
Db2 12 for z/OS

SQL Reference
Last updated: 2024-05-14

IBM

SC27-8859-02

Notes

Before using this information and the product it supports, be sure to read the general information under
"Notices" at the end of this information.

Subsequent editions of this PDF will not be delivered in IBM Publications Center. Always download the
latest edition from IBM Documentation.

2024-05-14 edition

This edition applies to Db2® 12 for z/OS® (product number 5650-DB2), Db2 12 for z/OS Value Unit Edition (product
number 5770-AF3), and to any subsequent releases until otherwise indicated in new editions. Make sure you are using
the correct edition for the level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.
© Copyright International Business Machines Corporation 1982, 2024.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html

Contents

About this information.. xxiii
Who should read this information... xxiv
Db2 Utilities Suite for z/OS.. xxiv
Terminology and citations... xxiv
Accessibility features for Db2 for z/OS.. xxv
How to send comments..xxv
How to read syntax diagrams.. xxvi
Conventions for describing mixed data values.. xxvii
Industry standards for SQL..xxviii

Chapter 1. Db2 for z/OS and SQL concepts... 1
Submitting SQL statements to Db2... 1

Static SQL..1
Embedded dynamic SQL.. 2
Deferred embedded SQL..2
Interactive SQL... 2
SQL Call Level Interface and Open Database Connectivity...3
Java database connectivity and embedded SQL for Java...4
Use of QMF for Workstation... 4

Db2 database objects overview...5
Db2 schemas and schema qualifiers...6
Db2 tables.. 7

Db2 keys... 10
Constraints... 11
Db2 table columns... 15
Db2 indexes..29

Db2 views...30
Aliases.. 32
Triggers...32
User-defined types.. 35
Routines in Db2 for z/OS: functions and procedures ...35
Sequences..37
Db2 system objects... 38

Db2 catalog...38
Db2 directory..39
Active and archive logs...40
Bootstrap data set..40
Buffer pools.. 41
Data definition control support database..41
The resource limit facility...41
Work file database..42
Application processes and transactions..42
Subsystem parameters.. 47

Storage structures... 48
Db2 databases..48
Db2 table spaces..50
Db2 index spaces... 51
Rules for primary and secondary space allocation... 51
Db2 hash spaces (deprecated).. 53
Db2 storage groups.. 54

 iii

Application processes, concurrency, and recovery.. 55
Locking, commit, and rollback... 55
Unit of work.. 55
Unit of recovery.. 56
Rolling back work... 56

Packages and application plans.. 57
Character conversion...59

Character sets and code pages..61
Coded character sets and CCSIDS...62
Determining the encoding scheme and CCSID of a string.. 63
Expanding conversions.. 67
Contracting conversions...68

Distributed relational databases... 68
Connections..68
Distributed unit of work..69
Remote unit of work... 72

Chapter 2. Language elements in SQL...75
Characters and tokens in SQL..75
Identifiers in SQL... 77
Naming conventions in SQL... 79
SQL path...85
Unqualified object name resolution.. 86
Aliases.. 88
Synonyms (deprecated)...89
Authorization, privileges, permissions, masks, and object ownership.. 90
Authorization IDs, roles, and authorization names.. 92

Authorization IDs and statement preparation...93
Authorization IDs and dynamic SQL.. 94
Authorization IDs and remote execution...96

Data types.. 98
Numeric data types.. 99
Numeric host variables.. 102
Character strings.. 102
String unit specifications..106
Graphic strings... 112
Unicode columns in EBCDIC tables...113
Binary strings..116
Large objects (LOBs).. 116
Datetime values... 118
Row ID values...124
XML values..125
User-defined data types.. 126
Distinct types..126
Array types and values...127

Promotion of data types.. 129
Casting between data types.. 130

Implicit cast from numeric data to string data..141
Implicit cast from string data to numeric data..142

Assignment and comparison...143
Numeric assignments.. 145
String assignments...149
Datetime assignments... 151
Row ID assignments.. 153
XML assignments... 153
User-defined type assignments...153
Assignments to LOB locators...156

iv

Numeric comparisons.. 156
String comparisons.. 157
Datetime comparisons...158
Row ID comparisons.. 159
XML comparisons... 159
Conversion rules for comparisons... 159
User-defined type comparisons.. 164
Rules for result data types...166

Constants... 170
Graphic string constants.. 173
Datetime constants..174

Special registers.. 177
General rules for special registers...179
Rules for setting special registers by using profile tables.. 181
CURRENT ACCELERATOR special register.. 184
CURRENT APPLICATION COMPATIBILITY special register..184
CURRENT APPLICATION ENCODING SCHEME special register...185
CURRENT CLIENT_ACCTNG special register...186
CURRENT CLIENT_APPLNAME special register..187
CURRENT CLIENT_CORR_TOKEN special register.. 189
CURRENT CLIENT_USERID special register..189
CURRENT CLIENT_WRKSTNNAME special register.. 190
CURRENT DATE special register.. 192
CURRENT DEBUG MODE special register..192
CURRENT DECFLOAT ROUNDING MODE special register.. 193
CURRENT DEGREE special register... 194
CURRENT EXPLAIN MODE special register...194
CURRENT GET_ACCEL_ARCHIVE special register..195
CURRENT LOCALE LC_CTYPE special register.. 196
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special register.................................197
CURRENT MEMBER special register..198
CURRENT OPTIMIZATION HINT special register... 198
CURRENT PACKAGE PATH special register... 199
CURRENT PACKAGESET special register...199
CURRENT PATH special register.. 200
CURRENT PRECISION special register..201
CURRENT QUERY ACCELERATION special register.. 202
CURRENT QUERY ACCELERATION WAITFORDATA special register.. 203
CURRENT REFRESH AGE special register... 204
CURRENT ROUTINE VERSION special register...204
CURRENT RULES special register.. 205
CURRENT SCHEMA special register.. 206
CURRENT SERVER special register..207
CURRENT SQLID special register.. 207
CURRENT TEMPORAL BUSINESS_TIME special register..208
CURRENT TEMPORAL SYSTEM_TIME special register... 210
CURRENT TIME special register.. 211
CURRENT TIMESTAMP special register...212
CURRENT TIME ZONE special register..213
ENCRYPTION PASSWORD special register... 213
SESSION TIME ZONE special register... 214
SESSION_USER special register..214
USER special register... 215
Special registers in a user-defined function or a stored procedure... 215

Column names... 219
Qualified column names.. 220
Correlation names..220
Column name qualifiers to avoid ambiguity.. 221

 v

Column name qualifiers in correlated references...222
Resolution of column name qualifiers and column names...223

Variables.. 225
Global variables..225
Session variables..227
Host variables...227
Variables in dynamic SQL...230
LOB variables..230
LOB locator variables... 230
XML variables... 231
LOB or XML file reference variables ..232
Result set locator variables... 234
Array variables... 234
Host structures in PL/I, C, and COBOL.. 235
Host-variable arrays in PL/I, C, C++, and COBOL..236

Functions... 237
Function invocation..239
Function resolution.. 239

Expressions..245
Concatenation operators in expressions...247
Arithmetic operators in expressions... 250
Scalar-fullselect... 256
Datetime operands and durations... 257
Time zone specific expressions... 258
Datetime arithmetic in SQL..259
Precedence of operations.. 263
CASE expressions...264
CAST specification... 267
XMLCAST specification.. 277
Array element specification... 278
Array constructor... 279
OLAP specifications... 280
ROW CHANGE expression..291
Sequence reference... 292

Predicates.. 296
Basic predicate...297
Quantified predicate.. 300
ARRAY_EXISTS predicate.. 302
BETWEEN predicate...303
DISTINCT predicate... 304
EXISTS predicate... 305
IN predicate..306
LIKE predicate..308
NULL predicate...316
XMLEXISTS predicate.. 316

Search conditions.. 319
Options affecting SQL.. 320

SQL processing options for dynamic statements..322
DECFLOAT rounding mode...323
Decimal point representation.. 323
Apostrophes and quotation marks as string delimiters..324
Katakana characters for EBCDIC... 325
Mixed data in character strings..325
Formatting of datetime strings.. 325
SQL standard language.. 326
Positioned updates of columns... 326

Mappings from SQL to XML... 327
Mapping SQL character sets to XML character sets..327

vi

Mapping SQL identifiers to XML names... 327
Mapping SQL data values to XML data values...328

Chapter 3. Built-in global variables and session variables................................... 329
Built-in global variables...329

CATALOG_LEVEL.. 329
CLIENT_IPADDR...330
DEFAULT_SQLLEVEL...330
GET_ARCHIVE.. 330
MAX_LOCKS_PER_TABLESPACE... 331
MAX_LOCKS_PER_USER..331
MOVE_TO_ARCHIVE...332
PRODUCTID_EXT... 332
REPLICATION_OVERRIDE... 333
TEMPORAL_LOGICAL_TRANSACTION_TIME... 334
TEMPORAL_LOGICAL_TRANSACTIONS..334

Rules for setting built-in global variables by using profile tables.. 335
Built-in session variables.. 336

Chapter 4. Built-in functions.. 341
List of supported built-in functions... 341
Aggregate functions...353

ARRAY_AGG aggregate function..354
AVG aggregate function... 357
CORR or CORRELATION aggregate function... 358
COUNT aggregate function.. 358
COUNT_BIG aggregate function.. 359
COVAR_POP or COVARIANCE or COVAR aggregate function... 360
COVAR_SAMP or COVARIANCE_SAMP aggregate function.. 361
CUME_DIST.. 362
GROUPING aggregate function..363
LISTAGG aggregate function..364
MAX aggregate function...367
MEDIAN aggregate function.. 368
MIN aggregate function... 369
PERCENTILE_CONT aggregate function..370
PERCENTILE_DISC aggregate function...371
PERCENT_RANK...372
REGR_AVGX, REGR_AVGY, REGR_COUNT, .. 374
STDDEV_POP or STDDEV aggregate function... 376
STDDEV_SAMP aggregate function..377
SUM aggregate function...378
VAR_POP or VARIANCE or VAR aggregate function..379
VAR_SAMP or VARIANCE_SAMP aggregate function..380
XMLAGG aggregate function..381

Scalar functions... 382
ABS or ABSVAL scalar function..382
ACOS scalar function..383
ADD_DAYS.. 383
ADD_MONTHS scalar function...384
ARRAY_DELETE scalar function...386
ARRAY_FIRST scalar function..387
ARRAY_LAST scalar function... 388
ARRAY_NEXT scalar function...389
ARRAY_PRIOR scalar function...391
ARRAY_TRIM scalar function... 392
ASCII scalar function... 393

 vii

ASCII_CHR scalar function.. 393
ASCII_STR or ASCIISTR scalar function... 394
ASIN scalar function.. 395
ATAN scalar function.. 395
ATANH scalar function... 395
ATAN2 scalar function..396
BIGINT scalar function.. 396
BINARY scalar function..397
BITAND, BITANDNOT, BITOR, BITXOR, and BITNOT scalar functions.. 398
BLOB scalar function..400
BTRIM...401
CARDINALITY scalar function... 402
CCSID_ENCODING scalar function..403
CEILING or CEIL scalar function..404
CHAR scalar function... 405
CHAR9 scalar function... 412
CHARACTER_LENGTH or CHAR_LENGTH scalar function..413
CHR scalar function..415
CLOB scalar function..415
COALESCE scalar function... 417
COLLATION_KEY scalar function...418
COMPARE_DECFLOAT scalar function...421
CONCAT scalar function... 422
CONTAINS scalar function... 422
COS scalar function..425
COSH scalar function... 425
DATE scalar function.. 425
DAY scalar function.. 426
DAYOFMONTH scalar function...428
DAYOFWEEK scalar function..429
DAYOFWEEK_ISO scalar function... 430
DAYOFYEAR scalar function...431
DAYS scalar function.. 432
DAYS_BETWEEN...433
DBCLOB scalar function... 434
DECFLOAT scalar function... 437
DECFLOAT_FORMAT scalar function..438
DECFLOAT_SORTKEY scalar function.. 440
DECIMAL or DEC scalar function... 441
DECODE scalar function...443
DECRYPT_BINARY, DECRYPT_BIT, DECRYPT_CHAR, and DECRYPT_DB scalar functions.............. 444
DECRYPT_DATAKEY_INTEGER, DECRYPT_DATAKEY_BIGINT, DECRYPT_DATAKEY_DECIMAL,

DECRYPT_DATAKEY_VARCHAR, DECRYPT_DATAKEY_CLOB,
DECRYPT_DATAKEY_VARGRAPHIC, DECRYPT_DATAKEY_DBCLOB, and
DECRYPT_DATAKEY_BIT scalar functions... 446

DEGREES scalar function... 449
DIFFERENCE scalar function... 450
DIGITS scalar function...450
DOUBLE_PRECISION or DOUBLE scalar function.. 451
DSN_XMLVALIDATE scalar function.. 452
EBCDIC_CHR scalar function...453
EBCDIC_STR scalar function... 453
ENCRYPT_DATAKEY scalar function.. 454
ENCRYPT_TDES or ENCRYPT scalar function..456
EXP scalar function.. 458
EXTRACT scalar function... 459
FLOAT scalar function.. 461
FLOOR scalar function..462

viii

GENERATE_UNIQUE and GENERATE_UNIQUE_BINARY scalar functions...................................... 462
GETHINT scalar function... 463
GETVARIABLE scalar function... 464
GRAPHIC scalar function... 465
GREATEST scalar function... 470
HASH scalar function... 471
HASH_CRC32, HASH_MD5, HASH_SHA1, and HASH_SHA256 scalar functions............................ 472
HEX scalar function..474
HOUR scalar function...475
IDENTITY_VAL_LOCAL scalar function... 476
IFNULL scalar function...479
INSERT scalar function.. 480
INSTR scalar function.. 482
INTEGER or INT scalar function.. 483
JULIAN_DAY...484
LAST_DAY scalar function..485
LCASE scalar function.. 486
LEAST scalar function.. 486
LEFT scalar function...487
LENGTH scalar function... 489
LN scalar function.. 490
LOCATE scalar function..490
LOCATE_IN_STRING scalar function...493
LOG10 scalar function..494
LOWER scalar function...495
LPAD scalar function.. 498
LTRIM scalar function.. 500
MAX scalar function... 501
MAX_CARDINALITY scalar function.. 502
MICROSECOND scalar function... 503
MIDNIGHT_SECONDS scalar function...504
MIN scalar function..505
MINUTE scalar function... 505
MOD scalar function...506
MONTH scalar function.. 508
MONTHS_BETWEEN scalar function... 508
MQREAD scalar function.. 510
MQREADCLOB scalar function... 511
MQRECEIVE scalar function...512
MQRECEIVECLOB scalar function..514
MQSEND scalar function.. 516
MULTIPLY_ALT scalar function.. 517
NEXT_DAY scalar function... 518
NEXT_MONTH.. 520
NORMALIZE_DECFLOAT scalar function...520
NORMALIZE_STRING scalar function... 521
NULLIF scalar function...522
NVL scalar function.. 523
OVERLAY scalar function... 523
PACK scalar function..526
POSITION scalar function..529
POSSTR or STRPOS scalar function...532
POWER or POW scalar function... 533
QUANTIZE scalar function... 534
QUARTER scalar function...535
RADIANS scalar function... 536
RAISE_ERROR scalar function...536
RANDOM or RAND scalar function...537

 ix

REAL scalar function.. 538
REGEXP_COUNT... 539
REGEXP_INSTR.. 541
REGEXP_LIKE... 543
REGEXP_REPLACE... 546
REGEXP_SUBSTR... 549
REPEAT scalar function..551
REPLACE scalar function..552
RID scalar function...555
RIGHT scalar function..556
ROUND scalar function.. 558
ROUND_TIMESTAMP scalar function...559
ROWID scalar function...563
RPAD scalar function..563
RTRIM scalar function..565
SCORE scalar function... 566
SECOND scalar function...568
SIGN scalar function.. 570
SIN scalar function...570
SINH scalar function.. 571
SMALLINT scalar function..571
SOUNDEX scalar function.. 572
SOAPHTTPC and SOAPHTTPV scalar function..573
SOAPHTTPNC and SOAPHTTPNV scalar function.. 574
SPACE scalar function.. 575
SQRT scalar function..575
STRIP scalar function...576
STRLEFT scalar function.. 576
STRPOS scalar function... 577
STRRIGHT scalar function... 577
SUBSTR scalar function... 577
SUBSTRING scalar function...579
TAN scalar function.. 583
TANH scalar function... 583
TIME scalar function.. 584
TIMESTAMP scalar function...584
TIMESTAMPADD scalar function..587
TIMESTAMPDIFF scalar function...588
TIMESTAMP_FORMAT or TO_TIMESTAMP scalar function... 591
TIMESTAMP_ISO scalar function...595
TIMESTAMP_TZ scalar function... 596
TO_CHAR scalar function... 598
TO_CLOB scalar function..598
TO_DATE scalar function..599
TO_NUMBER scalar function..599
TOTALORDER scalar function.. 599
TO_TIMESTAMP scalar function...600
TRANSLATE scalar function... 600
TRIM scalar function.. 603
TRIM_ARRAY scalar function.. 605
TRUNCATE or TRUNC scalar function..606
TRUNC_TIMESTAMP scalar function... 607
UCASE scalar function... 610
UNICODE scalar function...610
UNICODE_STR or UNISTR scalar function.. 611
UPPER scalar function... 612
VALUE scalar function.. 614
VARBINARY scalar function...614

x

VARCHAR scalar function...615
VARCHAR9 scalar function.. 620
VARCHAR_BIT_FORMAT scalar function...622
VARCHAR_FORMAT scalar function.. 623
VARGRAPHIC scalar function.. 632
VERIFY_GROUP_FOR_USER scalar function... 637
VERIFY_ROLE_FOR_USER scalar function..638
VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER scalar function...640
WEEK scalar function... 641
WEEK_ISO scalar function...642
WRAP scalar function...643
XMLATTRIBUTES scalar function.. 644
XMLCOMMENT scalar function.. 645
XMLCONCAT scalar function.. 645
XMLDOCUMENT scalar function.. 646
XMLELEMENT scalar function..647
XMLFOREST scalar function...651
XMLMODIFY scalar function.. 653
XMLNAMESPACES scalar function...656
XMLPARSE scalar function...657
XMLPI scalar function.. 659
XMLQUERY scalar function.. 659
XMLSERIALIZE scalar function..662
XMLTEXT scalar function... 665
XMLXSROBJECTID scalar function..666
XSLTRANSFORM scalar function... 667
YEAR scalar function..668

Table functions.. 669
ADMIN_TASK_LIST table function.. 669
ADMIN_TASK_OUTPUT table function.. 673
ADMIN_TASK_STATUS table function... 675
BLOCKING_THREADS table function.. 678
MQREADALL table function... 685
MQREADALLCLOB table function...687
MQRECEIVEALL table function.. 689
MQRECEIVEALLCLOB table function... 691
XMLTABLE table function... 693

Row functions.. 696
UNPACK row function...696

Chapter 5. Procedures that are supplied with Db2.. 699
ADMIN_COMMAND_DB2...699
ADMIN_COMMAND_DSN...712
ADMIN_COMMAND_MVS...714
ADMIN_COMMAND_UNIX... 725
ADMIN_DS_BROWSE.. 729
ADMIN_DS_DELETE.. 732
ADMIN_DS_LIST..735
ADMIN_DS_RENAME...741
ADMIN_DS_SEARCH... 744
ADMIN_DS_WRITE.. 747
ADMIN_EXPLAIN_MAINT... 751
ADMIN_INFO_HOST..760
ADMIN_INFO_IFCID... 763
ADMIN_INFO_SMS.. 766
ADMIN_INFO_SSID... 770
ADMIN_INFO_SQL...771

 xi

ADMIN_INFO_SYSLOG.. 781
ADMIN_INFO_SYSPARM... 784
ADMIN_JOB_CANCEL..788
ADMIN_JOB_FETCH.. 791
ADMIN_JOB_QUERY..794
ADMIN_JOB_SUBMIT..798
ADMIN_TASK_ADD..802
ADMIN_TASK_CANCEL.. 808
ADMIN_TASK_REMOVE...809
ADMIN_TASK_UPDATE..811
ADMIN_UPDATE_SYSPARM.. 814
ADMIN_UTL_EXECUTE..822
ADMIN_UTL_MONITOR...824
ADMIN_UTL_MODIFY... 830
ADMIN_UTL_SCHEDULE... 832
ADMIN_UTL_SORT.. 841
CREATE_WRAPPED..847
DSNACCOX...848
DSNACICS.. 880
DSNAIMS... 885
DSNAIMS2... 889
DSNLEUSR... 893
DSNUTILS.. 895
DSNUTILU.. 906
DSNUTILV...910
DSN_WLM_APPENV...913
DSN8.CREATE_DGTT... 916
DSN8.DISABLE.. 917
DSN8.ENABLE..918
DSN8.GET_LINE...919
DSN8.GET_LINES...920
DSN8.NEW_LINE... 921
DSN8.PUT.. 921
DSN8.PUT_LINE...922
Objects that are used by the sample trace stored procedures.. 923
GET_CONFIG..923
GET_MESSAGE...942
GET_SYSTEM_INFO...949
SET_MAINT_MODE_RECORD_NO_TEMPORALHISTORY... 962
SET_PLAN_HINT..962
SQLJ.ALTER_JAVA_PATH.. 988
SQLJ.DB2_INSTALL_JAR.. 991
SQLJ.DB2_REPLACE_JAR... 992
SQLJ.INSTALL_JAR..994
SQLJ.REMOVE_JAR... 995
SQLJ.REPLACE_JAR.. 996
WLM_REFRESH..997
WLM_SET_CLIENT_INFO...999
XSR_ADDSCHEMADOC... 1000
XSR_COMPLETE...1002
XSR_REGISTER... 1003
XSR_REMOVE.. 1005

Chapter 6. Queries...1007
Authorization... 1007
subselect... 1009

select-clause..1010

xii

from-clause..1017
where-clause... 1036
group-by-clause...1037
having-clause...1043
order-by-clause..1043
offset-clause.. 1046
fetch-clause... 1047
Examples of subselects... 1048
Examples of grouping sets, rollup, and cube queries... 1054

fullselect.. 1060
Character conversion in set operations and concatenations... 1066
Selecting the result CCSID...1066

select-statement... 1067
common-table-expression.. 1069
update-clause.. 1071
read-only-clause..1072
optimize-clause... 1073
isolation-clause..1073
queryno-clause.. 1075
SKIP LOCKED DATA..1076
Examples of SELECT statements...1077

Chapter 7. Statements... 1079
List of supported statements.. 1079
How SQL statements are invoked... 1086

Embedding a statement in an application program..1087
Dynamic preparation and execution... 1088
Static invocation of a SELECT statement.. 1089
Dynamic invocation of a SELECT statement... 1089
Interactive invocation.. 1090
SQL diagnostics information..1090
Detecting and processing error and warning conditions in host language applications............... 1091

SQL comments.. 1092
ALLOCATE CURSOR statement... 1093
ALTER DATABASE statement.. 1095
ALTER FUNCTION statement (external function)...1097
ALTER FUNCTION statement (compiled SQL scalar function)...1113
ALTER FUNCTION statement (inlined SQL scalar function)...1142
ALTER FUNCTION statement (SQL table function).. 1150
ALTER INDEX statement... 1157
ALTER MASK statement.. 1174
ALTER PERMISSION statement.. 1177
ALTER PROCEDURE statement (external procedure)...1180
ALTER PROCEDURE statement (SQL - external procedure) (deprecated)...1189
ALTER PROCEDURE statement (SQL - native procedure).. 1194
ALTER SEQUENCE statement..1224
ALTER STOGROUP statement... 1228
ALTER TABLE statement..1232
ALTER TABLESPACE statement...1321
ALTER TRIGGER statement (advanced trigger)..1342
ALTER TRIGGER statement (basic trigger)... 1365
ALTER TRUSTED CONTEXT statement..1368
ALTER VIEW statement... 1378
ASSOCIATE LOCATORS statement..1380
BEGIN DECLARE SECTION statement..1383
CALL statement... 1384
CLOSE statement...1395

 xiii

COMMENT statement.. 1396
COMMIT statement... 1406
CONNECT statement... 1409
CREATE ALIAS statement... 1415
CREATE AUXILIARY TABLE statement..1418
CREATE DATABASE statement..1421
CREATE FUNCTION statement (overview)... 1424
CREATE FUNCTION statement (compiled SQL scalar function).. 1428
CREATE FUNCTION statement (external scalar function)... 1453
CREATE FUNCTION statement (external table function)...1472
CREATE FUNCTION statement (inlined SQL scalar function).. 1489
CREATE FUNCTION statement (sourced function).. 1498
CREATE FUNCTION statement (SQL table function)..1510
CREATE GLOBAL TEMPORARY TABLE statement...1518
CREATE INDEX statement...1524
CREATE LOB TABLESPACE.. 1553
CREATE MASK statement..1562
CREATE PERMISSION statement..1571
CREATE PROCEDURE statement (overview)...1578
CREATE PROCEDURE statement (external procedure)..1580
CREATE PROCEDURE statement (SQL - external procedure) (deprecated).. 1597
CREATE PROCEDURE statement (SQL - native procedure)..1607
CREATE ROLE statement...1637
CREATE SEQUENCE statement... 1638
CREATE STOGROUP statement...1645
CREATE SYNONYM statement (unsupported)..1649
CREATE TABLE statement... 1650
CREATE TABLESPACE statement.. 1718
CREATE TRIGGER statement (advanced trigger)... 1740
CREATE TRIGGER statement (basic trigger).. 1769
CREATE TRUSTED CONTEXT statement... 1787
CREATE TYPE statement... 1795
CREATE TYPE statement (array type)... 1795
CREATE TYPE statement (distinct type)... 1801
CREATE VARIABLE statement...1808
CREATE VIEW statement.. 1812
DECLARE CURSOR statement...1819
DECLARE GLOBAL TEMPORARY TABLE statement.. 1830
DECLARE STATEMENT statement... 1844
DECLARE TABLE statement...1845
DECLARE VARIABLE statement.. 1850
DELETE statement...1853
DESCRIBE statement.. 1869
DESCRIBE CURSOR statement... 1869
DESCRIBE INPUT statement.. 1871
DESCRIBE OUTPUT statement... 1873
DESCRIBE PROCEDURE statement.. 1879
DESCRIBE TABLE statement...1881
DROP statement.. 1886
END DECLARE SECTION statement..1907
EXCHANGE statement...1908
EXECUTE statement.. 1909
EXECUTE IMMEDIATE statement... 1914
EXPLAIN statement...1917
FETCH statement...1924
FREE LOCATOR statement.. 1949
GET DIAGNOSTICS statement..1949
GRANT statement..1963

xiv

GRANT statement (collection privileges)..1967
GRANT statement (database privileges).. 1968
GRANT statement (function or procedure privileges).. 1970
GRANT statement (package privileges)..1975
GRANT statement (plan privileges).. 1977
GRANT statement (schema privileges)...1978
GRANT statement (sequence privileges)..1979
GRANT statement (system privileges)..1981
GRANT statement (table or view privileges)...1988
GRANT statement (type or JAR file privileges)...1991
GRANT statement (variable privileges).. 1992
GRANT statement (use privileges)..1993
HOLD LOCATOR statement..1994
INCLUDE statement.. 1995
INSERT statement...1996
LABEL statement... 2015
LOCK TABLE statement... 2017
MERGE statement... 2019
OPEN statement.. 2037
PREPARE statement.. 2042
REFRESH TABLE statement.. 2062
RELEASE statement (connection)...2063
RELEASE SAVEPOINT statement..2065
RENAME statement... 2066
REVOKE statement..2070
REVOKE statement (collection privileges)..2076
REVOKE statement (database privileges)...2078
REVOKE statement (function or procedure privileges).. 2081
REVOKE statement (package privileges).. 2087
REVOKE statement (plan privileges)...2089
REVOKE statement (schema privileges)...2091
REVOKE statement (sequence privileges)..2093
REVOKE statement (system privileges).. 2095
REVOKE statement (table or view privileges)...2101
REVOKE (type or JAR file privileges)...2104
REVOKE (variable privileges).. 2106
REVOKE statement (use privileges).. 2108
ROLLBACK statement..2110
SAVEPOINT statement..2113
SELECT statement... 2114
SELECT INTO statement... 2117
SET CONNECTION statement... 2122
SET assignment-statement statement.. 2124
SET CURRENT ACCELERATOR statement...2129
SET CURRENT APPLICATION COMPATIBILITY statement.. 2130
SET CURRENT APPLICATION ENCODING SCHEME... 2132
SET CURRENT DEBUG MODE statement.. 2133
SET CURRENT DECFLOAT ROUNDING MODE statement...2134
SET CURRENT DEGREE statement... 2136
SET CURRENT EXPLAIN MODE statement... 2137
SET CURRENT GET_ACCEL_ARCHIVE statement.. 2138
SET CURRENT LOCALE LC_CTYPE statement...2139
SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION statement..................................... 2141
SET CURRENT OPTIMIZATION HINT statement..2142
SET CURRENT PACKAGE PATH statement... 2143
SET CURRENT PACKAGESET statement...2146
SET CURRENT PRECISION statement..2148
SET CURRENT QUERY ACCELERATION statement...2148

 xv

SET CURRENT QUERY ACCELERATION WAITFORDATA statement...2150
SET CURRENT REFRESH AGE statement..2153
SET CURRENT ROUTINE VERSION statement... 2154
SET CURRENT RULES statement.. 2156
SET CURRENT SQLID statement...2156
SET CURRENT TEMPORAL BUSINESS_TIME statement..2158
SET CURRENT TEMPORAL SYSTEM_TIME statement..2160
SET ENCRYPTION PASSWORD statement..2161
SET PATH statement..2163
SET SCHEMA statement..2166
SET SESSION TIME ZONE statement... 2168
SIGNAL statement...2169
TRANSFER OWNERSHIP statement... 2172
TRUNCATE statement... 2175
UPDATE statement.. 2178
VALUES statement...2199
VALUES INTO statement... 2200
WHENEVER statement.. 2204

Chapter 8. SQL procedural language (SQL PL)... 2207
References to SQL parameters and variables in SQL PL.. 2208
References to SQL condition names... 2209
References to SQL cursor names..2210
References to SQL labels.. 2210
References to SQL statement names... 2210
Summary of name scoping in nested compound statements..2210
SQL-procedure-statement (SQL PL)... 2212
assignment-statement.. 2217
CALL statement... 2218
CASE statement...2219
compound-statement... 2221
FOR statement...2229
GET DIAGNOSTICS statement..2230
GOTO statement..2231
IF statement.. 2232
ITERATE statement... 2233
LEAVE statement... 2234
LOOP statement.. 2236
REPEAT statement...2237
RESIGNAL statement.. 2238
RETURN statement..2240
SIGNAL statement...2242
WHILE statement.. 2245

Appendix A. Limits in Db2 for z/OS...2247

Appendix B. Reserved schema names and reserved words in Db2 for z/OS........ 2257
Reserved schema names in Db2 for z/OS...2257
Reserved words in Db2 for z/OS... 2258

Appendix C. Actions allowed on SQL statements...2269

Appendix D. SQL statement data access classification for routines....................2275

Appendix E. SQL control statements for external SQL procedures......................2279
References to SQL parameters and SQL variables in external SQL procedures..................................2280

xvi

SQL-procedure-statement (external)... 2280
assignment-statement (SQL control statements for external routines)..2281
CALL statement... 2282
CASE statement...2284
compound-statement... 2286
GET DIAGNOSTICS statement..2290
GOTO statement..2290
IF statement.. 2292
ITERATE statement... 2293
LEAVE statement... 2293
LOOP statement.. 2294
REPEAT statement...2295
RESIGNAL statement.. 2296
RETURN statement..2298
SIGNAL statement...2299
WHILE statement.. 2302

Appendix F. SQL communication area (SQLCA)..2303
Description of SQLCA fields...2303
The included SQLCA.. 2308
The REXX SQLCA... 2310

Appendix G. SQL descriptor area (SQLDA)...2313
Description of SQLDA fields.. 2313

The SQLDA Header...2314
SQLVAR entries.. 2315

Unrecognized and unsupported SQLTYPES..2325
The included SQLDA..2326
Identifying an SQLDA in C or C++..2329
The REXX SQLDA... 2329

Appendix H. Db2 catalog tables... 2333
IPLIST catalog table.. 2348
IPNAMES catalog table... 2349
LOCATIONS catalog table..2351
LULIST catalog table... 2353
LUMODES catalog table...2353
LUNAMES catalog table...2354
MODESELECT catalog table.. 2358
SYSAUDITPOLICIES catalog table..2358
SYSAUTOALERTS catalog table...2364
SYSAUTOALERTS_OUT catalog table..2365
SYSAUTORUNS_HIST catalog table..2366
SYSAUTORUNS_HISTOU catalog table...2366
SYSAUTOTIMEWINDOWS catalog table... 2367
SYSAUXRELS catalog table... 2368
SYSCHECKDEP catalog table.. 2369
SYSCHECKS catalog table... 2369
SYSCHECKS2 catalog table...2370
SYSCOLAUTH catalog table...2371
SYSCOLDIST catalog table.. 2373
SYSCOLDISTSTATS catalog table..2375
SYSCOLDIST_HIST catalog table.. 2377
SYSCOLSTATS catalog table.. 2379
SYSCOLUMNS catalog table.. 2381
SYSCOLUMNS_HIST catalog table..2395
SYSCONSTDEP catalog table.. 2400

 xvii

SYSCONTEXT catalog table...2401
SYSCONTEXTAUTHIDS catalog table..2404
SYSCONTROLS catalog table.. 2405
SYSCOPY catalog table..2408
SYSCTXTTRUSTATTRS catalog table.. 2426
SYSDATABASE catalog table... 2427
SYSDATATYPES catalog table..2429
SYSDBAUTH catalog table...2432
SYSDBRM catalog table...2437
SYSDEPENDENCIES catalog table.. 2439
SYSDUMMY1 catalog table..2443
SYSDUMMYA catalog table..2443
SYSDUMMYE catalog table..2444
SYSDUMMYU catalog table... 2444
SYSDYNQRY catalog table...2444
SYSDYNQRYDEP catalog table..2446
SYSDYNQRY_EXPL catalog table.. 2451
SYSDYNQRY_OPL catalog table...2451
SYSDYNQRY_SHTEL catalog table.. 2451
SYSDYNQRY_SPAL catalog table...2451
SYSDYNQRY_TXTL catalog table...2451
SYSENVIRONMENT catalog table... 2452
SYSFIELDS catalog table...2456
SYSFOREIGNKEYS catalog table...2458
SYSINDEXCLEANUP catalog table.. 2458
SYSINDEXCONTROL catalog table..2460
SYSINDEXES catalog table..2461
SYSINDEXES_HIST catalog table... 2472
SYSINDEXES_RTSECT catalog table...2474
SYSINDEXES_TREE catalog table... 2474
SYSINDEXPART catalog table... 2474
SYSINDEXPART_HIST catalog table... 2480
SYSINDEXSPACESTATS catalog table...2482
SYSINDEXSTATS catalog table..2490
SYSINDEXSTATS_HIST catalog table... 2492
SYSJARCLASS_SOURCE catalog table..2494
SYSJARCONTENTS catalog table..2494
SYSJARDATA catalog table..2495
SYSJAROBJECTS catalog table...2495
SYSJAVAOPTS catalog table... 2496
SYSJAVAPATHS catalog table... 2497
SYSKEYCOLUSE catalog table... 2497
SYSKEYS catalog table.. 2498
SYSKEYTARGETS catalog table...2500
SYSKEYTARGETSTATS catalog table...2503
SYSKEYTARGETS_HIST catalog table...2505
SYSKEYTGTDIST catalog table..2509
SYSKEYTGTDISTSTATS catalog table... 2511
SYSKEYTGTDIST_HIST catalog table..2513
SYSLEVELUPDATES catalog table... 2515
SYSLOBSTATS catalog table..2516
SYSLOBSTATS_HIST catalog table..2516
SYSOBJROLEDEP catalog table.. 2517
SYSPACKAGE catalog table...2519
SYSPACKAUTH catalog table.. 2536
SYSPACKCOPY catalog table...2538
SYSPACKDEP catalog table... 2554
SYSPACKLIST catalog table.. 2558

xviii

SYSPACKSTMT catalog table...2558
SYSPACKSTMT_STMB catalog table... 2565
SYSPACKSTMT_STMT catalog table..2565
SYSPARMS catalog table... 2565
SYSPENDINGDDL catalog table.. 2570
SYSPENDINGOBJECTS catalog table... 2572
SYSPKSYSTEM catalog table...2574
SYSPLAN catalog table..2575
SYSPLANAUTH catalog table.. 2582
SYSPLANDEP catalog table... 2584
SYSPLSYSTEM catalog table... 2586
SYSQUERY catalog table... 2587
SYSQUERYOPTS catalog table.. 2590
SYSQUERYPLAN catalog table.. 2592
SYSQUERYPREDICATE catalog table.. 2606
SYSQUERYSEL catalog table... 2611
SYSQUERY_AUX catalog table.. 2613
SYSRELS catalog table.. 2613
SYSRESAUTH catalog table...2615
SYSROLES catalog table..2618
SYSROUTINEAUTH catalog table..2619
SYSROUTINES catalog table... 2621
SYSROUTINESTEXT catalog table.. 2635
SYSROUTINES_OPTS catalog table (deprecated).. 2635
SYSROUTINES_TREE catalog table...2637
SYSROUTINES_SRC catalog table (deprecated).. 2637
SYSSCHEMAAUTH catalog table...2638
SYSSEQUENCEAUTH catalog table...2640
SYSSEQUENCES catalog table.. 2643
SYSSEQUENCESDEP catalog table... 2646
SYSSESSION catalog table..2647
SYSSESSION_EX catalog table... 2648
SYSSESSION_STATUS catalog table... 2648
SYSSTATFEEDBACK catalog table...2649
SYSSTMT catalog table..2651
SYSSTOGROUP catalog table.. 2655
SYSSTRINGS catalog table..2656
SYSSYNONYMS catalog table..2658
SYSTABAUTH catalog table...2659
SYSTABCONST catalog table...2664
SYSTABLEPART catalog table..2665
SYSTABLEPART_HIST catalog table... 2675
SYSTABLES catalog table.. 2678
SYSTABLESPACE catalog table... 2688
SYSTABLESPACESTATS catalog table... 2699
SYSTABLES_HIST catalog table.. 2707
SYSTABLES_PROFILES catalog table... 2709
SYSTABLES_PROFILE_TEXT catalog table... 2710
SYSTABSTATS catalog table.. 2710
SYSTABSTATS_HIST catalog table..2711
SYSTRIGGERS catalog table... 2712
SYSTRIGGERS_STMT catalog table.. 2715
SYSUSERAUTH catalog table.. 2715
SYSVARIABLEAUTH catalog table.. 2722
SYSVARIABLES catalog table..2724
SYSVARIABLES_DESC catalog table...2728
SYSVARIABLES_TEXT catalog table... 2728
SYSVIEWDEP catalog table...2729

 xix

SYSVIEWS catalog table..2730
SYSVIEWS_STMT catalog table...2733
SYSVIEWS_TREE catalog table... 2733
SYSVOLUMES catalog table...2733
SYSXMLRELS catalog table... 2734
SYSXMLSTRINGS catalog table.. 2735
SYSXMLTYPMOD catalog table... 2735
SYSXMLTYPMSCHEMA catalog table.. 2736
USERNAMES table...2737
Reorganizing the catalog... 2738
SQL statements allowed on the catalog... 2739
Temporal versioning for Db2 catalog tables...2742

Temporal versioning for Db2 statistics-related catalog tables...2742
Catalog indexes... 2744

Appendix I. Db2 directory tables..2769

Appendix J. Performance information for SQL application programming............2777

Appendix K. Db2 XML schema repository tables... 2779
XML schema repository (XSR) table spaces and indexes.. 2779
XSRANNOTATIONINFO table..2780
XSRCOMPONENT table... 2781
XSROBJECTS table.. 2782
XSROBJECTCOMPONENTS table..2783
XSROBJECTGRAMMAR table.. 2784
XSROBJECTHIERARCHIES table.. 2784
XSROBJECTPROPERTY table.. 2785
XSRPROPERTY table... 2785

Appendix L. EXPLAIN tables.. 2787
PLAN_TABLE.. 2787
DSN_COLDIST_TABLE..2809
DSN_DETCOST_TABLE.. 2817
DSN_FILTER_TABLE.. 2827
DSN_FUNCTION_TABLE..2832
DSN_KEYTGTDIST_TABLE...2837
DSN_PGRANGE_TABLE... 2844
DSN_PGROUP_TABLE..2848
DSN_PREDICAT_TABLE...2855
DSN_PREDICATE_SELECTIVITY table..2863
DSN_PTASK_TABLE...2869
DSN_QUERYINFO_TABLE.. 2874
DSN_QUERY_TABLE...2882
DSN_SORTKEY_TABLE.. 2885
DSN_SORT_TABLE... 2891
DSN_STATEMENT_CACHE_TABLE...2896
DSN_STATEMNT_TABLE.. 2906
DSN_STAT_FEEDBACK.. 2915
DSN_STRUCT_TABLE...2920
DSN_VIEWREF_TABLE...2926

Appendix M. Tables that support query acceleration... 2931
SYSACCEL.SYSACCELERATORS table... 2931
SYSACCEL.SYSACCELERATEDTABLES table...2932
SYSACCEL.SYSACCELERATEDTABLESAUTH table... 2934
SYSACCEL.SYSACCELERATEDPACKAGES table... 2934

xx

Appendix N. Tables that are used for program authorization............................. 2939
Table spaces and indexes for program authorization.. 2939
SYSIBM.DSNPROGAUTH table..2939

Appendix O. Sample user-defined functions... 2941
ALTDATE...2941
ALTTIME...2943
BASE64ENCODE and BASE64DECODE.. 2945
CURRENCY...2945
DAYNAME...2946
HDFS_READ...2947
HTTPBLOB... 2948
HTTPCLOB... 2949
HTTPDELETEBLOB and HTTPDELETECLOB... 2950
HTTPGETBLOB and HTTPGETCLOB..2952
HTTPGETBLOBFILE and HTTPGETCLOBFILE...2954
HTTPHEAD...2955
HTTPPOSTBLOB and HTTPPOSTCLOB... 2956
HTTPPUTBLOB and HTTPPUTCLOB..2957
JAQL_SUBMIT... 2958
MONTHNAME.. 2959
TABLE_LOCATION... 2960
TABLE_NAME...2961
TABLE_SCHEMA.. 2962
URLENCODE and URLDECODE..2963
WEATHER...2964

Information resources for Db2 for z/OS and related products............................2967

Notices..2969
Programming interface information..2970
Trademarks..2970
Terms and conditions for product documentation... 2971
Privacy policy considerations..2971

Glossary.. 2973

Index.. 2975

 xxi

xxii

About this information

This book is a reference for Structured Query Language (SQL) for Db2 for z/OS, including the SQL
procedural language (SQL PL). Unless otherwise stated, references to SQL in this book imply SQL for
Db2 for z/OS, and all objects described in this book are objects of Db2 for z/OS.

The syntax and semantics of most SQL statements are essentially the same in all IBM® relational database
products, and the language elements common to the products provide a base for the definition of IBM
SQL. Consult IBM DB2 SQL Reference for Cross-Platform Development if you intend to develop applications
that adhere to IBM SQL.

Throughout this information, "Db2" means "Db2 12 for z/OS". References to other Db2 products use
complete names or specific abbreviations.

Important: To find the most up to date content for Db2 12 for z/OS, always use IBM Documentation
or download the latest PDF file from PDF format manuals for Db2 12 for z/OS (Db2 for z/OS in IBM
Documentation).

Most documentation topics for Db2 12 for z/OS assume that the highest available function level is
activated and that your applications are running with the highest available application compatibility level,
with the following exceptions:

• The following documentation sections describe the Db2 12 migration process and how to activate new
capabilities in function levels:

– Migrating to Db2 12 (Db2 Installation and Migration)
– What's new in Db2 12 (Db2 for z/OS What's New?)
– Adopting new capabilities in Db2 12 continuous delivery (Db2 for z/OS What's New?)

• FL 501 A label like this one usually marks documentation changed for function level 500 or higher,
with a link to the description of the function level that introduces the change in Db2 12. For more
information, see How Db2 function levels are documented (Db2 for z/OS What's New?).

The availability of new function depends on the type of enhancement, the activated function level, and
the application compatibility levels of applications. In the initial Db2 12 release, most new capabilities are
enabled only after the activation of function level 500 or higher.
Virtual storage enhancements

Virtual storage enhancements become available at the activation of the function level that introduces
them or higher. Activation of function level 100 introduces all virtual storage enhancements in
the initial Db2 12 release. That is, activation of function level 500 introduces no virtual storage
enhancements.

Subsystem parameters
New subsystem parameter settings are in effect only when the function level that introduced them or
a higher function level is activated. Many subsystem parameter changes in the initial Db2 12 release
take effect in function level 500. For more information about subsystem parameter changes in Db2
12, see Subsystem parameter changes in Db2 12 (Db2 for z/OS What's New?).

Optimization enhancements
Optimization enhancements become available after the activation of the function level that introduces
them or higher, and full prepare of the SQL statements. When a full prepare occurs depends on the
statement type:

• For static SQL statements, after bind or rebind of the package
• For non-stabilized dynamic SQL statements, immediately, unless the statement is in the dynamic

statement cache
• For stabilized dynamic SQL statements, after invalidation, free, or changed application compatibility

level

© Copyright IBM Corp. 1982, 2024 xxiii

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_12.0.0/home/src/tpc/db2z_12_prodhome.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_migrdb2.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_wnew.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_managenewcapability.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m501.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_aboutflinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_subsysparmchanges.html

Activation of function level 100 introduces all optimization enhancements in the initial Db2 12
release. That is, function level 500 introduces no optimization enhancements.

SQL capabilities
New SQL capabilities become available after the activation of the function level that introduces them
or higher, for applications that run at the equivalent application compatibility level or higher. New SQL
capabilities in the initial Db2 12 release become available in function level 500 for applications that
run at the equivalent application compatibility level or higher. You can continue to run SQL statements
compatibly with lower function levels, or previous Db2 releases, including Db2 11 and DB2® 10. For
details, see Application compatibility levels in Db2 12 (Db2 Application programming and SQL)

Who should read this information
This information is intended for end users, application programmers, system and database
administrators, and for persons involved in error detection and diagnosis.

This information is a reference rather than a tutorial. It assumes that you are already familiar with SQL
programming concepts.

When you first use this information, consider reading Chapters 1 and 2 sequentially. These chapters
describe the basic concepts of relational databases and SQL, the basic syntax of SQL, and the language
elements that are common to many SQL statements. The rest of the chapters and appendixes are
designed for the quick location of answers to specific SQL questions. They provide you with query forms,
SQL statements, SQL procedure statements, Db2 limits, SQLCA, SQLDA, catalog tables, and SQL reserved
words.

Db2 Utilities Suite for z/OS
Important: Db2 Utilities Suite for z/OS is available as an optional product. You must separately order
and purchase a license to such utilities, and discussion of those utility functions in this publication is not
intended to otherwise imply that you have a license to them.

Db2 12 utilities can use the DFSORT program regardless of whether you purchased a license for DFSORT
on your system. For more information about DFSORT, see https://www.ibm.com/support/pages/dfsort.

Db2 utilities can use IBM Db2 Sort for z/OS as an alternative to DFSORT for utility SORT and MERGE
functions. Use of Db2 Sort for z/OS requires the purchase of a Db2 Sort for z/OS license. For more
information about Db2 Sort for z/OS, see Db2 Sort for z/OS documentation.

Related concepts
Db2 utilities packaging (Db2 Utilities)

Terminology and citations
When referring to a Db2 product other than Db2 for z/OS, this information uses the product's full name to
avoid ambiguity.

The following terms are used as indicated:

Db2
Represents either the Db2 licensed program or a particular Db2 subsystem.

IBM rebranded DB2 to Db2, and Db2 for z/OS is the new name of the offering that was previously
known as "DB2 for z/OS". For more information, see Revised naming for IBM Db2 family products on
IBM z/OS platform. As a result, you might sometimes still see references to the original names, such
as "DB2 for z/OS" and "DB2", in different IBM web pages and documents. If the PID, Entitlement
Entity, version, modification, and release information match, assume that they refer to the same
product.

IBM OMEGAMON® for Db2 Performance Expert on z/OS
Refers to any of the following products:

• IBM IBM OMEGAMON for Db2 Performance Expert on z/OS

xxiv About this information

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applicationcompatibility.html
https://www.ibm.com/support/pages/dfsort
https://www.ibm.com/docs/en/db2-sort-for-zos
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utlpackaging.html
https://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/7/899/ENUSLP18-0047/index.html
https://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/7/899/ENUSLP18-0047/index.html

• IBM Db2 Performance Monitor on z/OS
• IBM Db2 Performance Expert for Multiplatforms and Workgroups
• IBM Db2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

CICS®
Represents CICS Transaction Server for z/OS.

IMS
Represents the IMS Database Manager or IMS Transaction Manager.

MVS™
Represents the MVS element of the z/OS operating system, which is equivalent to the Base Control
Program (BCP) component of the z/OS operating system.

RACF®
Represents the functions that are provided by the RACF component of the z/OS Security Server.

Accessibility features for Db2 for z/OS
Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in z/OS products, including Db2 for z/OS. These
features support:

• Keyboard-only operation.
• Interfaces that are commonly used by screen readers and screen magnifiers.
• Customization of display attributes such as color, contrast, and font size

Tip: IBM Documentation (which includes information for Db2 for z/OS) and its related publications are
accessibility-enabled for the IBM Home Page Reader. You can operate all features using the keyboard
instead of the mouse.

Keyboard navigation
For information about navigating the Db2 for z/OS ISPF panels using TSO/E or ISPF, refer to the z/OS
TSO/E Primer, the z/OS TSO/E User's Guide, and the z/OS ISPF User's Guide. These guides describe how
to navigate each interface, including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their functions.

Related accessibility information

IBM and accessibility
See the IBM Accessibility Center at http://www.ibm.com/able for more information about the commitment
that IBM has to accessibility.

How to send your comments about Db2 for z/OS documentation
Your feedback helps IBM to provide quality documentation.

Send any comments about Db2 for z/OS and related product documentation by email to
db2zinfo@us.ibm.com.

To help us respond to your comment, include the following information in your email:

About this information xxv

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_12.0.0/home/src/tpc/db2z_12_prodhome.html
http://www.ibm.com/able
mailto:db2zinfo@us.ibm.com

• The product name and version
• The address (URL) of the page, for comments about online documentation
• The book name and publication date, for comments about PDF manuals
• The topic or section title
• The specific text that you are commenting about and your comment

Related concepts
About Db2 12 for z/OS product documentation (Db2 for z/OS in IBM Documentation)
Related reference
PDF format manuals for Db2 12 for z/OS (Db2 for z/OS in IBM Documentation)

How to read syntax diagrams
Certain conventions apply to the syntax diagrams that are used in IBM documentation.

Apply the following rules when reading the syntax diagrams that are used in Db2 for z/OS documentation:

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The ►►─── symbol indicates the beginning of a statement.

The ───► symbol indicates that the statement syntax is continued on the next line.

The ►─── symbol indicates that a statement is continued from the previous line.

The ───►◄ symbol indicates the end of a statement.
• Required items appear on the horizontal line (the main path).

required_item

• Optional items appear below the main path.
required_item

optional_item

If an optional item appears above the main path, that item has no effect on the execution of the
statement and is used only for readability.

required_item

optional_item

• If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.

required_item required_choice1

required_choice2

If choosing one of the items is optional, the entire stack appears below the main path.

required_item

optional_choice1

optional_choice2

If one of the items is the default, it appears above the main path and the remaining choices are shown
below.

xxvi About this information

https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/cmn/db2z_cmn_aboutinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html

required_item

default_choice

optional_choice

optional_choice

• An arrow returning to the left, above the main line, indicates an item that can be repeated.

required_item repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

required_item

,

repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the stack.
• Sometimes a diagram must be split into fragments. The syntax fragment is shown separately from the

main syntax diagram, but the contents of the fragment should be read as if they are on the main path of
the diagram.

required_item fragment-name

fragment-name
required_item

optional_name

• For some references in syntax diagrams, you must follow any rules described in the description for that
diagram, and also rules that are described in other syntax diagrams. For example:

– For expression, you must also follow the rules described in “Expressions” on page 245.
– For references to fullselect, you must also follow the rules described in “fullselect” on page 1060.
– For references to search-condition, you must also follow the rules described in “Search conditions”

on page 319.
• With the exception of XPath keywords, keywords appear in uppercase (for example, FROM). Keywords

must be spelled exactly as shown.
• XPath keywords are defined as lowercase names, and must be spelled exactly as shown.
• Variables appear in all lowercase letters (for example, column-name). They represent user-supplied

names or values.
• If punctuation marks, parentheses, arithmetic operators, or other such symbols are shown, you must

enter them as part of the syntax.

Related concepts
Commands in Db2 (Db2 Commands)
Db2 online utilities (Db2 Utilities)
Db2 stand-alone utilities (Db2 Utilities)

Conventions for describing mixed data values
When mixed data values are shown in examples, certain conventions are used to represent these values.

At sites using a double-byte character set (DBCS), character strings can include a mixture of single-byte
and double-byte characters. When mixed data values are shown in the examples, the conventions shown
in the following example apply:

About this information xxvii

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_aboutcommands.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_onlineutilities.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_standaloneutilities.html

Convention Representation

so

sI

“shift-out” control character (X’0E”), used only for EBCDIC data

DBCS string of zero or more double-byte characters

“shift-in" control character (X’0E”), used only for EBCDIC data

SBCS string of zero or more single-byte characters

DBCS apostrophe

DBCS uppercase G

sbcs-string

dbcs-string

Figure 1. Conventions used when mixed data values are shown in examples

Industry standards for SQL
Db2 for z/OS conforms to the following industry standards for SQL:

• ISO/IEC FCD 9075-1:2016, Information technology - Database languages - SQL - Part 1: Framework
(SQL/Framework)

• ISO/IEC FCD 9075-2:2016, Information technology - Database languages - SQL - Part 2: Foundation
(SQL/Foundation)

• ISO/IEC FCD 9075-3:2016, Information technology - Database languages - SQL - Part 3: Call-Level
Interface (SQL/CLI)

• ISO/IEC FCD 9075-4:2016, Information technology - Database languages - SQL - Part 4: Persistent
Stored Modules (SQL/PSM)

• ISO/IEC FCD 9075-10:2016, Information technology - Database languages - SQL - Part 10: Object
Language Bindings (SQL/OLB)

• ISO/IEC FCD 9075-11:2016, Information technology - Database languages - SQL - Part 11: Information
and Definition Schemas (SQL/Schemata)

• ISO/IEC FCD 9075-13:2016, Information technology - Database languages - SQL - Part 13: Java
Routines and Types (SQL/JRT)

• ISO/IEC FCD 9075-14:2016, Information technology - Database languages - SQL - Part 14: XML-Related
Specifications (SQL/XML)

xxviii Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Chapter 1. Db2 for z/OS and SQL concepts
Many structures and processes are associated with a relational database. The structures are the
key components of a Db2 database system, and the processes are the interactions that occur when
applications access the database system.

In a relational database, data is perceived to exist in one or more tables. Each table contains a specific
number of columns and a number of unordered rows. Each column in a table is related in some way to the
other columns. Thinking of the data as a collection of tables gives you an easy way to visualize the data
that is stored in a Db2 database.

Tables are at the core of a Db2 database. However, a Db2 database involves more than just a collection of
tables; a Db2 database also involves other objects, such as views and indexes, and larger data containers,
such as table spaces.

With Db2 for z/OS and the other Db2 products, you can define and manipulate your data by using
structured query language (SQL). SQL is the standard language for accessing data in relational databases.

Submitting SQL statements to Db2
You can use several different methods to send SQL statements to Db2 in several ways.

You can issue SQL statements from interactively from a keyboard at a terminal or through a terminal
emulator.

Another way to issue SQL statements is through application programs. The programs can contain SQL
statements that are statically embedded in the application. Alternatively, application programs can create
their SQL statements dynamically, for example, in response to information that a user provides by filling in
a form.

The method of preparing an SQL statement for execution and the persistence of its operational form
distinguish static SQL from dynamic SQL.

Related concepts
How SQL statements are invoked
SQL statements are invoked in different ways depending on whether the statement is an executable or
nonexecutable statement or the select-statement.
Related tasks
Overview of programming applications that access Db2 for z/OS data (Db2 Application programming and
SQL)

Static SQL
The source form of a static SQL statement is embedded within an application program written in a host
language such as COBOL. The statement is prepared before the program is executed and the operational
form of the statement persists beyond the execution of the program.

Static SQL statements in a source program must be processed before the program is compiled. This
processing can be accomplished through the Db2 coprocessor or Db2 precompiler. The Db2 coprocessor
or Db2 precompiler checks the syntax of the SQL statements, turns them into host language comments,
and generates host language statements to invoke Db2.

The preparation of an SQL application program includes processing of the SQL statements, the
preparation of its static SQL statements, and compilation of the modified source program.

Related concepts
Static SQL applications (Introduction to Db2 for z/OS)
How SQL statements are invoked

© Copyright IBM Corp. 1982, 2024 1

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_writedb2application.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_writedb2application.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_staticsqlapplications.html

SQL statements are invoked in different ways depending on whether the statement is an executable or
nonexecutable statement or the select-statement.
Related tasks
Overview of programming applications that access Db2 for z/OS data (Db2 Application programming and
SQL)
Processing SQL statements for program preparation (Db2 Application programming and SQL)

Embedded dynamic SQL
Programs that contain embedded dynamic SQL statements must be precompiled like those that contain
static SQL, but unlike static SQL, the dynamic statements are constructed and prepared at run time.

The source form of a dynamic statement is a character string that is passed to Db2 by the program
using the static SQL PREPARE or EXECUTE IMMEDIATE statement. A statement that is prepared using
the PREPARE statement can be referenced in a DECLARE CURSOR, DESCRIBE, or EXECUTE statement.
Whether the operational form of the statement is persistent depends on whether dynamic statement
caching is enabled.

SQL statements embedded in a REXX application are dynamic SQL statements. SQL statements
submitted to an interactive SQL facility and to the CALL Level Interface (CLI) are also dynamic SQL.

Related concepts
Embedding a statement in an application program
You can include SQL statements in a source program that will be submitted to the Db2 precompiler
or coprocessor. Such statements are said to be embedded in the application program. An embedded
statement can be placed anywhere in the application program where a host language statement is
allowed. Each embedded statement must be preceded by a keyword (or keywords) to indicate that the
statement is an SQL statement.
Dynamic preparation and execution
Your application program can dynamically build an SQL statement in the form of a character string placed
in a host variable. In general, the statement is built from some data available to the application program
(for example, input from a workstation).
Dynamic SQL applications (Introduction to Db2 for z/OS)
Embedded dynamic SQL (Introduction to Db2 for z/OS)
Related tasks
Including dynamic SQL in your program (Db2 Application programming and SQL)

Deferred embedded SQL
A deferred embedded SQL statement is neither fully static nor fully dynamic.

Like a static statement, it is embedded within an application, but like a dynamic statement, it is prepared
during the execution of the application. Although prepared at run time, a deferred embedded SQL
statement is processed with bind-time rules such that the authorization ID and qualifier determined
at bind time for the plan or package owner are used.

Interactive SQL
Interactive SQL refers to SQL statements that you submit to Db2 by using SPUFI (SQL processor using file
input), the command line processor, or by using a query tool, such as QMF for Workstation.

The easiest and most efficient way to run SQL is to use a query tool. QMF for Workstation is a popular
query tool that lets you enter and run your SQL statements easily. This topic acquaints you with using QMF
for Workstation to create and run SQL statements. QMF for Workstation simplifies access to Db2 from a
workstation. In fact, was QMF for Workstation built for Db2.

Although this topic focuses on QMF for Workstation, other options are available. You can use QMF for
WebSphere® to enter and run SQL statements from your web browser or useQMF for TSO/CICS to enter
and run SQL statements from TSO or CICS. In addition, you can enter and run SQL statements at a TSO

2 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_writedb2application.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_writedb2application.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_processsqlstmt.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_dynamicsqlapplications.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_dynamicsqlsql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_includedynamicsql.html

terminal by using the SPUFI (SQL processor using file input) facility. SPUFI prepares and executes these
statements dynamically. All of these tools prepare and dynamically execute the SQL statements.

The Db2 Query Management Facility (QMF) family of technologies establish pervasive production and
sharing of business intelligence for information-oriented tasks in the organization. QMF offers many
strengths, including the following:

• Support for functionality in the Db2 database, including long names, Unicode, and SQL enhancements
• Drag-and-drop capability for building OLAP analytics, SQL queries, pivot tables, and other business

analysis and reports
• Executive dashboards and data visual solutions that offer visually rich, interactive functionality and

interfaces for data analysis
• Support for QMF for WebSphere, a tool that turns any web browser into a zero-maintenance, thin client

for visual on demand access to enterprise Db2 data
• Re-engineered cross-platform development environment
• New security model for access control and personalization

The visual solutions previously provided by QMF Vision are now included in the core QMF technology.

