes
that were made after a savepoint was set.

56 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

For example, part of a reservation transaction might involve booking an airline flight and then a hotel
room. If a flight gets reserved but a hotel room cannot be reserved, the application process might want to
undo the flight reservation without undoing any database changes made in the transaction prior to making
the flight reservation. SQL programs can use the SQL SAVEPOINT statement to set savepoints, the SQL
ROLLBACK statement with the TO SAVEPOINT clause to undo changes to a specific savepoint or the last
savepoint that was set, and the SQL RELEASE SAVEPOINT statement to delete a savepoint. The following
figure illustrates this concept.

Unit of work ~|

.
v [

Time
line
A T T T
Begin Savepoint A Rollback to A; COMMIT
unit of work database updates End unit of work

made between
times T1 and T2
are rolled back

Figure 15. Rolling back changes to a savepoint within a unit of work

Packages and application plans

A package contains control structures that Db2 uses when it runs SQL statements. An application plan
relates an application process to a local instance of Db2 and specifies processing options.

Packages are produced during program preparation. You can think of the control structures as the bound
or operational form of SQL statements. All control structures in a package are derived from the SQL
statements that are embedded in a single source program.

An application plan contains a list of package names.

Db2 applications require an application plan. Packages make application programs more flexible and
easier to maintain.

In general, you create plans and packages by using the Db2 commands BIND PLAN and BIND PACKAGE.

Example

The following figure shows an application plan that contains two packages. Suppose that you decide to
change the SELECT statement in package AA to select data from a different table. In this case, you need
to bind only package AA again and not package AB.

GUPI

Chapter 1. Db2 for z/OS and SQL concepts 57

Package AA

Plan A
SELECT * FROM/\- ------- - S
TABLE3
Package AA
Package AB

Package AB

SELECT * FROM TABLE2

Figure 16. Application plan and packages

GUPI

Packages for triggers and routines

A trigger package is a special type of package that is created when you issue a CREATE TRIGGER
statement. It contains the trigger body and the WHEN clause for the trigger. When the trigger activates,
the package executes one or more times.

Packages are also generated, or explicitly created for certain SQL routines, including stored procedures
and certain types of user defined functions. The package for a routine contains the routine body, including
control statements. The package might also contain statements that are generated by Db2. Each time that
the routine is invoked, the package executes one or more times.

Specifically, Db2 generates a package automatically for the following types of SQL routines:

« External scalar functions
External table functions

Compiled SQL scalar functions

Native SQL procedures

External SQL procedures

For external stored procedures, you explicitly bind the source code for the stored procedure into a
package before or you issue the CREATE PROCEDURE statement. Each time that the external procedure is
invoked, the package executes one or more times.

Packages for JDBC, SQLJ, and ODBC applications

Packages for JDBC, SQLJ, and ODBC applications serve different purposes. For more information, see
Preparing and running JDBC and SQLJ programs (Db2 Application Programming for Java) and Db2 ODBC
run time environment setup (Db2 Programming for ODBC).

Related concepts

Programming for Db2 for z/OS (Introduction to Db2 for z/0OS)

Preparation process for an application program (Introduction to Db2 for z/OS)
Related reference

SET CURRENT PACKAGE PATH statement
The SET CURRENT PACKAGE PATH statement assigns a value to the CURRENT PACKAGE PATH special
register.

SET CURRENT PACKAGESET statement

58 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_javaprepexec.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/odbc/src/tpc/db2z_setup.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/odbc/src/tpc/db2z_setup.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_applicationprogrammingfordb2.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_programprepprocesses.html

The SET CURRENT PACKAGESET statement assigns a value to the CURRENT PACKAGESET special
register.

CREATE FUNCTION statement (overview)
The CREATE FUNCTION statement registers a user-defined function with a database server. Each type of
function that you can register with this statement is described separately.

CREATE PROCEDURE statement (overview)
The CREATE PROCEDURE statement registers a stored procedure with a database server. You can register
the following types of procedures with this statement, each of which is described separately.

CREATE TRIGGER statement (basic trigger)

Character conversion

A string is a sequence of bytes that can represent characters. Within a string, all the characters are
represented by a common encoding representation. In some cases, it might be necessary to convert
these characters to a different encoding representation. The process of conversion is known as character
conversion.

Character conversion, when required, is automatic, and when successful, it is transparent to the
application.

In client/server environments, character conversion can occur when an SQL statement is executed
remotely. Consider, for example, the following two cases. In either case, the data could have a different
representation at the sending and receiving systems.

« The values of data sent from the requester to the current server
« The values of data sent from the current server to the requester

Conversion can also occur during string operations on the same system, as in the following examples:
« Anoverriding CCSID is specified.

For example, an SQL statement with a descriptor, which requires an SQLDA. In the SQLDA, the CCSID
is in the SQLNAME field for languages other than REXX, and in the SQLCCSID field for REXX. (For more
information, see Appendix G, “SQL descriptor area (SQLDA),” on page 2313). A DECLARE VARIABLE
statement can also be issued to associate a CCSID with the host variables into which data is retrieved
from a table.

« The value of the ENCODING bind option or the APPLICATION ENCODING SCHEMA option of the CREATE
PROCEDURE or ALTER PROCEDURE statement for a native SQL procedure (static SQL statements) or
the CURRENT APPLICATION ENCODING SCHEME special register (for dynamic SQL) is different than
encoding scheme of the data being retrieved.

« A mixed character string is assigned to an SBCS column or host variable.
« An SOL statement refers to data that is defined with different CCSIDs.

The text of an SQL statement is also subject to character conversion because it is a character string.

The following list defines some of the terms used for character conversion.

ASCII
Acronym for American Standard Code for Information Interchange, an encoding scheme used to
represent characters. The term ASCII is used throughout this information to refer to IBM-PC Data or
ISO 8-bit data.

character set
A defined set of characters, a character being the smallest component of written language that has
semantic value. For example, the following character set appears in several code pages:

- 26 nonaccented letters A through Z
- 26 nonaccented letters a through z
- digits 0 through 9

« L, 520"/ _&+%F=<>

Chapter 1. Db2 for z/OS and SQL concepts 59

code page
A set of assignments of characters to code points. For example, in EBCDIC, "A" is assigned code point
X'C1', and "B" is assigned code point X'C2". In Unicode UTF-8, "A" is assigned code point X'41', and
"B" is assigned code point X'42'. Within a code page, each code point has only one specific meaning.

code point
A unique bit pattern that represents a character. It is a numerical index or position in an encoding
table used for encoding characters.

coded character set
A set of unambiguous rules that establishes a character set and the one-to-one relationships between
the characters of the set and their coded representations. It is the assignment of each character in a
character set to a unique numeric code value.

coded character set identifier (CCSID)
A two-byte, unsigned binary integer that uniquely identifies an encoding scheme and one or more
pairs of character sets and code pages.

EBCDIC
Acronym for Extended Binary-Coded Decimal Interchange Code, an encoding scheme used to
represent character data, a group of coded character sets that consist of 8 bit coded characters.
EBCDIC coded character sets use the first 64 code positions (X'00' to X'3F') for control codes. The
range X'41' to X'FE' is used for single-byte characters. For double-byte characters, the first byte is
in the range X'41' to X'FE' and the second byte is also in the range X'41' to X'FE', while X'4040'
represents a double-byte space.

encoding scheme
A set of rules used to represent character data. All string data stored in a table must use the same
encoding scheme and all tables within a table space must use the same encoding scheme, except for
global temporary tables, declared temporary tables, and work file table spaces. Db2 supports these
encoding schemes:

« ASCII
- EBCDIC
« Unicode

substitution character
A unique character that is substituted during character conversion for any characters in the source
encoding representation that do not have a match in the target encoding representation.

Unicode
A universal encoding scheme for written characters and text that enables the exchange of data
internationally. It provides a character set standard that can be used all over the world. It provides
the ability to encode all characters used for the written languages of the world and treats alphabetic
characters, ideographic characters, and symbols equivalently because it specifies a numeric value and
a name for each of its characters. It includes punctuation marks, mathematical symbols, technical
symbols, geometric shapes, and dingbats. Db2 supports these two encoding forms:

- UTF-8: Unicode Transformation Format, a 8 bit encoding form designed for ease of use with existing
ASCII-based systems. UTF-8 can encode any of the Unicode characters. A UTF-8 character is 1,2,3,
or 4 bytes in length. A UTF-8 data string can contain any combination of SBCS and MBCS data,
including supplementary characters. The CCSID value for data in UTF-8 format is 1208. UTF-8 has
multiple code points for spaces, including the '20'X single-byte space that Db2 uses for padding
UTF-8 data.

e UTF-16: Unicode Transformation Format, a 16 bit encoding form designed to provide code values
for over a million characters and a superset of UCS-2. UTF-16 can encode any of the Unicode
characters. In UTF-16 encoding, characters are 2 bytes in length, except for supplementary
characters, which take two 2 byte string units per character. The CCSID value for data in UTF-16
format is 1200. UTF-16 has multiple code points for spaces, including the '0020'X single-byte space
that Db2 uses for padding UTF-16 data.

Character data (CHAR, VARCHAR, and CLOB) is encoded in Unicode UTF-8. Character strings are
also used for mixed data (that is a mixture of single-byte characters and multi-byte characters)

60 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

and for data that is not associated with any character set (called bit data). Graphic data (GRAPHIC,
VARGRAPHIC, and DBCLOB) is encoded in Unicode UTF-16. For a comparison of some UTF-8 and
UTF-16 code points for some sample characters, see Character sets and code pages (Introduction
to Db2 for z/0S). This table shows how a UTF-8 character can be 1 to 4 bytes in length, a non-
supplementary UTF-16 character is 2 bytes in length, and how a supplementary character in either

UTF-8 or UTF-16 takes two 2 byte code points.

Character conversion can affect the results of several SQL operations. In this information, the effects are

described in:

“String assignments” on page 149

“Conversion rules for comparisons” on page 159

“Character conversion in set operations and concatenations” on page 1066

Character sets and code pages

Even with the same encoding scheme, different CCSIDs exist, and the same code point can represent
a different character in different CCSIDs. Furthermore, a byte in a character string does not necessarily
represent a character from a single-byte character set (SBCS).

The following figure shows how a typical character set might map to different code points in two different

code pages.
Code page: ppl (ASCII)

Code page: pp2(EBDIC)

0 1|2 3 4 5 E 0 1 A B C D E F
0 o|l@| P A 0 # 0
1 1A | O A 1 $ | A3 1
2 t+]12]|B|R A 2 s |%|B|K|S |2
3 3 C S A 3 t |[—™]|C L T 3
4 4 | D|T A 4 ul*|D|IM|U]|4
5 %|5 | E|U A 5 v |{(|E|N|V |5
E > | N Va E ! A}
F / | | O ® F AlO| |A](
Code point: 2FJ LCharacter setssl | Charaéter s;t ssl

(in code page pp2)

(in code page ppl)

Figure 17. Code page mappings for character set ss1 in ASCII and EBCDIC

For Unicode, there is only one CCSID for UTF-8 and only one CCSID for UTF-16. The following figure
shows how the first 127 single code points for UTF-8 are the same as ASCII with a CCSID of 367. For
example, in both UTF-8 and ASCII CCSID 367,an Ais X'41'anda 1is X'31".

Chapter 1. Db2 for z/OS and SQL concepts 61

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_charsetsandcodepages.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_charsetsandcodepages.html

First 127 code points for UTF-8 code page

0 1 2 3 5 6 7
0 pp 0 @ P " p
1 I 1 A Q a q
2 2 B R b r
3 # 3 C S c S
4 $ 4 D T d t
5 % 5 E U e u
6 & 6 F v f \
7 7 G w g w
8 (8 H X h X
9) 9 1 Y i y
A * J z j z
B + K [k {
C < L \ l |
D = M 1T m 3
E > N 7 no o~
F / ? 0 _ o

code point:2f

Figure 18. Code point mapping for the first 127 code points for UTF-8 single-byte characters (CCSID 1208)

The following figure shows a comparison of how some UTF-16 and UTF-8 code points map to some
sample characters. The character for the eighth note musical symbol takes two 2 byte code points
because it is a supplementary character.

Character glyph UTF-8 code point = UTF-16 code point
M 4D 004D
A C384 0oc4
= E4BASB AESB
> FO9D85A0 D834DD60

Figure 19. A comparison of how some UTF-8 and UTF-16 code points map to some sample characters

Related concepts

Introduction to character conversion (Db2 Internationalization Guide)
Related information

Unicode Consortium

Coded character sets and CCSIDS

The IBM character data representation architecture (CDRA) deals with the differences in string
representation and encoding. The Coded Character Set Identifier (CCSID) is a key element of this
architecture. A CCSID is a 2 byte (unsigned) binary number that uniquely identifies an encoding scheme
and one or more pairs of character sets and code pages.

A CCSID is an attribute of strings, just as length is an attribute of strings. All values of the same string
column have the same CCSID.

Character conversion is described in terms of CCSIDs of the source and target. With Db2 for z/0OS, two
methods are used to identify valid source and target combinations and to perform the conversion from
one coded character set to another:

« Db2 catalog table SYSIBM.SYSSTRINGS

62 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/char/src/tpc/db2z_introcharconv.html
http://www.unicode.org

Each row in the catalog table describes a conversion from one coded character set to another.
« z/0S support for Unicode.

In some cases, no conversion is necessary even though the strings involved have different CCSIDs.

Different types of conversions might be supported by each database manager. Round-trip conversions
attempt to preserve characters in one CCSID that are not defined in the target CCSID so that if the data is
subsequently converted back to the original CCSID, the same original characters result. Enforced subset
match conversions do not attempt to preserve such characters. Which type of conversion is used for a
specific source and target CCSID is product-specific.

Related concepts

Introduction to character conversion (Db2 Internationalization Guide)
z/OS Unicode Services User’s Guide and Reference

Related tasks

Working with international data (Db2 Installation and Migration)
Related reference

SYSSTRINGS catalog table
The SYSSTRINGS table contains information about character conversion. Each row describes a conversion
from one coded character set to another. The schema is SYSIBM.

Determining the encoding scheme and CCSID of a string

An encoding scheme and a CCSID are attributes of strings, just as length is an attribute of strings. All
values of the same string column have the same encoding scheme and CCSID.

Every string has an encoding scheme and a CCSID that identifies the manner in which the characters in
the string are encoded. Strings can be encoded in ASCII, EBCDIC, or Unicode.

The CCSID that is associated with a string value depends on the SQL statement in which the data is
referenced and the type of expression. Use the Type 1 rules when the SQL statement meets the following
conditions:

« The SQL statement operates with a single set of CCSIDs (SBCS, mixed, and graphic). An SQL statement
that does not contain any of the following items operates with a single set of CCSIDs:

— References to columns from multiple tables or views that are defined with CCSIDs from more than
one set of CCSIDs (SBCS, mixed, and graphic)

— References to an EBCDIC table that contains a Unicode column
— Graphic hexadecimal (GX) or hexadecimal Unicode (UX) string constants
— References to the XMLCLOB built-in function
— Cast specifications with a CCSID clause
— User-defined table functions
« The SQL statement is not one of the following statements:

CALL statement
SET assignment statement

SET special register

VALUES statement

VALUES INTO statement

« One of the following built-in functions is not referenced:
ASCII_CHR

ASCII_STR (or ASCIISTR)

- CHR

DECRYPT_BIT

Chapter 1. Db2 for z/OS and SQL concepts 63

https://www.ibm.com/docs/en/SSEPEK_12.0.0/char/src/tpc/db2z_introcharconv.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/abstract.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_workingwintldata.html

— DECRYPT_CHAR

— DECRYPT_DATAKEY_BIT

— DECRYPT_DATAKEY_CLOB

— DECRYPT_DATAKEY_DBCLOB

— DECRYPT_DATAKEY_VARCHAR

— DECRYPT_DATAKEY_VARGRAPHIC

— DECRYPT_DB
— EBCDIC_CHR

— EBCDIC_STR

— GETVARIABLE
— JSON_VAL

— NORMALIZE_STRING
— UNICODE_STR (or UNISTR)

— XMLSERIALIZE

« The SQL statement does not include a collection-derived table (UNNEST).

Use the Type 2 rules when the statement does not meet the conditions for Type 1 rules.

For those SQL statements and tools that use a SYSDUMMYx table, use the SYSDUMMYx table that has the
same encoding scheme as the other objects in your SQL statement, to avoid conversions. A SYSDUMMYx
table is available in each encoding scheme. For example, suppose that your SQL statement references a
SYSDUMMYXx table that is in a different encoding scheme from other objects in the statement. Db2 treats
this statement as one that references objects with different CCSIDs (Type 2 rules), and conversion is likely
to occur. To avoid this situation, reference the SYSDUMMYXx table that has the same encoding scheme as
the other objects in your SQL statement. See SYSDUMMYx tables (Introduction to Db2 for z/OS) for more

information.

Table 10 on page 64 describes the rules for determining the CCSID of derived string data when the

source data has a string type.

Table 10. Rules for determining the CCSID that is associated with string data derived from string data

Source of the string data

Type 1 rules

Type 2 rules

String constant

If the statement references a table

or view, the encoding scheme of that
table or view determines the encoding
scheme for the string constant.

The CCSID is the appropriate character
string CCSID of the encoding scheme.

The CCSID is the appropriate character

string CCSID of the application encoding
scheme. 1" on page 66

Datetime constant

If the statement references a table

or view, the encoding scheme of that
table or view determines the encoding
scheme for the string constant.

Otherwise, the default EBCDIC
encoding scheme is used for the string
constant.

The CCSID is the appropriate character
string CCSID of the encoding scheme.

The CCSID is the appropriate character

string CCSID of the application encoding
scheme. 1" on page 66

64 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sysdummy.html

Table 10. Rules for determining the CCSID that is associated with string data derived from string data (continued)

Source of the string data

Type 1 rules

Type 2 rules

Hexadecimal string
constant (X'..")

If the statement references a table

or view, the encoding scheme of that
table or view determines the encoding
scheme for the string constant.

Otherwise, the default EBCDIC
encoding scheme is used for the string
constant.

The CCSID is the appropriate graphic
string CCSID of the encoding scheme.

The CCSID is the appropriate character

string CCSID of the application encoding
scheme. 1" on page 66

Graphic string
constant
(G..)

If the statement references a table

or view, the encoding scheme of that
table or view determines the encoding
scheme for the graphic string constant.

Otherwise, the default EBCDIC
encoding scheme is used for the graphic
string constant.

The CCSID is the graphic string CCSID of
the encoding scheme.

The CCSID is the graphic string CCSID

of the application encoding scheme.””
on page 66

Graphic hexadecimal
constant (GX'..")

Not applicable.

The CCSID is the graphic string CCSID of
the application encoding scheme, which
must be ASCII or EBCDIC.

Hexadecimal Unicode
string constant (UX'...")

Not applicable.

The CCSID is 1200 (UTF-16).

Special register

If the statement references a table

or view, the encoding scheme of that
table or view determines the encoding
scheme for the special register.

Otherwise, the default EBCDIC
encoding scheme is used for the special
register.

The CCSID is the appropriate character
string CCSID of the encoding scheme.

The CCSID is the appropriate CCSID of

the application encoding scheme.”2"on
page 66

Column of a table

The CCSID is the CCSID that is
associated with the column of the table.

The CCSID is the CCSID that is
associated with the column of the table.

Column of a view

The CCSID is the CCSID of the column
of the result table of the fullselect of the
view definition.

The CCSID is the CCSID of the column
of the result table of the fullselect of the
view definition.

Expression

The CCSID is the CCSID of the result of
the expression.

The CCSID is the CCSID of the result of
the expression.

Chapter 1. Db2 for z/OS and SQL concepts 65

Table 10. Rules for determining the CCSID that is associated with string data derived from string data (continued)

Source of the string data

Type 1 rules

Type 2 rules

Result of a built-in function

If the description of the function, in
Chapter 4, “Built-in functions,” on page

If the description of the function, in
Chapter 4, “Built-in functions,” on page

341, indicates what the CCSID of the
result is, the CCSID is that CCSID.

Otherwise, if the description of the
function refers to this table for the
CCSID, the CCSID is the appropriate
CCSID of the CCSID set that is used by
the statement for the data type of the
result.

341, indicates what the CCSID of the
result is, the CCSID is that CCSID.

Otherwise, if the description of the
function refers to this table for the
CCSID, the CCSID is the appropriate
CCSID of the application encoding

scheme for the data type of the result.
“1” on page 66

Parameter of a user-
defined routine

The CCSID is the CCSID that was
determined when the function or
procedure was created.

The CCSID is the CCSID that was
determined when the function or
procedure was created.

The expression in the
RETURN statement of a
CREATE statement for a
user-defined SQL scalar
function

If the expression in the RETURN
statement is string data, the encoding
scheme is the same as for the
parameters of the function. The CCSID
is determined from the encoding
scheme and the attributes of the data.

The CCSID is determined from the
CCSID of the result of the expression
specified in the RETURN statement.

String host variable

If the statement references a table

or view, the encoding scheme of that
table or view determines the encoding
scheme for the host variable.

Graphic variables are an exception if the
table or view is EBCDIC or ASCII and
the value of the MIXED DATA field on
the DSNTIPF panel is NO. In this case,
the Unicode encoding scheme is used
for the graphic host variable.

Otherwise, the default EBCDIC
encoding scheme is used for the host
variable.

The CCSID is the appropriate CCSID of
the data type of the host variable.

At package prepare time, the CCSID is

the appropriate CCSID of the data type
of the host variable for the application

encoding scheme.

Graphic variables are an exception if

the application or encoding scheme

is EBCDIC or ASCII and the value of

the MIXED DATA field on the DSNTIPF
panelis NO. In this case, the Unicode
encoding scheme is used for the graphic
host variable.

At run time, the CCSID specified in

the declare variable statement, or as

an override in the SQLDA. Otherwise,
the CCSID is the appropriate CCSID of
the application encoding scheme for the
data type of the host variable.

Notes:

1. If the context is within a check constraint or a package for a basic trigger, the CCSID is the appropriate
CCSID for Unicode, instead of the application encoding scheme. If the context is within a package for
an advanced trigger, the CCSID is determined from the implicitly or explicitly specified APPLICATION
ENCODING SCHEME option; otherwise the CCSID is the appropriate CCSID for Unicode instead of the
application encoding scheme.

“Determining the encoding scheme and CCSID of a string” on page 63 shows the rules for determining the

CCSID of derived string data when the source data has a nhumeric type.

66 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 11. Rules for determining the CCSID that is associated with string data derived from numeric data

Source of the numeric Type 1 rules Type 2 rules

data

Numeric data If the statement references a table The CCSID is the appropriate character
or view, the encoding scheme of that or graphic string CCSID of the
table or view determines the encoding application encoding scheme. “1”on page
scheme for the string data that is 67

derived from a numeric value.

Otherwise, the default EBCDIC
encoding scheme is used for the string
data derived from a numeric value.

The CCSID is the appropriate character
or graphic string CCSID of the
application encoding scheme.

Notes:

1. If the context is within a check constraint or a package for a basic trigger, the CCSID is the appropriate
CCSID for Unicode, instead of the application encoding scheme. If the context is within a package for
an advanced trigger, the CCSID is determined from the implicitly or explicitly specified APPLICATION
ENCODING SCHEME option; otherwise the CCSID is the appropriate CCSID for Unicode instead of the
application encoding scheme.

The following examples show how these rules are applied.

Example 1: Assume that the default encoding scheme for the installation is EBCDIC and that the
installation does not support mixed and graphic data. The following statement conforms to the rules

for Type 1 in Table 10 on page 64. Therefore, the X'40' is interpreted as EBCDIC SBCS data because the
statement references a table that is in EBCDIC. The CCSID for X'40' is the default EBCDIC SBCS CCSID for
the installation.

SELECT * FROM EBCDIC_TABLE WHERE COL1 = X'40';

the result of the query includes each row that has a value in column COL1 that is equal to a single EBCDIC
blank.

Example 2: The following statement references data from two different tables that use different encoding
schemes. This statement does not conform to the rules for Type 1 statements in Table 10 on page 64.
Therefore, the rules for Type 2 statements are used. The CCSID for X'40' is dependent on the current
application encoding scheme. Assuming that the current application encoding scheme is EBCDIC, X'40'
represents a single EBCDIC blank.

SELECT * FROM EBCDIC_TABLE, UNICODE_TABLE WHERE COL1 = X'40';

as with Example 1, the result of the query includes each row that has a value in column COL1 that is equal
to a single EBCDIC blank. If the current application encoding scheme were ASCII or Unicode, X'40' would
represent something different and the results of the query would be different.

Expanding conversions

An expanding conversion occurs when the length of the converted string is greater than that of the source
string.

For example, an expanding conversion occurs when an ASCII mixed data string that contains DBCS
characters is converted to EBCDIC mixed data. To prevent the loss of data on expanding conversions, use
a varying-length string variable with a maximum length that is sufficient to contain the expansion.

Chapter 1. Db2 for z/OS and SQL concepts 67

Expanding conversions also can occur when string data is converted to or from Unicode. It can also occur
between UTF-8 and UTF-16, depending on the data being converted. UTF-8 uses 1, 2, 3, or 4 bytes per
character. UTF-16 uses 2 bytes per character, except for supplementary characters, which use two 2 byte
code points for each character. If UTF-8 were being converted to UTF-16, a 1 byte character would be
expanded to 2 bytes.

Contracting conversions

A contracting conversion occurs when the length of the converted string is smaller than that of the source
string.

For example, a contracting conversion occurs when an EBCDIC mixed data string that contains DBCS
characters is converted to ASCII mixed data due to the removal of shift codes.

Contracting conversions also can occur when string data is converted to or from Unicode data. It can also
occur between UTF-8 and UTF-16, depending on the data being converted.

Distributed relational databases

The database managers in a distributed relational database communicate and cooperate with each other
in a way that allows a Db2 application program to use SQL to access data at any of the interconnected
computer systems.

A distributed relational database consists of a set of tables and other objects that are spread across
different, but interconnected, computer systems. Each computer system has a relational database
manager, such as Db2, that manages the tables in its environment. The database managers communicate
and cooperate with each other in a way that allows a Db2 application program to use SQL to access data
at any of the computer systems. The Db2 subsystem where the application plan is bound is known as

the local Db2 subsystem. Any database server other than the local Db2 subsystem is considered a remote
database server, and access to its data is a distributed operation.