In addition to QMF for Workstation, which this topic describes, the QMF family includes the following
editions:

• QMF Enterprise Edition provides the entire QMF family of technologies, enabling enterprise-wide
business information across user and database operating systems. This edition consists of:

– QMF for TSO/CICS
– QMF High Performance Option
– QMF for Workstation
– QMF for WebSphere
– DataQuant for Workstation
– DataQuant for WebSphere

• QMF Classic Edition supports users who work with traditional mainframe terminals and emulators
(including WebSphere Host On Demand) to access Db2 databases. This edition consists of QMF for
TSO/CICS.

Related concepts
Interactive invocation
An SQL statement submitted to Db2 from a terminal is said to be issued interactively.
The Db2 command line processor (Db2 Commands)
Use of QMF for Workstation (Introduction to Db2 for z/OS)
Related tasks
Executing SQL by using SPUFI (Db2 Application programming and SQL)

SQL Call Level Interface and Open Database Connectivity
The Db2 Call Level Interface (CLI) is an application programming interface in which functions are provided
to application programs to process dynamic SQL statements.

Db2 CLI allows users to access SQL functions directly through a call interface. CLI programs can also be
compiled using an Open Database Connectivity (ODBC) Software Developer's Kit, available from Microsoft
or other vendors, enabling access to ODBC data sources. Unlike using embedded SQL, no precompilation
is required. Applications developed using this interface can be executed on a variety of databases without
being compiled against each of databases. Through the interface, applications use procedure calls at
execution time to connect to databases, to issue SQL statements, and to get returned data and status
information.

Chapter 1. Db2 for z/OS and SQL concepts 3

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_commandlineprocessor.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_useofqmfworkstation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_executesqlspufi.html

Related concepts
Introduction to Db2 ODBC (Db2 Programming for ODBC)
Conceptual view of a Db2 ODBC application (Db2 Programming for ODBC)
Related information
ODBC functions (Db2 Programming for ODBC)

Java database connectivity and embedded SQL for Java
Db2 provides two standards-based Java™ programming APIs: Java Database Connectivity (JDBC) and
embedded SQL for Java (SQL/OLB or SQLJ). Both can be used to create Java applications and applets that
access Db2.

Static SQL cannot be used by JDBC. SQLJ applications use JDBC as a foundation for such tasks as
connecting to databases and handling SQL errors, but can contain embedded static SQL statements in
the SQLJ source files. An SQLJ file has to be translated with the SQLJ translator before the resulting Java
source code can be compiled.

Related concepts
Java application development for IBM data servers (Db2 Application Programming for Java)
Supported drivers for JDBC and SQLJ (Db2 Application Programming for Java)

Use of QMF for Workstation
QMF for Workstation is a tool that helps you build and manage powerful queries without requiring
previous experience with SQL.

With the query-related features of Db2 Query Management Facility (QMF) and QMF for Workstation in
particular, you can perform the following tasks:

• Build powerful queries without knowing SQL
• Analyze query results online, including OLAP analysis
• Edit query results to update Db2 data
• Format traditional text-based reports and reports with rich formatting
• Display charts and other complex visuals
• Send query results to an application of your choice
• Develop applications using robust API commands

How SQL statements are entered and processed
You can create your SQL statements using QMF for Workstation in several ways:

• Use the Database Explorer window to easily find and run saved queries that everyone at the same
database server can share.

• If you know SQL, type the SQL statement directly in the window.
• If you don't know SQL, use the prompted or diagram interface to build the SQL statement.

The Database Explorer presents the objects that are saved on a server in a tree structure. By expanding
and collapsing branches, you can easily locate and use saved queries. You can open the selected query
and see the SQL statements or run the query.

If you need to build a new query, you can enter the SQL statements directly in the query window, or you
can create the SQL statements using diagrams or prompts. As you build a query by using diagrams or
prompts, you can open a view to see the SQL that is being created.

How you can work with query results
When you finish building the query, you can click the Run Query button to execute the SQL statements.
After you run the query, QMF for Workstation returns the query results in an interactive window.

4 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/odbc/src/tpc/db2z_hdint.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/odbc/src/tpc/db2z_hdovv.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/odbc/src/tpc/db2z_hdapi.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_c0024189.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_cjvintro.html

The query results are formatted by the comprehensive formatting options of QMF for Workstation. A
robust expression language lets you conditionally format query results by retrieved column values. You
can add calculated columns to the query results and group data columns on both axes with or without
summaries. You can also use extensive drag-and-drop capabilities to easily restructure the appearance of
the query results.

In addition to formatting the query results, you can perform the following actions:

• Create traditional text-based reports or state-of-the-art reports with rich formatting.
• Display query results by using charts and other complex visuals.
• Share reports by storing them on the database server.
• Send query results to various applications such as Microsoft Excel or Lotus® 1-2-3.

Related reference
Db2 Query Management Facility (QMF) information

Db2 database objects overview
In Db2 for z/OS, you use database objects, such as tables, table spaces, indexes, index spaces, keys,
views, and databases to organize and access your data.

The brief descriptions here show how the structures fit into an overall view of Db2. The following figure
shows how some Db2 structures contain others. To some extent, the notion of "containment" provides a
hierarchy of structures.

Table space

Database

Index space

Partitioning
index part 1

Part 2

Part 3

Part 4

Table
part 1

Part 2

Part 3

Part 4

Storage group G2

Volume 2
Volume 1

Volume 3

Storage group G1

Volume 2

Volume 1

Volume 3

Figure 2. A hierarchy of Db2 structures

The Db2 structures from the most to the least inclusive are:

Databases
A set of Db2 structures that include a collection of tables, their associated indexes, and the table
spaces in which they reside.

Storage groups
A set of volumes on disks that hold the data sets in which tables and indexes are stored.

Table spaces
A logical unit of storage in a database. A table space is a page set. The recommended partition-by-
growth and partition-by-range table space types always contain data for only a single table. However,
the segmented (non-UTS) and simple table space types, which are deprecated, can each contain one
or more tables. For more information, see Table space types and characteristics in Db2 for z/OS (Db2
Administration Guide).

Chapter 1. Db2 for z/OS and SQL concepts 5

https://www.ibm.com/support/knowledgecenter/SS9UMF/
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_typesofdb2tablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_typesofdb2tablespaces.html

Deprecated function: FL 504 Non-UTS table spaces for base tables are deprecated. CREATE
TABLESPACE statements that run at application compatibility level V12R1M504 or higher always
create a partition-by-growth or partition-by-range table space, and CREATE TABLE statements that
specify a non-UTS table space (including existing multi-table segmented table spaces) return an error.
However, you can use a lower application compatibility level to create table spaces of the deprecated
types if needed, such as for recovery situations. For instructions, see Creating non-UTS table spaces
(deprecated) (Db2 Administration Guide).

Tables
All data in a Db2 database is presented in tables, which are collections of rows all having the same
columns. A table that holds persistent user data is a base table. A table that stores data temporarily is
a temporary table.

Views
A view is an alternative way of representing data that exists in one or more tables. A view can include
all or some of the columns from one or more base tables.

Indexes
An index is an ordered set of pointers to the data in a Db2 table. The index is stored separately from
the table. An index is either a simple index or an extended index. An extended index is one of the
following objects:

• An expression-based index
• A spatial index
• An XML index

Related concepts
Db2 system objects (Introduction to Db2 for z/OS)
Implementing your database design (Db2 Administration Guide)
Storage structures (Introduction to Db2 for z/OS)

Db2 schemas and schema qualifiers
The objects in a relational database are organized into sets called schemas. A schema is a collection of
named objects that provides a logical classification of objects in the database. The first part of a schema
name is the qualifier.

A schema provides a logical classification of objects in the database. The objects that a schema can
contain include tables, indexes, table spaces, distinct types, functions, stored procedures, and triggers.
An object is assigned to a schema when it is created.

The schema name of the object determines the schema to which the object belongs. A user object, such
as a distinct type, function, procedure, sequence, or trigger should not be created in a system schema,
which is any one of a set of schemas that are reserved for use by the Db2 subsystem.

When a table, index, table space, distinct type, function, stored procedure, or trigger is created, it is given
a qualified two-part name. The first part is the schema name (or the qualifier), which is either implicitly or
explicitly specified. The default schema is the authorization ID of the owner of the plan or package. The
second part is the name of the object.

In previous versions, CREATE statements had certain restrictions when the value of CURRENT SCHEMA
was different from CURRENT SQLID value. Although those restrictions no longer exist, you now must
consider how to determine the qualifier and owner when CURRENT SCHEMA and CURRENT SQLID contain
different values. The rules for how the owner is determined depend on the type of object being created.

CURRENT SCHEMA and CURRENT SQLID affect only dynamic SQL statements. Static CREATE statements
are not affected by either CURRENT SCHEMA or CURRENT SQLID.

The following table summarizes the effect of CURRENT SCHEMA in determining the schema qualifier and
owner for these objects:

• Alias

6 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createdeprecatedtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createdeprecatedtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_db2systemobjects.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implementingdesign.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_storagestructs.html

• Auxiliary table
• Created global temporary table
• Table
• View

Table 1. Schema qualifier and owner for objects

Specification of name for new
object being created Schema qualifier of new object Owner of new object

name (no qualifier) value of CURRENT SCHEMA value of CURRENT SQLID

abc.name (single qualifier) abc abc

......abc.name (multiple qualifiers) abc abc

The following table summarizes the effect of CURRENT SCHEMA in determining the schema qualifier and
owner for these objects:

• User-defined type
• User-defined function
• Procedure
• Sequence
• Trigger

Table 2. Schema qualifier and owner for additional objects

Specification of name for new
object being created Schema qualifier of new object Owner of new object

name (no qualifier) value of CURRENT SCHEMA value of CURRENT SQLID

abc.name (single qualifier) abc value of CURRENT SQLID

......abc.name (multiple qualifiers) abc value of CURRENT SQLID

Related reference
Reserved schema names in Db2 for z/OS
In general, for certain objects, schema names that begin with the prefix SYS are reserved. The schema
name for these objects cannot begin with SYS except for certain exceptions.

Db2 tables
Tables are logical structures that Db2 maintains. Db2 supports several different types of tables.

Tables are made up of columns and rows. The rows of a relational table have no fixed order. The order of
the columns, however, is always the order in which you specified them when you defined the table.

At the intersection of every column and row is a specific data item, which is called a value. A column is a
set of values of the same type. A row is a sequence of values such that the nth value is a value of the nth
column of the table. Every table must have one or more columns, but the number of rows can be zero.

Db2 accesses data by referring to its content instead of to its location or organization in storage.

Db2 supports the following types of tables:

accelerator-only table
A table that stores rows only in the accelerator, not in Db2. The table and column definition of the
accelerator-only table is contained in Db2 catalog tables. Any queries that reference the accelerator-
only table, must be executed in the accelerator. If a query that references an accelerator-only table

Chapter 1. Db2 for z/OS and SQL concepts 7

is not eligible for query acceleration, an error is issued. To change the contents of an accelerator-only
table, the data change statement must be executed in the accelerator.

archive table
A table that stores rows that are deleted from another table.

archive-enabled table
A table that has an associated archive table. When rows are deleted from an archive-enabled table,
Db2 can automatically insert those rows into an archive table.

auxiliary table
A table created with the SQL statement CREATE AUXILIARY TABLE and used to hold the data for a
column that is defined in a base table.

base table
The most common type of table in Db2. You create a base table with the SQL CREATE TABLE
statement. The Db2 catalog table, SYSIBM.SYSTABLES, stores the description of the base table. The
table description and table data are persistent. All programs and users that refer to this type of table
refer to the same description of the table and to the same instance of the table.

clone table
A table that is structurally identical to a base table. You create a clone table by using an ALTER
TABLE statement for the base table that includes an ADD CLONE clause. The clone table is created
in a different instance of the same table space as the base table, is structurally identical to the
base table in every way, and has the same indexes, before triggers, and LOB objects. In the Db2
catalog, the SYSTABLESPACE table indicates that the table space has only one table in it, but
SYSTABLESPACE.CLONE indicates that a clone table exists. Clone tables can be created only in a
partition-by range or partition-by-growth table space that is managed by Db2. The base and clone
table each have separate underlying VSAM data sets (identified by their data set instance numbers)
that contain independent rows of data.

empty table
A table with zero rows.

history table
A table that is used to store historical versions of rows from the associated system-period temporal
table.

materialized query table
A table, which you define with the SQL CREATE TABLE statement, that contains materialized data
that is derived from one or more source tables. Materialized query tables are useful for complex
queries that run on large amounts of data. Db2 can precompute all or part of such queries and use
the precomputed, or materialized, results to answer the queries more efficiently. Materialized query
tables are commonly used in data warehousing and business intelligence applications.

Several Db2 catalog tables, including SYSIBM.SYSTABLES and SYSIBM.SYSVIEWS, store the
description of the materialized query table and information about its dependency on a table, view,
or function. The attributes that define a materialized query table tell Db2 whether the table is:

• System-maintained or user-maintained.
• Refreshable: All materialized tables can be updated with the REFRESH TABLE statement. Only user-

maintained materialized query tables can also be updated with the LOAD utility and the UPDATE,
INSERT, and DELETE SQL statements.

• Enabled for query optimization: You can enable or disable the use of a materialized query table in
automatic query rewrite.

Materialized query tables can be used to improve the performance of dynamic SQL queries. If Db2
determines that a portion of a query could be resolved using a materialized query table, the query
might be rewritten by Db2 to use the materialized query table. This decision is based in part on
the settings of the CURRENT REFRESH AGE and the CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION special registers.

8 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

result table
A table that contains a set of rows that Db2 selects or generates, directly or indirectly, from one or
more base tables in response to an SQL statement. Unlike a base table or a temporary table, a result
table is not an object that you define using a CREATE statement.

sample table
One of several tables shipped with the Db2 licensed program that contains sample data. Many
examples in this information are based on sample tables.

temporal table
A table that records the period of time when a row is valid.

Db2 supports two types of periods, which are the system period (SYSTEM_TIME) and the application
period (BUSINESS_TIME). The system period consists of a pair of columns with system-maintained
values that indicates the period of time when a row is valid. The application period consists of a pair of
columns with application-maintained values that indicates the period of time when a row is valid.

system-period temporal table
A system-period temporal table is a base table that is defined with system-period data versioning.
You can modify an existing table to become a system-period temporal table by specifying the ADD
PERIOD SYSTEM_TIME clause on the ALTER TABLE statement. After creating a history table that
corresponds to the system-period temporal table, you can define system-period data versioning
on the table by issuing the ALTER TABLE ADD VERSIONING statement with the USE HISTORY
table clause.

application-period temporal table
An application-period temporal table is a base table that includes an application period
(BUSINESS_TIME). You can modify an existing table to become an application-period temporal
table by specifying the ADD PERIOD BUSINESS_TIME clause on the ALTER TABLE statement.

bitemporal table
A bitemporal table is a table that is both a system-period temporal table and an application-period
temporal table. You can use a bitemporal table to keep application period information and system-
based historical information. Therefore, you have a lot of flexibility in how you query data, based
on periods of time.

temporary table
A table that is defined by the SQL statement CREATE GLOBAL TEMPORARY TABLE or DECLARE
GLOBAL TEMPORARY TABLE to hold data temporarily. Temporary tables are especially useful when
you need to sort or query intermediate result tables that contain many rows, but you want to store
only a small subset of those rows permanently.
created global temporary table

A table that you define with the SQL CREATE GLOBAL TEMPORARY TABLE statement. The Db2
catalog table, SYSIBM.SYSTABLES, stores the description of the created temporary table. The
description of the table is persistent and shareable. However, each individual application process
that refers to a created temporary table has its own distinct instance of the table. That is, if
application process A and application process B both use a created temporary table named
TEMPTAB:

• Each application process uses the same table description.
• Neither application process has access to or knowledge of the rows in the other application

instance of TEMPTAB.

declared global temporary table
A table that you define with the SQL DECLARE GLOBAL TEMPORARY TABLE statement. The
Db2 catalog does not store a description of the declared temporary table. Therefore, the
description and the instance of the table are not persistent. Multiple application processes can
refer to the same declared temporary table by name, but they do not actually share the same
description or instance of the table. For example, assume that application process A defines
a declared temporary table named TEMP1 with 15 columns. Application process B defines a
declared temporary table named TEMP1 with five columns. Each application process uses its own

Chapter 1. Db2 for z/OS and SQL concepts 9

description of TEMP1; neither application process has access to or knowledge of rows in the other
application instance of TEMP1.

XML table
A special table that holds only XML data. When you create a table with an XML column, Db2 implicitly
creates an XML table space and an XML table to store the XML data.

Related concepts
Types of tables (Db2 Administration Guide)
Related reference
CREATE TABLE statement
The CREATE TABLE statement defines a table. The definition must include its name and the names and
attributes of its columns. The definition can include other attributes of the table, such as its primary key
and its table space.
ALTER TABLE statement
The ALTER TABLE statement changes the description of a table at the current server.

Db2 keys
A key is a column or an ordered collection of columns that is identified in the description of a table, an
index, or a referential constraint. Keys are crucial to the table structure in a relational database.

Keys are important in a relational database because they ensure that each record in a table is uniquely
identified, they help establish and enforce referential integrity, and they establish relationships between
tables. The same column can be part of more than one key.

A composite key is an ordered set of two or more columns of the same table. The ordering of the columns
is not constrained by their actual order within the table. The term value, when used with respect to a
composite key, denotes a composite value. For example, consider this rule: "The value of the foreign key
must be equal to the value of the primary key." This rule means that each component of the value of the
foreign key must be equal to the corresponding component of the value of the primary key.

Db2 supports several types of keys.

Unique keys
A unique constraint is a rule that the values of a key are valid only if they are unique. A key that is
constrained to have unique values is a unique key. Db2 uses a unique index to enforce the constraint
during the execution of the LOAD utility and whenever you use an INSERT, UPDATE, or MERGE statement
to add or modify data. Every unique key is a key of a unique index. You can define a unique key by using
the UNIQUE clause of either the CREATE TABLE or the ALTER TABLE statement. A table can have any
number of unique keys.

The columns of a unique key cannot contain null values.

Primary keys
A primary key is a special type of unique key and cannot contain null values. For example, the DEPTNO
column in the DEPT table is a primary key.

A table can have no more than one primary key. Primary keys are optional and can be defined in CREATE
TABLE or ALTER TABLE statements.

The unique index on a primary key is called a primary index. When a primary key is defined in a CREATE
TABLE statement or ALTER TABLE statement, Db2 automatically creates the primary index.

If a unique index already exists on the columns of the primary key when it is defined in the ALTER TABLE
statement, this unique index is designated as the primary index when Db2 is operating in new-function
mode and implicitly created the table space.

10 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_typesoftables.html

Parent keys
A parent key is either a primary key or a unique key in the parent table of a referential constraint. The
values of a parent key determine the valid values of the foreign key in the constraint.

Foreign keys
A foreign key is a key that is specified in the definition of a referential constraint in a CREATE or ALTER
TABLE statement. A foreign key refers to or is related to a specific parent key.

Unlike other types of keys, a foreign key does not require an index on its underlying column or columns. A
table can have zero or more foreign keys. The value of a composite foreign key is null if any component of
the value is null.

The following figure shows the relationship between some columns in the DEPT table and the EMP table.

Primary
key

Foreign
key

Foreign
key

Primary
key

DEPT

EMP

DEPTNO DEPTNAME MGRNO ADMRDEPT

EMPNO LASTNAME DEPT JOB

C01
D11
E21

000030
000200
200340
000200

INFORMATION CENTER
MANUFACTURING SYSTEMS

000200

SOFTWARE SUPPORT

000030
000060

A00
D11
D11

KWAN
BROWN
ALONZO

C01
D11
E21

MGR
DES
FLD

Figure 3. Relationship between DEPT and EMP tables

Figure notes: Each table has a primary key:

• DEPTNO in the DEPT table
• EMPNO in the EMP table

Each table has a foreign key that establishes a relationship between the tables:

• The values of the foreign key on the DEPT column of the EMP table match values in the DEPTNO column
of the DEPT table.

• The values of the foreign key on the MGRNO column of the DEPT table match values in the EMPNO
column of the EMP table when an employee is a manager.

To see a specific relationship between rows, notice how the shaded rows for department C01 and
employee number 000030 share common values.

Related concepts
Referential constraints (Introduction to Db2 for z/OS)

Constraints
A constraint is rules that Db2 enforces for column values to prevent duplicate values or set restrictions on
data added to a table.

Db2 uses the following types of constraints.

Chapter 1. Db2 for z/OS and SQL concepts 11

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_integrity.html

Related concepts
Ways to maintain data integrity (Db2 Application programming and SQL)

Unique constraints
A unique constraint is a rule that the values of a key are valid only if they are unique in a table.

Unique constraints are optional and can be defined in the CREATE TABLE or ALTER TABLE statements with
the PRIMARY KEY clause or the UNIQUE clause. The columns specified in a unique constraint must be
defined as NOT NULL. A unique index enforces the uniqueness of the key during changes to the columns
of the unique constraint.

A table can have an arbitrary number of unique constraints, with at most one unique constraint defined as
a primary key. A table cannot have more than one unique constraint on the same set of columns.

A unique constraint that is referenced by the foreign key of a referential constraint is called the parent key.

Referential constraints
Db2 ensures referential integrity between your tables when you define referential constraints.

Referential integrity is the state in which all values of all foreign keys are valid. Referential integrity is
based on entity integrity. Entity integrity requires that each entity have a unique key. For example, if every
row in a table represents relationships for a unique entity, the table should have one column or a set
of columns that provides a unique identifier for the rows of the table. This column (or set of columns)
is called the parent key of the table. To ensure that the parent key does not contain duplicate values,
a unique index must be defined on the column or columns that constitute the parent key. Defining the
parent key is called entity integrity.

A referential constraint is the rule that the nonnull values of a foreign key are valid only if they also appear
as values of a parent key. The table that contains the parent key is called the parent table of the referential
constraint, and the table that contains the foreign key is a dependent of that table.

The relationship between some rows of the DEPT and EMP tables, shown in the following figure,
illustrates referential integrity concepts and terminology. For example, referential integrity ensures that
every foreign key value in the DEPT column of the EMP table matches a primary key value in the DEPTNO
column of the DEPT table.

Primary
key Foreign

key

Foreign
key

Primary
key

DEPT

EMP

DEPTNO DEPTNAME MGRNO ADMRDEPT

EMPNO LASTNAME DEPT JOB

C01
D11
E21

INFORMATION CENTER
MANUFACTURING SYSTEMS
SOFTWARE SUPPORT

000030
000060

A00

D11
D11

000030
000200
200340

KWAN
BROWN
ALONZO

C01
D11
E21

MGR
DES
FLD

Figure 4. Referential integrity of DEPT and EMP tables

Two parent and dependent relationships exist between the DEPT and EMP tables.

12 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_waysdataintegrity.html

• The foreign key on the DEPT column establishes a parent and dependent relationship. The DEPT column
in the EMP table depends on the DEPTNO in the DEPT table. Through this foreign key relationship, the
DEPT table is the parent of the EMP table. You can assign an employee to no department (by specifying
a null value), but you cannot assign an employee to a department that does not exist.

• The foreign key on the MGRNO column also establishes a parent and dependent relationship. Because
MGRNO depends on EMPNO, EMP is the parent table of the relationship, and DEPT is the dependent
table.

You can define a primary key on one or more columns. A primary key that includes two or more columns is
called a composite key. A foreign key can also include one or more columns. When a foreign key contains
multiple columns, the corresponding primary key must be a composite key. The number of foreign key
columns must be the same as the number of columns in the parent key, and the data types of the
corresponding columns must be compatible. (The sample project activity table, DSN8C10.PROJACT, is an
example of a table with a primary key on multiple columns, PROJNO, ACTNO, and ACSTDATE.)

A table can be a dependent of itself; this is called a self-referencing table. For example, the DEPT table is
self-referencing because the value of the administrative department (ADMRDEPT) must be a department
ID (DEPTNO). To enforce the self-referencing constraint, Db2 requires that a foreign key be defined.

Similar terminology applies to the rows of a parent-and-child relationship. A row in a dependent table,
called a dependent row, refers to a row in a parent table, called a parent row. But a row of a parent table is
not always a parent row—perhaps nothing refers to it. Likewise, a row of a dependent table is not always a
dependent row—the foreign key can allow null values, which refer to no other rows.

Referential constraints are optional. You define referential constraints by using CREATE TABLE and ALTER
TABLE statements.

Db2 enforces referential constraints when the following actions occur:

• An INSERT statement is applied to a dependent table.
• An UPDATE statement is applied to a foreign key of a dependent table or to the parent key of a parent

table.
• A MERGE statement that includes an insert operation is applied to a dependent table.
• A MERGE statement that includes an update operation is applied to a foreign key of a dependent table

or to the parent key of a parent table.
• A DELETE statement is applied to a parent table. All affected referential constraints and all delete rules

of all affected relationships must be satisfied in order for the delete operation to succeed.
• The LOAD utility with the ENFORCE CONSTRAINTS option is run on a dependent table.
• The CHECK DATA utility is run.

Another type of referential constraint is an informational referential constraint. This type of constraint
is not enforced by Db2 during normal operations. An application process should verify the data in the
referential integrity relationship. An informational referential constraint allows queries to take advantage
of materialized query tables.

The order in which referential constraints are enforced is undefined. To ensure that the order does not
affect the result of the operation, there are restrictions on the definition of delete rules and on the use
of certain statements. The restrictions are specified in the descriptions of the SQL statements CREATE
TABLE, ALTER TABLE, INSERT, UPDATE, MERGE, and DELETE.

The rules of referential integrity involve the following concepts and terminology:
parent key

A primary key or a unique key of a referential constraint.
parent table

A table that is a parent in at least one referential constraint. A table can be defined as a parent in an
arbitrary number of referential constraints.

Chapter 1. Db2 for z/OS and SQL concepts 13

dependent table
A table that is a dependent in at least one referential constraint. A table can be defined as a
dependent in an arbitrary number of referential constraints. A dependent table can also be a parent
table.

descendent table
A table that is a dependent of another table or a table that is a dependent of a descendent table.

referential cycle
A set of referential constraints in which each associated table is a descendent of itself.

parent row
A row that has at least one dependent row.

dependent row
A row that has at least one parent row.

descendent row
A row that is dependent on another row or a row that is a dependent of a descendent row.

self-referencing row
A row that is a parent of itself.

self-referencing table
A table that is both parent and dependent in the same referential constraint. The constraint is called a
self-referencing constraint.

A temporal referential constraint can be defined for a table that contains a BUSINESS_TIME period. The
PERIOD BUSINESS_TIME clause is used in both the FOREIGN KEY clause and the REFERENCES clause
to indicate that there must not be a row in the child table for which the period of time represented by
the BUSINESS_TIME period value for that row is not contained in the BUSINESS_TIME period of one or
more corresponding rows in the parent table. Unlike normal referential constraints, it is not necessary that
there be exactly one corresponding row in the parent table where the BUSINESS_TIME period contains
the BUSINESS_TIME period of the child row. As long as the BUSINESS_TIME period of a row in the child
table is contained in the union of the BUSINESS_TIME periods of two or more contiguous matching rows
in the parent table, the temporal referential constraint is satisfied.

Additionally, the following indexes must be defined:

• A unique index on the parent table with the BUSINESS_TIME WITHOUT OVERLAPS clause.
• A non-unique index on the child table with the BUSINESS_TIME WITH OVERLAPS clause. Alternatively,

the index on the child table, can be defined without the BUSINESS_TIME WITH OVERLAPS clause if the
end of the index key includes the end column followed by the begin column of the BUSINESS_TIME
period (both in ascending order).

The following rules provide referential integrity:
insert rule

A nonnull insert value of the foreign key must match some value of the parent key of the parent table.
The value of a composite foreign key is null if any component of the value is null.

update rule
A nonnull update value of the foreign key must match some value of the parent key of the parent
table. The value of a composite foreign key is treated as null if any component of the value is null.

delete rule
Controls what happens when a row of the parent table is deleted. The choices of action, made when
the referential constraint is defined, are RESTRICT, NO ACTION, CASCADE, or SET NULL. SET NULL
can be specified only if some column of the foreign key allows null values.

More precisely, the delete rule applies when a row of the parent table is the object of a delete or
propagated delete operation and that row has dependents in the dependent table of the referential
constraint. A propagated delete refers to the situation where dependent rows are deleted when parent
rows are deleted. Let P denote the parent table, let D denote the dependent table, and let p denote a
parent row that is the object of a delete or propagated delete operation. If the delete rule is:

• RESTRICT or NO ACTION, an error occurs and no rows are deleted.

14 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• CASCADE, the delete operation is propagated to the dependent rows of p in D.
• SET NULL, each nullable column of the foreign key of each dependent row of p in D is set to null.

Each referential constraint in which a table is a parent has its own delete rule, and all applicable delete
rules are used to determine the result of a delete operation. Thus, a row cannot be deleted if it has
dependents in a referential constraint with a delete rule of RESTRICT or NO ACTION or the deletion
cascades to any of its descendents that are dependents in a referential constraint with the delete rule of
RESTRICT or NO ACTION.

The deletion of a row from parent table P involves other tables and can affect rows of these tables:

• If D is a dependent of P and the delete rule is RESTRICT or NO ACTION, D is involved in the operation
but is not affected by the operation and the deletion from the parent table P does not take place.

• If D is a dependent of P and the delete rule is SET NULL, D is involved in the operation and rows of D
might be updated during the operation.

• If D is a dependent of P and the delete rule is CASCADE, D is involved in the operation and rows of D
might be deleted during the operation. If rows of D are deleted, the delete operation on P is said to
be propagated to D. If D is also a parent table, the actions described in this list apply, in turn, to the
dependents of D.

Any table that can be involved in a delete operation on P is said to be delete-connected to P. Thus, a
table is delete-connected to table P if it is a dependent of P or a dependent of a table to which delete
operations from P cascade.

Related concepts
Referential constraints (Db2 Application programming and SQL)
Related reference
Department table (DSN8C10.DEPT) (Introduction to Db2 for z/OS)
Employee table (DSN8C10.EMP) (Introduction to Db2 for z/OS)
Project activity table (DSN8C10.PROJACT) (Introduction to Db2 for z/OS)

Check constraints
A check constraint is a rule that specifies the values that are allowed in one or more columns of every row
of a base table.

Like referential constraints, check constraints are optional and you define them by using the CREATE
TABLE and ALTER TABLE statements. The definition of a check constraint restricts the values that a
specific column of a base table can contain.

A table can have any number of check constraints. Db2 enforces a check constraint by applying the
restriction to each row that is inserted, loaded, or updated. One restriction is that a column name in a
check constraint on a table must identify a column of that table.

For example, you can create a check constraint to ensure that all employees earn a salary of $30,000 or
more:

CHECK (SALARY>= 30000)

Related concepts
Check constraints (Db2 Application programming and SQL)

Db2 table columns
A column definition has two basic components, the column name and the data type.

A column contains values that have the same data type. If you are familiar with the concepts of records
and fields, you can think of a value as a field in a record. A value is the smallest unit of data that you
can manipulate with SQL. For example, in the EMP table, the EMPNO column identifies all employees by
a unique employee number. The HIREDATE column contains the hire dates for all employees. You cannot
overlap columns.

Chapter 1. Db2 for z/OS and SQL concepts 15

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_referentialconstraintsampapp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sampletablesdepartment.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sampletablesemployeemain.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sampletablesprojectactivity.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_checkconstraintenforcement.html

Online schema enhancements provide flexibility that lets you change a column definition. Carefully
consider the decisions that you make about column definitions. After you implement the design of your
tables, you can change a column definition with minimal disruption of applications.

Throughout the implementation phase of database design, refer to the complete descriptions of SQL
statement syntax and usage for each SQL statement that you work with.

Column names
Following column naming guidelines that are developed for your organization ensures that you make good
choices that are consistent.

Generally, the database administrator (DBA) is involved in determining the names of attributes (or
columns) during the physical database design phase. To make the right choices for column names, DBAs
follow the guidelines that the data administrators developed.

Sometimes columns need to be added to the database after the design is complete. In this case, Db2
rules for unique column names must be followed. Column names must be unique within a table, but you
can use the same column name in different tables. Try to choose a meaningful name to describe the data
in a column to make your naming scheme intuitive.

For more information, see “Column names” on page 219 and “Naming conventions in SQL” on page 79.

Related concepts
Data types
Db2 supports both IBM-supplied data types (built-in data types) and user-defined data types (distinct
types).
Related tasks
Altering the data type of a column (Db2 Administration Guide)
Related reference
Employee table (DSN8C10.EMP) (Introduction to Db2 for z/OS)

Data types of columns
Every column in every Db2 table has a data type. The data type influences the range of values that the
column can have and the set of operators and functions that apply to it.

You specify the data type of each column at the time that you create the table. You can also change the
data type of a table column. The new data type definition is applied to all data in the associated table
when the table is reorganized.

Some data types have parameters that further define the operators and functions that apply to the
column. Db2 supports both IBM-supplied data types and user-defined data types. The data types that
IBM supplies are sometimes called built-in data types.

In Db2 for z/OS, user-defined data types are called distinct types.

How Db2 compares values of different data types
Db2 compares values of different types and lengths. A comparison occurs when both values are numeric,
both values are character strings, or both values are graphic strings. Comparisons can also occur between
character and graphic data or between character and datetime data if the character data is a valid
character representation of a datetime value. Different types of string or numeric comparisons might have
an impact on performance.

Related concepts
Entity attributes in database design (Introduction to Db2 for z/OS)
Data types of columns (Db2 Application programming and SQL)
Assignment and comparison

16 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_altercolumndatatype.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sampletablesemployeemain.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_attributesforentities.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_columndatatype.html

The basic operations of SQL are assignment and comparison.
Casting between data types
There are many occasions when a value with a given data type needs to be cast (changed) to a different
data type or to the same data type with a different length, precision, or scale.
Rules for result data types
Rules that are applied to the operands of an operation determine the data type of the result. Certain rules
apply in certain situations and apply depending on the data type of operands.
Distinct types (Introduction to Db2 for z/OS)

String data types
Db2 supports several types of string data: character strings, graphic strings, and binary strings.

Character strings contain text and can be either a fixed-length or a varying-length. Graphic strings contain
graphic data, which can also be either a fixed-length or a varying-length. Binary strings contain strings of
binary bytes and can be either a fixed-length or a varying-length. All of these types of string data can be
represented as large objects.

The following table describes the different string data types and indicates the range for the length of each
string data type.

Table 3. String data types

Data type Denotes a column of...

CHARACTER(n) Fixed-length character strings with a length of n bytes. n must be greater than
0 and not greater than 255. The default length is 1.

VARCHAR(n) Varying-length character strings with a maximum length of n bytes. n must be
greater than 0 and less than a number that depends on the page size of the
table space. The maximum length is 32704.

CLOB(n) Varying-length character strings with a maximum of n characters. n cannot
exceed 2,147,483,647. The default length is 1M.

GRAPHIC(n) Fixed-length graphic strings that contain n double-byte characters. n must be
greater than 0 and less than 128. The default length is 1.

VARGRAPHIC(n) Varying-length graphic strings. The maximum length, n, must be greater than
0 and less than a number that depends on the page size of the table space.
The maximum length is 16352.

DBCLOB(n) Varying-length strings of double-byte characters with a maximum of n
double-byte characters. n cannot exceed 1,073,741,824. The default length
is 1M.

BINARY(n) Fixed-length or varying-length binary strings with a length of n bytes. n must
be greater than 0 and not greater than 255. The default length is 1.

VARBINARY(n) Varying-length binary strings with a length of n bytes. The length of n must be
greater than 0 and less than a number that depends on the page size of the
table space. The maximum length is 32704.

BLOB(n) Varying-length binary strings with a length of n bytes. n cannot exceed
2,147,483,647. The default length is 1M.

In most cases, the content of the data that a column is to store dictates the data type that you choose.

Example

For example, assume that the DEPT table has a column, DEPTNAME. The data type of the DEPTNAME
column is VARCHAR(36). Because department names normally vary considerably in length, the choice of
a varying-length data type seems appropriate. If you choose a data type of CHAR(36), for example, the

Chapter 1. Db2 for z/OS and SQL concepts 17

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_distincttypes.html

result is a lot of wasted, unused space. In this case, Db2 assigns all department names, regardless of
length, the same amount of space (36 bytes). A data type of CHAR(6) for the employee number (EMPNO)
is a reasonable choice because all values are fixed-length values (6 bytes).

Fixed-length and variable-length character strings
Using VARCHAR saves disk space, but it incurs a 2-byte overhead cost for each value. Using VARCHAR
also requires additional processing for varying-length rows. Therefore, using CHAR is preferable to
VARCHAR, unless the space that you save by using VARCHAR is significant. The savings are not significant
if the maximum column length is small or if the lengths of the values do not have a significant variation.

Recommendation: Generally, do not define a column as VARCHAR(n) or CLOB(n) unless n is at least 18
characters.

String subtypes
If an application that accesses your table uses a different encoding scheme than your DBMS uses, the
following string subtypes can be important:

BIT
Does not represent characters.

SBCS
Represents single-byte characters.

MIXED
Represents single-byte characters and multibyte characters.

String subtypes apply only to CHAR, VARCHAR, and CLOB data types. However, the BIT string subtype is
not allowed for the CLOB data type.

Graphic and mixed data
When columns contain double-byte character set (DBCS) characters, you can define them as either
graphic data or mixed data.

Graphic data can be either GRAPHIC, VARGRAPHIC, or DBCLOB. Using VARGRAPHIC saves disk space,
but it incurs a 2-byte overhead cost for each value. Using VARGRAPHIC also requires additional
processing for varying-length rows. Therefore, using GRAPHIC data is preferable to using VARGRAPHIC
unless the space that you save by using VARGRAPHIC is significant. The savings are not significant if the
maximum column length is small or if the lengths of the values do not vary significantly.

Recommendation: Generally, do not define a column as VARGRAPHIC(n) unless n is at least 18 double-
byte characters (which is a length of 36 bytes).

Mixed-data character string columns can contain both single-byte character set (SBCS) and DBCS
characters. You can specify the mixed-data character string columns as CHAR, VARCHAR, or CLOB with
MIXED DATA.

Recommendation: If all of the characters are DBCS characters, use the graphic data types. (Kanji is an
example of a language that requires DBCS characters.) For SBCS characters, use mixed data to save 1
byte for every single-byte character in the column.

Encoding schemes for string data
For string data, all characters are represented by a common encoding representation (Unicode, ASCII,
or EBCDIC). Encoding schemes apply to string data types and to distinct types that are based on string
types.

Multinational companies that engage in international trade often store data from more than one country
in the same table. Some countries use different coded character set identifiers. Db2 for z/OS supports
the Unicode encoding scheme, which represents many different geographies and languages. If you need

18 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

to perform character conversion on Unicode data, the conversion is more likely to preserve all of your
information.

In some cases, you might need to convert characters to a different encoding representation. The process
of conversion is known as character conversion. Most users do not need a knowledge of character
conversion. When character conversion does occur, it does so automatically and a successful conversion
is invisible to the application and users.

Related concepts
Distinct types (Introduction to Db2 for z/OS)
Character strings
A character string is a sequence of bytes. The length of the string is the number of bytes in the sequence.
If the length is zero, the value is called the empty string. The empty string should not be confused with the
null value.
Graphic strings
A graphic string is a sequence of double-byte characters.
Binary strings
A binary string is a sequence of bytes.
Introduction to character conversion (Db2 Internationalization Guide)
Related reference
Department table (DSN8C10.DEPT) (Introduction to Db2 for z/OS)

Numeric data types
Db2 supports several types of numeric data types, each of which has its own characteristics.

For numeric data, use numeric columns rather than string columns. Numeric columns require less space
than string columns, and Db2 verifies that the data has the assigned type.

For example, assume that Db2 calculates a range between two numbers. If the values have a string data
type, Db2 assumes that the values can include all combinations of alphanumeric characters. In contrast, if
the values have a numeric data type, Db2 can calculate a range between the two values more efficiently.

The following table describes the numeric data types.

Table 4. Numeric data types

Data type Denotes a column of...

SMALLINT Small integers. A small integer is binary integer with a precision of 15 bits. The
range is -32768 to +32767.

INTEGER or
INT

Large integers. A large integer is binary integer with a precision of 31 bits. The
range is -2147483648 to +2147483647.

BIGINT Big integers. A big integer is a binary integer with a precision of
63 bits. The range of big integers is -9223372036854775808 to
+9223372036854775807.

DECIMAL or
NUMERIC

A decimal number is a packed decimal number with an implicit decimal point.
The position of the decimal point is determined by the precision and the scale
of the number. The scale, which is the number of digits in the fractional part of
the number, cannot be negative or greater than the precision. The maximum
precision is 31 digits.

All values of a decimal column have the same precision and scale. The range
of a decimal variable or the numbers in a decimal column is -n to +n, where
n is the largest positive number that can be represented with the applicable
precision and scale. The maximum range is 1 - 10³¹ to 10³¹ - 1.

Chapter 1. Db2 for z/OS and SQL concepts 19

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_distincttypes.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/char/src/tpc/db2z_introcharconv.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sampletablesdepartment.html

Table 4. Numeric data types (continued)

Data type Denotes a column of...

DECFLOAT A decimal floating-point value is an IEEE 754r number with a decimal point.
The position of the decimal point is stored in each decimal floating-point
value. The maximum precision is 34 digits.

The range of a decimal floating-point number is either 16 or 34 digits of
precision; the exponent range is respectively 10-383 to 10+384 or 10-6143
to 10+6144.

REAL A single-precision floating-point number is a short floating-point number of 32
bits. The range of single-precision floating-point numbers is approximately
-7.2E+75 to 7.2E+75. In this range, the largest negative value is about
-5.4E-79, and the smallest positive value is about 5.4E-079.

DOUBLE A double-precision floating-point number is a long floating-point number
of 64-bits. The range of double-precision floating-point numbers is
approximately -7.2E+75 to 7.2E+75. In this range, the largest negative value
is about -5.4E-79, and the smallest positive value is about 5.4E-79.

Note: IBM zSystems and z/Architecture® use the System/390® format and support IEEE floating-point
format.

For integer values, use SMALLINT, INTEGER, or BIGINT (depending on the range of the values). Do not
use DECIMAL for integer values.

You can define an exact numeric column as an identity column. An identity column has an attribute that
enables Db2 to automatically generate a unique numeric value for each row that is inserted into the table.
Identity columns are ideally suited to the task of generating unique primary-key values. Applications that
use identity columns might be able to avoid concurrency and performance problems that sometimes
occur when applications implement their own unique counters.

Date, time, and timestamp data types
Although storing dates and times as numeric values is possible, using datetime data types is
recommended. The datetime data types are DATE, TIME, and TIMESTAMP.

The following table describes the data types for dates, times, and timestamps.

Table 5. Date, time, and timestamp data types

Data type Denotes a column of...

DATE A date is a three-part value representing a year, month, and day in the range
of 0001-01-01 to 9999-12-31.

TIME A time is a three-part value representing a time of day in hours, minutes, and
seconds, in the range of 00.00.00 to 24.00.00.

TIMESTAMP A timestamp is a seven-part value representing a date and time by
year, month, day, hour, minute, second, and microsecond, in the range
of 0001-01-01-00.00.00.000000000 to 9999-12-31-24.00.00.000000000
with nanosecond precision. Timestamps can also hold timezone information.

Db2 stores values of datetime data types in a special internal format. When you load or retrieve data, Db2
can convert it to or from any of the formats in the following table.

Table 6. Date and time format options

Format name Abbreviation Typical date Typical time

International Standards Organization ISO 2003-12-25 13.30.05

20 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 6. Date and time format options (continued)

Format name Abbreviation Typical date Typical time

IBM USA standard USA 12/25/2003 1:30 PM

IBM European standard EUR 25.12.2003 13.30.05

Japanese Industrial Standard Christian
Era

JIS 2003-12-25 13:30:05

GUPI

Example 1
The following query displays the dates on which all employees were hired, in IBM USA standard form,
regardless of the local default:

SELECT EMPNO, CHAR(HIREDATE, USA) FROM EMP;

Example 2
When you use datetime data types, you can take advantage of Db2 built-in functions that operate
specifically on datetime values, and you can specify calculations for datetime values. Assume that
a manufacturing company has an objective to ship all customer orders within five days. You define
the SHIPDATE and ORDERDATE columns as DATE data types. The company can use datetime data
types and the DAYS built-in function to compare the shipment date to the order date. Here is how
the company might code the function to generate a list of orders that have exceeded the five-day
shipment objective:

DAYS(SHIPDATE) — DAYS(ORDERDATE)> 5

As a result, programmers do not need to develop, test, and maintain application code to perform
complex datetime arithmetic that needs to allow for the number of days in each month.

GUPI

You can use the following sample user-defined functions (which come with Db2) to modify the way dates
and times are displayed.

• ALTDATE returns the current date in a user-specified format or converts a user-specified date from one
format to another.

• ALTTIME returns the current time in a user-specified format or converts a user-specified time from one
format to another.

At installation time, you can also supply an exit routine to make conversions to and from any local
standard.

When loading date or time values from an outside source, Db2 accepts any of the date and time format
options that are listed in this information. Db2 converts valid input values to the internal format. For
retrieval, a default format is specified at Db2 installation time. You can subsequently override that default
by using a precompiler option for all statements in a program or by using the scalar function CHAR for a
particular SQL statement and by specifying the format that you want.

Related concepts
Datetime constants
A datetime constant is a character string constant of a particular format.

XML data type
The XML data type is used to define columns of a table that store XML values. This pureXML® data type
provides the ability to store well-formed XML documents in a database.

All XML data is stored in the database in an internal representation. Character data in this internal
representation is in the UTF-8 encoding scheme.

Chapter 1. Db2 for z/OS and SQL concepts 21

XML values that are stored in an XML column have an internal representation that is not a string and
not directly comparable to string values. An XML value can be transformed into a serialized string value
that represents the XML document by using the XMLSERIALIZE function or by retrieving the value into
an application variable of an XML, string, or binary type. Similarly, a string value that represents an XML
document can be transformed to an XML value by using the XMLPARSE function or by storing a value from
a string, binary, or XML application data type in an XML column.

The size of an XML value in a Db2 table has no architectural limit. However, serialized XML data that is
stored in or retrieved from an XML column is limited to 2 GB.

Validation of an XML document against an XML schema, typically performed during INSERT or UPDATE
into an XML column, is supported by the XML schema repository (XSR). If an XML column has an XML
type modifier, documents that are inserted into the column or updated in the column are automatically
validated against an XML schema.

Large object data types
You can use large object data types to store audio, video, images, and other files that are larger than 32
KB.

The VARCHAR, VARGRAPHIC, and VARBINARY data types have a storage limit of 32 KB. However,
applications often need to store large text documents or additional data types such as audio, video,
drawings, images, and a combination of text and graphics. For data objects that are larger than 32 KB, you
can use the corresponding large object (LOB) data types to store these objects.

Db2 provides three data types to store these data objects as strings of up to 2 GB in size:

Character large objects (CLOBs)
Use the CLOB data type to store SBCS or mixed data, such as documents that contain single character
set. Use this data type if your data is larger (or might grow larger) than the VARCHAR data type
permits.

Double-byte character large objects (DBCLOBs)
Use the DBCLOB data type to store large amounts of DBCS data, such as documents that use a DBCS
character set.

Binary large objects (BLOBs)
Use the BLOB data type to store large amounts of noncharacter data, such as pictures, voice, and
mixed media.

If your data does not fit entirely within a data page, you can define one or more columns as LOB columns.
An advantage to using LOBs is that you can create user-defined functions that are allowed only on LOB
data types.

Related concepts
Large objects (LOBs)
The term large object (LOB) refers to any of the following data types: CLOB, DBCLOB, or BLOB.
Related tasks
Creating large objects (Introduction to Db2 for z/OS)

ROWID data type
You use the ROWID data type to uniquely identify rows in a Db2 subsystem.

Db2 can generate a value for the column when a row is added, depending on the option that you choose
(GENERATED ALWAYS or GENERATED BY DEFAULT) when you define the column. You can use a ROWID
column in a table for several reasons.

• You can define a ROWID column to include LOB data in a table.
• You can use direct-row access so that Db2 accesses a row directly through the ROWID column. If

an application selects a row from a table that contains a ROWID column, the row ID value implicitly
contains the location of the row. If you use that row ID value in the search condition of subsequent
SELECT statements, Db2 might be able to navigate directly to the row.

22 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationoflargeobjects.html

Requirement: To use direct row access, you must use a retrieved ROWID value before you commit.
When your application commits, it releases its claim on the table space. After the commit, if a REORG is
run on your table space, the physical location of the rows might change.

• You can define a ROWID column with the IMPLICITLY HIDDEN attribute. Such columns are returned
only for SQL statements that explicitly name the column. SQL statements that only imply selection of
the column, such as statements that specify SELECT *, do not return the column.

Related concepts
Row ID values
A row ID is a value that uniquely identifies a row in a table. A column or a host variable can have a row ID
data type.
Direct row access (PRIMARY_ACCESSTYPE='D') (Db2 Performance)
Related tasks
Specifying direct row access by using row IDs (Db2 Application programming and SQL)
Related reference
ROWID scalar function
The ROWID function returns a row ID representation of its argument.

Distinct types
A distinct type is a user-defined data type that is based on existing built-in Db2 data types.

A distinct type is internally the same as a built-in data type, but Db2 treats them as a separate and
incompatible type for semantic purposes. Defining your own distinct type ensures that only functions that
are explicitly defined on a distinct type can be applied to its instances.

Examples
GUPI

Example 1
You might define a US_DOLLAR distinct type that is based on the Db2 DECIMAL data type to
identify decimal values that represent United States dollars. The US_DOLLAR distinct type does not
automatically acquire the functions and operators of its source type, DECIMAL.

Although you can have different distinct types that are based on the same built-in data types, distinct
types have the property of strong typing. With this property, you cannot directly compare instances of
a distinct type with anything other than another instance of that same type. Strong typing prevents
semantically incorrect operations (such as explicit addition of two different currencies) without first
undergoing a conversion process. You define which types of operations can occur for instances of a
distinct type.

If your company wants to track sales in many countries, you must convert the currency for each
country in which you have sales.

Example 2
You can define a distinct type for each country. For example, to create US_DOLLAR types and
CANADIAN_DOLLAR types, you can use the following CREATE DISTINCT TYPE statements:

CREATE DISTINCT TYPE US_DOLLAR AS DECIMAL (9,2);
CREATE DISTINCT TYPE CANADIAN_DOLLAR AS DECIMAL (9,2);

Example 3
After you define distinct types, you can use them in your CREATE TABLE statements:

CREATE TABLE US_SALES
 (PRODUCT_ITEM_NO INTEGER,
 MONTH INTEGER,
 YEAR INTEGER,
 TOTAL_AMOUNT US_DOLLAR);
CREATE TABLE CANADIAN_SALES
 (PRODUCT_ITEM_NO INTEGER,
 MONTH INTEGER,

Chapter 1. Db2 for z/OS and SQL concepts 23

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_directrowaccess.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_specifydirectrowaccess.html

 YEAR INTEGER,
 TOTAL_AMOUNT CANADIAN_DOLLAR);

GUPI

User-defined functions support the manipulation of distinct types.

Related concepts
String data types (Introduction to Db2 for z/OS)
Distinct types
A distinct type is a user-defined data type that shares its internal representation with a built-in data type
(its source type), but is considered to be a separate and incompatible data type for most operations.
User-defined type assignments
User-defined type assignments include distinct type assignments and array assignments.
User-defined type comparisons
User-defined type comparisons include distinct type comparisons and array comparisons.

Null values in table columns
Some columns cannot have a meaningful value in every row. Db2 uses a special value indicator, the null
value, to stand for an unknown or missing value. A null value is a special value that Db2 interprets to mean
that no data is present.

If you do not specify otherwise,Db2 allows any column to contain null values. Users can create rows in the
table without providing a value for the column.

Using the NOT NULL clause enables you to disallow null values in the column. Primary keys must be
defined as NOT NULL.

Example
GUPI

For example, The table definition for the DEPT table specifies when you can use a null value. Notice that
you can use nulls for the MGRNO column only:

CREATE TABLE DEPT
 (DEPTNO CHAR(3) NOT NULL,
 DEPTNAME VARCHAR(36) NOT NULL,
 MGRNO CHAR(6) ,
 ADMRDEPT CHAR(3) NOT NULL,
 PRIMARY KEY (DEPTNO))
 IN MYDB.MYTS;

GUPI

Before you decide whether to allow nulls for unknown values in a particular column, you must be aware of
how nulls affect results of a query:

Nulls in application programs
Nulls do not satisfy any condition in an SQL statement other than the special IS NULL predicate.
Db2 sorts null values differently than non-null values. Null values do not behave like other values.
For example, if you ask Db2 whether a null value is larger than a given known value, the answer is
UNKNOWN. If you then ask Db2 whether a null value is smaller than the same known value, the
answer is still UNKNOWN.

If getting a value of UNKNOWN is unacceptable for a particular column, you could define a default
value instead. Programmers are familiar with the way default values behave.

Nulls in join operations
Nulls need special handling in join operations. If you perform a join operation on a column that can
contain null values, consider using an outer join.

24 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_stringdatatypes.html

Related concepts
When to use null or default values (Introduction to Db2 for z/OS)
Data types
Db2 supports both IBM-supplied data types (built-in data types) and user-defined data types (distinct
types).
Ways to join data from more than one table (Introduction to Db2 for z/OS)
Default values for table columns (Introduction to Db2 for z/OS)
Entity attributes in database design (Introduction to Db2 for z/OS)
Related reference
CREATE TABLE statement
The CREATE TABLE statement defines a table. The definition must include its name and the names and
attributes of its columns. The definition can include other attributes of the table, such as its primary key
and its table space.
ALTER TABLE statement
The ALTER TABLE statement changes the description of a table at the current server.

Default values for table columns
Db2 defines some default values, and you define others (by using the DEFAULT clause in the CREATE
TABLE or ALTER TABLE statement).

If a column is defined as NOT NULL WITH DEFAULT or if you do not specify NOT NULL, Db2 stores a
default value for a column whenever an insert or load does not provide a value for that column. If a
column is defined as NOT NULL, Db2 does not supply a default value.

Default values defined by Db2
Db2 generates a default value for ROWID columns. Db2 also determines default values for columns that
users define with NOT NULL WITH DEFAULT, but for which no specific value is specified, as shown in the
following table.

Table 7. Db2-defined default values for data types

For columns of... Data types Default

Numbers SMALLINT, INTEGER, BIGINT,
DECIMAL, NUMERIC, REAL,
DOUBLE, DECFLOAT, or FLOAT

0

Fixed-length strings CHAR or GRAPHIC

BINARY

Blanks

Hexadecimal zeros

Varying-length strings VARCHAR, CLOB, VARGRAPHIC,
DBCLOB, VARBINARY, or BLOB

Empty string

Dates DATE CURRENT DATE

Times TIME CURRENT TIME

Timestamps TIMESTAMP CURRENT TIMESTAMP

ROWIDs ROWID Db2-generated

User-defined default values
You can specify a particular default value, such as:

DEFAULT 'N/A'

Chapter 1. Db2 for z/OS and SQL concepts 25

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_comparisonofnullvaluesanddefaultvalues.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_joindatafromtables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_defaultvalues.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_attributesforentities.html

When you choose a default value, you must be able to assign it to the data type of the column. For
example, all string constants are VARCHAR. You can use a VARCHAR string constant as the default for a
CHAR column even though the type isn't an exact match. However, you could not specify a default value of
'N⁄A' for a column with a numeric data type.

In the next example, the columns are defined as CHAR (fixed length). The special registers (USER and
CURRENT SQLID) that are referenced contain varying length values.

For example, if you want a record of each user who inserts any row of a table, define the table with two
additional columns:

PRIMARY_ID CHAR(8) WITH DEFAULT USER,
SQL_ID CHAR(8) WITH DEFAULT CURRENT SQLID,

You can then create a view that omits those columns and allows users to update the view instead of the
base table. Db2 then adds, by default, the primary authorization ID and the SQLID of the process.

When you add columns to an existing table, you must define them as nullable or as not null with default.
Assume that you add a column to an existing table and specify not null with default. If Db2 reads from the
table before you add data to the column, the column values that you retrieve are the default values. With
few exceptions, the default values for retrieval are the same as the default values for insert.

Default values for ROWID
Db2 always generates the default values for ROWID columns.

Related concepts
When to use null or default values (Introduction to Db2 for z/OS)
Authorization and security mechanisms for data access (Introduction to Db2 for z/OS)
Null values in table columns (Introduction to Db2 for z/OS)
Related reference
CREATE TABLE statement
The CREATE TABLE statement defines a table. The definition must include its name and the names and
attributes of its columns. The definition can include other attributes of the table, such as its primary key
and its table space.
ALTER TABLE statement
The ALTER TABLE statement changes the description of a table at the current server.
Related information
Implementing Db2 tables (Db2 Administration Guide)

When to use null or default values
Using a null value is easier and better than using a default value in some situations.

Suppose that you want to find out the average salary for all employees in a department. The salary
column does not always need to contain a meaningful value, so you can choose between the following
options:

• Allowing null values for the SALARY column
• Using a non-null default value (such as, 0)

By allowing null values, you can formulate the query easily, and Db2 provides the average of all known or
recorded salaries. The calculation does not include the rows that contain null values. In the second case,
you probably get a misleading answer unless you know the nonnull default value for unknown salaries and
formulate your query accordingly.

The following figure shows two scenarios. The table in the figure excludes salary data for employee
number 200440, because the company just hired this employee and has not yet determined the salary.
The calculation of the average salary for department E21 varies, depending on whether you use null
values or nonnull default values.

26 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_comparisonofnullvaluesanddefaultvalues.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_authandsecurityfordataaccess.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_nullvalues.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_tableimplementation.html

• The left side of the figure assumes that you use null values. In this case, the calculation of average
salary for department E21 includes only the three employees (000320, 000330, and 200340) for whom
salary data is available.

• The right side of the figure assumes that you use a nonnull default value of zero (0). In this case, the
calculation of average salary for department E21 includes all four employees, although valid salary
information is available for only three employees.

As you can see, only the use of a null value results in an accurate average salary for department E21.

SELECT DEPT, AVG (SALARY)
 FROM EMP
 GROUP BY DEPT;

With null value With default value of 0

EMPNO DEPT SALARY

000320

000330

200340

200440

E21

E21

E21

E21

19950.00

25370.00

23840.00

EMPNO DEPT SALARY

000320

000330

200340

200440

E21

E21

E21

E21

19950.00

25370.00

23840.00

0.00

DEPT AVG(SALARY)
==== ===========
.
.
.

.

.

.
E21 23053.33

(Average of
nonnull salaries)

DEPT AVG(SALARY)
==== ===========

.

.

.
E21 17290.00

Figure 5. When nulls are preferable to default values

Null values are distinct in most situations so that two null values are not equal to each other.

Example
GUPI

The following example shows how to compare two columns to see if they are equal or if both columns are
null:

WHERE E1.DEPT IS NOT DISTINCT FROM E2.DEPT

GUPI

Related concepts
Null values in table columns (Introduction to Db2 for z/OS)
Default values for table columns (Introduction to Db2 for z/OS)
Assignment and comparison
The basic operations of SQL are assignment and comparison.

Check constraints for column values
You can use check constraints to ensure that only values from the domain for the column or attribute are
allowed.

By using check constraints, programmers can avoid developing, testing, and maintaining application code
that performs these checks.

Chapter 1. Db2 for z/OS and SQL concepts 27

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_nullvalues.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_defaultvalues.html

You can choose to define check constraints by using the SQL CREATE TABLE statement or ALTER TABLE
statement. For example, you might want to ensure that each value in the SALARY column of the EMP table
contains more than a certain minimum amount.

Db2 enforces a check constraint by applying the relevant search condition to each row that is inserted,
updated, or loaded. An error occurs if the result of the search condition is false for any row.

Check constraints that insert table rows
When you use the INSERT statement or the MERGE statement to add a row to a table, Db2 automatically
enforces all check constraints for that table. If the data violates any check constraint that is defined on
that table, Db2 does not insert the row.

GUPI

Example 1
Assume that the NEWEMP table has the following two check constraints:

• Employees cannot receive a commission that is greater than their salary.
• Department numbers must be between '001' to '100,' inclusive.

Consider this INSERT statement, which adds an employee who has a salary of $65,000 and a
commission of $6000:

INSERT INTO NEWEMP
 (EMPNO, FIRSTNME, LASTNAME, DEPT, JOB, SALARY, COMM)
 VALUES ('100125', 'MARY', 'SMITH','055', 'SLS', 65000.00, 6000.00);

The INSERT statement in this example succeeds because it satisfies both constraints.

Example 2
Consider this INSERT statement:

INSERT INTO NEWEMP
 (EMPNO, FIRSTNME, LASTNAME, DEPT, JOB, SALARY, COMM)
 VALUES ('120026', 'JOHN', 'SMITH','055', 'DES', 5000.00, 55000.00);

The INSERT statement in this example fails because the $55,000 commission is higher than the
$5,000 salary. This INSERT statement violates a check constraint on NEWEMP.

GUPI

Check constraints that update tables
Db2 automatically enforces all check constraints for a table when you use the UPDATE statement or the
MERGE statement to change a row in the table. If the intended update violates any check constraint that
is defined on that table, Db2 does not update the row.

GUPI

Example 1
Assume that the NEWEMP table has the following two check constraints:

• Employees cannot receive a commission that is greater than their salary.
• Department numbers must be between '001' to '100,' inclusive.

Consider this UPDATE statement:

UPDATE NEWEMP
 SET DEPT = '011'
 WHERE FIRSTNME = 'MARY' AND LASTNAME= 'SMITH';

This update succeeds because it satisfies the constraints that are defined on the NEWEMP table.

28 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 2
Consider this UPDATE statement:

UPDATE NEWEMP
 SET DEPT = '166'
 WHERE FIRSTNME = 'MARY' AND LASTNAME= 'SMITH';

This update fails because the value of DEPT is '166,' which violates the check constraint on NEWEMP
that DEPT values must be between '001' and '100.'

GUPI

Related concepts
Check constraints (Db2 Application programming and SQL)
Related tasks
Adding or dropping table check constraints (Db2 Administration Guide)
Related reference
CREATE TABLE statement
The CREATE TABLE statement defines a table. The definition must include its name and the names and
attributes of its columns. The definition can include other attributes of the table, such as its primary key
and its table space.

Db2 indexes
An index is an ordered set of pointers to rows of a table. Db2 can use indexes to improve performance
and ensure uniqueness. Understanding the structure of Db2 indexes can help you achieve the best
performance for your system.

Conceptually, you can think of an index to the rows of a Db2 table like you think of an index to the pages of
a book. Each index is based on the values of data in one or more columns of a table.

The main purpose of an index is to improve performance for access to the data. In most cases, access
to data is faster with an index than with a scan of the data. For example, you can create an index on the
DEPTNO column of the sample DEPT table so that Db2 can easily locate a specific department and avoid
reading through each row of, or scanning, the table.

An index is stored separately from the data in the table. Each index is physically stored in its own index
space. When you define an index by using the CREATE INDEX statement, Db2 builds this structure and
maintains it automatically. However, you can perform necessary maintenance such as reorganizing it or
recovering the index.

Another purpose of an index is to ensure uniqueness. For example, a unique index on the employee table
ensures that no two employees have the same employee number.

In most cases, the users of an index are unaware that it is being used because Db2 decides whether to
use the index to access the table.

Db2 supports simple indexes and extended indexes. An extended index is one of the following objects:

• An expression-based index
• A spatial index
• An XML index

Be aware that indexes have both benefits and disadvantages. A greater number of indexes can
simultaneously improve the access performance of a particular transaction and require additional
processing for inserting, updating, and deleting index keys.

Related concepts
Creation of indexes (Introduction to Db2 for z/OS)
Related reference
CREATE INDEX statement

Chapter 1. Db2 for z/OS and SQL concepts 29

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_checkconstraintenforcement.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_addordroptablecheckconstraints.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationofindexes.html

The CREATE INDEX statement creates a partitioning index or a secondary index and an index space at the
current server. The columns included in the key of the index are columns of a table at the current server.

Db2 views
A view is an alternative way of representing data that exists in one or more tables. A view can include all
or some of the columns from one or more base tables.

A view is a named specification of a result table. Conceptually, creating a view is somewhat like using
binoculars. You might look through binoculars to see an entire landscape or to look at a specific image
within the landscape, such as a tree.

You can create Db2 views that achieve the following goals:

• Combines data from different base tables
• Based on other views or on a combination of views and tables
• Omit certain data, thereby shielding some table data from users

In fact, these are common underlying reasons to use a view. Combining information from base tables and
views simplifies retrieving data for a user, and limiting the data that a user can see is useful for security.
You can use views for a number of different purposes. A view can:

• Control access to a table
• Make data easier to use
• Simplify authorization by granting access to a view without granting access to the table
• Show only portions of data in the table
• Show summary data for a given table
• Combine two or more tables in meaningful ways
• Show only the selected rows that are pertinent to the process that uses the view

How to access data in Db2 views
To retrieve or access information from a view, you use views like you use base tables. You can use a
SELECT statement to show the information from the view. The SELECT statement can name other views
and tables, and it can use the WHERE, GROUP BY, and HAVING clauses. It cannot use the ORDER BY
clause or name a host variable.

Whether a view can be used in an insert, update, or delete operation depends on its definition. For
example, if a view includes a foreign key of its base table, INSERT and UPDATE operations that use the
view are subject to the same referential constraint as the base table. Likewise, if the base table of a view
is a parent table, DELETE operations that use the view are subject to the same rules as DELETE operations
on the base table. Read-only views cannot be used for insert, update, and delete operations.

How to create Db2 views
To define a view, you use the CREATE VIEW statement and assign a name (up to 128 characters in
length) to the view. Specifying the view in other SQL statements is effectively like running an SQL SELECT
statement. At any time, the view consists of the rows that would result from the SELECT statement that it
contains. You can think of a view as having columns and rows just like the base table on which the view is
defined.

You also can specify a period specification for a view, subject to certain restrictions.

Examples of creating Db2 views
GUPI

30 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 1
The following figure shows a view of the EMP table that omits sensitive employee information and
renames some of the columns.
Base table, EMP:

EMPNO FIRSTNME LASTNAME DEPT HIREDATE JOB EDL SALARY COMM

View of , namedEMP EMPINF0:
EMPLOYEE FIRSTNAME LASTNAME TEAM JOBTITLE

Figure 6. A view of the EMP table

Figure note: The EMPINFO view represents a table that includes columns named EMPLOYEE,
FIRSTNAME, LASTNAME, TEAM, and JOBTITLE. The data in the view comes from the columns
EMPNO, FIRSTNME, LASTNAME, DEPT, and JOB of the EMP table.

Example 2
The following CREATE VIEW statement defines the EMPINFO view that is shown in the preceding
figure:

CREATE VIEW EMPINFO (EMPLOYEE, FIRSTNAME, LASTNAME, TEAM, JOBTITLE)
 AS SELECT EMPNO, FIRSTNME, LASTNAME, DEPT, JOB
 FROM EMP;

When you define a view, Db2 stores the definition of the view in the Db2 catalog. However, Db2 does
not store any data for the view itself, because the data exists in the base table or tables.

Example 3
You can narrow the scope of the EMPINFO view by limiting the content to a subset of rows and
columns that includes departments A00 and C01 only:

CREATE VIEW EMPINFO (EMPLOYEE, FIRSTNAME, LASTNAME, TEAM, JOBTITLE)
 AS SELECT EMPNO, FIRSTNME, LASTNAME, WORKDEPT, JOB
 FROM EMP
 WHERE WORKDEPT = 'A00' OR WORKDEPT = 'C01';

GUPI

In general, a view inherits the attributes of the object from which it is derived. Columns that are added to
the tables after the view is defined on those tables do not appear in the view.

Restriction: You cannot create an index for a view. In addition, you cannot create any form of a key or
a constraint (referential or otherwise) on a view. Such indexes, keys, or constraints must be built on the
tables that the view references.

Related concepts
Creation of views (Introduction to Db2 for z/OS)
Related reference
Employee table (DSN8C10.EMP) (Introduction to Db2 for z/OS)
CREATE VIEW statement
The CREATE VIEW statement creates a view on tables or views at the current server.
Views on the sample tables (Introduction to Db2 for z/OS)
Related information
Implementing Db2 views (Db2 Administration Guide)

Chapter 1. Db2 for z/OS and SQL concepts 31

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationofviews.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sampletablesemployeemain.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sampletablesview.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_viewimplementation.html

Aliases
An alias is a substitute for the three-part name of a table or view.

An alias can be defined at a local server and can refer to a table or view that is at the current server or a
remote server. The alias name can be used wherever the table name or view name can be used to refer to
the table or view in an SQL statement.

Suppose that data is occasionally moved from one Db2 subsystem to another. Ideally, users who query
that data are not affected when this activity occurs. They always want to log on to the same system and
access the same table or view, regardless of where the data resides. You can achieve this result by using
an alias for an object name.

An alias can be a maximum of 128 characters, qualified by an owner ID. You use the CREATE ALIAS and
DROP ALIAS statements to manage aliases.

GUPI For example, assume that you create an alias with the following statement:

CREATE ALIAS TESTTAB FOR USIBMSTODB22.IDEMP01.EMP;

If a user with the ID JONES dynamically creates the alias, JONES owns the alias, and you query the table
like this:

SELECT SUM(SALARY), SUM(BONUS), SUM(COMM)
 FROM JONES.TESTTAB;

GUPI

The object for which you are defining an alias does not need to exist when you execute the CREATE ALIAS
statement. However, the object must exist when a statement that refers to the alias executes.

When you want an application to access a server other than the server that is specified by a location
name, you do not need to change the location name. Instead, you can use a location alias to override the
location name that an application uses to access a server. As a result, a Db2 for z/OS requester can access
multiple Db2 databases that have the same name but different network addresses. Location aliases allow
easier migration to a Db2 server and minimize application changes.

After you create an alias, anyone who has authority over the object that the alias is referencing can use
that alias. A user does not need a separate privilege to use the alias.

Related reference
CREATE ALIAS statement
The CREATE ALIAS statement defines an alias for a table, a view, or a sequence. The definition is recorded
in the Db2 catalog at the current server.

Triggers
A trigger defines a set of actions that are executed when a delete, insert, or update operation occurs on a
specified table or view. When such an operation is executed, the trigger is said to be activated.

Db2 supports two types of triggers, basic and advanced:

• Basic triggers support a limited set of SQL statements, and require the MODE DB2SQL clause on the
CREATE TRIGGER statement. You can identify basic triggers by querying the SYSIBM.SYSTRIGGERS
catalog table. Blank values in the SQLPL column identify basic triggers. For more information, see
“CREATE TRIGGER statement (basic trigger)” on page 1769.

• Advanced triggers support a larger set of SQL statements, including SQL procedure language (SQL
PL). A CREATE TRIGGER statement for an advanced trigger must not specify the MODE DB2SQL
clause. Advanced triggers are supported at application compatibility level V12R1M500 or higher. You
can identify advanced triggers by querying the SYSIBM.SYSTRIGGERS catalog table. 'Y' values in the
SQLPL column identify advanced triggers. For more information about advanced triggers, see “CREATE
TRIGGER statement (advanced trigger)” on page 1740.

32 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

For a detailed comparison of the types, see “Basic and advanced triggers” on page 34.

You can use triggers along with referential constraints and check constraints to enforce data integrity
rules. Triggers are more powerful than constraints because you can use them to do the following things:

• Update other tables
• Automatically generate or transform values for inserted or updated rows
• Invoke functions that perform operations both inside and outside of Db2

For example, assume that you need to prevent an update to a column when a new value exceeds a certain
amount. Instead of preventing the update, you can use a trigger. The trigger can substitute a valid value
and invoke a procedure that sends a notice to an administrator about the attempted invalid update.

You define triggers with the CREATE TRIGGER statement.

Triggers move the business rule application logic into the database, which results in faster application
development and easier maintenance. The business rule is no longer repeated in several applications,
and the rule is centralized to the trigger. For example, Db2 can check the validity of the changes that any
application makes to a salary column, and you are not required to change application programs when the
logic changes.

There are a number of criteria that are defined when creating a trigger, which are used to determine when
a trigger should be activated.

• The subject table (also known as the triggering table) defines the table or view for which the trigger is
defined.

• The trigger event defines a specific SQL operation that modifies the subject table. The operation could
be a delete, insert, or update.

• The trigger activation time defines whether the trigger should be activated before or after the trigger
event is performed on the subject table.

The statement that causes a trigger to be activated includes a set of affected rows. These are the rows of
the subject table that are being deleted, inserted or updated. The trigger granularity defines whether the
actions of the trigger are to be performed once for the statement, or once for each of the rows in the set of
affected rows.

The trigger action consists of an optional search condition and a set of SQL statements that are executed
whenever the trigger is activated. The SQL statements are only executed if no search condition is
specified, or the specified search condition evaluates to true.

The triggered action can refer to the values in the set of affected rows. This is supported through the use
of transition variables. Transition variables use the names of the columns in the subject table, qualified by
a specified name that identifies whether the reference is to the old value (prior to the update) or the new
value (after the update). The new value can also be changed using an assignment in a before update or
insert trigger.

Another means of referring to the values in the set of affected rows is by using transition tables. Transition
tables also use the names of the columns of the subject table, but have a name specified that allows the
complete set of affected rows to be treated as a table. Transition tables can only be used in after triggers,
and cannot be modified. Separate transition tables can be defined for old and new values.

Multiple triggers can be specified for a combination of table, event, or activation time. The order in which
the triggers are activated is the same as the order in which they were created. Thus, the most recently
created trigger is the last trigger that is activated.

The activation of a trigger might cause trigger cascading. This is the result of the activation of one trigger
that executes SQL statements that cause the activation of other triggers, or even the same trigger again.
The triggered actions might also cause updates as a result of the original modification, which might
result in the activation of additional triggers. With trigger cascading, a significant chain of triggers might
be activated, causing significant change to the database as a result of a single delete, insert or update
statement.

Chapter 1. Db2 for z/OS and SQL concepts 33

The actions that are performed in the trigger are considered to be part of the operation that caused the
trigger to be executed.

• The database manager ensures that the operation and the triggers that are executed as a result of
that operation either all complete or are all backed out. Operations that occurred prior to the triggering
operation are not affected.

• The database manager effectively checks all constraints (except for a constraint with a RESTRICT delete
rule) after the operation and the associated triggers have been executed.

Basic and advanced triggers
Basic and advanced triggers offer different functionality. See the corresponding syntax diagrams for the
CREATE TRIGGER (basic) and CREATE TRIGGER (advanced) SQL statements for more information. The
following table identifies some behavioral differences between the two types of triggers.

Table 8. Behavioral differences of basic and advanced triggers

Behavior Basic Trigger Advanced Trigger

CREATE or ALTER
TRIGGER
statement
invocation

CREATE or ALTER TRIGGER (basic)
statement can be embedded in
an application program or issued
interactively. It is an executable
statement that can be dynamically
prepared only if DYNAMICRULES run
behavior is implicitly or explicitly
specified.

CREATE or ALTER TRIGGER (advanced)
statement can be issued interactively.
It is an executable statement that
can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly
or explicitly specified.

Authorization
requirement

The privilege set must include SYSADM
or the SELECT privilege on the table or
view on which the trigger is defined, if the
REFERENCING clause is included in the
trigger definition.

The privilege set must include SYSADM
or the SELECT privilege for the triggering
table or view on which the trigger is
defined.

Default encoding
scheme

The default encoding scheme is Unicode. The default encoding scheme is
determined from the value of the
DEFAULT APPLICATION ENCODING
SCHEME field on the installation panel
DSNTIPF.

Null attribute for
transition
variables

A transition variable is defined with the
same null attribute as the column it is
associated with.

All transition variables are nullable.

Unhandled
warnings at
completion of a
trigger

Unhandled warnings are not returned to
the statement that activated a trigger.
When processing in a trigger completes
with a warning, the warning is not
returned to the statement that activated
the trigger.

Unhandled warnings are returned to the
statement that activated a trigger. When
processing in a trigger completes with a
warning, the warning is returned to the
statement that activated the trigger.

Transition
variables passed
as OUT or INOUT
arguments to a
procedure

Changes to transition variables in a
procedure are not visible on return to
the invoking environment, and changes to
transition variables (for an AFTER trigger)
are not disallowed.

Changes to transition variables in a
procedure are visible on return to the
invoking environment, and changes to
transition variables (for an AFTER trigger)
are disallowed.

Stand-alone
fullselect and
VALUES
statements

Supported. Not supported. Use a SELECT INTO
statement or VALUES INTO statement
instead.

34 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Related concepts
Creation of triggers (Introduction to Db2 for z/OS)

User-defined types
A user-defined data type is a data type that is defined to the database using a CREATE statement.

A user-defined data type is a distinct type or an array type.

A distinct type is a user-defined type that shares its internal representation with a built-in data type
(its source type), but is considered to be a separate and incompatible data type for most operations. A
distinct type is created with an SQL CREATE TYPE (distinct) statement. A distinct type can be used to
define a column of a table, or a parameter of a routine.

An array type is a user-defined data type that consists of an ordered set of elements of a single built-in
data type. Elements can be accessed and modified by their index position. An array type is created with
an SQL CREATE TYPE (array) statement. An array type can be used as a parameter of an SQL routine, as a
variable in an SQL routine, and as a global variable.

Related concepts
Array types and values
A user-defined array type is a data type that is defined as an array of elements. A user-defined array type
can be either an ordinary array or associative array.
Distinct types
A distinct type is a user-defined data type that shares its internal representation with a built-in data type
(its source type), but is considered to be a separate and incompatible data type for most operations.
Related reference
CREATE TYPE statement
The CREATE TYPE statement defines a user-defined data type at the current server.

Routines in Db2 for z/OS: functions and procedures
A routine is an executable SQL object. The two types of routines in Db2 for z/OS are functions and stored
procedures.

Functions

A function is a routine that can be invoked from within other SQL statements and that returns a value or a
table.

Functions are classified as either SQL functions or external functions. SQL functions are written using SQL
statements, including SQL procedural language (SQL PL). External functions reference a host language
program. The host language program can contain SQL, but does not require SQL.

You define functions by using the CREATE FUNCTION statement. You can classify functions as built-in
functions, user-defined functions, or cast functions that are generated for distinct types. Functions can
also be classified as aggregate, scalar, or table functions, depending on the input data values, result
values, and the context in which they can be invoked.

For more information, see “Functions” on page 237.

Procedures

A procedure, also known as a stored procedure, is a routine that you can call to perform operations that
can include SQL statements.

Chapter 1. Db2 for z/OS and SQL concepts 35

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationoftriggers.html

Procedures are classified as either SQL procedures or external procedures. SQL procedures contain
only SQL statements, including SQL procedural language (SQL PL). External procedures reference a host
language program that might or might not contain SQL statements.

Db2 for z/OS supports the following types of procedures:

Native SQL procedures
The procedure body is written exclusively in SQL statements, including SQL procedural language (SQL
PL) statements. The procedure body is contained and specified in the procedure definition along with
various attributes of the procedure. A package is generated for a native SQL procedure. It contains the
procedure body, including control statements. It might sometimes also include statements generated
by Db2. Each time that the procedure is invoked, the package executes one or more times.

All SQL procedures that are created with a CREATE PROCEDURE statement that does not specify
the FENCED or EXTERNAL options are native SQL procedures. More capabilities are supported for
native SQL procedures, they usually perform better than external SQL procedures, and no associated
C program is generated for them.

See “CREATE PROCEDURE statement (SQL - native procedure)” on page 1607.

External stored procedures
The procedure body is an external program that is written in a programming language such as C,
C++, COBOL, or Java and it can contain SQL statements. The source code for an external stored
procedure is separate from the procedure definition and is bound into a package. The name of the
external executable is specified as part of the procedure definition along with various attributes of
the procedure. All programs must be designed to run using Language Environment. Your COBOL and
C++ stored procedures can contain object-oriented extensions. Each time that the stored procedure is
invoked, the logic in the procedure controls whether the package executes and how many times.

For more information, see Creating external stored procedures (Db2 Application programming and
SQL).

See “CREATE PROCEDURE statement (external procedure)” on page 1580.

External SQL procedures (deprecated)
The procedure body is written exclusively in SQL statements, including SQL procedural language
(SQL PL) statements. The procedure body is specified in the procedure definition along with various
attributes of the procedure. A C program and an associated package are generated for an external
SQL procedure. It contains the procedure body, including control statements. It might sometimes also
include statements generated by Db2.Each time that the procedure is invoked, the package executes
one or more times.

Native SQL procedures are more fully supported, easier to maintain, and typically perform better than
external SQL procedures, which are deprecated.

See “CREATE PROCEDURE statement (SQL - external procedure) (deprecated)” on page 1597.

SQL control statements are supported in SQL procedures. Control statements are SQL statements that
allow SQL to be used in a manner similar to writing a program in a structured programming language. SQL
control statements provide the capability to control the logic flow, declare and set variables, and handle
warnings and exceptions. Some SQL control statements include other nested SQL statements.

SQL procedures provide the same benefits as procedures in a host language. That is, a common piece of
code needs to be written and maintained only once and can be called from several programs.

SQL procedures provide additional benefits when they contain SQL statements. In this case, SQL
procedures can reduce or eliminate network delays that are associated with communication between
the client and server and between each SQL statement. SQL procedures can improve security by providing
a user the ability to invoke only a procedure instead of providing them with the ability to execute the SQL
that the procedure contains.

You define procedures by using the CREATE PROCEDURE statement.

Related concepts
Functions

36 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createexternalsp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createexternalsp.html

A function is an operation denoted by a function name followed by zero or more operands that are
enclosed in parentheses. It represents a relationship between a set of input values and a set of result
values.
Creation of user-defined functions (Introduction to Db2 for z/OS)
Use of an application program as a stored procedure (Introduction to Db2 for z/OS)
External stored procedures (Db2 Application programming and SQL)
SQL control statements for external SQL procedures
SQL control statements for external SQL procedures can be used only with SQL procedures that are
created with the FENCED or EXTERNAL clause. SQL control statements provide the capability to control
the logic flow, declare and set variables, and handle warnings and exceptions. Some SQL control
statements include other nested SQL statements.
SQL procedural language (SQL PL)
Related tasks
Creating a user-defined function (Db2 Application programming and SQL)
Implementing Db2 stored procedures (Stored procedures provided by Db2)
Related reference
Procedures that are supplied with Db2
A procedure is an application program that can be started through the SQL CALL statement. The
procedure is specified by a procedure name, which may be followed by arguments that are enclosed
within parentheses. This information contains syntax diagrams, semantic descriptions, rules, and
examples of the use of the system supplied procedures.

Sequences
A sequence is a stored object that simply generates a sequence of numbers in a monotonically ascending
(or descending) order. A sequence provides a way to have Db2 automatically generate unique integer
primary keys and to coordinate keys across multiple rows and tables.

A sequence can be used to exploit parallelization, instead of programmatically generating unique
numbers by locking the most recently used value and then incrementing it.

Sequences are ideally suited to the task of generating unique key values. One sequence can be used for
many tables, or a separate sequence can be created for each table requiring generated keys. A sequence
has the following properties:

• Guaranteed, unique values, assuming that the sequence is not reset and does not allow the values to
cycle

• Monotonically increasing or decreasing values within a defined range
• Can increment with a value other than 1 between consecutive values (the default is 1).
• Recoverable. If Db2 should fail, the sequence is reconstructed from the logs so that Db2 guarantees

that unique sequence values continue to be generated across a Db2 failure.

Values for a given sequence are automatically generated by Db2. Use of Db2 sequences avoids the
performance bottleneck that results when an application implements sequences outside the database.
The counter for the sequence is incremented (or decremented) independently of the transaction. In some
cases, gaps can be introduced in a sequence. A gap can occur when a given transaction increments a
sequence two times. The transaction might see a gap in the two numbers that are generated because
there can be other transactions concurrently incrementing the same sequence. A user might not realize
that other users are drawing from the same sequence. Furthermore, it is possible that a given sequence
can appear to have generated gaps in the numbers, because a transaction that might have generated a
sequence number might have rolled back or the Db2 subsystem might have failed. Updating a sequence is
not part of a transaction's unit of recovery.

A sequence is created with a CREATE SEQUENCE statement. A sequence can be referenced using a
sequence-reference. A sequence reference can appear most places that an expression can appear. A
sequence reference can specify whether the value to be returned is a newly generated value, or the
previously generated value.

Chapter 1. Db2 for z/OS and SQL concepts 37

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationofudfs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_applicationprogramasstoredprocedure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_externalsp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_defineudf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sproc/src/tpc/db2z_implementstoredprocedure.html

Although there are similarities, a sequence is different than an identity column. A sequence is an object,
whereas an identity column is a part of a table. A sequence can be used with multiple tables, but an
identity column is tied to a single table.

Related reference
CREATE SEQUENCE statement
The CREATE SEQUENCE statement creates a sequence at the current server.

Db2 system objects
Unlike the Db2 data structures that users create and access, Db2 controls and accesses system objects.

Db2 has a comprehensive infrastructure that enables it to provide data integrity, performance, and the
ability to recover user data. In addition, Parallel Sysplex® data sharing uses shared system objects.

Related concepts
Db2 database objects overview (Introduction to Db2 for z/OS)

Db2 catalog
Db2 maintains a set of tables that contain information about the data that Db2 controls. These tables are
collectively known as the catalog.

The catalog tables contain information about Db2 objects such as tables, views, and indexes. When you
create, alter, or drop an object, Db2 inserts, updates, or deletes rows of the catalog that describe the
object.

The Db2 catalog consists of tables of data about everything defined to the Db2 system, including table
spaces, indexes, tables, copies of table spaces and indexes, and storage groups. The system database
DSNDB06 contains the Db2 catalog.

When you create, alter, or drop any structure, Db2 inserts, updates, or deletes rows of the catalog
that describe the structure and tell how the structure relates to other structures. For example,
SYSIBM.SYSTABLES is one catalog table that records information when a table is created. Db2 inserts
a row into SYSIBM.SYSTABLES that includes the table name, its owner, its creator, and the name of its
table space and its database.

To understand the role of the catalog, consider what happens when the EMP table is created. Db2 records
the following data:

Table information
To record the table name and the name of its owner, its creator, its type, the name of its table space,
and the name of its database, Db2 inserts a row into the catalog.

Column information
To record information about each column of the table, Db2 inserts the name of the table to which the
column belongs, its length, its data type, and its sequence number by inserting a row into the catalog
for each column of the table.

Authorization information
To record that the owner of the table has authorization to create the table, Db2 inserts a row into the
catalog.

Tables in the catalog are like any other database tables with respect to retrieval. If you have authorization,
you can use SQL statements to look at data in the catalog tables in the same way that you retrieve
data from any other table in the Db2 database. Db2 ensures that the catalog contains accurate object
descriptions. If you are authorized to access the specific tables or views on the catalog, you can use
SELECT on the catalog. You can use INSERT, UPDATE, and DELETE statements on updatable catalog
tables, but you cannot use TRUNCATE or MERGE on the catalog.

The communications database (CDB) is part of the Db2 catalog. The CDB consists of a set of tables
that establish conversations with remote database management systems (DBMSs). The distributed data
facility (DDF) uses the CDB to send and receive distributed data requests.

38 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_db2datastructures.html

Tip: For best results, check the consistency of the Db2 catalog and directory regularly, even outside of
the migration process. For detailed instructions, see Verify the integrity of Db2 table spaces and Check for
consistency between catalog tables.

Related reference
Db2 catalog tables
Db2 for z/OS maintains a set of tables (in database DSNDB06) called the Db2 catalog.

Db2 directory
The Db2 directory contains information that Db2 uses during normal operation.

You can use SQL to retrieve data only from the directory tables that are listed in Appendix I, “Db2
directory tables,” on page 2769. You can submit queries against the Db2 catalog for Db2 directory objects.

The directory consists of a set of Db2 tables that are stored in table spaces in system database DSNDB01.
Each of the table spaces that are listed in the following table is contained in a VSAM linear data set.

Table 9. Directory table spaces

Table space name Description

SCT02 Contains the internal form of SQL statements that are
contained in an application. If you bound a plan with SQL
statements in a prior release, Db2 created a structure in
SCT02.

SPT01
Skeleton package

Contains the internal form of SQL statements that are
contained in a package.

SYSSPUXA Contains the contents of a package selection.

SYSSPUXB Contains the contents of a package explain block.

SYSLGRNX
Log range

Tracks the opening and closing of table spaces, indexes,
or partitions. By tracking this information and associating
it with relative byte addresses (RBAs) as contained in the
Db2 log, Db2 can reduce recovery time by reducing the
amount of log that must be scanned for a particular table
space, index, or partition.

SYSUTILX
System utilities

Contains a row for every utility job that is running. The
row persists until the utility is finished. If the utility
terminates without completing, Db2 uses the information
in the row when you restart the utility.

DBD01
Database descriptor (DBD)

Contains internal information, called database descriptors
(DBDs), about the databases that exist within the Db2
subsystem.

Each database has exactly one corresponding DBD that
describes the database, table spaces, tables, table check
constraints, indexes, and referential relationships. A DBD
also contains other information about accessing tables in
the database. Db2 creates and updates DBDs whenever
their corresponding databases are created or updated.

SYSDBDXA Contains the contents of a DBD section.

Tip: For best results, check the consistency of the Db2 catalog and directory regularly, even outside of
the migration process. For detailed instructions, see Verify the integrity of Db2 table spaces and Check for
consistency between catalog tables.

Chapter 1. Db2 for z/OS and SQL concepts 39

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_runlinkchkr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_chkctlgconsistency.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_chkctlgconsistency.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_runlinkchkr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_chkctlgconsistency.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_chkctlgconsistency.html

Active and archive logs
Db2 records all data changes and other significant events in a log.

If you keep these logs, Db2 can re-create those changes for you in the event of a failure or roll the
changes back to a previous point in time.

Db2 writes each log record to a disk data set called the active log. When the active log is full, Db2 copies
the contents of the active log to a disk or magnetic tape data set called the archive log.

You can choose either single logging or dual logging.

• A single active log contains up to 93 active log data sets.
• With dual logging, the active log has twice the capacity for active log data sets, because two identical

copies of the log records are kept.

Each Db2 subsystem manages multiple active logs and archive logs. The following facts are true about
each Db2 active log:

• Each log can be duplexed to ensure high availability.
• Each active log data set is a VSAM linear data set (LDS).
• Db2 supports striped active log data sets, however striping is generally unnecessary with the latest

devices, and is not recommended in most cases.

Important: Do not use striped active logs for disaster recovery.

Related tasks
Managing the log and the bootstrap data set (Db2 Administration Guide)
Improving Db2 log performance (Db2 Performance)
Related information
Reading log records (Db2 Administration Guide)

Bootstrap data set
The bootstrap data set (BSDS) is a VSAM key-sequenced data set (KSDS). This KSDS contains information
that is critical to Db2, such as the names of the logs. Db2 uses information in the BSDS for system restarts
and for any activity that requires reading the log.

Specifically, the BSDS contains:

• An inventory of all active and archive log data sets that are known to Db2. Db2 uses this information to
track the active and archive log data sets. Db2 also uses this information to locate log records to satisfy
log read requests during normal Db2 system activity and during restart and recovery processing.

• A wrap-around inventory of all recent Db2 checkpoint activity. Db2 uses this information during restart
processing.

• The distributed data facility (DDF) communication record, which contains information that is necessary
to use Db2 as a distributed server or requester.

• Information about buffer pools.

Because the BSDS is essential to recovery in the event of subsystem failure, during installation Db2
automatically creates two copies of the BSDS and, if space permits, places them on separate volumes.

The BSDS can be duplexed to ensure availability.

For instructions, see Convert BSDS records to the extended 10-byte format: DSNTIJCB (Db2 Installation
and Migration).

Related tasks
Managing the log and the bootstrap data set (Db2 Administration Guide)
Convert BSDS records to the extended 10-byte format: DSNTIJCB (Db2 Installation and Migration)

40 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_managebsds.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_improvedb2logperf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_logrecord.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_convertbsdsinst.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_convertbsdsinst.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_managebsds.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_convertbsdsinst.html

Buffer pools
Buffer pools are areas of virtual storage that temporarily store pages of table spaces or indexes.

When an application program accesses a row of a table, Db2 places the page that contains that row in
a buffer. Access to data in this temporary storage is faster than accessing data on a disk. If the required
data is already in a buffer, the application program does not need to wait for it to be retrieved from disk,
so the time and cost of retrieving the page is reduced.

Buffer pools require monitoring and tuning. Buffer pool sizes are critical to the performance
characteristics of an application or group of applications that access data in those buffer pools.

You can specify default buffer pools for user data and for indexes. A special type of buffer pool that is
used only in Parallel Sysplex data sharing is the group buffer pool, which resides in the coupling facility.
Group buffer pools reside in a special PR/SM LPAR logical partition called a coupling facility, which
enables several Db2 subsystems to share information and control the coherency of data.

Buffer pools reside in the database services address space (ssnmDBM1). The maximum size of a buffer
pool is 16 TB.

Related concepts
The role of buffer pools in caching data (Introduction to Db2 for z/OS)
Related tasks
Tuning database buffer pools (Db2 Performance)
Calculating buffer pool size (Db2 Installation and Migration)
Enabling automatic buffer pool size management (Db2 Performance)

Data definition control support database
The data definition control support (DDCS) database refers to a user-maintained collection of tables that
are used by data definition control support to restrict the submission of specific Db2 DDL (data definition
language) statements to selected application identifiers (plans or collections of packages).

This database is automatically created during installation. After this database is created, you must
populate the tables to use this facility. The system name for this database is DSNRGFDB.

The resource limit facility
The resource limit facility (sometimes abbreviated RLF) enables you to control the amount of processor
resources that are used by SQL statements.

GUPI

Resource limits apply to the following types of SQL statements:

• SELECT
• INSERT
• UPDATE
• MERGE
• TRUNCATE
• DELETE

You can specify resource limits for dynamic SQL statements and static SQL statements. Resource limits
apply to SQL statement regardless of whether they are issued locally or remotely. The resource limit
facility does not apply to primary or secondary authorization IDs that have installation SYSADM or
installation SYSOPR authority.

You can establish a single limit for all users, different limits for individual users, or both. You can choose
to have these limits applied before the statement is executed through predictive governing, or while a
statement is running, through reactive governing. You can also use reactive and predictive governing

Chapter 1. Db2 for z/OS and SQL concepts 41

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_bufferpoolsanddatacaching.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_tunedbbufferpools.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_calcbpsize.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_enableautobpsize.html

in combination. You define these limits in one or more resource limit tables, named DSNRLSTxx or
DSNRLMTxx, depending on the monitoring purpose. GUPI

Related concepts
Resource limit facility controls (Db2 Performance)
Related tasks
Setting limits for system resource usage by using the resource limit facility (Db2 Performance)
Related reference
Resource limit facility tables (Db2 Performance)
-START RLIMIT command (Db2) (Db2 Commands)

Work file database
Use the work file database as storage for processing SQL statements that require working space, such as
that required for a sort.

The work file database is used as storage for Db2 work files for processing SQL statements that require
working space (such as the space that is required for a sort), and as storage for created global temporary
tables and declared global temporary tables.

Db2 creates a work file database and some table spaces in it for you at installation time. You can create
additional work file table spaces at any time. You can drop, re-create, and alter the work file database or
the table spaces in it, or both, at any time.

In a non-data-sharing environment, the work file database is named DSNDB07. In a data sharing
environment, each Db2 member in the data sharing group has its own work file database.

You can also use the work file database for all temporary tables.

Related concepts
How sort work files are allocated (Db2 Performance)
Related reference
SEPARATE WORK FILES field (WFDBSEP subsystem parameter) (Db2 Installation and Migration)

Application processes and transactions
An application process involves running one or more programs. Different application processes might
involve running different programs or running the same program at different times. When an application
interacts with a Db2 database, a transaction begins.

Many different types of programs access Db2 data: user-written applications, SQL statements that users
enter dynamically, and even utilities. The single term that describes any type of access to Db2 data is
called an application process. All SQL programs run as part of an application process.

A transaction is a sequence of actions between the application and the database; the sequence begins
when data in the database is read or written. A transaction is also known as a unit of work.

For example, Consider what happens when you access funds in a bank account. A banking transaction
might involve the transfer of funds from one account to another. During the transaction, an application
program first subtracts the funds from the first account, and then it adds the funds to the second account.
Following the subtraction step, the data is inconsistent. Consistency is reestablished after the funds are
added to the second account.

To ensure data consistency, Db2 uses a variety of techniques that include a commit operation, a rollback
operation, and locking.

When the subtraction and addition steps of the banking transaction are complete, the application can use
the commit operation to end the transaction, thereby making the changes available to other application
processes. The commit operation makes the database changes permanent.

Consider what happens if more than one application process requests access to the same data at the
same time. Or, under certain circumstances, an SQL statement might run concurrently with a utility on

42 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_controlgovernor.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_setsystemresourcelimit.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_resourcelimittables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_startrlimit.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_sortfilesallocated.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_wfdbsep.html

the same table space. Db2 uses locks to maintain data integrity under these conditions to prevent, for
example, two application processes from updating the same row of data simultaneously.

Db2 acquires locks to prevent uncommitted changes that are made by one application process from
being perceived by any other. Db2 automatically releases all locks that it has acquired on behalf of an
application process when that process ends, but an application process can also explicitly request that
locks be released sooner. A commit operation releases locks that an application process has acquired and
commits database changes that were made by the same process.

Db2 also provides a way to back out uncommitted changes that an application process makes. A back
out might be necessary in the event of a failure on the part of an application process or in a deadlock
situation. Deadlock occurs when contention for the use of a resource, such as a table, cannot be resolved.
An application process, however, can explicitly request that its database changes be backed out. This
operation is called rollback. The interface that an SQL program uses to explicitly specify these commit and
rollback operations depends on the environment. For example, in the JDBC environment, applications use
commit and rollback methods to commit or roll back transactions.

Related concepts
Programming for Db2 for z/OS (Introduction to Db2 for z/OS)

Application processes, concurrency, and recovery
All SQL programs execute as part of an application process. An application process involves the execution
of one or more programs, and it is the unit to which Db2 allocates resources and locks.

Different application processes might involve the execution of different programs, or different executions
of the same program. The means of initiating and terminating an application process are dependent on
the environment.

Locking, commit, and rollback
More than one application process might request access to the same data at the same time. Furthermore,
under certain circumstances, an SQL statement can execute concurrently with a utility on the same table
space. Locking is used to maintain data integrity under such conditions, preventing, for example, two
application processes from updating the same row of data simultaneously.

Db2 implicitly acquires locks to prevent uncommitted changes made by one application process from
being perceived by any other. Db2 will implicitly release all locks it has acquired on behalf of an
application process when that process ends, but an application process can also explicitly request that
locks be released sooner. A commit operation releases locks acquired by the application process and
commits database changes made by the same process.

Db2 provides a way to back out uncommitted changes made by an application process. This might be
necessary in the event of a failure on the part of an application process, or in a deadlock situation.
An application process, however, can explicitly request that its database changes be backed out. This
operation is called rollback.

The interface used by an SQL program to explicitly specify these commit and rollback operations depends
on the environment. If the environment can include recoverable resources other than Db2 databases, the
SQL COMMIT and ROLLBACK statements cannot be used. Thus, these statements cannot be used in an
IMS, CICS, or WebSphere environment.

Unit of work
A unit of work is a recoverable sequence of operations within an application process. A unit of work is
sometimes called a logical unit of work.

At any time, an application process has a single unit of work, but the life of an application process can
involve many units of work as a result of commit or full rollback operations.

A unit of work is initiated when an application process is initiated. A unit of work is also initiated when the
previous unit of work is ended by something other than the end of the application process. A unit of work
is ended by a commit operation, a full rollback operation, or the end of an application process. A commit
or rollback operation affects only the database changes made within the unit of work it ends. While

Chapter 1. Db2 for z/OS and SQL concepts 43

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_applicationprogrammingfordb2.html

these changes remain uncommitted, other application processes are unable to perceive them unless
they are running with an isolation level of uncommitted read. The changes can still be backed out. Once
committed, these database changes are accessible by other application processes and can no longer
be backed out by a rollback. Locks acquired by Db2 on behalf of an application process that protects
uncommitted data are held at least until the end of a unit of work.

The initiation and termination of a unit of work define points of consistency within an application process.
A point of consistency is a claim by the application that the data is consistent. For example, a banking
transaction might involve the transfer of funds from one account to another. Such a transaction would
require that these funds be subtracted from the first account, and added to the second. Following the
subtraction step, the data is inconsistent. Only after the funds have been added to the second account is
consistency reestablished. When both steps are complete, the commit operation can be used to end the
unit of work, thereby making the changes available to other application processes. The following figure
illustrates this concept.

Point of
consistency

Next point of
consistency

COMMIT;
End unit
of work

Begin
unit of work

Database updates

One unit of work

Time
line

Figure 7. Unit of work with a commit operation

Unit of recovery
A Db2 unit of recovery is a recoverable sequence of operations executed by Db2 for an application
process.

If a unit of work involves changes to other recoverable resources, the unit of work will be supported by
other units of recovery. If relational databases are the only recoverable resources used by the application
process, then the scope of the unit of work and the unit of recovery are the same and either term can be
used.

Rolling back work
Db2 can back out all changes made in a unit of recovery or only selected changes. Only backing out all
changes results in a point of consistency.

Rolling back all changes
The SQL ROLLBACK statement without the TO SAVEPOINT clause specified causes a full rollback
operation. If such a rollback operation is successfully executed, Db2 backs out uncommitted changes
to restore the data consistency that existed when the unit of work was initiated.

That is, Db2 undoes the work, as shown in the following figure:

44 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Point of
consistency

New point of
consistency

Unit of work

Database updates Back out updates

Time
line

Begin
unit of work

ROLLBACK,
failure, or
deadlock;

begin rollback

Data is returned
to its initial state;
end unit of work

Figure 8. Rolling back all changes from a unit of work

Rolling back selected changes using savepoints
A savepoint represents the state of data at some particular time during a unit of work. An application
process can set savepoints within a unit of work, and then as logic dictates, roll back only the changes
that were made after a savepoint was set.

For example, part of a reservation transaction might involve booking an airline flight and then a hotel
room. If a flight gets reserved but a hotel room cannot be reserved, the application process might want to
undo the flight reservation without undoing any database changes made in the transaction prior to making
the flight reservation. SQL programs can use the SQL SAVEPOINT statement to set savepoints, the SQL
ROLLBACK statement with the TO SAVEPOINT clause to undo changes to a specific savepoint or the last
savepoint that was set, and the SQL RELEASE SAVEPOINT statement to delete a savepoint. The following
figure illustrates this concept.

Unit of work

Time
line

Begin
unit of work

Savepoint A COMMIT
End unit of work

Rollback to A;
database updates

made between
times T1 and T2
are rolled back

Figure 9. Rolling back changes to a savepoint within a unit of work

Packages and application plans
A package contains control structures that Db2 uses when it runs SQL statements. An application plan
relates an application process to a local instance of Db2 and specifies processing options.

Packages are produced during program preparation. You can think of the control structures as the bound
or operational form of SQL statements. All control structures in a package are derived from the SQL
statements that are embedded in a single source program.

An application plan contains a list of package names.

Db2 applications require an application plan. Packages make application programs more flexible and
easier to maintain.

In general, you create plans and packages by using the Db2 commands BIND PLAN and BIND PACKAGE.

Chapter 1. Db2 for z/OS and SQL concepts 45

Example

The following figure shows an application plan that contains two packages. Suppose that you decide to
change the SELECT statement in package AA to select data from a different table. In this case, you need
to bind only package AA again and not package AB.

GUPI

Plan A

Package AA

Package AB

SELECT * FROM TABLE1
TABLE3

SELECT * FROM TABLE2

Package AA

Package AB

Figure 10. Application plan and packages

GUPI

Packages for triggers and routines
A trigger package is a special type of package that is created when you issue a CREATE TRIGGER
statement. It contains the trigger body and the WHEN clause for the trigger. When the trigger activates,
the package executes one or more times.

Packages are also generated, or explicitly created for certain SQL routines, including stored procedures
and certain types of user defined functions. The package for a routine contains the routine body, including
control statements. The package might also contain statements that are generated by Db2. Each time that
the routine is invoked, the package executes one or more times.

Specifically, Db2 generates a package automatically for the following types of SQL routines:

• External scalar functions
• External table functions
• Compiled SQL scalar functions
• Native SQL procedures
• External SQL procedures

For external stored procedures, you explicitly bind the source code for the stored procedure into a
package before or you issue the CREATE PROCEDURE statement. Each time that the external procedure is
invoked, the package executes one or more times.

Packages for JDBC, SQLJ, and ODBC applications
Packages for JDBC, SQLJ, and ODBC applications serve different purposes. For more information, see
Preparing and running JDBC and SQLJ programs (Db2 Application Programming for Java) and Db2 ODBC
run time environment setup (Db2 Programming for ODBC).

Related concepts
Programming for Db2 for z/OS (Introduction to Db2 for z/OS)

46 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_javaprepexec.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/odbc/src/tpc/db2z_setup.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/odbc/src/tpc/db2z_setup.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_applicationprogrammingfordb2.html

Preparation process for an application program (Introduction to Db2 for z/OS)
Related reference
SET CURRENT PACKAGE PATH statement
The SET CURRENT PACKAGE PATH statement assigns a value to the CURRENT PACKAGE PATH special
register.
SET CURRENT PACKAGESET statement
The SET CURRENT PACKAGESET statement assigns a value to the CURRENT PACKAGESET special
register.
CREATE FUNCTION statement (overview)
The CREATE FUNCTION statement registers a user-defined function with a database server. Each type of
function that you can register with this statement is described separately.
CREATE PROCEDURE statement (overview)
The CREATE PROCEDURE statement registers a stored procedure with a database server. You can register
the following types of procedures with this statement, each of which is described separately.
CREATE TRIGGER statement (basic trigger)

Subsystem parameters
Subsystem parameters are settings that apply to a Db2 for z/OS subsystem. For example, the AUTH
subsystem parameter controls whether Db2 checks authorizations. Many users colloquially refer to
subsystem parameters as zparms.

Generally, system administrators set the value of subsystem parameters when they install or migrate Db2.
After installation or migration, a system administrator can change the values of subsystem parameters
if needed. However, because these parameters can affect the entire subsystem, system administrators
should first carefully evaluate and plan for the impact of any changed values. In some cases, changing the
value of a subsystem parameter requires Db2 to be stopped and restarted.

Most subsystem parameters are listed on installation panels. However, some parameters are not. For
a list of subsystem parameters, including those parameters that are not on panels, see Directory of
subsystem parameters, panel fields, and application default values (Db2 Installation and Migration). This
list includes important characteristics of each parameter, including whether changing a the parameter
requires you to stop and restart Db2.

Subsystem parameter values are contained in a load module that is generated by installation job
DSNTIJUZ. The name of this subsystem parameters load module is specified in the PARAMETER MODULE
field of installation panel DSNTIPO3. The default name is DSNZPARM. However, to avoid naming conflicts
with other members, you should use a different name. Sometimes the naming convention DSNZPxxx is
used. In a data sharing environment, each member must have its own subsystem parameter load module.

One way to check the subsystem parameter values is to call stored procedure
SYSPROC.ADMIN_INFO_SYSPARM by running sample job DSNTEJ6Z.

Some Db2subsystem parameters are considered security parameters. These parameters can be updated
only by processes with a privilege set that includes installation SYSADM authority or SECADM authority.
for more information, see Security parameters in Db2 for z/OS (Db2 Installation and Migration).

Related concepts
Subsystem parameters and application defaults in a data sharing environment (Db2 Installation and
Migration)
Application programming default values (Introduction to Db2 for z/OS)
The Db2 installation CLIST panel session (Db2 Installation and Migration)
Related reference
PARAMETER MODULE field (Db2 Installation and Migration)

Chapter 1. Db2 for z/OS and SQL concepts 47

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_programprepprocesses.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_zparmdir.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_zparmdir.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntej6z.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_securityparm.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_chooseparamsmembers.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_chooseparamsmembers.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_decp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_clistpanelsession.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_parametermodule.html

Storage structures
In Db2, a storage structure is a set of one or more VSAM data sets that hold Db2 tables or indexes. A
storage structure is also called a page set.

The two primary types of storage structures in Db2 for z/OS are table spaces and index spaces.

Related concepts
Db2 database objects overview (Introduction to Db2 for z/OS)
Implementing Db2 indexes (Db2 Administration Guide)
Related information
Implementing Db2 table spaces (Db2 Administration Guide)

Db2 databases
Db2 databases are a set of Db2 structures that include a collection of tables, their associated indexes,
and the table spaces in which they reside. You define a database by using the CREATE DATABASE
statement.

Whenever a table space is created, it is explicitly or implicitly assigned to an existing database. If you
create a table space and do not specify a database name, the table space is created in the default
database, DSNDB04. In this case, Db2 implicitly creates a database or uses an existing implicitly created
database for the table. All users who have the authority to create table spaces or tables in database
DSNDB04 have authority to create tables and table spaces in an implicitly created database. If the table
space is implicitly created, and you do not specify the IN clause in the CREATE TABLE statement, Db2
implicitly creates the database to which the table space is assigned.

A single database, for example, can contain all the data that is associated with one application or with
a group of related applications. Collecting that data into one database allows you to start or stop access
to all the data in one operation. You can also grant authorization for access to all the data as a single
unit. Assuming that you are authorized to access data, you can access data that is stored in different
databases.

Generally, it is best to minimize the number of table spaces in each database. For the recommended
partition-by-range and partition-by-growth table space types, each table space contains only a single
table. However, if you do use multi-table segmented (non-UTS) table spaces, which are deprecated,
minimize the number of tables in each table space. Too many table spaces and tables in a database can
cause decreases in performance and manageability issues. If you reduce the number of table spaces
and tables in a database, you improve performance, minimize maintenance, increase concurrency, and
decrease log volume.

Deprecated function: FL 504 Non-UTS table spaces for base tables are deprecated. CREATE
TABLESPACE statements that run at application compatibility level V12R1M504 or higher always create
a partition-by-growth or partition-by-range table space, and CREATE TABLE statements that specify a
non-UTS table space (including existing multi-table segmented table spaces) return an error. However,
you can use a lower application compatibility level to create table spaces of the deprecated types if
needed, such as for recovery situations. For instructions, see Creating non-UTS table spaces (deprecated)
(Db2 Administration Guide).

The following figure shows how the main Db2 data structures fit together. Two databases, A and B,
are represented as squares. Each database contains a table space and index space. Each index space
contains one index. In database B, the table space is partitioned and contains table B1, partitions 1–4.
The index space contains one partitioning index, parts 1–4.

48 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_db2datastructures.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_indeximplementation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_tablespaceimplentation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createdeprecatedtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createdeprecatedtablespace.html

Database A

Database B

Table space 1

Table space 2
(partitioned)

Partitioning
index part 1

Index
on Table

A1

Index space

Index space

Table A1

Table B1
Part 1

Part 2

Part 3

Part 4

Part 2

Part 3

Part 4

Figure 11. Data structures in a Db2 database

When you migrate Db2 12, Db2 adopts the default database and default storage group that you used in
the previous version. You have the same authority for the Db2 12 as you did in the previous version.

Reasons to define a database
In Db2 for z/OS, a database is a logical collection of table spaces and index spaces. Consider the following
factors when deciding whether to define a new database for a new set of objects:

• You can start and stop an entire database as a unit; you can display the statuses of all its objects by
using a single command that names only the database. Therefore, place a set of tables that are used
together into the same database. (The same database holds all indexes on those tables.)

• Some operations lock an entire database. For example, some phases of the LOAD utility prevent some
SQL statements (CREATE, ALTER, and DROP) from using the same database concurrently. Therefore,
placing many unrelated tables in a single database is often inconvenient.

When one user is executing a CREATE, ALTER, or DROP statement for a table, no other user can access
the database that contains that table. QMF users, especially, might do a great deal of data definition;
the QMF operations SAVE DATA and ERASE data-object are accomplished by creating and dropping Db2
tables. For maximum concurrency, create a separate database for each QMF user.

• The internal database descriptors (DBDs) might become inconveniently large. DBDs grow as new
objects are defined, but they do not immediately shrink when objects are dropped; the DBD space
for a dropped object is not reclaimed until the MODIFY RECOVERY utility is used to delete records of
obsolete copies from SYSIBM.SYSCOPY. DBDs occupy storage and are the objects of occasional input
and output operations. Therefore, limiting the size of DBDs is another reason to define new databases.

Related concepts
Creation of databases (Introduction to Db2 for z/OS)

Chapter 1. Db2 for z/OS and SQL concepts 49

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationofdatabases.html

Db2 table spaces
A Db2 table space is a set of volumes on disks that hold the data sets in which tables are actually stored.
Every table is stored in table space.

A table space consists of a number of VSAM linear data sets. Table spaces are divided into equal-sized
units, called pages. Each page is read from disk to the assigned buffer pool, or written from the buffer pool
to disk, in a single operation. The page size is controlled by the buffer pool that you assign to the table
space (4 KB, 8 KB, 16 KB, or 32 KB in size) for the data. The default page size is 4 KB.

Data in most table spaces can be compressed, which can allow you to store more data on each data page.

You can let Db2 create and manage the table space for you by issuing a CREATE TABLE statement that
does not specify an existing table space. Db2 creates a partition-by-growth or partition-by-range table
space. For more information, see Creation of table spaces (Introduction to Db2 for z/OS).

You can also explicitly define table spaces by issuing CREATE TABLESPACE statements. You specify the
database that the table space belongs to, and the storage group that it uses. When you create a table
space, certain options that you specify control the type of table space that is created.

Deprecated function: FL 504 Non-UTS table spaces for base tables are deprecated. CREATE
TABLESPACE statements that run at application compatibility level V12R1M504 or higher always create
a partition-by-growth or partition-by-range table space, and CREATE TABLE statements that specify a
non-UTS table space (including existing multi-table segmented table spaces) return an error. However,
you can use a lower application compatibility level to create table spaces of the deprecated types if
needed, such as for recovery situations. For instructions, see Creating non-UTS table spaces (deprecated)
(Db2 Administration Guide).

For descriptions of the various table space types, see Table space types and characteristics in Db2 for
z/OS (Db2 Administration Guide).

Segmented non-UTS table spaces, which are deprecated, can contain more than one table. However, with
the recommended partition-by-growth and partition-by-range table spaces, each table space contains
only a single table.

Related tasks
Creating table spaces explicitly (Db2 Administration Guide)
Choosing data page sizes (Db2 Performance)
Related reference
ALTER TABLESPACE statement
The ALTER TABLESPACE statement changes the description of a table space at the current server.
CREATE TABLESPACE statement
The CREATE TABLESPACE statement defines a table space at the current server. The type of table space
depends on the keywords specified.
Related information
Implementing Db2 table spaces (Db2 Administration Guide)
Conversion from index-controlled partitioning to Universal Table Space (UTS)

Partitions
A partition is a page set that corresponds to a single data set that can be processed or extended
independently.

Db2 usually distributes the data evenly across the partitions of a table space when it is created. However,
the distribution of the data might become uneven over time, as inserts and deletes occur. You can
rebalance data among the partitions by redefining partition boundaries with no impact to availability. You
can also add a partition to the table and to each partitioned index on the table; the new partition becomes
available immediately.

You can spread the partitions of a large table over several Db2 storage groups or data sets. The partitions
of the table do not all need to use the same storage group.

50 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationoftablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createdeprecatedtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createdeprecatedtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_typesofdb2tablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_typesofdb2tablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createtablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_pagesizerecommendations.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_tablespaceimplentation.html
http://www-01.ibm.com/support/docview.wss?uid=swg27047046&aid=1

You can also put different partitions on different device types, which means that you can put frequently
accessed data in separate partitions and place these partitions on faster devices.

You can use separate jobs for mass update, delete, or insert operations instead of using one large job;
each smaller job can work on a different partition. Separating the large job into several smaller jobs that
run concurrently can reduce the elapsed time for the whole task.

For certain read-only queries, Db2 can use parallel processing on more than one partition. Parallel
processing (for read-only queries) is most efficient when you spread the partitions over different disk
volumes and allow each I/O stream to operate on a separate channel. Use the Parallel Sysplex data
sharing technology to process a single read-only query across many Db2 subsystems in a data sharing
group. You can optimize Parallel Sysplex query processing by placing each Db2 subsystem on a separate
central processor complex.

Certain table space types do not have partitions, including segmented (non-UTS) table spaces and simple
table spaces. However, all such table spaces are deprecated.

Growth-based partitions

Related concepts
Partition-by-range table spaces (Db2 Administration Guide)
Partition-by-growth table spaces (Db2 Administration Guide)
Partitioned (non-UTS) table spaces (deprecated) (Db2 Administration Guide)

Segments
A segment is a group of pages that holds the rows of a single table. All segments in a table space are the
same size.
Related reference
DEFAULT PARTITION SEGSIZE field (DPSEGSZ subsystem parameter) (Db2 Installation and Migration)

Db2 index spaces
An index space is a Db2 storage structure that contains a single index.

When you create an index by using the CREATE INDEX statement, an index space is automatically defined
in the same database as the table. You can define a unique name for the index space, or Db2 can derive a
unique name for you. Under certain circumstances, Db2 implicitly creates index spaces.

Rules for primary and secondary space allocation
You can specify the primary and secondary space allocation or let Db2 choose them. Having Db2 choose
the values, especially the secondary space quantity, increases the possibility of reaching the maximum
data set size before running out of extents.

In the following rules that describe how allocation works, these terms are used:
PRIQTY, SECQTY

The keywords for CREATE TABLESPACE, ALTER TABLESPACE, CREATE INDEX, and ALTER INDEX.
specified-priqty

The user-specified value for PRIQTY.
specified-secqty

The user-specified value for SECQTY.
actual-priqty

The actual primary space allocation, in kilobytes.
actual-priqty-cylinders

The actual primary space allocation, in cylinders.

Chapter 1. Db2 for z/OS and SQL concepts 51

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_rangepartitionedtablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_partitionbygrowthtablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_partitionedtablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_dpsegsz.html

actual-secqty
The actual secondary space allocation, in kilobytes.

actual-secqty-cylinders
The actual secondary space allocation, in cylinders.

calculated-extent-cylinders
A value that is calculated by Db2 using a sliding scale. A sliding scale means that the first secondary
extent allocations are smaller than later secondary allocations. For example, Figure 12 on page 52
shows the sliding scale of secondary extent allocations that Db2 uses for a 64-GB data set. The size
of each secondary extent is larger for each secondary extent that is allocated up to the 127th extent.
For the 127th secondary extent and any subsequent extents, the secondary size allocation is 559
cylinders.

Sliding scale for a 64-GB data set

Extent number

Ex
te

nt
 s

iz
e

(C
YL

S)

0

100

200

300

400

500

600

1 17 22 48 66 81 87 127112 146 161 177 182 208 226 241

Figure 12. Sliding scale allocation of secondary extents for a 64 GB data set

Rules
Rule 1: (for primary space allocation)

If PRIQTY is specified and specified-priqty is not equal to -1, actual-priqty is at least specified-priqty
KB.

If PRIQTY is not specified or specified-priqty is equal to -1, actual-priqty is determined as follows:

• For a table space, if the TSQTY subsystem parameter value is specified and is greater than 0,
actual-priqty is at least the value of TSQTY.

If the TSQTY subsystem parameter is not specified or is 0, actual-priqty is one cylinder for a
non-LOB table space. actual-priqty is 10 cylinders for a LOB table space.

• For an index, if the IXQTY subsystem parameter value is specified and is greater than 0, actual-
priqty is at least the value of IXQTY.

If the IXQTY subsystem parameter is not specified or is 0, actual-priqty is one cylinder.

Rule 2: (for secondary space allocation)
If SECQTY is not specified, the following formulas determine actual-secqty:

• If the maximum size of a data set in the table space or index is less than 32 GB, the formula is:

actual-secqty-cylinders=
MAX(0.1*actual-priqty-cylinders, MIN(calculated-extent-cylinders, 127))

• If the maximum size of a data set in the table space or index is 32 GB or greater, the formula is:

actual-secqty-cylinders=
MAX(0.1*actual-priqty-cylinders, MIN(calculated-extent-cylinders, 559))

52 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Rule 3 (for secondary space allocation)
If SECQTY is 0, actual-secqty is 0.

Rule 4 (for secondary space allocation)
If SECQTY is specified and specified-secqty is not equal to -1 or 0, the following formulas determine
actual-secqty. If the maximum size of a data set in the table space or index is less 32 GB, the formula
is:

actual-secqty-cylinders=
MAX(MIN(calculated-extent-cylinders, 127),specified-secqty-cylinders)

If the maximum size of a data set in the table space or index is 32 GB or greater, the formula is:

actual-secqty-cylinders=
MAX(MIN(calculated-extent-cylinders, 559),specified-secqty-cylinders)

Rule 5 (for secondary space allocation):
When a table space requires a new piece, the primary allocation quantity of the new piece is
determined by using the maximum of the following values:

• The quantity that is calculated through sliding scale methodology
• The primary quantity from rule 1
• The specified SECQTY value

Related reference
CREATE TABLESPACE statement
The CREATE TABLESPACE statement defines a table space at the current server. The type of table space
depends on the keywords specified.
ALTER TABLESPACE statement
The ALTER TABLESPACE statement changes the description of a table space at the current server.
CREATE INDEX statement
The CREATE INDEX statement creates a partitioning index or a secondary index and an index space at the
current server. The columns included in the key of the index are columns of a table at the current server.
ALTER INDEX statement
The ALTER INDEX statement changes the description of an index at the current server.