Distributed relational databases are built on formal requester-server protocols and functions. An
application requester component supports the application end of a connection. It transforms an
application's database request into communication protocols that are suitable for use in the distributed
database network. These requests are received and processed by an application server component at
the database server end of the connection. Working together, the application requester and application
server handle the communication and location considerations so that the application is isolated from
these considerations and can operate as if it were accessing a local database.

For more information on Distributed Relational Database Architecture™ (DRDA) communication protocols,
see DRDA Volume 1: Distributed Relational Database Architecture (Open Group Library - Data
Management Standards).

Related concepts

Distributed data access (Introduction to Db2 for z/OS)

Related tasks

Improving performance for applications that access distributed data (Db2 Performance)

Connections

A connection is an association between an application process and a local or remote database server.
Connections are managed by applications.

An application process must be connected to the application server facility of a database manager before
SQL statements that reference tables or views can be executed. An application can use the CONNECT
statement to establish a connection to a database server and make that database server the current
server of the application process.

68 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://publications.opengroup.org/standards/data-mgmt
https://publications.opengroup.org/standards/data-mgmt
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_distributeddataaccess.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_tunedistributedapps.html

Commit processing

When Db2 for z/OS acts as a requester, it negotiates with the database server during the connection
process to determine how to perform commits. If the remote server does not support two-phase commit
protocol, Db2 downgrades to perform one-phase commits. Otherwise, Db2 always performs two-phase
commits, which allow applications to update one or more databases in a single unit of work and are more
reliable than one-phase commits. Two-phase commit is a two-step process:

1. First, all database managers involved in the same unit of work are pooled to determine whether they
are ready to commit.

2. Then, if all database managers respond positively, they are directed to execute commit processing. If
all database managers do not respond positively, they are directed to execute backout processing.

Db2 can also provide coordination for transactions that include both two-phase commit resources and
one-phase commit resources. If an application has multiple connections to several different database
servers, and if any of the connections are one-phase commit connections, then only one database that is
involved in the transaction can be updated. The connections to all the other databases that are involved in
the transaction are read-only.

To execute a static SQL statement that references tables or views, the bound form of the statement is
taken from a package that the database manager previously created through a bind operation or when a
version of a native SQL procedure was defined.

Supported SQL statements and clauses

For the most part, an application can use the statements and clauses that are supported by the database
manager of the current server, even though that application might be running via the application requester
of a database manager that does not support some of those statements and clauses. Restrictions to this

general rule for Db2 for z/OS are documented in @F SQL Reference for Cross-Platform Development -
Version 6.

Distributed unit of work
The distributed unit of work facility provides for the remote preparation and execution of SQL statements.

An application process at computer system A can connect to a database server at computer system B
and, within one or more units of work, execute any number of static or dynamic SQL statements that
reference objects at B. All objects referenced in a single SQL statement must be managed by the same
database server. Any number of database servers can participate in the same unit of work, and any
number of connections can exist between an application process and a database server. A commit or
rollback operation that does not specify a savepoint ends the unit of work.

Connection management

How connections are managed depends on what states the SQL connection and the application process
arein.

At any time:

« An SQL connection is in one of the following states:

Current and held

Current and release-pending
Dormant and held

Dormant and release-pending

« An application process is in the connected or unconnected state, and has a set of zero or more SQL
connections. Each SQL connection is uniquely identified by the name of the database server at the other
end of the connection. Only one SQL connection is active (current) at a time.

Chapter 1. Db2 for z/OS and SQL concepts 69

https://www.ibm.com/docs/en/SSEPEK_12.0.0/pdf/cpsqlrv6.pdf
https://www.ibm.com/docs/en/SSEPEK_12.0.0/pdf/cpsqlrv6.pdf

Initial state of an application process: An application process is initially in the connected state, and it has
exactly one SQL connection. The server of that connection is the local Db2 subsystem.

Initial state of an SQL connection: An SQL connection is initially in the current and held state.
The following figure shows the state transitions:
Begin process

SQL connection states

Successful CONNECT
or SET CONNECTION specifying
another SQL connection

»

Current Dormant

Successful CONNECT
or SET CONNECTION specifying
the existing dormant SQL connection

v

RELEASE
Held » Release pending

v

Application process connection states

The current SQL connection
is intentionally ended, or a
failure occurs that causes the
loss of the connection

»

» Connected Unconnected

) Successful CONNECT or
SET CONNECTION

Figure 20. State transitions for an SQL connection and an application process connection in a distributed
unit of work

SQL connection states

If an application process successfully executes a CONNECT statement, the SQL connection states of the
connections change.

If an application process successfully executes a CONNECT statement:

« The current connection is placed in the dormant and held state.

- The new connection is placed in the current and held state.

« The location name is added to the set of existing connections.

If the location name is already in the set of existing connections, an error is returned.
An SQL connection in the dormant state is placed in the current state using:

« The SET CONNECTION statement, or

« The CONNECT statement, if the SQLRULES(DB2) bind option is in effect.
When an SQL connection is placed in the current state, the previously-current SQL connection, if any, is
placed in the dormant state. No more than one SQL connection in the set of existing connections of an

application process can be current at any time. Changing the state of an SQL connection from current to
dormant or from dormant to current has no effect on its held or release-pending state.

70 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

An SQL connection is placed in the release-pending state by the RELEASE statement. When an application
process executes a commit operation, every release-pending connection of the process is ended.
Changing the state of an SQL connection from held to release-pending has no effect on its current or
dormant state. Thus, an SQL connection in the release-pending state can still be used until the next
commit operation. No way exists to change the state of a connection from release-pending to held.

Application process connection states

In a distributed unit of work, an application process can be in a connected or unconnected state.
Depending on the state, the application process can execute only certain SQL statements successfully.

A connection to a different database server can be established by the explicit or implicit execution of a
CONNECT statement. The following rules apply:

« An application process cannot have more than one SQL connection to the same database server at the
same time.

- When an application process executes a SET CONNECTION statement, the specified location name
must be in the set of existing connections of the application process.

« When an application process executes a CONNECT statement and the SQLRULES(STD) bind option is in
effect, the specified location must not be in the set of existing connections of the application process.

If an application process has a current SQL connection, the application process is in a connected state.
The CURRENT SERVER special register contains the name of the database server of the current SQL
connection. The application process can execute SQL statements that refer to objects managed by that
server. If the server is a Db2 subsystem, the application process can also execute certain SQL statements
that refer to objects managed by a Db2 subsystem with which that server can establish a connection.

An application process in an unconnected state enters a connected state when it successfully executes a
CONNECT or SET CONNECTION statement.

If an application process does not have a current SQL connection, the application process is in an
unconnected state. The CURRENT SERVER special register contains blanks. The only SQL statements that
can be executed successfully are CONNECT, RELEASE, COMMIT, ROLLBACK, and any of the following local
SET statements.

« SET CONNECTION

SET CURRENT APPLICATION ENCODING SCHEME

SET CURRENT PACKAGE PATH

SET CURRENT PACKAGESET

SET host-variable = CURRENT APPLICATION ENCODING SCHEME
SET host-variable = CURRENT PACKAGESET

« SET host-variable = CURRENT SERVER

Because the application process is in an unconnected state, a COMMIT or ROLLBACK statement is
processed by the local Db2 subsystem.

An application process in a connected state enters an unconnected state when its current SQL connection
is intentionally ended, or the execution of an SQL statement is unsuccessful because of a failure that
causes a rollback operation at the current server and loss of the SQL connection. SQL connections are
intentionally ended when an application process successfully executes a commit operation and either of
the following are true:
« The SQL connection is in the release-pending state.
« The SQL connection is not in the release-pending state, but it is a remote connection and either of the
following are true:
— The DISCONNECT(AUTOMATIC) bind option is in effect

— The DISCONNECT(CONDITIONAL) bind option is in effect and an open WITH HOLD cursor is not
associated with the connection

Chapter 1. Db2 for z/OS and SQL concepts 71

An implicit CONNECT to a default Db2 subsystem is executed when an application process executes
an SOL statement other than COMMIT, CONNECT TO, CONNECT RESET, SET CONNECTION, RELEASE, or
ROLLBACK, and if all of the following conditions apply:

- The CURRENTSERVER bind option was specified when creating the application plan of the application
process and the identified server is not the local Db2.

« An explicit CONNECT statement has not already been successfully or unsuccessfully executed by the
application process.

« An implicit connection has not already been successfully or unsuccessfully executed by the application
process. An implicit connection occurs as the result of execution of an SQL statement that contains a
three-part name in a package that is bound with the DBPROTOCOL(DRDA) option.

If the implicit CONNECT fails, the application process is placed in an unconnected state.

When a connection is ended, all resources that were acquired by the application process through the
connection and all resources that were used to create and maintain the connection are returned to the
connection pool. For example, if application process P placed the connection to application server X in
the release-pending state, all cursors of P at X are closed and returned to the connection pool when the
connection is ended during the next commit operation.

When a connection is ended as a result of a communications failure, the application process is placed in
an unconnected state.

All connections of an application process are ended when the process ends.

Remote unit of work

The remote unit of work facility also provides for the remote preparation and execution of SQL statements,
but in a much more restricted fashion than the distributed unit of work facility.

An application process at computer system A can connect to a database server at computer system B
and, within one or more units of work, execute any number of static or dynamic SQL statements that
reference objects at B. All objects referenced in a single SQL statement must be managed by the same
database server, and all SQL statements in the same unit of work must be executed by the same database
server. However, unlike a distributed unit of work, an application process can have only one connection at
a time. The process cannot connect to a new server until it executes a commit or rollback operation on the
current server to end that unit of work. This restricts the situations in which a CONNECT statement can be
executed.

Connection management

How connections are managed depends on what states the SQL connection and the application process
arein.

An application process is in one of four states at any time:

- Connectable and connected

« Unconnectable and connected
 Connectable and unconnected

« Unconnectable and unconnected

Initial state of an application process: An application process is initially in the connectable and
connected state. The database server to which the application process is connected is determined by

a product-specific option that might involve an implicit CONNECT operation. An implicit connect operation
cannot occur if an implicit or explicit connect operation has already successfully or unsuccessfully
occurred. Thus, an application process cannot be implicitly connected to a database server more than
once. Other rules for implicit connect operations are product-specific.

Figure 21 on page 73 shows the state transitions:

72 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Begin process

CONNECT with system failure

Connectable > Connectable
and and
connected . Successful CONNECT unconnected

F 3 r 3 F 3
System failure
ROLLBACK or SOL other than gf;ggLLCé)A"’(':'EIT ROLLBACK
successful CONNECT, COMMIT only
COMMIT ROLLBACK, and
local SETs
v

Unconnectable Unconnectable

and and

connected - unconnected

System failure except
during COMMIT or ROLLBACK

Figure 21. State transitions for an application process connection in a remote unit of work

In the following descriptions of application process connections, CONNECT can mean:

« CONNECT TO
« CONNECT RESET
« CONNECT authorization

It cannot mean CONNECT with no operand, which is used to return information about the current server.

Consecutive CONNECT statements can be executed successfully because CONNECT does not remove

an application process from the connectable state. A CONNECT statement does not initiate a new unit

of work; a unit of work is initiated by the first SQL statement that accesses data. CONNECT cannot
execute successfully when it is preceded by any SQL statement other than CONNECT, COMMIT, RELEASE,
ROLLBACK, or SET CONNECTION. To avoid an error, execute a commit or rollback operation before a
CONNECT statement is executed.

Connectable and connected state: In the connectable and connected state, an application process is
connected to a database server, and CONNECT statements that target the current server can be executed.
An application process re-enters this state when either of the following is true:

- The process completes a rollback or a successful commit from an unconnectable and connected state.
» The process successfully executes a CONNECT statement from a connectable and unconnected state.

Unconnectable and connected state: In the unconnectable and connected state, an application process
is connected to a database server, and only a CONNECT statement with no operands can be executed. An
application process enters this state from a connectable and connected state when it executes any SQL
statement other than CONNECT, COMMIT, or ROLLBACK.

Connectable and unconnected state: In the connectable and unconnected state, an application process
is not connected to a database server. The only SQL statement that can be executed is CONNECT. An
application process enters this state if any of the following is true:

» The process does not successfully execute a CONNECT statement from a connectable and connected
state.

« The process executes a COMMIT statement when the SQL connection is in a release-pending state.
« A system failure occurs during a COMMIT or ROLLBACK from an unconnectable and connected state.

Chapter 1. Db2 for z/OS and SQL concepts 73

« The process executes a ROLLBACK statement from an unconnectable and unconnected state.

Other product-specific reasons can also cause an application process to enter the connectable and
unconnected state.

Unconnectable and unconnected state: In the unconnectable and unconnected state, an application
process is not connected to a database server and CONNECT statements cannot be executed. The only
SQL statement that can be executed is ROLLBACK. An application process enters this state from an
unconnectable and connected state as a result of a system failure, except during a COMMIT or ROLLBACK,
at the server.

74 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Chapter 2. Language elements in SQL

An understanding of the basic syntax of SQL and language elements that are common to many SQL
statements can be helpful in using SQL with Db2 for z/OS. The most basic elements of SQL syntax are
characters and tokens.

The following topics provide information about more language elements:
« “Characters and tokens in SQL” on page 75

 “Identifiers in SQL” on page 77

« “Naming conventions in SQL” on page 79

« “SQL path” on page 85

« “Unqualified object name resolution” on page 86

« “Authorization IDs, roles, and authorization names” on page 92

- “Data types” on page 98

« “Promotion of data types” on page 129

 “Casting between data types” on page 130

« “Assignment and comparison” on page 143

« “Rules for result data types” on page 166

« “Constants” on page 170

« “Special registers” on page 177

« “Column names” on page 219

« “Variables” on page 225

« “Host structures in PL/I, C, and COBOL” on page 235

« “Host-variable arrays in PL/I, C, C++, and COBOL” on page 236
« “Functions” on page 237

« “Expressions” on page 245

« “Predicates” on page 296

« “Search conditions” on page 319
« “Options affecting SQL” on page 320
« “Mappings from SQL to XML” on page 327

Characters and tokens in SQL

The most basic elements of SQL syntax are characters and tokens. Tokens are the basic syntactical units
of the SQL language.

Characters

The basic symbols of keywords and operators in the SQL language are characters. Characters are
classified as letters, digits, or special characters.

« A letter is any of the 26 uppercase (A-Z) and 26 lowercase (a-z) letters of the English alphabet.2
- Adigitis any one of the characters 0-9.
- A special character is any character other than a letter or a digit.

1 Letters also include three code points reserved as alphabetic extenders for national languages ($, #, and
@ in the United States). These three code points (X'5B', X'7B', and X'7C') should be avoided because they
represent different characters depending on the CCSID.

© Copyright IBM Corp. 1982, 2024 75

Tokens

The basic syntactical units of the SQL language are called tokens. A token consists of one or more
characters of which none are blanks, control characters, or characters within a string constant or
delimited identifier.

Tokens are classified as ordinary or delimiter tokens:

« An ordinary token is a numeric constant, an ordinary identifier, a host identifier, or a keyword. The
following examples are ordinary tokens:

1 .1 +2 SELECT E 3

- Adelimiter token is a string constant, a delimited identifier, an operator symbol, or any of the special
characters shown in the syntax diagrams. A question mark (?) is also a delimiter token when it serves
as a parameter marker, as explained in “PREPARE statement” on page 2042. The following examples
include delimiter tokens:

g 'string’ "fld1" =

Spaces

A space is a sequence of one or more blank characters.

Control characters

A control character is a special character that is used for string alignment. Treated similar to a space,
a control character does not cause a particular action to occur. The following table shows the control
characters that Db2 recognizes and their hexadecimal values.

Table 12. Hexadecimal values for the control characters that Db2 recognizes

Control character EBCDIC hex value UTF-8 hex value UTF-16 hex value
Tab 05 09 U+0009
Form feed oC ocC U+000C
Carriage return oD oD U+000D
New line 15 C285 U+0085
Line feed 25 O0A U+000A
DBCS space - - U+3000

Tokens, other than string constants and certain delimited identifiers, must not include a control character
or space. A control character or space can follow a token. A delimiter token, control character, or a space
must follow every ordinary token. If the syntax does not allow a delimiter token to follow an ordinary
token, a control character or a space must follow that ordinary token.

Trigraph characters

The left bracket ([) and right bracket (]) characters are used in syntax to refer to an array element. Those
characters cannot be specified with some CCSIDs. The following trigraphs can be used as an alternative
way to specify left and right brackets:

« The string ?? (can be specified in place of a left bracket ([).
« The string ??) can be specified in place of a right bracket ().

76 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Comments

Dynamic SQL statements can include SQL comments. Static SQL statements can include host language
comments or SQL comments. Comments can be specified wherever a space can be specified, except
within a delimiter token or between the keywords EXEC and SQL. In Java, SQL comments are not allowed
within embedded Java expressions. There are two types of SQL comments:

Simple comments
Simple comments are introduced with two consecutive hyphens (- -). Simple comments cannot
continue past the end of the line.

Bracketed comments
Bracketed comments are introduced with /* and end with /. A bracketed comment can continue
past the end of the line.

The following example shows how to include comments in an SQL statement within a C program. The
example uses both simple and bracketed comments:

EXEC SQL
CREATE VIEW PRJ_MAXPER --projects with most support personnel
/*
* Returns number and name of the project
*/
AS SELECT PROJNO, PROJNAME -- number and name of project
FROM DSN8910.PR0OJ
/*
* E21 is the systems support dept code
*/
WHERE DEPTNO = 'E21' -- systems support dept code

AND PRSTAFF > 1;

For more information, see “SQL comments” on page 1092.

Uppercase and lowercase characters

A token in an SQL statement can include lowercase letters, but lowercase letters in an ordinary token are
folded to uppercase. However, lowercase letters are folded to uppercase in a C or Java program only if the
appropriate precompiler option is specified. Delimiter tokens are never folded to uppercase.

For example, the following two statements are equivalent after folder:

select *» from DSN8C10.EMP where lastname = 'Smith';

SELECT * FROM DSN8C10.EMP WHERE LASTNAME

'Smith';

Related concepts

Identifiers in SOQL

An identifier is a token used to form a name. An identifier in an SQL statement is an SQL identifier or a host
identifier. SQL identifiers can be ordinary identifiers or delimited identifiers.

Expressions

An expression specifies a value and can take a number of different forms, such as a simple value,
consisting of only a constant or a column name, or it can be more complex with operators, other
expressions, and more.

Identifiers in SQL

An identifier is a token used to form a name. An identifier in an SQL statement is an SQL identifier or a host
identifier. SQL identifiers can be ordinary identifiers or delimited identifiers.

Ordinary identifiers

An ordinary identifier is an uppercase letter followed by zero or more characters, each of which is an
uppercase letter, a digit, or the underscore character. If an identifier that is not delimited contains

Chapter 2. Language elements in SQL 77

lowercase characters, but otherwise follows all the rules for an ordinary identifier, Db2 folds the
lowercase letters to uppercase, and the identifier becomes an ordinary identifier. For more information
about ordinary identifiers, see “Characters and tokens in SQL” on page 75.

An ordinary identifier should not be a reserved word. If a reserved word is used as an identifier in SQL, it
must be specified in uppercase and must be a delimited identifier or specified in a host variable. For a list
of reserved words, see Appendix B, “Reserved schema names and reserved words in Db2 for z/0S,” on

page 2257.

Identifiers that contain only DBCS characters can also be ordinary identifiers, unless otherwise specified.

The following list shows the rules for forming SQL ordinary identifiers:

« The UTF-8 representation of the name must not exceed 128 bytes.
« Continuation to the next line is not allowed.

If the SQL ordinary identifier contains DBCS characters, the following additional rules apply:

« The identifier, if encoded in EBCDIC, must start with a shift-out (X'OE') and end with a shift-in (X'OF").
There must be an even number of bytes between the shift-out and the shift-in. An odd-numbered byte
between those shifts must not be a shift-out. DBCS blanks (X'4040' in EBCDIC) are not acceptable
between the shift-out and the shift-in.

- The identifiers are not folded to uppercase or changed in any other way.

Delimited identifiers

A delimited identifier is a sequence of one or more characters enclosed within escape characters. For
example, if the escape character is the quotation mark ("), the following example is a delimited identifier:

"WIEW"

The escape character is the quotation mark ()2 except for:

« Dynamic SQL when the field SQL STRING DELIMITER on installation panel DSNTIPF is set to the
quotation mark (") and either of these conditions is true:

— DYNAMICRULES run behavior applies. For a list of the DYNAMICRULES option values that specify run,
bind, define, or invoke behavior, see “Authorization IDs and dynamic SQL” on page 94.

— DYNAMICRULES bind, define, or invoke behavior applies and installation panel field USE FOR
DYNAMIC RULES is YES.

In this case, the escape character is the apostrophe (*).

However, for COBOL application programs, if DYNAMICRULES run behavior does not apply and
installation panel field USE FOR DYNAMICRULES is NO, a COBOL compiler option specifies whether
the escape character is the quotation mark or apostrophe.

- Static SQL in COBOL application programs. A COBOL compiler option specifies whether the escape
character is the quotation mark (") or the apostrophe ().

A delimited identifier can be used when the sequence of characters does not qualify as an ordinary
identifier. Such a sequence, for example, could be an SQL reserved word, or it could begin with a digit.
Two consecutive escape characters are used to represent one escape character within the delimited
identifier. A delimited identifier that contains EBCDIC DBCS characters also must contain the necessary
shift characters.

Leading and embedded blanks in the sequence are significant. Trailing blanks in the sequence are

not significant. The length of a delimited identifier does not include the starting and ending escape
characters. Embedded escape characters (that appear as two characters) are counted in the length as a
single character.

2 In CCSID 1026 and CCSID 1155, the code point for the quotation mark can be X'7F' or X'FC'. However, if
the beginning delimiter is X'7F', the ending delimiter must also be X'7F'. If the beginning delimiter is X'FC',
ending delimiter must also be X'FC'.

78 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Limits for identifiers
See Appendix A, “Limits in Db2 for z/0S,” on page 2247 for length limits that Db2 imposes for identifiers.

Host identifiers
A host identifier is a name declared in the host program.

The rules for forming a host identifier are the rules of the host language. In non-Java programs, do not use
names beginning with 'DB2', 'SQ'3, 'SQL, 'sql', 'RDI', or 'DSN' because precompilers generate host variable
names that begin with these characters. In Java, do not use names beginning with '__sJT_".

Identifier restrictions for distributed data access

The Db2 internal processing of distributed access must sometimes convert the identifiers for
authorization-name, procedure-name, and schema-name between CCSIDs. If there is any possibility
that these identifiers will be used in distributed access, restrict the identifiers to characters whose
representation in Unicode UTF-8 have code points in the range 0-127. You do not need to enter the
identifiers in Unicode; this restriction refers to conversion that Db2 performs internally.

Related concepts

Characters and tokens in SQL
The most basic elements of SQL syntax are characters and tokens. Tokens are the basic syntactical units
of the SQL language.

Naming conventions
The rules for forming a name depend on the type of the object designated by the name.

Related reference

Reserved schema names and reserved words in Db2 for z/OS

Restrictions exist on the use of certain words that are used by Db2 for z/0S. In some cases, these
names are reserved and cannot be used by application programs. In other cases, certain names are not
recommended for use by application programs though not prevented from being used by the database
manager.

Naming conventions in SQL

The rules for forming a name depend on the type of the object designated by the name.

Many database objects have a schema qualified name. A schema qualified name may consist of a single
SOQL identifier (in which case the schema-name is implicit) or a schema-name followed by a period and an
SQL identifier. For more information about the rules for SQL identifiers, see “Identifiers in SQL” on page
77.

The syntax diagrams use different terms for different types of names. The following list defines these
terms.

accelerator-name
A name that identifies an accelerator-only table. An accelerator name is 1 to 8 uppercase characters
or digits. The name must be unique within the Db2 subsystem or data sharing group.

alias-name
A qualified or unqualified name that designates an alias. A fully qualified alias name is a three-part
name. The first part is a location name that designates the DBMS at which the alias is defined. The
second part is a schema name. The third part is an SQL identifier. A period must separate each of the
parts.

A two-part sequence is implicitly qualified by the location name of the current server. The first part is
a schema name. The second part is an SQL identifier. A period must separate the two parts.

3 'SQ'is allowed in C, COBOL, and REXX.

Chapter 2. Language elements in SQL 79

A one-part or unqualified alias name is an SQL identifier with two implicit qualifiers. The first

implicit qualifier is the location name of the current server. The second is a schema name, which

is determined by the rules specified in “Unqualified alias, index, JAR file, mask, permission, sequence,
table, trigger, and view names” on page 86.

For more information, see “Aliases” on page 88.

array-type-name
A qualified or unqualified name that designates an array type.

A qualified array type name is a two-part name. The first part is the schema name of the array type.
The second part is an SQL identifier. A period must separate each of the parts.

An unqualified array type name is an SQL identifier with an implicit qualifier. The implicit qualifier is
the schema name, which is determined by the context in which the array type appears, as described
by the rules in “Unqualified object name resolution” on page 86.

authorization-name
An SQL identifier that designates a set of privileges. It can also designate a user, a group of users, or
arole. For a user or a group of users, Db2 does not control this property. For a role, Db2 does control
this property. See “Authorization IDs, roles, and authorization names” on page 92 for the distinction
between an authorization name and an authorization ID.

aux-table-name
A qualified or unqualified name that designates an auxiliary table. The rules for the name are the same
as the rules for table-name. See table-name.

bpname
A name that identifies a buffer pool. The following list shows the names of the different buffer pool
sizes.

4KB
BPO, BP1, BP2, ..., BP49

8KB
BP8KO, BP8K1, BP8K2, ..., BP8K9

16KB
BP16KO0, BP16K1, BP16K2, ..., BP16K9

32KB
BP32K, BP32K1, BP32K2, ..., BP32K9

built-in-type
A qualified or unqualified name that identifies an IBM-supplied data type. A qualified name is SYSIBM
followed by a period and the name of the built-in data type. An unqualified name has an implicit
qualifier, the schema name, which is determined by the rules in “Unqualified object name resolution”
on page 86.

catalog-name
An SQL identifier that designates an integrated catalog facility (ICF) catalog. The identifier must
start with a letter and must not include special characters, or the alphabetic extenders for national
languages ($, #, and @ in the United States). These three code points (X'5B', X'7B', and X'7C') should
be avoided because they represent different characters depending on the CCSID.

clone-table-name

A qualified or unqualified name that designates the name of a clone table. See the definition of
table-name for more information about qualification of table names.

collection-id
An SQL identifier that identifies a collection of packages, such as a collection ID as a qualifier for a
package ID.

column-name
A qualified or unqualified name that designates a column of a table or view.

80 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

A qualified column name is a qualifier followed by a period and an SQL identifier. The qualifier is a
table name, a view name, a synonym, an alias, or a correlation name. The unqualified column name is
an SOL identifier.

constraint-name
An SQL identifier that designates a primary key, check, referential, or unique constraint on a table.

context-name
An SQL identifier that designates a trusted context.

correlation-name
An SQL identifier that designates a table, a view, or individual rows of a table or view.

cursor-name
An SQL identifier that designates an SQL cursor. In SQLJ, cursor-name is a host variable (with no
indicator variable) that identifies an instance of an iterator.

database-name
An SQL identifier that designates a database. The identifier must start with a letter and must not
include special characters.

descriptor-name
A host identifier that designates an SQL descriptor area (SQLDA). See “Host variables” on page 227
for a description of a host identifier. A descriptor name never includes an indicator variable.
distinct-type-name
A qualified or unqualified name that designates a distinct type.

A qualified distinct type name is a two-part name. The first part is the schema name of the distinct
type. The second part is an SQL identifier. A period must separate each of the parts.

An unqualified distinct type name is an SQL identifier with an implicit qualifier. The implicit qualifier is
the schema name, which is determined by the context in which the distinct type appears as described
by the rules in “Unqualified type, function, procedure, global variable, and specific names” on page
87.

external-program-name
A name that specifies the program that runs when the function is invoked or the procedure name is
specified in a CALL statement.

function-name
A qualified or unqualified name that designates a user-defined function, a cast function that was
generated when a distinct type was created, or a built-in function.

A qualified function name is a two-part name. The first part is the schema name of the function. The
second part is an SQL identifier. A period must separate each of the parts.

An unqualified function name is an SQL identifier with an implicit qualifier. The implicit qualifier is
the schema name, which is determined by the context in which the unqualified name appears as
described by the rules in “Unqualified type, function, procedure, global variable, and specific names”
on page 87.

global-variable-name
A qualified or unqualified name that designates a global variable.

A qualified global variable name is a two-part name. The first part is the schema name of the global
variable. The second part is an SQL identifier. A period must separate each of the parts.

An unqualified global variable name is an SQL identifier with an implicit qualifier. The implicit qualifier
is the schema name, which is determined by the context in which the unqualified name appears as
described by the rules in “Unqualified type, function, procedure, global variable, and specific names”
on page 87.

host-label
A token that designates a label in a host program.

Chapter 2. Language elements in SQL 81

host-variable
A sequence of tokens that designates a host variable. A host variable includes at least one host
identifier, as explained in “Host variables” on page 227.

index-name
A qualified or unqualified name that designates an index.

A qualified index name is an authorization ID or schema name followed by a period and an SQL
identifier.

An unqualified index name is an SQL identifier with an implicit qualifier. The implicit qualifier is
an authorization ID, which is determined by the context in which the unqualified name appears as
described by the rules in “Unqualified object name resolution” on page 86.

For an index on a declared temporary table, the qualifier must be SESSION.

FL 502 key-label-name
An SQL identifier that corresponds to the value of the Integrated Cryptographic Service Facility (ICSF)
key label. A keylabel-name can consist of up to 64 characters. The first character must be a letter
or national character (#, $, @). It is recommended that the name not include national characters
(@ (X'7CY, # (X'7B"), or $ (X'5B"). The identifier must not include the underscore (_) character. The
characters allowed in the delimited form are the same as those allowed in the ordinary form, except
that it can contain a period (.), but the period cannot be the first character. For more information, see
Key label (z/OS ICSF).

location-name
An SQL identifier that designates the name of a location. A location name is 1 to 16 bytes, does not
include alphabetic extenders (national characters), lowercase letters, or Katakana characters. The
characters allowed in the delimited form are the same as those allowed in the ordinary form.

mask-name
A qualified or unqualified name that designates a mask.

A qualified mask name is a two-part name. The first part is the schema name. The second part is an
SQL identifier. A period must separate each of the parts.

A one-part or unqualified mask name is an SQL identifier with an implicit qualifier. The implicit
qualifier is an authorization ID, which is determined by the context in which the unqualified name
appears as described by the rules in “Unqualified object name resolution” on page 86.

package-name
A qualified or unqualified name that designates a package. The unqualified form of a package-name is
an SQL identifier. A package-name must not be a delimited identifier that includes lowercase letters or
special characters. A package-name in an SQL statement must be qualified. In some contexts outside
of SQL, a package name can be specified as an unqualified name.

parameter-name
An SQL identifier that designates a parameter in an SQL procedure or SQL function.

permission-name
A qualified or unqualified name that designates a permission.

A qualified permission name is a two-part name. The first part is the schema name. The second part is
an SQL identifier. A period must separate each of the parts.

A one-part or unqualified permission name is an SQL identifier with an implicit qualifier. The implicit
qualifier is an authorization ID, which is determined by the context in which the unqualified name
appears as described by the rules in “Unqualified object name resolution” on page 86.

plan-name
An SQL identifier that designates an application plan. The identifier must not be a delimited identifier
that includes lowercase letters or special characters.

procedure-name
A qualified or unqualified name that designates a stored procedure.

82 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.csfb400/csfb419.htm

A fully qualified procedure name is a three-part name. The first part is a location name that identifies
the DBMS at which the procedure is stored. The second part is the schema name of the stored
procedure. The third part is an SQL identifier. A period must separate each of the parts in a qualified
name.

A two-part procedure name is implicitly qualified with the location name of the current server. The
first part is the schema name of the stored procedure. The second part is an SQL identifier. A period
must separate the two parts.

A one part, or unqualified, procedure name is an SQL identifier with two implicit qualifiers. The first
implicit qualifier is the location name of the current server. The second implicit qualifier is the schema
name, which is determined by the context in which the unqualified name appears, as described by the
rules in “Unqualified object name resolution” on page 86.

The SQL identifier in a qualified or unqualified name must not be an asterisk (*).

profile-name
An SQL identifier that corresponds to a RACF profile name.

program-name
An SQL identifier that designates an exit routine.

role-name
An SQL identifier that designates a role. The identifier cannot begin with the characters SYS and
cannot be ACCESSCTRL, DATAACCESS, DBADM, DBCTRL, DBMAINT, NONE, NULL, PACKADM, PUBLIC,
SECADM, or SQLADM.

routine-version-id
An SQL identifier of up to 64 EBCDIC bytes that designates a version of a routine. The UTF-8
representation of the identifier must not exceed 122 bytes.

savepoint-name
An SQL identifier that designates a savepoint.

schema-name

An SQL identifier that provides a logical grouping for SQL objects. A schema-name is used as a
qualifier of the name of SQL objects.

seclabel-name
An SQL identifier that corresponds to the value of the RACF security label. It is recommended that the
name not include national characters (@ (X'7C"), # (X'7B"), or $ (X'5B")). If the table is a Unicode table
and the security label name does include national characters, an error might be issued if substitution
occurs when Db2 converts the value from EBCDIC to Unicode.

sequence-name
A qualified or unqualified name that designates a sequence.

A qualified sequence name is a two-part name. The first part is the schema name. The second part is
an SQL identifier. A period must separate each of the parts.

A one-part or unqualified sequence name is an SQL identifier with an implicit qualifier. The implicit
qualifier is an authorization ID, which is determined by the context in which the unqualified name
appears as described by the rules in “Unqualified alias, index, JAR file, mask, permission, sequence,
table, trigger, and view names” on page 86.

server-name
An SQL identifier that designates an application server. The identifier must start with a letter and must
not include lowercase letters or special characters.

specific-name
A qualified or unqualified name that designates a unique name for a user-defined function.

A qualified specific name is a two-part name. The first part is the schema name. The second part is an
SOQL identifier, and it must not be an asterisk (*). A period must separate each of the parts.

An unqualified specific name is an SQL identifier with an implicit qualifier. The implicit qualifier is
the schema name, which is determined by the context in which the unqualified name appears as

Chapter 2. Language elements in SQL 83

described by the rules in “Unqualified type, function, procedure, global variable, and specific names”

on page 87.

A specific name can be used to identify a function to alter, comment on, drop, grant privileges on,
revoke privileges from, or be the source function for another function. A specific name cannot be used
to invoke a function. In addition to being used in certain SQL statements, a specific name must be
used in Db2 commands to uniquely identify a function.

SQL-condition-name
An SQL identifier that designates a condition in an SQL routine or trigger.

SOQL-label
An SQL identifier that designates a label in an SQL routine or trigger.

SQL-parameter-name
A qualified or unqualified name that designates a parameter in an SQL routine body. The unqualified
form of an SQL-parameter-name is an SQL identifier. The qualified form is a function-name or
procedure-name followed by a period and an SQL identifier.

SQL-variable-name
A qualified or unqualified name that designates a variable in an SQL routine or trigger body. The
unqualified form of an SQL-variable-name is an SQL identifier. The qualified form is an SQL-label
followed by a period (.) and an SQL identifier.

statement-name
An SQL identifier that designates a prepared SQL statement.

stogroup-name
An SQL identifier that designates a storage group.

synonym
An SQL identifier that designates a synonym, a table, or a view. The table or view must exist at the
current server. A qualified name is never interpreted as a synonym.

table-name
A qualified or unqualified name that designates a table.

A fully qualified table name is a three-part name. The first part is a location name that designates
the DBMS at which the table is stored. The second part is a schema name. The third part is an SQL
identifier. A period must separate each of the parts.

A two-part table name is implicitly qualified by the location name of the current server. The first part is
a schema name. The second part is an SQL identifier. A period must separate the two parts.

A one-part or unqualified table name is an SQL identifier with two implicit qualifiers. The first

implicit qualifier is the location name of the current server. The second is a schema name, which

is determined by the rules set forth in “Unqualified alias, index, JAR file, mask, permission, sequence,
table, trigger, and view names” on page 86. For a declared temporary table, the qualifier (the second
part in a three-part name and the first part in a two-part name) must be SESSION. For complete
details on specifying a name when a declared temporary table is defined and then later referring to
that declared temporary table in other SQL statements, see “DECLARE GLOBAL TEMPORARY TABLE
statement” on page 1830.

table-space-name
An SQL identifier that designates a table space of an identified database. The identifier must start with
a letter and must not include special characters. If a database is not identified, DSNDBO4 is implicit.

trigger-name
A qualified or unqualified name that designates a trigger.

A qualified trigger name is a two-part name. The first part is the schema name of the trigger. The
second part is an SQL identifier. A period must separate each of the parts.

An unqualified trigger name is an SQL identifier with an implicit qualifier. The implicit qualifier is

the schema name, which is determined by the context in which the unqualified name appears as
described by the rules in “Unqualified alias, index, JAR file, mask, permission, sequence, table, trigger,
and view names” on page 86.

84 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

trigger-version-id
An SQL identifier of up to 64 EBCDIC bytes that designates a version of a trigger. The UTF-8
representation of the identifier must not exceed 122 bytes.

view-name
A qualified or unqualified name that designates a view.

A fully qualified view name is a three-part name. The first part is a location name that designates
the DBMS where the view is defined. The second part is a schema name. The third part is an SQL
identifier. A period must separate each of the parts.

A two-part view name is implicitly qualified by the location name of the current server. The first part is
a schema name. The second part is an SQL identifier. A period must separate the two parts.

A one-part or unqualified view name is an SQL identifier with two implicit qualifiers. The first
implicit qualifier is the location name of the current server. The second is a schema name, which
is determined by the context in which the unqualified name appears as described by the rules in
“Unqualified alias, index, JAR file, mask, permission, sequence, table, trigger, and view names” on
page 86.

XML-attribute-name
An identifier that is used as an XML attribute name.

XML-element-name
An identifier that is used as an XML element name.

Related concepts
Identifiers in SQL

An identifier is a token used to form a name. An identifier in an SQL statement is an SQL identifier or a host
identifier. SQL identifiers can be ordinary identifiers or delimited identifiers.

Related reference

Reserved schema names and reserved words in Db2 for z/OS

Restrictions exist on the use of certain words that are used by Db2 for z/OS. In some cases, these
names are reserved and cannot be used by application programs. In other cases, certain names are not
recommended for use by application programs though not prevented from being used by the database
manager.

SQL path

The SQL path is an ordered list of schema names. Db2 uses the path to resolve the schema name for
certain unqualified object names that appear in any context other than as the main object of an ALTER,
CREATE, DROP, COMMENT, GRANT, RENAME, or REVOKE statement.

Db2 uses the path to resolve the schema name for the following object names:

- data types (both built-in types and distinct types)
« functions

« stored procedures

« global variables

Searching through the path from left to right, Db2 implicitly qualifies the object name with the first
schema name in the SQL path that contains the same object with the same unqualified name for which
the user has appropriate authorization. For functions, Db2 uses a process called function resolution in
conjunction with the SQL path to determine which function to choose because several functions with

the same name and number of parameters but different parameter data types might be defined in the
same schema or other schemas in the SQL path. (For details, see “Function resolution” on page 239.) For
procedures, Db2 selects a matching procedure name only if the number of parameters is also the same.

The SQL path does not apply to unqualified procedure names in ASSOCIATE LOCATOR and DESCRIBE
PROCEDURE statements. For these statements, an implicit schema name is not generated.

Chapter 2. Language elements in SQL 85

For an example of how Db2 uses the SQL path to resolve the schema name, assume that the SQL path is
SMITH, XGRAPHIC, SYSIBM, and that an unqualified distinct type name MYTYPE was specified. Db2 looks
for MYTYPE first in schema SMITH, then XGRAPHIC, and then SYSIBM.

The PATH option establishes the SQL path that is used to resolve:

- Unqualified data type, global variable, and function names in static SQL statements

« Unqualified procedure names in SQL CALL statements that specify the procedure name as an identifier
token (CALL procedure-name)

If the PATH option was not specified when the plan or package was created or last rebound or when
native SQL procedure was defined or last changed, the default value of the SQL path is: SYSIBM, SYSFUN,
SYSPROC, plan or package qualifier.

The CURRENT PATH special register determines the SQL path used to resolve:

- Unqualified data type, global variable, and function names in dynamic SQL statements

« Unqualified procedure names in SQL CALL statements that specify the procedure name in a host
variable (CALL host-variable)

Generally, the initial value of the CURRENT PATH special register is one of the following:

« The value of the PATH option
- "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM", value of CURRENT SQLID special register if the PATH
option was not specified.

If schema "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM" is not explicitly specified in the SQL path, the
schema is implicitly assumed at the front of the path; if all are not specified, they are assumed in the
order of "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM".

For example, assume that the SQL path is explicitly specified as SYSIBM, GEORGIA, SMITH. As implicitly
assumed schemas, SYSFUN, SYSPROC, and SYSIBMADM are added to the beginning of the explicit path
effectively making the path:

SYSFUN, SYSPROC, SYSIBMADM, SYSIBM, GEORGIA, SMITH

For more information about the SQL path for dynamic SQL, see “CURRENT PATH special register” on page
200 and “SET PATH statement” on page 2163.

Unqualified object name resolution

Most object names are implicitly or explicitly qualified with a schema name. Synonyms are an exception.

A synonym has a single part name. When Db2 encounters an unqualified name, Db2 must determine
which object to process. This process is called name resolution.

When Db2 encounters a single part name in a context where an alias, table, view, or synonym can be
specified, Db2 first checks to see if the name refers to a synonym that is defined by the current user.

Unqualified object names, other than synonyms, are implicitly qualified. The rules for qualifying a name
differ depending on the type of object that the name identifies.

Unqualified alias, index, JAR file, mask, permission, sequence, table, trigger, and
view names

The default schema is determined as follows:

- For static SQL statements, the default schema is the identifier specified in the QUALIFIER option of the
BIND subcommand or the CREATE or ALTER statement for a SQL routine or trigger. If this option is not in
effect for the plan, package, or native SQL procedure, the default schema is the authorization ID of the
owner of the plan, package, or native SQL procedure.

86 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

« For dynamic SQL statements, the behavior as specified by the combination of the DYNAMICRULES
option and the run time environment determines the default schema. (For a list of these behaviors and
the DYNAMICRULES values that determine them, see Table 14 on page 94).

— If DYNAMICRULES run behavior applies, the default schema is the schema in the CURRENT SCHEMA
special register. Run behavior is the default.

— If bind behavior applies, the default schema is the identifier that is implicitly or explicitly specified in
the QUALIFIER option, as explained for static SQL statements.

— If define behavior applies, the default schema is the owner of the function or stored procedure (the
owner is the definer).

— If invoke behavior applies, the default schema is the authorization ID of the invoker of the function or
stored procedure.

Exception: For bind, define, and invoke behavior, the default schema of PLAN_TABLE,
DSN_STATEMNT_TABLE, and DSN_FUNCTION_TABLE (output from the EXPLAIN statement) is always
the value in special register CURRENT SQLID.

Unqualified type, function, procedure, global variable, and specific names

The qualification of unqualified type (built-in type, distinct type, or array type), function, stored procedure,
global variable, and specific names depends on the SQL statement in which the unqualified name
appears.

« If an unqualified name is the main object of an ALTER, CREATE, COMMENT, DROP, GRANT, or REVOKE
statement, the name is implicitly qualified with a schema name as follows:

— In a static statement, the implicit schema name is the identifier specified in the QUALIFIER option of
the BIND subcommand or the CREATE or ALTER statement for a SQL routine or trigger. If this option
is not in effect for the package or procedure, the implicit qualifier is the authorization ID of the owner
of the package or procedure.

— Inadynamic statement, the implicit schema name is the schema in the CURRENT SCHEMA special
register.

« Otherwise, the implicit schema name for the unqualified name is determined as follows:
— For distinct type and array type names, Db2 searches the SQL path and selects the first schema in the
path such that the data type exists in the schema and the user has authorization to use the type.

— For global variable names, Db2 searches the SQL path and selects the first schema in the path such
that the global variable exists in the schema and the user has authorization to use the global variable.

— For function names, Db2 uses the SQL path in conjunction with function resolution, as described in
“Function resolution” on page 239.

— For stored procedure names in CALL statements, Db2 searches the SQL path and selects the first
schema in the path such that the schema contains a procedure with the same name and number of
parameters and the user has authorization to use the procedure.

— For stored procedure names in ASSOCIATE LOCATORS and DESCRIBE PROCEDURE statements, Db2
does not use the SQL path because an implicit schema name is not generated for these statements.

For information about the SQL path, see “SQL path” on page 85.

Related reference
QUALIFIER bind option (Db2 Commands)
DYNAMICRULES bind option (Db2 Commands)

CREATE PROCEDURE statement (SQL - native procedure)
The CREATE PROCEDURE statement defines an SQL procedure, or a version of a procedure, at the current
server and specifies the source statements for the procedure.

ALTER PROCEDURE statement (SQL - native procedure)

Chapter 2. Language elements in SQL 87

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptqualifier.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptdynamicrules.html

The ALTER PROCEDURE statement changes the definition of an SQL procedure at the current server. The
procedure options, parameter names, and routine body can be changed and additional versions of the
procedure can be defined and maintained using the ALTER PROCEDURE statement.

CREATE TRIGGER statement (advanced trigger)

ALTER TRIGGER statement (advanced trigger)

CREATE FUNCTION statement (compiled SQL scalar function)

The CREATE FUNCTION (compiled SQL scalar) statement defines a compiled SQL scalar function at the
current server and specifies the source statements for the function. The body of the function is written in
the SQL procedural language. The function returns a single value each time it is invoked.

ALTER FUNCTION statement (compiled SQL scalar function)

The ALTER FUNCTION (compiled SQL scalar) statement changes the description of a user-defined
compiled SQL scalar function at the current server. The function options, parameter names, and routine
body can be changed and additional versions of the procedure can be defined and maintained using the
ALTER FUNCTION statement.

CURRENT SQLID special register
CURRENT SQLID specifies the SQL authorization ID of the process.

EXPLAIN statement

Aliases

An alias is an alternative name for an object such as a table, view, sequence, or another alias. It can be
used to reference an object wherever that object can be referenced directly.

The option of referencing an object by an alias is not explicitly shown in the syntax diagrams or mentioned
in the description of SQL statements.

Like tables, views, and sequences, an alias can be created, dropped, and associated with a comment. No
authority is necessary to use an alias. However, access to the objects that are referred to by the alias still
requires the appropriate authorization for the current statement.

An alias is created using the CREATE ALIAS statement.

An alias name designates an alias when it is preceded by the keyword ALIAS, as in CREATE ALIAS, DROP
ALIAS, COMMENT ON ALIAS, and LABEL for an ALIAS. In all other contexts, an alias name designates a
table, a view, or a sequence. For example, COMMENT ON ALIAS A specifies a comment about the alias A,
whereas COMMENT ON TABLE A specifies a comment about the table or view designated by A.

An alias for a table or a view can be defined at a local server to refer to a table or a view that is at the
current server or a remote server. An alias name for a table or view can be used wherever the table name
or view name can be used to refer to the table or view in an SQL statement. The rules for forming an

alias name for a table or view are the same as the rules for forming a table name or a view name. A fully
qualified alias name (a three-part name) can refer to an alias at a remote server. However, the table or
view identified by the alias at the remote server must exist at the remote server.

An alias for a sequence can be defined at the current server. An alias name for a sequence can be used
wherever the sequence name can be used to refer to the sequence in an SQL statement. The rules for
forming an alias name for a sequence are the same as the rules for forming a sequence name.

Statements that use three-part names and refer to distributed data result in DRDA access to the remote
site. DRDA access for three-part names is used when the package that contains the query to distributed
data is bound using the bind option DBPROTOCOL(DRDA), or the value of the DATABASE PROTOCOL field
on installation panel DSNTIP5 is DRDA. When an application program uses three-part name aliases for
remote table or view objects and DRDA access, the application program must be bound at each location
that is specified in the three-part name. Also, each alias must be defined at the local site. An alias at a
remote site can refer to another server if a referenced alias eventually refers to a table or view.

The effect of using an alias in an SQL statement is the same as text substitution. For example, if Aiis an
alias for table Q.T, one of the steps involved in the preparation of SELECT * FROM A is the replacement
of 'A" by 'Q.T".

88 Db2 12 for z/0OS: SQL Reference (Last updated: 2024-05-14)

If an alias is defined as a public alias, it can be referenced by its unqualified name without any impact
from the current default schema name. It can also be referenced using the schema qualifier SYSPUBLIC.

Related concepts

Synonyms (deprecated)

A synonym is an alternate name for a table or view. A synonym can be used to reference a table or view in
I cases where an existing table or view can be referenced. However, Db2 no longer supports the creation of

new synonyms.

Related reference

CREATE ALIAS statement

The CREATE ALIAS statement defines an alias for a table, a view, or a sequence. The definition is recorded
in the Db2 catalog at the current server.

Synonyms (deprecated)

A synonym is an alternate name for a table or view. A synonym can be used to reference a table or view in
cases where an existing table or view can be referenced. However, Db2 no longer supports the creation of
new synonyms.

Unsupported function: FL 504 Beginning in Db2 12, packages bound with APPLCOMPAT(V12R1M504)
or higher cannot issue CREATE SYNONYM statements. Although there are some differences, you can
use aliases instead. Unlike synonyms, aliases behave the same for all Db2 family products. For more
information about aliases, see Aliases (Introduction to Db2 for z/OS) and “CREATE ALIAS statement” on
page 1415. Existing synonyms remain supported, but support might be removed in the future.

Differences between synonyms and aliases

The following table summarizes the differences between aliases and synonyms, which are deprecated.

Table 13. Differences between synonyms and aliases

Characteristic Synonyms (deprecated) Aliases

FL 504 Can be created No Yes
in application compatibility
V12R1M504 and higher?

Requires authorization to create? No Yes

Can be defined on objects notat No Yes
the current sever?

Can be defined on the name of an No Yes, but the object must exist
object that does not yet exist? when the alias is used

Is dropped when referenced Yes No

objects are dropped?

Uses a qualified object name for No, uses a one-part name Yes

the object?

Can be referenced or used by No Yes

users other than the object

owner?

The option of referencing a table or view by a synonym is not explicitly shown in the syntax diagrams or
mentioned in the description of SQL statements. But synonyms can be referred to in an SQL statement.

Like tables and views, a synonym can be dropped, and associated with a comment. No authority is
necessary to use a synonym. However, access to the tables and views that are referenced by the synonym
still requires the appropriate authorization for the current statement.

Chapter 2. Language elements in SQL 89

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_aliases.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

A synonym name designates a synonym when it is preceded by the keyword SYNONYM, as in DROP
SYNONYM. In all other contexts, a synonym designates a table or a view. In all other contexts, a synonym
designates a local table or view and can be used wherever the name of a table or view can be used in an
SQL statement.

The effect of using a synonym in an SQL statement is the same as text substitution. For example, if Sis a
synonym for Q.T, one of the steps involved in the preparation of SELECT * FROM S is the replacement of
'S'by 'Q.T".

Related concepts

Aliases

An alias is an alternative name for an object such as a table, view, sequence, or another alias. It can be
used to reference an object wherever that object can be referenced directly.

Related reference

CREATE ALIAS statement
The CREATE ALIAS statement defines an alias for a table, a view, or a sequence. The definition is recorded
in the Db2 catalog at the current server.

Authorization, privileges, permissions, masks, and object
ownership

Users (as identified by an authorization ID) can successfully execute SQL statements only if they have the
authority to perform the specified operation. For example, to create a table, a user must be authorized to
create tables.

The two forms of authorization are administrative authority and privileges.

Administrative authority
The holder of administrative authority is charged with the task of controlling Db2 and is responsible
for the safety and integrity of the data.

Those with SYSADM authority implicitly have all privileges on all objects and control who will have
access to Db2 and the extent of this access.

Those with SECADM authority manage security policies by enforcing row and column access control
for tables that contain sensitive data. They define row permissions and column masks, which describe
how tables that use row or column access controls should be accessed and which determine whether
a trigger or a user-defined function is considered secure for those tables.