Db2 hash spaces (deprecated)
A hash space is a defined disk space that organizes table data for hash access. Hash-organized table
spaces are deprecated and likely to be unsupported in the future.

Deprecated function:

FL 504 Hash-organized tables are deprecated. Beginning in Db2 12, packages that are bound with
APPLCOMPAT(V12R1M504) or higher cannot create hash-organized tables or alter existing tables to
use hash-organization. Existing hash-organized tables remain supported, but they are likely to be
unsupported in the future.

When you organize a table for hash access, Db2 requires a defined amount of disk space to contain
table data. You can specify the amount of disk space to allocate to the hash space when you create a
table or alter an existing table. The hash space on a table must be large enough to contain new rows
that are added to the table. If a hash space is full, new rows are relocated to the overflow index, which
reduces the performance of hash access on that table. Hash spaces can contain only a single table in a
partition-by-range or partition-by-growth table space.

Related concepts
Hash access paths (deprecated) (Introduction to Db2 for z/OS)
Related tasks
Managing space and page size for hash-organized tables (deprecated) (Db2 Performance)
Monitoring hash access (deprecated) (Db2 Performance)

Chapter 1. Db2 for z/OS and SQL concepts 53

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_hashaccess.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_managehashspace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_monitoringhashaccess.html

Db2 storage groups
Db2 storage groups are a set of volumes on disks that hold the data sets in which tables and indexes are
stored.

The description of a storage group names the group and identifies its volumes and the VSAM (Virtual
Storage Access Method) catalog that records the data sets. The default storage group, SYSDEFLT, is
created when you install Db2.

Within the storage group, Db2 does the following actions:

• Allocates storage for table spaces and indexes
• Defines the necessary VSAM data sets
• Extends and deletes VSAM data sets
• Alters VSAM data sets

All volumes of a given storage group must have the same device type. However, parts of a single database
can be stored in different storage groups.

Db2 can manage the auxiliary storage requirements of a database by using Db2 storage groups. Data sets
in these Db2 storage groups are called "Db2-managed data sets."

These Db2 storage groups are not the same as storage groups that are defined by the DFSMS storage
management subsystem (DFSMSsms).

You have several options for managing Db2 data sets:

• Let Db2 manage the data sets. This option means less work for Db2 database administrators.

After you define a Db2 storage group, Db2 stores information about it in the Db2 catalog. (This catalog is
not the same as the integrated catalog facility catalog that describes Db2 VSAM data sets). The catalog
table SYSIBM.SYSSTOGROUP has a row for each storage group, and SYSIBM.SYSVOLUMES has a row for
each volume. With the proper authorization, you can retrieve the catalog information about Db2 storage
groups by using SQL statements.

When you create table spaces and indexes, you name the storage group from which space is to be
allocated. You can also assign an entire database to a storage group. Try to assign frequently accessed
objects (indexes, for example) to fast devices, and assign seldom-used tables to slower devices. This
approach to choosing storage groups improves performance.

If you are authorized and do not take specific steps to manage your own storage, you can still define
tables, indexes, table spaces, and databases. A default storage group, SYSDEFLT, is defined when
Db2 is installed. Db2 uses SYSDEFLT to allocate the necessary auxiliary storage. Information about
SYSDEFLT, as with any other storage group, is kept in the catalog tables SYSIBM.SYSSTOGROUP and
SYSIBM.SYSVOLUMES.

For both user-managed and Db2-managed data sets, you need at least one integrated catalog facility
(ICF) catalog; this catalog can be either a user catalog or a master catalog. These catalogs are created
with the ICF. You must identify the catalog of the ICF when you create a storage group or when you
create a table space that does not use storage groups.

• Let SMS manage some or all the data sets, either when you use Db2 storage groups or when you
use data sets that you have defined yourself. This option offers a reduced workload for Db2 database
administrators and storage administrators. You can specify SMS classes when you create or alter a
storage group.

• Define and manage your own data sets using VSAM Access Method Services. This option gives you the
most control over the physical storage of tables and indexes.

Recommendation: Use Db2 storage groups and whenever you can, either specifically or by default. Also
use SMS managed Db2 storage groups whenever you can.

Related tasks
Choosing data page sizes for LOB data (Db2 Performance)

54 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_lobpagesize.html

Application processes, concurrency, and recovery
All SQL programs execute as part of an application process. An application process involves the execution
of one or more programs, and it is the unit to which Db2 allocates resources and locks.

Different application processes might involve the execution of different programs, or different executions
of the same program. The means of initiating and terminating an application process are dependent on
the environment.

Locking, commit, and rollback
More than one application process might request access to the same data at the same time. Furthermore,
under certain circumstances, an SQL statement can execute concurrently with a utility on the same table
space. Locking is used to maintain data integrity under such conditions, preventing, for example, two
application processes from updating the same row of data simultaneously.

Db2 implicitly acquires locks to prevent uncommitted changes made by one application process from
being perceived by any other. Db2 will implicitly release all locks it has acquired on behalf of an
application process when that process ends, but an application process can also explicitly request that
locks be released sooner. A commit operation releases locks acquired by the application process and
commits database changes made by the same process.

Db2 provides a way to back out uncommitted changes made by an application process. This might be
necessary in the event of a failure on the part of an application process, or in a deadlock situation.
An application process, however, can explicitly request that its database changes be backed out. This
operation is called rollback.

The interface used by an SQL program to explicitly specify these commit and rollback operations depends
on the environment. If the environment can include recoverable resources other than Db2 databases, the
SQL COMMIT and ROLLBACK statements cannot be used. Thus, these statements cannot be used in an
IMS, CICS, or WebSphere environment.

Unit of work
A unit of work is a recoverable sequence of operations within an application process. A unit of work is
sometimes called a logical unit of work.

At any time, an application process has a single unit of work, but the life of an application process can
involve many units of work as a result of commit or full rollback operations.

A unit of work is initiated when an application process is initiated. A unit of work is also initiated when the
previous unit of work is ended by something other than the end of the application process. A unit of work
is ended by a commit operation, a full rollback operation, or the end of an application process. A commit
or rollback operation affects only the database changes made within the unit of work it ends. While
these changes remain uncommitted, other application processes are unable to perceive them unless
they are running with an isolation level of uncommitted read. The changes can still be backed out. Once
committed, these database changes are accessible by other application processes and can no longer
be backed out by a rollback. Locks acquired by Db2 on behalf of an application process that protects
uncommitted data are held at least until the end of a unit of work.

The initiation and termination of a unit of work define points of consistency within an application process.
A point of consistency is a claim by the application that the data is consistent. For example, a banking
transaction might involve the transfer of funds from one account to another. Such a transaction would
require that these funds be subtracted from the first account, and added to the second. Following the
subtraction step, the data is inconsistent. Only after the funds have been added to the second account is
consistency reestablished. When both steps are complete, the commit operation can be used to end the
unit of work, thereby making the changes available to other application processes. The following figure
illustrates this concept.

Chapter 1. Db2 for z/OS and SQL concepts 55

Point of
consistency

Next point of
consistency

COMMIT;
End unit
of work

Begin
unit of work

Database updates

One unit of work

Time
line

Figure 13. Unit of work with a commit operation

Unit of recovery
A Db2 unit of recovery is a recoverable sequence of operations executed by Db2 for an application
process.

If a unit of work involves changes to other recoverable resources, the unit of work will be supported by
other units of recovery. If relational databases are the only recoverable resources used by the application
process, then the scope of the unit of work and the unit of recovery are the same and either term can be
used.

Rolling back work
Db2 can back out all changes made in a unit of recovery or only selected changes. Only backing out all
changes results in a point of consistency.

Rolling back all changes
The SQL ROLLBACK statement without the TO SAVEPOINT clause specified causes a full rollback
operation. If such a rollback operation is successfully executed, Db2 backs out uncommitted changes
to restore the data consistency that existed when the unit of work was initiated.

That is, Db2 undoes the work, as shown in the following figure:

Point of
consistency

New point of
consistency

Unit of work

Database updates Back out updates

Time
line

Begin
unit of work

ROLLBACK,
failure, or
deadlock;

begin rollback

Data is returned
to its initial state;
end unit of work

Figure 14. Rolling back all changes from a unit of work

Rolling back selected changes using savepoints
A savepoint represents the state of data at some particular time during a unit of work. An application
process can set savepoints within a unit of work, and then as logic dictates, roll back only the changes
that were made after a savepoint was set.

56 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

For example, part of a reservation transaction might involve booking an airline flight and then a hotel
room. If a flight gets reserved but a hotel room cannot be reserved, the application process might want to
undo the flight reservation without undoing any database changes made in the transaction prior to making
the flight reservation. SQL programs can use the SQL SAVEPOINT statement to set savepoints, the SQL
ROLLBACK statement with the TO SAVEPOINT clause to undo changes to a specific savepoint or the last
savepoint that was set, and the SQL RELEASE SAVEPOINT statement to delete a savepoint. The following
figure illustrates this concept.

Unit of work

Time
line

Begin
unit of work

Savepoint A COMMIT
End unit of work

Rollback to A;
database updates

made between
times T1 and T2
are rolled back

Figure 15. Rolling back changes to a savepoint within a unit of work

Packages and application plans
A package contains control structures that Db2 uses when it runs SQL statements. An application plan
relates an application process to a local instance of Db2 and specifies processing options.

Packages are produced during program preparation. You can think of the control structures as the bound
or operational form of SQL statements. All control structures in a package are derived from the SQL
statements that are embedded in a single source program.

An application plan contains a list of package names.

Db2 applications require an application plan. Packages make application programs more flexible and
easier to maintain.

In general, you create plans and packages by using the Db2 commands BIND PLAN and BIND PACKAGE.

Example

The following figure shows an application plan that contains two packages. Suppose that you decide to
change the SELECT statement in package AA to select data from a different table. In this case, you need
to bind only package AA again and not package AB.

GUPI

Chapter 1. Db2 for z/OS and SQL concepts 57

Plan A

Package AA

Package AB

SELECT * FROM TABLE1
TABLE3

SELECT * FROM TABLE2

Package AA

Package AB

Figure 16. Application plan and packages

GUPI

Packages for triggers and routines
A trigger package is a special type of package that is created when you issue a CREATE TRIGGER
statement. It contains the trigger body and the WHEN clause for the trigger. When the trigger activates,
the package executes one or more times.

Packages are also generated, or explicitly created for certain SQL routines, including stored procedures
and certain types of user defined functions. The package for a routine contains the routine body, including
control statements. The package might also contain statements that are generated by Db2. Each time that
the routine is invoked, the package executes one or more times.

Specifically, Db2 generates a package automatically for the following types of SQL routines:

• External scalar functions
• External table functions
• Compiled SQL scalar functions
• Native SQL procedures
• External SQL procedures

For external stored procedures, you explicitly bind the source code for the stored procedure into a
package before or you issue the CREATE PROCEDURE statement. Each time that the external procedure is
invoked, the package executes one or more times.

Packages for JDBC, SQLJ, and ODBC applications
Packages for JDBC, SQLJ, and ODBC applications serve different purposes. For more information, see
Preparing and running JDBC and SQLJ programs (Db2 Application Programming for Java) and Db2 ODBC
run time environment setup (Db2 Programming for ODBC).

Related concepts
Programming for Db2 for z/OS (Introduction to Db2 for z/OS)
Preparation process for an application program (Introduction to Db2 for z/OS)
Related reference
SET CURRENT PACKAGE PATH statement
The SET CURRENT PACKAGE PATH statement assigns a value to the CURRENT PACKAGE PATH special
register.
SET CURRENT PACKAGESET statement

58 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_javaprepexec.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/odbc/src/tpc/db2z_setup.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/odbc/src/tpc/db2z_setup.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_applicationprogrammingfordb2.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_programprepprocesses.html

The SET CURRENT PACKAGESET statement assigns a value to the CURRENT PACKAGESET special
register.
CREATE FUNCTION statement (overview)
The CREATE FUNCTION statement registers a user-defined function with a database server. Each type of
function that you can register with this statement is described separately.
CREATE PROCEDURE statement (overview)
The CREATE PROCEDURE statement registers a stored procedure with a database server. You can register
the following types of procedures with this statement, each of which is described separately.
CREATE TRIGGER statement (basic trigger)

Character conversion
A string is a sequence of bytes that can represent characters. Within a string, all the characters are
represented by a common encoding representation. In some cases, it might be necessary to convert
these characters to a different encoding representation. The process of conversion is known as character
conversion.

Character conversion, when required, is automatic, and when successful, it is transparent to the
application.

In client/server environments, character conversion can occur when an SQL statement is executed
remotely. Consider, for example, the following two cases. In either case, the data could have a different
representation at the sending and receiving systems.

• The values of data sent from the requester to the current server
• The values of data sent from the current server to the requester

Conversion can also occur during string operations on the same system, as in the following examples:

• An overriding CCSID is specified.

For example, an SQL statement with a descriptor, which requires an SQLDA. In the SQLDA, the CCSID
is in the SQLNAME field for languages other than REXX, and in the SQLCCSID field for REXX. (For more
information, see Appendix G, “SQL descriptor area (SQLDA),” on page 2313). A DECLARE VARIABLE
statement can also be issued to associate a CCSID with the host variables into which data is retrieved
from a table.

• The value of the ENCODING bind option or the APPLICATION ENCODING SCHEMA option of the CREATE
PROCEDURE or ALTER PROCEDURE statement for a native SQL procedure (static SQL statements) or
the CURRENT APPLICATION ENCODING SCHEME special register (for dynamic SQL) is different than
encoding scheme of the data being retrieved.

• A mixed character string is assigned to an SBCS column or host variable.
• An SQL statement refers to data that is defined with different CCSIDs.

The text of an SQL statement is also subject to character conversion because it is a character string.

The following list defines some of the terms used for character conversion.
ASCII

Acronym for American Standard Code for Information Interchange, an encoding scheme used to
represent characters. The term ASCII is used throughout this information to refer to IBM-PC Data or
ISO 8-bit data.

character set
A defined set of characters, a character being the smallest component of written language that has
semantic value. For example, the following character set appears in several code pages:

• 26 nonaccented letters A through Z
• 26 nonaccented letters a through z
• digits 0 through 9
• . , : ; ? () ' " ⁄ - _ & + % * = < >

Chapter 1. Db2 for z/OS and SQL concepts 59

code page
A set of assignments of characters to code points. For example, in EBCDIC, "A" is assigned code point
X'C1', and "B" is assigned code point X'C2'. In Unicode UTF-8, "A" is assigned code point X'41', and
"B" is assigned code point X'42'. Within a code page, each code point has only one specific meaning.

code point
A unique bit pattern that represents a character. It is a numerical index or position in an encoding
table used for encoding characters.

coded character set
A set of unambiguous rules that establishes a character set and the one-to-one relationships between
the characters of the set and their coded representations. It is the assignment of each character in a
character set to a unique numeric code value.

coded character set identifier (CCSID)
A two-byte, unsigned binary integer that uniquely identifies an encoding scheme and one or more
pairs of character sets and code pages.

EBCDIC
Acronym for Extended Binary-Coded Decimal Interchange Code, an encoding scheme used to
represent character data, a group of coded character sets that consist of 8 bit coded characters.
EBCDIC coded character sets use the first 64 code positions (X'00' to X'3F') for control codes. The
range X'41' to X'FE' is used for single-byte characters. For double-byte characters, the first byte is
in the range X'41' to X'FE' and the second byte is also in the range X'41' to X'FE', while X'4040'
represents a double-byte space.

encoding scheme
A set of rules used to represent character data. All string data stored in a table must use the same
encoding scheme and all tables within a table space must use the same encoding scheme, except for
global temporary tables, declared temporary tables, and work file table spaces. Db2 supports these
encoding schemes:

• ASCII
• EBCDIC
• Unicode

substitution character
A unique character that is substituted during character conversion for any characters in the source
encoding representation that do not have a match in the target encoding representation.

Unicode
A universal encoding scheme for written characters and text that enables the exchange of data
internationally. It provides a character set standard that can be used all over the world. It provides
the ability to encode all characters used for the written languages of the world and treats alphabetic
characters, ideographic characters, and symbols equivalently because it specifies a numeric value and
a name for each of its characters. It includes punctuation marks, mathematical symbols, technical
symbols, geometric shapes, and dingbats. Db2 supports these two encoding forms:

• UTF-8: Unicode Transformation Format, a 8 bit encoding form designed for ease of use with existing
ASCII-based systems. UTF-8 can encode any of the Unicode characters. A UTF-8 character is 1,2,3,
or 4 bytes in length. A UTF-8 data string can contain any combination of SBCS and MBCS data,
including supplementary characters. The CCSID value for data in UTF-8 format is 1208. UTF-8 has
multiple code points for spaces, including the '20'X single-byte space that Db2 uses for padding
UTF-8 data.

• UTF-16: Unicode Transformation Format, a 16 bit encoding form designed to provide code values
for over a million characters and a superset of UCS-2. UTF-16 can encode any of the Unicode
characters. In UTF-16 encoding, characters are 2 bytes in length, except for supplementary
characters, which take two 2 byte string units per character. The CCSID value for data in UTF-16
format is 1200. UTF-16 has multiple code points for spaces, including the '0020'X single-byte space
that Db2 uses for padding UTF-16 data.

Character data (CHAR, VARCHAR, and CLOB) is encoded in Unicode UTF-8. Character strings are
also used for mixed data (that is a mixture of single-byte characters and multi-byte characters)

60 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

and for data that is not associated with any character set (called bit data). Graphic data (GRAPHIC,
VARGRAPHIC, and DBCLOB) is encoded in Unicode UTF-16. For a comparison of some UTF-8 and
UTF-16 code points for some sample characters, see Character sets and code pages (Introduction
to Db2 for z/OS). This table shows how a UTF-8 character can be 1 to 4 bytes in length, a non-
supplementary UTF-16 character is 2 bytes in length, and how a supplementary character in either
UTF-8 or UTF-16 takes two 2 byte code points.

Character conversion can affect the results of several SQL operations. In this information, the effects are
described in:

“String assignments” on page 149
“Conversion rules for comparisons” on page 159
“Character conversion in set operations and concatenations” on page 1066

Character sets and code pages
Even with the same encoding scheme, different CCSIDs exist, and the same code point can represent
a different character in different CCSIDs. Furthermore, a byte in a character string does not necessarily
represent a character from a single-byte character set (SBCS).

The following figure shows how a typical character set might map to different code points in two different
code pages.

Code page: pp1 (ASCII) Code page: pp2(EBDIC)

Code point: 2F Character set ss1
(in code page pp1)

Character set ss1
(in code page pp2)

0

0

0

0

1 1

11 1

0

2

22 22

1

3

3 3 33

4

4 44 4

5

55 5 5

A

AA

Â

À

Å

Á

Ā

Ä

B

BB

C

CC

D

D

D

E E

E E

E FF

J

L

K

M

N

P

Q

R S

S

T

T

U

U

V

s

t

u

v

#

$

%

*

(%

@0

†

E E

F F

.

/

>

*

N

O

! :

; {

}Â

Á®

ö¼

ȼÀ

Figure 17. Code page mappings for character set ss1 in ASCII and EBCDIC

For Unicode, there is only one CCSID for UTF-8 and only one CCSID for UTF-16. The following figure
shows how the first 127 single code points for UTF-8 are the same as ASCII with a CCSID of 367. For
example, in both UTF-8 and ASCII CCSID 367, an A is X'41' and a 1 is X'31'.

Chapter 1. Db2 for z/OS and SQL concepts 61

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_charsetsandcodepages.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_charsetsandcodepages.html

.

First 127 code points for UTF-8 code page

0 1 2

2

1

0

3

3

4

4

5

5

64

6

7

7

8

9

2

1

0

3

4

5

6

7

8

9

A

B

C

D

E

D

F

A

B

C

E

D

F

G

H

I

J

K

L

M

N

O

P

Q

R

T

S

U

V

W

X

Y

Z

[

\

]

^

@

_

:

;

<

=

>

?

“

!

(sp)

#

$

%

&

‘

(

)

*

+

,

-

.

/

b

a

`

c

d

e

f

g

h

i

j

k

l

m

n

o

r

q

p

s

t

u

v

w

x

y

z

{

|

}

~

code point:2f

Figure 18. Code point mapping for the first 127 code points for UTF-8 single-byte characters (CCSID 1208)

The following figure shows a comparison of how some UTF-16 and UTF-8 code points map to some
sample characters. The character for the eighth note musical symbol takes two 2 byte code points
because it is a supplementary character.

Character glyph UTF-8 code point UTF-16 code point

M 4D 004D

Ä C384 00C4

E4BA8B 4E8B事
♪ F09D85A0 D834DD60

Figure 19. A comparison of how some UTF-8 and UTF-16 code points map to some sample characters

Related concepts
Introduction to character conversion (Db2 Internationalization Guide)
Related information
Unicode Consortium

Coded character sets and CCSIDS
The IBM character data representation architecture (CDRA) deals with the differences in string
representation and encoding. The Coded Character Set Identifier (CCSID) is a key element of this
architecture. A CCSID is a 2 byte (unsigned) binary number that uniquely identifies an encoding scheme
and one or more pairs of character sets and code pages.

A CCSID is an attribute of strings, just as length is an attribute of strings. All values of the same string
column have the same CCSID.

Character conversion is described in terms of CCSIDs of the source and target. With Db2 for z/OS, two
methods are used to identify valid source and target combinations and to perform the conversion from
one coded character set to another:

• Db2 catalog table SYSIBM.SYSSTRINGS

62 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/char/src/tpc/db2z_introcharconv.html
http://www.unicode.org

Each row in the catalog table describes a conversion from one coded character set to another.
• z/OS support for Unicode.

In some cases, no conversion is necessary even though the strings involved have different CCSIDs.

Different types of conversions might be supported by each database manager. Round-trip conversions
attempt to preserve characters in one CCSID that are not defined in the target CCSID so that if the data is
subsequently converted back to the original CCSID, the same original characters result. Enforced subset
match conversions do not attempt to preserve such characters. Which type of conversion is used for a
specific source and target CCSID is product-specific.

Related concepts
Introduction to character conversion (Db2 Internationalization Guide)
z/OS Unicode Services User’s Guide and Reference
Related tasks
Working with international data (Db2 Installation and Migration)
Related reference
SYSSTRINGS catalog table
The SYSSTRINGS table contains information about character conversion. Each row describes a conversion
from one coded character set to another. The schema is SYSIBM.

Determining the encoding scheme and CCSID of a string
An encoding scheme and a CCSID are attributes of strings, just as length is an attribute of strings. All
values of the same string column have the same encoding scheme and CCSID.

Every string has an encoding scheme and a CCSID that identifies the manner in which the characters in
the string are encoded. Strings can be encoded in ASCII, EBCDIC, or Unicode.

The CCSID that is associated with a string value depends on the SQL statement in which the data is
referenced and the type of expression. Use the Type 1 rules when the SQL statement meets the following
conditions:

• The SQL statement operates with a single set of CCSIDs (SBCS, mixed, and graphic). An SQL statement
that does not contain any of the following items operates with a single set of CCSIDs:

– References to columns from multiple tables or views that are defined with CCSIDs from more than
one set of CCSIDs (SBCS, mixed, and graphic)

– References to an EBCDIC table that contains a Unicode column
– Graphic hexadecimal (GX) or hexadecimal Unicode (UX) string constants
– References to the XMLCLOB built-in function
– Cast specifications with a CCSID clause
– User-defined table functions

• The SQL statement is not one of the following statements:

– CALL statement
– SET assignment statement
– SET special register
– VALUES statement
– VALUES INTO statement

• One of the following built-in functions is not referenced:

– ASCII_CHR
– ASCII_STR (or ASCIISTR)
– CHR
– DECRYPT_BIT

Chapter 1. Db2 for z/OS and SQL concepts 63

https://www.ibm.com/docs/en/SSEPEK_12.0.0/char/src/tpc/db2z_introcharconv.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/abstract.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_workingwintldata.html

– DECRYPT_CHAR
– DECRYPT_DATAKEY_BIT
– DECRYPT_DATAKEY_CLOB
– DECRYPT_DATAKEY_DBCLOB
– DECRYPT_DATAKEY_VARCHAR
– DECRYPT_DATAKEY_VARGRAPHIC
– DECRYPT_DB
– EBCDIC_CHR
– EBCDIC_STR
– GETVARIABLE
– JSON_VAL
– NORMALIZE_STRING
– UNICODE_STR (or UNISTR)
– XMLSERIALIZE

• The SQL statement does not include a collection-derived table (UNNEST).

Use the Type 2 rules when the statement does not meet the conditions for Type 1 rules.

For those SQL statements and tools that use a SYSDUMMYx table, use the SYSDUMMYx table that has the
same encoding scheme as the other objects in your SQL statement, to avoid conversions. A SYSDUMMYx
table is available in each encoding scheme. For example, suppose that your SQL statement references a
SYSDUMMYx table that is in a different encoding scheme from other objects in the statement. Db2 treats
this statement as one that references objects with different CCSIDs (Type 2 rules), and conversion is likely
to occur. To avoid this situation, reference the SYSDUMMYx table that has the same encoding scheme as
the other objects in your SQL statement. See SYSDUMMYx tables (Introduction to Db2 for z/OS) for more
information.

Table 10 on page 64 describes the rules for determining the CCSID of derived string data when the
source data has a string type.

Table 10. Rules for determining the CCSID that is associated with string data derived from string data

Source of the string data Type 1 rules Type 2 rules

String constant If the statement references a table
or view, the encoding scheme of that
table or view determines the encoding
scheme for the string constant.

The CCSID is the appropriate character
string CCSID of the encoding scheme.

The CCSID is the appropriate character
string CCSID of the application encoding
scheme.“1” on page 66

Datetime constant If the statement references a table
or view, the encoding scheme of that
table or view determines the encoding
scheme for the string constant.

Otherwise, the default EBCDIC
encoding scheme is used for the string
constant.

The CCSID is the appropriate character
string CCSID of the encoding scheme.

The CCSID is the appropriate character
string CCSID of the application encoding
scheme.“1” on page 66

64 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sysdummy.html

Table 10. Rules for determining the CCSID that is associated with string data derived from string data (continued)

Source of the string data Type 1 rules Type 2 rules

Hexadecimal string
constant (X'...')

If the statement references a table
or view, the encoding scheme of that
table or view determines the encoding
scheme for the string constant.

Otherwise, the default EBCDIC
encoding scheme is used for the string
constant.

The CCSID is the appropriate graphic
string CCSID of the encoding scheme.

The CCSID is the appropriate character
string CCSID of the application encoding
scheme.“1” on page 66

Graphic string
 constant
(G'...')

If the statement references a table
or view, the encoding scheme of that
table or view determines the encoding
scheme for the graphic string constant.

Otherwise, the default EBCDIC
encoding scheme is used for the graphic
string constant.

The CCSID is the graphic string CCSID of
the encoding scheme.

The CCSID is the graphic string CCSID
of the application encoding scheme.“1”
on page 66

Graphic hexadecimal
constant (GX'...')

Not applicable. The CCSID is the graphic string CCSID of
the application encoding scheme, which
must be ASCII or EBCDIC.

Hexadecimal Unicode
string constant (UX'....')

Not applicable. The CCSID is 1200 (UTF-16).

Special register If the statement references a table
or view, the encoding scheme of that
table or view determines the encoding
scheme for the special register.

Otherwise, the default EBCDIC
encoding scheme is used for the special
register.

The CCSID is the appropriate character
string CCSID of the encoding scheme.

The CCSID is the appropriate CCSID of
the application encoding scheme.“1” on
page 66

Column of a table The CCSID is the CCSID that is
associated with the column of the table.

The CCSID is the CCSID that is
associated with the column of the table.

Column of a view The CCSID is the CCSID of the column
of the result table of the fullselect of the
view definition.

The CCSID is the CCSID of the column
of the result table of the fullselect of the
view definition.

Expression The CCSID is the CCSID of the result of
the expression.

The CCSID is the CCSID of the result of
the expression.

Chapter 1. Db2 for z/OS and SQL concepts 65

Table 10. Rules for determining the CCSID that is associated with string data derived from string data (continued)

Source of the string data Type 1 rules Type 2 rules

Result of a built-in function If the description of the function, in
Chapter 4, “Built-in functions,” on page
341, indicates what the CCSID of the
result is, the CCSID is that CCSID.

Otherwise, if the description of the
function refers to this table for the
CCSID, the CCSID is the appropriate
CCSID of the CCSID set that is used by
the statement for the data type of the
result.

If the description of the function, in
Chapter 4, “Built-in functions,” on page
341, indicates what the CCSID of the
result is, the CCSID is that CCSID.

Otherwise, if the description of the
function refers to this table for the
CCSID, the CCSID is the appropriate
CCSID of the application encoding
scheme for the data type of the result.
“1” on page 66

Parameter of a user-
defined routine

The CCSID is the CCSID that was
determined when the function or
procedure was created.

The CCSID is the CCSID that was
determined when the function or
procedure was created.

The expression in the
RETURN statement of a
CREATE statement for a
user-defined SQL scalar
function

If the expression in the RETURN
statement is string data, the encoding
scheme is the same as for the
parameters of the function. The CCSID
is determined from the encoding
scheme and the attributes of the data.

The CCSID is determined from the
CCSID of the result of the expression
specified in the RETURN statement.

String host variable If the statement references a table
or view, the encoding scheme of that
table or view determines the encoding
scheme for the host variable.

Graphic variables are an exception if the
table or view is EBCDIC or ASCII and
the value of the MIXED DATA field on
the DSNTIPF panel is NO. In this case,
the Unicode encoding scheme is used
for the graphic host variable.

Otherwise, the default EBCDIC
encoding scheme is used for the host
variable.

The CCSID is the appropriate CCSID of
the data type of the host variable.

At package prepare time, the CCSID is
the appropriate CCSID of the data type
of the host variable for the application
encoding scheme.

Graphic variables are an exception if
the application or encoding scheme
is EBCDIC or ASCII and the value of
the MIXED DATA field on the DSNTIPF
panel is NO. In this case, the Unicode
encoding scheme is used for the graphic
host variable.

At run time, the CCSID specified in
the declare variable statement, or as
an override in the SQLDA. Otherwise,
the CCSID is the appropriate CCSID of
the application encoding scheme for the
data type of the host variable.

Notes:

1. If the context is within a check constraint or a package for a basic trigger, the CCSID is the appropriate
CCSID for Unicode, instead of the application encoding scheme. If the context is within a package for
an advanced trigger, the CCSID is determined from the implicitly or explicitly specified APPLICATION
ENCODING SCHEME option; otherwise the CCSID is the appropriate CCSID for Unicode instead of the
application encoding scheme.

“Determining the encoding scheme and CCSID of a string” on page 63 shows the rules for determining the
CCSID of derived string data when the source data has a numeric type.

66 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 11. Rules for determining the CCSID that is associated with string data derived from numeric data

Source of the numeric
data

Type 1 rules Type 2 rules

Numeric data If the statement references a table
or view, the encoding scheme of that
table or view determines the encoding
scheme for the string data that is
derived from a numeric value.

Otherwise, the default EBCDIC
encoding scheme is used for the string
data derived from a numeric value.

The CCSID is the appropriate character
or graphic string CCSID of the
application encoding scheme.

The CCSID is the appropriate character
or graphic string CCSID of the
application encoding scheme. “1” on page
67

Notes:

1. If the context is within a check constraint or a package for a basic trigger, the CCSID is the appropriate
CCSID for Unicode, instead of the application encoding scheme. If the context is within a package for
an advanced trigger, the CCSID is determined from the implicitly or explicitly specified APPLICATION
ENCODING SCHEME option; otherwise the CCSID is the appropriate CCSID for Unicode instead of the
application encoding scheme.

The following examples show how these rules are applied.

Example 1: Assume that the default encoding scheme for the installation is EBCDIC and that the
installation does not support mixed and graphic data. The following statement conforms to the rules
for Type 1 in Table 10 on page 64. Therefore, the X'40' is interpreted as EBCDIC SBCS data because the
statement references a table that is in EBCDIC. The CCSID for X'40' is the default EBCDIC SBCS CCSID for
the installation.

SELECT * FROM EBCDIC_TABLE WHERE COL1 = X'40';

the result of the query includes each row that has a value in column COL1 that is equal to a single EBCDIC
blank.

Example 2: The following statement references data from two different tables that use different encoding
schemes. This statement does not conform to the rules for Type 1 statements in Table 10 on page 64.
Therefore, the rules for Type 2 statements are used. The CCSID for X'40' is dependent on the current
application encoding scheme. Assuming that the current application encoding scheme is EBCDIC, X'40'
represents a single EBCDIC blank.

SELECT * FROM EBCDIC_TABLE, UNICODE_TABLE WHERE COL1 = X'40';

as with Example 1, the result of the query includes each row that has a value in column COL1 that is equal
to a single EBCDIC blank. If the current application encoding scheme were ASCII or Unicode, X'40' would
represent something different and the results of the query would be different.

Expanding conversions
An expanding conversion occurs when the length of the converted string is greater than that of the source
string.

For example, an expanding conversion occurs when an ASCII mixed data string that contains DBCS
characters is converted to EBCDIC mixed data. To prevent the loss of data on expanding conversions, use
a varying-length string variable with a maximum length that is sufficient to contain the expansion.

Chapter 1. Db2 for z/OS and SQL concepts 67

Expanding conversions also can occur when string data is converted to or from Unicode. It can also occur
between UTF-8 and UTF-16, depending on the data being converted. UTF-8 uses 1, 2, 3, or 4 bytes per
character. UTF-16 uses 2 bytes per character, except for supplementary characters, which use two 2 byte
code points for each character. If UTF-8 were being converted to UTF-16, a 1 byte character would be
expanded to 2 bytes.

Contracting conversions
A contracting conversion occurs when the length of the converted string is smaller than that of the source
string.

For example, a contracting conversion occurs when an EBCDIC mixed data string that contains DBCS
characters is converted to ASCII mixed data due to the removal of shift codes.

Contracting conversions also can occur when string data is converted to or from Unicode data. It can also
occur between UTF-8 and UTF-16, depending on the data being converted.

Distributed relational databases
The database managers in a distributed relational database communicate and cooperate with each other
in a way that allows a Db2 application program to use SQL to access data at any of the interconnected
computer systems.

A distributed relational database consists of a set of tables and other objects that are spread across
different, but interconnected, computer systems. Each computer system has a relational database
manager, such as Db2, that manages the tables in its environment. The database managers communicate
and cooperate with each other in a way that allows a Db2 application program to use SQL to access data
at any of the computer systems. The Db2 subsystem where the application plan is bound is known as
the local Db2 subsystem. Any database server other than the local Db2 subsystem is considered a remote
database server, and access to its data is a distributed operation.

Distributed relational databases are built on formal requester-server protocols and functions. An
application requester component supports the application end of a connection. It transforms an
application's database request into communication protocols that are suitable for use in the distributed
database network. These requests are received and processed by an application server component at
the database server end of the connection. Working together, the application requester and application
server handle the communication and location considerations so that the application is isolated from
these considerations and can operate as if it were accessing a local database.

For more information on Distributed Relational Database Architecture™ (DRDA) communication protocols,
see DRDA Volume 1: Distributed Relational Database Architecture (Open Group Library - Data
Management Standards).

Related concepts
Distributed data access (Introduction to Db2 for z/OS)
Related tasks
Improving performance for applications that access distributed data (Db2 Performance)

Connections
A connection is an association between an application process and a local or remote database server.
Connections are managed by applications.

An application process must be connected to the application server facility of a database manager before
SQL statements that reference tables or views can be executed. An application can use the CONNECT
statement to establish a connection to a database server and make that database server the current
server of the application process.

68 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://publications.opengroup.org/standards/data-mgmt
https://publications.opengroup.org/standards/data-mgmt
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_distributeddataaccess.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_tunedistributedapps.html

Commit processing
When Db2 for z/OS acts as a requester, it negotiates with the database server during the connection
process to determine how to perform commits. If the remote server does not support two-phase commit
protocol, Db2 downgrades to perform one-phase commits. Otherwise, Db2 always performs two-phase
commits, which allow applications to update one or more databases in a single unit of work and are more
reliable than one-phase commits. Two-phase commit is a two-step process:

1. First, all database managers involved in the same unit of work are pooled to determine whether they
are ready to commit.

2. Then, if all database managers respond positively, they are directed to execute commit processing. If
all database managers do not respond positively, they are directed to execute backout processing.

Db2 can also provide coordination for transactions that include both two-phase commit resources and
one-phase commit resources. If an application has multiple connections to several different database
servers, and if any of the connections are one-phase commit connections, then only one database that is
involved in the transaction can be updated. The connections to all the other databases that are involved in
the transaction are read-only.

To execute a static SQL statement that references tables or views, the bound form of the statement is
taken from a package that the database manager previously created through a bind operation or when a
version of a native SQL procedure was defined.

Supported SQL statements and clauses
For the most part, an application can use the statements and clauses that are supported by the database
manager of the current server, even though that application might be running via the application requester
of a database manager that does not support some of those statements and clauses. Restrictions to this

general rule for Db2 for z/OS are documented in SQL Reference for Cross-Platform Development -
Version 6.

Distributed unit of work
The distributed unit of work facility provides for the remote preparation and execution of SQL statements.

An application process at computer system A can connect to a database server at computer system B
and, within one or more units of work, execute any number of static or dynamic SQL statements that
reference objects at B. All objects referenced in a single SQL statement must be managed by the same
database server. Any number of database servers can participate in the same unit of work, and any
number of connections can exist between an application process and a database server. A commit or
rollback operation that does not specify a savepoint ends the unit of work.

Connection management
How connections are managed depends on what states the SQL connection and the application process
are in.

At any time:

• An SQL connection is in one of the following states:

– Current and held
– Current and release-pending
– Dormant and held
– Dormant and release-pending

• An application process is in the connected or unconnected state, and has a set of zero or more SQL
connections. Each SQL connection is uniquely identified by the name of the database server at the other
end of the connection. Only one SQL connection is active (current) at a time.

Chapter 1. Db2 for z/OS and SQL concepts 69

https://www.ibm.com/docs/en/SSEPEK_12.0.0/pdf/cpsqlrv6.pdf
https://www.ibm.com/docs/en/SSEPEK_12.0.0/pdf/cpsqlrv6.pdf

Initial state of an application process: An application process is initially in the connected state, and it has
exactly one SQL connection. The server of that connection is the local Db2 subsystem.

Initial state of an SQL connection: An SQL connection is initially in the current and held state.

The following figure shows the state transitions:

Begin process

SQL connection states
Successful CONNECT

or SET CONNECTION specifying
another SQL connection

Successful CONNECT
or SET CONNECTION specifying

the existing dormant SQL connection

RELEASE

Application process connection states
The current SQL connection
is intentionally ended, or a

failure occurs that causes the
loss of the connection

Successful CONNECT or
SET CONNECTION

Current Dormant

Held Release pending

Connected Unconnected

Figure 20. State transitions for an SQL connection and an application process connection in a distributed
unit of work

SQL connection states
If an application process successfully executes a CONNECT statement, the SQL connection states of the
connections change.

If an application process successfully executes a CONNECT statement:

• The current connection is placed in the dormant and held state.
• The new connection is placed in the current and held state.
• The location name is added to the set of existing connections.

If the location name is already in the set of existing connections, an error is returned.

An SQL connection in the dormant state is placed in the current state using:

• The SET CONNECTION statement, or
• The CONNECT statement, if the SQLRULES(DB2) bind option is in effect.

When an SQL connection is placed in the current state, the previously-current SQL connection, if any, is
placed in the dormant state. No more than one SQL connection in the set of existing connections of an
application process can be current at any time. Changing the state of an SQL connection from current to
dormant or from dormant to current has no effect on its held or release-pending state.

70 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

An SQL connection is placed in the release-pending state by the RELEASE statement. When an application
process executes a commit operation, every release-pending connection of the process is ended.
Changing the state of an SQL connection from held to release-pending has no effect on its current or
dormant state. Thus, an SQL connection in the release-pending state can still be used until the next
commit operation. No way exists to change the state of a connection from release-pending to held.

Application process connection states
In a distributed unit of work, an application process can be in a connected or unconnected state.
Depending on the state, the application process can execute only certain SQL statements successfully.

A connection to a different database server can be established by the explicit or implicit execution of a
CONNECT statement. The following rules apply:

• An application process cannot have more than one SQL connection to the same database server at the
same time.

• When an application process executes a SET CONNECTION statement, the specified location name
must be in the set of existing connections of the application process.

• When an application process executes a CONNECT statement and the SQLRULES(STD) bind option is in
effect, the specified location must not be in the set of existing connections of the application process.

If an application process has a current SQL connection, the application process is in a connected state.
The CURRENT SERVER special register contains the name of the database server of the current SQL
connection. The application process can execute SQL statements that refer to objects managed by that
server. If the server is a Db2 subsystem, the application process can also execute certain SQL statements
that refer to objects managed by a Db2 subsystem with which that server can establish a connection.

An application process in an unconnected state enters a connected state when it successfully executes a
CONNECT or SET CONNECTION statement.

If an application process does not have a current SQL connection, the application process is in an
unconnected state. The CURRENT SERVER special register contains blanks. The only SQL statements that
can be executed successfully are CONNECT, RELEASE, COMMIT, ROLLBACK, and any of the following local
SET statements.

• SET CONNECTION
• SET CURRENT APPLICATION ENCODING SCHEME
• SET CURRENT PACKAGE PATH
• SET CURRENT PACKAGESET
• SET host-variable = CURRENT APPLICATION ENCODING SCHEME
• SET host-variable = CURRENT PACKAGESET
• SET host-variable = CURRENT SERVER

Because the application process is in an unconnected state, a COMMIT or ROLLBACK statement is
processed by the local Db2 subsystem.

An application process in a connected state enters an unconnected state when its current SQL connection
is intentionally ended, or the execution of an SQL statement is unsuccessful because of a failure that
causes a rollback operation at the current server and loss of the SQL connection. SQL connections are
intentionally ended when an application process successfully executes a commit operation and either of
the following are true:

• The SQL connection is in the release-pending state.
• The SQL connection is not in the release-pending state, but it is a remote connection and either of the

following are true:

– The DISCONNECT(AUTOMATIC) bind option is in effect
– The DISCONNECT(CONDITIONAL) bind option is in effect and an open WITH HOLD cursor is not

associated with the connection

Chapter 1. Db2 for z/OS and SQL concepts 71

An implicit CONNECT to a default Db2 subsystem is executed when an application process executes
an SQL statement other than COMMIT, CONNECT TO, CONNECT RESET, SET CONNECTION, RELEASE, or
ROLLBACK, and if all of the following conditions apply:

• The CURRENTSERVER bind option was specified when creating the application plan of the application
process and the identified server is not the local Db2.

• An explicit CONNECT statement has not already been successfully or unsuccessfully executed by the
application process.

• An implicit connection has not already been successfully or unsuccessfully executed by the application
process. An implicit connection occurs as the result of execution of an SQL statement that contains a
three-part name in a package that is bound with the DBPROTOCOL(DRDA) option.

If the implicit CONNECT fails, the application process is placed in an unconnected state.

When a connection is ended, all resources that were acquired by the application process through the
connection and all resources that were used to create and maintain the connection are returned to the
connection pool. For example, if application process P placed the connection to application server X in
the release-pending state, all cursors of P at X are closed and returned to the connection pool when the
connection is ended during the next commit operation.

When a connection is ended as a result of a communications failure, the application process is placed in
an unconnected state.

All connections of an application process are ended when the process ends.

Remote unit of work
The remote unit of work facility also provides for the remote preparation and execution of SQL statements,
but in a much more restricted fashion than the distributed unit of work facility.

An application process at computer system A can connect to a database server at computer system B
and, within one or more units of work, execute any number of static or dynamic SQL statements that
reference objects at B. All objects referenced in a single SQL statement must be managed by the same
database server, and all SQL statements in the same unit of work must be executed by the same database
server. However, unlike a distributed unit of work, an application process can have only one connection at
a time. The process cannot connect to a new server until it executes a commit or rollback operation on the
current server to end that unit of work. This restricts the situations in which a CONNECT statement can be
executed.

Connection management
How connections are managed depends on what states the SQL connection and the application process
are in.

An application process is in one of four states at any time:

• Connectable and connected
• Unconnectable and connected
• Connectable and unconnected
• Unconnectable and unconnected

Initial state of an application process: An application process is initially in the connectable and
connected state. The database server to which the application process is connected is determined by
a product-specific option that might involve an implicit CONNECT operation. An implicit connect operation
cannot occur if an implicit or explicit connect operation has already successfully or unsuccessfully
occurred. Thus, an application process cannot be implicitly connected to a database server more than
once. Other rules for implicit connect operations are product-specific.

Figure 21 on page 73 shows the state transitions:

72 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Begin process

Connectable
and
connected

CONNECT with system failure
Connectable
and
unconnectedSuccessful CONNECT

ROLLBACK
only

Unconnectable
and
unconnected

Unconnectable
and
connected

System failure except
during COMMIT or ROLLBACK

ROLLBACK or
successful
COMMIT

SQL other than
CONNECT, COMMIT
ROLLBACK, and
local SETs

System failure
during COMMIT
or ROLLBACK

Figure 21. State transitions for an application process connection in a remote unit of work

In the following descriptions of application process connections, CONNECT can mean:

• CONNECT TO
• CONNECT RESET
• CONNECT authorization

It cannot mean CONNECT with no operand, which is used to return information about the current server.

Consecutive CONNECT statements can be executed successfully because CONNECT does not remove
an application process from the connectable state. A CONNECT statement does not initiate a new unit
of work; a unit of work is initiated by the first SQL statement that accesses data. CONNECT cannot
execute successfully when it is preceded by any SQL statement other than CONNECT, COMMIT, RELEASE,
ROLLBACK, or SET CONNECTION. To avoid an error, execute a commit or rollback operation before a
CONNECT statement is executed.

Connectable and connected state: In the connectable and connected state, an application process is
connected to a database server, and CONNECT statements that target the current server can be executed.
An application process re-enters this state when either of the following is true:

• The process completes a rollback or a successful commit from an unconnectable and connected state.
• The process successfully executes a CONNECT statement from a connectable and unconnected state.

Unconnectable and connected state: In the unconnectable and connected state, an application process
is connected to a database server, and only a CONNECT statement with no operands can be executed. An
application process enters this state from a connectable and connected state when it executes any SQL
statement other than CONNECT, COMMIT, or ROLLBACK.

Connectable and unconnected state: In the connectable and unconnected state, an application process
is not connected to a database server. The only SQL statement that can be executed is CONNECT. An
application process enters this state if any of the following is true:

• The process does not successfully execute a CONNECT statement from a connectable and connected
state.

• The process executes a COMMIT statement when the SQL connection is in a release-pending state.
• A system failure occurs during a COMMIT or ROLLBACK from an unconnectable and connected state.

Chapter 1. Db2 for z/OS and SQL concepts 73

• The process executes a ROLLBACK statement from an unconnectable and unconnected state.

Other product-specific reasons can also cause an application process to enter the connectable and
unconnected state.

Unconnectable and unconnected state: In the unconnectable and unconnected state, an application
process is not connected to a database server and CONNECT statements cannot be executed. The only
SQL statement that can be executed is ROLLBACK. An application process enters this state from an
unconnectable and connected state as a result of a system failure, except during a COMMIT or ROLLBACK,
at the server.

74 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Chapter 2. Language elements in SQL
An understanding of the basic syntax of SQL and language elements that are common to many SQL
statements can be helpful in using SQL with Db2 for z/OS. The most basic elements of SQL syntax are
characters and tokens.

The following topics provide information about more language elements:

• “Characters and tokens in SQL” on page 75
• “Identifiers in SQL” on page 77
• “Naming conventions in SQL” on page 79
• “SQL path” on page 85
• “Unqualified object name resolution” on page 86
• “Authorization IDs, roles, and authorization names” on page 92
• “Data types” on page 98
• “Promotion of data types” on page 129
• “Casting between data types” on page 130
• “Assignment and comparison” on page 143
• “Rules for result data types” on page 166
• “Constants” on page 170
• “Special registers” on page 177
• “Column names” on page 219
• “Variables” on page 225
• “Host structures in PL/I, C, and COBOL” on page 235
• “Host-variable arrays in PL/I, C, C++, and COBOL” on page 236
• “Functions” on page 237
• “Expressions” on page 245
• “Predicates” on page 296
• “Search conditions” on page 319
• “Options affecting SQL” on page 320
• “Mappings from SQL to XML” on page 327

Characters and tokens in SQL
The most basic elements of SQL syntax are characters and tokens. Tokens are the basic syntactical units
of the SQL language.

Characters
The basic symbols of keywords and operators in the SQL language are characters. Characters are
classified as letters, digits, or special characters.

• A letter is any of the 26 uppercase (A–Z) and 26 lowercase (a–z) letters of the English alphabet.1

• A digit is any one of the characters 0–9.
• A special character is any character other than a letter or a digit.

1 Letters also include three code points reserved as alphabetic extenders for national languages ($, #, and
@ in the United States). These three code points (X'5B', X'7B', and X'7C') should be avoided because they
represent different characters depending on the CCSID.

© Copyright IBM Corp. 1982, 2024 75

Tokens
The basic syntactical units of the SQL language are called tokens. A token consists of one or more
characters of which none are blanks, control characters, or characters within a string constant or
delimited identifier.

Tokens are classified as ordinary or delimiter tokens:

• An ordinary token is a numeric constant, an ordinary identifier, a host identifier, or a keyword. The
following examples are ordinary tokens:

 1 .1 +2 SELECT E 3

• A delimiter token is a string constant, a delimited identifier, an operator symbol, or any of the special
characters shown in the syntax diagrams. A question mark (?) is also a delimiter token when it serves
as a parameter marker, as explained in “PREPARE statement” on page 2042. The following examples
include delimiter tokens:

 , 'string' "fld1" = .

Spaces
A space is a sequence of one or more blank characters.

Control characters
A control character is a special character that is used for string alignment. Treated similar to a space,
a control character does not cause a particular action to occur. The following table shows the control
characters that Db2 recognizes and their hexadecimal values.

Table 12. Hexadecimal values for the control characters that Db2 recognizes

Control character EBCDIC hex value UTF-8 hex value UTF-16 hex value

Tab 05 09 U+0009

Form feed 0C 0C U+000C

Carriage return 0D 0D U+000D

New line 15 C285 U+0085

Line feed 25 0A U+000A

DBCS space - - U+3000

Tokens, other than string constants and certain delimited identifiers, must not include a control character
or space. A control character or space can follow a token. A delimiter token, control character, or a space
must follow every ordinary token. If the syntax does not allow a delimiter token to follow an ordinary
token, a control character or a space must follow that ordinary token.

Trigraph characters
The left bracket ([) and right bracket (]) characters are used in syntax to refer to an array element. Those
characters cannot be specified with some CCSIDs. The following trigraphs can be used as an alternative
way to specify left and right brackets:

• The string ??(can be specified in place of a left bracket ([).
• The string ??) can be specified in place of a right bracket (]).

76 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Comments
Dynamic SQL statements can include SQL comments. Static SQL statements can include host language
comments or SQL comments. Comments can be specified wherever a space can be specified, except
within a delimiter token or between the keywords EXEC and SQL. In Java, SQL comments are not allowed
within embedded Java expressions. There are two types of SQL comments:

Simple comments
Simple comments are introduced with two consecutive hyphens (--). Simple comments cannot
continue past the end of the line.

Bracketed comments
Bracketed comments are introduced with /* and end with */. A bracketed comment can continue
past the end of the line.

The following example shows how to include comments in an SQL statement within a C program. The
example uses both simple and bracketed comments:

 EXEC SQL
 CREATE VIEW PRJ_MAXPER --projects with most support personnel
 /*
 * Returns number and name of the project
 */
 AS SELECT PROJNO, PROJNAME -- number and name of project
 FROM DSN8910.PROJ
 /*
 * E21 is the systems support dept code
 */
 WHERE DEPTNO = 'E21' -- systems support dept code
 AND PRSTAFF > 1;

For more information, see “SQL comments” on page 1092.

Uppercase and lowercase characters
A token in an SQL statement can include lowercase letters, but lowercase letters in an ordinary token are
folded to uppercase. However, lowercase letters are folded to uppercase in a C or Java program only if the
appropriate precompiler option is specified. Delimiter tokens are never folded to uppercase.

For example, the following two statements are equivalent after folder:

 select * from DSN8C10.EMP where lastname = 'Smith';

 SELECT * FROM DSN8C10.EMP WHERE LASTNAME = 'Smith';

Related concepts
Identifiers in SQL
An identifier is a token used to form a name. An identifier in an SQL statement is an SQL identifier or a host
identifier. SQL identifiers can be ordinary identifiers or delimited identifiers.
Expressions
An expression specifies a value and can take a number of different forms, such as a simple value,
consisting of only a constant or a column name, or it can be more complex with operators, other
expressions, and more.

Identifiers in SQL
An identifier is a token used to form a name. An identifier in an SQL statement is an SQL identifier or a host
identifier. SQL identifiers can be ordinary identifiers or delimited identifiers.

Ordinary identifiers
An ordinary identifier is an uppercase letter followed by zero or more characters, each of which is an
uppercase letter, a digit, or the underscore character. If an identifier that is not delimited contains

Chapter 2. Language elements in SQL 77

lowercase characters, but otherwise follows all the rules for an ordinary identifier, Db2 folds the
lowercase letters to uppercase, and the identifier becomes an ordinary identifier. For more information
about ordinary identifiers, see “Characters and tokens in SQL” on page 75.

An ordinary identifier should not be a reserved word. If a reserved word is used as an identifier in SQL, it
must be specified in uppercase and must be a delimited identifier or specified in a host variable. For a list
of reserved words, see Appendix B, “Reserved schema names and reserved words in Db2 for z/OS,” on
page 2257.

Identifiers that contain only DBCS characters can also be ordinary identifiers, unless otherwise specified.

The following list shows the rules for forming SQL ordinary identifiers:

• The UTF-8 representation of the name must not exceed 128 bytes.
• Continuation to the next line is not allowed.

If the SQL ordinary identifier contains DBCS characters, the following additional rules apply:

• The identifier, if encoded in EBCDIC, must start with a shift-out (X'0E') and end with a shift-in (X'0F').
There must be an even number of bytes between the shift-out and the shift-in. An odd-numbered byte
between those shifts must not be a shift-out. DBCS blanks (X'4040' in EBCDIC) are not acceptable
between the shift-out and the shift-in.

• The identifiers are not folded to uppercase or changed in any other way.

Delimited identifiers
A delimited identifier is a sequence of one or more characters enclosed within escape characters. For
example, if the escape character is the quotation mark ("), the following example is a delimited identifier:

"VIEW"

The escape character is the quotation mark (")2 except for:

• Dynamic SQL when the field SQL STRING DELIMITER on installation panel DSNTIPF is set to the
quotation mark (") and either of these conditions is true:

– DYNAMICRULES run behavior applies. For a list of the DYNAMICRULES option values that specify run,
bind, define, or invoke behavior, see “Authorization IDs and dynamic SQL” on page 94.

– DYNAMICRULES bind, define, or invoke behavior applies and installation panel field USE FOR
DYNAMIC RULES is YES.

In this case, the escape character is the apostrophe (').

However, for COBOL application programs, if DYNAMICRULES run behavior does not apply and
installation panel field USE FOR DYNAMICRULES is NO, a COBOL compiler option specifies whether
the escape character is the quotation mark or apostrophe.

• Static SQL in COBOL application programs. A COBOL compiler option specifies whether the escape
character is the quotation mark (") or the apostrophe (').

A delimited identifier can be used when the sequence of characters does not qualify as an ordinary
identifier. Such a sequence, for example, could be an SQL reserved word, or it could begin with a digit.
Two consecutive escape characters are used to represent one escape character within the delimited
identifier. A delimited identifier that contains EBCDIC DBCS characters also must contain the necessary
shift characters.

Leading and embedded blanks in the sequence are significant. Trailing blanks in the sequence are
not significant. The length of a delimited identifier does not include the starting and ending escape
characters. Embedded escape characters (that appear as two characters) are counted in the length as a
single character.

2 In CCSID 1026 and CCSID 1155, the code point for the quotation mark can be X'7F' or X'FC'. However, if
the beginning delimiter is X'7F', the ending delimiter must also be X'7F'. If the beginning delimiter is X'FC',
ending delimiter must also be X'FC'.

78 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Limits for identifiers
See Appendix A, “Limits in Db2 for z/OS,” on page 2247 for length limits that Db2 imposes for identifiers.

Host identifiers
A host identifier is a name declared in the host program.

The rules for forming a host identifier are the rules of the host language. In non-Java programs, do not use
names beginning with 'DB2', 'SQ'3, 'SQL', 'sql', 'RDI', or 'DSN' because precompilers generate host variable
names that begin with these characters. In Java, do not use names beginning with '__sJT_'.

Identifier restrictions for distributed data access
The Db2 internal processing of distributed access must sometimes convert the identifiers for
authorization-name, procedure-name, and schema-name between CCSIDs. If there is any possibility
that these identifiers will be used in distributed access, restrict the identifiers to characters whose
representation in Unicode UTF-8 have code points in the range 0–127. You do not need to enter the
identifiers in Unicode; this restriction refers to conversion that Db2 performs internally.

Related concepts
Characters and tokens in SQL
The most basic elements of SQL syntax are characters and tokens. Tokens are the basic syntactical units
of the SQL language.
Naming conventions
The rules for forming a name depend on the type of the object designated by the name.
Related reference
Reserved schema names and reserved words in Db2 for z/OS
Restrictions exist on the use of certain words that are used by Db2 for z/OS. In some cases, these
names are reserved and cannot be used by application programs. In other cases, certain names are not
recommended for use by application programs though not prevented from being used by the database
manager.

Naming conventions in SQL
The rules for forming a name depend on the type of the object designated by the name.

Many database objects have a schema qualified name. A schema qualified name may consist of a single
SQL identifier (in which case the schema-name is implicit) or a schema-name followed by a period and an
SQL identifier. For more information about the rules for SQL identifiers, see “Identifiers in SQL” on page
77.

The syntax diagrams use different terms for different types of names. The following list defines these
terms.
accelerator-name

A name that identifies an accelerator-only table. An accelerator name is 1 to 8 uppercase characters
or digits. The name must be unique within the Db2 subsystem or data sharing group.

alias-name
A qualified or unqualified name that designates an alias. A fully qualified alias name is a three-part
name. The first part is a location name that designates the DBMS at which the alias is defined. The
second part is a schema name. The third part is an SQL identifier. A period must separate each of the
parts.

A two-part sequence is implicitly qualified by the location name of the current server. The first part is
a schema name. The second part is an SQL identifier. A period must separate the two parts.

3 'SQ' is allowed in C, COBOL, and REXX.

Chapter 2. Language elements in SQL 79

A one-part or unqualified alias name is an SQL identifier with two implicit qualifiers. The first
implicit qualifier is the location name of the current server. The second is a schema name, which
is determined by the rules specified in “Unqualified alias, index, JAR file, mask, permission, sequence,
table, trigger, and view names” on page 86.

For more information, see “Aliases” on page 88.

array-type-name
A qualified or unqualified name that designates an array type.

A qualified array type name is a two-part name. The first part is the schema name of the array type.
The second part is an SQL identifier. A period must separate each of the parts.

An unqualified array type name is an SQL identifier with an implicit qualifier. The implicit qualifier is
the schema name, which is determined by the context in which the array type appears, as described
by the rules in “Unqualified object name resolution” on page 86.

authorization-name
An SQL identifier that designates a set of privileges. It can also designate a user, a group of users, or
a role. For a user or a group of users, Db2 does not control this property. For a role, Db2 does control
this property. See “Authorization IDs, roles, and authorization names” on page 92 for the distinction
between an authorization name and an authorization ID.

aux-table-name
A qualified or unqualified name that designates an auxiliary table. The rules for the name are the same
as the rules for table-name. See table-name.

bpname
A name that identifies a buffer pool. The following list shows the names of the different buffer pool
sizes.
4KB

BP0, BP1, BP2, …, BP49
8KB

BP8K0, BP8K1, BP8K2, …, BP8K9
16KB

BP16K0, BP16K1, BP16K2, …, BP16K9
32KB

BP32K, BP32K1, BP32K2, …, BP32K9
built-in-type

A qualified or unqualified name that identifies an IBM-supplied data type. A qualified name is SYSIBM
followed by a period and the name of the built-in data type. An unqualified name has an implicit
qualifier, the schema name, which is determined by the rules in “Unqualified object name resolution”
on page 86.

catalog-name
An SQL identifier that designates an integrated catalog facility (ICF) catalog. The identifier must
start with a letter and must not include special characters, or the alphabetic extenders for national
languages ($, #, and @ in the United States). These three code points (X'5B', X'7B', and X'7C') should
be avoided because they represent different characters depending on the CCSID.

clone-table-name
A qualified or unqualified name that designates the name of a clone table. See the definition of
table-name for more information about qualification of table names.

collection-id
An SQL identifier that identifies a collection of packages, such as a collection ID as a qualifier for a
package ID.

column-name
A qualified or unqualified name that designates a column of a table or view.