Privileges
Privileges are those activities that a user is allowed to perform. Authorized users can create objects,
have access to objects that they own, and can pass on privileges on the objects that they own to other
users by using the GRANT statement. Privileges can be granted to specific users or to PUBLIC. PUBLIC
specifies that a privilege is granted to all users (including to future users).

The REVOKE statement can be used to revoke previously granted privileges.

Row permissions and column masks
A row permission is a database object that expresses an access control rule for a row of a specific
table. A row permission is in the form of a search condition that describes to which rows users have
access. Row permissions are applied after table privileges (like SELECT or INSERT) are checked.

A column mask is a database object that expresses an access control rule for a specific columnin a
table. A column mask is in the form of a CASE expression that describes to which column values users
have access. Column masks are applied after table privileges (like SELECT or INSERT) are checked.

Row permissions and column masks can be created, changed, and dropped only by those with
SECADM authority by using the CREATE MASK, CREATE PERMISSION, and DROP statements. The
definition of a permission or a mask can reference other objects. Those with SECADM authority do
not need additional privileges to reference those objects, such as SELECT privilege to retrieve from a
table or EXECUTE privilege to invoke a user-defined function, in the definition of the row permission
or column mask. Multiple row permissions and column masks can be created for a table. Only one

90 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

column mask can be created for each column in a table. A row permission or a column mask can

be created before row or column access control is enforced for a table. The definition of the row
permission and the column mask is stored in the Db2 catalog. However, the permission and the mask
do not take effect until the ALTER TABLE statement with the ACTIVATE ROW ACCESS CONTROL clause
is used to enforce row access control or the ACTIVATE COLUMN ACCESS CONTROL clause is used to
enforce column access control on the table.

When an ALTER TABLE statement is used to explicitly activate row access control for a table, a default
row permission is implicitly created for the table which prevents all access to the table. After row
access controls have been activated for a table, if the table is referenced explicitly in a data change
statement and if multiple row permissions are defined for the table, a row access control search
condition is derived by using the logical OR operator with the search condition of each defined row
permission.

When an ALTER TABLE statement is used to explicitly activate column access control for a table,
access to the table is not restricted. However, if the table is referenced in a data change statement,
all column masks that have been created for the table are applied to mask the column values that are
referenced in the output of the queries or to determine the column values that are used in the data
change statements.

The authorization ID or role for the statement does not need authority to reference objects that are
specified in the definition of the row permission or column mask.

Object ownership
When an object is created, one authorization ID is assigned ownership of the object. Ownership
means that the user is authorized to reference the object in any applicable SQL statement. The
privileges on the object can be granted by the owner, and cannot be revoked from the owner. Owners
of views only receive the level of privileges that they have on the underlying table or view. The owner
of the object that is being created is determined as follows:

« If the schema qualifier is not explicitly specified, the owner depends on how the CREATE statement
is issued:

— If the CREATE statement is embedded in a program, the owner of the object that is being created
is the authorization ID that serves as the implicit qualifier for unqualified object names. This is the
authorization ID that is in the QUALIFIER option when the plan, package, or native SQL procedure
(that contains the CREATE statement) is created or last changed. If the QUALIFIER option is
not used, the owner of the object is the authorization ID in the OWNER option when the plan,
package, or native SQL procedure is created or last changed. If the OWNER option is not used, the
owner is the owner of the plan, package, or native SQL procedure. If the plan or package was last
bound in a trusted context that is defined with the ROLE AS OBJECT OWNER clause, a role is the
owner.

— If the CREATE statement is dynamically prepared, the owner of the object that is being created is
the authorization ID of the process.

— If the CREATE statement is execute in a trusted context that is defined with the ROLE AS OBJECT
OWNER clause, the role of the primary authorization ID is the owner.

- If the schema qualifier is explicitly specified, the owner depends on the type of object that is being
created unless the CREATE statement is executed in a trusted context that is defined with the ROLE
AS OBJECT OWNER clause. When the CREATE statement is executed in a trusted context that is
defined with the ROLE AS OBJECT OWNER clause, the owner of the object is determined as follows:

— If the CREATE statement is embedded in a program, the role that owns the plan or package is the
owner of the object.

— If the CREATE statement is dynamically prepared, the primary authorization ID is the owner.

If the schema qualifier is explicitly specified, and the CREATE statement is not executed in a trusted
context that is defined with the ROLE AS OBJECT OWNER clause, the owner depends on the type of
object that is being created: :

— For an alias, auxiliary table, created global temporary table, table, or view, the owner of the object
that is being created is the same as the explicit schema name.

Chapter 2. Language elements in SQL 91

— For a user-defined distinct type, user-defined function, procedure, sequence, JAR files, or trigger,
the owner of the object that is being created is the authorization ID of the process.

The rules that determine ownership of row permissions and column masks are the same as those that
determine ownership of objects like user-defined distinct types, user-defined functions, procedures,
sequences, JAR files, or trigger.

The owner of a row permission or a column mask does not have implicit owner privileges. Only users
with SECADM authority can manage and maintain row permissions and column masks.

Authorization IDs, roles, and authorization names

Processes can successfully execute SQL statements only if they have the necessary authority. A process
derives this authority from its authorization IDs. An authorization ID can also designate a user, a group of
users, orarole.

An authorization ID is a character string that is associated with a process that is checked to determine the
authority to perform a specified operation.

Db2 does not control the association of users to user groups. However, Db2 does control the association
between users and roles when a trusted context is defined.

Db2 uses authorization IDs to provide authorization checking of SQL statements.

Whenever a connection is established between Db2 and a process, Db2 obtains an authorization ID and
passes it to the authorization connection or sign-on exit routine. The list of one or more authorization
IDs that is returned by the exit routine are used as the authorization IDs of the process. If the process is
running in a trusted context with a role, the authorization IDs of the process includes this role.

Every process has exactly one primary authorization ID. Any other authorization IDs of a process are
secondary authorization IDs. The use of these authorization IDs depends on the type of process (bind
process, application process, or process involved in the creation of objects).

Primary authorization ID

An authorization ID that is used to established a connection between Db2 and an application process.
Secondary authorization ID

An authorization ID that is associated with a primary authorization ID.

Secondary authorization IDs includes all the authorization IDs that have been associated with a
primary authorization ID by the connection or sign-on authorization exit routine, the CURRENT
SQLID (when different from the primary authorization ID), and other authorization IDs like the stored
procedure definer and call package owner for stored procedure package checking.

Authorization ID of the process
The user's primary and secondary authorization IDs. If the process is running in a trusted context with
arole, the authorization IDs of the process includes this role.

A role is a database entity that groups together one or more privileges. A role is available only when the
process is run in a trusted context. Users are associated with a role in the definition of a trusted context.

A trusted context can have a default role, specific roles for individual users, or no roles at all. A userina
trusted context can have only one active role. This is the role that is specifically defined for the user or the
default role of the trusted context. The following restrictions apply to roles:

 Arole cannot be a primary authorization ID.
« Arole cannot be set by using a SET CURRENT SQLID statement.

« Arole can be the schema qualifier of an object. However, when it is used as a schema qualifier, a
role is considered to be a character string and does not add any implicit schema privileges (ALTERIN,
CREATEIN, or DROPIN) to this role.

« Arole must already exist for privileges to be granted to it.

The role that is in effect for a user is considered to be one of the secondary authorization IDs of the user.

92 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Do not confuse an authorization-name that is specified in an SQL statement with an authorization ID of a
process.

Example

Assume that SMITH is your TSO logon, DYNAMICRULES run behavior is in effect, and you execute the
following statements interactively:

CREATE TABLE TDEPT LIKE DSN8C10.DEPT;
GRANT SELECT ON TDEPT TO KEENE;

Also assume that your site has not replaced the default exit routine for connection authorization and

that you have not executed the SET CURRENT SQLID statement. Thus, when the GRANT statement is
prepared and executed by SPUFI, the SQL authorization ID is SMITH. KEENE is an authorization name that
is specified in the GRANT statement.

Authorization to execute the GRANT statement is checked against SMITH. The authorization rule is that
the privilege set that is designated by SMITH must include the SELECT privilege with the GRANT option on
SMITH.TDEPT. No check that involves KEENE is performed. If the GRANT statement specifies a role, the
existence of the role is checked.

Authorization IDs and schema names

If an authorization ID is not a role and has the same name as the name of a schema, that authorization ID
implicitly has the following privileges for that schema:

« CREATEIN privilege
« ALTERIN privilege
- DROPIN privilege

Authorization IDs and statement preparation

The authorization ID that is specified as the owner of the plan or package must be one of the authorization
IDs of the bind process. The owner can be set to any value if one of the authorization IDs of the bind
process has SYSADM or SYSCTRL authority.

A process that creates a plan or package is called a bind process. The connection with Db2 is the result
of the execution of a BIND or REBIND subcommand. Both subcommands allow for the specification of the
authorization ID of the owner of the plan or package.

BINDAGENT can specify an owner other than himself (or one of his representatives), but it has to be
someone that granted him BINDAGENT. The default owner for BIND is the primary authorization ID. The
default owner for REBIND is the previous owner of the plan or package (ownership is unchanged if an
owner is not explicitly specified). If the BIND or REBIND is performed in a trusted context that is defined
with the ROLE AS OBJECT OWNER clause, the owner of the plan or package is a role. If the OWNER bind
option is specified, the role that is specified in it is the owner, otherwise the role that performs the bind or
rebind becomes the owner.

The authorization ID that is used for the authorization checking of embedded SQL statements is that of
the owner of the plan or package. If the application is bound in a trusted context using the ROLE AS
OBJECT OWNER clause, the authorization ID that is used for authorization checking is the role that owns
the plan or package, otherwise the authorization ID is the authorization ID of the owner of the plan or
package. If an embedded SQL statement refers to tables or views at a Db2 subsystem other than the one
at which the plan or package is bound, the authorization checking is deferred until run time. For more
information on this, see “Authorization IDs and remote execution” on page 96.

If VALIDATE(BIND) is specified, the privileges required to use or manipulate objects at the Db2 subsystem
at which the plan or package is bound must exist at bind time. If the privileges or the referenced
objects do not exist and SQLERROR(NOPACKAGE) is in effect, the bind operation is unsuccessful. If

Chapter 2. Language elements in SQL 93

SQLERROR(CONTINUE) is specified, then the bind is successful and any statements in error are flagged. If
any statements in error are flagged, an error will occur when you attempt to execute them at run time.

If a plan or package is bound with VALIDATE(RUN), authorization checking is still performed at bind
time, but the referenced objects and the privileges required to use these objects need not exist at this
time. If any privilege required for a statement does not exist at bind time, an authorization check is
performed whenever the statement is first executed within a unit of work, and all privileges required
for the statement must exist at that time. If any privilege does not exist, execution of the statement is
unsuccessful. When the authorization check is performed at run time, it is performed against the plan
or package owner, not the SQL authorization ID. For the effect of this option on cursors, see “DECLARE
CURSOR statement” on page 1819.

Related tasks

Binding application packages and plans (Db2 Application programming and SQL)
Related reference

BIND PACKAGE subcommand (DSN) (Db2 Commands)

BIND PLAN subcommand (DSN) (Db2 Commands)

REBIND PACKAGE subcommand (DSN) (Db2 Commands)

REBIND PLAN command (DSN) (Db2 Commands)

Authorization IDs and dynamic SQL

The bind option DYNAMICRULES determines the authorization ID that is used for checking authorization
when dynamic SQL statements are processed. The set of values for the authorization ID and other
dynamic SQL attributes is called the dynamic SQL statement behavior. The four possible behaviors are
run, bind, define, and invoke.

This discussion applies to dynamic SQL statements that refer to objects at the current server. For those
that refer to objects elsewhere, see “Authorization IDs and remote execution” on page 96.

In addition to determining the authorization ID, DYNAMICRULES also controls other dynamic SQL
attributes such as the implicit qualifier that is used for unqualified alias, index, sequence, table, trigger,
and view names; the source for application programming options; and whether certain SQL statements
can be invoked dynamically.

As the following table shows, the combination of the value of the DYNAMICRULES option and
the runtime environment determines which of the four dynamic SQl statement behaviors is used.
DYNAMICRULES(RUN), which implies run behavior, is the default.

Table 14. How DYNAMICRULES and the runtime environment determine dynamic SQL statement behavior

Behavior of dynamic SQL statements

Stand-alone program User-defined function or stored

DYNAMICRULES value environment procedure environment

RUN Run Run

BIND Bind Bind

DEFINERUN Run Define

DEFINEBIND Bind Define

INVOKERUN Run Invoke

INVOKEBIND Bind Invoke

Note: BIND and RUN values can be specified for packages, plans, and native SQL procedures. The other
values can be specified for packages and native SQL procedures but not for plans.

In the following behavior descriptions, a package that runs under a user-defined function or stored
procedure package is a package whose associated program meets one of the following conditions:

94 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_bindapp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_bindpackage.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_bindplan.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_rebindpackage.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_rebindplan.html

« The program is called by a user-defined function or stored procedure.
« The program is in a series of nested calls that start with a user-defined function or stored procedure.

Run behavior
Db2 uses the authorization IDs of the application process and the SQL authorization ID (the value
of special register CURRENT SQLID) for authorization checking of dynamic SQL statements. If the
process is running in a trusted context with a role associated with the primary authorization ID, the
authorization IDs of the application process include this role.

A process that uses a plan and its associated packages is called an application process. At any time,
the SQL authorization ID is the value of CURRENT SQLID. This SQL special register can be initialized
by the connection or sign-on exit routine. If the exit routine does not set a value, the initial value

of CURRENT SQLID is the primary authorization ID of the process. You can use the SQL statement
SET CURRENT SQLID to change the value of CURRENT SQLID. Unless some authorization ID of the
process has SYSADM authority, the new value must be one of the authorization IDs of the process.
Thus, CURRENT SQLID usually contains either the primary authorization ID of the process or one of its
secondary authorization IDs. The CURRENT SQLID cannot contain a role.

Privilege set
If the dynamically prepared statement is other than a CREATE, GRANT, or REVOKE statement,
each privilege required for the statement can be a privilege designated by any authorization ID
of the process. Therefore, the privilege set is the union of the set of privileges held by each
authorization ID of the process. When the process is running in a trusted context with a role, the
authorization IDs of the process include this role.

If the dynamic SQL statement is a CREATE, GRANT, or REVOKE statement, the only authorization
ID that is used for authorization checking is the SQL authorization ID. Therefore, the privilege set
is the privileges held by that single authorization ID of the process. If the process is running in a
trusted context using the ROLE AS OBJECT OWNER clause for the a CREATE, GRANT, or REVOKE
statement, the single authorization ID of the process that is checked is the role that is in effect.

Implicit qualification
When an SQL statement is dynamically prepared, the values of the CURRENT SCHEMA special
register is used as the implicit qualifier. For example, it is used as the implicit qualifier for all
unqualified tables, aliases, views, indexes, and sequences. For more information, see “Unqualified
object name resolution” on page 86.

Bind behavior
The same rules that are used to determine the authorization ID for static (embedded) statements are
used for dynamic statements. Db2 uses the authorization ID of the owner of the package or plan for
authorization checking of dynamic SQL statements, as explained in “Authorization IDs and statement
preparation” on page 93.

Privilege set
The privilege set is the privileges that are held by the owner of the package or plan.

Implicit qualification
The identifier specified in the QUALIFIER option of the bind command that is used to bind the
SQL statements, or the CREATE PROCEDURE or ALTER PROCEDURE statement that is used to
create a version of an SQL procedure is the implicit qualifier for all unqualified tables, views,
aliases, indexes, and sequences. If the QUALIFIER option was not used when the plan, package,
or native SQL procedure was created or last changed, the implicit qualifier is the owner of the
plan, package, or native SQL procedure.

Define behavior
Define behavior applies only if the dynamic SQL statement is in a package that is run
as a stored procedure or user-defined function (or runs under a stored procedure or user-
defined function package), and the package was bound with DYNAMICRULES(DEFINEBIND) or
DYNAMICRULES(DEFINERUN). Db2 uses the authorization ID of the stored procedure or user-defined
function owner (the definer) for authorization checking of dynamic SQL statements in the application
package.

Chapter 2. Language elements in SQL 95

Privilege set
The privilege set is the privileges that are held by the authorization ID of the owner.

Implicit qualification
The stored procedure or user-defined function owner is also the implicit qualifier. For example, the
owner is the implicit qualifier for unqualified table, view, alias, index, and sequence names.

Invoke behavior
Invoke behavior applies only if the dynamic SQL statement is in a package that is run
as a stored procedure or user-defined function (or runs under a stored procedure or user-
defined function package), and the package was bound with DYNAMICRULES(INVOKEBIND) or
DYNAMICRULES(INVOKERUN). Db2 uses the stored procedure or user-defined function invoker for
authorization checking of dynamic SQL statements in the application package. The invoker can also be
arole.

Privilege set
The privilege set is the privileges that are held by the invoker. However, if the invoker is the
primary authorization ID of the process or the CURRENT SQLID value, secondary authorization IDs
are also checked. This includes the role of the primary authorization ID, if running in a trusted
context with a role. In that case, the privilege set is the union of the set of privileges held by each
authorization ID of the process.

Implicit qualification
The stored procedure or user-defined function invoker is also the implicit qualifier. For example, it
is the implicit qualifier for unqualified table, view, alias, index, and sequence names. The invoker
can also be arole.

Restricted statements when run behavior does not apply

When bind, define, or invoke behavior is in effect, you cannot use the following dynamic SQL statements:
ALTER, CREATE, COMMENT, DROP, GRANT, RENAME, and REVOKE.

Related concepts

Dynamic rules options for dynamic SQL statements (Db2 Application programming and SQL)

Related reference

DYNAMICRULES bind option (Db2 Commands)

Privileges required for using dynamic SQL statements (Managing Security)

Authorization IDs and remote execution

The authorization rules for remote execution depend on whether the distributed operation is DRDA access
with a Db2 for z/OS server and requester. DRDA access with a server and requester other than Db2 can
also effect the authorization rules for remote execution.

DRDA access with Db2 for z/0S only

To prepare and execute SQL statements using DRDA access, certain privileges are required by the
package owner and additional privileges are required by the user who invokes the application.

Any static statement executed using DRDA access is in a package bound at a server other than the local
Db2 subsystem. Before the package can be bound, its owner must have the BINDADD privilege and

the CREATE IN privilege for the package's collection. Also required are enough privileges to execute the
package's static SQL statements that refer to data on that server. All these privileges are recorded in the
Db2 catalog of the server, not in the catalog of the local Db2 subsystem. Such privileges must be granted
by GRANT statements executed at the server. This allows the server to control the creation and use of
packages that are run from other DBMSs.

A user who invokes an application that has a plan at the local Db2 subsystem must have the EXECUTE
privilege on the plan recorded in the Db2 catalog of the local subsystem. If that application uses a
package that is bound at a Db2 server other than the local Db2 requester, the EXECUTE privilege on the
package must also be recorded in the Db2 catalog of the server. The ID that must hold the authorization

96 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_dynamicrulesbindoption.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptdynamicrules.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_privilege4dynamicsql.html

to run the package at the Db2 server depends on the value of the PRIVATE_PROTOCOL subsystem
parameter at the Db2 server:

- If PRIVATE_PROTOCOL is set to NO, EXECUTE authority on the package must be explicitly granted to
the primary user ID or an associated secondary ID at the Db2 server. If the local requester application
invokes a stored procedure that resides at the Db2 server, EXECUTE authority on the stored procedure
package must be explicitly granted at the Db2 server to the owner of the package that issues the CALL
statement if either of the following is true:

— The owner of the stored procedure does not have the authority to execute the remote stored
procedure package.

— The CALL statement is in the form of CALL: host-variable and neither the primary user ID nor an
associated secondary ID has the authority to execute the remote stored procedure package.

« If PRIVATE_PROTOCOL is not set to NO, EXECUTE authority on the package must be explicitly granted
to the local requester plan owner at the Db2 server. The plan owner needs no other privilege to execute
the package. If the local requester application invokes a stored procedure that resides at the Db2
server, EXECUTE authority on the stored procedure package must be explicitly granted at the Db2 server
to the Db2 requester plan owner of the application that issues the CALL statement if either of the
following is true:

— The owner of the stored procedure does not have the authority to execute the remote stored
procedure package.

— The CALL statement is in the form of CALL: host-variable and neither the primary user ID nor an
associated secondary ID has the authority to execute the remote stored procedure package.

EXECUTE authority is also required to use a package for a user-defined function, trigger, or stored
procedure that resides at the Db2 server. However, except as previously described for a specific stored
procedure case, the PRIVATE_PROTOCOL subsystem parameter is not used to determine the ID that is
required to hold the EXECUTE privilege on that package. The EXECUTE privilege on that package must be
recorded in the Db2 catalog of the server.

Having the appropriate privileges recorded as described above allows the execution of the static SQL
statements in the package, and the execution of dynamic SQL statements if DYNAMICRULES bind, define,
or invoke behavior is in effect. If DYNAMICRULES run behavior is in effect, the authorization rules for
dynamic SQL statements is different. Authorization for the execution of dynamic SQL statements must
come from the set of authorization IDs that are derived during connection processing, and, if the process
is running in a trusted connection, the role that is in effect. An application goes through connection
processing when it first connects to a server or when it reuses a CICS or IMS thread that has a different
primary authorization ID.

If an application uses Recoverable Resources Manager Services attachment facility (RRSAF) and has no
plan, authority to execute the package is determined in the same way as when the requester is not Db2
for z/OS.

Related concepts

Managing connection requests from local applications (Managing Security)

DRDA access with a server or requester other than Db2

Specific privileges are required depending on whether Db2 is the server or the requester involved in DRDA
access.

Related tasks

Checking authorization at a Db2 database server (Managing Security)

DRDA access with a server or requester other than Db2

Specific privileges are required depending on whether Db2 is the server or the requester involved in DRDA
access.

Db2 for z/0S as the server: If the requester is not a Db2 for z/OS subsystem, there is no Db2
application plan involved. In this case, the privilege set of the authorization ID, which is determined by the
DYNAMICRULES behavior, must have the EXECUTE privilege on the package. Dynamic SQL statements in

Chapter 2. Language elements in SQL 97

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_localrequest.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_checkauth4hopdb2serv.html

the package are executed according to the DYNAMICRULES behavior, as described in “Authorization IDs
and dynamic SQL” on page 94.

Db2 for z/0S as the requester: The authorization rules for remote execution are those of the server.

Authorization ID translations

When certain authorization IDs are sent to a remote DBMS, those authorization IDs might undergo
translation before being used.

Translation can occur for a primary authorization ID, the authorization ID of the owner of an application
plan, or the authorization ID of the owner of a package. For example, a user known as SMITH at the local
DBMS could be known, after translation, as JONES at the server. Likewise, a package owner known as
GRAY could be known as WINTERS at the server. If so, JONES or WINTERS would be used, instead of
SMITH or GRAY, to determine the authorization ID for dynamic SQL statements in the package. If the
DYNAMICRULES run behavior applies, JONES, who is executing the dynamic statement at the server, is
used. If DYNAMICRULES bind behavior applies, WINTERS, the package owner at the server, is used.

Two sets of communications database (CDB) catalog tables control the translations. One set is at the local
Db2, and the other set is at the remote Db2. Translation can take place at either or both sites.

Related concepts

Communications database for the requester (Managing Security)

Communications database for the server (Managing Security)

Other security measures

Even if Db2 authority requirements are satisfied, other security measures can be in effect when
distributed data is accessed.

The fact that Db2 authority requirements are satisfied does not guarantee that a user has access to a
given server. Other security measures can also come into play. For example, requests to execute remote
SQL statements could be denied based on Resource Access Control Facility (RACF) considerations.
Developing such security measures is discussed in Getting started with Db2 security (Managing Security)
and Introduction to the RACF access control module (RACF Access Control Module Guide).

Data types

Db2 supports both IBM-supplied data types (built-in data types) and user-defined data types (distinct
types).

The smallest unit of data that can be manipulated in SQL is called a value. How values are interpreted
depends on the data type of their source. Values have the following sources:

« Columns

- Constants

« Expressions

« Functions
 Special registers

« Variables (such as host variables, SQL variables, global variables, parameter markers, and parameters
of routines)

The following topics describes the built-in data types and distinct types.
Figure 22 on page 99 shows the built-in data types that Db2 supports.

98 Db2 12 for z/0OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_cdb4requester.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_cdb4server.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_securitydef.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/racf/src/tpc/db2z_racfoverview.html

Built-indata types

datetime string signed numeric row identifier extensible
markup
’—’—‘ ROWID language
XML
time timestamp date
TIME DATE ‘ ‘ ‘
exact a decimal approximate
timestamp without timestamp CENTG [Pl ‘
time zone with time zone DECFLOAT : .
floating point
TIMESTAMP TIMESTAMP
WITHOUT TIME ZONE WITH TIME ZONE
‘ ‘ ‘ single double
precision precision
character graphic binary REAL DOUBLE
—
fixed varyin i i
length lenygthg fixed length varying length
CHAR BINARY
VARCHAR CLOB VARBINARY BLOB ‘ ‘
fixed varyin binary integer decimal
length len%gthg YINEE
GRAPHIC ‘
16 bit 32 bit 64 bit packed
VARGRAPHIC DBCLOB SMALLINT INTEGER BIGINT DECIMAL

Figure 22. Built-in data types supported by Db2

NULLS

All data types include the null value. Distinct from all nonnull values, the null value is a special value that
denotes the absence of a (nonnull) value.

Although all data types include the null value, some sources of values cannot provide the null value. For
example, constants, columns that are defined as NOT NULL, and special registers cannot contain null
values; the COUNT and COUNT_BIG functions cannot return a null value; and ROWID columns cannot
store a null value although a null value can be returned for a ROWID column as the result of a query.

Related concepts

Null values in table columns (Introduction to Db2 for z/OS)
When to use null or default values (Introduction to Db2 for z/OS)
Related reference

CREATE TABLE statement

The CREATE TABLE statement defines a table. The definition must include its name and the names and
attributes of its columns. The definition can include other attributes of the table, such as its primary key
and its table space.

Numeric data types

The numeric data types are binary integer, decimal, decimal floating-point, and floating-point.
The numeric data types are categorized as follows:

- Exact numeric data types: binary integer and decimal

 Decimal floating-point

« Approximate numeric data types: floating-point

Binary integer includes small integer, large integer, and big integer. Binary numbers are exact
representations of integers. Decimal numbers are exact representations of real numbers, with a fixed
precision and scale. Binary and decimal numbers are considered exact numeric types.

Decimal floating-point includes DECFLOAT(16) and DECFLOAT(34), which are capable of representing
either 16 or 34 significant digits. The decimal floating-point data type supports both exact
representations of real numbers and approximations of real numbers, and is not considered to be either
an exact numeric type or an approximate numeric type.

Chapter 2. Language elements in SQL 99

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_nullvalues.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_comparisonofnullvaluesanddefaultvalues.html

Floating-point includes single precision and double precision. Floating-point numbers are approximations
of real numbers, and are considered to be approximate numeric types.

All numbers have a sign, a precision, and a scale. If a column value is zero, the sign is positive. Decimal
floating point has distinct values for a number and the same number with various exponents (for example:
0.0, 0.00, 0.0E5, 1.0, 1.00, 1.0000). The precision is the total number of binary or decimal digits
excluding the sign. The scale is the total number of binary or decimal digits to the right of the decimal
point. If there is no decimal point, the scale is zero.

Small integer (SMALLINT)

A small integer is a binary integer with a precision of 15 bits.

The range of small integers is -32768 to +32767.

Large integer (INTEGER)
A large integer is a binary integer with a precision of 31 bits.

The range of large integers is -2147483648 to +2147483647.

Big integer (BIGINT)
A big integer is a binary integer with a precision of 63 bits.
The range of big integers is -9223372036854775808 to +9223372036854775807.

Single precision floating-point (REAL)
A single precision floating-point number is a short (32 bits) floating-point number.

The range of single precision floating-point numbers is about -7.2E+75 to 7.2E+75. In this range, the
largest negative value is about -5.4E-79, and the smallest positive value is about 5.4E-079.

Double precision floating-point (DOUBLE or FLOAT)
A double precision floating-point number is a long (64 bits) floating-point number.

The range of double precision floating-point numbers is about -7.2E+75 to 7.2E+75. In this range, the
largest negative value is about -5.4E-79, and the smallest positive value is about 5.4E-079.

Decimal (DECIMAL or NUMERIC)

A decimal number is a packed decimal number with an implicit decimal point.

The position of the decimal point is determined by the precision and the scale of the number. The scale,
which is the number of digits in the fractional part of the number, cannot be negative or greater than the
precision. The maximum precision is 31 digits.

All values of a decimal column have the same precision and scale. The range of a decimal variable or the
numbers in a decimal column is -n to +n, where n is the largest positive number that can be represented
with the applicable precision and scale. The maximum range is 1 - 1031t0 1031 - 1.

Decimal floating-point (DECFLOAT)
The maximum precision of a decimal floating-point number is 34 digits.

The range of a decimal floating point number is either 16 or 34 digits of precision, and an exponent range
of respectively 107383 to 10*384 or 1076143 to 10+6144,

In addition to the finite numbers, decimal floating point numbers are able to represent one of the
following named special values:

100 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

« Infinity - a value that represents a number whose magnitude is infinitely large.

« Quiet NaN - a value that represents undefined results which does not cause an invalid number
condition.

- Signaling NaN - a value that represents undefined results which will cause an invalid number condition if
used in any numerical operation.

When a number has one of these special values, its coefficient and exponent are undefined. The sign of
an infinity is significant (that is, it is possible to have both positive and negative infinity). The sign of a NaN
has no meaning for arithmetic operations. INF can be used in place of INFINITY.

Subnormal numbers and underflow

The decimal floating-point data type has a set of non-zero numbers that fall outside the range of normal
decimal floating-point values. These numbers are called subnormal.

Non-zero numbers whose adjusted exponents are less than Eq,,# are called subnormal numbers. These
subnormal numbers are accepted as operands for all operations and can result from any operation. If a
result is subnormal before any rounding occurs, the subnormal condition is returned.

For a subnormal result, the minimum values of the exponent becomes E,;, - (precision-1), called
Etiny» Where precision is the working precision. If necessary, the result will be rounded to ensure that the
exponent is no smaller than Eyjpny. If the result becomes inexact during rounding, an underflow condition
is returned. A subnormal result does not always return the underflow condition but will always return the
subnormal condition.

When a number underflows to zero during a calculation, its exponent will be Ejjny. The maximum value of
the exponent is unaffected.

The maximum value of the exponent for subnormal numbers is the same as the minimum value of the
exponent which can arise during operations that do not result in subnormal numbers. This occurs where
the length of the coefficient in decimal digits is equal to the precision.

Numeric host variables
Numeric host variables can be defined in all languages with a few exceptions.
Binary integer variables can be defined in all host languages.

Floating-point variables can be defined in all host languages. All languages, except Java, support
System/390 floating-point format. Assembler, C, C++, PL/I, and Java also support IEEE floating-point
format. In assembler, C, C++, and PL/I programs, the SQL processing option FLOAT tells Db2 whether
floating-point variables contain data in System/390 floating-point format or IEEE floating-point format.
The contents of floating-point host variables must match the format that is specified with the FLOAT SQL
processing option.

Decimal variables can be defined in all host languages except Fortran.
In COBOL, decimal numbers can be represented in the following formats:

« Packed decimal format, denoted by USAGE PACKED-DECIMAL or COMP-3
» External decimal format, denoted by USAGE DISPLAY with SIGN LEADING SEPARATE
« NATIONAL decimal format denoted by USAGE NATIONAL and SIGN LEADING SEPARATE

Decimal floating-point variables can be defined in Assembler, C, C++, PL/I, and Java.

String representations of numeric values

String representations of numeric values can be used in some contexts. A valid string representation of a
numeric value must conform to the rules for numeric constants.

Chapter 2. Language elements in SQL 101

The encoding scheme in use determines the types of strings can be used for string representation of
numeric values. For ASCII and EBCDIC, a string representation of a numeric value must be a character
string. For UNICODE, a string representation of a numeric value can be either a character string or a
graphic string. Thus, the only time a graphic string can be used for a numeric value is when the encoding
scheme is UNICODE.

When a decimal number is cast to a string (for example, using a CAST specification), the implicit decimal
point is replaced by the default decimal separator character that is in effect when the statement is
prepared.

When a string is cast to a decimal value (for example, using a CAST specification), the default decimal
separator character in effect when the statement was prepared is used to interpret the string.

When a floating point or decimal floating-point number is cast to a string (for example, using a CAST
specification), or a string is cast to a floating point or decimal floating-point number, the decimal
separator character must be a period (.).

Related concepts

Constants

A constant (also called a literal) specifies a value. Constants are classified as null constants, string
constants, numeric constants, or datetime constants. Numeric constants are further classified as integer,
floating-point, decimal, or decimal floating-point. String constants are classified as character, graphic, or
binary.

Numeric data types
The numeric data types are binary integer, decimal, decimal floating-point, and floating-point.

Arithmetic operators in expressions
If arithmetic operators are used, the result of the expression is a number derived from the application of
the operators to the values of the operands.

Numeric host variables
Numeric host variables can be defined in all languages with a few exceptions.
Binary integer variables can be defined in all host languages.

Floating-point variables can be defined in all host languages. All languages, except Java, support
System/390 floating-point format. Assembler, C, C++, PL/I, and Java also support IEEE floating-point
format. In assembler, C, C++, and PL/I programs, the SQL processing option FLOAT tells Db2 whether
floating-point variables contain data in System/390 floating-point format or IEEE floating-point format.
The contents of floating-point host variables must match the format that is specified with the FLOAT SQL
processing option.

Decimal variables can be defined in all host languages except Fortran.
In COBOL, decimal numbers can be represented in the following formats:

« Packed decimal format, denoted by USAGE PACKED-DECIMAL or COMP-3
« External decimal format, denoted by USAGE DISPLAY with SIGN LEADING SEPARATE
« NATIONAL decimal format denoted by USAGE NATIONAL and SIGN LEADING SEPARATE

Decimal floating-point variables can be defined in Assembler, C, C++, PL/I, and Java.

Character strings

A character string is a sequence of bytes. The length of the string is the number of bytes in the sequence.
If the length is zero, the value is called the empty string. The empty string should not be confused with the
null value.

Default CCSIDs for character strings

102 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The value of the field MIXED DATA (on installation panel DSNTIPF) determines the default CCSIDs for a

character string.

The following table shows how the value of the field MIXED DATA (on installation panel DSNTIPF)
determines the default CCSIDs for a character string.

Table 15. Default CCSIDs for character strings

Encoding scheme Value of MIXED Default attribute
DATA field
ASCII or EBCDIC NO Character: SBCS
The value of the ASCII CCSID or EBCDIC CCSID field
on installation panel determines the system CCSID
for SBCS data.
ASCII or EBCDIC YES Character: MIXED
The value of the ASCII CCSID or EBCDIC CCSID field
on installation panel DSNTIPF determines the system
CCSID for SBCS data, MIXED, and graphic data.
Unicode Not applicable Character: MIXED

The CCSIDs are:

- 367 for SBCS data

« 1208 for MIXED data
« 1200 for graphic data

The MIXED DATA field does not apply to Unicode columns in EBCDIC tables. Those columns follow the
same rules that are shown for the Unicode encoding scheme in the previous table. For more information,
see “Unicode columns in EBCDIC tables” on page 113.

Fixed-length character strings

When fixed-length character string distinct types, columns, and variables are defined, the length attribute
is specified, and all values have the same length. For a fixed-length character string, the length attribute

must be in the range 1-255 inclusive.

Varying-length character strings

The types of varying-length character strings are VARCHAR and character large object (CLOB). A CLOB is
a type of LOB. A CLOB column is useful for storing large amounts of character data, such as documents

written with a single character set.

When varying-length character strings, distinct types, columns, and variables are defined, the maximum
length is specified and this length becomes the length attribute except for C NUL-terminated strings.
Actual values might have a smaller value. For varying-length character strings, the length specifies the

number of bytes.

For a VARCHAR string, the length attribute must be in the range 1 - 32704. For a VARCHAR column, the
maximum for the length attribute is determined by the record size that is associated with the table, as
described in Maximum record size the description of the CREATE TABLE statement. For a CLOB string, the
length attribute must be in the range 1 - 2147483647 inclusive. For more information about CLOBs, see

“Large objects (LOBs)” on page 116.

Chapter 2. Language elements in SQL 103

Character string variables

- Fixed-length character string variables can be used in all languages except REXX and Java. In C, CHAR
string variables are limited to a length of 1.

« Varying-length character string variables can be used in all host languages with the following
exceptions:

— Fortran: varying-length non-LOB character strings cannot be used.

— Assembler, C, and COBOL: varying-length non-LOB strings are simulated as described in Db2
Application Programming and SQL Guide. In C, NUL-terminated strings can also be used.

— REXX: CLOBs and DBCLOBSs cannot be used.

Character string encoding schemes

The method of representing DBCS and MBCS characters within a mixed string differs among the encoding
schemes.

Each character string is further defined as one of the following subtypes:

Bit data
Data that is not associated with a coded character set and, therefore, is never converted. The CCSID
for bit data is X'FFFF' (65535). The bytes do not represent characters.

Bit data is a form of character data. The pad character is a blank for assignments to bit data; the pad
character is X'00' for assignments to binary data. It is recommended that binary data be used instead
of character for bit data.

If both operands in a predicate are EBCDIC, both operands are padded with X'40". Otherwise, both
operands are padded with X'20'. For example, if both operands are ASCII, or if one operand is ASCII
and the other operand is EBCDIC, both are padded with X'20".

SBCS data
Data in which every character is represented by a single byte. Each SBCS string has an associated
CCSID. If necessary, an SBCS string is converted before it is used in an operation with a character
string that has a different CCSID.

Mixed data
Data that can contain a mixture of characters from a single-byte character set (SBCS) and a multiple-
byte character set (MBCS). Each mixed string has an associated CCSID. If necessary, a mixed string is
converted before an operation with a character string that has a different CCSID. If a mixed data string
contains an MBCS character, it cannot be converted to SBCS data.

EBCDIC mixed data can contain shift characters, which are not MBCS data.

When the encoding scheme is Unicode or the Db2 installation is defined to support mixed data, Db2
recognizes MBCS sequences within mixed data string when performing character sensitive operations.
These operations include parsing, character conversion, and the pattern matching specified by the
LIKE predicate.

Character strings with a CLOB data type can only be SBCS or MIXED. BLOB should be used for binary
strings.

The method of representing DBCS and MBCS characters within a mixed string differs among the encoding
schemes.

« ASCII reserves a set of code points for SBCS characters and another set as the first half of DBCS
characters. When it encounters the first half of a DBCS character, the system reads the next byte in
order to obtain the complete character.

« EBCDIC makes use of two special code points:

— A shift-out character (X'OE") to introduce a string of DBCS characters.

104 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

— A shift-in character (X'OF") to end a string of DBCS characters.

DBCS sequences within mixed data strings are recognized as the string is read from left to right. At

any time, the reading of the string is in SBCS mode or DBCS mode. In SBCS mode, which is the initial
mode, any byte other than a shift-out is interpreted as an SBCS character. When a shift-out is read, the
mode switches to DBCS mode. In DBCS mode, the next byte and every second byte after that byte is
interpreted as the first byte of a DBCS character unless it is a shift character. If the byte is a shift-out, an
error occurs. If the byte is a shift-in, the mode returns to SBCS mode. An error occurs if the mode is still
DBCS mode after processing the last byte of the string. Because of the shift characters, EBCDIC mixed
data requires more storage than ASCII mixed data.

« UTF-8 is a varying-length encoding of byte sequences. The high bits indicate the part of the sequence to
which a byte belongs. The first byte indicates the number of bytes to follow in a byte sequence.

Examples of character encoding schemes

The same mixed date character string can be represented as character and hexadecimal data in different
encoding schemes.

For the same mixed data character string, the following table shows character and hexadecimal
representations of the character string in different encoding schemes. In EBCDIC, the shift-out and
shift-in characters are needed to delineate the double-byte characters.

Table 16. Example of a character string in different encoding schemes

Data type and encoding Character representation Hexadecimal representation (with
scheme spaces separating each character)

9 bytes in ASCII TCgen Tk 8CB3 67 65 6E 8B43 6B 69

13 bytes in EBCDIC $TT S gen DR ki OE 4695 OF 87 85 95 OE 45B9 OF 92 89
11 bytes in Unicode UTF-8 JTTgen Rki E58583 67 65 6E E6B097 6B 69

Because of the differences of the representation of mixed data strings in ASCII, EBCDIC, and Unicode,
mixed data is not transparently portable. To minimize the effects of these differences, use varying-length
strings in applications that require mixed data and operate on ASCII, EBCDIC, and Unicode data.

String units specifications

The ability to specify string units for certain built-in functions and on the CAST specification allows

you to process string data in a more "character-based manner" than a "byte-based manner". The string
unit determines the length in which the operation is to occur. For more information, see “String unit
specifications” on page 106.

Related concepts

String unit specifications

The ability to specify string units for certain built-in functions and on the CAST specification allows you
to process string data in a more "character-based manner" than a "byte-based manner". The string unit
determines the length in which the operation is to occur. You can specify CODEUNITS32, CODEUNITS16,
or OCTETS as the units for the operation.

Numeric data types
The numeric data types are binary integer, decimal, decimal floating-point, and floating-point.

Characters and tokens in SQL

Chapter 2. Language elements in SQL 105

The most basic elements of SQL syntax are characters and tokens. Tokens are the basic syntactical units
of the SQL language.

String unit specifications

The ability to specify string units for certain built-in functions and on the CAST specification allows you
to process string data in a more "character-based manner" than a "byte-based manner". The string unit
determines the length in which the operation is to occur. You can specify CODEUNITS32, CODEUNITS16,
or OCTETS as the units for the operation.

CODEUNITS32
Specifies that Unicode UTF-32 is the units for the operation. CODEUNITS32 is useful when an
application wants to process data in a simple fixed-length format and needs the same answer
regardless of the storage format of the data (ASCII, EBCDIC, UTF-8, or UTF-16). Although the answers
are in terms of CODEUNITS32, the data is not converted to UTF-32 to perform the function.

CODEUNITS16
Specifies that Unicode UTF-16 is the units for the operation. CODEUNITS16 is useful when an
application wants to know how many double-byte characters are in a string.

OCTETS
Specifies that bytes are the units for the operation. OCTETS is often used when an application is
interested in allocation buffer space or when operations need to use simple byte processing.

Determining the length of a string by counting in string units (CODEUNITS16 or CODEUNITS32) or bytes
(OCTETS) can result in different answers. When OCTETS is specified, the length of a string is determined
by simply counting the number of bytes in the string. Counting by CODEUNITS16 or CODEUNITS32
gives the same answer unless the data contains supplementary characters. For information about

the difference between CODEUNITS16 and CODEUNITS32 when the data contains supplementary
characters, see “Difference between CODEUNITS16 and CODEUNITS32” on page 107.

Example: Assume that NAME is a VARCHAR(128) column, encoded in Unicode UTF-8, that contains

the value 'Jiirgen'. The first two queries, which count the length of the string in CODEUNITS32 and
CODEUNITS16, returns the same value, 6. The third query, which counts the length of the string in
OCTETS, returns the value 7. These values are the length of the string as expressed in the string units that
are specified.

SELECT CHARACTER_LENGTH(NAME, CODEUNITS32)
FROM T1 WHERE NAME = 'Jirgen';

SELECT CHARACTER_LENGTH(NAME,CODEUNITS16)
FROM T1 WHERE NAME = '3Jiirgen';

SELECT CHARACTER_LENGTH(NAME,OCTETS)
FROM T1 WHERE NAME = '3Jiirgen';

The following table shows the UTF-8, UTF-16, and UTF-32 representations of 'Jirgen'.

Format Representation of the name 'Jiirgen'

UTF-8 x'4AC3BC7267656E'

UTF-16 x'004A00FC007200670065006E'

UTF-32 x'0000004A000000FC0000007200000067000000650000006E'

The bold highlighting in the table demonstrates how the representation of the character d in 'Jiirgen'
differs between the three string units:

« The UTF-8 representation of the character i is X'C3BC'. In UTF-8, characters that are not in the Latin-1
subset (essentially a through z, A through Z, and 0 through 9), such as accented characters or Japanese
characters, are represented by multiple bytes.

106 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

« The UTF-16 representation of the character (i is X'00FC'. In UTF-16, each character is represented in 2
bytes. UTF-16 supplementary characters take two 2-byte code points.

- The UTF-32 representation of the character (i is X'000000FC'. In UTF-32, each character is represented
in 4 bytes.

Specifying the string units on a built-in function does not affect the data type or the CCSID of the result
of the function. If necessary, Db2 converts the data to Unicode for evaluation when CODEUNITS32 or
CODEUNITS16 is specified. Db2 always evaluates the data in the encoding scheme of the output data
when OCTETS is specified. For more information about the data types and CCSIDs of the results of
functions, see the description of each function.

Differences between the way that characters are represented in ASCII, EBCDIC, and Unicode can affect
the results of your queries.

Example: Assume that NAME is a VARCHAR(128) column, encoded in EBCDIC (CCSID 37), that contains
the value 'Mit freundlichen Grifden, Jirgen'. The following query returns the string 'Mit freundlichen Grifs':

SELECT SUBSTRING(C1,1,21,CODEUNITS16)
FROM T1 WHERE C1 = 'Mit freundlichen GzriRen, Jlirgen';

The following table shows the result data in more detail:

Format Representation of 'Mit freundlichen Griif3'
EBCDIC D489A340869985A4958493898388859540C799DC59
UTF-8 AD697420667265756E646C696368656E204772C3BCC39F
UTF-16

004D0069007400200066007200650075006E0064006CO069006300680
065006E00200047007200FCOODF

The bold highlighting in the table shows that the representation of the characters i and 15 in UTF-8 and
UTF-16 each require two bytes. If OCTETS had been specified on the SUBSTRING function to have the
string evaluated in UTF-8 bytes instead of EBCDIC OCTETS or CODEUNITS16, the result would have been
'Mit freundlichen Gr{'. The character {5 would have been lost.

Related concepts

Character strings

A character string is a sequence of bytes. The length of the string is the number of bytes in the sequence.
If the length is zero, the value is called the empty string. The empty string should not be confused with the
null value.

Difference between CODEUNITS16 and CODEUNITS32

CODEUNITS16 and CODEUNITS32 return the same answer unless the data contains supplementary
characters.

A supplementary character is represented as two UTF-16 code units or one UTF-32 code unit. In

UTF-8, a non-supplementary character is represented by 1 to 3 bytes and a supplementary character

is represented by 4 bytes. In UTF-16, a non-supplementary character is represented by one CODEUNIT16
code unit or 2 bytes, and a supplementary character is represented by two CODEUNIT16 code units

or 4 bytes. In UTF-32, a character is represented by one CODEUNIT32 code unit or 4 bytes. Thus,
CODEUNITS16 and CODEUNITS32 return different answers when the data contains supplementary
characters.

Example 1: The following table shows the hexadecimal values for the mathematical bold capital A and the
Latin capital letter A. The mathematical bold capital A is a supplementary character that is represented by
4 bytes in UTF-8, UTF-16, and UTF-32.

Chapter 2. Language elements in SQL 107

Character UTF-8 UTF-16 UTF-32

representation representation representation
Unicode value \u1D400 - ‘A’ X'FO9D9080" X'D835DC00" X'0001D400"
MATHEMATICAL BOLD CAPITAL A
Unicode value \u0041 - 'A' X'41" X'0041' X'00000041'

LATIN CAPITALLETTER A

Assume that C1 is a VARCHAR(128) column, encoded in Unicode UTF-8, and that table T1 contains one
row with the value of the mathematical bold capital A (X'FO9D9080"). The following similar queries return
different answers:

-- Query: -- Returns the value:
SELECT CHARACTER_LENGTH(C1,CODEUNITS32) FROM T1; -- 1
SELECT CHARACTER_LENGTH(C1,CODEUNITS16) FROM T1; -- 2
SELECT CHARACTER_LENGTH(C1,0CTETS) FROM T1; -- 4

Example 2: Assume that C1 is a VARCHAR(128) column, encoded in Unicode UTF-8, and that table T1
contains one row with the value of the mathematical bold capital A (X'FO9D9080"). The following similar
queries return different answers.

-- Query: -- Returns the value:
SELECT HEX(SUBSTRING(C1,1,1,CODEUNITS32)) FROM T1; -- X'FO9D9080"

SELECT HEX(SUBSTRING(C1,1,1,CODEUNITS16)) FROM T1; -- X'20'

SELECT HEX(SUBSTRING(C1,1,2,CODEUNITS16)) FROM T1; -- X'FO9D9080'

SELECT HEX(SUBSTRING(C1,1,1,0CTETS)) FROM T1; -- X'20'

SELECT HEX(SUBSTR(C1,1,1)) FROM T1; -- X'FO'

The value X'20' is the pad (blank) character.

Determining the length attribute of the final result

When CODEUNITS32, CODEUNITS16, or OCTETS is specified for a function or the CAST specification, the
length attribute of the final result string is calculated by applying specific formulas depending on which
function is specified.

To determine the final result of a function or the CAST specification, Db2 might need to use an
intermediate result string if CODEUNITS32 or CODEUNITS16 is specified, depending on the encoding
scheme of the data:

- ASCII and EBCDIC data require the use of a UTF-16 intermediate result string when either
CODEUNITS32 or CODEUNITS16 is specified.

- UTF-8 data requires the use of a UTF-16 intermediate result string only when CODEUNITS16 is
specified.

Regardless of whether an intermediate string is used, when CODEUNITS32, CODEUNITS16, or OCTETS
is specified for a function or the CAST specification, the length attribute of the final result string is
calculated by applying the formulas that are described in the following table. The length attributes that
are calculated at each step in the formulas are measured in bytes, unless indicated otherwise.

Determining the length attribute of the string
The formulas for the length attribute of the final result string depend on the function.

The final value of the calculation for each length attribute (IML, rl, and the final result of the function) is
limited by the maximum length of the function or by the maximum length of the corresponding data type
of the result, whichever is applicable. Each length attribute is expressed in terms of bytes.

CAST specification, CHAR, CLOB, DBCLOB, GRAPHIC, VARCHAR, VARGRAPHIC
Follow these three steps to determine the length attribute of the final result:

108 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

1. Length of the intermediate string (IML)

When CODEUNITS32 or CODEUNITS16 is specified:

- If the source string is not in Unicode CCSID 1200, 1208, or 367, convert the source string
to CCSID 1200, using the formulas in “Conversion rules for comparisons” on page 159 to
determine the result length of the intermediate string (IML).

- If source string is in Unicode CCSID 1208 or 367, and CODEUNITS16 is specified, convert the
source string to CCSID 1200, using the formulas in “Conversion rules for comparisons” on page
159 to determine the result length of the intermediate string (IML).

« Otherwise, the intermediate string is the same as the source string.
When OCTETS is specified:

- If the CCSID of the source string is different from the CCSID of the result of the function, convert
the source string to the CCSID of the result of the function, using the formulas in “Conversion
rules for comparisons” on page 159 to determine the result length of the intermediate string
(IML).

« Otherwise, the intermediate string is the same as the source string.

Exception: For the GRAPHIC and VARGRAPHIC function, if the source string is EBCDIC, the source
is widened with prefix X'42' before the source string is converted to CCSID 1200 and the length of
the intermediate string is determined.

2. Result length attribute of the intermediate string (rl)

The result length (rl) of the intermediate string depends on whether a length argument was
explicitly specified.

If length was not specified, the result length (rl) attribute is:

rl = IML

If length was specified, the result length (rl) attribute is:

IF (ol * n) < r_IML THEN
rl = 0ol *xn

ELSE
IF intermediate string is in CCSID 1200
(UTF-16) THEN
rl = MINCol xn , IML+ (xr *= 2))
ELSE
rl = MINC ol * n , IML + 1)
Where:

- ol = original length argument, expressed in the specified string units

n=
4 bytes for CODEUNITS32

2 bytes for CODEUNITS16
- IML = length of the intermediate string
e r_IML = IML rounded up to next multiple of n
« r=o0l- (r_IML/n), expressed in the specified string units

The calculation for r is an estimate of the difference between the length argument and the
estimated number of characters of the input argument, expressed in the specified string units.