80 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

A qualified column name is a qualifier followed by a period and an SQL identifier. The qualifier is a
table name, a view name, a synonym, an alias, or a correlation name. The unqualified column name is
an SQL identifier.

constraint-name
An SQL identifier that designates a primary key, check, referential, or unique constraint on a table.

context-name
An SQL identifier that designates a trusted context.

correlation-name
An SQL identifier that designates a table, a view, or individual rows of a table or view.

cursor-name
An SQL identifier that designates an SQL cursor. In SQLJ, cursor-name is a host variable (with no
indicator variable) that identifies an instance of an iterator.

database-name
An SQL identifier that designates a database. The identifier must start with a letter and must not
include special characters.

descriptor-name
A host identifier that designates an SQL descriptor area (SQLDA). See “Host variables” on page 227
for a description of a host identifier. A descriptor name never includes an indicator variable.

distinct-type-name
A qualified or unqualified name that designates a distinct type.

A qualified distinct type name is a two-part name. The first part is the schema name of the distinct
type. The second part is an SQL identifier. A period must separate each of the parts.

An unqualified distinct type name is an SQL identifier with an implicit qualifier. The implicit qualifier is
the schema name, which is determined by the context in which the distinct type appears as described
by the rules in “Unqualified type, function, procedure, global variable, and specific names” on page
87.

external-program-name
A name that specifies the program that runs when the function is invoked or the procedure name is
specified in a CALL statement.

function-name
A qualified or unqualified name that designates a user-defined function, a cast function that was
generated when a distinct type was created, or a built-in function.

A qualified function name is a two-part name. The first part is the schema name of the function. The
second part is an SQL identifier. A period must separate each of the parts.

An unqualified function name is an SQL identifier with an implicit qualifier. The implicit qualifier is
the schema name, which is determined by the context in which the unqualified name appears as
described by the rules in “Unqualified type, function, procedure, global variable, and specific names”
on page 87.

global-variable-name
A qualified or unqualified name that designates a global variable.

A qualified global variable name is a two-part name. The first part is the schema name of the global
variable. The second part is an SQL identifier. A period must separate each of the parts.

An unqualified global variable name is an SQL identifier with an implicit qualifier. The implicit qualifier
is the schema name, which is determined by the context in which the unqualified name appears as
described by the rules in “Unqualified type, function, procedure, global variable, and specific names”
on page 87.

host-label
A token that designates a label in a host program.

Chapter 2. Language elements in SQL 81

host-variable
A sequence of tokens that designates a host variable. A host variable includes at least one host
identifier, as explained in “Host variables” on page 227.

index-name
A qualified or unqualified name that designates an index.

A qualified index name is an authorization ID or schema name followed by a period and an SQL
identifier.

An unqualified index name is an SQL identifier with an implicit qualifier. The implicit qualifier is
an authorization ID, which is determined by the context in which the unqualified name appears as
described by the rules in “Unqualified object name resolution” on page 86.

For an index on a declared temporary table, the qualifier must be SESSION.

FL 502 key-label-name
An SQL identifier that corresponds to the value of the Integrated Cryptographic Service Facility (ICSF)
key label. A keylabel-name can consist of up to 64 characters. The first character must be a letter
or national character (#, $, @). It is recommended that the name not include national characters
(@ (X'7C'), # (X'7B'), or $ (X'5B')). The identifier must not include the underscore (_) character. The
characters allowed in the delimited form are the same as those allowed in the ordinary form, except
that it can contain a period (.), but the period cannot be the first character. For more information, see
Key label (z/OS ICSF).

location-name
An SQL identifier that designates the name of a location. A location name is 1 to 16 bytes, does not
include alphabetic extenders (national characters), lowercase letters, or Katakana characters. The
characters allowed in the delimited form are the same as those allowed in the ordinary form.

mask-name
A qualified or unqualified name that designates a mask.

A qualified mask name is a two-part name. The first part is the schema name. The second part is an
SQL identifier. A period must separate each of the parts.

A one-part or unqualified mask name is an SQL identifier with an implicit qualifier. The implicit
qualifier is an authorization ID, which is determined by the context in which the unqualified name
appears as described by the rules in “Unqualified object name resolution” on page 86.

package-name
A qualified or unqualified name that designates a package. The unqualified form of a package-name is
an SQL identifier. A package-name must not be a delimited identifier that includes lowercase letters or
special characters. A package-name in an SQL statement must be qualified. In some contexts outside
of SQL, a package name can be specified as an unqualified name.

parameter-name
An SQL identifier that designates a parameter in an SQL procedure or SQL function.

permission-name
A qualified or unqualified name that designates a permission.

A qualified permission name is a two-part name. The first part is the schema name. The second part is
an SQL identifier. A period must separate each of the parts.

A one-part or unqualified permission name is an SQL identifier with an implicit qualifier. The implicit
qualifier is an authorization ID, which is determined by the context in which the unqualified name
appears as described by the rules in “Unqualified object name resolution” on page 86.

plan-name
An SQL identifier that designates an application plan. The identifier must not be a delimited identifier
that includes lowercase letters or special characters.

procedure-name
A qualified or unqualified name that designates a stored procedure.

82 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.csfb400/csfb419.htm

A fully qualified procedure name is a three-part name. The first part is a location name that identifies
the DBMS at which the procedure is stored. The second part is the schema name of the stored
procedure. The third part is an SQL identifier. A period must separate each of the parts in a qualified
name.

A two-part procedure name is implicitly qualified with the location name of the current server. The
first part is the schema name of the stored procedure. The second part is an SQL identifier. A period
must separate the two parts.

A one part, or unqualified, procedure name is an SQL identifier with two implicit qualifiers. The first
implicit qualifier is the location name of the current server. The second implicit qualifier is the schema
name, which is determined by the context in which the unqualified name appears, as described by the
rules in “Unqualified object name resolution” on page 86.

The SQL identifier in a qualified or unqualified name must not be an asterisk (*).

profile-name
An SQL identifier that corresponds to a RACF profile name.

program-name
An SQL identifier that designates an exit routine.

role-name
An SQL identifier that designates a role. The identifier cannot begin with the characters SYS and
cannot be ACCESSCTRL, DATAACCESS, DBADM, DBCTRL, DBMAINT, NONE, NULL, PACKADM, PUBLIC,
SECADM, or SQLADM.

routine-version-id
An SQL identifier of up to 64 EBCDIC bytes that designates a version of a routine. The UTF-8
representation of the identifier must not exceed 122 bytes.

savepoint-name
An SQL identifier that designates a savepoint.

schema-name
An SQL identifier that provides a logical grouping for SQL objects. A schema-name is used as a
qualifier of the name of SQL objects.

seclabel-name
An SQL identifier that corresponds to the value of the RACF security label. It is recommended that the
name not include national characters (@ (X'7C'), # (X'7B'), or $ (X'5B')). If the table is a Unicode table
and the security label name does include national characters, an error might be issued if substitution
occurs when Db2 converts the value from EBCDIC to Unicode.

sequence-name
A qualified or unqualified name that designates a sequence.

A qualified sequence name is a two-part name. The first part is the schema name. The second part is
an SQL identifier. A period must separate each of the parts.

A one-part or unqualified sequence name is an SQL identifier with an implicit qualifier. The implicit
qualifier is an authorization ID, which is determined by the context in which the unqualified name
appears as described by the rules in “Unqualified alias, index, JAR file, mask, permission, sequence,
table, trigger, and view names” on page 86.

server-name
An SQL identifier that designates an application server. The identifier must start with a letter and must
not include lowercase letters or special characters.

specific-name
A qualified or unqualified name that designates a unique name for a user-defined function.

A qualified specific name is a two-part name. The first part is the schema name. The second part is an
SQL identifier, and it must not be an asterisk (*). A period must separate each of the parts.

An unqualified specific name is an SQL identifier with an implicit qualifier. The implicit qualifier is
the schema name, which is determined by the context in which the unqualified name appears as

Chapter 2. Language elements in SQL 83

described by the rules in “Unqualified type, function, procedure, global variable, and specific names”
on page 87.

A specific name can be used to identify a function to alter, comment on, drop, grant privileges on,
revoke privileges from, or be the source function for another function. A specific name cannot be used
to invoke a function. In addition to being used in certain SQL statements, a specific name must be
used in Db2 commands to uniquely identify a function.

SQL-condition-name
An SQL identifier that designates a condition in an SQL routine or trigger.

SQL-label
An SQL identifier that designates a label in an SQL routine or trigger.

SQL-parameter-name
A qualified or unqualified name that designates a parameter in an SQL routine body. The unqualified
form of an SQL-parameter-name is an SQL identifier. The qualified form is a function-name or
procedure-name followed by a period and an SQL identifier.

SQL-variable-name
A qualified or unqualified name that designates a variable in an SQL routine or trigger body. The
unqualified form of an SQL-variable-name is an SQL identifier. The qualified form is an SQL-label
followed by a period (.) and an SQL identifier.

statement-name
An SQL identifier that designates a prepared SQL statement.

stogroup-name
An SQL identifier that designates a storage group.

synonym
An SQL identifier that designates a synonym, a table, or a view. The table or view must exist at the
current server. A qualified name is never interpreted as a synonym.

table-name
A qualified or unqualified name that designates a table.

A fully qualified table name is a three-part name. The first part is a location name that designates
the DBMS at which the table is stored. The second part is a schema name. The third part is an SQL
identifier. A period must separate each of the parts.

A two-part table name is implicitly qualified by the location name of the current server. The first part is
a schema name. The second part is an SQL identifier. A period must separate the two parts.

A one-part or unqualified table name is an SQL identifier with two implicit qualifiers. The first
implicit qualifier is the location name of the current server. The second is a schema name, which
is determined by the rules set forth in “Unqualified alias, index, JAR file, mask, permission, sequence,
table, trigger, and view names” on page 86. For a declared temporary table, the qualifier (the second
part in a three-part name and the first part in a two-part name) must be SESSION. For complete
details on specifying a name when a declared temporary table is defined and then later referring to
that declared temporary table in other SQL statements, see “DECLARE GLOBAL TEMPORARY TABLE
statement” on page 1830.

table-space-name
An SQL identifier that designates a table space of an identified database. The identifier must start with
a letter and must not include special characters. If a database is not identified, DSNDB04 is implicit.

trigger-name
A qualified or unqualified name that designates a trigger.

A qualified trigger name is a two-part name. The first part is the schema name of the trigger. The
second part is an SQL identifier. A period must separate each of the parts.

An unqualified trigger name is an SQL identifier with an implicit qualifier. The implicit qualifier is
the schema name, which is determined by the context in which the unqualified name appears as
described by the rules in “Unqualified alias, index, JAR file, mask, permission, sequence, table, trigger,
and view names” on page 86.

84 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

trigger-version-id
An SQL identifier of up to 64 EBCDIC bytes that designates a version of a trigger. The UTF-8
representation of the identifier must not exceed 122 bytes.

view-name
A qualified or unqualified name that designates a view.

A fully qualified view name is a three-part name. The first part is a location name that designates
the DBMS where the view is defined. The second part is a schema name. The third part is an SQL
identifier. A period must separate each of the parts.

A two-part view name is implicitly qualified by the location name of the current server. The first part is
a schema name. The second part is an SQL identifier. A period must separate the two parts.

A one-part or unqualified view name is an SQL identifier with two implicit qualifiers. The first
implicit qualifier is the location name of the current server. The second is a schema name, which
is determined by the context in which the unqualified name appears as described by the rules in
“Unqualified alias, index, JAR file, mask, permission, sequence, table, trigger, and view names” on
page 86.

XML-attribute-name
An identifier that is used as an XML attribute name.

XML-element-name
An identifier that is used as an XML element name.

Related concepts
Identifiers in SQL
An identifier is a token used to form a name. An identifier in an SQL statement is an SQL identifier or a host
identifier. SQL identifiers can be ordinary identifiers or delimited identifiers.
Related reference
Reserved schema names and reserved words in Db2 for z/OS
Restrictions exist on the use of certain words that are used by Db2 for z/OS. In some cases, these
names are reserved and cannot be used by application programs. In other cases, certain names are not
recommended for use by application programs though not prevented from being used by the database
manager.

SQL path
The SQL path is an ordered list of schema names. Db2 uses the path to resolve the schema name for
certain unqualified object names that appear in any context other than as the main object of an ALTER,
CREATE, DROP, COMMENT, GRANT, RENAME, or REVOKE statement.

Db2 uses the path to resolve the schema name for the following object names:

• data types (both built-in types and distinct types)
• functions
• stored procedures
• global variables

Searching through the path from left to right, Db2 implicitly qualifies the object name with the first
schema name in the SQL path that contains the same object with the same unqualified name for which
the user has appropriate authorization. For functions, Db2 uses a process called function resolution in
conjunction with the SQL path to determine which function to choose because several functions with
the same name and number of parameters but different parameter data types might be defined in the
same schema or other schemas in the SQL path. (For details, see “Function resolution” on page 239.) For
procedures, Db2 selects a matching procedure name only if the number of parameters is also the same.

The SQL path does not apply to unqualified procedure names in ASSOCIATE LOCATOR and DESCRIBE
PROCEDURE statements. For these statements, an implicit schema name is not generated.

Chapter 2. Language elements in SQL 85

For an example of how Db2 uses the SQL path to resolve the schema name, assume that the SQL path is
SMITH, XGRAPHIC, SYSIBM, and that an unqualified distinct type name MYTYPE was specified. Db2 looks
for MYTYPE first in schema SMITH, then XGRAPHIC, and then SYSIBM.

The PATH option establishes the SQL path that is used to resolve:

• Unqualified data type, global variable, and function names in static SQL statements
• Unqualified procedure names in SQL CALL statements that specify the procedure name as an identifier

token (CALL procedure-name)

If the PATH option was not specified when the plan or package was created or last rebound or when
native SQL procedure was defined or last changed, the default value of the SQL path is: SYSIBM, SYSFUN,
SYSPROC, plan or package qualifier.

The CURRENT PATH special register determines the SQL path used to resolve:

• Unqualified data type, global variable, and function names in dynamic SQL statements
• Unqualified procedure names in SQL CALL statements that specify the procedure name in a host

variable (CALL host-variable)

Generally, the initial value of the CURRENT PATH special register is one of the following:

• The value of the PATH option
• "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM", value of CURRENT SQLID special register if the PATH

option was not specified.

If schema "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM" is not explicitly specified in the SQL path, the
schema is implicitly assumed at the front of the path; if all are not specified, they are assumed in the
order of "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM".

For example, assume that the SQL path is explicitly specified as SYSIBM, GEORGIA, SMITH. As implicitly
assumed schemas, SYSFUN, SYSPROC, and SYSIBMADM are added to the beginning of the explicit path
effectively making the path:

SYSFUN, SYSPROC, SYSIBMADM, SYSIBM, GEORGIA, SMITH

For more information about the SQL path for dynamic SQL, see “CURRENT PATH special register” on page
200 and “SET PATH statement” on page 2163.

Unqualified object name resolution
Most object names are implicitly or explicitly qualified with a schema name. Synonyms are an exception.

A synonym has a single part name. When Db2 encounters an unqualified name, Db2 must determine
which object to process. This process is called name resolution.

When Db2 encounters a single part name in a context where an alias, table, view, or synonym can be
specified, Db2 first checks to see if the name refers to a synonym that is defined by the current user.

Unqualified object names, other than synonyms, are implicitly qualified. The rules for qualifying a name
differ depending on the type of object that the name identifies.

Unqualified alias, index, JAR file, mask, permission, sequence, table, trigger, and
view names
The default schema is determined as follows:

• For static SQL statements, the default schema is the identifier specified in the QUALIFIER option of the
BIND subcommand or the CREATE or ALTER statement for a SQL routine or trigger. If this option is not in
effect for the plan, package, or native SQL procedure, the default schema is the authorization ID of the
owner of the plan, package, or native SQL procedure.

86 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• For dynamic SQL statements, the behavior as specified by the combination of the DYNAMICRULES
option and the run time environment determines the default schema. (For a list of these behaviors and
the DYNAMICRULES values that determine them, see Table 14 on page 94).

– If DYNAMICRULES run behavior applies, the default schema is the schema in the CURRENT SCHEMA
special register. Run behavior is the default.

– If bind behavior applies, the default schema is the identifier that is implicitly or explicitly specified in
the QUALIFIER option, as explained for static SQL statements.

– If define behavior applies, the default schema is the owner of the function or stored procedure (the
owner is the definer).

– If invoke behavior applies, the default schema is the authorization ID of the invoker of the function or
stored procedure.

Exception: For bind, define, and invoke behavior, the default schema of PLAN_TABLE,
DSN_STATEMNT_TABLE, and DSN_FUNCTION_TABLE (output from the EXPLAIN statement) is always
the value in special register CURRENT SQLID.

Unqualified type, function, procedure, global variable, and specific names
The qualification of unqualified type (built-in type, distinct type, or array type), function, stored procedure,
global variable, and specific names depends on the SQL statement in which the unqualified name
appears.

• If an unqualified name is the main object of an ALTER, CREATE, COMMENT, DROP, GRANT, or REVOKE
statement, the name is implicitly qualified with a schema name as follows:

– In a static statement, the implicit schema name is the identifier specified in the QUALIFIER option of
the BIND subcommand or the CREATE or ALTER statement for a SQL routine or trigger. If this option
is not in effect for the package or procedure, the implicit qualifier is the authorization ID of the owner
of the package or procedure.

– In a dynamic statement, the implicit schema name is the schema in the CURRENT SCHEMA special
register.

• Otherwise, the implicit schema name for the unqualified name is determined as follows:

– For distinct type and array type names, Db2 searches the SQL path and selects the first schema in the
path such that the data type exists in the schema and the user has authorization to use the type.

– For global variable names, Db2 searches the SQL path and selects the first schema in the path such
that the global variable exists in the schema and the user has authorization to use the global variable.

– For function names, Db2 uses the SQL path in conjunction with function resolution, as described in
“Function resolution” on page 239.

– For stored procedure names in CALL statements, Db2 searches the SQL path and selects the first
schema in the path such that the schema contains a procedure with the same name and number of
parameters and the user has authorization to use the procedure.

– For stored procedure names in ASSOCIATE LOCATORS and DESCRIBE PROCEDURE statements, Db2
does not use the SQL path because an implicit schema name is not generated for these statements.

For information about the SQL path, see “SQL path” on page 85.

Related reference
QUALIFIER bind option (Db2 Commands)
DYNAMICRULES bind option (Db2 Commands)
CREATE PROCEDURE statement (SQL - native procedure)
The CREATE PROCEDURE statement defines an SQL procedure, or a version of a procedure, at the current
server and specifies the source statements for the procedure.
ALTER PROCEDURE statement (SQL - native procedure)

Chapter 2. Language elements in SQL 87

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptqualifier.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptdynamicrules.html

The ALTER PROCEDURE statement changes the definition of an SQL procedure at the current server. The
procedure options, parameter names, and routine body can be changed and additional versions of the
procedure can be defined and maintained using the ALTER PROCEDURE statement.
CREATE TRIGGER statement (advanced trigger)
ALTER TRIGGER statement (advanced trigger)
CREATE FUNCTION statement (compiled SQL scalar function)
The CREATE FUNCTION (compiled SQL scalar) statement defines a compiled SQL scalar function at the
current server and specifies the source statements for the function. The body of the function is written in
the SQL procedural language. The function returns a single value each time it is invoked.
ALTER FUNCTION statement (compiled SQL scalar function)
The ALTER FUNCTION (compiled SQL scalar) statement changes the description of a user-defined
compiled SQL scalar function at the current server. The function options, parameter names, and routine
body can be changed and additional versions of the procedure can be defined and maintained using the
ALTER FUNCTION statement.
CURRENT SQLID special register
CURRENT SQLID specifies the SQL authorization ID of the process.
EXPLAIN statement

Aliases
An alias is an alternative name for an object such as a table, view, sequence, or another alias. It can be
used to reference an object wherever that object can be referenced directly.

The option of referencing an object by an alias is not explicitly shown in the syntax diagrams or mentioned
in the description of SQL statements.

Like tables, views, and sequences, an alias can be created, dropped, and associated with a comment. No
authority is necessary to use an alias. However, access to the objects that are referred to by the alias still
requires the appropriate authorization for the current statement.

An alias is created using the CREATE ALIAS statement.

An alias name designates an alias when it is preceded by the keyword ALIAS, as in CREATE ALIAS, DROP
ALIAS, COMMENT ON ALIAS, and LABEL for an ALIAS. In all other contexts, an alias name designates a
table, a view, or a sequence. For example, COMMENT ON ALIAS A specifies a comment about the alias A,
whereas COMMENT ON TABLE A specifies a comment about the table or view designated by A.

An alias for a table or a view can be defined at a local server to refer to a table or a view that is at the
current server or a remote server. An alias name for a table or view can be used wherever the table name
or view name can be used to refer to the table or view in an SQL statement. The rules for forming an
alias name for a table or view are the same as the rules for forming a table name or a view name. A fully
qualified alias name (a three-part name) can refer to an alias at a remote server. However, the table or
view identified by the alias at the remote server must exist at the remote server.

An alias for a sequence can be defined at the current server. An alias name for a sequence can be used
wherever the sequence name can be used to refer to the sequence in an SQL statement. The rules for
forming an alias name for a sequence are the same as the rules for forming a sequence name.

Statements that use three-part names and refer to distributed data result in DRDA access to the remote
site. DRDA access for three-part names is used when the package that contains the query to distributed
data is bound using the bind option DBPROTOCOL(DRDA), or the value of the DATABASE PROTOCOL field
on installation panel DSNTIP5 is DRDA. When an application program uses three-part name aliases for
remote table or view objects and DRDA access, the application program must be bound at each location
that is specified in the three-part name. Also, each alias must be defined at the local site. An alias at a
remote site can refer to another server if a referenced alias eventually refers to a table or view.

The effect of using an alias in an SQL statement is the same as text substitution. For example, if A is an
alias for table Q.T, one of the steps involved in the preparation of SELECT * FROM A is the replacement
of 'A' by 'Q.T'.

88 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If an alias is defined as a public alias, it can be referenced by its unqualified name without any impact
from the current default schema name. It can also be referenced using the schema qualifier SYSPUBLIC.

Related concepts
Synonyms (deprecated)
A synonym is an alternate name for a table or view. A synonym can be used to reference a table or view in
cases where an existing table or view can be referenced. However, Db2 no longer supports the creation of
new synonyms.
Related reference
CREATE ALIAS statement
The CREATE ALIAS statement defines an alias for a table, a view, or a sequence. The definition is recorded
in the Db2 catalog at the current server.

Synonyms (deprecated)
A synonym is an alternate name for a table or view. A synonym can be used to reference a table or view in
cases where an existing table or view can be referenced. However, Db2 no longer supports the creation of
new synonyms.

Unsupported function: FL 504 Beginning in Db2 12, packages bound with APPLCOMPAT(V12R1M504)
or higher cannot issue CREATE SYNONYM statements. Although there are some differences, you can
use aliases instead. Unlike synonyms, aliases behave the same for all Db2 family products. For more
information about aliases, see Aliases (Introduction to Db2 for z/OS) and “CREATE ALIAS statement” on
page 1415. Existing synonyms remain supported, but support might be removed in the future.

Differences between synonyms and aliases
The following table summarizes the differences between aliases and synonyms, which are deprecated.

Table 13. Differences between synonyms and aliases

Characteristic Synonyms (deprecated) Aliases

FL 504 Can be created
in application compatibility
V12R1M504 and higher?

No Yes

Requires authorization to create? No Yes

Can be defined on objects not at
the current sever?

No Yes

Can be defined on the name of an
object that does not yet exist?

No Yes, but the object must exist
when the alias is used

Is dropped when referenced
objects are dropped?

Yes No

Uses a qualified object name for
the object?

No, uses a one-part name Yes

Can be referenced or used by
users other than the object
owner?

No Yes

The option of referencing a table or view by a synonym is not explicitly shown in the syntax diagrams or
mentioned in the description of SQL statements. But synonyms can be referred to in an SQL statement.

Like tables and views, a synonym can be dropped, and associated with a comment. No authority is
necessary to use a synonym. However, access to the tables and views that are referenced by the synonym
still requires the appropriate authorization for the current statement.

Chapter 2. Language elements in SQL 89

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_aliases.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

A synonym name designates a synonym when it is preceded by the keyword SYNONYM, as in DROP
SYNONYM. In all other contexts, a synonym designates a table or a view. In all other contexts, a synonym
designates a local table or view and can be used wherever the name of a table or view can be used in an
SQL statement.

The effect of using a synonym in an SQL statement is the same as text substitution. For example, if S is a
synonym for Q.T, one of the steps involved in the preparation of SELECT * FROM S is the replacement of
'S' by 'Q.T'.

Related concepts
Aliases
An alias is an alternative name for an object such as a table, view, sequence, or another alias. It can be
used to reference an object wherever that object can be referenced directly.
Related reference
CREATE ALIAS statement
The CREATE ALIAS statement defines an alias for a table, a view, or a sequence. The definition is recorded
in the Db2 catalog at the current server.

Authorization, privileges, permissions, masks, and object
ownership

Users (as identified by an authorization ID) can successfully execute SQL statements only if they have the
authority to perform the specified operation. For example, to create a table, a user must be authorized to
create tables.

The two forms of authorization are administrative authority and privileges.

Administrative authority
The holder of administrative authority is charged with the task of controlling Db2 and is responsible
for the safety and integrity of the data.

Those with SYSADM authority implicitly have all privileges on all objects and control who will have
access to Db2 and the extent of this access.

Those with SECADM authority manage security policies by enforcing row and column access control
for tables that contain sensitive data. They define row permissions and column masks, which describe
how tables that use row or column access controls should be accessed and which determine whether
a trigger or a user-defined function is considered secure for those tables.

Privileges
Privileges are those activities that a user is allowed to perform. Authorized users can create objects,
have access to objects that they own, and can pass on privileges on the objects that they own to other
users by using the GRANT statement. Privileges can be granted to specific users or to PUBLIC. PUBLIC
specifies that a privilege is granted to all users (including to future users).

The REVOKE statement can be used to revoke previously granted privileges.

Row permissions and column masks
A row permission is a database object that expresses an access control rule for a row of a specific
table. A row permission is in the form of a search condition that describes to which rows users have
access. Row permissions are applied after table privileges (like SELECT or INSERT) are checked.

A column mask is a database object that expresses an access control rule for a specific column in a
table. A column mask is in the form of a CASE expression that describes to which column values users
have access. Column masks are applied after table privileges (like SELECT or INSERT) are checked.

Row permissions and column masks can be created, changed, and dropped only by those with
SECADM authority by using the CREATE MASK, CREATE PERMISSION, and DROP statements. The
definition of a permission or a mask can reference other objects. Those with SECADM authority do
not need additional privileges to reference those objects, such as SELECT privilege to retrieve from a
table or EXECUTE privilege to invoke a user-defined function, in the definition of the row permission
or column mask. Multiple row permissions and column masks can be created for a table. Only one

90 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

column mask can be created for each column in a table. A row permission or a column mask can
be created before row or column access control is enforced for a table. The definition of the row
permission and the column mask is stored in the Db2 catalog. However, the permission and the mask
do not take effect until the ALTER TABLE statement with the ACTIVATE ROW ACCESS CONTROL clause
is used to enforce row access control or the ACTIVATE COLUMN ACCESS CONTROL clause is used to
enforce column access control on the table.

When an ALTER TABLE statement is used to explicitly activate row access control for a table, a default
row permission is implicitly created for the table which prevents all access to the table. After row
access controls have been activated for a table, if the table is referenced explicitly in a data change
statement and if multiple row permissions are defined for the table, a row access control search
condition is derived by using the logical OR operator with the search condition of each defined row
permission.

When an ALTER TABLE statement is used to explicitly activate column access control for a table,
access to the table is not restricted. However, if the table is referenced in a data change statement,
all column masks that have been created for the table are applied to mask the column values that are
referenced in the output of the queries or to determine the column values that are used in the data
change statements.

The authorization ID or role for the statement does not need authority to reference objects that are
specified in the definition of the row permission or column mask.

Object ownership
When an object is created, one authorization ID is assigned ownership of the object. Ownership
means that the user is authorized to reference the object in any applicable SQL statement. The
privileges on the object can be granted by the owner, and cannot be revoked from the owner. Owners
of views only receive the level of privileges that they have on the underlying table or view. The owner
of the object that is being created is determined as follows:

• If the schema qualifier is not explicitly specified, the owner depends on how the CREATE statement
is issued:

– If the CREATE statement is embedded in a program, the owner of the object that is being created
is the authorization ID that serves as the implicit qualifier for unqualified object names. This is the
authorization ID that is in the QUALIFIER option when the plan, package, or native SQL procedure
(that contains the CREATE statement) is created or last changed. If the QUALIFIER option is
not used, the owner of the object is the authorization ID in the OWNER option when the plan,
package, or native SQL procedure is created or last changed. If the OWNER option is not used, the
owner is the owner of the plan, package, or native SQL procedure. If the plan or package was last
bound in a trusted context that is defined with the ROLE AS OBJECT OWNER clause, a role is the
owner.

– If the CREATE statement is dynamically prepared, the owner of the object that is being created is
the authorization ID of the process.

– If the CREATE statement is execute in a trusted context that is defined with the ROLE AS OBJECT
OWNER clause, the role of the primary authorization ID is the owner.

• If the schema qualifier is explicitly specified, the owner depends on the type of object that is being
created unless the CREATE statement is executed in a trusted context that is defined with the ROLE
AS OBJECT OWNER clause. When the CREATE statement is executed in a trusted context that is
defined with the ROLE AS OBJECT OWNER clause, the owner of the object is determined as follows:

– If the CREATE statement is embedded in a program, the role that owns the plan or package is the
owner of the object.

– If the CREATE statement is dynamically prepared, the primary authorization ID is the owner.

If the schema qualifier is explicitly specified, and the CREATE statement is not executed in a trusted
context that is defined with the ROLE AS OBJECT OWNER clause, the owner depends on the type of
object that is being created: :

– For an alias, auxiliary table, created global temporary table, table, or view, the owner of the object
that is being created is the same as the explicit schema name.

Chapter 2. Language elements in SQL 91

– For a user-defined distinct type, user-defined function, procedure, sequence, JAR files, or trigger,
the owner of the object that is being created is the authorization ID of the process.

The rules that determine ownership of row permissions and column masks are the same as those that
determine ownership of objects like user-defined distinct types, user-defined functions, procedures,
sequences, JAR files, or trigger.

The owner of a row permission or a column mask does not have implicit owner privileges. Only users
with SECADM authority can manage and maintain row permissions and column masks.

Authorization IDs, roles, and authorization names
Processes can successfully execute SQL statements only if they have the necessary authority. A process
derives this authority from its authorization IDs. An authorization ID can also designate a user, a group of
users, or a role.

An authorization ID is a character string that is associated with a process that is checked to determine the
authority to perform a specified operation.

Db2 does not control the association of users to user groups. However, Db2 does control the association
between users and roles when a trusted context is defined.

Db2 uses authorization IDs to provide authorization checking of SQL statements.

Whenever a connection is established between Db2 and a process, Db2 obtains an authorization ID and
passes it to the authorization connection or sign-on exit routine. The list of one or more authorization
IDs that is returned by the exit routine are used as the authorization IDs of the process. If the process is
running in a trusted context with a role, the authorization IDs of the process includes this role.

Every process has exactly one primary authorization ID. Any other authorization IDs of a process are
secondary authorization IDs. The use of these authorization IDs depends on the type of process (bind
process, application process, or process involved in the creation of objects).

Primary authorization ID
An authorization ID that is used to established a connection between Db2 and an application process.

Secondary authorization ID
An authorization ID that is associated with a primary authorization ID.

Secondary authorization IDs includes all the authorization IDs that have been associated with a
primary authorization ID by the connection or sign-on authorization exit routine, the CURRENT
SQLID (when different from the primary authorization ID), and other authorization IDs like the stored
procedure definer and call package owner for stored procedure package checking.

Authorization ID of the process
The user's primary and secondary authorization IDs. If the process is running in a trusted context with
a role, the authorization IDs of the process includes this role.

A role is a database entity that groups together one or more privileges. A role is available only when the
process is run in a trusted context. Users are associated with a role in the definition of a trusted context.

A trusted context can have a default role, specific roles for individual users, or no roles at all. A user in a
trusted context can have only one active role. This is the role that is specifically defined for the user or the
default role of the trusted context. The following restrictions apply to roles:

• A role cannot be a primary authorization ID.
• A role cannot be set by using a SET CURRENT SQLID statement.
• A role can be the schema qualifier of an object. However, when it is used as a schema qualifier, a

role is considered to be a character string and does not add any implicit schema privileges (ALTERIN,
CREATEIN, or DROPIN) to this role.

• A role must already exist for privileges to be granted to it.

The role that is in effect for a user is considered to be one of the secondary authorization IDs of the user.

92 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Do not confuse an authorization-name that is specified in an SQL statement with an authorization ID of a
process.

Example

Assume that SMITH is your TSO logon, DYNAMICRULES run behavior is in effect, and you execute the
following statements interactively:

 CREATE TABLE TDEPT LIKE DSN8C10.DEPT;
 GRANT SELECT ON TDEPT TO KEENE;

Also assume that your site has not replaced the default exit routine for connection authorization and
that you have not executed the SET CURRENT SQLID statement. Thus, when the GRANT statement is
prepared and executed by SPUFI, the SQL authorization ID is SMITH. KEENE is an authorization name that
is specified in the GRANT statement.

Authorization to execute the GRANT statement is checked against SMITH. The authorization rule is that
the privilege set that is designated by SMITH must include the SELECT privilege with the GRANT option on
SMITH.TDEPT. No check that involves KEENE is performed. If the GRANT statement specifies a role, the
existence of the role is checked.

Authorization IDs and schema names
If an authorization ID is not a role and has the same name as the name of a schema, that authorization ID
implicitly has the following privileges for that schema:

• CREATEIN privilege
• ALTERIN privilege
• DROPIN privilege

Authorization IDs and statement preparation
The authorization ID that is specified as the owner of the plan or package must be one of the authorization
IDs of the bind process. The owner can be set to any value if one of the authorization IDs of the bind
process has SYSADM or SYSCTRL authority.

A process that creates a plan or package is called a bind process. The connection with Db2 is the result
of the execution of a BIND or REBIND subcommand. Both subcommands allow for the specification of the
authorization ID of the owner of the plan or package.

BINDAGENT can specify an owner other than himself (or one of his representatives), but it has to be
someone that granted him BINDAGENT. The default owner for BIND is the primary authorization ID. The
default owner for REBIND is the previous owner of the plan or package (ownership is unchanged if an
owner is not explicitly specified). If the BIND or REBIND is performed in a trusted context that is defined
with the ROLE AS OBJECT OWNER clause, the owner of the plan or package is a role. If the OWNER bind
option is specified, the role that is specified in it is the owner, otherwise the role that performs the bind or
rebind becomes the owner.

The authorization ID that is used for the authorization checking of embedded SQL statements is that of
the owner of the plan or package. If the application is bound in a trusted context using the ROLE AS
OBJECT OWNER clause, the authorization ID that is used for authorization checking is the role that owns
the plan or package, otherwise the authorization ID is the authorization ID of the owner of the plan or
package. If an embedded SQL statement refers to tables or views at a Db2 subsystem other than the one
at which the plan or package is bound, the authorization checking is deferred until run time. For more
information on this, see “Authorization IDs and remote execution” on page 96.

If VALIDATE(BIND) is specified, the privileges required to use or manipulate objects at the Db2 subsystem
at which the plan or package is bound must exist at bind time. If the privileges or the referenced
objects do not exist and SQLERROR(NOPACKAGE) is in effect, the bind operation is unsuccessful. If

Chapter 2. Language elements in SQL 93

SQLERROR(CONTINUE) is specified, then the bind is successful and any statements in error are flagged. If
any statements in error are flagged, an error will occur when you attempt to execute them at run time.

If a plan or package is bound with VALIDATE(RUN), authorization checking is still performed at bind
time, but the referenced objects and the privileges required to use these objects need not exist at this
time. If any privilege required for a statement does not exist at bind time, an authorization check is
performed whenever the statement is first executed within a unit of work, and all privileges required
for the statement must exist at that time. If any privilege does not exist, execution of the statement is
unsuccessful. When the authorization check is performed at run time, it is performed against the plan
or package owner, not the SQL authorization ID. For the effect of this option on cursors, see “DECLARE
CURSOR statement” on page 1819.

Related tasks
Binding application packages and plans (Db2 Application programming and SQL)
Related reference
BIND PACKAGE subcommand (DSN) (Db2 Commands)
BIND PLAN subcommand (DSN) (Db2 Commands)
REBIND PACKAGE subcommand (DSN) (Db2 Commands)
REBIND PLAN command (DSN) (Db2 Commands)

Authorization IDs and dynamic SQL
The bind option DYNAMICRULES determines the authorization ID that is used for checking authorization
when dynamic SQL statements are processed. The set of values for the authorization ID and other
dynamic SQL attributes is called the dynamic SQL statement behavior. The four possible behaviors are
run, bind, define, and invoke.

This discussion applies to dynamic SQL statements that refer to objects at the current server. For those
that refer to objects elsewhere, see “Authorization IDs and remote execution” on page 96.

In addition to determining the authorization ID, DYNAMICRULES also controls other dynamic SQL
attributes such as the implicit qualifier that is used for unqualified alias, index, sequence, table, trigger,
and view names; the source for application programming options; and whether certain SQL statements
can be invoked dynamically.

As the following table shows, the combination of the value of the DYNAMICRULES option and
the runtime environment determines which of the four dynamic SQl statement behaviors is used.
DYNAMICRULES(RUN), which implies run behavior, is the default.

Table 14. How DYNAMICRULES and the runtime environment determine dynamic SQL statement behavior

DYNAMICRULES value

Behavior of dynamic SQL statements

Stand-alone program
environment

User-defined function or stored
procedure environment

RUN Run Run

BIND Bind Bind

DEFINERUN Run Define

DEFINEBIND Bind Define

INVOKERUN Run Invoke

INVOKEBIND Bind Invoke

Note: BIND and RUN values can be specified for packages, plans, and native SQL procedures. The other
values can be specified for packages and native SQL procedures but not for plans.

In the following behavior descriptions, a package that runs under a user-defined function or stored
procedure package is a package whose associated program meets one of the following conditions:

94 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_bindapp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_bindpackage.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_bindplan.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_rebindpackage.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_rebindplan.html

• The program is called by a user-defined function or stored procedure.
• The program is in a series of nested calls that start with a user-defined function or stored procedure.

Run behavior
Db2 uses the authorization IDs of the application process and the SQL authorization ID (the value
of special register CURRENT SQLID) for authorization checking of dynamic SQL statements. If the
process is running in a trusted context with a role associated with the primary authorization ID, the
authorization IDs of the application process include this role.

A process that uses a plan and its associated packages is called an application process. At any time,
the SQL authorization ID is the value of CURRENT SQLID. This SQL special register can be initialized
by the connection or sign-on exit routine. If the exit routine does not set a value, the initial value
of CURRENT SQLID is the primary authorization ID of the process. You can use the SQL statement
SET CURRENT SQLID to change the value of CURRENT SQLID. Unless some authorization ID of the
process has SYSADM authority, the new value must be one of the authorization IDs of the process.
Thus, CURRENT SQLID usually contains either the primary authorization ID of the process or one of its
secondary authorization IDs. The CURRENT SQLID cannot contain a role.

Privilege set
If the dynamically prepared statement is other than a CREATE, GRANT, or REVOKE statement,
each privilege required for the statement can be a privilege designated by any authorization ID
of the process. Therefore, the privilege set is the union of the set of privileges held by each
authorization ID of the process. When the process is running in a trusted context with a role, the
authorization IDs of the process include this role.

If the dynamic SQL statement is a CREATE, GRANT, or REVOKE statement, the only authorization
ID that is used for authorization checking is the SQL authorization ID. Therefore, the privilege set
is the privileges held by that single authorization ID of the process. If the process is running in a
trusted context using the ROLE AS OBJECT OWNER clause for the a CREATE, GRANT, or REVOKE
statement, the single authorization ID of the process that is checked is the role that is in effect.

Implicit qualification
When an SQL statement is dynamically prepared, the values of the CURRENT SCHEMA special
register is used as the implicit qualifier. For example, it is used as the implicit qualifier for all
unqualified tables, aliases, views, indexes, and sequences. For more information, see “Unqualified
object name resolution” on page 86.

Bind behavior
The same rules that are used to determine the authorization ID for static (embedded) statements are
used for dynamic statements. Db2 uses the authorization ID of the owner of the package or plan for
authorization checking of dynamic SQL statements, as explained in “Authorization IDs and statement
preparation” on page 93.
Privilege set

The privilege set is the privileges that are held by the owner of the package or plan.
Implicit qualification

The identifier specified in the QUALIFIER option of the bind command that is used to bind the
SQL statements, or the CREATE PROCEDURE or ALTER PROCEDURE statement that is used to
create a version of an SQL procedure is the implicit qualifier for all unqualified tables, views,
aliases, indexes, and sequences. If the QUALIFIER option was not used when the plan, package,
or native SQL procedure was created or last changed, the implicit qualifier is the owner of the
plan, package, or native SQL procedure.

Define behavior
Define behavior applies only if the dynamic SQL statement is in a package that is run
as a stored procedure or user-defined function (or runs under a stored procedure or user-
defined function package), and the package was bound with DYNAMICRULES(DEFINEBIND) or
DYNAMICRULES(DEFINERUN). Db2 uses the authorization ID of the stored procedure or user-defined
function owner (the definer) for authorization checking of dynamic SQL statements in the application
package.

Chapter 2. Language elements in SQL 95

Privilege set
The privilege set is the privileges that are held by the authorization ID of the owner.

Implicit qualification
The stored procedure or user-defined function owner is also the implicit qualifier. For example, the
owner is the implicit qualifier for unqualified table, view, alias, index, and sequence names.

Invoke behavior
Invoke behavior applies only if the dynamic SQL statement is in a package that is run
as a stored procedure or user-defined function (or runs under a stored procedure or user-
defined function package), and the package was bound with DYNAMICRULES(INVOKEBIND) or
DYNAMICRULES(INVOKERUN). Db2 uses the stored procedure or user-defined function invoker for
authorization checking of dynamic SQL statements in the application package. The invoker can also be
a role.
Privilege set

The privilege set is the privileges that are held by the invoker. However, if the invoker is the
primary authorization ID of the process or the CURRENT SQLID value, secondary authorization IDs
are also checked. This includes the role of the primary authorization ID, if running in a trusted
context with a role. In that case, the privilege set is the union of the set of privileges held by each
authorization ID of the process.

Implicit qualification
The stored procedure or user-defined function invoker is also the implicit qualifier. For example, it
is the implicit qualifier for unqualified table, view, alias, index, and sequence names. The invoker
can also be a role.

Restricted statements when run behavior does not apply
When bind, define, or invoke behavior is in effect, you cannot use the following dynamic SQL statements:
ALTER, CREATE, COMMENT, DROP, GRANT, RENAME, and REVOKE.

Related concepts
Dynamic rules options for dynamic SQL statements (Db2 Application programming and SQL)
Related reference
DYNAMICRULES bind option (Db2 Commands)
Privileges required for using dynamic SQL statements (Managing Security)

Authorization IDs and remote execution
The authorization rules for remote execution depend on whether the distributed operation is DRDA access
with a Db2 for z/OS server and requester. DRDA access with a server and requester other than Db2 can
also effect the authorization rules for remote execution.

DRDA access with Db2 for z/OS only
To prepare and execute SQL statements using DRDA access, certain privileges are required by the
package owner and additional privileges are required by the user who invokes the application.

Any static statement executed using DRDA access is in a package bound at a server other than the local
Db2 subsystem. Before the package can be bound, its owner must have the BINDADD privilege and
the CREATE IN privilege for the package's collection. Also required are enough privileges to execute the
package's static SQL statements that refer to data on that server. All these privileges are recorded in the
Db2 catalog of the server, not in the catalog of the local Db2 subsystem. Such privileges must be granted
by GRANT statements executed at the server. This allows the server to control the creation and use of
packages that are run from other DBMSs.

A user who invokes an application that has a plan at the local Db2 subsystem must have the EXECUTE
privilege on the plan recorded in the Db2 catalog of the local subsystem. If that application uses a
package that is bound at a Db2 server other than the local Db2 requester, the EXECUTE privilege on the
package must also be recorded in the Db2 catalog of the server. The ID that must hold the authorization

96 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_dynamicrulesbindoption.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptdynamicrules.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_privilege4dynamicsql.html

to run the package at the Db2 server depends on the value of the PRIVATE_PROTOCOL subsystem
parameter at the Db2 server:

• If PRIVATE_PROTOCOL is set to NO, EXECUTE authority on the package must be explicitly granted to
the primary user ID or an associated secondary ID at the Db2 server. If the local requester application
invokes a stored procedure that resides at the Db2 server, EXECUTE authority on the stored procedure
package must be explicitly granted at the Db2 server to the owner of the package that issues the CALL
statement if either of the following is true:

– The owner of the stored procedure does not have the authority to execute the remote stored
procedure package.

– The CALL statement is in the form of CALL: host-variable and neither the primary user ID nor an
associated secondary ID has the authority to execute the remote stored procedure package.

• If PRIVATE_PROTOCOL is not set to NO, EXECUTE authority on the package must be explicitly granted
to the local requester plan owner at the Db2 server. The plan owner needs no other privilege to execute
the package. If the local requester application invokes a stored procedure that resides at the Db2
server, EXECUTE authority on the stored procedure package must be explicitly granted at the Db2 server
to the Db2 requester plan owner of the application that issues the CALL statement if either of the
following is true:

– The owner of the stored procedure does not have the authority to execute the remote stored
procedure package.

– The CALL statement is in the form of CALL: host-variable and neither the primary user ID nor an
associated secondary ID has the authority to execute the remote stored procedure package.

EXECUTE authority is also required to use a package for a user-defined function, trigger, or stored
procedure that resides at the Db2 server. However, except as previously described for a specific stored
procedure case, the PRIVATE_PROTOCOL subsystem parameter is not used to determine the ID that is
required to hold the EXECUTE privilege on that package. The EXECUTE privilege on that package must be
recorded in the Db2 catalog of the server.

Having the appropriate privileges recorded as described above allows the execution of the static SQL
statements in the package, and the execution of dynamic SQL statements if DYNAMICRULES bind, define,
or invoke behavior is in effect. If DYNAMICRULES run behavior is in effect, the authorization rules for
dynamic SQL statements is different. Authorization for the execution of dynamic SQL statements must
come from the set of authorization IDs that are derived during connection processing, and, if the process
is running in a trusted connection, the role that is in effect. An application goes through connection
processing when it first connects to a server or when it reuses a CICS or IMS thread that has a different
primary authorization ID.

If an application uses Recoverable Resources Manager Services attachment facility (RRSAF) and has no
plan, authority to execute the package is determined in the same way as when the requester is not Db2
for z/OS.

Related concepts
Managing connection requests from local applications (Managing Security)
DRDA access with a server or requester other than Db2
Specific privileges are required depending on whether Db2 is the server or the requester involved in DRDA
access.
Related tasks
Checking authorization at a Db2 database server (Managing Security)

DRDA access with a server or requester other than Db2
Specific privileges are required depending on whether Db2 is the server or the requester involved in DRDA
access.

Db2 for z/OS as the server: If the requester is not a Db2 for z/OS subsystem, there is no Db2
application plan involved. In this case, the privilege set of the authorization ID, which is determined by the
DYNAMICRULES behavior, must have the EXECUTE privilege on the package. Dynamic SQL statements in

Chapter 2. Language elements in SQL 97

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_localrequest.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_checkauth4hopdb2serv.html

the package are executed according to the DYNAMICRULES behavior, as described in “Authorization IDs
and dynamic SQL” on page 94.

Db2 for z/OS as the requester: The authorization rules for remote execution are those of the server.

Authorization ID translations
When certain authorization IDs are sent to a remote DBMS, those authorization IDs might undergo
translation before being used.

Translation can occur for a primary authorization ID, the authorization ID of the owner of an application
plan, or the authorization ID of the owner of a package. For example, a user known as SMITH at the local
DBMS could be known, after translation, as JONES at the server. Likewise, a package owner known as
GRAY could be known as WINTERS at the server. If so, JONES or WINTERS would be used, instead of
SMITH or GRAY, to determine the authorization ID for dynamic SQL statements in the package. If the
DYNAMICRULES run behavior applies, JONES, who is executing the dynamic statement at the server, is
used. If DYNAMICRULES bind behavior applies, WINTERS, the package owner at the server, is used.

Two sets of communications database (CDB) catalog tables control the translations. One set is at the local
Db2, and the other set is at the remote Db2. Translation can take place at either or both sites.

Related concepts
Communications database for the requester (Managing Security)
Communications database for the server (Managing Security)

Other security measures
Even if Db2 authority requirements are satisfied, other security measures can be in effect when
distributed data is accessed.

The fact that Db2 authority requirements are satisfied does not guarantee that a user has access to a
given server. Other security measures can also come into play. For example, requests to execute remote
SQL statements could be denied based on Resource Access Control Facility (RACF) considerations.
Developing such security measures is discussed in Getting started with Db2 security (Managing Security)
and Introduction to the RACF access control module (RACF Access Control Module Guide).

Data types
Db2 supports both IBM-supplied data types (built-in data types) and user-defined data types (distinct
types).

The smallest unit of data that can be manipulated in SQL is called a value. How values are interpreted
depends on the data type of their source. Values have the following sources:

• Columns
• Constants
• Expressions
• Functions
• Special registers
• Variables (such as host variables, SQL variables, global variables, parameter markers, and parameters

of routines)

The following topics describes the built-in data types and distinct types.

Figure 22 on page 99 shows the built-in data types that Db2 supports.

98 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_cdb4requester.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_cdb4server.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_securitydef.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/racf/src/tpc/db2z_racfoverview.html

timestamp
with time zone

TIMESTAMP
WITHOUT TIME ZONE

TIMESTAMP
WITH TIME ZONE

packed

decimalbinary integer

binary

fixed
length

varying
length

timestamp without
time zone

signed numeric

time datetimestamp

datetime

graphiccharacter

string

BIGINT

64 bit

extensible
markup

language

XML

decimal
floating point

varying length

row identifier

exact approximate

SMALLINT INTEGER

REAL DOUBLE

TIME

GRAPHIC

BINARY

VARGRAPHIC

VARBINARYVARCHAR

DBCLOB

BLOBCLOB

CHAR

DATE

DECFLOAT

single
precision

double
precision

fixed
length

varying
length fixed length

32 bit

Built-indata types

floating point

DECIMAL

ROWID

16 bit

Figure 22. Built-in data types supported by Db2

NULLS
All data types include the null value. Distinct from all nonnull values, the null value is a special value that
denotes the absence of a (nonnull) value.

Although all data types include the null value, some sources of values cannot provide the null value. For
example, constants, columns that are defined as NOT NULL, and special registers cannot contain null
values; the COUNT and COUNT_BIG functions cannot return a null value; and ROWID columns cannot
store a null value although a null value can be returned for a ROWID column as the result of a query.

Related concepts
Null values in table columns (Introduction to Db2 for z/OS)
When to use null or default values (Introduction to Db2 for z/OS)
Related reference
CREATE TABLE statement
The CREATE TABLE statement defines a table. The definition must include its name and the names and
attributes of its columns. The definition can include other attributes of the table, such as its primary key
and its table space.

Numeric data types
The numeric data types are binary integer, decimal, decimal floating-point, and floating-point.

The numeric data types are categorized as follows:

• Exact numeric data types: binary integer and decimal
• Decimal floating-point
• Approximate numeric data types: floating-point

Binary integer includes small integer, large integer, and big integer. Binary numbers are exact
representations of integers. Decimal numbers are exact representations of real numbers, with a fixed
precision and scale. Binary and decimal numbers are considered exact numeric types.

Decimal floating-point includes DECFLOAT(16) and DECFLOAT(34), which are capable of representing
either 16 or 34 significant digits. The decimal floating-point data type supports both exact
representations of real numbers and approximations of real numbers, and is not considered to be either
an exact numeric type or an approximate numeric type.

Chapter 2. Language elements in SQL 99

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_nullvalues.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_comparisonofnullvaluesanddefaultvalues.html

Floating-point includes single precision and double precision. Floating-point numbers are approximations
of real numbers, and are considered to be approximate numeric types.

All numbers have a sign, a precision, and a scale. If a column value is zero, the sign is positive. Decimal
floating point has distinct values for a number and the same number with various exponents (for example:
0.0, 0.00, 0.0E5, 1.0, 1.00, 1.0000). The precision is the total number of binary or decimal digits
excluding the sign. The scale is the total number of binary or decimal digits to the right of the decimal
point. If there is no decimal point, the scale is zero.

Small integer (SMALLINT)
A small integer is a binary integer with a precision of 15 bits.

The range of small integers is -32768 to +32767.

Large integer (INTEGER)
A large integer is a binary integer with a precision of 31 bits.

The range of large integers is -2147483648 to +2147483647.

Big integer (BIGINT)
A big integer is a binary integer with a precision of 63 bits.

The range of big integers is -9223372036854775808 to +9223372036854775807.

Single precision floating-point (REAL)
A single precision floating-point number is a short (32 bits) floating-point number.

The range of single precision floating-point numbers is about -7.2E+75 to 7.2E+75. In this range, the
largest negative value is about -5.4E-79, and the smallest positive value is about 5.4E-079.

Double precision floating-point (DOUBLE or FLOAT)
A double precision floating-point number is a long (64 bits) floating-point number.

The range of double precision floating-point numbers is about -7.2E+75 to 7.2E+75. In this range, the
largest negative value is about -5.4E-79, and the smallest positive value is about 5.4E-079.

Decimal (DECIMAL or NUMERIC)
A decimal number is a packed decimal number with an implicit decimal point.

The position of the decimal point is determined by the precision and the scale of the number. The scale,
which is the number of digits in the fractional part of the number, cannot be negative or greater than the
precision. The maximum precision is 31 digits.

All values of a decimal column have the same precision and scale. The range of a decimal variable or the
numbers in a decimal column is -n to +n, where n is the largest positive number that can be represented
with the applicable precision and scale. The maximum range is 1 - 1031 to 1031 - 1.

Decimal floating-point (DECFLOAT)
The maximum precision of a decimal floating-point number is 34 digits.

The range of a decimal floating point number is either 16 or 34 digits of precision, and an exponent range
of respectively 10-383 to 10+384 or 10-6143 to 10+6144.

In addition to the finite numbers, decimal floating point numbers are able to represent one of the
following named special values:

100 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• Infinity - a value that represents a number whose magnitude is infinitely large.
• Quiet NaN - a value that represents undefined results which does not cause an invalid number

condition.
• Signaling NaN - a value that represents undefined results which will cause an invalid number condition if

used in any numerical operation.

When a number has one of these special values, its coefficient and exponent are undefined. The sign of
an infinity is significant (that is, it is possible to have both positive and negative infinity). The sign of a NaN
has no meaning for arithmetic operations. INF can be used in place of INFINITY.

Subnormal numbers and underflow
The decimal floating-point data type has a set of non-zero numbers that fall outside the range of normal
decimal floating-point values. These numbers are called subnormal.

Non-zero numbers whose adjusted exponents are less than Emin
4 are called subnormal numbers. These

subnormal numbers are accepted as operands for all operations and can result from any operation. If a
result is subnormal before any rounding occurs, the subnormal condition is returned.

For a subnormal result, the minimum values of the exponent becomes Emin - (precision-1), called
Etiny, where precision is the working precision. If necessary, the result will be rounded to ensure that the
exponent is no smaller than Etiny. If the result becomes inexact during rounding, an underflow condition
is returned. A subnormal result does not always return the underflow condition but will always return the
subnormal condition.

When a number underflows to zero during a calculation, its exponent will be Etiny. The maximum value of
the exponent is unaffected.

The maximum value of the exponent for subnormal numbers is the same as the minimum value of the
exponent which can arise during operations that do not result in subnormal numbers. This occurs where
the length of the coefficient in decimal digits is equal to the precision.

Numeric host variables
Numeric host variables can be defined in all languages with a few exceptions.

Binary integer variables can be defined in all host languages.

Floating-point variables can be defined in all host languages. All languages, except Java, support
System/390 floating-point format. Assembler, C, C++, PL/I, and Java also support IEEE floating-point
format. In assembler, C, C++, and PL/I programs, the SQL processing option FLOAT tells Db2 whether
floating-point variables contain data in System/390 floating-point format or IEEE floating-point format.
The contents of floating-point host variables must match the format that is specified with the FLOAT SQL
processing option.

Decimal variables can be defined in all host languages except Fortran.

In COBOL, decimal numbers can be represented in the following formats:

• Packed decimal format, denoted by USAGE PACKED-DECIMAL or COMP-3
• External decimal format, denoted by USAGE DISPLAY with SIGN LEADING SEPARATE
• NATIONAL decimal format denoted by USAGE NATIONAL and SIGN LEADING SEPARATE

Decimal floating-point variables can be defined in Assembler, C, C++, PL/I, and Java.

String representations of numeric values

String representations of numeric values can be used in some contexts. A valid string representation of a
numeric value must conform to the rules for numeric constants.

Chapter 2. Language elements in SQL 101

The encoding scheme in use determines the types of strings can be used for string representation of
numeric values. For ASCII and EBCDIC, a string representation of a numeric value must be a character
string. For UNICODE, a string representation of a numeric value can be either a character string or a
graphic string. Thus, the only time a graphic string can be used for a numeric value is when the encoding
scheme is UNICODE.

When a decimal number is cast to a string (for example, using a CAST specification), the implicit decimal
point is replaced by the default decimal separator character that is in effect when the statement is
prepared.

When a string is cast to a decimal value (for example, using a CAST specification), the default decimal
separator character in effect when the statement was prepared is used to interpret the string.

When a floating point or decimal floating-point number is cast to a string (for example, using a CAST
specification), or a string is cast to a floating point or decimal floating-point number, the decimal
separator character must be a period (.).

Related concepts
Constants
A constant (also called a literal) specifies a value. Constants are classified as null constants, string
constants, numeric constants, or datetime constants. Numeric constants are further classified as integer,
floating-point, decimal, or decimal floating-point. String constants are classified as character, graphic, or
binary.
Numeric data types
The numeric data types are binary integer, decimal, decimal floating-point, and floating-point.
Arithmetic operators in expressions
If arithmetic operators are used, the result of the expression is a number derived from the application of
the operators to the values of the operands.

Numeric host variables
Numeric host variables can be defined in all languages with a few exceptions.

Binary integer variables can be defined in all host languages.

Floating-point variables can be defined in all host languages. All languages, except Java, support
System/390 floating-point format. Assembler, C, C++, PL/I, and Java also support IEEE floating-point
format. In assembler, C, C++, and PL/I programs, the SQL processing option FLOAT tells Db2 whether
floating-point variables contain data in System/390 floating-point format or IEEE floating-point format.
The contents of floating-point host variables must match the format that is specified with the FLOAT SQL
processing option.

Decimal variables can be defined in all host languages except Fortran.

In COBOL, decimal numbers can be represented in the following formats:

• Packed decimal format, denoted by USAGE PACKED-DECIMAL or COMP-3
• External decimal format, denoted by USAGE DISPLAY with SIGN LEADING SEPARATE
• NATIONAL decimal format denoted by USAGE NATIONAL and SIGN LEADING SEPARATE

Decimal floating-point variables can be defined in Assembler, C, C++, PL/I, and Java.

Character strings
A character string is a sequence of bytes. The length of the string is the number of bytes in the sequence.
If the length is zero, the value is called the empty string. The empty string should not be confused with the
null value.

Default CCSIDs for character strings

102 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The value of the field MIXED DATA (on installation panel DSNTIPF) determines the default CCSIDs for a
character string.

The following table shows how the value of the field MIXED DATA (on installation panel DSNTIPF)
determines the default CCSIDs for a character string.

Table 15. Default CCSIDs for character strings

Encoding scheme Value of MIXED
DATA field

Default attribute

ASCII or EBCDIC NO Character: SBCS

The value of the ASCII CCSID or EBCDIC CCSID field
on installation panel determines the system CCSID
for SBCS data.

ASCII or EBCDIC YES Character: MIXED

The value of the ASCII CCSID or EBCDIC CCSID field
on installation panel DSNTIPF determines the system
CCSID for SBCS data, MIXED, and graphic data.

Unicode Not applicable Character: MIXED

The CCSIDs are:

• 367 for SBCS data
• 1208 for MIXED data
• 1200 for graphic data

The MIXED DATA field does not apply to Unicode columns in EBCDIC tables. Those columns follow the
same rules that are shown for the Unicode encoding scheme in the previous table. For more information,
see “Unicode columns in EBCDIC tables” on page 113.