3. Length of the final result string (the result of the function)

The result length attribute of the final string is determined by converting the result length (rl)
of the intermediate string to the CCSID of the result of the function, using the formulas in
“Conversion rules for comparisons” on page 159, if CCSID conversion is necessary. Otherwise,
the result length attribute of the final string is rl.

Chapter 2. Language elements in SQL 109

CHARACTER_LENGTH, LOCATE, LOCATE_IN_STRING, POSITION
Follow these three steps to determine the length attribute of the final result:

1. Length of the intermediate string (IML)
The length of the intermediate string (IML) is determined the same way as for the CAST
specification. (See Length of the intermediate string (IML).)

For the LOCATE, LOCATE_IN_STRING, and POSITION functions, this applies to both the source-
string and search-string. If the CCSIDs of intermediate strings for the converted source-string and
search-string differ, the intermediate string for the search-string is converted to the CCSID of
intermediate string for the source-string.

2. Result length attribute of the intermediate string (rl)
The result length (rl) attribute is always 4 (the length of an integer):

rl = 4

3. Length of the final result string (the result the function)
The length of the final result of the function is always an integer.

INSERT, OVERLAY
Follow these three steps to determine the length attribute of the final result:

1. Length of the intermediate string (IML)
The length of the intermediate string (IML) for both the source-string and the insert-string is
determined the same way as for the CAST specification. (See Length of the intermediate string
(IML).)

If the CCSIDs of the intermediate strings for the converted source-string and insert-string differ,
the intermediate string for the insert-string is converted to the CCSID of the intermediate string for
the source-string.

2. Result length attribute of the intermediate string (rl)
The result length (rl) attribute of the intermediate string depends on whether the start and length
arguments are constants.

If the start and length arguments are both constants, the result length attribute is:

rl = L1 - MIN (MAX (O, L1 - (V2 - 1)
*n), V3 *m) + L4

If at least one argument (the start or length argument) is not a constant, the result length attribute
is:

rl = L1 + L4

Where:

« L1 and L4 are the length attributes of the intermediate strings of the source-string and insert-
string, respectively.

- V2 and V3 are the start and length values, respectively, expressed in the specified string units.

m=
1 if the intermediate string of the source-string is not CCSID 1200 (UTF-16)

2 if the intermediate string of the source-string is CCSID 1200 (UTF-16)

n=
4 bytes for CODEUNITS32

2 bytes for CODEUNITS16
3. Length of the final result string (the result the function)

The length of the final result is the same as the length of the final result for the CAST specification.
(See Length attribute of the final result string (the result of the function).)

110 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

LEFT, RIGHT
Follow these three steps to determine the length attribute of the final result:

1. Length of the intermediate string (IML)
The length of the intermediate string (IML) is determined the same way as for the CAST
specification. (See Length of the intermediate string (IML).)

2. Result length attribute of the intermediate string (rl)
The result length (rl) attribute is the same as the length of the intermediate string:

rl = IML

3. Length of the final result string (the result of the function)
The result length attribute of the final string is determined by converting the result length (rl)
of the intermediate string to the CCSID of the result of the function, using the formulas in
“Conversion rules for comparisons” on page 159, if CCSID conversion is necessary. Otherwise,
the result length attribute of the final string is rl.

The result length attribute of the final string is:

MIN(length of source string, length of CCSID
converted string)

SUBSTRING
Follow these three steps to determine the length attribute of the final result:

1. Length of the intermediate string (IML)
The length of the intermediate string (IML) is determined the same way as for the CAST
specification. (See Length of the intermediate string (IML).)

2. Result length attribute of the intermediate string (rl)
The result length (rl) of the intermediate string depends on whether a length argument was
explicitly specified.

If length was not specified, the result length (rl) attribute is:

rl = IML

If length was specified, the result length (rl) attribute is:
rl = MIN(ol * n, IML)

Where:

- ol = original length argument, expressed in the specified string units

n=
4 bytes for CODEUNITS32

2 bytes for CODEUNITS16
« IML = length of the intermediate string

3. Length of the final result string (the result of the function)
The length of the final result string is the same as for LEFT built-in function.

Examples
Example 1

Assume that T1 is a table encoded in EBCDIC and C1 is a CHAR(26) column (SBCS data with EBCDIC
CCSID 37). The CHAR function is invoked in the following statement:

SELECT CHAR(C1,10,CODEUNITS32) as COL1 FROM T1;

Db2 uses an intermediate string to evaluate the function and determines the intermediate and final
result string lengths using these steps:

Chapter 2. Language elements in SQL 111

1. C1, which is SBCS EBCDIC 37 data, is converted to Unicode 1200 (UTF-16). The result length of
the conversion (using the formula from “Conversion rules for comparisons” on page 159, X * 2) is
26 * 2. Thus, the length of the intermediate string is 52 bytes (IML = 52).

2. The CHAR function is evaluated against the first 10 UTF-32 characters in this string. The result
length attribute is 40 bytes (r1 = 0l * n or 10 * 4)becauseol * n < r_IML or 40 <
52.

3. The 40 bytes of the string are converted back to SBCS EBCDIC 37. The result length of the
conversion (using the formula from “Conversion rules for comparisons” on page 159, X * .5) is 40 *
.5. Thus, the length of the final result of the functions is 20 bytes.

Example 2

This example is similar to the first example, except that the specified length for the function is 20
instead of 10. Assume that T1 is a table encoded in EBCDIC and C1 is a CHAR(26) column (SBCS data
with EBCDIC CCSID 37). The CHAR function is invoked in the following statement:

SELECT CHAR(C1,20,CODEUNITS32) as COL1 FROM T1;

Db2 uses an intermediate string to evaluate the function and determines the intermediate and final
result string lengths using these steps:

1. C1, which is SBCS EBCDIC 37 data, is converted to Unicode 1200 (UTF-16). The result length of
the conversion (using the formula from “Conversion rules for comparisons” on page 159, X * 2) is
26 * 2. Thus, the length of the intermediate result string is 52 bytes (IML = 52).

2. The CHAR function is evaluated against the first 20 UTF-32 characters in this intermediate string.
However, because the estimated number of characters in the intermediate string, as expressed in
the specified string units, is only 13 characters (x_IML/n or 52/4), the intermediate string must
be padded with 7 padding characters to satisfy the 20 characters that are requested (r = ol -
(x_IML/n) oxr 20 - 13).InUnicode 1200 (UTF-16), each padding character takes 2 bytes.

The result length attribute is then calculated to be 66 bytes (r1l = MIN(ol * n, IML + (r =*
2)) or MIN(20 = 4, 52 + 14)) becauseol * n < r_IML or 80 < 52isnot true.

3. The 66 bytes of the string are converted back to SBCS EBCDIC 37. The result length of the
conversion (using the formula from “Conversion rules for comparisons” on page 159, X * .5) is 66 *
.5. Thus, the length of the final result of the function is 33 bytes.

Graphic strings
A graphic string is a sequence of double-byte characters.

The length of the string is the number of characters in the sequence. Like character strings, graphic strings
can be empty. An empty string should not be confused with the null value.

Fixed-length graphic strings

When fixed-length graphic string distinct types, columns, and variables are defined, the length attribute
is specified and all values have the same length. For a fixed-length graphic string, the length attribute
must be in the range 1-127 inclusive. A fixed-length graphic string column can also be called a GRAPHIC
column.

Varying-length graphic strings

The types of varying-length graphic strings are VARGRAPHIC and double-byte character large object
(DBCLOB). DBCLOB is a type of LOB. A DBCLOB column is useful for storing large amounts of double-byte
character data, such as documents written with a single double-byte character set.

112 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

When varying-length graphic strings, distinct types, columns, and variables are defined, the maximum
length is specified and this length becomes the length attribute. Actual values might have a smaller value.
For a varying-length graphic string, the length attribute must between 1 and 16352.

For a varying-length graphic string column, the maximum for the length attribute is determined by the
record size associated with the table, as described Maximum record size in the description of the CREATE
TABLE statement. For a DBCLOB string, the length attribute must be in the range 1-1 073 741 823
inclusive. In UTF-16, although supplementary characters use two 2-byte code points, supplementary
characters are still considered double-byte characters. For more information about DBCLOBS, see “Large
objects (LOBs)” on page 116.

Graphic string variables

Variables with a graphic string type cannot be defined in Fortran. Also, graphic string variables must follow
these rules:

- Fixed-length graphic string host variables can be defined in all host languages, except REXX and Java.
In C, fixed-length graphic-string variables are limited to a length of 1.

- Varying-length graphic string variables can be defined in all host languages, with the exception of
DBCLOBs which cannot be used in REXX.

Graphic string encoding schemes
Each graphic string can be further defined as either double-byte data or Unicode data.

Double-byte data
Data in which every character is represented by a character from the double-byte character set
(DBCS) that does not include shift-out or shift-in characters. Each double-byte graphic string has an
associated ASCII or EBCDIC CCSID.

Unicode data
Data that contains characters represented by two bytes, except supplementary characters, which take
two 2-byte code points per character. Each Unicode graphic string is encoded using UTF-16. The
CCSID for UTF-16 is 1200.

String units in built-in functions

When working with graphic strings, you can specify the string unit in which the operation is to take place
for certain built-in functions and the CAST specification. The string unit determines the length in which the
operation is to occur.

For more information about string units, see “String unit specifications” on page 106.

Related concepts

“Unicode columns in EBCDIC tables” on page 113

A single encoding scheme is used for all character and character string data in a table. An exception is
that an EBCDIC table can contain one or more Unicode columns in addition to EBCDIC string columns.

Unicode columns in EBCDIC tables

A single encoding scheme is used for all character and character string data in a table. An exception is
that an EBCDIC table can contain one or more Unicode columns in addition to EBCDIC string columns.

An EBCDIC table can contain the following two types of Unicode columns:

Db2 12 or later Unicode columns
A Unicode column for character string data that was created in Db2 12 or later. The column is encoded
in CCSID 1208 (UTF-8) or CCSID 1200 (UTF-16). Db2 12 or later Unicode columns are subject to
fewer restrictions than Db2 11 Unicode columns.

Chapter 2. Language elements in SQL 113

Db2 11 Unicode columns
A Unicode column for character string data that was created in Db2 11. The column is encoded in
CCSID 1208 (UTF-8).

Restrictions on Db2 11 Unicode columns in EBCDIC tables
Db2 11 Unicode columns in EBCDIC tables must satisfy the following criteria:

« The column must not be in the column-name list of a unique-constraint in a CREATE TABLE or ALTER
TABLE statement.

« The column must not be in the column-name list of a referential-constraint in a CREATE TABLE or ALTER
TABLE statement.

« The column must not be in the column-name list of a references-clause in a CREATE TABLE or ALTER
TABLE statement.

« The column must not be in the column-name list of an ORGANIZE BY HASH clause in a CREATE TABLE
or ALTER TABLE statement.

« The column must not be referenced in the CHECK(check-condition) clause in a CREATE TABLE or ALTER
TABLE statement.

« The column must not be referenced in the CHECK(check-condition) clause in a CREATE TABLE or ALTER
TABLE statement.

« The column can be the target of an ALTER COLUMN column-alteration clause in an ALTER TABLE
statement only if the column is altered to the same data type, length, and CCSID. This change migrates
a Db2 11 Unicode column to a Db2 12 Unicode column.

« In adefault-clause in a CREATE TABLE or ALTER TABLE statement, a value cannot follow the DEFAULT
keyword.

« The column cannot be used for column-name in a PARTITION BY RANGE clause in a CREATE TABLE or
ALTER TABLE statement.

- The column cannot be altered.
« The column must not be referenced in a join-condition of a full outer join.

« In a CREATE TABLE or ALTER TABLE statement, the column definition must not contain a FIELDPROC
clause.

Restrictions on EBCDIC tables with Db2 11 Unicode columns

An EBCDIC table that contains Db2 11 Unicode columns Unicode columns must satisfy the following
criteria:

« The table name cannot be the table-name value in the LIKE clause of a CREATE TABLE statement.

« In an as-result-table clause in a CREATE TABLE statement, if the from-clause in the fullselect is an
EBCDIC table that contains Db2 11 Unicode columns, the outermost SELECT list of the fullselect cannot
contain a mixture of EBCDIC columns and Db2 11 Unicode columns.

 In a materialized-query-definition clause in a CREATE TABLE or ALTER TABLE statement, when ENABLE
QUERY OPTIMIZATION is in effect, if the from-clause in the fullselect is an EBCDIC table that contains
Db2 11 Unicode columns, the outermost SELECT list of the fullselect cannot contain a mixture of
EBCDIC columns and Db2 11 Unicode columns.

« The EDITPROC clause must not be specified in the CREATE TABLE statement.
« The VALIDPROC clause must not be specified in the CREATE TABLE or ALTER TABLE statement.

Restriction on a created temporary table

When the LIKE clause is used to create a created temporary table, the table or view on which the created
temporary table is based cannot be an EBCDIC table with a Db2 11 Unicode column.

114 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Restriction on a declared temporary table

When the LIKE clause is used to create a declared temporary table, the table or view on which the
declared temporary table is based cannot be an EBCDIC table with a Db2 11 Unicode column.

Restrictions on an index that has an index key with Db2 11 Unicode columns
- A CREATE INDEX statement must not specify DESC, PADDED, or RANDOM for a Db2 11 Unicode column
in an EBCDIC table.

« Anindex that is defined on an EBCDIC table and is not an expression-based index must not include Db2
11 Unicode columns and Db2 12 Unicode columns. However, an expression-based index that is defined
on an EBCDIC table can include Db2 11 Unicode columns and Db2 12 Unicode columns.

Restrictions on a table space that contains an EBCDIC table with Db2 11 Unicode
columns

The CCSID of a table space that contains EBCDIC table with Db2 11 Unicode columns cannot be changed.

How the SQDA representnts Db2 11 Unicode columns are represented in EBCDIC
tables

In an SQLVAR of an SQLDA after DESCRIBE or PREPARE INTO, Db2 11 Unicode columns in EBCDIC tables
have these characteristics:

« For acolumn that is defined with CCSID 1208, the SOLTYPE field reflects VARCHAR and the SQLDATA
field contains 1208, even though the column might be recorded in the catalog as VARBINARY with
CCSID 1208.

« For a column that is defined with CCSID 1200, the SQLTYPE field reflects VARGRAPHIC and the
SQLDATA field contains 1200, even though the column might be recorded in the catalog as VARBINARY
with CCSID 1200.

Migrating Db2 11 Unicode columns in EBCDIC tables to Db2 12 or later
Unicode columns in EBCDIC tables
Db2 11 Unicode columns in EBCDIC tables can be used with Db2 12, subject to the restrictions that exist

in Db2. However, Db2 12 or later Unicode columns in EBCDIC tables have enhanced support, so you might
want to convert Db2 11 Unicode columns to Db2 12 or later Unicode columns.

Procedure
To migrate Db2 11 Unicode columns in EBCDIC tables to Db2 12 or later Unicode columns columns,
complete the following steps:

1. Run job DSNTIJPM. (You can run it before or after activating function level 500 in Db2 12. One of the
reports that DSNTIJPM produces lists Db2 11 Unicode columns, the EBCDIC tables that contain them,
and the indexes that are defined on the Db2 11 Unicode columns.

2. After Db2 12 function level 500 is activated, take one of the following actions:
« Issue ALTER TABLE ALTER COLUMN to alter the Unicode column.

« Issue ALTER TABLE DROP COLUMN and ALTER TABLE ADD COLUMN to drop and add the Unicode
column.

- Issue DROP TABLE AND CREATE TABLE to drop and recreate the table with the Unicode column.
3. Repopulate the column or table.

Related tasks
Run premigration queries (DSNTIJPM) (Db2 Installation and Migration)

Chapter 2. Language elements in SQL 115

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntijpm.html

Binary strings
A binary string is a sequence of bytes.

The length of a binary string is the number of bytes in the sequence. Binary strings are not associated with
any CCSID. There are three binary string data types: BINARY, VARBINARY (BINARY VARYING) and BLOB
(BINARY LARGE OBJECT).

Fixed-length binary strings

The type of fixed-length binary strings is BINARY. When fixed-length binary string distinct types, columns,
and variables are defined, the length attribute is specified, and all values have the same length. For a
fixed-length binary string, the length attribute must in the range 1-255 inclusive.

Varying-length binary strings

The types of varying-length binary strings are VARBINARY (BINARY VARYING) and BLOB (BINARY LARGE
OBJECT)

When varying-length binary strings, distinct types, columns, and variables are defined, the maximum
length is specified and this length becomes the length attribute. Actual length values might have a smaller
value than the length attribute value. For varying-length binary strings, the actual length specifies the
number of bytes in the string.

For a VARBINARY string, the length attribute must be between 1 and 32704. For a VARBINARY string
column, the maximum for the length attribute is determined by the record size that is associated with the
table, as described in "Maximum record size" on the description of the CREATE TABLE statement. Like a
varying-length character string, varying-length binary string could be an empty string.

A binary string column is useful for storing non-character data, such as encoded or compressed data,
pictures, voice, and mixed media. Another use is to hold structured data for exploitation by distinct types,
user-defined functions, and stored procedures. Note, that although binary strings and FOR BIT DATA
character strings might be used for similar purposes, the two data types are not compatible. The BINARY,
BLOB, VARBINARY built-in functions and CAST specification can be used to change a FOR BIT DATA
character string into a binary string.

Large objects (LOBs)
The term large object (LOB) refers to any of the following data types: CLOB, DBCLOB, or BLOB.

CLOB
A character large object (CLOB) is a varying-length string with a maximum length of 2,147,483,647
bytes (2 gigabytes minus 1 byte). A CLOB is designed to store large SBCS data or mixed data, such as
lengthy documents. For example, you can store information such as an employee resume, the script of
a play, or the text of novel in a CLOB. Alternatively, you can store such information in UTF-8 in a mixed
CLOB. A CLOB is a varying-length character string.

DBCLOB
A double-byte character large object (DBCLOB) is a varying-length string with a maximum length of
1,073,741,823 double-byte characters. A DBCLOB is designed to store large DBCS data. For example,
you could store the information mentioned for CLOB (an employee resume, the script for a play, or the
text of a novel) in UTF-16 in a DBCLOB. A DBCLOB is a varying-length graphic string.

BLOB
A binary large object (BLOB) is a varying-length string with a maximum length of 2,147,483,647 bytes
(2 gigabytes minus 1 byte). A BLOB is designed to store non-traditional data such as pictures, voice,
and mixed media. BLOBs can also store structured data for use by distinct types and user-defined
functions. A BLOB is a binary string.

116 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Although BLOB strings and FOR BIT DATA character strings might be used for similar purposes, the
two data types are not compatible. The BLOB function can be used to change a FOR BIT DATA
character string into a BLOB string.

Related concepts

LOB table space implicit creation (Db2 Administration Guide)

Related tasks

Creating large objects (Introduction to Db2 for z/0S)

Storing LOB data in Db2 tables (Db2 Application programming and SQL)
Related reference

CREATE AUXILIARY TABLE statement

The CREATE AUXILIARY TABLE statement creates an auxiliary table at the current server for storing LOB
data.

CREATE LOB TABLESPACE

The CREATE LOB TABLESPACE statement defines a large object (LOB) table space at the current server.
If your data for a table does not fit entirely within a data page, you can define one or more columns as
LOB columns. Each LOB column must have an associated auxiliary table in a LOB table space. If the table
space for the base table is partitioned, an associated auxiliary table in a LOB table space is required for
each LOB column, for each partition of the table space for the base table.

Restrictions using LOBs

With a few exceptions, you can use LOBs in the same contexts in which you can use other varying-length
strings.

The following table shows the contexts in which LOBs cannot be used.

Table 17. Contexts in which LOBs cannot be used

Context of usage LOB (CLOB, DBCLOB, or BLOB)

A GROUP BY clause Not allowed

An ORDER BY clause Not allowed

A CREATE INDEX statement that creates an index Not allowed except when the index is created using an
using an expression expression, in which case an inline LOB column can be

referenced as the source data type for the SUBSTR and
SUBSTRING built-in functions.

A SELECT DISTINCT statement Not allowed

A MERGE statement Cannot be used in the context of an INCLUDE column-
name clause

A subselect of a set operation except UNION ALL Not allowed

Predicates Cannot be used in any predicate except EXISTS, LIKE,

and NULL. This restriction includes a simple-when-
clause in a CASE expression. expression WHEN
expression in a simple-when-clause is equivalent to
a predicate with expression=expression.

The definition of primary, unique, and foreign keys Not allowed

Check constraints Not allowed

Manipulating LOBs using locators

A LOB locator is a host variable with a value that represents a single LOB value in the database server.
LOB locators provide a mechanism for you to easily manipulate very large objects in application programs

Chapter 2. Language elements in SQL 117

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicittablespacelob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationoflargeobjects.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_storelobdatatable.html

without having to store the entire LOB value on the client machine where the application program might
be running.

Because LOB values can be very large, the transfer of these values from the database server to host
variables in client application programs can be time consuming. Also, application programs typically
process LOB values a piece at a time, rather than as a whole. For these cases, the application can use a
large object locator (LOB locator) to reference the LOB value.

For example, when selecting a LOB value, an application program could handle the value in either of these
two ways:

- Select the entire LOB value and place it into an equally large host variable. This method is acceptable if
the application program is going to process the entire LOB value at once.

- Select the LOB value into a LOB locator. Then, using the LOB locator, the application program can
issue subsequent database operations on the LOB value (such as using it as a parameter to the scalar
functions SUBSTR, CONCAT, COALESCE, LENGTH, doing an assignment, searching the LOB value with
LIKE or POSSTR, or using it as a parameter to a user-defined function or procedure) by supplying the
LOB locator value as input. The resulting output of the LOB locator operation, for example, the amount
of data that is assigned to a client host variable, would then typically be a small subset of the input LOB
value.

LOB locators can also represent more than just base values; they can also represent the value associated
with a LOB expression. For example, a LOB locator might represent the value associated with:

SUBSTR(1lob_value_1 CONCAT lob_value_2 CONCAT lob_value_3 , 42, 6000000)

For non-locator-based host variables in an application program, when a null value is selected into that
host variable, the indicator variable is set to -1, signifying that the value is null. For LOB locators, however,
the meaning of indicator variables is slightly different. Because a LOB locator host variable itself can never
be null, a negative indicator variable value indicates that the LOB value represented by the LOB locator

is null. The null information is kept local to the client by virtue of the indicator variable value (the server
does not track null values with valid LOB locators).

A LOB locator represents a value, not a row or location in the database. Therefore, after a value is selected
into a LOB locator, no action that is subsequently performed on the original row or table will affect the
value that is referenced by the LOB locator. The value associated with a LOB locator is valid until the
transaction ends, or until the LOB locator is explicitly freed, whichever comes first.

A LOB locator is also not a database type, and it is never stored in the database. As a result, it cannot
participate in views or check constraints. However, values for the SQLTYPE field of the SQLDA exist for
LOB locators so that they can be described within an SQLDA structure that is used by FETCH, OPEN, CALL
and EXECUTE statements.

For more information about manipulating LOBs with LOB locators, see Saving storage when manipulating
LOBs by using LOB locators (Db2 Application programming and SQL).

Datetime values

Datetime values are neither strings nor numbers. Nevertheless, datetime values can be used in certain
arithmetic and string operations and are compatible with certain strings.

Moreover, strings can represent datetime values, as discussed in “String representations of datetime
values” on page 120.

Date

A date is a three-part value (year, month, and day) designating a point in time using the Gregorian
calendar, which is assumed to have been in effect from the year 1 A.D.

4 The range of the year part is 0001 to 9999. The range of the month part is 1 to 12. The range of the day
partis 1 to 28, 29, 30, or 31, depending on the month and year.

118 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_savestoragelob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_savestoragelob.html

The internal representation of a date is a string of 4 bytes. Each byte consists of two packed decimal
digits. The first 2 bytes represent the year, the third byte the month, and the last byte the day.

The length of a DATE column as described in the catalog is the internal length, which is 4 bytes. The
length of a DATE column as described in the SQLDA is the external length, which is 10 bytes unless a
date exit routine was specified when your Db2 subsystem was installed. (Writing a date exit routine is
described in Date and time routines (Db2 Administration Guide).) In that case, the string format of a date
can be up to 255 bytes in length. Accordingly, DCLGEN?® defines fixed-length string variables for DATE
columns with a length equal to the value of the field LOCAL DATE LENGTH on installation panel DSNTIP4,
or a length of 10 bytes if a value for the field was not specified.

A character-string representation must have an actual length that is not greater than 255 bytes and must
not be a CLOB or DBCLOB.

Related reference

DATE FORMAT field (DATE DECP value) (Db2 Installation and Migration)

LOCAL DATE LENGTH field (DATELEN DECP value) (Db2 Installation and Migration)

DCLGEN (declarations generator) subcommand (DSN) (Db2 Commands)

Time

A time is a three-part value (hour, minute, and second) designating a time of day using a 24-hour clock.
The range of the hour part is 0 to 24. The range of the minute and second parts is 0 to 59. If the hour is
24, the minute and second parts are both zero.

The internal representation of a time is a string of 3 bytes. Each byte consists of two packed decimal
digits. The first byte represents the hour, the second byte the minute, and the last byte the second.

The length of a TIME column as described in the catalog is the internal length which is 3 bytes. The length
of a TIME column as described in the SQLDA is the external length which is 8 bytes unless a time exit
routine was specified when the Db2 subsystem was installed. (Writing a time exit routine is described

in Date and time routines (Db2 Administration Guide).) In that case, the string format of a time can be

up to 255 bytes in length. Accordingly, DCLGEN “Date” on page 118 defines fixed-length string variables
for TIME columns with a length equal to the value of the field LOCAL TIME LENGTH on installation panel
DSNTIP4, or a length of 8 bytes if a value for the field was not specified.

A character-string representation must have an actual length that is not greater than 255 bytes and must
not be a CLOB or DBCLOB.

Related reference

LOCAL TIME LENGTH field (TIMELEN DECP value) (Db2 Installation and Migration)

DCLGEN (declarations generator) subcommand (DSN) (Db2 Commands)

Timestamp

A timestamp is a six-part or seven-part value (year, month, day, hour, minute, second, and optional
fractional second) with an optional time zone specification, that represents a date and time.

The time portion of a timestamp value can includes a specification of fractional seconds. The number of
digits in the fractional seconds portion is specified using an attribute in the range 0-12 with a default of 6.
The time zone is the difference in hours and minutes between local time and UTC. The range of the hour
offset is -12 to 14, and the minute offset is 00 to 59. The optional time zone is specified in the format
*th:tm, with values ranging from -12:59 to +14:00. A timestamp data type is TIMESTAMP WITHOUT TIME
ZONE (generically referred to as TIMESTAMP) or TIMESTAMP WITH TIME ZONE.

4 Historical dates do not always follow the Gregorian calendar. Dates between 1582-10-04 and 1582-10-15
are accepted as valid dates although they never existed in the Gregorian calendar.

> DCLGEN is a Db2 DSN subcommand for generating table declarations for designated tables or views. The
declarations are stored in z/OS data sets, for later inclusion in Db2 source programs.

Chapter 2. Language elements in SQL 119

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_datetimeexitroutine.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_date.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_datelen.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_dclgen.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_datetimeexitroutine.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_timelen.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_dclgen.html

TIMESTAMP WITHOUT TIME ZONE
The internal representation of a timestamp is a string of 7 to 13 bytes, each of which consists of
two packed decimal digits. The first 4 bytes represent the date, the next 3 bytes the time, and the
remaining bytes the fractional seconds based on the precision of the timestamp.

The length of a TIMESTAMP WITHOUT TIME ZONE column as described in the catalog is the internal
length, which is 7 to 13 bytes.

The length of a TIMESTAMP WITHOUT TIME ZONE column as described in the SQLDA is in the
range 19-32 bytes, which corresponds to the length for the character-string representation of the
value. For example, a 19 byte character-string representation has no fractional seconds; a 26 byte
character-string representation has 6 digits of fractional seconds; and a 29 byte character-string
representation has 9 digits of fractional seconds.

A character-string representation must have an actual length that is not greater than 255 bytes and
must not be a CLOB or DBCLOB.

TIMESTAMP WITH TIME ZONE
The external representation of a TIMESTAMP WITH TIME ZONE value is the local timestamp followed
by the time zone offset. For example, New York is 5 hours behind London during standard time,
so New York time "8:15" on 2010-02-10 can be represented as '2010-02-10-08.15.00-5:00". This
timestamp with time zone value represents a UTC value '2010-02-10-13.15.00', which is derived by
subtracting the time zone offset from local timestamp.

The internal representation of a timestamp is a string of 9 to 15 bytes that contains the UTC
timestamp followed by the time zone. Each byte consists of 2 packed decimal digits. The first

byte consists of two packed decimal digits representing time zone hour and the first bit is used to
represent the sign of the time zone offset. The second byte of time zone, representing the time zone
minute, also consists of two packed decimal digits. For example, time zone "-3:30" is represented as
X'8330' and time zone "5:30" is represented as X'0530".

The length of a TIMESTAMP WITH TIME ZONE column as described in the catalog is the internal
length, which is between 9 to 15 bytes (a 7 to 13 bytes timestamp followed by 2 bytes time zone).

The length of a TIMESTAMP WITH TIME ZONE column as described in the SQLDA is the external
length, which is in the range 147-160 bytes and corresponds to the length for the character-string
representation of the value. For example, a 147 byte character representation has no fractional
seconds, and a 160 byte character-string representation has 12 digits of fractional seconds, where
the time zone component is 7 bytes.

A character-string representation must have an actual length that is not greater than 255 bytes and
must not be a CLOB or DBCLOB. DCLGEN therefore defines 147 to 160 byte, varying-length string
variables for TIMESTAMP WITH TIME ZONE columns.

Related concepts

Datetime constants
A datetime constant is a character string constant of a particular format.

Datetime host variables

Character-string host variables are normally used to contain date, time, and timestamp values. However,
date, time, and timestamp host variables can also be specified in Java as java.sql.Date, java.sql.Time, and
java.sqgl.Timestamp, respectively.

String representations of datetime values

Dates, times, and timestamp values can be represented by strings. For many host languages, there are no
special SQL constants for datetime values and, except for Java, no host variables with a data type of date,
time, or timestamp. Thus, to be retrieved, a datetime value must be assigned to a string variable.

Values whose data types are DATE, TIME, TIMESTAMP WITHOUT TIME ZONE, or TIMESTAMP WITH TIME
ZONE are represented in a form that is transparent to the user of SQL. Dates, times, and timestamps (with
or without time zones) can also be represented by strings. These representations directly concern the SQL

120 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

user because, for many host languages there are no special SQL constants or host variables with a data
type for DATE, TIME, TIMESTAMP WITHOUT TIME ZONE, or TIMESTAMP WITH TIME ZONE values (for
variables with Java). Thus, to be retrieved, a datetime value must be assigned to a string variable. The
format of the resulting string depends on the default date format and the default time format thatis in
effect when the statement is prepared.

Each datetime value is assigned an encoding scheme. This encoding scheme is used when the datetime
value is converted from its internal form to the string representation in the form of the mixed CCSID if
the field MIXED DATA is YES on installation panel DSNTIPF. Otherwise the SBCS CCSID of the assigned
encoding scheme is used. For Unicode, the mixed CCSID is always used. The following table shows how
the encoding scheme is determined:

Table 18. The encoding scheme of datetime values

Datetime expression Result encoding scheme

Columns The same encoding scheme as the table that
contains the column

Host variables If the statement references:

« Asingle encoding scheme - The same encoding
scheme

 Multiple encoding schemes - The application
encoding scheme

Special registers If the statement references:

« Asingle encoding scheme - The same encoding
scheme

 Multiple encoding schemes - The application
encoding scheme

Expressions If the statement references:

« A single encoding scheme - The same encoding
scheme

« Multiple encoding schemes - The application
encoding scheme

For ASCII and EBCDIC, a string representation of a datetime value must be a character string. For
Unicode, a string representation of a datetime value can be either a character string or a graphic string.
Thus, the only time a graphic string can be used for a datetime value is when the encoding scheme is
Unicode.

In host languages other than Java, a datetime value must be assigned to a string variable. When a date or
time is assigned to a string variable, the string format is determined by a precompiler option or subsystem
parameter. When a string representation of a datetime value is used in other operations, it is converted

to a datetime value. However, this can be done only if the string representation is recognized by Db2 or

an exit provided by the installation and the other operand is a compatible datetime value. An input string
representation of a date or time with LOCAL specified must have an actual length that is not greater than
255 bytes.

Datetime values that are represented by strings can appear in contexts that require values whose data
types are DATE, TIME, TIMESTAMP WITHOUT TIME ZONE, or TIMESTAMP WITH TIME ZONE. A string
representation of a date, time or timestamp (with or without time zone) can be passed as an argument to
the DATE, TIME, TIMESTAMP, or TIMESTAMP_TZ function to obtain a datetime value. A CAST specification
can also be used to turn a character representation of a date, time, or timestamp (with or without time
zone) into a datetime value.

Chapter 2. Language elements in SQL 121

Date strings:
A string representation of a date is a string that starts with a digit and has a length of at least 8
characters. Trailing blanks can be included, leading blanks are not allowed, and leading zeros can be
omitted in the month and day portions.

The following table shows the valid string formats for dates. Each format is identified by name and
includes an associated abbreviation (for use by the CHAR function) and an example of its use. For

an installation-defined date string format, the format and length must have been specified when Db2
was installed. They cannot be listed here.

Table 19. Formats for string representations of dates

Format name Abbreviation Date format Example
International Standards Organization ISO yyyy-mm-dd 1987-10-12
IBM USA standard USA mm/dd/yyyy 10/12/1987
IBM European standard EUR dd.mm.yyyy 12.10.1987
Japanese industrial standard Christian era JIS yyyy-mm-dd 1987-10-12
Installation-defined LOCAL Any installation- —

defined form

Time strings:
A string representation of a time is a string that starts with a digit, and has a length of at least 4
characters. Trailing blanks can be included, leading blanks are not allowed, and leading zeros can be
omitted in the hour part of the time; seconds can be omitted entirely. If you choose to omit seconds,
an implicit specification of 0 seconds is assumed. Thus 13.30 is equivalent to 13.30.00.

The following table shows the valid string formats for times. Each format is identified by name and
includes an associated abbreviation (for use by the CHAR function) and an example of its use. In the
case of an installation-defined time string format, the format and length must have been specified
when your Db2 subsystem was installed. They cannot be listed here.

Table 20. Formats for string representations of times

Format name Abbreviation Time format Example
International Standards Organization 1 IS0t hh.mm.ss 13.30.05
IBM USA standard USA hh:mm AMorPM 1:30 PM
IBM European standard EUR hh.mm.ss 13.30.05
Japanese industrial standard Christian era JIS hh:mm:ss 13:30:05
Installation-defined LOCAL Any installation- —

defined form

Note: 1. This is an earlier version of the ISO format. JIS can be used to get the current ISO format.

In the USA format:

« The minutes can be omitted, thereby specifying 00 minutes. For example, 1 PM is equivalent to 1:00
PM.

« The letters A, M, and P can be lowercase.
« Asingle blank must precede the AM or PM.
« The hour must not be greater than 12 and cannot be 0 except for the special case of 00:00 AM.

Using the ISO format of the 24-hour clock, the correspondence between the USA format and the
24-hour clock is as follows:

122 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

12:01 AM through 12:59 AM correspond to 00.01.00 through 00.59.00
« 01:00 AM through 11:59 AM correspond to 01.00.00 through 11.59.00
« 12:00 PM (noon) through 11:59 PM correspond to 12.00.00 through 23.59.00
e 12:00 AM (midnight) corresponds to 24.00.00
« 00:00 AM (midnight) corresponds to 00.00.00
Timestamp strings:

A string representation of a timestamp is a character or graphic string that starts with a digit and has a
length of at least 16 characters.

The character or graphic string must contain a value that conforms to one of the formats listed in
“Datetime constants” on page 174, subject to the following rules:

- leading blanks are not allowed
- trailing blanks can be included

- leading zeros can be omitted from the month, day, hour, and time zone hour elements of the
timestamp. An implicit specification of 0 is assumed for any digit that is omitted.

« the hour can be 24 if the minutes, seconds, and any fractional seconds are all zeroes.

« leading zeros must be included for the minute, second, and time zone minute elements of the
timestamp.

« the number of digits of fractional seconds can vary from 0 to 12. An implicit specification of O is
assumed if fractional seconds are omitted.

- the separator character that follows the seconds element can be omitted if fractional seconds are
not included.

an optional single blank can be included between the time and the time zone.

an optional time zone can be included, in one of the following formats:

— xth:tm, with values ranging from -24:00 to +24:00. A value of -0:00 is treated the same as a value
of +0:00.

— #th, with values ranging from -24 to +24, and an implicit specification of 00 is assumed for the
time zone minute element.

— uppercase Z to specify UTC

If a string representation of a timestamp is implicitly cast to a value with a timestamp data type,

the timestamp precision is assumed to be 6, regardless of the number of digits of fractional seconds
in the string. Beyond the sixth digit that represents fractional seconds, the digits are truncated and
the missing digits are assumed to be zeros. For example, 1990-3-2-8.30.00.10 is equivalent to
1990-03-02-08.30.00.100000. A string representation of a timestamp can be given a different
timestamp precision by explicitly casting the value to a timestamp with a specified precision or, in
the case of a constant, preceding the string with the TIMESTAMP keyword (for example, TIMESTAMP
2007-03-28-14.50.35.123; has the TIMESTAMP(3) data type).

If a string representation of a timestamp is implicitly cast to a TIMESTAMP WITHOUT TIME ZONE
value, the string must not contain a time zone.

SQL statements also support the ODBC or JDBC string representation of a timestamp as an input
value only. The ODBC and JDBC string representation of a timestamp has the form yyyy-mm-dd
hh:mm:ss.nnnnnn.

LOCAL date and time exits: For LOCAL, the date exit for ASCII data is DSNXVDTA, the date exit for EBCDIC
is DSNXVDTX, and the date exit for Unicode is DSNXVDTU. For LOCAL, the time exit for ASCII data is
DSNXVTMA, the time exit for EBCDIC is DSNXVTMX, and the time exit for Unicode is DSNXVTMU.

Chapter 2. Language elements in SQL 123

Determination of the implicit time zone

Db2 uses the IMPLICIT_TIMEZONE parameter of DSNHDECP to implicitly determines the time zone to
associate with a value that does not have a time zone on assignment to a TIMESTAMP WITH TIME ZONE
column or variable.

The IMPLICIT_TIMEZONE parameter of DSNHDECP is used to support operations that combine
TIMESTAMP WITHOUT TIME ZONE values and TIMESTAMP WITH TIME ZONE values and indicates the
time zone to associate with TIMESTAMP WITHOUT TIME ZONE values. For example, on assignment of a
value that does not have time zone information (the TIMESTAMP WITHOUT TIME ZONE data type, or a
string representation of a timestamp without a time zone) to a TIMESTAMP WITH TIME ZONE target such
as a column or variable, Db2 implicitly determines the time zone to associate with the value. The implicit
time zone is determined as follows:

« If IMPLICIT_TIMEZONE is not specified or is specified as CURRENT, the implicit time zone is the value of
the CURRENT TIME ZONE special register.

« If IMPLICIT_TIMEZONE is specified as SESSION, the implicit time zone is the value of the SESSION
TIME ZONE special register.

- If IMPLICIT_TIMEZONE is specified as a character string in the format of 'tth:tm', the implicit time zone
is the time zone value represented by the character string.

Restrictions on the use of local datetime formats

When you use a LOCAL format for date or time values, certain restrictions apply to the use of those values
as input, as output, and for use in binding a package.

The following rules apply to the character-string representation of dates and times:

For input: In distributed operations, Db2 as a server uses its local date or time routine to evaluate host
variables and constants. This means that character-string representation of dates and times can be:

« One of the standard formats
« A format recognized by the server's local date/time exit

For output: With DRDA access, Db2 as a server returns date and time host variables in the format
defined at the server. To have date and time host variables returned in another format, use CHAR (date-
expression, XXXX) where XXXXis JIS, EUR, USA, ISO, or LOCAL to explicitly specify the specific
format.

For BIND PACKAGE COPY: When you use the COPY option to bind a copy of a local package at a remote
site, Db2 uses the ISO format for output values in the remote package unless the SQL statement explicitly
specifies a different format. Input values can be specified in the format described previously.

Row ID values

A row ID is a value that uniquely identifies a row in a table. A column or a host variable can have a row ID
data type.

A ROWID column enables queries to be written that navigate directly to a row in the table because

the column implicitly contains the location of the row. Each value in a ROWID column must be unique.
Although the location of the row might change, for example across a table space reorganization, Db2
maintains the internal representation of the row ID value permanently. When a row is inserted into the
table, Db2 generates a value for the ROWID column unless one is supplied. If a value is supplied, it
must be a valid row ID value that was previously generated by Db2 and the column must be defined as
GENERATED BY DEFAULT. Users cannot update the value of a ROWID column.

The internal representation of a row ID value is transparent to the user. The value is never subject to
character conversion because it is considered to contain BIT data. The length of a ROWID column as
described in the LENGTH column of catalog table SYSCOLUMNS is the internal length, which is 17 bytes.
The length as described in the LENGTH2 column of catalog table SYSCOLUMNS is the length of a retrieved
ROWID value, which is 40 bytes. The retrieved ROWID value is not permanent. If a commit operation

124 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

and a REORG on the table space occur after the value is inserted, and before the value is retrieved, the
physical location of the row might change.

A ROWID column can be either user-defined or implicitly generated by Db2. You can use the CREATE
TABLE statement or the ALTER TABLE statement to define a ROWID column. If you define a LOB column
in a table and the table does not have a ROWID column, Db2 implicitly generates a ROWID column. Db2
takes the following actions:

« Creates the column with a name of DB2_GENERATED_ROWID_FOR_LOBSnn.

Db2 appends nn only if the column name already exists in the table, replacing nn with '00' and
incrementing by '1' until the name is unique within the row.

« Defines the column as GENERATED ALWAYS and IMPLICITLY HIDDEN.
« Appends the column to the end of the row after all the other explicitly defined columns.

An implicitly hidden ROWID column can also be explicitly defined with the IMPLICITLY HIDDEN clause.

If you add a ROWID column to a table that already has an implicitly generated hidden ROWID column,
Db2 ensures that the corresponding values in each column are identical. If the ROWID column that you
add is defined as GENERATED BY DEFAULT, Db2 changes the attribute of the hidden ROWID column to
GENERATED BY DEFAULT.

Related concepts

ROWID data type (Introduction to Db2 for z/0S)

Rules for inserting data into a ROWID column (Db2 Application programming and SQL)
Related tasks

Specifying direct row access by using row IDs (Db2 Application programming and SQL)
Related reference

ROWID scalar function
The ROWID function returns a row ID representation of its argument.

XML values

An XML value represents well-formed XML in the form of an XML document, XML content, or a sequence
of XML nodes.

An XML value that is stored in a table as the value of a column that is defined with the XML data type
must be a well-formed XML document. XML values are processed in an internal representation that is
not comparable to any string value. The only predicates that can be applied to the XML data type are the
XMLEXISTS predicate and the NULL predicate.

An XML value can be transformed into a serialized string value that represents the XML document by
using the XMLSERIALIZE function. Similarly, a string value that represents an XML document can be
transformed to an XML value by using the XMLPARSE function.

The XML data type has a variable length and allows for a wide range of sizes. Although data of this

type has no defined maximum length, it does have an effective maximum length limit when treated as a
serialized string value that represents XML. The maximum effective length is the same as the Db2 limit for
a LOB data value. Db2 treats XML string data in a similar manner as LOB data to accommodate very large
XML values. Thus, XML values are constrained by the same maximum length limit as LOB data. Unlike the
LOB data type which has a LOB locator type, there is no XML locator type.

Restrictions when using XML values: With a few exceptions, you can use XML values in the same
contexts in which you can use other data type. XML values cannot be used in the following contexts:

« SELECT lists that are preceded by the DISTINCT clause

- GROUP BY clauses

- ORDER BY clauses

» A subselect of a fullselect with a set operator that is not UNION ALL

Chapter 2. Language elements in SQL 125

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_rowiddatatype.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_rulesrowidcolumn.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_specifydirectrowaccess.html

Basic predicates, quantified predicates, BETWEEN predicates, DISTINCT predicates, IN predicates, or
LIKE predicates

Aggregate functions with the DISTINCT keyword
Primary, unique, or foreign keys
CREATE TYPE statements

No host languages have any built-in support for an XML data type.

User-defined data types
A user-defined data type is a data type that is defined using a CREATE TYPE statement.
The following types of user-defined data type are supported:
Distinct types
A distinct type is a user-defined data type that is based on existing built-in Db2 data types.

A distinct type is internally the same as a built-in data type, but Db2 treats them as a separate and
incompatible type for semantic purposes. Defining your own distinct type ensures that only functions
that are explicitly defined on a distinct type can be applied to its instances.

For more information, see “Distinct types ” on page 23.

Array types

A user-defined array type is a data type that is defined as an array of elements. A user-defined array
type can be either an ordinary array or associative array.

A user-defined ordinary array type has a maximum cardinality, which is specified on the CREATE TYPE
(array) statement. A user-defined associative array has a maximum cardinality of 2 billion.

An array value is a structure that contains an ordered collection of elements. All elements of an array
value must have the same data type. The cardinality of the array is equal to the number of elements in
the array.

For more information, see “Array types and values” on page 127.

Related concepts
Comparison of distinct types (Db2 Application programming and SQL)

User-defined type assignments
User-defined type assignments include distinct type assignments and array assignments.

User-defined type comparisons
User-defined type comparisons include distinct type comparisons and array comparisons.

Distinct types

A distinct type is a user-defined data type that shares its internal representation with a built-in data type
(its source type), but is considered to be a separate and incompatible data type for most operations.

For example, the semantics for a picture type, a text type, and an audio type that all use the built-in data
type BLOB for their internal representation are quite different. A distinct type is created with the SQL
statement CREATE TYPE.

For example, the following statement creates a distinct type named AUDIO:

CREATE TYPE AUDIO AS BLOB (1M);

Although AUDIO has the same representation as the built-in data type BLOB, it is a separate data type
that is not comparable to a BLOB or to any other data type. This inability to compare AUDIO to other data
types allows functions to be created specifically for AUDIO and assures that these functions cannot be
applied to other data types.

126 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_comparisondistincttypes.html

The name of a distinct type is qualified with a schema name. The implicit schema name for an unqualified
name depends on the context in which the distinct type appears. If an unqualified distinct type name is
used:

« In a CREATE TYPE statement or the object of DROP, COMMENT, GRANT, or REVOKE statement, Db2
uses the normal process of qualification by authorization ID to determine the schema name.

« In any other context, Db2 uses the SQL path to determine the schema name. Db2 searches the schemas
in the path, in sequence, and selects the first schema in the path such that the distinct type exists in the
schema and the user has authorization to use the data type. For a description of the SQL path, see “SQL
path” on page 85.

A distinct type does not automatically acquire the functions and operators of its source type because they
might not be meaningful. (For example, it might make sense for a "length" function of the AUDIO type to
return the length in seconds rather than in bytes.) Instead, distinct types support strong typing. Strong
typing ensures that only the functions and operators that are explicitly defined on a distinct type can be
applied to that distinct type. However, a function or operator of the source type can be applied to the
distinct type by creating an appropriate user-defined function. The user-defined function must be sourced
on the existing function that has the source type as a parameter. For example, the following series of SQL
statements shows how to create a distinct type named MONEY based on data type DECIMAL(9,2), how to
define the + operator for the distinct type, and how the operator might be applied to the distinct type:

CREATE TYPE MONEY AS DECIMAL(9,2);
CREATE FUNCTION "+"(MONEY,MONEY)
RETURNS MONEY
SOURCE SYSIBM."+"(DECIMAL(9,2),DECIMAL(9,2));
CREATE TABLE SALARY_TABLE
(SALARY MONEY,
COMMISSION MONEY);
SELECT SALARY + COMMISSION FROM SALARY_TABLE;

A distinct type is subject to the same restrictions as its source type. For example, if a CLOB value is not
allowed as input to a function, you cannot specify a distinct type that is based on a CLOB as input.

The comparison operators are automatically generated for distinct types, except those that are based on
a CLOB, DBCLOB, or BLOB. In addition, Db2 automatically generates functions for every distinct type that
support casting from the source type to the distinct type and from the distinct type to the source type. For
example, for the AUDIO type created above, these are generated cast functions:

FUNCTION schema-name.BLOB (schema-name.AUDIO) RETURNS SYSIBM.BLOB (1M)
FUNCTION schema-name.AUDIO (SYSIBM.BLOB (1M)) RETURNS schema-name.AUDIO

Array types and values

A user-defined array type is a data type that is defined as an array of elements. A user-defined array type
can be either an ordinary array or associative array.

A user-defined ordinary array type has a maximum cardinality, which is specified on the CREATE TYPE
(array) statement. A user-defined associative array has a maximum cardinality of 2 billion.

Array values

An array value is a structure that contains an ordered collection of elements. All elements of an array
value must have the same data type. The cardinality of the array is equal to the number of elements in the
array.

An array value can be non-empty, empty (cardinality zero), or null. The individual elements in the array
can be null or not null. An empty array, an array value of null, and an array for which all elements are the
null value are different from each other. An uninitialized array is a null array.

The following example demonstrates the difference between an empty array, a null array, and an array for
which individual elements are null.

SET PHONELIST = ARRAY[];
/* Set an entire array to empty */

Chapter 2. Language elements in SQL 127

SET PHONELIST = NULL;

/* Set an entire array to the NULL value x/
SET PHONELIST = ARRAY[NULL];

/* Set one element of an array to NULL */
SET PHONELIST = ARRAY[NULL, NULL, NULL];

/* Set three elements of an array to NULL %/

An ordinary array has a defined upper bound on the number of elements, which is known as the maximum
cardinality. Each element in the array is referenced by an associated index value that represents the
position of that element in the array. The data type of the index values is INTEGER. If n is the number of
elements in an ordinary array, the ordinal position that is associated with each element is an integer value
greater than or equal to 1 and less than or equal to n.

Unlike the maximum cardinality of an array in programming languages such as C, the maximum cardinality
of an ordinary array in SQL is not related to the physical representation of the array. The amount of
memory that is required to represent the value of an ordinary array is usually proportional to the
cardinality of the array, and not to the maximum cardinality of the array type. When an ordinary array

is referenced, all of the values in the array are stored in main memory. Therefore, ordinary arrays that
contain a large amount of data consume large amounts of main memory.

An associative array has no predefined upper bound on the number of elements. An associative array
contains an ordered set of zero or more elements, where each element in the array is ordered by and
can be referenced by an associated index value. The data type of the index values can be an integer or a
character string other than a CLOB, but all index values for the array must have the same data type. The
index values of an associative array are unique, and do not need to be contiguous.

A user-defined array type is a user-defined data type that is defined as an array. A global variable, an

SQL variable or SQL parameter can be defined as a user-defined array type. Additionally, the result of an
invocation of the built-in ARRAY_DELETE or TRIM_ARRAY functions, or the result of a CAST specification,
can be a user-defined array type. An element of a user-defined array type can be referenced anywhere
that an expression that returns the same data type as an element of that array can be used.

An unnamed array type is an array without an associated user-defined data type. The result of invocation
of the aggregate built-in function ARRAY_AGG or of an array constructor is an array without an associated
user-defined data type. An element of an array without an associated user-defined array type cannot be
directly referenced.

The value of an array index can be specified by an expression. That expression can include a reference to
a column. If a column is defined with a column mask, the column mask is applied using the normal rules
for applying a column mask.

The value of an index for an array element is never null. If an expression specifies a value for an index, and
the expression evaluates to the null value, the null value is returned for the array value.

An array value can be specified using one of the following methods:

- Asimple reference to a global variable, an SQL variable, or SQL parameter that is a user-defined array
type.

« Invocation of the ARRAY_AGG function.

 Invocation of the ARRAY_DELETE or TRIM_ARRAY built-in functions.

« Use of an array constructor.

- Invocation of a CAST specification that returns an array value.

An array value cannot be stored in a table or returned to an external application.
Datetime data in the elements of an array is considered to be CCSID UNICODE (1208).

Related reference

Array constructor
An array constructor returns an ordinary array. An array constructor is specified by a list of expressions or
a fullselect.