Fixed-length character strings

When fixed-length character string distinct types, columns, and variables are defined, the length attribute
is specified, and all values have the same length. For a fixed-length character string, the length attribute
must be in the range 1–255 inclusive.

Varying-length character strings

The types of varying-length character strings are VARCHAR and character large object (CLOB). A CLOB is
a type of LOB. A CLOB column is useful for storing large amounts of character data, such as documents
written with a single character set.

When varying-length character strings, distinct types, columns, and variables are defined, the maximum
length is specified and this length becomes the length attribute except for C NUL-terminated strings.
Actual values might have a smaller value. For varying-length character strings, the length specifies the
number of bytes.

For a VARCHAR string, the length attribute must be in the range 1 - 32704. For a VARCHAR column, the
maximum for the length attribute is determined by the record size that is associated with the table, as
described in Maximum record size the description of the CREATE TABLE statement. For a CLOB string, the
length attribute must be in the range 1 - 2147483647 inclusive. For more information about CLOBs, see
“Large objects (LOBs)” on page 116.

Chapter 2. Language elements in SQL 103

Character string variables

• Fixed-length character string variables can be used in all languages except REXX and Java. In C, CHAR
string variables are limited to a length of 1.

• Varying-length character string variables can be used in all host languages with the following
exceptions:

– Fortran: varying-length non-LOB character strings cannot be used.
– Assembler, C, and COBOL: varying-length non-LOB strings are simulated as described in Db2

Application Programming and SQL Guide. In C, NUL-terminated strings can also be used.
– REXX: CLOBs and DBCLOBs cannot be used.

Character string encoding schemes

The method of representing DBCS and MBCS characters within a mixed string differs among the encoding
schemes.

Each character string is further defined as one of the following subtypes:
Bit data

Data that is not associated with a coded character set and, therefore, is never converted. The CCSID
for bit data is X'FFFF' (65535). The bytes do not represent characters.

Bit data is a form of character data. The pad character is a blank for assignments to bit data; the pad
character is X'00' for assignments to binary data. It is recommended that binary data be used instead
of character for bit data.

If both operands in a predicate are EBCDIC, both operands are padded with X'40'. Otherwise, both
operands are padded with X'20'. For example, if both operands are ASCII, or if one operand is ASCII
and the other operand is EBCDIC, both are padded with X'20'.

SBCS data
Data in which every character is represented by a single byte. Each SBCS string has an associated
CCSID. If necessary, an SBCS string is converted before it is used in an operation with a character
string that has a different CCSID.

Mixed data
Data that can contain a mixture of characters from a single-byte character set (SBCS) and a multiple-
byte character set (MBCS). Each mixed string has an associated CCSID. If necessary, a mixed string is
converted before an operation with a character string that has a different CCSID. If a mixed data string
contains an MBCS character, it cannot be converted to SBCS data.

EBCDIC mixed data can contain shift characters, which are not MBCS data.

When the encoding scheme is Unicode or the Db2 installation is defined to support mixed data, Db2
recognizes MBCS sequences within mixed data string when performing character sensitive operations.
These operations include parsing, character conversion, and the pattern matching specified by the
LIKE predicate.

Character strings with a CLOB data type can only be SBCS or MIXED. BLOB should be used for binary
strings.

The method of representing DBCS and MBCS characters within a mixed string differs among the encoding
schemes.

• ASCII reserves a set of code points for SBCS characters and another set as the first half of DBCS
characters. When it encounters the first half of a DBCS character, the system reads the next byte in
order to obtain the complete character.

• EBCDIC makes use of two special code points:

– A shift-out character (X'0E') to introduce a string of DBCS characters.

104 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

– A shift-in character (X'0F') to end a string of DBCS characters.

DBCS sequences within mixed data strings are recognized as the string is read from left to right. At
any time, the reading of the string is in SBCS mode or DBCS mode. In SBCS mode, which is the initial
mode, any byte other than a shift-out is interpreted as an SBCS character. When a shift-out is read, the
mode switches to DBCS mode. In DBCS mode, the next byte and every second byte after that byte is
interpreted as the first byte of a DBCS character unless it is a shift character. If the byte is a shift-out, an
error occurs. If the byte is a shift-in, the mode returns to SBCS mode. An error occurs if the mode is still
DBCS mode after processing the last byte of the string. Because of the shift characters, EBCDIC mixed
data requires more storage than ASCII mixed data.

• UTF-8 is a varying-length encoding of byte sequences. The high bits indicate the part of the sequence to
which a byte belongs. The first byte indicates the number of bytes to follow in a byte sequence.

Examples of character encoding schemes
The same mixed date character string can be represented as character and hexadecimal data in different
encoding schemes.

For the same mixed data character string, the following table shows character and hexadecimal
representations of the character string in different encoding schemes. In EBCDIC, the shift-out and
shift-in characters are needed to delineate the double-byte characters.

Table 16. Example of a character string in different encoding schemes

Data type and encoding
scheme

Character representation Hexadecimal representation (with
spaces separating each character)

9 bytes in ASCII gen ki 8CB3 67 65 6E 8B43 6B 69

13 bytes in EBCDIC s
0

s
I gen s

0
s
I ki 0E 4695 0F 87 85 95 0E 45B9 0F 92 89

11 bytes in Unicode UTF-8 gen ki E58583 67 65 6E E6B097 6B 69

Because of the differences of the representation of mixed data strings in ASCII, EBCDIC, and Unicode,
mixed data is not transparently portable. To minimize the effects of these differences, use varying-length
strings in applications that require mixed data and operate on ASCII, EBCDIC, and Unicode data.

String units specifications
The ability to specify string units for certain built-in functions and on the CAST specification allows
you to process string data in a more "character-based manner" than a "byte-based manner". The string
unit determines the length in which the operation is to occur. For more information, see “String unit
specifications” on page 106.

Related concepts
String unit specifications
The ability to specify string units for certain built-in functions and on the CAST specification allows you
to process string data in a more "character-based manner" than a "byte-based manner". The string unit
determines the length in which the operation is to occur. You can specify CODEUNITS32, CODEUNITS16,
or OCTETS as the units for the operation.
Numeric data types
The numeric data types are binary integer, decimal, decimal floating-point, and floating-point.
Characters and tokens in SQL

Chapter 2. Language elements in SQL 105

The most basic elements of SQL syntax are characters and tokens. Tokens are the basic syntactical units
of the SQL language.

String unit specifications
The ability to specify string units for certain built-in functions and on the CAST specification allows you
to process string data in a more "character-based manner" than a "byte-based manner". The string unit
determines the length in which the operation is to occur. You can specify CODEUNITS32, CODEUNITS16,
or OCTETS as the units for the operation.

CODEUNITS32
Specifies that Unicode UTF-32 is the units for the operation. CODEUNITS32 is useful when an
application wants to process data in a simple fixed-length format and needs the same answer
regardless of the storage format of the data (ASCII, EBCDIC, UTF-8, or UTF-16). Although the answers
are in terms of CODEUNITS32, the data is not converted to UTF-32 to perform the function.

CODEUNITS16
Specifies that Unicode UTF-16 is the units for the operation. CODEUNITS16 is useful when an
application wants to know how many double-byte characters are in a string.

OCTETS
Specifies that bytes are the units for the operation. OCTETS is often used when an application is
interested in allocation buffer space or when operations need to use simple byte processing.

Determining the length of a string by counting in string units (CODEUNITS16 or CODEUNITS32) or bytes
(OCTETS) can result in different answers. When OCTETS is specified, the length of a string is determined
by simply counting the number of bytes in the string. Counting by CODEUNITS16 or CODEUNITS32
gives the same answer unless the data contains supplementary characters. For information about
the difference between CODEUNITS16 and CODEUNITS32 when the data contains supplementary
characters, see “Difference between CODEUNITS16 and CODEUNITS32” on page 107.

Example: Assume that NAME is a VARCHAR(128) column, encoded in Unicode UTF-8, that contains
the value 'Jürgen'. The first two queries, which count the length of the string in CODEUNITS32 and
CODEUNITS16, returns the same value, 6. The third query, which counts the length of the string in
OCTETS, returns the value 7. These values are the length of the string as expressed in the string units that
are specified.

SELECT CHARACTER_LENGTH(NAME,CODEUNITS32)
 FROM T1 WHERE NAME = 'Jürgen';

SELECT CHARACTER_LENGTH(NAME,CODEUNITS16)
 FROM T1 WHERE NAME = 'Jürgen';

SELECT CHARACTER_LENGTH(NAME,OCTETS)
 FROM T1 WHERE NAME = 'Jürgen';

The following table shows the UTF-8, UTF-16, and UTF-32 representations of 'Jürgen'.

Format Representation of the name 'Jürgen'

UTF-8 x'4AC3BC7267656E'

UTF-16 x'004A00FC007200670065006E'

UTF-32 x'0000004A000000FC0000007200000067000000650000006E'

The bold highlighting in the table demonstrates how the representation of the character ü in 'Jürgen'
differs between the three string units:

• The UTF-8 representation of the character ü is X'C3BC'. In UTF-8, characters that are not in the Latin-1
subset (essentially a through z, A through Z, and 0 through 9), such as accented characters or Japanese
characters, are represented by multiple bytes.

106 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• The UTF-16 representation of the character ü is X'00FC'. In UTF-16, each character is represented in 2
bytes. UTF-16 supplementary characters take two 2-byte code points.

• The UTF-32 representation of the character ü is X'000000FC'. In UTF-32, each character is represented
in 4 bytes.

Specifying the string units on a built-in function does not affect the data type or the CCSID of the result
of the function. If necessary, Db2 converts the data to Unicode for evaluation when CODEUNITS32 or
CODEUNITS16 is specified. Db2 always evaluates the data in the encoding scheme of the output data
when OCTETS is specified. For more information about the data types and CCSIDs of the results of
functions, see the description of each function.

Differences between the way that characters are represented in ASCII, EBCDIC, and Unicode can affect
the results of your queries.

Example: Assume that NAME is a VARCHAR(128) column, encoded in EBCDIC (CCSID 37), that contains
the value 'Mit freundlichen Grüßen, Jürgen'. The following query returns the string 'Mit freundlichen Grüß':

SELECT SUBSTRING(C1,1,21,CODEUNITS16)
 FROM T1 WHERE C1 = 'Mit freundlichen Grüßen, Jürgen';

The following table shows the result data in more detail:

Format Representation of 'Mit freundlichen Grüß'

EBCDIC D489A340869985A4958493898388859540C799DC59

UTF-8 4D697420667265756E646C696368656E204772C3BCC39F

UTF-16 004D0069007400200066007200650075006E0064006C0069006300680
065006E00200047007200FC00DF

The bold highlighting in the table shows that the representation of the characters ü and ß in UTF-8 and
UTF-16 each require two bytes. If OCTETS had been specified on the SUBSTRING function to have the
string evaluated in UTF-8 bytes instead of EBCDIC OCTETS or CODEUNITS16, the result would have been
'Mit freundlichen Grü'. The character ß would have been lost.

Related concepts
Character strings
A character string is a sequence of bytes. The length of the string is the number of bytes in the sequence.
If the length is zero, the value is called the empty string. The empty string should not be confused with the
null value.

Difference between CODEUNITS16 and CODEUNITS32
CODEUNITS16 and CODEUNITS32 return the same answer unless the data contains supplementary
characters.

A supplementary character is represented as two UTF-16 code units or one UTF-32 code unit. In
UTF-8, a non-supplementary character is represented by 1 to 3 bytes and a supplementary character
is represented by 4 bytes. In UTF-16, a non-supplementary character is represented by one CODEUNIT16
code unit or 2 bytes, and a supplementary character is represented by two CODEUNIT16 code units
or 4 bytes. In UTF-32, a character is represented by one CODEUNIT32 code unit or 4 bytes. Thus,
CODEUNITS16 and CODEUNITS32 return different answers when the data contains supplementary
characters.

Example 1: The following table shows the hexadecimal values for the mathematical bold capital A and the
Latin capital letter A. The mathematical bold capital A is a supplementary character that is represented by
4 bytes in UTF-8, UTF-16, and UTF-32.

Chapter 2. Language elements in SQL 107

Character UTF-8
representation

UTF-16
representation

UTF-32
representation

Unicode value \u1D400 - 'A'

MATHEMATICAL BOLD CAPITAL A

X'F09D9080' X'D835DC00' X'0001D400'

Unicode value \u0041 - 'A'

LATIN CAPITAL LETTER A

X'41' X'0041' X'00000041'

Assume that C1 is a VARCHAR(128) column, encoded in Unicode UTF-8, and that table T1 contains one
row with the value of the mathematical bold capital A (X'F09D9080'). The following similar queries return
different answers:

-- Query: -- Returns the value:
SELECT CHARACTER_LENGTH(C1,CODEUNITS32) FROM T1; -- 1
SELECT CHARACTER_LENGTH(C1,CODEUNITS16) FROM T1; -- 2
SELECT CHARACTER_LENGTH(C1,OCTETS) FROM T1; -- 4

Example 2: Assume that C1 is a VARCHAR(128) column, encoded in Unicode UTF-8, and that table T1
contains one row with the value of the mathematical bold capital A (X'F09D9080'). The following similar
queries return different answers.

-- Query: -- Returns the value:
SELECT HEX(SUBSTRING(C1,1,1,CODEUNITS32)) FROM T1; -- X'F09D9080'
SELECT HEX(SUBSTRING(C1,1,1,CODEUNITS16)) FROM T1; -- X'20'
SELECT HEX(SUBSTRING(C1,1,2,CODEUNITS16)) FROM T1; -- X'F09D9080'
SELECT HEX(SUBSTRING(C1,1,1,OCTETS)) FROM T1; -- X'20'
SELECT HEX(SUBSTR(C1,1,1)) FROM T1; -- X'F0'

The value X'20' is the pad (blank) character.

Determining the length attribute of the final result
When CODEUNITS32, CODEUNITS16, or OCTETS is specified for a function or the CAST specification, the
length attribute of the final result string is calculated by applying specific formulas depending on which
function is specified.

To determine the final result of a function or the CAST specification, Db2 might need to use an
intermediate result string if CODEUNITS32 or CODEUNITS16 is specified, depending on the encoding
scheme of the data:

• ASCII and EBCDIC data require the use of a UTF-16 intermediate result string when either
CODEUNITS32 or CODEUNITS16 is specified.

• UTF-8 data requires the use of a UTF-16 intermediate result string only when CODEUNITS16 is
specified.

Regardless of whether an intermediate string is used, when CODEUNITS32, CODEUNITS16, or OCTETS
is specified for a function or the CAST specification, the length attribute of the final result string is
calculated by applying the formulas that are described in the following table. The length attributes that
are calculated at each step in the formulas are measured in bytes, unless indicated otherwise.

Determining the length attribute of the string
The formulas for the length attribute of the final result string depend on the function.

The final value of the calculation for each length attribute (IML, rl, and the final result of the function) is
limited by the maximum length of the function or by the maximum length of the corresponding data type
of the result, whichever is applicable. Each length attribute is expressed in terms of bytes.

CAST specification, CHAR, CLOB, DBCLOB, GRAPHIC, VARCHAR, VARGRAPHIC
Follow these three steps to determine the length attribute of the final result:

108 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

1. Length of the intermediate string (IML)

When CODEUNITS32 or CODEUNITS16 is specified:

• If the source string is not in Unicode CCSID 1200, 1208, or 367, convert the source string
to CCSID 1200, using the formulas in “Conversion rules for comparisons” on page 159 to
determine the result length of the intermediate string (IML).

• If source string is in Unicode CCSID 1208 or 367, and CODEUNITS16 is specified, convert the
source string to CCSID 1200, using the formulas in “Conversion rules for comparisons” on page
159 to determine the result length of the intermediate string (IML).

• Otherwise, the intermediate string is the same as the source string.

When OCTETS is specified:

• If the CCSID of the source string is different from the CCSID of the result of the function, convert
the source string to the CCSID of the result of the function, using the formulas in “Conversion
rules for comparisons” on page 159 to determine the result length of the intermediate string
(IML).

• Otherwise, the intermediate string is the same as the source string.

Exception: For the GRAPHIC and VARGRAPHIC function, if the source string is EBCDIC, the source
is widened with prefix X'42' before the source string is converted to CCSID 1200 and the length of
the intermediate string is determined.

2. Result length attribute of the intermediate string (rl)
The result length (rl) of the intermediate string depends on whether a length argument was
explicitly specified.

If length was not specified, the result length (rl) attribute is:

 rl = IML

If length was specified, the result length (rl) attribute is:

 IF (ol * n) < r_IML THEN
 rl = ol * n
 ELSE
 IF intermediate string is in CCSID 1200
 (UTF-16) THEN
 rl = MIN(ol * n , IML + (r * 2))
 ELSE
 rl = MIN(ol * n , IML + r)

Where:

• ol = original length argument, expressed in the specified string units
n =

4 bytes for CODEUNITS32
2 bytes for CODEUNITS16

• IML = length of the intermediate string
• r_IML = IML rounded up to next multiple of n
• r = ol - (r_IML/n), expressed in the specified string units

The calculation for r is an estimate of the difference between the length argument and the
estimated number of characters of the input argument, expressed in the specified string units.

3. Length of the final result string (the result of the function)
The result length attribute of the final string is determined by converting the result length (rl)
of the intermediate string to the CCSID of the result of the function, using the formulas in
“Conversion rules for comparisons” on page 159, if CCSID conversion is necessary. Otherwise,
the result length attribute of the final string is rl.

Chapter 2. Language elements in SQL 109

CHARACTER_LENGTH, LOCATE, LOCATE_IN_STRING, POSITION
Follow these three steps to determine the length attribute of the final result:
1. Length of the intermediate string (IML)

The length of the intermediate string (IML) is determined the same way as for the CAST
specification. (See Length of the intermediate string (IML).)

For the LOCATE, LOCATE_IN_STRING, and POSITION functions, this applies to both the source-
string and search-string. If the CCSIDs of intermediate strings for the converted source-string and
search-string differ, the intermediate string for the search-string is converted to the CCSID of
intermediate string for the source-string.

2. Result length attribute of the intermediate string (rl)
The result length (rl) attribute is always 4 (the length of an integer):

 rl = 4

3. Length of the final result string (the result the function)
The length of the final result of the function is always an integer.

INSERT, OVERLAY
Follow these three steps to determine the length attribute of the final result:
1. Length of the intermediate string (IML)

The length of the intermediate string (IML) for both the source-string and the insert-string is
determined the same way as for the CAST specification. (See Length of the intermediate string
(IML).)

If the CCSIDs of the intermediate strings for the converted source-string and insert-string differ,
the intermediate string for the insert-string is converted to the CCSID of the intermediate string for
the source-string.

2. Result length attribute of the intermediate string (rl)
The result length (rl) attribute of the intermediate string depends on whether the start and length
arguments are constants.

If the start and length arguments are both constants, the result length attribute is:

 rl = L1 - MIN (MAX (0, L1 - (V2 - 1)
 * n), V3 * m) + L4

If at least one argument (the start or length argument) is not a constant, the result length attribute
is:

 rl = L1 + L4

Where:

• L1 and L4 are the length attributes of the intermediate strings of the source-string and insert-
string, respectively.

• V2 and V3 are the start and length values, respectively, expressed in the specified string units.
m=

1 if the intermediate string of the source-string is not CCSID 1200 (UTF-16)
2 if the intermediate string of the source-string is CCSID 1200 (UTF-16)

n=
4 bytes for CODEUNITS32
2 bytes for CODEUNITS16

3. Length of the final result string (the result the function)
The length of the final result is the same as the length of the final result for the CAST specification.
(See Length attribute of the final result string (the result of the function).)

110 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

LEFT, RIGHT
Follow these three steps to determine the length attribute of the final result:
1. Length of the intermediate string (IML)

The length of the intermediate string (IML) is determined the same way as for the CAST
specification. (See Length of the intermediate string (IML).)

2. Result length attribute of the intermediate string (rl)
The result length (rl) attribute is the same as the length of the intermediate string:

 rl = IML

3. Length of the final result string (the result of the function)
The result length attribute of the final string is determined by converting the result length (rl)
of the intermediate string to the CCSID of the result of the function, using the formulas in
“Conversion rules for comparisons” on page 159, if CCSID conversion is necessary. Otherwise,
the result length attribute of the final string is rl.

The result length attribute of the final string is:

 MIN(length of source string, length of CCSID
 converted string)

SUBSTRING
Follow these three steps to determine the length attribute of the final result:
1. Length of the intermediate string (IML)

The length of the intermediate string (IML) is determined the same way as for the CAST
specification. (See Length of the intermediate string (IML).)

2. Result length attribute of the intermediate string (rl)
The result length (rl) of the intermediate string depends on whether a length argument was
explicitly specified.

If length was not specified, the result length (rl) attribute is:

 rl = IML

If length was specified, the result length (rl) attribute is:

 rl = MIN(ol * n, IML)

Where:

• ol = original length argument, expressed in the specified string units
n =

4 bytes for CODEUNITS32
2 bytes for CODEUNITS16

• IML = length of the intermediate string

3. Length of the final result string (the result of the function)
The length of the final result string is the same as for LEFT built-in function.

Examples
Example 1

Assume that T1 is a table encoded in EBCDIC and C1 is a CHAR(26) column (SBCS data with EBCDIC
CCSID 37). The CHAR function is invoked in the following statement:

SELECT CHAR(C1,10,CODEUNITS32) as COL1 FROM T1;

Db2 uses an intermediate string to evaluate the function and determines the intermediate and final
result string lengths using these steps:

Chapter 2. Language elements in SQL 111

1. C1, which is SBCS EBCDIC 37 data, is converted to Unicode 1200 (UTF-16). The result length of
the conversion (using the formula from “Conversion rules for comparisons” on page 159, X * 2) is
26 * 2. Thus, the length of the intermediate string is 52 bytes (IML = 52).

2. The CHAR function is evaluated against the first 10 UTF-32 characters in this string. The result
length attribute is 40 bytes (rl = ol * n or 10 * 4) because ol * n < r_IML or 40 <
52.

3. The 40 bytes of the string are converted back to SBCS EBCDIC 37. The result length of the
conversion (using the formula from “Conversion rules for comparisons” on page 159, X * .5) is 40 *
.5. Thus, the length of the final result of the functions is 20 bytes.

Example 2

This example is similar to the first example, except that the specified length for the function is 20
instead of 10. Assume that T1 is a table encoded in EBCDIC and C1 is a CHAR(26) column (SBCS data
with EBCDIC CCSID 37). The CHAR function is invoked in the following statement:

SELECT CHAR(C1,20,CODEUNITS32) as COL1 FROM T1;

Db2 uses an intermediate string to evaluate the function and determines the intermediate and final
result string lengths using these steps:

1. C1, which is SBCS EBCDIC 37 data, is converted to Unicode 1200 (UTF-16). The result length of
the conversion (using the formula from “Conversion rules for comparisons” on page 159, X * 2) is
26 * 2. Thus, the length of the intermediate result string is 52 bytes (IML = 52).

2. The CHAR function is evaluated against the first 20 UTF-32 characters in this intermediate string.
However, because the estimated number of characters in the intermediate string, as expressed in
the specified string units, is only 13 characters (r_IML/n or 52/4), the intermediate string must
be padded with 7 padding characters to satisfy the 20 characters that are requested (r = ol -
(r_IML/n) or 20 - 13). In Unicode 1200 (UTF-16), each padding character takes 2 bytes.

The result length attribute is then calculated to be 66 bytes (rl = MIN(ol * n, IML + (r *
2)) or MIN(20 * 4, 52 + 14)) because ol * n < r_IML or 80 < 52 is not true.

3. The 66 bytes of the string are converted back to SBCS EBCDIC 37. The result length of the
conversion (using the formula from “Conversion rules for comparisons” on page 159, X * .5) is 66 *
.5. Thus, the length of the final result of the function is 33 bytes.

Graphic strings
A graphic string is a sequence of double-byte characters.

The length of the string is the number of characters in the sequence. Like character strings, graphic strings
can be empty. An empty string should not be confused with the null value.

Fixed-length graphic strings

When fixed-length graphic string distinct types, columns, and variables are defined, the length attribute
is specified and all values have the same length. For a fixed-length graphic string, the length attribute
must be in the range 1–127 inclusive. A fixed-length graphic string column can also be called a GRAPHIC
column.

Varying-length graphic strings

The types of varying-length graphic strings are VARGRAPHIC and double-byte character large object
(DBCLOB). DBCLOB is a type of LOB. A DBCLOB column is useful for storing large amounts of double-byte
character data, such as documents written with a single double-byte character set.

112 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

When varying-length graphic strings, distinct types, columns, and variables are defined, the maximum
length is specified and this length becomes the length attribute. Actual values might have a smaller value.
For a varying-length graphic string, the length attribute must between 1 and 16352.

For a varying-length graphic string column, the maximum for the length attribute is determined by the
record size associated with the table, as described Maximum record size in the description of the CREATE
TABLE statement. For a DBCLOB string, the length attribute must be in the range 1–1 073 741 823
inclusive. In UTF-16, although supplementary characters use two 2-byte code points, supplementary
characters are still considered double-byte characters. For more information about DBCLOBs, see “Large
objects (LOBs)” on page 116.

Graphic string variables
Variables with a graphic string type cannot be defined in Fortran. Also, graphic string variables must follow
these rules:

• Fixed-length graphic string host variables can be defined in all host languages, except REXX and Java.
In C, fixed-length graphic-string variables are limited to a length of 1.

• Varying-length graphic string variables can be defined in all host languages, with the exception of
DBCLOBs which cannot be used in REXX.

Graphic string encoding schemes
Each graphic string can be further defined as either double-byte data or Unicode data.

Double-byte data
Data in which every character is represented by a character from the double-byte character set
(DBCS) that does not include shift-out or shift-in characters. Each double-byte graphic string has an
associated ASCII or EBCDIC CCSID.

Unicode data
Data that contains characters represented by two bytes, except supplementary characters, which take
two 2-byte code points per character. Each Unicode graphic string is encoded using UTF-16. The
CCSID for UTF-16 is 1200.

String units in built-in functions
When working with graphic strings, you can specify the string unit in which the operation is to take place
for certain built-in functions and the CAST specification. The string unit determines the length in which the
operation is to occur.

For more information about string units, see “String unit specifications” on page 106.

Related concepts
“Unicode columns in EBCDIC tables” on page 113
A single encoding scheme is used for all character and character string data in a table. An exception is
that an EBCDIC table can contain one or more Unicode columns in addition to EBCDIC string columns.

Unicode columns in EBCDIC tables
A single encoding scheme is used for all character and character string data in a table. An exception is
that an EBCDIC table can contain one or more Unicode columns in addition to EBCDIC string columns.

An EBCDIC table can contain the following two types of Unicode columns:
Db2 12 or later Unicode columns

A Unicode column for character string data that was created in Db2 12 or later. The column is encoded
in CCSID 1208 (UTF-8) or CCSID 1200 (UTF-16). Db2 12 or later Unicode columns are subject to
fewer restrictions than Db2 11 Unicode columns.

Chapter 2. Language elements in SQL 113

Db2 11 Unicode columns
A Unicode column for character string data that was created in Db2 11. The column is encoded in
CCSID 1208 (UTF-8).

Restrictions on Db2 11 Unicode columns in EBCDIC tables
Db2 11 Unicode columns in EBCDIC tables must satisfy the following criteria:

• The column must not be in the column-name list of a unique-constraint in a CREATE TABLE or ALTER
TABLE statement.

• The column must not be in the column-name list of a referential-constraint in a CREATE TABLE or ALTER
TABLE statement.

• The column must not be in the column-name list of a references-clause in a CREATE TABLE or ALTER
TABLE statement.

• The column must not be in the column-name list of an ORGANIZE BY HASH clause in a CREATE TABLE
or ALTER TABLE statement.

• The column must not be referenced in the CHECK(check-condition) clause in a CREATE TABLE or ALTER
TABLE statement.

• The column must not be referenced in the CHECK(check-condition) clause in a CREATE TABLE or ALTER
TABLE statement.

• The column can be the target of an ALTER COLUMN column-alteration clause in an ALTER TABLE
statement only if the column is altered to the same data type, length, and CCSID. This change migrates
a Db2 11 Unicode column to a Db2 12 Unicode column.

• In a default-clause in a CREATE TABLE or ALTER TABLE statement, a value cannot follow the DEFAULT
keyword.

• The column cannot be used for column-name in a PARTITION BY RANGE clause in a CREATE TABLE or
ALTER TABLE statement.

• The column cannot be altered.
• The column must not be referenced in a join-condition of a full outer join.
• In a CREATE TABLE or ALTER TABLE statement, the column definition must not contain a FIELDPROC

clause.

Restrictions on EBCDIC tables with Db2 11 Unicode columns
An EBCDIC table that contains Db2 11 Unicode columns Unicode columns must satisfy the following
criteria:

• The table name cannot be the table-name value in the LIKE clause of a CREATE TABLE statement.
• In an as-result-table clause in a CREATE TABLE statement, if the from-clause in the fullselect is an

EBCDIC table that contains Db2 11 Unicode columns, the outermost SELECT list of the fullselect cannot
contain a mixture of EBCDIC columns and Db2 11 Unicode columns.

• In a materialized-query-definition clause in a CREATE TABLE or ALTER TABLE statement, when ENABLE
QUERY OPTIMIZATION is in effect, if the from-clause in the fullselect is an EBCDIC table that contains
Db2 11 Unicode columns, the outermost SELECT list of the fullselect cannot contain a mixture of
EBCDIC columns and Db2 11 Unicode columns.

• The EDITPROC clause must not be specified in the CREATE TABLE statement.
• The VALIDPROC clause must not be specified in the CREATE TABLE or ALTER TABLE statement.

Restriction on a created temporary table
When the LIKE clause is used to create a created temporary table, the table or view on which the created
temporary table is based cannot be an EBCDIC table with a Db2 11 Unicode column.

114 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Restriction on a declared temporary table
When the LIKE clause is used to create a declared temporary table, the table or view on which the
declared temporary table is based cannot be an EBCDIC table with a Db2 11 Unicode column.

Restrictions on an index that has an index key with Db2 11 Unicode columns
• A CREATE INDEX statement must not specify DESC, PADDED, or RANDOM for a Db2 11 Unicode column

in an EBCDIC table.
• An index that is defined on an EBCDIC table and is not an expression-based index must not include Db2

11 Unicode columns and Db2 12 Unicode columns. However, an expression-based index that is defined
on an EBCDIC table can include Db2 11 Unicode columns and Db2 12 Unicode columns.

Restrictions on a table space that contains an EBCDIC table with Db2 11 Unicode
columns
The CCSID of a table space that contains EBCDIC table with Db2 11 Unicode columns cannot be changed.

How the SQDA representnts Db2 11 Unicode columns are represented in EBCDIC
tables
In an SQLVAR of an SQLDA after DESCRIBE or PREPARE INTO, Db2 11 Unicode columns in EBCDIC tables
have these characteristics:

• For a column that is defined with CCSID 1208, the SQLTYPE field reflects VARCHAR and the SQLDATA
field contains 1208, even though the column might be recorded in the catalog as VARBINARY with
CCSID 1208.

• For a column that is defined with CCSID 1200, the SQLTYPE field reflects VARGRAPHIC and the
SQLDATA field contains 1200, even though the column might be recorded in the catalog as VARBINARY
with CCSID 1200.

Migrating Db2 11 Unicode columns in EBCDIC tables to Db2 12 or later
Unicode columns in EBCDIC tables
Db2 11 Unicode columns in EBCDIC tables can be used with Db2 12, subject to the restrictions that exist
in Db2. However, Db2 12 or later Unicode columns in EBCDIC tables have enhanced support, so you might
want to convert Db2 11 Unicode columns to Db2 12 or later Unicode columns.

Procedure
To migrate Db2 11 Unicode columns in EBCDIC tables to Db2 12 or later Unicode columns columns,
complete the following steps:
1. Run job DSNTIJPM. (You can run it before or after activating function level 500 in Db2 12. One of the

reports that DSNTIJPM produces lists Db2 11 Unicode columns, the EBCDIC tables that contain them,
and the indexes that are defined on the Db2 11 Unicode columns.

2. After Db2 12 function level 500 is activated, take one of the following actions:

• Issue ALTER TABLE ALTER COLUMN to alter the Unicode column.
• Issue ALTER TABLE DROP COLUMN and ALTER TABLE ADD COLUMN to drop and add the Unicode

column.
• Issue DROP TABLE AND CREATE TABLE to drop and recreate the table with the Unicode column.

3. Repopulate the column or table.

Related tasks
Run premigration queries (DSNTIJPM) (Db2 Installation and Migration)

Chapter 2. Language elements in SQL 115

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntijpm.html

Binary strings
A binary string is a sequence of bytes.

The length of a binary string is the number of bytes in the sequence. Binary strings are not associated with
any CCSID. There are three binary string data types: BINARY, VARBINARY (BINARY VARYING) and BLOB
(BINARY LARGE OBJECT).

Fixed-length binary strings

The type of fixed-length binary strings is BINARY. When fixed-length binary string distinct types, columns,
and variables are defined, the length attribute is specified, and all values have the same length. For a
fixed-length binary string, the length attribute must in the range 1–255 inclusive.

Varying-length binary strings

The types of varying-length binary strings are VARBINARY (BINARY VARYING) and BLOB (BINARY LARGE
OBJECT)

When varying-length binary strings, distinct types, columns, and variables are defined, the maximum
length is specified and this length becomes the length attribute. Actual length values might have a smaller
value than the length attribute value. For varying-length binary strings, the actual length specifies the
number of bytes in the string.

For a VARBINARY string, the length attribute must be between 1 and 32704. For a VARBINARY string
column, the maximum for the length attribute is determined by the record size that is associated with the
table, as described in "Maximum record size" on the description of the CREATE TABLE statement. Like a
varying-length character string, varying-length binary string could be an empty string.

A binary string column is useful for storing non-character data, such as encoded or compressed data,
pictures, voice, and mixed media. Another use is to hold structured data for exploitation by distinct types,
user-defined functions, and stored procedures. Note, that although binary strings and FOR BIT DATA
character strings might be used for similar purposes, the two data types are not compatible. The BINARY,
BLOB, VARBINARY built-in functions and CAST specification can be used to change a FOR BIT DATA
character string into a binary string.

Large objects (LOBs)
The term large object (LOB) refers to any of the following data types: CLOB, DBCLOB, or BLOB.

CLOB
A character large object (CLOB) is a varying-length string with a maximum length of 2,147,483,647
bytes (2 gigabytes minus 1 byte). A CLOB is designed to store large SBCS data or mixed data, such as
lengthy documents. For example, you can store information such as an employee resume, the script of
a play, or the text of novel in a CLOB. Alternatively, you can store such information in UTF-8 in a mixed
CLOB. A CLOB is a varying-length character string.

DBCLOB
A double-byte character large object (DBCLOB) is a varying-length string with a maximum length of
1,073,741,823 double-byte characters. A DBCLOB is designed to store large DBCS data. For example,
you could store the information mentioned for CLOB (an employee resume, the script for a play, or the
text of a novel) in UTF-16 in a DBCLOB. A DBCLOB is a varying-length graphic string.

BLOB
A binary large object (BLOB) is a varying-length string with a maximum length of 2,147,483,647 bytes
(2 gigabytes minus 1 byte). A BLOB is designed to store non-traditional data such as pictures, voice,
and mixed media. BLOBs can also store structured data for use by distinct types and user-defined
functions. A BLOB is a binary string.

116 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Although BLOB strings and FOR BIT DATA character strings might be used for similar purposes, the
two data types are not compatible. The BLOB function can be used to change a FOR BIT DATA
character string into a BLOB string.

Related concepts
LOB table space implicit creation (Db2 Administration Guide)
Related tasks
Creating large objects (Introduction to Db2 for z/OS)
Storing LOB data in Db2 tables (Db2 Application programming and SQL)
Related reference
CREATE AUXILIARY TABLE statement
The CREATE AUXILIARY TABLE statement creates an auxiliary table at the current server for storing LOB
data.
CREATE LOB TABLESPACE
The CREATE LOB TABLESPACE statement defines a large object (LOB) table space at the current server.
If your data for a table does not fit entirely within a data page, you can define one or more columns as
LOB columns. Each LOB column must have an associated auxiliary table in a LOB table space. If the table
space for the base table is partitioned, an associated auxiliary table in a LOB table space is required for
each LOB column, for each partition of the table space for the base table.

Restrictions using LOBs
With a few exceptions, you can use LOBs in the same contexts in which you can use other varying-length
strings.

The following table shows the contexts in which LOBs cannot be used.

Table 17. Contexts in which LOBs cannot be used

Context of usage LOB (CLOB, DBCLOB, or BLOB)

A GROUP BY clause Not allowed

An ORDER BY clause Not allowed

A CREATE INDEX statement that creates an index
using an expression

Not allowed except when the index is created using an
expression, in which case an inline LOB column can be
referenced as the source data type for the SUBSTR and
SUBSTRING built-in functions.

A SELECT DISTINCT statement Not allowed

A MERGE statement Cannot be used in the context of an INCLUDE column-
name clause

A subselect of a set operation except UNION ALL Not allowed

Predicates Cannot be used in any predicate except EXISTS, LIKE,
and NULL. This restriction includes a simple-when-
clause in a CASE expression. expression WHEN
expression in a simple-when-clause is equivalent to
a predicate with expression=expression.

The definition of primary, unique, and foreign keys Not allowed

Check constraints Not allowed

Manipulating LOBs using locators
A LOB locator is a host variable with a value that represents a single LOB value in the database server.
LOB locators provide a mechanism for you to easily manipulate very large objects in application programs

Chapter 2. Language elements in SQL 117

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicittablespacelob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationoflargeobjects.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_storelobdatatable.html

without having to store the entire LOB value on the client machine where the application program might
be running.

Because LOB values can be very large, the transfer of these values from the database server to host
variables in client application programs can be time consuming. Also, application programs typically
process LOB values a piece at a time, rather than as a whole. For these cases, the application can use a
large object locator (LOB locator) to reference the LOB value.

For example, when selecting a LOB value, an application program could handle the value in either of these
two ways:

• Select the entire LOB value and place it into an equally large host variable. This method is acceptable if
the application program is going to process the entire LOB value at once.

• Select the LOB value into a LOB locator. Then, using the LOB locator, the application program can
issue subsequent database operations on the LOB value (such as using it as a parameter to the scalar
functions SUBSTR, CONCAT, COALESCE, LENGTH, doing an assignment, searching the LOB value with
LIKE or POSSTR, or using it as a parameter to a user-defined function or procedure) by supplying the
LOB locator value as input. The resulting output of the LOB locator operation, for example, the amount
of data that is assigned to a client host variable, would then typically be a small subset of the input LOB
value.

LOB locators can also represent more than just base values; they can also represent the value associated
with a LOB expression. For example, a LOB locator might represent the value associated with:

 SUBSTR(lob_value_1 CONCAT lob_value_2 CONCAT lob_value_3 , 42, 6000000)

For non-locator-based host variables in an application program, when a null value is selected into that
host variable, the indicator variable is set to -1, signifying that the value is null. For LOB locators, however,
the meaning of indicator variables is slightly different. Because a LOB locator host variable itself can never
be null, a negative indicator variable value indicates that the LOB value represented by the LOB locator
is null. The null information is kept local to the client by virtue of the indicator variable value (the server
does not track null values with valid LOB locators).

A LOB locator represents a value, not a row or location in the database. Therefore, after a value is selected
into a LOB locator, no action that is subsequently performed on the original row or table will affect the
value that is referenced by the LOB locator. The value associated with a LOB locator is valid until the
transaction ends, or until the LOB locator is explicitly freed, whichever comes first.

A LOB locator is also not a database type, and it is never stored in the database. As a result, it cannot
participate in views or check constraints. However, values for the SQLTYPE field of the SQLDA exist for
LOB locators so that they can be described within an SQLDA structure that is used by FETCH, OPEN, CALL
and EXECUTE statements.

For more information about manipulating LOBs with LOB locators, see Saving storage when manipulating
LOBs by using LOB locators (Db2 Application programming and SQL).

Datetime values
Datetime values are neither strings nor numbers. Nevertheless, datetime values can be used in certain
arithmetic and string operations and are compatible with certain strings.

Moreover, strings can represent datetime values, as discussed in “String representations of datetime
values” on page 120.

Date
A date is a three-part value (year, month, and day) designating a point in time using the Gregorian
calendar, which is assumed to have been in effect from the year 1 A.D.
4 The range of the year part is 0001 to 9999. The range of the month part is 1 to 12. The range of the day
part is 1 to 28, 29, 30, or 31, depending on the month and year.

118 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_savestoragelob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_savestoragelob.html

The internal representation of a date is a string of 4 bytes. Each byte consists of two packed decimal
digits. The first 2 bytes represent the year, the third byte the month, and the last byte the day.

The length of a DATE column as described in the catalog is the internal length, which is 4 bytes. The
length of a DATE column as described in the SQLDA is the external length, which is 10 bytes unless a
date exit routine was specified when your Db2 subsystem was installed. (Writing a date exit routine is
described in Date and time routines (Db2 Administration Guide).) In that case, the string format of a date
can be up to 255 bytes in length. Accordingly, DCLGEN5 defines fixed-length string variables for DATE
columns with a length equal to the value of the field LOCAL DATE LENGTH on installation panel DSNTIP4,
or a length of 10 bytes if a value for the field was not specified.

A character-string representation must have an actual length that is not greater than 255 bytes and must
not be a CLOB or DBCLOB.

Related reference
DATE FORMAT field (DATE DECP value) (Db2 Installation and Migration)
LOCAL DATE LENGTH field (DATELEN DECP value) (Db2 Installation and Migration)
DCLGEN (declarations generator) subcommand (DSN) (Db2 Commands)

Time
A time is a three-part value (hour, minute, and second) designating a time of day using a 24-hour clock.
The range of the hour part is 0 to 24. The range of the minute and second parts is 0 to 59. If the hour is
24, the minute and second parts are both zero.

The internal representation of a time is a string of 3 bytes. Each byte consists of two packed decimal
digits. The first byte represents the hour, the second byte the minute, and the last byte the second.

The length of a TIME column as described in the catalog is the internal length which is 3 bytes. The length
of a TIME column as described in the SQLDA is the external length which is 8 bytes unless a time exit
routine was specified when the Db2 subsystem was installed. (Writing a time exit routine is described
in Date and time routines (Db2 Administration Guide).) In that case, the string format of a time can be
up to 255 bytes in length. Accordingly, DCLGEN “Date” on page 118 defines fixed-length string variables
for TIME columns with a length equal to the value of the field LOCAL TIME LENGTH on installation panel
DSNTIP4, or a length of 8 bytes if a value for the field was not specified.

A character-string representation must have an actual length that is not greater than 255 bytes and must
not be a CLOB or DBCLOB.

Related reference
LOCAL TIME LENGTH field (TIMELEN DECP value) (Db2 Installation and Migration)
DCLGEN (declarations generator) subcommand (DSN) (Db2 Commands)

Timestamp
A timestamp is a six-part or seven-part value (year, month, day, hour, minute, second, and optional
fractional second) with an optional time zone specification, that represents a date and time.

The time portion of a timestamp value can includes a specification of fractional seconds. The number of
digits in the fractional seconds portion is specified using an attribute in the range 0–12 with a default of 6.
The time zone is the difference in hours and minutes between local time and UTC. The range of the hour
offset is -12 to 14, and the minute offset is 00 to 59. The optional time zone is specified in the format
±th:tm, with values ranging from -12:59 to +14:00. A timestamp data type is TIMESTAMP WITHOUT TIME
ZONE (generically referred to as TIMESTAMP) or TIMESTAMP WITH TIME ZONE.

4 Historical dates do not always follow the Gregorian calendar. Dates between 1582-10-04 and 1582-10-15
are accepted as valid dates although they never existed in the Gregorian calendar.

5 DCLGEN is a Db2 DSN subcommand for generating table declarations for designated tables or views. The
declarations are stored in z/OS data sets, for later inclusion in Db2 source programs.

Chapter 2. Language elements in SQL 119

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_datetimeexitroutine.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_date.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_datelen.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_dclgen.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_datetimeexitroutine.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_timelen.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_dclgen.html

TIMESTAMP WITHOUT TIME ZONE
The internal representation of a timestamp is a string of 7 to 13 bytes, each of which consists of
two packed decimal digits. The first 4 bytes represent the date, the next 3 bytes the time, and the
remaining bytes the fractional seconds based on the precision of the timestamp.

The length of a TIMESTAMP WITHOUT TIME ZONE column as described in the catalog is the internal
length, which is 7 to 13 bytes.

The length of a TIMESTAMP WITHOUT TIME ZONE column as described in the SQLDA is in the
range 19–32 bytes, which corresponds to the length for the character-string representation of the
value. For example, a 19 byte character-string representation has no fractional seconds; a 26 byte
character-string representation has 6 digits of fractional seconds; and a 29 byte character-string
representation has 9 digits of fractional seconds.

A character-string representation must have an actual length that is not greater than 255 bytes and
must not be a CLOB or DBCLOB.

TIMESTAMP WITH TIME ZONE
The external representation of a TIMESTAMP WITH TIME ZONE value is the local timestamp followed
by the time zone offset. For example, New York is 5 hours behind London during standard time,
so New York time "8:15" on 2010-02-10 can be represented as '2010-02-10-08.15.00-5:00'. This
timestamp with time zone value represents a UTC value '2010-02-10-13.15.00', which is derived by
subtracting the time zone offset from local timestamp.

The internal representation of a timestamp is a string of 9 to 15 bytes that contains the UTC
timestamp followed by the time zone. Each byte consists of 2 packed decimal digits. The first
byte consists of two packed decimal digits representing time zone hour and the first bit is used to
represent the sign of the time zone offset. The second byte of time zone, representing the time zone
minute, also consists of two packed decimal digits. For example, time zone "-3:30" is represented as
X'8330' and time zone "5:30" is represented as X'0530'.

The length of a TIMESTAMP WITH TIME ZONE column as described in the catalog is the internal
length, which is between 9 to 15 bytes (a 7 to 13 bytes timestamp followed by 2 bytes time zone).

The length of a TIMESTAMP WITH TIME ZONE column as described in the SQLDA is the external
length, which is in the range 147–160 bytes and corresponds to the length for the character-string
representation of the value. For example, a 147 byte character representation has no fractional
seconds, and a 160 byte character-string representation has 12 digits of fractional seconds, where
the time zone component is 7 bytes.

A character-string representation must have an actual length that is not greater than 255 bytes and
must not be a CLOB or DBCLOB. DCLGEN therefore defines 147 to 160 byte, varying-length string
variables for TIMESTAMP WITH TIME ZONE columns.

Related concepts
Datetime constants
A datetime constant is a character string constant of a particular format.

Datetime host variables
Character-string host variables are normally used to contain date, time, and timestamp values. However,
date, time, and timestamp host variables can also be specified in Java as java.sql.Date, java.sql.Time, and
java.sql.Timestamp, respectively.

String representations of datetime values
Dates, times, and timestamp values can be represented by strings. For many host languages, there are no
special SQL constants for datetime values and, except for Java, no host variables with a data type of date,
time, or timestamp. Thus, to be retrieved, a datetime value must be assigned to a string variable.

Values whose data types are DATE, TIME, TIMESTAMP WITHOUT TIME ZONE, or TIMESTAMP WITH TIME
ZONE are represented in a form that is transparent to the user of SQL. Dates, times, and timestamps (with
or without time zones) can also be represented by strings. These representations directly concern the SQL

120 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

user because, for many host languages there are no special SQL constants or host variables with a data
type for DATE, TIME, TIMESTAMP WITHOUT TIME ZONE, or TIMESTAMP WITH TIME ZONE values (for
variables with Java). Thus, to be retrieved, a datetime value must be assigned to a string variable. The
format of the resulting string depends on the default date format and the default time format that is in
effect when the statement is prepared.

Each datetime value is assigned an encoding scheme. This encoding scheme is used when the datetime
value is converted from its internal form to the string representation in the form of the mixed CCSID if
the field MIXED DATA is YES on installation panel DSNTIPF. Otherwise the SBCS CCSID of the assigned
encoding scheme is used. For Unicode, the mixed CCSID is always used. The following table shows how
the encoding scheme is determined:

Table 18. The encoding scheme of datetime values

Datetime expression Result encoding scheme

Columns The same encoding scheme as the table that
contains the column

Host variables If the statement references:

• A single encoding scheme - The same encoding
scheme

• Multiple encoding schemes - The application
encoding scheme

Special registers If the statement references:

• A single encoding scheme - The same encoding
scheme

• Multiple encoding schemes - The application
encoding scheme

Expressions If the statement references:

• A single encoding scheme - The same encoding
scheme

• Multiple encoding schemes - The application
encoding scheme

For ASCII and EBCDIC, a string representation of a datetime value must be a character string. For
Unicode, a string representation of a datetime value can be either a character string or a graphic string.
Thus, the only time a graphic string can be used for a datetime value is when the encoding scheme is
Unicode.

In host languages other than Java, a datetime value must be assigned to a string variable. When a date or
time is assigned to a string variable, the string format is determined by a precompiler option or subsystem
parameter. When a string representation of a datetime value is used in other operations, it is converted
to a datetime value. However, this can be done only if the string representation is recognized by Db2 or
an exit provided by the installation and the other operand is a compatible datetime value. An input string
representation of a date or time with LOCAL specified must have an actual length that is not greater than
255 bytes.

Datetime values that are represented by strings can appear in contexts that require values whose data
types are DATE, TIME, TIMESTAMP WITHOUT TIME ZONE, or TIMESTAMP WITH TIME ZONE. A string
representation of a date, time or timestamp (with or without time zone) can be passed as an argument to
the DATE, TIME, TIMESTAMP, or TIMESTAMP_TZ function to obtain a datetime value. A CAST specification
can also be used to turn a character representation of a date, time, or timestamp (with or without time
zone) into a datetime value.

Chapter 2. Language elements in SQL 121

Date strings:
A string representation of a date is a string that starts with a digit and has a length of at least 8
characters. Trailing blanks can be included, leading blanks are not allowed, and leading zeros can be
omitted in the month and day portions.

The following table shows the valid string formats for dates. Each format is identified by name and
includes an associated abbreviation (for use by the CHAR function) and an example of its use. For
an installation-defined date string format, the format and length must have been specified when Db2
was installed. They cannot be listed here.

Table 19. Formats for string representations of dates

Format name Abbreviation Date format Example

International Standards Organization ISO yyyy-mm-dd 1987-10-12

IBM USA standard USA mm/dd/yyyy 10/12/1987

IBM European standard EUR dd.mm.yyyy 12.10.1987

Japanese industrial standard Christian era JIS yyyy-mm-dd 1987-10-12

Installation-defined LOCAL Any installation-
defined form

—

Time strings:
A string representation of a time is a string that starts with a digit, and has a length of at least 4
characters. Trailing blanks can be included, leading blanks are not allowed, and leading zeros can be
omitted in the hour part of the time; seconds can be omitted entirely. If you choose to omit seconds,
an implicit specification of 0 seconds is assumed. Thus 13.30 is equivalent to 13.30.00.

The following table shows the valid string formats for times. Each format is identified by name and
includes an associated abbreviation (for use by the CHAR function) and an example of its use. In the
case of an installation-defined time string format, the format and length must have been specified
when your Db2 subsystem was installed. They cannot be listed here.

Table 20. Formats for string representations of times

Format name Abbreviation Time format Example

International Standards Organization 1 ISO1 hh.mm.ss 13.30.05

IBM USA standard USA hh:mm AM or PM 1:30 PM

IBM European standard EUR hh.mm.ss 13.30.05

Japanese industrial standard Christian era JIS hh:mm:ss 13:30:05

Installation-defined LOCAL Any installation-
defined form

—

Note: 1. This is an earlier version of the ISO format. JIS can be used to get the current ISO format.

In the USA format:

• The minutes can be omitted, thereby specifying 00 minutes. For example, 1 PM is equivalent to 1:00
PM.

• The letters A, M, and P can be lowercase.
• A single blank must precede the AM or PM.
• The hour must not be greater than 12 and cannot be 0 except for the special case of 00:00 AM.

Using the ISO format of the 24-hour clock, the correspondence between the USA format and the
24-hour clock is as follows:

122 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• 12:01 AM through 12:59 AM correspond to 00.01.00 through 00.59.00
• 01:00 AM through 11:59 AM correspond to 01.00.00 through 11.59.00
• 12:00 PM (noon) through 11:59 PM correspond to 12.00.00 through 23.59.00
• 12:00 AM (midnight) corresponds to 24.00.00
• 00:00 AM (midnight) corresponds to 00.00.00

Timestamp strings:
A string representation of a timestamp is a character or graphic string that starts with a digit and has a
length of at least 16 characters.

The character or graphic string must contain a value that conforms to one of the formats listed in
“Datetime constants” on page 174, subject to the following rules:

• leading blanks are not allowed
• trailing blanks can be included
• leading zeros can be omitted from the month, day, hour, and time zone hour elements of the

timestamp. An implicit specification of 0 is assumed for any digit that is omitted.
• the hour can be 24 if the minutes, seconds, and any fractional seconds are all zeroes.
• leading zeros must be included for the minute, second, and time zone minute elements of the

timestamp.
• the number of digits of fractional seconds can vary from 0 to 12. An implicit specification of 0 is

assumed if fractional seconds are omitted.
• the separator character that follows the seconds element can be omitted if fractional seconds are

not included.
• an optional single blank can be included between the time and the time zone.
• an optional time zone can be included, in one of the following formats:

– ±th:tm, with values ranging from -24:00 to +24:00. A value of -0:00 is treated the same as a value
of +0:00.

– ±th, with values ranging from -24 to +24, and an implicit specification of 00 is assumed for the
time zone minute element.

– uppercase Z to specify UTC

If a string representation of a timestamp is implicitly cast to a value with a timestamp data type,
the timestamp precision is assumed to be 6, regardless of the number of digits of fractional seconds
in the string. Beyond the sixth digit that represents fractional seconds, the digits are truncated and
the missing digits are assumed to be zeros. For example, 1990-3-2-8.30.00.10 is equivalent to
1990-03-02-08.30.00.100000. A string representation of a timestamp can be given a different
timestamp precision by explicitly casting the value to a timestamp with a specified precision or, in
the case of a constant, preceding the string with the TIMESTAMP keyword (for example, TIMESTAMP
2007-03-28-14.50.35.123; has the TIMESTAMP(3) data type).

If a string representation of a timestamp is implicitly cast to a TIMESTAMP WITHOUT TIME ZONE
value, the string must not contain a time zone.

SQL statements also support the ODBC or JDBC string representation of a timestamp as an input
value only. The ODBC and JDBC string representation of a timestamp has the form yyyy-mm-dd
hh:mm:ss.nnnnnn.

LOCAL date and time exits: For LOCAL, the date exit for ASCII data is DSNXVDTA, the date exit for EBCDIC
is DSNXVDTX, and the date exit for Unicode is DSNXVDTU. For LOCAL, the time exit for ASCII data is
DSNXVTMA, the time exit for EBCDIC is DSNXVTMX, and the time exit for Unicode is DSNXVTMU.

Chapter 2. Language elements in SQL 123

Determination of the implicit time zone
Db2 uses the IMPLICIT_TIMEZONE parameter of DSNHDECP to implicitly determines the time zone to
associate with a value that does not have a time zone on assignment to a TIMESTAMP WITH TIME ZONE
column or variable.

The IMPLICIT_TIMEZONE parameter of DSNHDECP is used to support operations that combine
TIMESTAMP WITHOUT TIME ZONE values and TIMESTAMP WITH TIME ZONE values and indicates the
time zone to associate with TIMESTAMP WITHOUT TIME ZONE values. For example, on assignment of a
value that does not have time zone information (the TIMESTAMP WITHOUT TIME ZONE data type, or a
string representation of a timestamp without a time zone) to a TIMESTAMP WITH TIME ZONE target such
as a column or variable, Db2 implicitly determines the time zone to associate with the value. The implicit
time zone is determined as follows:

• If IMPLICIT_TIMEZONE is not specified or is specified as CURRENT, the implicit time zone is the value of
the CURRENT TIME ZONE special register.

• If IMPLICIT_TIMEZONE is specified as SESSION, the implicit time zone is the value of the SESSION
TIME ZONE special register.

• If IMPLICIT_TIMEZONE is specified as a character string in the format of '±th:tm' , the implicit time zone
is the time zone value represented by the character string.

Restrictions on the use of local datetime formats
When you use a LOCAL format for date or time values, certain restrictions apply to the use of those values
as input, as output, and for use in binding a package.

The following rules apply to the character-string representation of dates and times:

For input: In distributed operations, Db2 as a server uses its local date or time routine to evaluate host
variables and constants. This means that character-string representation of dates and times can be:

• One of the standard formats
• A format recognized by the server's local date/time exit

For output: With DRDA access, Db2 as a server returns date and time host variables in the format
defined at the server. To have date and time host variables returned in another format, use CHAR(date-
expression, XXXX) where XXXX is JIS, EUR, USA, ISO, or LOCAL to explicitly specify the specific
format.

For BIND PACKAGE COPY: When you use the COPY option to bind a copy of a local package at a remote
site, Db2 uses the ISO format for output values in the remote package unless the SQL statement explicitly
specifies a different format. Input values can be specified in the format described previously.

Row ID values
A row ID is a value that uniquely identifies a row in a table. A column or a host variable can have a row ID
data type.

A ROWID column enables queries to be written that navigate directly to a row in the table because
the column implicitly contains the location of the row. Each value in a ROWID column must be unique.
Although the location of the row might change, for example across a table space reorganization, Db2
maintains the internal representation of the row ID value permanently. When a row is inserted into the
table, Db2 generates a value for the ROWID column unless one is supplied. If a value is supplied, it
must be a valid row ID value that was previously generated by Db2 and the column must be defined as
GENERATED BY DEFAULT. Users cannot update the value of a ROWID column.

The internal representation of a row ID value is transparent to the user. The value is never subject to
character conversion because it is considered to contain BIT data. The length of a ROWID column as
described in the LENGTH column of catalog table SYSCOLUMNS is the internal length, which is 17 bytes.
The length as described in the LENGTH2 column of catalog table SYSCOLUMNS is the length of a retrieved
ROWID value, which is 40 bytes. The retrieved ROWID value is not permanent. If a commit operation

124 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

and a REORG on the table space occur after the value is inserted, and before the value is retrieved, the
physical location of the row might change.

A ROWID column can be either user-defined or implicitly generated by Db2. You can use the CREATE
TABLE statement or the ALTER TABLE statement to define a ROWID column. If you define a LOB column
in a table and the table does not have a ROWID column, Db2 implicitly generates a ROWID column. Db2
takes the following actions:

• Creates the column with a name of DB2_GENERATED_ROWID_FOR_LOBSnn.

Db2 appends nn only if the column name already exists in the table, replacing nn with '00' and
incrementing by '1' until the name is unique within the row.

• Defines the column as GENERATED ALWAYS and IMPLICITLY HIDDEN.
• Appends the column to the end of the row after all the other explicitly defined columns.

An implicitly hidden ROWID column can also be explicitly defined with the IMPLICITLY HIDDEN clause.

If you add a ROWID column to a table that already has an implicitly generated hidden ROWID column,
Db2 ensures that the corresponding values in each column are identical. If the ROWID column that you
add is defined as GENERATED BY DEFAULT, Db2 changes the attribute of the hidden ROWID column to
GENERATED BY DEFAULT.

Related concepts
ROWID data type (Introduction to Db2 for z/OS)
Rules for inserting data into a ROWID column (Db2 Application programming and SQL)
Related tasks
Specifying direct row access by using row IDs (Db2 Application programming and SQL)
Related reference
ROWID scalar function
The ROWID function returns a row ID representation of its argument.

XML values
An XML value represents well-formed XML in the form of an XML document, XML content, or a sequence
of XML nodes.

An XML value that is stored in a table as the value of a column that is defined with the XML data type
must be a well-formed XML document. XML values are processed in an internal representation that is
not comparable to any string value. The only predicates that can be applied to the XML data type are the
XMLEXISTS predicate and the NULL predicate.

An XML value can be transformed into a serialized string value that represents the XML document by
using the XMLSERIALIZE function. Similarly, a string value that represents an XML document can be
transformed to an XML value by using the XMLPARSE function.

The XML data type has a variable length and allows for a wide range of sizes. Although data of this
type has no defined maximum length, it does have an effective maximum length limit when treated as a
serialized string value that represents XML. The maximum effective length is the same as the Db2 limit for
a LOB data value. Db2 treats XML string data in a similar manner as LOB data to accommodate very large
XML values. Thus, XML values are constrained by the same maximum length limit as LOB data. Unlike the
LOB data type which has a LOB locator type, there is no XML locator type.