ARRAY_AGG aggregate function

128 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The ARRAY_AGG function returns an array in which each value of the input set is assigned to an element
of the array.

TRIM_ARRAY scalar function
The TRIM_ARRAY function deletes elements from the end of an ordinary array.

CREATE MASK statement
The CREATE MASK statement creates a column mask at the current server. A column mask is used for
column access control and specifies the value that should be returned for a specified column.

CALL statement
The CALL statement invokes a stored procedure.

Promotion of data types

Data types can be classified into groups of related data types. Within such groups, an order of precedence
exists in which one data type is considered to precede another data type. This precedence enables Db2 to
support the promotion of one data type to another data type that appears later in the precedence order.

For example, Db2 can promote the data type CHAR to VARCHAR and the data type INTEGER to DOUBLE
PRECISION; however, Db2 cannot promote a CLOB to a VARCHAR.

Db2 considers the promotion of data types when:

« Performing function resolution (see “Function resolution” on page 239)

« Casting distinct types (see “Casting between data types” on page 130)

« Assigning built-in data types to distinct types (see “User-defined type assignments” on page 153)

For each data type, the following table shows the precedence list (in order) that Db2 uses to determine
the data types to which the data type can be promoted. The table indicates that the best choice is

the same data type and not promotion to another data type. The table also shows data types that

are considered equivalent during the promotion process. For example, CHARACTER and GRAPHIC are
considered to be equivalent data types.

Table 21. Precedence of data types

Data typel-2 Data type precedence list (in best-to-worst order)
SMALLINT3 SMALLINT, INTEGER, BIGINT, decimal, real, double, DECFLOAT
INTEGER3 INTEGER, BIGINT, decimal, real, double, DECFLOAT

BIGINT3 BIGINT, decimal, real, double, DECFLOAT

decimal3 decimal, real, double, DECFLOAT

real real, double, DECFLOAT

double double, DECFLOAT

DECFLOAT DECFLOAT

CHAR or GRAPHIC CHAR or GRAPHIC, VARCHAR or VARGRAPHIC, CLOB or DBCLOB
VARCHAR or VARCHAR or VARGRAPHIC, CLOB or DBCLOB

VARGRAPHIC

CLOB or DBCLOB CLOB or DBCLOB

BINARY BINARY, VARBINARY, BLOB

VARBINARY VARBINARY, BLOB

BLOB BLOB

DATE DATE

Chapter 2. Language elements in SQL 129

Table 21. Precedence of data types (continued)

Data typel:2 Data type precedence list (in best-to-worst order)

TIME TIME

TIMESTAMP TIMESTAMP WITHOUT TIME ZONE or TIMESTAMP WITH TIME ZONE
WITHOUT

TIME ZONE

TIMESTAMP TIMESTAMP WITHOUT TIME ZONE or TIMESTAMP WITH TIME ZONE
WITH

TIME ZONE

ROWID ROWID

XML XML

A distinct type The same distinct type

Notes:

1. The data types in lowercase letters represent the following data types:

decimal
DECIMAL(p,s) or NUMERIC(p,s)

real
REAL or FLOAT(n) where n is not greater than 21

double
DOUBLE, DOUBLE PRECISION, FLOAT or FLOAT(n) where n is greater than 21

2. Other synonyms for the listed data types are considered to be the same as the synonym listed.

3. Real and double are checked for function resolution purposes only. Additionally, the number of
significant digits (even for DECFLOAT(16)), and the exponent range of DECFLOAT exceeds that of real
and double (double has 16 significant digits). Therefore, DECFLOAT values will not be promoted to
real or double.

Casting between data types

There are many occasions when a value with a given data type needs to be cast (changed) to a different
data type or to the same data type with a different length, precision, or scale.

Data type promotion is one example where the promotion of one data type to another data type requires
that the value be cast to the new data type. A data type that can be changed to another data type is
castable from the base data type to the target data type.

The casting of one data type to another can occur implicitly or explicitly. The cast functions, CAST
specification, or XMLCAST specification can be used to explicitly change a data type, depending on the
data types involved. In addition, when a sourced user-defined function is created, the data types of the
parameters of the source function must be castable to the data types of the function that is being created.

If truncation occurs when any data type is cast to a character or graphic data type, a warning occurs if

any non-blank characters are truncated. The warning also occurs if any characters are truncated when

a BLOB operand is cast, or if the time zone characters are truncated when a TIMESTAMP WITH TIME
ZONE operand is cast to a string. This truncation behavior is similar to retrieval assignment of character
or graphic strings. See "Retrieval assignment for character and graphic strings" in “String assignments” on

page 149.

If truncation occurs when casting to a binary string, an error is returned.

130 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

For casts that involve a distinct type as either the data type to be cast to or from, Table 22 on page 131
shows the supported casts.

For casting a parameter marker or NULL value to the XML data type, the CAST specification can be used.
XML input can also be specified for the CAST specification when the result data type is XML.

Casts that involve an array type as the target and a non-null source value must conform to the following
rules:

« If the source value is an array with a user-defined array type:

— The target array type must be the same user-defined array type.

— If the target user-defined array type is an ordinary array, the cardinality of the source array value
must be less than or equal to the maximum cardinality of the target array type.

« If the source value is an array without an associated user-defined array type:

— The elements in the source array value must be castable to the data type of the elements of the
target array type.

— The index values for the source array value must be castable to the data type of the index of the
target array type.

— If the target user-defined array type is an ordinary array, the cardinality of the source array value
must be less than or equal to the maximum cardinality of the target array type.

Table 22. Supported casts when a distinct type is involved

Data type ... Is castable to data type ...

Distinct type DT Base data type of distinct type DT

Source data type of distinct type DT Distinct type DT

Distinct type DT Distinct type DT

Data type A Distinct type DT where A is promotable to the base data type of distinct
type DT (see “Promotion of data types” on page 129)

INTEGER Distinct type DT if DT's base data type is SMALLINT

DOUBLE Distinct type DT if DT's base data type is REAL

VARCHAR Distinct type DT if DT's base data type is CHAR or GRAPHIC

VARGRAPHIC Distinct type DT if DT's base data type is GRAPHIC or CHAR

VARBINARY Distinct type DT if DT's base data type is BINARY

When a distinct type is involved in a cast, a cast function that was generated when the distinct type

was created is used. How Db2 chooses the function depends on whether function notation or CAST
specification syntax is used. (For details, see “Function resolution” on page 239 and “CAST specification”
on page 267, respectively.) Function resolution is similar for both. However, in CAST specification, when
an unqualified distinct type is specified as the target data type, Db2 first resolves the schema name of the
distinct type and then uses that schema name to locate the cast function.

For casts between built-in data types, the following table shows the supported casts.

Chapter 2. Language elements in SQL 131

Table 23. Supported casts between built-in data types

Castfrom To data type™l”onpage 136
data type -
T
I
M
E T
S I
T M
A E
M S
P T
A
W M
I P
T
H W
0O 1I
Uu T
T H
\'}
A \'} T T
S D R A I 1I
M I D E \') G G R M M
A N B E C D A R R D B B E E
L T I C F (0] R A A B I 1 R
L E G I L RUCTCTCUPPCNNWUGBDT 2z 2zZ2 0
I G I M O E B HHULH HMHLA AALA AI O OWX
N E N A A A LA AOITITOWRIRUOTMNNIM
T R T L T L ERR R B CCUB Y Y B EE E E DL
SMALLINT Y Y Y Y Y Y XYY Y Yoy
& g
on ”
pag on
e pa
136 ge
136
INTEGER Y Y Y Y Y Y Y Y Y Yoy
& g
on 7
pag on
e pa
136 ge
136
BIGINT Y Y Y Y Y Y Y Y Y Yoy
& 4

o |o
L |3

136

132 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 23. Supported casts between built-in data types (continued)

Castfrom To data type™l”onpage 136
data type -
T
I
M
E T
S I
T M
A E
M S
P T
A
W M
I P
T
H W
0O 1I
Uu T
T H
\'}
A \'} T T
S D R A I 1I
M I D E \') G G R M M
A N B E C D A R R D B B E E
L T I C F (0] R A A B I 1 R
L E G I L RUCTCTCUPPCNNWUGBDT 2z 2zZ2 0
I G I M O E B HHULH HMHLA AALA AI O OWX
N E N A A A LA AOITITOWRIRUOTMNNIM
T R T L T L ERR R B CCUB Y Y B EE E E DL
DECIMAL Y Y Y Y Y Y XYY Y Yoy
& g
on ”
pag on
e pa
136 ge
136
DECFLOAT Y Y Y Y Y Y Y Y Y Yoy
& g
on 7
pag on
e pa
136 ge
136
REAL Y Y Y Y Y Y Y Y Y Yoy
& 4

o |o
L |3

136

Chapter 2. Language elements in SQL 133

Table 23. Supported casts between built-in data types (continued)

Castfrom To data type™l”onpage 136
data type -
T
I
M
E T
s I
T M
A E
M S
P T
A
W M
I P
T
H W
o I
u T
T H
Vv
A '} T T
S D R A I I
M I D E Vv G G R M M
A N B E C D A R RD B B E E
L T I C F (o} R A AB I I R
L E G I L RUCCT CPPCNNUBDT Z zZoO
I G I M O EBHHIULHMHLAALATI OOWZX
N E N A A ALAADOTITIORU ROTMNNIM
T R T L TLERI RIBT CTC CIBY YBTETETETET DIL
DOUBLE Y Y Y Y Y Y YVY Y Yoy
4”7 “4
on "
pag on
e pa
136 ge
136
CHAR Y Y Y Y Y'Y YY Y Y Y YY Y Y Y YY Y Y'Y
VARCHAR Y Y Y Y Y Y YY Y Y Y YY Y Y Y YY Y Y
CLOB Y Y Y Y YY Y Y Y
GRAPHIC Y Y Y Y Y Y Y Y YY Y YY Y Y Y Y VY Y3y3
on on on ” on pag pag
pag pag pag on pag e e
e € e pa e 136 136
136 136 136 ge 136

136

134 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 23. Supported casts between built-in data types (continued)

Cast from To data type”1” on page 136

data type -
T
I
M
E T
s I
T M
A E
M S
P T
A
W M
I P
T
H W
o I
u T
T H
Vv
A '} T T
S D R A I I
M I D E Vv G G R M M
A N B E C D A R RD B B E E
L T I C F (o} R A AB I I R
L E G I L RUCC CTCUPPCNNUGBDT 2z zZ O
I G I M O EBHHIULHMHLAALATI OOWZX
N E N A A ALAADOTITIORU ROTMNNIM
T R T L TLERI RIBT CTC CIBY YBTETETETET DIL
VARGRAPHI Y Y Y'Y Y Y YYYYY YY Y Y Y YY Y Y3
c 2 27 2 ”on
on on on pag
pag pag pag e
e e e 136
136 136 136
DBCLOB YO Y Y Y YY Y YOY
27 27 2
on on on
pag pag pag
e e e
136 136 136
BINARY Y Y Y
VARBINARY
BLOB
DATE Y Y Y Y
TIME Y Y Y
TIMESTAMP Y Y YY Y Y
WITHOUT
TIME ZONE

Chapter 2. Language elements in SQL 135

Table 23. Supported casts between built-in data types (continued)

Cast from To data type”1” on page 136

data type -
T
I
M
E T
S 1
T M
A E
M S
P T
A
w M
I P
T
H W
0 I
u T
T H
Vv
A v T T
S D R A I 1
M I D E Vv G G R M M
A N B E C D A R R D B B E E
L T I C F 0 R A A B I I R
L E G I L RUCT CTCUPPCNNUGBDT Z Z O
I G I M O EBHHIULMHHLA AALAI O OWX
N E N A A ALAAOITIOWRWRUOTMNNIM
T R T L T LERIRUBT CTCIBY YOBETEEETDIL
TIMESTAMP Y Y Y Y Y Y
WITH TIME
ZONE
ROWID Y Y Y Y Y Y
XML Y
Notes:

1. Other synonyms for the listed data types are considered to be the same as the synonym listed. Some
exceptions exist when the cast involves character string data if the subtype is FOR BIT DATA.

2. The result length for these casts is 3 * LENGTH(graphic string).
3. These data types are castable between each other only if the data is Unicode.

4. FL 502 The conversion returns a Unicode graphic result. The result value must only be used in a

context that supports Unicode data

Table 24 on page 136 shows where to find information about the rules that apply when casting to the

identified target data types.

Table 24. Rules for casting to a data type

Target data type Rules
SMALLINT “SMALLINT scalar function” on page 571
INTEGER “INTEGER or INT scalar function” on page 483

136 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html

Table 24. Rules for casting to a data type (continued)

Target data type Rules

BIGINT “BIGINT scalar function” on page 396

DECIMAL “DECIMAL or DEC scalar function” on page 441

NUMERIC “DECIMAL or DEC scalar function” on page 441

REAL “REAL scalar function” on page 538

DOUBLE “DOUBLE_PRECISION or DOUBLE scalar function” on page 451

DECFLOAT “DECFLOAT scalar function” on page 437

CHAR “CHAR scalar function” on page 405

VARCHAR “VARCHAR scalar function” on page 615

CLOB “CLOB scalar function” on page 415

GRAPHIC “GRAPHIC scalar function” on page 465

VARGRAPHIC “VARGRAPHIC scalar function” on page 632

DBCLOB “DBCLOB scalar function” on page 434

BINARY “BINARY scalar function” on page 397

VARBINARY “VARBINARY scalar function” on page 614

BLOB “BLOB scalar function” on page 400

DATE “DATE scalar function” on page 425

TIME “TIME scalar function” on page 584

TIMESTAMP WITHOUT If the base data type is a character or graphic string, see “TIMESTAMP scalar
TIME ZONE function” on page 584, where one operand is specified. If the string contains

a time zone, an error is returned.

If the base data type is a DATE, the timestamp is composed of the specified
date and a time of 00:00:00.

If the source is a TIMESTAMP WITH TIME ZONE, the resulting timestamp

is the timestamp without time zone element of the specified datetime

value, which is the local timestamp in the corresponding time zone.

For example: cast('2008-04-12-07.30.00.0-6:00"' as TIMESTAMP)
returns 2008-04-12-07.30.00.0.

If the source type is a TIMESTAMP WITHOUT TIME ZONE the timestamp is
the specified value.

TIMESTAMP WITH TIME

ZONE

If the base data type is a character or graphic string or TIMESTAMP WITHOUT
TIME ZONE, see “TIMESTAMP_TZ scalar function” on page 596, where two
arguments are specified. The first argument is the string or timestamp. The
second argument is the precision of the first argument. If the value contains a
time zone, an error is returned.

If the source type is a TIMESTAMP WITH TIME ZONE, the timestamp is the
specified value.

ROWID

“ROWID scalar function” on page 563

Chapter 2. Language elements in SQL 137

Table 25. The derived length of an argument when a built-in scalar function is invoked and implicit casting is required.

Target data type
Source data CHAR GRAPHIC VARCHAR VAR- CLOB DBCLOB BLOB TIME DECFLOAT
type GRAPHIC STAMP
(precision)
SMALLINT 6 6 6 6
INTEGER 11 11 11 11
BIGINT 20 20 20 20
(p;s)
REAL 24 24 24 24
DOUBLE 24 24 24 24
DECFLOAT 42 42 42 42
CHAR(n) 12 34
VARCHAR min(n,254) 12 34
(n)
CLOB(n)
GRAPHIC 12 34
(n)
VARGRAPHIC 12 34
(n)
DBCLOB
(n)
BLOB(n)
TIME 8 8 8 8
DATE 10 10 10 10
TIME- If p=0 then If p=0 then If p=0 then If p=0 then
STAMP(p) 19, 19, otherwise 19, otherwise 19, otherwise
WITHOUT otherwise 20+p 20+p 20+p
TIME 20+p
ZONE
TIME- If p=0 then If p=0 then If p=0 then If p=0 then
STAMP(p) 148, 148, 148, 148,
WITH otherwise otherwise otherwise otherwise
TIME 149+p 149+p 149+p 149+p
ZONE

Casting non-XML values to XML values

Table 26. Supported Casts from Non-XML Values to XML Values

Source Data Type

Target Data Type

XML Resulting XML Schema Type
SMALLINT Y xs:short
INTEGER Y xs:int
BIGINT Y xs:long
DECIMAL Y xs:decimal
DECFLOAT N

138 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 26. Supported Casts from Non-XML Values to XML Values (continued)

Source Data Type Target Data Type
XML Resulting XML Schema Type

REAL N

FLOAT Y xs:double
DOUBLE Y xs:double
CHAR Y xs:string
VARCHAR Y xs:string
CLOB Y xs:string
GRAPHIC Y xs:string
VARGRAPHIC Y xs:string
DBCLOB Y xs:string
BINARY N

VARBINARY N

BLOB N

character type FOR BIT DATA N

DATE N

TIME N

TIMESTAMP WITHOUT TIME ZONE N

TIMESTAMP WITH TIME ZONE N

ROWID N

distinct type N

When character string values are cast to XML values, the resulting xs:string atomic value cannot contain
illegal XML characters. If the input character string is not in Unicode, the input characters are converted to
Unicode.

Casting XML values to non-XML values

An XMLCAST from an XML value to a non-XML value can be described as two casts: an XQuery cast that
converts the source XML value to a target XQuery data type that corresponds to the SQL target type,
followed by a cast from the corresponding XQuery data type to the actual SQL type. The target XQuery
data type is an XML schema data type like xs:decimal or xs:string, as shown in the follow table.

An XMLCAST is supported if the target type has a corresponding XQuery target type that is supported, and
if there is a supported XQuery cast from the type of the source value to the corresponding XQuery target
type. The target type that is used in the XQuery cast is based on the corresponding XQuery target type and
might contain some additional restrictions.

The following table lists the XQuery types that result from such conversion.

Chapter 2. Language elements in SQL 139

Table 27. Supported Casts from XML Values to Non-XML Values

Target Data Type Source Data Type
XML Corresponding XQuery Target Type
SMALLINT Y xs:integer
INTEGER Y xs:integer
BIGINT Y xs:integer
DECIMAL Y xs:decimal
DECFLOAT Y xs:double
REAL Y xs:double
FLOAT Y xs:double
DOUBLE Y xs:double
CHAR Y xs:string
VARCHAR Y xs:string
CLOB Y xs:string
GRAPHIC Y xs:string
VARGRAPHIC Y xs:string
DBCLOB Y xs:string
BINARY N
VARBINARY N
BLOB N
character type FOR BIT DATA N
DATE Y xs:date
TIME Y xs:time
TIMESTAMP Y xs:dateTime
ROWID N
distinct type N

The following restrictions are in effect when a value is cast from an XQuery target data type to a target
SQL data type:

- If the target type is one of the character or graphic string types, the resulting XML value is converted, if
necessary, to the CCSID of the target data type using the rules described in "Conversion rules for string
assignment" in “String assignments” on page 149, before it is converted to the target type with a limited
length. Truncation occurs if the specified length limit is smaller than the length of the resulting string
after CCSID conversion. A warning occurs if any non-blank characters are truncated. If the target type is
a fixed-length string type (CHAR or GRAPHIC) and the specified length of the target type is greater than
the length of the resulting string from CCSID conversion, blanks are padded at the end. This truncation
and padding behavior is similar to retrieval assignment of character or graphic strings.

- If the target type is DOUBLE or REAL and the source XML value after the XQuery cast is an xs:double
value of INF, -INF, or NaN, an error is returned. If the source value is an xs:double negative zero, the
value is converted to positive zero. If the source value is beyond the range of the target data type, an
overflow error is returned. If the source value contains more significant digits than the precision of the
target data type, the source value is rounded to the precision of the target data type.

140 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

- If the target type is DECFLOAT and the source XML value is an xs:double value of INF, -INF, or NaN, the
result will be the corresponding special DECFLOAT values INF, -INF, or NaN. If the source value is an
xs:double negative zero, the result is negative zero. If the target type is DECFLOAT(16) and the source
value is beyond the range of DECFLOAT(16), an overflow error is returned. If the source value has more
than 16 significant digits, the value is rounded according to the ROUNDING mode that is in effect. This
rounding behavior is the same as what is used during the cast of DECFLOAT(34) to DECFLOAT(16).

- If the target type is DECIMAL, the resulting xs:decimal value is converted, if necessary, to the precision
and scale of the target data type. The necessary number of leading zeros is added or removed. In the
fractional part of the number, the necessary number of trailing zeros is added or the necessary number
of digits is eliminated. This truncation behavior is similar to the behavior of the cast from DECIMAL to
DECIMAL.

- If the target type is DATE, TIME, or TIMESTAMP WITHOUT TIME ZONE, the resulting XML value is
adjusted to UTC time and the time zone component is removed. If the source does not include a time
zone and the target data type is TIMESTAMP WITH TIME ZONE, zeroes are used for the time zone
component. If the target type is TIME and the resulting XML value contains a seconds component
with non-zero digits after the decimal point, those digits are truncated. If the target type is DATE or
timestamp, the year part of the resulting xs:date or xs:dateTime value must be in the range of 0001
to 9999. If the target type is timestamp and the precision of the target timestamp is less than 12, the
fractional seconds part of the xs:dateTime value will be truncated to the target timestamp precision.

Implicit cast from numeric data to string data

When Db2 implicitly casts a numeric value to a string value, the target type is VARCHAR value which is
then compatible with other character string or graphic string data types.

The length attribute and the CCSID attribute of the result of the cast are determined in the same way as
the VARCHAR function. When GRAPHIC or VARGRAPHIC data types are involved, the encoding scheme
must be UNICODE. The following table shows the target type and length:

Table 28. Target type and length attribute for implicit cast from numeric types to string types

Source data type Target data type
SMALLINT VARCHAR(6)

INTEGER VARCHAR(11)

BIGINT VARCHAR(20)
NUMERIC or DECIMAL VARCHAR(precision+2)
REAL VARCHAR(24)

FLOAT VARCHAR(24)
DOUBLE VARCHAR(24)
DECFLOAT VARCHAR(42)

Implicit conversion from a numeric value to a string value can happen during:

« Assignment (where the source value is a number and the target operand is a character string or graphic
string data type).

Among assignment statements, implicit casting is not supported for the SET statements for special
registers, the RETURNS clause and RETURN statement for functions, and the SQL control statements:
RETURN, SIGNAL, and RESIGNAL.

« Application of concatenation operators (CONCAT and ||)
« Application of set operators.

Implicit conversion is not supported in the following cases:

« One operand of a set operator is a numeric value and the other operand is a string value

Chapter 2. Language elements in SQL 141

= A numeric value is compared to or assigned to a string value that is the result of a fullselect which
included a set operator

- Assignment to a global variable that is the target of a SELECT INTO statement

Implicit cast from string data to numeric data

When Db2 implicitly casts a character string or graphic string value to a numeric value, the target type is
DECFLOAT(34) which is compatible with other numeric data types.

When GRAPHIC or VARGRAPHIC data types are involved, the encoding scheme must be UNICODE. The
following table shows the target type and length:

Table 29. Target type and length attribute for implicit cast from string types to numeric types

Source data type Target data type
CHAR DECFLOAT(34)
VARCHAR DECFLOAT(34)
GRAPHIC DECFLOAT(34)
VARGRAPHIC DECFLOAT(34)
CHAR FOR BIT DATA or N/A

VARCHAR FOR BIT DATA

BINARY N/A
VARBINARY N/A

BLOB N/A

CLOB N/A

DBCLOB N/A

Implicit conversion from a string value to a numeric value can happen during:

« Assignment (where the source value is a character string or graphic string and the target operand is a
numeric data type).

« Comparisons

When a character string or graphic string value is compared with a numeric value, Db2 implicitly
converts the string value to DECFLOAT(34) and applies numeric comparison rule between the
DECFLOAT(34) value and the other numeric value.

— Basic predicates, quantified predicates, and DISTINCT predicates (one operand is numeric value and
the other operand is character string or graphic string value)

Numeric is the dominant data type. The character or graphic string value is cast to DECFLOAT(34)
value.

— BETWEEN predicates

Numeric is the dominant data type. If any of the three operands is a numeric value, Db2 implicitly
casts the character or graphic string operands to DECFLOAT data type.

— IN predicates

Numeric is the dominant data type. If any of the operands is a numeric value, Db2 implicitly casts the
character or graphic string operands to DECFLOAT data type.

— Searched-when-clause of CASE expression

142 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Pair-wise comparison is performed. Implicit cast of each pair follows the same rule as for a
basic predicate. Implicit string and numeric cast is supported on searched-when-clause of CASE
expression.

— Search conditions in SQL control statements (one operand is numeric value and the other operand is
character string or graphic string value)

The search condition can appear in SQL control statements like the CASE statement, the IF
statement, the REPEAT statement, and the WHILE statement. For comparisons in the search
condition, numeric is the dominant data type. The character string or graphic string value is cast

to a DECFLOAT(34) value. Implicit string and numeric cast is supported on the searched-when-clause
of the CASE statement.

« Arithmetic operators (unary arithmetic operators + and - and infix arithmetic operators +, -, *, and /)

If the operand of unary arithmetic operators is of a character string or graphic string data type, that
operand is implicitly cast to DECFLOAT(34). For infix arithmetic operators, if one operand is a numeric
value or both operands are character or graphic string values, Db2 implicitly casts the character string
or graphic string operand to the DECFLOAT data type.

Implicit conversion is not supported in the following cases:

- One operand of a set operator is a string value and the other operand is a numeric value

« Astring value is compared to or assigned to a numeric value that is the result of a fullselect which
included a set operator

For FULL OUTER JOIN when the join condition is between string and numeric data types
- Assignment to a global variable that is the target of a SELECT INTO statement

Assignment and comparison

The basic operations of SQL are assignment and comparison.

Assignment operations are performed during the execution of statements such as CALL, INSERT, UPDATE,
MERGE, FETCH, SELECT INTO, SET host-variable or SET assignment-statement, and VALUES INTO
statements. In addition, when a function is invoked or a stored procedure is called, the arguments of the
function or stored procedure are assigned. Comparison operations are performed during the execution of
statements that include predicates and other language elements such as MAX, MIN, DISTINCT, GROUP
BY, and ORDER BY.

The basic rule for both operations is that data types of the operands must be compatible. The
compatibility rule also applies to other operations that are described under “Rules for result data ty