Restrictions when using XML values: With a few exceptions, you can use XML values in the same
contexts in which you can use other data type. XML values cannot be used in the following contexts:

• SELECT lists that are preceded by the DISTINCT clause
• GROUP BY clauses
• ORDER BY clauses
• A subselect of a fullselect with a set operator that is not UNION ALL

Chapter 2. Language elements in SQL 125

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_rowiddatatype.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_rulesrowidcolumn.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_specifydirectrowaccess.html

• Basic predicates, quantified predicates, BETWEEN predicates, DISTINCT predicates, IN predicates, or
LIKE predicates

• Aggregate functions with the DISTINCT keyword
• Primary, unique, or foreign keys
• CREATE TYPE statements

No host languages have any built-in support for an XML data type.

User-defined data types
A user-defined data type is a data type that is defined using a CREATE TYPE statement.

The following types of user-defined data type are supported:

Distinct types

A distinct type is a user-defined data type that is based on existing built-in Db2 data types.

A distinct type is internally the same as a built-in data type, but Db2 treats them as a separate and
incompatible type for semantic purposes. Defining your own distinct type ensures that only functions
that are explicitly defined on a distinct type can be applied to its instances.

For more information, see “Distinct types ” on page 23.

Array types

A user-defined array type is a data type that is defined as an array of elements. A user-defined array
type can be either an ordinary array or associative array.

A user-defined ordinary array type has a maximum cardinality, which is specified on the CREATE TYPE
(array) statement. A user-defined associative array has a maximum cardinality of 2 billion.

An array value is a structure that contains an ordered collection of elements. All elements of an array
value must have the same data type. The cardinality of the array is equal to the number of elements in
the array.

For more information, see “Array types and values” on page 127.

Related concepts
Comparison of distinct types (Db2 Application programming and SQL)
User-defined type assignments
User-defined type assignments include distinct type assignments and array assignments.
User-defined type comparisons
User-defined type comparisons include distinct type comparisons and array comparisons.

Distinct types
A distinct type is a user-defined data type that shares its internal representation with a built-in data type
(its source type), but is considered to be a separate and incompatible data type for most operations.

For example, the semantics for a picture type, a text type, and an audio type that all use the built-in data
type BLOB for their internal representation are quite different. A distinct type is created with the SQL
statement CREATE TYPE.

For example, the following statement creates a distinct type named AUDIO:

CREATE TYPE AUDIO AS BLOB (1M);

Although AUDIO has the same representation as the built-in data type BLOB, it is a separate data type
that is not comparable to a BLOB or to any other data type. This inability to compare AUDIO to other data
types allows functions to be created specifically for AUDIO and assures that these functions cannot be
applied to other data types.

126 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_comparisondistincttypes.html

The name of a distinct type is qualified with a schema name. The implicit schema name for an unqualified
name depends on the context in which the distinct type appears. If an unqualified distinct type name is
used:

• In a CREATE TYPE statement or the object of DROP, COMMENT, GRANT, or REVOKE statement, Db2
uses the normal process of qualification by authorization ID to determine the schema name.

• In any other context, Db2 uses the SQL path to determine the schema name. Db2 searches the schemas
in the path, in sequence, and selects the first schema in the path such that the distinct type exists in the
schema and the user has authorization to use the data type. For a description of the SQL path, see “SQL
path” on page 85.

A distinct type does not automatically acquire the functions and operators of its source type because they
might not be meaningful. (For example, it might make sense for a "length" function of the AUDIO type to
return the length in seconds rather than in bytes.) Instead, distinct types support strong typing. Strong
typing ensures that only the functions and operators that are explicitly defined on a distinct type can be
applied to that distinct type. However, a function or operator of the source type can be applied to the
distinct type by creating an appropriate user-defined function. The user-defined function must be sourced
on the existing function that has the source type as a parameter. For example, the following series of SQL
statements shows how to create a distinct type named MONEY based on data type DECIMAL(9,2), how to
define the + operator for the distinct type, and how the operator might be applied to the distinct type:

CREATE TYPE MONEY AS DECIMAL(9,2);
CREATE FUNCTION "+"(MONEY,MONEY)
 RETURNS MONEY
 SOURCE SYSIBM."+"(DECIMAL(9,2),DECIMAL(9,2));
CREATE TABLE SALARY_TABLE
 (SALARY MONEY,
 COMMISSION MONEY);
SELECT SALARY + COMMISSION FROM SALARY_TABLE;

A distinct type is subject to the same restrictions as its source type. For example, if a CLOB value is not
allowed as input to a function, you cannot specify a distinct type that is based on a CLOB as input.

The comparison operators are automatically generated for distinct types, except those that are based on
a CLOB, DBCLOB, or BLOB. In addition, Db2 automatically generates functions for every distinct type that
support casting from the source type to the distinct type and from the distinct type to the source type. For
example, for the AUDIO type created above, these are generated cast functions:

FUNCTION schema-name.BLOB (schema-name.AUDIO) RETURNS SYSIBM.BLOB (1M)
FUNCTION schema-name.AUDIO (SYSIBM.BLOB (1M)) RETURNS schema-name.AUDIO

Array types and values
A user-defined array type is a data type that is defined as an array of elements. A user-defined array type
can be either an ordinary array or associative array.

A user-defined ordinary array type has a maximum cardinality, which is specified on the CREATE TYPE
(array) statement. A user-defined associative array has a maximum cardinality of 2 billion.

Array values
An array value is a structure that contains an ordered collection of elements. All elements of an array
value must have the same data type. The cardinality of the array is equal to the number of elements in the
array.

An array value can be non-empty, empty (cardinality zero), or null. The individual elements in the array
can be null or not null. An empty array, an array value of null, and an array for which all elements are the
null value are different from each other. An uninitialized array is a null array.

The following example demonstrates the difference between an empty array, a null array, and an array for
which individual elements are null.

SET PHONELIST = ARRAY[];
 /* Set an entire array to empty */

Chapter 2. Language elements in SQL 127

SET PHONELIST = NULL;
 /* Set an entire array to the NULL value */
SET PHONELIST = ARRAY[NULL];
 /* Set one element of an array to NULL */
SET PHONELIST = ARRAY[NULL, NULL, NULL];
 /* Set three elements of an array to NULL */

An ordinary array has a defined upper bound on the number of elements, which is known as the maximum
cardinality. Each element in the array is referenced by an associated index value that represents the
position of that element in the array. The data type of the index values is INTEGER. If n is the number of
elements in an ordinary array, the ordinal position that is associated with each element is an integer value
greater than or equal to 1 and less than or equal to n.

Unlike the maximum cardinality of an array in programming languages such as C, the maximum cardinality
of an ordinary array in SQL is not related to the physical representation of the array. The amount of
memory that is required to represent the value of an ordinary array is usually proportional to the
cardinality of the array, and not to the maximum cardinality of the array type. When an ordinary array
is referenced, all of the values in the array are stored in main memory. Therefore, ordinary arrays that
contain a large amount of data consume large amounts of main memory.

An associative array has no predefined upper bound on the number of elements. An associative array
contains an ordered set of zero or more elements, where each element in the array is ordered by and
can be referenced by an associated index value. The data type of the index values can be an integer or a
character string other than a CLOB, but all index values for the array must have the same data type. The
index values of an associative array are unique, and do not need to be contiguous.

A user-defined array type is a user-defined data type that is defined as an array. A global variable, an
SQL variable or SQL parameter can be defined as a user-defined array type. Additionally, the result of an
invocation of the built-in ARRAY_DELETE or TRIM_ARRAY functions, or the result of a CAST specification,
can be a user-defined array type. An element of a user-defined array type can be referenced anywhere
that an expression that returns the same data type as an element of that array can be used.

An unnamed array type is an array without an associated user-defined data type. The result of invocation
of the aggregate built-in function ARRAY_AGG or of an array constructor is an array without an associated
user-defined data type. An element of an array without an associated user-defined array type cannot be
directly referenced.

The value of an array index can be specified by an expression. That expression can include a reference to
a column. If a column is defined with a column mask, the column mask is applied using the normal rules
for applying a column mask.

The value of an index for an array element is never null. If an expression specifies a value for an index, and
the expression evaluates to the null value, the null value is returned for the array value.

An array value can be specified using one of the following methods:

• A simple reference to a global variable, an SQL variable, or SQL parameter that is a user-defined array
type.

• Invocation of the ARRAY_AGG function.
• Invocation of the ARRAY_DELETE or TRIM_ARRAY built-in functions.
• Use of an array constructor.
• Invocation of a CAST specification that returns an array value.

An array value cannot be stored in a table or returned to an external application.

Datetime data in the elements of an array is considered to be CCSID UNICODE (1208).

Related reference
Array constructor
An array constructor returns an ordinary array. An array constructor is specified by a list of expressions or
a fullselect.
ARRAY_AGG aggregate function

128 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The ARRAY_AGG function returns an array in which each value of the input set is assigned to an element
of the array.
TRIM_ARRAY scalar function
The TRIM_ARRAY function deletes elements from the end of an ordinary array.
CREATE MASK statement
The CREATE MASK statement creates a column mask at the current server. A column mask is used for
column access control and specifies the value that should be returned for a specified column.
CALL statement
The CALL statement invokes a stored procedure.

Promotion of data types
Data types can be classified into groups of related data types. Within such groups, an order of precedence
exists in which one data type is considered to precede another data type. This precedence enables Db2 to
support the promotion of one data type to another data type that appears later in the precedence order.

For example, Db2 can promote the data type CHAR to VARCHAR and the data type INTEGER to DOUBLE
PRECISION; however, Db2 cannot promote a CLOB to a VARCHAR.

Db2 considers the promotion of data types when:

• Performing function resolution (see “Function resolution” on page 239)
• Casting distinct types (see “Casting between data types” on page 130)
• Assigning built-in data types to distinct types (see “User-defined type assignments” on page 153)

For each data type, the following table shows the precedence list (in order) that Db2 uses to determine
the data types to which the data type can be promoted. The table indicates that the best choice is
the same data type and not promotion to another data type. The table also shows data types that
are considered equivalent during the promotion process. For example, CHARACTER and GRAPHIC are
considered to be equivalent data types.

Table 21. Precedence of data types

Data type1,2 Data type precedence list (in best-to-worst order)

SMALLINT3 SMALLINT, INTEGER, BIGINT, decimal, real, double, DECFLOAT

INTEGER3 INTEGER, BIGINT, decimal, real, double, DECFLOAT

BIGINT3 BIGINT, decimal, real, double, DECFLOAT

decimal3 decimal, real, double, DECFLOAT

real real, double, DECFLOAT

double double, DECFLOAT

DECFLOAT DECFLOAT

CHAR or GRAPHIC CHAR or GRAPHIC, VARCHAR or VARGRAPHIC, CLOB or DBCLOB

VARCHAR or
VARGRAPHIC

VARCHAR or VARGRAPHIC, CLOB or DBCLOB

CLOB or DBCLOB CLOB or DBCLOB

BINARY BINARY, VARBINARY, BLOB

VARBINARY VARBINARY, BLOB

BLOB BLOB

DATE DATE

Chapter 2. Language elements in SQL 129

Table 21. Precedence of data types (continued)

Data type1,2 Data type precedence list (in best-to-worst order)

TIME TIME

TIMESTAMP
WITHOUT
TIME ZONE

TIMESTAMP WITHOUT TIME ZONE or TIMESTAMP WITH TIME ZONE

TIMESTAMP
WITH
TIME ZONE

TIMESTAMP WITHOUT TIME ZONE or TIMESTAMP WITH TIME ZONE

ROWID ROWID

XML XML

A distinct type The same distinct type

Notes:

1. The data types in lowercase letters represent the following data types:
decimal

DECIMAL(p,s) or NUMERIC(p,s)
real

REAL or FLOAT(n) where n is not greater than 21
double

DOUBLE, DOUBLE PRECISION, FLOAT or FLOAT(n) where n is greater than 21
2. Other synonyms for the listed data types are considered to be the same as the synonym listed.
3. Real and double are checked for function resolution purposes only. Additionally, the number of

significant digits (even for DECFLOAT(16)), and the exponent range of DECFLOAT exceeds that of real
and double (double has 16 significant digits). Therefore, DECFLOAT values will not be promoted to
real or double.

Casting between data types
There are many occasions when a value with a given data type needs to be cast (changed) to a different
data type or to the same data type with a different length, precision, or scale.

Data type promotion is one example where the promotion of one data type to another data type requires
that the value be cast to the new data type. A data type that can be changed to another data type is
castable from the base data type to the target data type.

The casting of one data type to another can occur implicitly or explicitly. The cast functions, CAST
specification, or XMLCAST specification can be used to explicitly change a data type, depending on the
data types involved. In addition, when a sourced user-defined function is created, the data types of the
parameters of the source function must be castable to the data types of the function that is being created.

If truncation occurs when any data type is cast to a character or graphic data type, a warning occurs if
any non-blank characters are truncated. The warning also occurs if any characters are truncated when
a BLOB operand is cast, or if the time zone characters are truncated when a TIMESTAMP WITH TIME
ZONE operand is cast to a string. This truncation behavior is similar to retrieval assignment of character
or graphic strings. See "Retrieval assignment for character and graphic strings" in “String assignments” on
page 149.

If truncation occurs when casting to a binary string, an error is returned.

130 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

For casts that involve a distinct type as either the data type to be cast to or from, Table 22 on page 131
shows the supported casts.

For casting a parameter marker or NULL value to the XML data type, the CAST specification can be used.
XML input can also be specified for the CAST specification when the result data type is XML.

Casts that involve an array type as the target and a non-null source value must conform to the following
rules:

• If the source value is an array with a user-defined array type:

– The target array type must be the same user-defined array type.
– If the target user-defined array type is an ordinary array, the cardinality of the source array value

must be less than or equal to the maximum cardinality of the target array type.
• If the source value is an array without an associated user-defined array type:

– The elements in the source array value must be castable to the data type of the elements of the
target array type.

– The index values for the source array value must be castable to the data type of the index of the
target array type.

– If the target user-defined array type is an ordinary array, the cardinality of the source array value
must be less than or equal to the maximum cardinality of the target array type.

Table 22. Supported casts when a distinct type is involved

Data type ... Is castable to data type ...

Distinct type DT Base data type of distinct type DT

Source data type of distinct type DT Distinct type DT

Distinct type DT Distinct type DT

Data type A Distinct type DT where A is promotable to the base data type of distinct
type DT (see “Promotion of data types” on page 129)

INTEGER Distinct type DT if DT's base data type is SMALLINT

DOUBLE Distinct type DT if DT's base data type is REAL

VARCHAR Distinct type DT if DT's base data type is CHAR or GRAPHIC

VARGRAPHIC Distinct type DT if DT's base data type is GRAPHIC or CHAR

VARBINARY Distinct type DT if DT's base data type is BINARY

When a distinct type is involved in a cast, a cast function that was generated when the distinct type
was created is used. How Db2 chooses the function depends on whether function notation or CAST
specification syntax is used. (For details, see “Function resolution” on page 239 and “CAST specification”
on page 267, respectively.) Function resolution is similar for both. However, in CAST specification, when
an unqualified distinct type is specified as the target data type, Db2 first resolves the schema name of the
distinct type and then uses that schema name to locate the cast function.

For casts between built-in data types, the following table shows the supported casts.

Chapter 2. Language elements in SQL 131

Table 23. Supported casts between built-in data types

Cast from
data type –

To data type“1” on page 136

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I
M
A
L

D
E
C
F
L
O
A
T

R
E
A
L

D
O
U
B
L
E

C
H
A
R

V
A
R
C
H
A
R

C
L
O
B

G
R
A
P
H
I
C

V
A
R
G
R
A
P
H
I
C

D
B
C
L
O
B

B
I
N
A
R
Y

V
A
R
B
I
N
A
R
Y

B
L
O
B

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

W
I
T
H
O
U
T

T
I
M
E

Z
O
N
E

T
I
M
E
S
T
A
M
P

W
I
T
H

T
I
M
E

Z
O
N
E

R
O
W
I
D

X
M
L

SMALLINT Y Y Y Y Y Y Y Y Y Y“
4”
on
pag
e
136

Y
“4
”
on
pa
ge
136

INTEGER Y Y Y Y Y Y Y Y Y Y“
4”
on
pag
e
136

Y
“4
”
on
pa
ge
136

BIGINT Y Y Y Y Y Y Y Y Y Y“
4”
on
pag
e
136

Y
“4
”
on
pa
ge
136

132 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 23. Supported casts between built-in data types (continued)

Cast from
data type –

To data type“1” on page 136

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I
M
A
L

D
E
C
F
L
O
A
T

R
E
A
L

D
O
U
B
L
E

C
H
A
R

V
A
R
C
H
A
R

C
L
O
B

G
R
A
P
H
I
C

V
A
R
G
R
A
P
H
I
C

D
B
C
L
O
B

B
I
N
A
R
Y

V
A
R
B
I
N
A
R
Y

B
L
O
B

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

W
I
T
H
O
U
T

T
I
M
E

Z
O
N
E

T
I
M
E
S
T
A
M
P

W
I
T
H

T
I
M
E

Z
O
N
E

R
O
W
I
D

X
M
L

DECIMAL Y Y Y Y Y Y Y Y Y Y“
4”
on
pag
e
136

Y
“4
”
on
pa
ge
136

DECFLOAT Y Y Y Y Y Y Y Y Y Y“
4”
on
pag
e
136

Y
“4
”
on
pa
ge
136

REAL Y Y Y Y Y Y Y Y Y Y“
4”
on
pag
e
136

Y
“4
”
on
pa
ge
136

Chapter 2. Language elements in SQL 133

Table 23. Supported casts between built-in data types (continued)

Cast from
data type –

To data type“1” on page 136

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I
M
A
L

D
E
C
F
L
O
A
T

R
E
A
L

D
O
U
B
L
E

C
H
A
R

V
A
R
C
H
A
R

C
L
O
B

G
R
A
P
H
I
C

V
A
R
G
R
A
P
H
I
C

D
B
C
L
O
B

B
I
N
A
R
Y

V
A
R
B
I
N
A
R
Y

B
L
O
B

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

W
I
T
H
O
U
T

T
I
M
E

Z
O
N
E

T
I
M
E
S
T
A
M
P

W
I
T
H

T
I
M
E

Z
O
N
E

R
O
W
I
D

X
M
L

DOUBLE Y Y Y Y Y Y Y Y Y Y“
4”
on
pag
e
136

Y
“4
”
on
pa
ge
136

CHAR Y

VARCHAR Y

CLOB Y Y Y Y Y Y Y Y Y

GRAPHIC Y Y Y Y Y Y Y Y“
2”
on
pag
e
136

Y“
2”
on
pag
e
136

Y“
2”
on
pag
e
136

Y Y Y Y Y Y Y
“3
”
on
pa
ge
136

Y“
3”
on
pag
e
136

Y“3
” on
pag
e
136

Y“3
” on
pag
e
136

134 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 23. Supported casts between built-in data types (continued)

Cast from
data type –

To data type“1” on page 136

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I
M
A
L

D
E
C
F
L
O
A
T

R
E
A
L

D
O
U
B
L
E

C
H
A
R

V
A
R
C
H
A
R

C
L
O
B

G
R
A
P
H
I
C

V
A
R
G
R
A
P
H
I
C

D
B
C
L
O
B

B
I
N
A
R
Y

V
A
R
B
I
N
A
R
Y

B
L
O
B

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

W
I
T
H
O
U
T

T
I
M
E

Z
O
N
E

T
I
M
E
S
T
A
M
P

W
I
T
H

T
I
M
E

Z
O
N
E

R
O
W
I
D

X
M
L

VARGRAPHI
C

Y Y Y Y Y Y Y Y“
2”
on
pag
e
136

Y“
2”
on
pag
e
136

Y“
2”
on
pag
e
136

Y Y Y Y Y Y Y Y Y Y“3
” on
pag
e
136

DBCLOB Y“
2”
on
pag
e
136

Y“
2”
on
pag
e
136

Y“
2”
on
pag
e
136

Y Y Y Y Y Y

BINARY Y Y Y

VARBINARY Y Y Y

BLOB Y Y Y

DATE Y Y Y Y

TIME Y Y Y

TIMESTAMP
WITHOUT
TIME ZONE

Y Y Y Y Y Y

Chapter 2. Language elements in SQL 135

Table 23. Supported casts between built-in data types (continued)

Cast from
data type –

To data type“1” on page 136

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I
M
A
L

D
E
C
F
L
O
A
T

R
E
A
L

D
O
U
B
L
E

C
H
A
R

V
A
R
C
H
A
R

C
L
O
B

G
R
A
P
H
I
C

V
A
R
G
R
A
P
H
I
C

D
B
C
L
O
B

B
I
N
A
R
Y

V
A
R
B
I
N
A
R
Y

B
L
O
B

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

W
I
T
H
O
U
T

T
I
M
E

Z
O
N
E

T
I
M
E
S
T
A
M
P

W
I
T
H

T
I
M
E

Z
O
N
E

R
O
W
I
D

X
M
L

TIMESTAMP
WITH TIME
ZONE

Y Y Y Y Y Y

ROWID Y Y Y Y Y Y

XML Y

Notes:

1. Other synonyms for the listed data types are considered to be the same as the synonym listed. Some
exceptions exist when the cast involves character string data if the subtype is FOR BIT DATA.

2. The result length for these casts is 3 * LENGTH(graphic string).
3. These data types are castable between each other only if the data is Unicode.
4. FL 502 The conversion returns a Unicode graphic result. The result value must only be used in a

context that supports Unicode data

Table 24 on page 136 shows where to find information about the rules that apply when casting to the
identified target data types.

Table 24. Rules for casting to a data type

Target data type Rules

SMALLINT “SMALLINT scalar function” on page 571

INTEGER “INTEGER or INT scalar function” on page 483

136 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html

Table 24. Rules for casting to a data type (continued)

Target data type Rules

BIGINT “BIGINT scalar function” on page 396

DECIMAL “DECIMAL or DEC scalar function” on page 441

NUMERIC “DECIMAL or DEC scalar function” on page 441

REAL “REAL scalar function” on page 538

DOUBLE “DOUBLE_PRECISION or DOUBLE scalar function” on page 451

DECFLOAT “DECFLOAT scalar function” on page 437

CHAR “CHAR scalar function” on page 405

VARCHAR “VARCHAR scalar function” on page 615

CLOB “CLOB scalar function” on page 415

GRAPHIC “GRAPHIC scalar function” on page 465

VARGRAPHIC “VARGRAPHIC scalar function” on page 632

DBCLOB “DBCLOB scalar function” on page 434

BINARY “BINARY scalar function” on page 397

VARBINARY “VARBINARY scalar function” on page 614

BLOB “BLOB scalar function” on page 400

DATE “DATE scalar function” on page 425

TIME “TIME scalar function” on page 584

TIMESTAMP WITHOUT
TIME ZONE

If the base data type is a character or graphic string, see “TIMESTAMP scalar
function” on page 584, where one operand is specified. If the string contains
a time zone, an error is returned.

If the base data type is a DATE, the timestamp is composed of the specified
date and a time of 00:00:00.

If the source is a TIMESTAMP WITH TIME ZONE, the resulting timestamp
is the timestamp without time zone element of the specified datetime
value, which is the local timestamp in the corresponding time zone.
For example: cast('2008-04-12-07.30.00.0-6:00' as TIMESTAMP)
returns 2008-04-12-07.30.00.0.

If the source type is a TIMESTAMP WITHOUT TIME ZONE the timestamp is
the specified value.

TIMESTAMP WITH TIME
ZONE

If the base data type is a character or graphic string or TIMESTAMP WITHOUT
TIME ZONE, see “TIMESTAMP_TZ scalar function” on page 596, where two
arguments are specified. The first argument is the string or timestamp. The
second argument is the precision of the first argument. If the value contains a
time zone, an error is returned.

If the source type is a TIMESTAMP WITH TIME ZONE, the timestamp is the
specified value.

ROWID “ROWID scalar function” on page 563

Chapter 2. Language elements in SQL 137

Table 25. The derived length of an argument when a built-in scalar function is invoked and implicit casting is required.

Target data type

Source data
type

CHAR GRAPHIC VARCHAR VAR-
GRAPHIC

CLOB DBCLOB BLOB TIME
STAMP
(precision)

DECFLOAT

SMALLINT 6 6 6 6

INTEGER 11 11 11 11

BIGINT 20 20 20 20

DECIMAL
(p,s)

2+p 2+p 2+p 2+p

REAL 24 24 24 24

DOUBLE 24 24 24 24

DECFLOAT 42 42 42 42

CHAR(n) 12 34

VARCHAR
(n)

min(n,254) 12 34

CLOB(n)

GRAPHIC
(n)

12 34

VARGRAPHIC
(n)

12 34

DBCLOB
(n)

BLOB(n)

TIME 8 8 8 8

DATE 10 10 10 10

TIME-
STAMP(p)
WITHOUT
TIME
ZONE

If p=0 then
19,
otherwise
20+p

If p=0 then
19, otherwise
20+p

If p=0 then
19, otherwise
20+p

If p=0 then
19, otherwise
20+p

TIME-
STAMP(p)
WITH
TIME
ZONE

If p=0 then
148,
otherwise
149+p

If p=0 then
148,
otherwise
149+p

If p=0 then
148,
otherwise
149+p

If p=0 then
148,
otherwise
149+p

Casting non-XML values to XML values
Table 26. Supported Casts from Non-XML Values to XML Values

Source Data Type Target Data Type

XML Resulting XML Schema Type

SMALLINT Y xs:short

INTEGER Y xs:int

BIGINT Y xs:long

DECIMAL Y xs:decimal

DECFLOAT N

138 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 26. Supported Casts from Non-XML Values to XML Values (continued)

Source Data Type Target Data Type

XML Resulting XML Schema Type

REAL N

FLOAT Y xs:double

DOUBLE Y xs:double

CHAR Y xs:string

VARCHAR Y xs:string

CLOB Y xs:string

GRAPHIC Y xs:string

VARGRAPHIC Y xs:string

DBCLOB Y xs:string

BINARY N

VARBINARY N

BLOB N

character type FOR BIT DATA N

DATE N

TIME N

TIMESTAMP WITHOUT TIME ZONE N

TIMESTAMP WITH TIME ZONE N

ROWID N

distinct type N

When character string values are cast to XML values, the resulting xs:string atomic value cannot contain
illegal XML characters. If the input character string is not in Unicode, the input characters are converted to
Unicode.

Casting XML values to non-XML values
An XMLCAST from an XML value to a non-XML value can be described as two casts: an XQuery cast that
converts the source XML value to a target XQuery data type that corresponds to the SQL target type,
followed by a cast from the corresponding XQuery data type to the actual SQL type. The target XQuery
data type is an XML schema data type like xs:decimal or xs:string, as shown in the follow table.

An XMLCAST is supported if the target type has a corresponding XQuery target type that is supported, and
if there is a supported XQuery cast from the type of the source value to the corresponding XQuery target
type. The target type that is used in the XQuery cast is based on the corresponding XQuery target type and
might contain some additional restrictions.

The following table lists the XQuery types that result from such conversion.

Chapter 2. Language elements in SQL 139

Table 27. Supported Casts from XML Values to Non-XML Values

Target Data Type Source Data Type

XML Corresponding XQuery Target Type

SMALLINT Y xs:integer

INTEGER Y xs:integer

BIGINT Y xs:integer

DECIMAL Y xs:decimal

DECFLOAT Y xs:double

REAL Y xs:double

FLOAT Y xs:double

DOUBLE Y xs:double

CHAR Y xs:string

VARCHAR Y xs:string

CLOB Y xs:string

GRAPHIC Y xs:string

VARGRAPHIC Y xs:string

DBCLOB Y xs:string

BINARY N

VARBINARY N

BLOB N

character type FOR BIT DATA N

DATE Y xs:date

TIME Y xs:time

TIMESTAMP Y xs:dateTime

ROWID N

distinct type N

The following restrictions are in effect when a value is cast from an XQuery target data type to a target
SQL data type:

• If the target type is one of the character or graphic string types, the resulting XML value is converted, if
necessary, to the CCSID of the target data type using the rules described in "Conversion rules for string
assignment" in “String assignments” on page 149, before it is converted to the target type with a limited
length. Truncation occurs if the specified length limit is smaller than the length of the resulting string
after CCSID conversion. A warning occurs if any non-blank characters are truncated. If the target type is
a fixed-length string type (CHAR or GRAPHIC) and the specified length of the target type is greater than
the length of the resulting string from CCSID conversion, blanks are padded at the end. This truncation
and padding behavior is similar to retrieval assignment of character or graphic strings.

• If the target type is DOUBLE or REAL and the source XML value after the XQuery cast is an xs:double
value of INF, -INF, or NaN, an error is returned. If the source value is an xs:double negative zero, the
value is converted to positive zero. If the source value is beyond the range of the target data type, an
overflow error is returned. If the source value contains more significant digits than the precision of the
target data type, the source value is rounded to the precision of the target data type.

140 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• If the target type is DECFLOAT and the source XML value is an xs:double value of INF, -INF, or NaN, the
result will be the corresponding special DECFLOAT values INF, -INF, or NaN. If the source value is an
xs:double negative zero, the result is negative zero. If the target type is DECFLOAT(16) and the source
value is beyond the range of DECFLOAT(16), an overflow error is returned. If the source value has more
than 16 significant digits, the value is rounded according to the ROUNDING mode that is in effect. This
rounding behavior is the same as what is used during the cast of DECFLOAT(34) to DECFLOAT(16).

• If the target type is DECIMAL, the resulting xs:decimal value is converted, if necessary, to the precision
and scale of the target data type. The necessary number of leading zeros is added or removed. In the
fractional part of the number, the necessary number of trailing zeros is added or the necessary number
of digits is eliminated. This truncation behavior is similar to the behavior of the cast from DECIMAL to
DECIMAL.

• If the target type is DATE, TIME, or TIMESTAMP WITHOUT TIME ZONE, the resulting XML value is
adjusted to UTC time and the time zone component is removed. If the source does not include a time
zone and the target data type is TIMESTAMP WITH TIME ZONE, zeroes are used for the time zone
component. If the target type is TIME and the resulting XML value contains a seconds component
with non-zero digits after the decimal point, those digits are truncated. If the target type is DATE or
timestamp, the year part of the resulting xs:date or xs:dateTime value must be in the range of 0001
to 9999. If the target type is timestamp and the precision of the target timestamp is less than 12, the
fractional seconds part of the xs:dateTime value will be truncated to the target timestamp precision.

Implicit cast from numeric data to string data
When Db2 implicitly casts a numeric value to a string value, the target type is VARCHAR value which is
then compatible with other character string or graphic string data types.

The length attribute and the CCSID attribute of the result of the cast are determined in the same way as
the VARCHAR function. When GRAPHIC or VARGRAPHIC data types are involved, the encoding scheme
must be UNICODE. The following table shows the target type and length:

Table 28. Target type and length attribute for implicit cast from numeric types to string types

Source data type Target data type

SMALLINT VARCHAR(6)

INTEGER VARCHAR(11)

BIGINT VARCHAR(20)

NUMERIC or DECIMAL VARCHAR(precision+2)

REAL VARCHAR(24)

FLOAT VARCHAR(24)

DOUBLE VARCHAR(24)

DECFLOAT VARCHAR(42)

Implicit conversion from a numeric value to a string value can happen during:

• Assignment (where the source value is a number and the target operand is a character string or graphic
string data type).

Among assignment statements, implicit casting is not supported for the SET statements for special
registers, the RETURNS clause and RETURN statement for functions, and the SQL control statements:
RETURN, SIGNAL, and RESIGNAL.

• Application of concatenation operators (CONCAT and ||)
• Application of set operators.

Implicit conversion is not supported in the following cases:

• One operand of a set operator is a numeric value and the other operand is a string value

Chapter 2. Language elements in SQL 141

• A numeric value is compared to or assigned to a string value that is the result of a fullselect which
included a set operator

• Assignment to a global variable that is the target of a SELECT INTO statement

Implicit cast from string data to numeric data
When Db2 implicitly casts a character string or graphic string value to a numeric value, the target type is
DECFLOAT(34) which is compatible with other numeric data types.

When GRAPHIC or VARGRAPHIC data types are involved, the encoding scheme must be UNICODE. The
following table shows the target type and length:

Table 29. Target type and length attribute for implicit cast from string types to numeric types

Source data type Target data type

CHAR DECFLOAT(34)

VARCHAR DECFLOAT(34)

GRAPHIC DECFLOAT(34)

VARGRAPHIC DECFLOAT(34)

CHAR FOR BIT DATA or
 VARCHAR FOR BIT DATA

N/A

BINARY N/A

VARBINARY N/A

BLOB N/A

CLOB N/A

DBCLOB N/A

Implicit conversion from a string value to a numeric value can happen during:

• Assignment (where the source value is a character string or graphic string and the target operand is a
numeric data type).

• Comparisons

When a character string or graphic string value is compared with a numeric value, Db2 implicitly
converts the string value to DECFLOAT(34) and applies numeric comparison rule between the
DECFLOAT(34) value and the other numeric value.

– Basic predicates, quantified predicates, and DISTINCT predicates (one operand is numeric value and
the other operand is character string or graphic string value)

Numeric is the dominant data type. The character or graphic string value is cast to DECFLOAT(34)
value.

– BETWEEN predicates

Numeric is the dominant data type. If any of the three operands is a numeric value, Db2 implicitly
casts the character or graphic string operands to DECFLOAT data type.

– IN predicates

Numeric is the dominant data type. If any of the operands is a numeric value, Db2 implicitly casts the
character or graphic string operands to DECFLOAT data type.

– Searched-when-clause of CASE expression

142 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Pair-wise comparison is performed. Implicit cast of each pair follows the same rule as for a
basic predicate. Implicit string and numeric cast is supported on searched-when-clause of CASE
expression.

– Search conditions in SQL control statements (one operand is numeric value and the other operand is
character string or graphic string value)

The search condition can appear in SQL control statements like the CASE statement, the IF
statement, the REPEAT statement, and the WHILE statement. For comparisons in the search
condition, numeric is the dominant data type. The character string or graphic string value is cast
to a DECFLOAT(34) value. Implicit string and numeric cast is supported on the searched-when-clause
of the CASE statement.

• Arithmetic operators (unary arithmetic operators + and - and infix arithmetic operators +, -, *, and /)

If the operand of unary arithmetic operators is of a character string or graphic string data type, that
operand is implicitly cast to DECFLOAT(34). For infix arithmetic operators, if one operand is a numeric
value or both operands are character or graphic string values, Db2 implicitly casts the character string
or graphic string operand to the DECFLOAT data type.

Implicit conversion is not supported in the following cases:

• One operand of a set operator is a string value and the other operand is a numeric value
• A string value is compared to or assigned to a numeric value that is the result of a fullselect which

included a set operator
• For FULL OUTER JOIN when the join condition is between string and numeric data types
• Assignment to a global variable that is the target of a SELECT INTO statement

Assignment and comparison
The basic operations of SQL are assignment and comparison.

Assignment operations are performed during the execution of statements such as CALL, INSERT, UPDATE,
MERGE, FETCH, SELECT INTO, SET host-variable or SET assignment-statement, and VALUES INTO
statements. In addition, when a function is invoked or a stored procedure is called, the arguments of the
function or stored procedure are assigned. Comparison operations are performed during the execution of
statements that include predicates and other language elements such as MAX, MIN, DISTINCT, GROUP
BY, and ORDER BY.

The basic rule for both operations is that data types of the operands must be compatible. The
compatibility rule also applies to other operations that are described under “Rules for result data types”
on page 166.

Chapter 2. Language elements in SQL 143

The following table shows the compatibility of data types for assignments and comparisons.

Table 30. Data Type Compatibility for Assignments and Comparisons

Operand Binary
integer

Decimal
number

Floating
point

Decimal
floating
point

Character
string

Graphi
c string

Binary
string

Date Time Timestamp
without
time zone

Timestamp
with time
zone

Row
ID

User-
define
d type

XML“8
” on
page
145

Binary
integer

Yes Yes Yes Yes “1” on page
145

“1” on
page
145

No No No No No No “2” on
page
145

No

Decimal
number

Yes Yes Yes Yes “1” on page
145

“1” on
page
145

No No No No No No “2” on
page
145

No

Floating
point

Yes Yes Yes Yes “1” on page
145

“1” on
page
145

No No No No No No “2” on
page
145

No

Decimal
floating
point

Yes Yes Yes Yes “1” on page
145

“1” on
page
145

No No No No No No “2” on
page
145

No

Character
string

“1” on
page 145

“1” on page
145

“1” on page
145

“1” on page
145

Yes Yes “3”
on page
145,
“4” on
page
145

No “5”
on
page
145

Yes
“7”
on
page
145

Yes
“7”
on
page
145

Yes“7” on
page 145

Yes “7” on
page 145

No “2” on
page
145

No

Graphic
string

“6” on
page 145

“6” on page
145

“6” on page
145

“6” on page
145

Yes “3” on
page 145,“4”
on page 145

Yes No “3”
on
page
145,
“7”
on
page
145

“3”
on
page
145,
“7”
on
page
145

“3” on page
145, “7” on
page 145

“3” on page
145, “7” on
page 145

No “2” on
page
145

No

Binary
string

No No No No No “5” on
page 145

No Yes No No No No No “2” on
page
145

No

Date No No No No “7” on page
145

“3” on
page
145,
“7” on
page
145

No Yes No No No No “2” on
page
145

No

Time No No No No “7” on page
145

“3” on
page
145,
“7” on
page
145

No No Yes No No No “2” on
page
145

No

Timestamp
without
time zone

No No No No “7” on page
145

“3” on
page
145,
“7” on
page
145

No No No Yes Yes No “2” on
page
145

No

Timestamp
with time
zone

No No No No “7” on page
145

“3” on
page
145,
“7” on
page
145

No No No Yes Yes No “2” on
page
145

No

Row ID No No No No No No No No No No No Yes “2” on
page
145

No

User-
defined
type

“2” on
page 145

“2” on page
145

“2” on page
145

“2” on page
145

“2” on page
145

“2” on
page
145

“2” on
page
145

“2”
on
page
145

“2”
on
page
145

“2” on page
145

“2” on page
145

“2” on
page
145

Yes“2”
on
page
145

No

XML“8” on
page 145

No No No No No No No No No No No No No Yes

144 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 30. Data Type Compatibility for Assignments and Comparisons (continued)

Operand Binary
integer

Decimal
number

Floating
point

Decimal
floating
point

Character
string

Graphi
c string

Binary
string

Date Time Timestamp
without
time zone

Timestamp
with time
zone

Row
ID

User-
define
d type

XML“8
” on
page
145

1. LOBs and bit data are not supported.

2. The compatibility rules for user-defined types are as follows:

• A user-defined distinct type value is only comparable to a value that is defined with the same user-defined distinct type. In general, assignments are supported between a
distinct type value and its source data type.

• A user-defined array type value is only comparable to a value that is defined with the same user-defined array type.

This means that in general, an ordinary array type is not compatible with an associative array type. The following exceptions apply only to a CALL statement for a remote stored
procedure:

– A source value that is an ordinary array with an integer index can be specified for a target that is defined as an associative array, if the definitions of the array elements of the
two arrays are compatible. Db2 transforms the ordinary array into an associative array with an integer index, preserving the ordering of the elements in the original ordinary
array. However, if the associative array is defined with a VARCHAR index, an SQL error code is returned.

– A source value that is an associative array can be specified for a target defined as an ordinary array . Db2 transforms the associative array into an ordinary array, by assigning
the values of the array elements in the associative array in the same order in the target ordinary array, and assigning appropriate index values.

For additional information, see “User-defined type assignments” on page 153.

3. On assignment and comparison from Graphic to Character, the resulting length in bytes is 3 * (LENGTH(graphic-string)), depending on the CCSIDs.

4. Character strings with subtype FOR BIT DATA are not compatible with Graphic Data.

5. All character strings, even those with subtype FOR BIT DATA, are not compatible with binary strings.

6. LOBs are not supported.

7. The compatibility of datetime and string values is subject to the following considerations:

• Datetime values can be assigned to string columns and to string variables that are not LOB values.

• A valid string representation of a datetime value can be assigned to a datetime column or variable, or be compared to a datetime value, as explained in “Datetime assignments”
on page 151.

In some situations an assignment of a string value to a datetime variable might not be supported, such as in the following examples:

• An assignment of a string representation of a datetime value to a datetime host variable.

• An assignment in SQL PL when a datetime SQL variable or SQL parameter is the target of a SELECT INTO statement after a SET CURRENT PACKAGESET statement is issued.

8. Character and graphic strings, including LOBs, can be assigned to XML columns. For comparison, XML can only be compared using the XMLEXISTS and NULL predicates.

Compatibility with a column that has a field procedure is determined by the data type of the column,
which applies to the decoded form of its values.

A basic rule for assignment operations is that a null value cannot be assigned to:

• A column that cannot contain null values
• A non-Java host variable that does not have an associated indicator variable

For a host variable that does have an associated indicator variable, a null value is assigned by setting
the indicator variable to a negative value. See “Host variables” on page 227 for a discussion of indicator
variables.

• A Java host variable that is a primitive type

For a Java host variable that is not a primitive type, the value of that variable is set to a Java null value.

Numeric assignments
The basic rule for numeric assignments is that the whole part of a decimal or integer number cannot be
truncated. If necessary, the fractional part of a decimal number is truncated.

Decimal or integer to floating-point
Because floating-point numbers are only approximations of real numbers, the result of assigning a
decimal or integer number to a floating-point column or variable might not be identical to the original
number.

Floating-point or decimal to integer
When a single precision floating-point number is converted to integer, rounding occurs on the seventh
significant digit, zeros are added to the end of the number, if necessary, starting from the seventh
significant digit, and the fractional part of the number is eliminated. When a double precision floating-
point or decimal number is converted to integer, the fractional part of the number is eliminated.

Chapter 2. Language elements in SQL 145

The following example shows single precision floating-point numbers converted to an integer:

Floating-point number: Results when assigned to an integer column
 or host variable:
2.0000045E6 2000000
2.00000555E8 200001000

The following example shows a double precision floating-point number converted to an integer:

Floating-point number: Results when assigned to an integer column
 or host variable:
2.0000045E6 2000004
2.00000555E8 200000555

The following example shows a decimal number converted to an integer:

Decimal number: Results when assigned to an integer column
 or host variable:
2000004.5 2000004
200000555.0 200000555

Decimal to decimal
When a decimal number is assigned to a decimal column or variable, the number is converted, if
necessary, to the precision and the scale of the target.

The necessary number of leading zeros is added or eliminated, and, in the fractional part of the number,
the necessary number of trailing zeros is added, or the necessary number of trailing digits is eliminated.

Decimal to DECFLOAT
When a decimal number is assigned to a DECFLOAT column or variable, the number is converted to the
precision (16 or 34) of the target. Leading zeros are eliminated.

Depending on the precision and scale of the decimal number, and the precision of the target, the value
might be rounded to fit.

For static SQL statements other than CREATE VIEW, the ROUNDING bind option or the native SQL
procedure option determines the rounding mode.

For dynamic SQL statements (and static CREATE VIEW statements), the special register CURRENT
DECFLOAT ROUNDING MODE determines the rounding mode.

Integer to decimal
When an integer is assigned to a decimal column or variable, the number is converted first to a temporary
decimal number and then, if necessary, to the precision and scale of the target.

The precision and scale of the temporary decimal number is 5,0 for a small integer, 11,0 for a large
integer, or 19,0 for a big integer.

Integer to DECFLOAT
When an integer is assigned to a DECFLOAT column or variable, the number is converted first to a
temporary decimal number and then to DECFLOAT.

The precision and scale of the temporary decimal number is 5,0 for a small integer, 11,0 for a large
integer, or 19,0 for a big integer. The decimal number is then converted to DECFLOAT using the rules for
Decimal to DECFLOAT. See “Decimal to DECFLOAT” on page 146.

Floating-point to floating-point
When a single precision floating-point number is assigned to a double precision floating-point column or
variable, the single precision data is padded with eight hex zeros. When a double precision floating-point

146 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

number is assigned to a single precision floating-point column or variable, the double precision data is
converted and rounded up on the seventh hex digit.

In assembler, C, or C++ applications that are prepared with the FLOAT(IEEE) SQL processing option,
floating-point constants and values in host variables are assumed to have IEEE floating-point format. All
floating-point data is stored in Db2 in System/390 floating-point format.

Therefore, when the FLOAT(IEEE) SQL processing option is in effect, Db2 performs the following
conversions:

• When a number in short or long IEEE floating-point format is assigned to a single-precision or double-
precision floating-point column, Db2 converts the number to System/390 floating-point format.

• When a single-precision or double-precision floating-point column value is assigned to a short or long
floating-point host variable, Db2 converts the column value to IEEE floating-point format.

Floating-point to decimal
When a single precision floating-point number is assigned to a decimal column or variable, the number is
first converted to a temporary decimal number.

When a single precision floating-point number is assigned to a decimal column or variable, the number is
first converted to a temporary decimal number of precision 6 by rounding on the seventh decimal digit.
Twenty five zeros are then appended to the number to bring the precision to 31. Because of rounding, a
number less than 0.5×10-6 is reduced to 0.

When a double precision floating-point number is assigned to a decimal column or variable, the number
is first converted to a temporary decimal number of precision 15, and then, if necessary, truncated to
the precision and scale of the target. In this conversion, zeros are added to the end of the number, if
necessary, to bring the precision to 16. The number is then rounded (using floating-point arithmetic)
on the sixteenth decimal digit to produce a 15-digit number. Because of rounding, a number less in
magnitude than 0.5×10-15 is reduced to 0. If the decimal number requires more than 15 digits to the left
of the decimal point, an error is reported. Otherwise, the scale is given the largest possible value that
allows the whole part of the number to be represented without loss of significance.

The following examples show the effect of converting a double precision floating-point number to
decimal:

• The floating-point number, .123456789098765E-05 in decimal notation is,
.00000123456789098765. Rounding adds 5 in the 16th position, so the number becomes
.00000123456789148765 and truncates the result to .000001234567891. Zeros are then added
to the end of a 31-digit result, and the number becomes .0000012345678910000000000000000.

• The floating-point number, 1.2339999999999E+01 in decimal notation is, 12.33999999999900.
Rounding adds 5 in the 16th position, so the number becomes 12.33999999999905 and truncates the
result to 12.3399999999990. Zeros are then added to the end of a 31-digit result and the number
becomes 12.33999999999900000000000000000.

Floating point to DECFLOAT
When a single or double precision floating-point number is assigned to a DECFLOAT column or variable,
the number is first converted to a temporary string representation of the floating point number. The string
representation of the number is then converted to DECFLOAT.

DECFLOAT to integer
When a DECFLOAT is assigned to a binary integer column or variable, the fractional part of the number is
lost.

The following example shows decimal floating-point numbers converted to an integer:

Decimal floating-point number: Results when assigned to an integer column
 or host variable:

Chapter 2. Language elements in SQL 147

2.0000045E6 2000004
2.00000555E8 200000555

DECFLOAT to decimal
When a DECFLOAT value is assigned to a decimal column or variable, the DECFLOAT value is converted, if
necessary, to the precision and the scale of the target.

During the assignment, the necessary number of leading zeros is added and, in the fractional part of the
number, the necessary number of trailing zeros is added, or rounding occurs.

For static SQL statements other than CREATE VIEW, the ROUNDING bind option or the native SQL
procedure option determines the rounding mode.

For dynamic SQL statements (and static CREATE VIEW statements), the special register CURRENT
DECFLOAT ROUNDING MODE determines the rounding mode.

The following example shows decimal floating-point numbers converted to a decimal value:

Decimal floating-point number: Results when assigned to an decimal(15,0)
 column or host variable:
2.0000045E6 2000005
Decimal floating-point number: Results when assigned to an decimal(15,2)
 column or host variable:
2.0000045E6 2000004.50
2.00000555E8 200000555.00

DECFLOAT to floating-point
Because floating-point numbers are only approximations of real numbers, the result of assigning a
DECFLOAT value to a floating-point column or variable might not be identical to the original number.

The DECFLOAT value is first converted to a string representation, and is then converted to floating-point
number.

DECFLOAT(16) to DECFLOAT(34)
When a DECFLOAT(16) is assigned to a DECFLOAT(34) column or variable, the exponent of the source
is converted to the corresponding exponent in the result format, and the coefficient is extended by
appending zeros on the left.

DECFLOAT(34) to DECFLOAT(16)
When a DECFLOAT(34) is assigned to a DECFLOAT(16) column or variable, the exponent of the source is
converted to the corresponding exponent in the result format.

The source coefficient is rounded to the precision of the target.

For static SQL statements, the ROUNDING bind option or the native SQL procedure option determines the
rounding mode.

For static SQL statements other than CREATE VIEW, the ROUNDING bind option or the native SQL
procedure option determines the rounding mode.

For dynamic SQL statements (and static CREATE VIEW statements), the special register CURRENT
DECFLOAT ROUNDING MODE determines the rounding mode.

To COBOL integers
Assignment to COBOL integer variables uses the full size of the integer.

Thus, the value placed in the COBOL data item might be out of the range of values.

148 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

COBOL supports some data types with no SQL equivalent (BINARY decimal and DISPLAY decimal data
items, for example). In most cases, you can use COBOL statements to convert between the unsupported
COBOL data types and the data types that SQL supports.

For Db2 for z/OS, the only BINARY numeric variables allowed as HOST variable are integer binary
variables. The only DECIMAL host variables supported by SQL are packed decimal host variables.

For example, if COL1 contains a value of 12345, the following statements cause the value 12345 to be
placed in A, even though A has been defined with only 4 digits:

 01 A PIC S9999 BINARY.
 EXEC SQL SELECT COL1
 INTO :A
 FROM TABLEX
 END-EXEC.

The following example COBOL statement results in 2345 being placed in A:

 MOVE 12345 TO A.

String assignments
There are two types of string assignments; storage assignment and retrieval assignment.

• Storage assignment is when a value is assigned to a column or to a transition variable.
• Retrieval assignment is when a value is assigned to a variable, except for a transition variable.

The rules differ for storage and retrieval assignment.

Binary string assignment
Binary string assignment involves assignment at both the storage and the retrieval of binary strings.

Storage assignments
The length of a string that is assigned to a column or transition variable must not be greater than the
length attribute of the column or parameter. If the string is longer than the length attribute of that
column or transition variable, an error is returned.

When the string is assigned to a fixed-length binary string column or parameter of a function or
procedure, and the length of the string is less than the length attribute of that column or parameter,
the string is padded to the right with the necessary number of binary zeros.

Retrieval assignments
The length of a string that is assigned to a variable can be greater than the length attribute of the
variable. When a string is assigned to a variable and the string is longer than the length attribute of
the variable, the string is truncated on the right by the necessary number of bytes. When this occurs, a
warning is returned.

Character and graphic string assignment
The rules for storage and retrieval assignment apply when both the source and the target are strings.

When a datetime data type is involved, see “Datetime assignments” on page 151. For the special
considerations that apply when a distinct type is involved in an assignment, especially to a variable,
see “Distinct type assignments” on page 153.

Storage assignment for character and graphic strings

The basic rule for character storage assignment is that the length of a string that is assigned to a
column or transition variable must not be greater than the length attribute of the column or transition
variable.

Trailing blanks are included in the length of the string. When the length of the string is greater than the
length attribute of the column or the parameter, the following actions occur:

Chapter 2. Language elements in SQL 149

• If all of the trailing characters that must be truncated to make a string fit the target are blanks and
the string is a character or graphic string, the string is truncated and assigned without warning.

• Otherwise, the string is not assigned and an error occurs to indicate that at least one of the excess
characters is non-blank.

When a string is assigned to a fixed-length column or parameter and the length of the string is less
than the length attribute of the target, the string is padded to the right with the necessary number of
SBCS or DBCS blanks. The pad character is always a blank even for columns or parameters that are
defined with the FOR BIT DATA attribute.

Retrieval assignment for character and graphic strings

The length of a string that is assigned to a variable can be greater than the length attribute of the
variable. When the length of the string is greater than the length of the variable, the string is truncated
on the right by the necessary number of SBCS or DBCS characters.

When truncation occurs, a warning is returned (SQLSTATE of '01004'). If the variable is a host variable,
the value 'W' is assigned to the SQLWARN1 field of the SQLCA. Furthermore, if an indicator variable is
provided and the source of the value is not a LOB, the indicator variable is set to the original length of
the string. The truncation result of an improperly formed mixed string is unpredictable.

When a character string is assigned to a fixed-length variable and the length of the string is less
than the length attribute of the target, the string is padded to the right with the necessary number of
blanks. The pad character is always a blank even for strings defined with the FOR BIT DATA attribute.

When a string of length n is assigned to a varying-length string variable with a maximum length
greater than n, the characters after the nth character of the variable are undefined.

Assignments involving mixed data strings

A mixed data string that contains MBCS characters cannot be assigned to an SBCS column, SBCS
parameter, or SBCS variable.

The following rules apply when a mixed data string is assigned to a variable and the string is longer than
the length attribute of the variable:

• If the string is not well-formed mixed data, it is truncated as if it were BIT or graphic data.
• If the string is well-formed mixed data, it is truncated on the right such that it is well-formed mixed data

with a length that is the same as the length attribute of the variable and the number of characters lost is
minimal.

Assignments involving C NUL-terminated strings
A C NUL-terminated string variable that is referenced in a CONNECT statement does not need to contain
a NUL. Otherwise, Db2 enforces the convention that the value of a NUL-terminated string variable, either
character or graphic, is NUL-terminated.

An input variable that does not contain a NUL will cause an error. A value that is assigned to an output
variable will always be NUL-terminated even if a character must be truncated to make room for the NUL.

When a string of length n is assigned to a C NUL-terminated string variable with a length greater than n+1,
the rules depend on whether the source string is a value of a fixed-length string or a varying-length string:

• If the source is a fixed-length string and the value of field PAD NUL-TERMINATED on installation panel
DSNTIP4 is YES, the string is padded on the right with x-n-1 blanks, where x is the length of the variable.
The padded string is then assigned to the variable and a NUL is appended at the end of the variable. If
the value of field PAD NUL-TERMINATED is NO, the string is assigned to the first n bytes of the variable
and a NUL is appended at the end of the variable.

• If the source is a varying-length string, the string is assigned to the first n bytes of the variable and a
NUL is appended at the end of the variable.

150 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Conversion rules for string assignment
A character or graphic string that is assigned to a column or variable is first converted, if necessary, to the
coded character set of the target. Conversion is necessary only if certain conditions apply.

Conversion is necessary only if all the following conditions are true:

• The CCSIDs of string and target are different.
• Neither CCSID is X'FFFF' (neither the string nor the target is defined as BIT data).
• The string is neither null nor empty.

An error occurs if:

• The SYSSTRINGS table is used but contains no information about the pair of CCSIDs and Db2 cannot do
the conversion through z/OS support for Unicode.

• A character of the string cannot be converted and the operation is assignment to a column or to a host
variable that has no indicator variable. For example, a DBCS character cannot be converted to a variable
with an SBCS CCSID.

A warning occurs if:

• A character of the string is converted to a substitution character. A substitution character is the
character that is used when a character of the source character set is not part of the target character
set. For example, assuming an EBCDIC target character set, if the source character set includes
Katakana characters and the target character set does not, a Katakana character is converted to the
EBCDIC SUB X'3F'.

• A character of the string cannot be converted and the operation is assignment to a variable that has
an indicator variable. For example, a DBCS character cannot be converted if the variable has an SBCS
CCSID. In this case, the string is not assigned to the variable and the indicator variable is set to -2.

Datetime assignments
A string value that is assigned to a date, time, or timestamp column, variable, or parameter must be a
valid string representation of a date, a time, or a timestamp.

A value that is assigned to a date column, a date variable, or a date parameter must be a date, a valid
string representation of a date, or a valid string representation of a timestamp without a time zone. When
a string representation of a timestamp without a time zone is assigned to a date target, the Db2 database
manager assigns the date portion of the timestamp to the date target, and does not use the time portion
of the timestamp.

A date can be assigned only to the following items:

• a date column
• a character-string column
• a character-string variable
• a date variable

A value that is assigned to a time column, a time variable, or a time parameter must be a time, a valid
string representation of a time, or a valid string representation of a timestamp without a time zone. When
a string representation of a timestamp without a time zone is assigned to a time target, the Db2 database
manager assigns the time portion of the timestamp to the time target, truncates any fractions of seconds,
and does not use the date portion of the timestamp.

A time can be assigned only to the following items:

• a time column
• a character-string column
• a character-string variable
• a time variable

Chapter 2. Language elements in SQL 151

A value that is assigned to a timestamp column, a timestamp variable, or a timestamp parameter must
be a timestamp, a timestamp constant, a valid string representation of a timestamp, or a valid string
representation of a date. When a string representation of a date is assigned to a timestamp target, the
Db2 database manager inserts zeroes for the time portion of the timestamp target.

A timestamp can be assigned only to the following items:

• a timestamp column
• a character-string or graphic-string column
• a timestamp variable
• a character-string or graphic-string variable

A valid string representation of a datetime value must not be a BLOB, CLOB, or DBCLOB. A datetime value
cannot be assigned to a column that has a field procedure. If the timestamp precision of the target is less
than the timestamp precision of the assigned value, the extra fractional seconds are truncated.

When a datetime value is assigned to a character-string variable or column, it is converted to its string
representation. Leading zeros are not omitted from any part of the date, time, or timestamp. The required
length of the target varies depending on the format of the string representation. If the length of the fixed
length character-string target is greater than required, it is padded on the right with blanks. If the length
of the target is less than required, the result depends on the type of datetime value involved, and the type
of the target.

When a datetime value is assigned to a timestamp variable or column, it is converted to the target
timestamp data type. If the source data type is not the same as the target data type, the source value is
implicitly cast to the target data type. Db2 might implicitly cast data types during assignments that involve
a distinct type.

• If the target is not a variable and has a character-string or graphic-string data type (except for BLOB,
CLOB, or DBCLOB), truncation is not allowed. The length of the column must be at least the following
values:

– 10 for a DATE
– 8 for a TIME
– 19 for a TIMESTAMP WITHOUT TIME ZONE with a precision of 0, 20+p with precision of p
– Sufficient to include the time zone (truncation is not allowed), for a TIMESTAMP WITH TIME ZONE

• When the target is a character-string or graphic-string variable, the following rules apply:

– For a date: The length of the variable must not be less than 10.
– For a time: If the USA format is used, the length of the variable must not be less than 8. This format

does not include seconds.

If the ISO, EUR, or JIS format is used, the length of the variable must not be less than 5. If the length
is 5, 6, or 7, the seconds part of the time is omitted from the result and SQLWARN1 is set to 'W'. In
this case, the seconds part of the time is assigned to the indicator variable if one is provided, and, if
the length is 6 or 7, the value is padded with blanks so that it is a valid string representation of a time.

– For a timestamp: The length of the variable must not be less than 19. If the source is TIMESTAMP
WITH TIME ZONE, the length of the variable must be sufficient to include the time zone, truncation is
not allowed.

- If the length is in the range 19–31, the timestamp is truncated like a string, which causes the
omission of one or more digits of the fractional seconds part of a timestamp.

- If the length is 20, the trailing decimal point is excluded so that the value is a valid string
representation of a timestamp with precision 0.

152 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Row ID assignments
A row ID value can be assigned only to a column, parameter, or host variable with a row ID data type.

For the value of the ROWID column, the column must be defined as GENERATED BY DEFAULT and the
column must have a unique, single-column index. The value that is specified for the column must be a
valid row ID value that was previously generated by Db2.

XML assignments
XML data can be assigned to a column, but when the target is not a column, the XML data type can only be
assigned to another XML data type.

When the target is a column (for example, data change statements), the source can be the XML data type,
or CHAR, VARCHAR, CLOB, GRAPHIC, VARGRAPHIC, DBCLOB, BINARY, VARBINARY, or BLOB data types.
When the source is not XML data, the source is implicitly parsed as if the XMLPARSE function is invoked
with the STRIP WHITESPACE option. If the source data is graphic data, the encoding scheme must be
Unicode.

All other data types cannot be assigned to a target of the XML data type.

User-defined type assignments
User-defined type assignments include distinct type assignments and array assignments.

Distinct type assignments
The rules that apply to the assignments of distinct types to host variables are different than the rules for
all other assignments that involve distinct types.

Assignments to host variables: The assignment of distinct type to a host variable is based on the source
data type of the distinct type. Therefore, the value of a distinct type is assignable to a host variable only if
the source data type of the distinct type is assignable to the host variable.

Example: Assume that distinct type AGE was created with the following SQL statement:

 CREATE TYPE AGE AS SMALLINT;

When the statement was executed, Db2 also generated these cast functions:

 AGE (SMALLINT) RETURNS AGE
 AGE (INTEGER) RETURNS AGE
 SMALLINT (AGE) RETURNS SMALLINT

Next, assume that column STU_AGE was defined in table STUDENTS with distinct type AGE. Now,
consider this valid assignment of a student's age to host variable HV_AGE, which has an INTEGER data
type:

 SELECT STU_AGE INTO :HV_AGE FROM STUDENTS WHERE STU_NUMBER = 200;

The distinct type value is assignable to host variable HV_AGE because the source data type of the distinct
type (SMALLINT) is assignable to the host variable (INTEGER). If distinct type AGE had been based on a
character data type such as CHAR(5), the above assignment would be invalid because a character type
cannot be assigned to an integer type.

Assignments other than to host variables: A distinct type can be the source or target of an assignment.
Assignment is based on whether the data type of the value to be assigned is castable to the data type of
the target. (“Casting between data types” on page 130 shows which casts are supported when a distinct
type is involved). Therefore, a distinct type value can be assigned to any target other than a host variable
when:

• The target of the assignment has the same distinct type, or
• The distinct type is castable to the data type of the target

Chapter 2. Language elements in SQL 153

Any value can be assigned to a distinct type when:

• The value to be assigned has the same distinct type as the target, or
• The data type of the assigned value is castable to the target distinct type

For examples, sssume that the source data type for distinct type AGE is SMALLINT:

 CREATE TYPE AGE AS SMALLINT;

Next, assume that two tables TABLE1 and TABLE2 were created with four identical column descriptions:

AGECOL AGE
SMINTCOL SMALLINT
INTCOL INTEGER
DECCOL DEC(6,2)

Using the following SQL statement and substituting various values for X and Y to insert values into various
columns of TABLE1 from TABLE2, the following table shows whether the assignments are valid. Db2 uses
assignment rules in this INSERT statement to determine if X can be assigned to Y.

 INSERT INTO TABLE1 (Y)
 SELECT X FROM TABLE2;

Table 31. Assessment of various assignments for example INSERT statement

X (column
in TABLE2)

Y (column
in TABLE1) Valid Reason

AGECOL AGECOL Yes Source and target are same distinct type

SMINTCOL AGECOL Yes SMALLINT can be cast to AGE

INTCOL AGECOL Yes INTEGER can be cast to AGE (because AGE's
source type is SMALLINT)

DECCOL AGECOL No DECIMAL cannot be cast to AGE

AGECOL SMINTCOL Yes AGE can be cast to its source type of
SMALLINT

AGECOL INTCOL No AGE cannot be cast to INTEGER

AGECOL DECCOL No AGE cannot be cast to DECIMAL

Array type assignments
An array value can only be assigned to a variable or parameter with a compatible user-defined array type.

The following values can be assigned to an array variable:

• The null value.
• The value of an array with a user-defined array type, where the source and target arrays have the same
user-defined array type. The source value can be an array variable, an invocation of the TRIM_ARRAY
function, an invocation of the ARRAY_DELETE function, or a CAST specification. The value of an ordinary
array variable or parameter can only be assigned to an ordinary array target. The value of an associative
array variable or parameter can only be assigned to an associative array target.

• The value of an array without a user-defined array type. The result of an invocation of aggregate built-in
function ARRAY_AGG or of an array constructor is an array without an associated user-defined data
type.

For an assignment with a FETCH statement, the elements in the source array value must have the same
data type as the elements of the user-defined array type of the target array. The index values of the

154 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

source array value must have the same data type as the index of the user-defined array type of the
target array.

For an assignment that is the result of a statement other than FETCH, the source array value is implicitly
cast to the target array type.

Assignment of a value to an array element might affect the cardinality of the array, and might result in
initializing other new array elements with the null value. Suppose that A is the target array variable, c is
the cardinality of array A, idx is an expression that is used as the array index, and SV is the source value.
Db2 assigns the values to the elements of the array as follows:

• If array A is the null value, A is set to an empty array.
• If A is an ordinary array:

– If idx is less than or equal to c, the value in the element of A with array index idx is replaced by the
value of SV.

– If idx greater than c:

- Each element of A with array index i, for every i that is greater than c and less than idx, is set to the
null value.

- The element of A with array index idx is set to the value of SV.
- The cardinality of A is set to idx.

• If A is an associative array:

– If idx matches an existing value of the array index for A, the value of the element with array index idx
is replaced by the value of SV.

– If idx does not match an existing value of the array index for A:

- The element of A with array index idx is set to the value of SV.
- The cardinality of A is incremented by 1.

The following values can be assigned to an element of an array variable:

• The null value
• The value of an expression, where the data type of the expression is assignable to the data type of the

elements in the target array

Example: Assigning an array to another array
Suppose that arrays PHONELIST and HOMEPHONELIST are defined with the same user-defined array
type named PLIST. PLIST is defined with VARCHAR(12) elements. The following statement assigns the
values of the HOMEPHONELIST array to the PHONELIST array:

SET PHONELIST = HOMEPHONELIST;

Example: Assigning elements of an array to another array
Suppose that array V is defined with user-defined type MYARRAY. The following statement assigns the
values 1, 2, and 3 to array V using an array constructor.

SET V = ARRAY[1,2,3];

This statement is equivalent to the following statement:

SET V = CAST(ARRAY[1,2,3] AS MYARRAY);

Example: Assigning values from a column to an array
Suppose that array V is defined with user-defined type MYARRAY. The following statement assigns the
values from the column C1 in table T to array V using the ARRAY_AGG function.

SELECT ARRAY_AGG(C1) INTO V FROM T;

Chapter 2. Language elements in SQL 155

This statement is equivalent to the following statement:

SELECT CAST(ARRAY_AGG(C1) AS MYARRAY) INTO V FROM T;

Assignments to LOB locators
When a LOB locator is used, it can refer only to LOB data. If a LOB locator is used for the first fetch of a
cursor, LOB locators must be used for all subsequent fetches.

Numeric comparisons
Numbers are compared algebraically, that is, with regard to sign. For example, -2 is less than +1. When
numbers of different data types are compared, certain rules are in effect as to how the comparison is
performed.

If one number is an integer and the other is decimal, the comparison is made with a temporary copy of the
integer, which has been converted to decimal.

When decimal numbers with different scales are compared, the comparison is made with a temporary
copy of one of the numbers that has been extended with trailing zeros so that its fractional part has the
same number of digits as the other number.

If one number is double precision floating-point and the other is integer, decimal, or single precision
floating-point, the comparison is made with a temporary copy of the other number which has been
converted to double precision floating-point. However, if a single precision floating-point number is
compared with a floating-point constant, the comparison is made with a single precision form of the
constant.

Two floating-point numbers are equal only if the bit configurations of their normalized forms are identical.

If one number is DECFLOAT and the other number is integer, decimal, single precision floating-point, or
double precision floating-point, the comparison is made with a temporary copy of the other number which
has been converted to DECFLOAT.

If one number is DECFLOAT(16) and the other number is DECFLOAT(34), the DECFLOAT(16) value is
converted to DECFLOAT(34) before the comparison.

Additionally, the DECFLOAT data type supports both positive and negative zero. Positive and negative
zero have different binary representations, but the equal (=) predicate will return true for comparisons of
positive and negative zero.

The functions, COMPARE_DECFLOAT and TOTALORDER can be used to perform comparisons at a binary
level. For example, for a comparison of 2.0<>2.00.

The DECFLOAT data type also supports the specification of negative and positive NaN (quiet and
signaling), and negative and positive infinity. From an SQL perspective, infinity = infinity, NaN = NaN,
and sNaN = sNaN.

The following rules are the comparison rules for these special values:

• Infinity compares equal only to infinity of the same sign (positive or negative)
• NaN compares equal only to NaN of the same sign (positive or negative)
• sNaN compares equal only to sNaN of the same sign (positive or negative)

The ordering among the different special values is as follows: -NAN < -SNAN < -INFINITY < 0 <
INFINITY < SNAN <NAN

156 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

String comparisons
String comparisons can occur with binary string, character strings, and graphic strings.

Binary string comparisons
Binary string comparisons are always performed according to the binary values.

Two binary strings are equal only if the lengths of the two strings are identical. If the strings are equal up
to the length of the shorter string length, the shorter string is considered less than the longer string even
when the remaining bytes in the longer string are hexadecimal zeros. This is illustrated in the following
table:

Table 32. Binary string comparison where one operand is longer because of hexadecimal zeros

Hexadecimal value of the first
operand relationship

Hexadecimal value of the
second operand

X'4100' < X'410000'

X'4100' < X'42'

X'4100' = X'4100'

X'4100' > X'41'

X'4100' > X'400000'

Binary strings cannot be compared to character strings (even FOR BIT DATA) unless the character string is
cast to a binary string.

Character and graphic string comparisons

Two strings are compared by comparing the corresponding bytes of each string. If the strings do not
have the same length, the comparison is made with a temporary copy of the shorter string that has been
padded on the right with blanks so that it has the same length as the other string.

Two strings are equal if they are both empty or if all corresponding bytes are equal. An empty string
is equal to a blank string. If two strings are not equal, their relationship (that is, which has the greater
value) is determined by the comparison of the first pair of unequal bytes from the left end of the strings.
This comparison is made according to the collating sequence associated with the encoding scheme of
the data. For ASCII data, characters A through Z (both upper and lowercase) have a greater value than
characters 0 through 9. For EBCDIC data, characters A through Z (both upper and lowercase) have a
lesser value than characters 0 through 9.

Varying-length strings with different lengths are equal if they differ only in the number of trailing blanks.
In operations that select one value from a collection of such values, the value selected is arbitrary. The
operations that can involve such an arbitrary selection are DISTINCT, MAX, MIN, and references to a
grouping column. See the description of GROUP BY for further information about the arbitrary selection
involved in references to a grouping column.

For more information, see Objects with different CCSIDs in the same SQL statement (Db2
Internationalization Guide).

String comparisons with field procedures
The rules for string comparisons with field procedures depend on the values being compared. If a column
with a field procedure is compared with the value of a variable or a constant, the variable or constant is
encoded by the field procedure before the comparison is made. If the comparison operator is LIKE, the
variable or constant is not encoded and the column value is decoded.

Chapter 2. Language elements in SQL 157

https://www.ibm.com/docs/en/SSEPEK_12.0.0/char/src/tpc/db2z_objdiffccsid.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/char/src/tpc/db2z_objdiffccsid.html

If a column with a field procedure is compared with another column, that column must have the same
field procedure and both columns must have the same CCSID set. The comparison is performed on the
encoded form of the values in the columns. If the encoded values are numeric, their data types must be
identical; if they are strings, their data types must be compatible.

If two encoded strings of different lengths are compared, the shorter is temporarily padded with encoded
blanks so that it has the same length as the other string.

In a CASE expression, if a column with a field procedure is used as the result-expression in a THEN or
ELSE clause, all other columns that are used as result-expressions must have the same field procedure.
Otherwise, no column used in a result-expression can name a field procedure.

Datetime comparisons
A date, time, or timestamp value can be compared with another value of the same data type, a datetime
constant of the same data type, or with a string representation of a value of that data type. Additionally, a
TIMESTAMP WITHOUT TIME ZONE value can be compared with a TIMESTAMP WITH TIME ZONE value.

All comparisons are chronological, which means the further a point in time is from January 1, 0001, the
greater the value of that point in time. The time 24:00:00 compares greater than the time 00:00:00.

Comparisons that involve TIME values and string representations of time values always include seconds.
If the string representation omits seconds, zero seconds are implied.

Comparisons that involve timestamp values are evaluated according to the following rules:

• When comparing timestamp values with different precisions, the higher precision is used for the
comparison and any missing digits for fractional seconds are assumed to be zero.

• When comparing a TIMESTAMP WITH TIME ZONE value to a TIMESTAMP WITHOUT TIME ZONE value,
the TIMESTAMP WITHOUT TIME ZONE value is cast to TIMESTAMP WITH TIME ZONE before the
comparison is made.

• When comparing two TIMESTAMP WITH TIME ZONE values, the comparison is made using the UTC
representations of the values. Two TIMESTAMP WITH TIME ZONE values are considered equal if
they represent the same instance in UTC, regardless of the time zone offsets that are stored in the
values. For example, '1999-04-15-08.00.00-08:00' (8:00 a.m. Pacific Standard Time) is the same as
'1999-04-15-11.00.00-05:00' (11:00 a.m. Eastern Standard Time).

• When comparing a timestamp value with a string representation of a timestamp, the string
representation is first converted to a the data type of the timestamp operand. With the except that
the converted value has a precision of 12. If the timestamp operand is TIMESTAMP WITHOUT TIME
ZONE, the string must not contain a specification of time zone.

• Timestamp comparisons are chronological without regard to representations that might be considered
equivalent. For example, the following predicate is true:

TIMESTAMP('1990-02-23-00.00.00') > '1990-02-22-24.00.00'

Example 1: Table TABLE1 has 2 columns: C1, which is defined as TIMESTAMP WITH TIME ZONE; and C2,
which is defined as TIMESTAMP WITHOUT TIME ZONE:

CREATE TABLE TABLE1 (C1 TIMESTAMP WITH TIME ZONE, C2 TIMESTAMP);

A row is inserted into the table with the following INSERT statement. The input values are provided by
character-string representations of a timestamp with a time zone.

INSERT INTO TABLE1 VALUES ('2007-11-05-08.00.00-08:00', '2007-11-05-08.00.00');

Assuming that the implicit time zone is -5:00, the following SELECT statement will not return
any rows. The string representation of the TIMESTAMP WITHOUT TIME ZONE value is cast to
a TIMESTAMP WITH TIME ZONE value, which results in a timestamp with time zone value of

158 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

'2007-11-05-08.00.00-05:00' for column C2. The comparison predicate is false because the two
values are not equal.

SELECT 1 FROM TABLE1 WHERE C1 = C2;

Example 2: When a TIMESTAMP WITHOUT TIME ZONE value is compared with a string representation of
a TIMESTAMP WITHOUT TIME ZONE or a TIMESTAMP WITH TIME ZONE value, the string representation
is cast to TIMESTAMP WITHOUT TIME ZONE (regardless of whether the string contains a time zone). The
comparison is performed using the two TIMESTAMP WITHOUT TIME ZONE values. Assume that string_hv
contains a timestamp with time zone value of '2007-11-05-08.00.00-08:00'. The string value is cast
to a TIMESTAMP WITHOUT TIME ZONE value of '2007-11-05-08.00.00', which is compared with the
value that is stored in column C2. The following SELECT statement returns a single row because a row
exists in the table with a timestamp without time zone value of '2007-11-05-08.00.00'.

SELECT 1 FROM TABLE1 WHERE C2 = :string_hv;

Row ID comparisons
A value with a row ID type can only be compared to another row ID value.

The comparison of the row ID values is based on their internal representations. The maximum number
of bytes that are compared is 17 bytes, which is the number of bytes in the internal representation.
Therefore, row ID values that differ in bytes beyond the 17th byte are considered to be equal.

XML comparisons
The XML data type cannot be directly compared to any data type, including the XML data type. The
method for doing comparison is through the use of the XMLEXISTS predicate.

Conversion rules for comparisons
When two strings are compared, one of the strings is first converted, if necessary, to the coded character
set of the other string. Conversion is necessary only if certain rules apply.

Conversion is necessary only if all of the following are true:

• The CCSIDs of the two strings are different.
• Neither CCSID is X'FFFF' (neither string is defined as a binary string).
• The string selected for conversion is neither null nor empty.
• The following conversion tables (Table 34 on page 161 or Table 35 on page 162) indicate when

conversion is necessary.

The string selected for conversion depends on the type of the operands. For the purpose of CCSID
determination, string expressions in a statement are divided into 6 types, as described in the following
table.

Table 33. Operand types

Type of operand CCSID of the operand type

Columns CCSID from the containing table

String constants CCSID associated with the application encoding scheme. For dynamic
statements, this is the CURRENT APPLICATION ENCODING SCHEME
special register. For static statements, this is the ENCODING bind
option or the APPLICATION ENCODING SCHEME option of the
CREATE PROCEDURE or ALTER PROCEDURE statement for native SQL
procedures..

Chapter 2. Language elements in SQL 159

Table 33. Operand types (continued)

Type of operand CCSID of the operand type

Special registers CCSID associated with the application encoding scheme. For dynamic
statements, this is the CURRENT APPLICATION ENCODING SCHEME
special register. For static statements, this is the ENCODING bind
option or the APPLICATION ENCODING SCHEME option of the
CREATE PROCEDURE or ALTER PROCEDURE statement for native SQL
procedures.

Host variables CCSID specified in the DECLARE VARIABLE statement, associated with
the application encoding scheme, or specified in SQLDAID or SQLDA

Global variables CCSID of UNICODE

Derived value based on a column CCSID derived from the source of the derived value. A derived value
based on a column is an expression whose source is directly or
indirectly based on columns. The CCSID of such an expression is the
CCSID derived from its source.

For example:

• The CCSID of SUBSTR(column_1, 5, length(column_2)) is
the CCSID of column_1. Note that the CCSID of column_2 has no
influence on the CCSID of SUBSTR.

• The CCSID of column_1 || 'ABC' is the CCSID of column_1,
derived from the rules described in Table 34 on page 161.

• The CCSID of column_1 || GX'42C1' is the DBCS CCSID from the
CCSID set of column_1, derived from the rules described in Table 34
on page 161 and Table 35 on page 162.

• The CCSID of COALESCE(EBCDIC_column_1, ASCII_column_1)
is the UNICODE CCSID, derived from the rules described in Table 34
on page 161.

• The CCSID of CAST(string_column_1 AS GRAPHIC(10)) is the
DBCS CCSID from the CCSID set of string_column_1.

• The CCSID of CAST(EBCDIC_string_column_1 AS
VARCHAR(10) CCSID UNICODE) is the UNICODE CCSID derived
from the rules described in Table 34 on page 161.

• The CCSID of CASE WHEN(1=1) THEN '1' ELSE
ASCII_column_1 END is the CCSID of ASCII_column_1, derived
from the rules described in Table 34 on page 161.

• The CCSID of CASE WHEN(1=1) THEN EBCDIC_column_1 ELSE
ASCII_column_1 END is the UNICODE CCSID derived from the
rules described in Table 34 on page 161.

• The CCSID of a scalar fullselect (SELECT column_1 FROM
table_1) is the CCSID of column_1.

160 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 33. Operand types (continued)

Type of operand CCSID of the operand type

Derived value not based on a column CCSID derived from the source of the derived value. A derived value
not based on a column is an expression whose source is not directly or
indirectly based on any column. The CCSID of such an expression is the
CCSID derived from its source.

• For example, the CCSID of SUBSTR('ABDC', 1, length('AB"))
is the CCSID of the string constant 'ABCD'. Note that the CCSID of
column_1 has no influence on the CCSID of SUBSTR.

• the CCSID of user_defined_function1(column1) is the output
CCSID defined by user_defined_function1.

• the CCSID of the cast function of distinct type, shape, is the CCSID of
distinct type, shape.

• the CCSID of CURRENT SQLID || UX'0041' is the UNICODE DBCS
CCSID, derived from the rules described in Table 34 on page 161 and
Table 35 on page 162.

• the CCSID of CAST('abc' as CHAR(10) CCSID UNICODE) is the
UNICODE CCSID.

The following table shows which operand supplies the target CCSID set when the comparison is part of an
SQL statement involving multiple tables with different CCSID sets.

Table 34. Operand that supplies the CCSID for character conversion

First operand

Second operand

Column
value

String
constant

Special
register

Host
variable

Derived
value based
on a column

Derived
value not
based on a
column

Column value
“1” on page

162
first

operand
first

operand

first
operand, “2”
on page 162

“1” on page
162 first operand

String constant
second

operand
“1” on page

162
“1” on page

162
“1” on page

162
second

operand
“1” on page

162

Special register
second

operand
“1” on page

162
“1” on page

162
“1” on page

162
second

operand
“1” on page

162

Host variable
second

operand
“1” on page

162
“1” on page

162
“1” on page

162

second
operand, “2”
on page 162

“1” on page
162

global variable
second

operand

Derived value
based on a column

“1” on page
162

first
operand

first
operand

first
operand, “2”
on page 162

“1” on page
162 first operand

Derived value not
based on a column

second
operand

“1” on page
162

“1” on page
162

“1” on page
162

second
operand

“1” on page
162

Chapter 2. Language elements in SQL 161

Table 34. Operand that supplies the CCSID for character conversion (continued)

First operand

Second operand

Column
value

String
constant

Special
register

Host
variable

Derived
value based
on a column

Derived
value not
based on a
column

Note:

1. If the CCSID sets are different, both operands are converted, if necessary, to Unicode. SBCS and
Mixed are converted to UTF-8. DBCS is converted to UTF-16. See the next table to determine which
operand supplies the CCSID for character conversion.

2. If the encoding scheme that is in effect for the statement is EBCDIC or ASCII, the host variable is
Unicode graphic, and the value of the field MIXED DATA on installation panel DSNTIPF is NO, the
column or the derived value that is based on a column supplies the target CCSID set.

The following table shows which operand is selected for conversion when both operands are based on a
column or are not based on a column as represented in the previous table.

Table 35. Operand that supplies the CCSID for character conversion when both operands are based or not
based on a column

First operand

Second operand

SBCS data Mixed data DBCS data

SBCS data second operand“1” on
page 162

second operand

Mixed data
first operand“1” on page
162 second operand

DBCS data first operand first operand

Note:

1. For ASCII and EBCDIC data, the conversion depends on the value of the field MIXED DATA on
installation panel DSNTIPF at the Db2 that does the comparison. If MIXED DATA = YES, the SBCS
operand is converted to MIXED. If MIXED DATA = NO, the MIXED operand is converted to SBCS

For example, assume a comparison of the form:

 string-constant-SBCS =derived-value-not-based-on-column-DBCS

Assume that the operands have different encoding schemes. First look at Table 34 on page 161. The
relevant table entry is in the third row and second column. The value for this entry shows that if the
CCSID sets are different, the operands are converted to Unicode. The first operand (string-constant-SBCS)
is converted to UTF-8 (Mixed) if it is not already Unicode. In addition, the second operand (derived-value-
not-based-on-column-DBCS) is converted to UTF-16 (Unicode DBCS) if necessary. After the operands
have been converted to Unicode, Table 35 on page 162 is used to determine which operand supplies
the specific CCSID for the conversion. The relevant table entry is in the second row and third column.
It indicates that the second operand (derived-value-not-based-on-column-DBCS) determines the CCSID
because DBCS data takes precedence over Mixed data.

An error occurs if a character of the string cannot be converted, the SYSSTRINGS table is used but
contains no information about the pair of CCSIDs of the operands being compared, or Db2 cannot do the
conversion through z/OS support for Unicode. A warning occurs if a character of the string is converted to
a substitution character.

162 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

A derived value based on a column is an expression that includes columns that affects the result CCSID
of the expression. For example, in the expression COL1||'abc', COL1 determines the result CCSID.
Therefore, the expression COL1||'abc' is considered to be a derived value based on a column that
continues to give the column precedence in any further comparisons. The expression CASE WHEN COL1
> 1 THEN 'abc' ELSE 'def' END contains a column that does not affect the result CCSID of the
expression and is therefore not considered to be a derived value based on a column.

The following table defines which expressions are considered to be a derived value based on a column.

Table 36. Derived values based on a column

Expression Condition

expression1 || expression2 expression1 or expression2 is a column or a
derived value based on a column

CASE when-clause THEN result-expression ELSE result-
expression END

any result-expression is a string-expression that is
a column or derived value based on a column

CAST(expression as data-type) expression is a string-expression that is a column
or a derived value based on a column and data-
type is a string data type

Scalar-fullselect: (SELECT expression FROM table) expression is a string-expression that is a column
or a derived value based on a column and data-
type is a string data type

When a statement contains multiple CCSID sets, if the length of one of the strings changes after
CCSID conversion, the string becomes a varying-length string. That is, the data type becomes VARCHAR,
CLOB, VARGRAPHIC, or DBCLOB. The following table shows the worse case resulting lengths of CCSID
conversion, where X is length in bytes.

Table 37. Worst case result length of CCSID conversion, where X represents LENGTH(string in bytes)

From CCSID

To CCSID

EBCDIC ASCII Unicode

SBCS Mixed DBCS SBCS Mixed DBCS SBCS UTF-8 UTF-16

EBCDIC

SBCS X X X*2“1”
on page
164

X X X*2“1”
on page
164

X“1” on
page 164

X*3 X*2

Mixed X X X*2“1”
on page
164

X X X*2“1”
on page
164

X“1” on
page 164

X*3 X*2

DBCS X*0.51 X+2 X X*0.51 X X X*0.5 X*1.5 X

ASCII

SBCS X X X*2“1”
on page
164

X X X*2“1”
on page
164

X“1” on
page 164

X*3 X*2

Mixed X X*1.8 X*2“1”
on page
164

X X X*21 X“1” on
page 164

X*3 X*2

DBCS X*0.5“1
” on page
164

X+2 X X*0.5“1
” on page
164

X X X*0.5 X*1.5 X

Chapter 2. Language elements in SQL 163

Table 37. Worst case result length of CCSID conversion, where X represents LENGTH(string in bytes) (continued)

From CCSID

To CCSID

EBCDIC ASCII Unicode

SBCS Mixed DBCS SBCS Mixed DBCS SBCS UTF-8 UTF-16

Unicode

SBCS X X X*2 X X X*2 X X X*2

UTF-8 X X*1.25 X X X X X X X*2

UTF-16 X*0.5 X+2 X X*0.5 X X X*0.5 X*1.5 X

Note:

1. Because of the high probability of data loss, IBM does not provide conversion tables for this combination of
two CCSIDs and data subtypes.

User-defined type comparisons
User-defined type comparisons include distinct type comparisons and array comparisons.

Distinct type comparisons

A value with a distinct type can only be compared to another value with exactly the same type because
distinct types have strong typing, which means that a distinct type is compatible only with its own type.

To compare a distinct type to a value with a different data type, the distinct type value must be cast to the
data type of the comparison value or the comparison value must be cast to the distinct type. For example,
because constants are built-in data types, a constant can be compared to a distinct type value only if it is
first cast to the distinct type or vice versa.

The following table shows examples of valid and invalid comparisons, assuming the following SQL
statements were used to define two distinct types AGE_TYPE and CAMP_DATE and table CAMP_ROSTER
table.

 CREATE TYPE AGE_TYPE AS INTEGER;
 CREATE TYPE CAMP_DATE AS DATE;
 CREATE TABLE CAMP_ROSTER
 (NAME VARCHAR(20),
 ATTENDEE_NUMBER INTEGER NOT NULL,
 AGE AGE_TYPE,
 FIRST_CAMP_DATE CAMP_DATE,
 LAST_CAMP_DATE CAMP_DATE,
 BIRTHDATE DATE);

Table 38. Examples of valid and invalid comparisons involving distinct types

SQL statement Valid Reason

Distinct types with distinct types

SELECT * FROM CAMP_ROSTER
 WHERE FIRST_CAMP_DATE < LAST_CAMP_DATE;

Yes Both values are the same distinct type.

Distinct types with columns of the same source data type

SELECT * FROM CAMP_ROSTER
 WHERE AGE > ATTENDEE_NUMBER;

No A distinct type cannot be compared to integer.

164 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 38. Examples of valid and invalid comparisons involving distinct types (continued)

SQL statement Valid Reason

SELECT * FROM CAMP_ROSTER
 WHERE INTEGER(AGE) > ATTENDEE_NUMBER;

SELECT * FROM CAMP_ROSTER
 WHERE CAST(AGE AS INTEGER) > ATTENDEE_NUMBER;

Yes The distinct type is cast to an integer, making
the comparison of two integers.

SELECT * FROM CAMP_ROSTER
 WHERE AGE > AGE_TYPE(ATTENDEE_NUMBER);

SELECT * FROM CAMP_ROSTER
 WHERE AGE > CAST(ATTENDEE_NUMBER as
AGE_TYPE);

Yes Integer ATTENDEE_NUMBER is cast to the
distinct type AGE_TYPE, making both values
the same distinct type.

Distinct types with constants

SELECT * FROM CAMP_ROSTER
 WHERE AGE IN (15,16,17);

No A distinct type cannot be compared to a
constant.

SELECT * FROM CAMP_ROSTER
 WHERE INTEGER(AGE) IN (15,16,17);

Yes The distinct type is cast to the data type
of constants, making all the values in the
comparison integers.

SELECT * FROM CAMP_ROSTER
 WHERE AGE IN
 (AGE_TYPE(15),AGE_TYPE(16),AGE_TYPE(17));

Yes Constants are cast to distinct type AGE_TYPE,
making all the values in the comparison the
same distinct type.

SELECT * FROM CAMP_ROSTER
 WHERE FIRST_CAMP_DATE > '06/12/99';

No A distinct type cannot be compared to a
constant.

SELECT * FROM CAMP_ROSTER
 WHERE FIRST_CAMP_DATE >
 CAST('06/12/99' AS CAMP_DATE);

No The string constant '06/12/99', a VARCHAR
data type, cannot be cast directly to distinct
type CAMP_DATE, which is based on a DATE
data type. As illustrated in the next row, the
constant must be cast to a DATE data type and
then to the distinct type.

SELECT * FROM CAMP_ROSTER
 WHERE FIRST_CAMP_DATE >
 CAST(DATE('06/12/1999') AS CAMP_DATE);

Yes The string constant '06/12/99' is cast to
the distinct type CAMP_DATE, making both
values the same distinct type. To cast a string
constant to a distinct type that is based on
a DATE, TIME, or TIMESTAMP data type, the
string constant must first be cast to a DATE,
TIME, or TIMESTAMP data type.

Distinct types with host variables

SELECT * FROM CAMP_ROSTER
 WHERE AGE BETWEEN :HV_INTEGER
AND :HV_INTEGER2;

No The host variables have integer data types. A
distinct type cannot be compared to an integer.

SELECT * FROM CAMP_ROSTER
 WHERE AGE
 BETWEEN CAST(:HV_INTEGER AS AGE_TYPE)
 AND AGE_TYPE(:HV_INTEGER2);

Yes The host variables are cast to distinct type
AGE_TYPE, making all the values the same
distinct type.

Chapter 2. Language elements in SQL 165

Table 38. Examples of valid and invalid comparisons involving distinct types (continued)

SQL statement Valid Reason

SELECT * FROM CAMP_ROSTER
 WHERE FIRST_CAMP_DATE > :HV_VARCHAR;

No The host variable has a VARCHAR data type.
A distinct type cannot be compared to a
VARCHAR.

SELECT * FROM CAMP_ROSTER
 WHERE FIRST_CAMP_DATE >
 CAST(DATE(:HV_VARCHAR) AS CAMP_DATE);

Yes The host variable is cast to the distinct type
CAMP_DATE, making both values the same
distinct type. To cast a VARCHAR host variable
to a distinct type that is based on a DATE,
TIME, or TIMESTAMP data type, the host
variable must first be cast to a DATE, TIME, or
TIMESTAMP data type.

Array type comparisons

Comparisons of array values are not supported. Elements of arrays can be compared based on the
comparison rules for the data types of the elements of the arrays.

Rules for result data types
Rules that are applied to the operands of an operation determine the data type of the result. Certain rules
apply in certain situations and apply depending on the data type of operands.

The rules apply to the following elements:

• Corresponding columns in set operations (UNION, INTERSECT, or EXCEPT)
• Result expressions of a CASE expression
• Arguments of the scalar functions COALESCE, IFNULL, MAX, and MIN
• Expression values of the IN list of an IN predicate
• Expression values for the elements in an array constructor
• Expression values for the arguments for a collection-derived table (UNNEST specification)
• Arguments of a BETWEEN predicate, except if the data types of all operands are numeric
• Arguments for the aggregation group ranges in OLAP specifications

For the result data type of expressions that involve the operators '/', '*', '+' and '-', see “Arithmetic
operators in expressions” on page 250.

For the result data type of expressions that involve the CONCAT operator, see “Concatenation operators in
expressions” on page 247.

Evaluation of the operands of an operation determines the data type of the result. If an operation has
more than one pair of operands, Db2 determines the result type of the first pair, uses this result type with
the next operand to determine the next result type, and so on. The last intermediate result type and the
last operand determine the result type of the operation.

With the exception of the COALESCE function, the result of an operation can be null unless the operands
do not allow nulls.

If the data type and attributes of any operand column are not the same as those of the result, the operand
column values are converted to conform to the data type and attributes of the result. The conversion
operation is exactly the same as if the values were assigned to the result. For example:

• If one operand column is CHAR(10), and the other operand column is CHAR(5), the result is CHAR(10),
and the values derived from the CHAR(5) column are padded on the right with five blanks.

• If the whole part of a number cannot be preserved then an error is returned.

166 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Numeric operands

Numeric types are compatible only with other numeric types.

Table 39. Result data types with numeric operands

One operand Other operand Data type of the result

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

INTEGER SMALLINT INTEGER

BIGINT SMALLINT BIGINT

BIGINT INTEGER BIGINT

BIGINT BIGINT BIGINT

DECIMAL(w,x) SMALLINT DECIMAL(p,x) where
p = x+max(w-x,5)1

DECIMAL(w,x) INTEGER DECIMAL(p,x) where
p = x+max(w-x,11)1

DECIMAL(w,x) BIGINT DECIMAL(p,x) where
p = x+max(w-x,19)1

DECIMAL(w,x) DECIMAL(y,z) DECIMAL(p,s) where
p = max(x,z)+max(w-x,y-z)1s =
max(x,z)

REAL REAL REAL

REAL DECIMAL, BIGINT,
INTEGER, or SMALLINT

DOUBLE

REAL BIGINT DOUBLE

DOUBLE DOUBLE, REAL, DECIMAL,
BIGINT, INTEGER, or
SMALLINT

DOUBLE

DECFLOAT(n) SMALLINT DECFLOAT(n)

DECFLOAT(n) INTEGER DECFLOAT(n)

DECFLOAT(n) BIGINT DECFLOAT(34)

DECFLOAT(n) DECIMAL(<=16,s) DECFLOAT(n)

DECFLOAT(n) DECIMAL(>16,s) DECFLOAT (34)

DECFLOAT(n) REAL DECFLOAT(n)

DECFLOAT(n) DOUBLE DECFLOAT(n)

DECFLOAT(n) DECFLOAT(m) DECFLOAT(max(n,m))

Notes:

1. Precision cannot exceed 31.

Chapter 2. Language elements in SQL 167

Character and graphic string operands

Character and graphic strings are compatible with other character and graphic strings as long as there is a
conversion between their corresponding CCSIDs.

Table 40. Result data types with string operands

One operand Other operand Data type of the result

CHAR(x) CHAR(y) CHAR(z) where z = max(x,y)

GRAPHIC(x) CHAR(y) VARGRAPHIC(y) where y > maximum length of
a graphic

GRAPHIC(x) CHAR(y) GRAPHIC(z) where z = max(x,y)

VARCHAR(x) VARCHAR(y) or CHAR(y) VARCHAR(z) where z = max(x,y)

VARCHAR(x) GRAPHIC(y) VARGRAPHIC(z) where z = max(x,y)

VARGRAPHIC(x) VARGRAPHIC(y),
GRAPHIC(y), VARCHAR(y),
or CHAR(y)

VARGRAPHIC(z) where z = max(x,y)

CLOB(x) CLOB(y), VARCHAR(y), or
CHAR(y)

CLOB(z) where z = max(x,y)

CLOB(x) GRAPHIC(y) or
VARGRAPHIC(y)

DBCLOB(z) where z = max(x,y)

DBCLOB(x) CHAR(y), VARCHAR(y),
CLOB(y), GRAPHIC(y),
VARGRAPHIC(y), or
DBCLOB(y)

DBCLOB(z) where z = max(x,y)

Character string subtypes are determined as indicated in the following table:

Table 41. Result data types with character string operands

One operand Other operand Data type of the result

Bit data Mixed, SBCS, or bit data Bit data

Mixed data Mixed or SBCS data Mixed data

SBCS data SBCS data SBCS data

Binary string operands

Binary strings are compatible with other binary strings. Binary strings include BINARY, VARBINARY, and
BLOB.

Table 42. Result data types with binary string operands

One operand Other operand Data type of the result

BINARY(x) BINARY(y) BINARY(z) where z = max(x,y)

VARBINARY(x) BINARY(y) or
VARBINARY(y)

VARBINARY(z) where z = max(x,y)

BLOB(x) BINARY(y), VARBINARY(y),
or BLOB(y)

BLOB(z) where z = max(x,y)

168 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Datetime operands

A date, time, or timestamp value is compatible with another value of the same type or any string
expression that contains a valid string representation of the same type.

A DATE type is compatible with another DATE type or any string expression that contains a valid string
representation of a date. A string representation is a value that is a built-in character string data type or
graphic string data type. A string representation must not be a CLOB or DBCLOB and must have an actual
length that is not greater than 255 bytes. The data type of the result is DATE.

A TIME type is compatible with another TIME type or any string expression that contains a valid string
representation of a time. A string representation is a value that is a built-in character string data type or
graphic string data type. A string representation must not be a CLOB or DBCLOB and must have an actual
length that is not greater than 255 bytes. The data type of the result is TIME.

A timestamp type is compatible with another timestamp type, a timestamp constant, or any string
expression that contains a valid string representation of a timestamp. A string representation is a value
that is a built-in character string data type or graphic string data type. A string representation must not be
a CLOB or DBCLOB and must have an actual length that is not greater than 255 bytes. The data type of the
result is a timestamp as determined in the following table.

Table 43. Result data types with datetime operands

One operand Other operand Data type of the result

TIMESTAMP(x) WITHOUT TIME
ZONE

TIMESTAMP(y) WITHOUT TIME
ZONE

TIMESTAMP(max(x,y)) WITHOUT
TIME ZONE

TIMESTAMP(x) WITHOUT TIME
ZONE

CHAR(y) or VARCHAR(y) TIMESTAMP(x) WITHOUT TIME
ZONE 1

TIMESTAMP(x) WITH TIME ZONE TIMESTAMP(y) WITH TIME ZONE TIMESTAMP(max(x,y)) WITH
TIME ZONE

TIMESTAMP(x) WITH TIME ZONE CHAR(y) or VARCHAR(y) TIMESTAMP(x) WITH TIME ZONE

TIMESTAMP(x) WITH TIME ZONE TIMESTAMP(y) WITHOUT TIME
ZONE

TIMESTAMP(max(x,y)) WITH
TIME ZONE

Note: If one operand is TIMESTAMP(x) WITHOUT TIME ZONE and the other operand is CHAR(y)
or VARCHAR(y), the result data type is TIMESTAMP(x) WITHOUT TIME ZONE even if the string
representation contains a time zone.

If both operands are in the same encoding scheme, the result is in that encoding scheme. Otherwise the
result is in the application encoding scheme.

Row ID operands

A row ID data type is compatible only with itself. The result has a row ID data type.

XML operands

XML data is compatible only with other XML data. The data type of the result is XML. Other data types can
be treated as an XML data type by using the CAST specification or XMLPARSE functions to cast character,
graphic, or binary data to XML data.

Chapter 2. Language elements in SQL 169

Distinct type operands
A distinct type is compatible only with itself. The data type of the result is the distinct type.

Related concepts
Conversion rules for comparisons
When two strings are compared, one of the strings is first converted, if necessary, to the coded character
set of the other string. Conversion is necessary only if certain rules apply.

Constants
A constant (also called a literal) specifies a value. Constants are classified as null constants, string
constants, numeric constants, or datetime constants. Numeric constants are further classified as integer,
floating-point, decimal, or decimal floating-point. String constants are classified as character, graphic, or
binary.

All constants, except null constants, have the attribute NOT NULL. A negative sign in a numeric constant
with a value of zero is ignored.

Constants, other than null constants, have a built-in data type. Therefore, an operation that involves a
constant and a distinct type requires that the distinct type be cast to the built-in data type of the constant
or the constant be cast to the distinct type. For example, see “User-defined type comparisons” on page
164, which contains an example of casting data types to compare a constant to a distinct type.

Null constants
A null constant indicates the null value.

The NULL constant has no data type. The data type of the NULL keyword is provided by the context in
which it is used, or you can use CAST to assign a data type.

Integer constants
An integer constant specifies an integer as a signed or unsigned number with a maximum of 19 digits that
does not include a decimal point.

The data type of an integer constant is large integer if its value is within the range of a large integer. The
data type of an integer constant is big integer if its value is outside the range of a large integer, but within
the range of a big integer. A constant that is defined outside the range of big integer values is considered a
decimal constant.

For example, the following values are integer constants:

 64 -15 +100 32767 720176

In syntax diagrams, the term integer is used for a large integer constant that must not include a sign.

Floating-point constants
A floating-point constant specifies a double-precision floating-point number as two numbers separated by
an E.

The first number can include a sign and a decimal point. The second number can include a sign but not a
decimal point. The value of the constant is the product of the first number and the power of 10 specified
by the second number. It must be within the range of floating-point numbers. The number of characters in
the constant must not exceed 30. Excluding leading zeros, the number of digits in the first number must
not exceed 17 and the number of digits in the second must not exceed 2.

For examples, the following floating-point constants represent the numbers '150', '200000', -0.22, and
'500':

 15E1 2.E5 -2.2E-1 +5.E+2

170 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Decimal constants
A decimal constant is a signed or unsigned number of no more than 31 digits and either includes a
decimal point or is not within the range of binary integers.

The precision is the total number of digits, including those, if any, to the right of the decimal point. The
total includes all leading and trailing zeros. The scale is the number of digits to the right of the decimal
point, including trailing zeros.

The precision is the total number of digits, including those, if any, to the right of the decimal point. The
total includes all leading and trailing zeros. The scale is the number of digits to the right of the decimal
point, including trailing zeros.

For example, the following decimal constants have, respectively, precisions and scales of 5 and 2; 4 and
0; 2 and 0; and 23 and 2:

 025.50 1000. -15. +375893333333333333333.33

Decimal floating-point constant
A decimal floating-point constant specifies a decimal floating-point number as two numbers separated by
an E. The first number can include a sign and a decimal point. The second number can include a sign but
not a decimal point.

The value of the constant is the product of the first number and the power of 10 specified by the second
number. The value must be within the range of DECFLOAT(34). The number of characters in the constant
must not exceed 42. Excluding leading zeros, the number of digits in the first number must not exceed 34
and the number of digits in the second number must not exceed 4.

A constant that is specified as two numbers separated by an E is a decimal-floating point constant only if
the value is outside the range of a floating-point constant. A constant that is specified as a number that
does not contain an E, and has more than 31 digits, is also a decimal-floating point constant.

In addition to numeric constants, the following special values can be used to specify decimal-floating
point special values:

• INF or INFINITY - represents infinity
• NAN - represents quiet not-a-number
• SNAN - represents signaling not-a-number

The special values can be any combination of uppercase or lowercase letters and can be preceded by an
operational sign (+ or -).

SNAN results in a warning or exception when it is used in a numerical operation; NAN does not. SNAN can
be used in non-numerical operations without causing a warning or exception. For example, SNAN can be
used in the VALUES list of an insert operation or as a constant used in a comparison in a predicate.

When the special values are used in a predicate, the following order of precedence applies:

-NAN < -SNAN < -INFINITY < -0 < 0 < INFINITY < SNAN < NAN

For example, The following decimal floating-point constants represent the numbers
123456789012345678, sNaN, and negative infinity:

 123456789012345678E0 SNAN -INFINITY

When one of the special values is used in a context where it could be interpreted as an identifier, such as a
column name, cast a string constant that represents the special value to decimal-floating point.

CAST ('snan' AS DECFLOAT)
CAST ('INF' AS DECFLOAT)
CAST ('Nan' AS DECFLOAT)

Chapter 2. Language elements in SQL 171

Character string constants

A character string constant specifies a varying-length character string. A character string constant has one
of the two following forms:

• A sequence of characters that starts and ends with a string delimiter, which is either an apostrophe
(') or a quotation mark ("). For the factors that determine which is applicable, see “Apostrophes and
quotation marks as string delimiters” on page 324. This form of string constant specifies the character
string contained between the string delimiters. The number of bytes between the delimiters must not
be greater than 32704. The limit of 32704 refers to the length (in bytes) of the UTF-8 representation
of the string. If you produced the string in a CCSID other than UTF-8 (for example, an EBCDIC CCSID),
the length of the UTF-8 representation might differ from the length of the string's representation in the
source CCSID. Two consecutive string delimiters are used to represent one string delimiter within the
character string.

• An X followed by a sequence of characters that starts and ends with a string delimiter. This form of
a character string constant is also called a hexadecimal constant. The characters between the string
delimiters must be an even number of hexadecimal digits. The number of hexadecimal digits must
not exceed 32704. A hexadecimal digit is a digit or any of the letters A through F. If the MIXED DATA
subsystem parameter is set to YES, hexadecimal digits in a hexadecimal constant must be specified
in upper case. Otherwise, an error might be returned when SQL statements are processed. Under
the conventions of hexadecimal notation, each pair of hexadecimal digits represents a character. A
hexadecimal constant allows you to specify characters that do not have a keyboard representation.

The following examples are character strings constants. The right most string in the example ('')
represents an empty character string constant, which is a string of zero length.

'12/14/1985' '32' 'DON''T CHANGE' X'FFFF' ''

A character string constant is classified as mixed data if it includes a DBCS substring. In all other cases,
a character string constant is classified as SBCS data. For information about the CCSID that is assigned to
the constant, see Determining the encoding scheme and CCSID of a string (Introduction to Db2 for z/OS).
A mixed string constant can be continued from one line to the next only if the break occurs between single
byte characters. A Unicode string is always considered mixed regardless of the content of the string.

For Unicode, character constants can be assigned to UTF-8 and UTF-16. The form of the constant
does not matter. Typically, character string constants are used only with character strings, but they also
can be used with graphic UTF-16 data. However, hexadecimal constants are just character data. Thus,
hexadecimal constants being used to insert data into UTF-16 data strings should be in UTF-8 format,
not UTF-16 format. For example, if you wanted to insert the number 1 into a UTF-16 column, you would
use X'31', not X'0031'. Even though X'0031' is a UTF-16 value, Db2 treats it as two separate UTF-8 code
points. Thus, X'0031' would become X'00000031'.

Binary string constants
A binary-string constant specifies a varying-length binary string.

A binary-string constant is formed by specifying a BX followed by a sequence of characters that starts
and ends with a string delimiter. The characters between the string delimiters must be an even number of
hexadecimal digits. The number of hexadecimal digits must not exceed 32704.

A hexadecimal digit is a digit or any of the letters A through F (upper case or lower case). Under the
conventions of hexadecimal notation, each pair of hexadecimal digits represents one byte. Note that this
representation is similar to the representation of the character-constant that uses the X'' form; however
binary-string constant and character-string constant are not compatible and the X'' form can not be used
to specify a binary-string constant, just as the BX'' form cannot be used to specify a character-string
constant.

he following examples are binary-string constants:

BX'0000' BX'C141C242' BX'FF00FF01FF'

172 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html

Graphic string constants
A graphic string constant specifies a varying-length graphic string. For more information, see “Graphic
string constants” on page 173.

Datetime constants
A datetime constant is a character string constant of a particular format. For more information, see
“Datetime constants” on page 174

Related concepts
Data types
Db2 supports both IBM-supplied data types (built-in data types) and user-defined data types (distinct
types).

Graphic string constants
A graphic string constant specifies a varying-length graphic string.

In EBCDIC environments, the forms of graphic string constants are shown in the following figure. (Shift-in
and shift-out characters for EBCDIC data are discussed in “Character strings” on page 102.)6

Lorem ipsum

G represents a
DBCS G (X'42C7')

represents a
DBCS apostrophe
(X'427D')

Context Graphic String Constant Empty String Example

G G GS
I

S
I

S
I

S
I

S
I

S
I

S
I

S
I

S
I

S
I

S
I

S
I

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

G G

All other
contexts

dbcs-string
PL/I

N

' '

''

' '

N

N

n
n

dbcs-stringG GG' '
G''
g' '
g''

dbcs-string ' '

''

' '

''

dbcs-string

Figure 23. Graphic string constants in EBCDIC

In SQL statements and in host language statements in a source program, graphic string constants cannot
be continued from one line to the next. A graphic string constant must be short enough so that its UTF-8
representation requires no more than 32704 bytes.

Db2 supports two types of hexadecimal graphic string constants.

• UX'xxxx' represents a string of graphic Unicode UTF-16 characters, where x is a hexadecimal digit. The
number of digits must be a multiple of 4 and must not exceed 32704. Each group of 4 digits represents
a single UTF-16 graphic character. For example, the UX constant for 'ABC' is UX'004100420043'.

• GX'xxxx' represents a string of graphic characters, where x is a hexadecimal digit. The number of digits
must be a multiple of 4. Each group of 4 digits represents a single double-byte graphic character. The

6 The PL/I form of graphic string constants is supported only in static SQL statements.

Chapter 2. Language elements in SQL 173

hexadecimal shift-in and shift-out ('OE'X and 'OF'X), which apply to EBCDIC only, are not included in the
string.

If the MIXED DATA installation option is set to NO, a GX constant cannot be used. Instead, a UX constant
should be used. A GX constant cannot be used when the encoding scheme is UNICODE.

For information about the CCSID that is assigned to a graphic string constant, including UX'xxxx' and
GX'xxxx' string constants, see Determining the encoding scheme and CCSID of a string (Introduction to
Db2 for z/OS).

Datetime constants
A datetime constant is a character string constant of a particular format.

For more information about character-string constants, see “Constants” on page 170.

For information about the valid string formats, see “String representations of datetime values” on page
120.

Typically, character-string constants are used to represent constant datetime values in assignments
and comparisons. However, the ANSI/ISO SQL standard form of a datetime constant can be used to
specifically denote the constant as a datetime constant instead of a character-string constant. The format
for the ANSI/ISO SQL standard datetime constants are as follows:

DATE string-constant
string-constant must contain a value that conforms to one of the valid formats for string
representations of dates, subject to the following rules:

• leading blanks are not allowed.
• leading zeros can be omitted from the month and day elements of the date. An implicit specification

of 0 is assumed for any digit that is omitted.
• leading zeros must be included for the year element of the date.
• trailing blanks can be included.

The data type of the value is DATE.

TIME string-constant
string-constant must contain a value that conforms to one of the valid formats for string
representations of times, subject to the following rules:

• leading blanks are not allowed.
• leading zeros can be omitted from the hour elements of the time.
• the seconds element of the time can be omitted.
• trailing blanks can be included.
• if the USA format is not used and the minutes and seconds are all zeros, the hour can be 24.
• If the format is USA, the following additional rules apply:

– the minutes element of the time can be omitted. For example, 1 PM is equivalent to 1:00 PM.
– the letters A, M, and P can be specified in lowercase.
– a single blank must precede the AM or PM.
– the hour must not be greater than 12 and cannot be 0 except when the time is specified as 00:00

AM.

An implicit specification of 0 is assumed for any digit that is omitted.

The correspondence between the USA format and the ISO format (24-hour clock) is as follows:

• 12:01 AM through 12:59 AM correspond to 00.01.00 through 00.59.00
• 01:00 AM through 11:59 AM correspond to 01.00.00 through 11.59.00
• 12:00 PM (noon) through 11:59 PM correspond to 12.00.00 through 23.59.00

174 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html

• 12:00 AM (midnight) corresponds to 24.00.00
• 00:00 AM (midnight) corresponds to 00.00.00

The data type of the value is TIME.

TIMESTAMP string-constant
string-constant must contain a value that conforms to one of the formats listed in the following tables,
subject to the following rules:

• leading blanks are not allowed.
• trailing blanks can be included.
• leading zeros can be omitted from the month, day, hour, and time zone hour elements of the

timestamp. An implicit specification of 0 is assumed for any digit that is omitted.
• leading zeros must be included for the minute, second, and time zone minute elements of the

timestamp
• the hour can be 24 if the minutes, seconds, and any fractional seconds are all zeroes.
• the separator character that follows the seconds element can be omitted if fractional seconds are

not included.
• the number of digits of fractional seconds can vary from 0 to 12. An implicit specification of 0 is

assumed if fractional seconds are omitted. The number of digits of fractional seconds determines
the precision of the timestamp value.

• an optional single blank can be included between the time and the time zone elements.
• an optional time zone can be included, in one of the following formats:

– ±th:tm, with values ranging from -24:00 to +24:00. A value of -0:00 is treated the same as +0:00.
– ±th, with values ranging from -24 to +24 (an implicit specification of 00 is assumed for the time

zone minute element)
– uppercase Z to specify UTC

The data type of the value depends on the content of the string constant (where p is the number of
digits of fractional seconds in the constant):

• TIMESTAMP(p) WITHOUT TIME ZONE if the content of the string constant conforms to the rules in
the Table 44 on page 175 table.

• TIMESTAMP(p) WITH TIME ZONE if the content of the string constant conforms to the rules in the
Table 45 on page 176 table.

Table 44. Formats used to specify a value for a data type of TIMESTAMP WITHOUT TIME ZONE

Description
TIMESTAMP(0) WITHOUT TIME
ZONE 1, 3

TIMESTAMP(p) WITHOUT TIME
ZONE 2, 3

Blank between date and time
portions and colons in time
portion.

• yyyy-mm-dd hh:mm:ss
• yyyy-mm-dd hh:mm:ss.

yyyy-mm-dd
 hh:mm:ss.nnnnnnnnnnnn

Blank between date and time
portions and periods in time
portion.

• yyyy-mm-dd hh.mm.ss
• yyyy-mm-dd hh.mm.ss.

yyyy-mm-dd
hh.mm.ss.nnnnnnnnnnnn

Minus sign between date and
time portions and colons in time
portion.

• yyyy-mm-dd-hh:mm:ss
• yyyy-mm-dd-hh:mm:ss.

yyyy-mm-dd-
hh:mm:ss.nnnnnnnnnnnn

Minus sign between date and
time portions and periods in
time portion.

• yyyy-mm-dd-hh.mm.ss
• yyyy-mm-dd-hh.mm.ss.

yyyy-mm-dd-
hh.mm.ss.nnnnnnnnnnnn

Chapter 2. Language elements in SQL 175

Table 44. Formats used to specify a value for a data type of TIMESTAMP WITHOUT TIME ZONE
(continued)

Description
TIMESTAMP(0) WITHOUT TIME
ZONE 1, 3

TIMESTAMP(p) WITHOUT TIME
ZONE 2, 3

Notes:

1. No fractional seconds; shown with and without optional trailing period after seconds
2. p is the number of digits of fractional seconds. nnnnnnnnnnnn can range 1 - 12 instances of n
3. As an additional format, the character T can be substituted as the separator between the date

and time portions of the value.

Table 45. Formats used to specify a value for a data type of TIMESTAMP WITH TIME ZONE

Description
TIMESTAMP(0) WITH TIME
ZONE1, 3

TIMESTAMP(p) WITH TIME
ZONE 2, 3

Blank between date and time
portions and colons in time
portion, no space between time
and time zone.

• yyyy-mm-dd hh:mm:ss±th:tm
• yyyy-mm-dd hh:mm:ss±th
• yyyy-mm-dd hh:mm:ss.±th:tm
• yyyy-mm-dd hh:mm:ss.±th

• yyyy-mm-dd
hh:mm:ss.nnnnnnnnnnnn
±th:tm

• yyyy-mm-dd
hh:mm:ss.nnnnnnnnnnnn
±th

Minus sign between date and
time portions and colons in time
portion.

• yyyy-mm-dd-hh:mm:ss±th:tm
• yyyy-mm-dd-hh:mm:ss±th
• yyyy-mm-dd-

hh:mm:ss.±th:tm
• yyyy-mm-dd-hh:mm:ss.±th

• yyyy-mm-dd-
hh:mm:ss.nnnnnnnnnnnn
±th:tm

• yyyy-mm-dd-
hh:mm:ss.nnnnnnnnnnnn
±th

Minus sign between date and
time portions and periods in
time portion.

• yyyy-mm-dd-hh.mm.ss±th:tm
• yyyy-mm-dd-hh.mm.ss±th
• yyyy-mm-dd-

hh.mm.ss.±th:tm
• yyyy-mm-dd-hh.mm.ss.±th

• yyyy-mm-dd-
hh.mm.ss.nnnnnnnnnnnn
±th:tm

• yyyy-mm-dd-
hh.mm.ss.nnnnnnnnnnnn
±th

Blank between date and
time portions, colons in
time portion, blank between
fractional seconds and sign for
time zone.

• yyyy-mm-dd hh:mm:ss ±th:tm
• yyyy-mm-dd hh:mm:ss ±th
• yyyy-mm-dd hh:mm:ss.

±th:tm
• yyyy-mm-dd hh:mm:ss. ±th

• yyyy-mm-dd
hh:mm:ss.nnnnnnnnnnnn
 ±th:tm

• yyyy-mm-dd
hh:mm:ss.nnnnnnnnnnnn
 ±th

Blank between date and time
portions and periods in time
portion.

• yyyy-mm-dd hh.mm.ss±th:tm
• yyyy-mm-dd hh.mm.ss±th
• yyyy-mm-dd hh.mm.ss.±th:tm
• yyyy-mm-dd hh.mm.ss.±th

• yyyy-mm-dd
hh.mm.ss.nnnnnnnnnnnn
±th:tm

• yyyy-mm-dd
hh.mm.ss.nnnnnnnnnnnn
±th

176 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 45. Formats used to specify a value for a data type of TIMESTAMP WITH TIME ZONE (continued)

Description
TIMESTAMP(0) WITH TIME
ZONE1, 3

TIMESTAMP(p) WITH TIME
ZONE 2, 3

Notes:

1. No fractional seconds; shown with and without optional trailing period after seconds
2. p is the number of digits of fractional seconds. nnnnnnnnnnnn can range 1 - 12 instances of n
3. As an additional format, the character T can be substituted as the separator between the date

and time portions of the value.

Special registers
A special register is a storage area that is defined for an application process by Db2 and is used to store
information that can be referenced in SQL statements. A reference to a special register is a reference to
a value provided by the current server. If the value is a string, its CCSID is a default CCSID of the current
server.

The special registers can be referenced as follows:

Chapter 2. Language elements in SQL 177

CURRENT ACCELERATOR

CURRENT APPLICATION COMPATIBILITY

CURRENT APPLICATION ENCODING SCHEME

CURRENT CLIENT_ACCTNG

CLIENT ACCTNG

CURRENT CLIENT_APPLNAME

CLIENT APPLNAME

CURRENT CLIENT_CORR_TOKEN

CURRENT CLIENT_USERID

CLIENT USERID

CURRENT CLIENT_WRKSTNNAME

CLIENT WRKSTNNAME

CURRENT DATE

CURRENT_DATE
1

CURRENT DEBUG MODE

CURRENT DECFLOAT ROUNDING MODE

CURRENT DEGREE

CURRENT EXPLAIN MODE

CURRENT GET_ACCEL_ARCHIVE

CURRENT
LOCALE

LC_CTYPE

CURRENT_LC_CTYPE

CURRENT MAINTAINED
TABLE

TYPES
FOR OPTIMIZATION

CURRENT MEMBER

CURRENT OPTIMIZATION HINT

CURRENT PACKAGE PATH

CURRENT PACKAGESET

CURRENT PATH

CURRENT_PATH

CURRENT PRECISION

CURRENT QUERY ACCELERATION

CURRENT QUERY ACCELERATION WAITFORDATA

CURRENT REFRESH AGE

CURRENT ROUTINE VERSION

CURRENT RULES

CURRENT SCHEMA

CURRENT_SCHEMA
1

CURRENT SERVER

CURRENT_SERVER

CURRENT SQLID

CURRENT TEMPORAL BUSINESS_TIME

CURRENT TEMPORAL SYSTEM_TIME

CURRENT TIME

CURRENT_TIME
1

CURRENT TIMESTAMP

CURRENT_TIMESTAMP
1

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

CURRENT TIME ZONE

CURRENT TIMEZONE

CURRENT_TIMEZONE

SESSION TIME ZONE

SESSION TIMEZONE

SESSION_USER

USER

Notes:
1 The SQL standard uses the form with the underline.

178 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

General rules for special registers

Changing register values
A commit operation might cause special registers to be re-initialized. Whether a special register is
affected by a commit depends on whether the special register has been explicitly set within the
application process. For example, assume that the PATH special register has not been explicitly set with
a SET PATH statement in the application process. After a commit, the value of PATH is re-initialized.
For information on the initialization of PATH, which can take the current value of CURRENT SQLID into
consideration, see “CURRENT SQLID special register” on page 207.

A rollback operation has no effect on the values of special registers. Nor does any SQL statement, with the
following exceptions:

• SQL SET statements can change the values of the following special registers:

– CURRENT ACCELERATOR
– CURRENT APPLICATION COMPATIBILITY
– CURRENT APPLICATION ENCODING SCHEME
– CURRENT DEBUG MODE
– CURRENT DECFLOAT ROUNDING MODE
– CURRENT DEGREE
– CURRENT EXPLAIN MODE
– CURRENT GET_ACCEL_ARCHIVE
– CURRENT LOCALE LC_CTYPE
– CURRENT LOCK TIMEOUT
– CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
– CURRENT OPTIMIZATION HINT
– CURRENT PACKAGE PATH
– CURRENT PACKAGESET
– CURRENT PATH
– CURRENT PRECISION
– CURRENT QUERY ACCELERATION
– CURRENT QUERY ACCELERATION WAITFORDATA
– CURRENT REFRESH AGE
– CURRENT ROUTINE VERSION
– CURRENT RULES
– CURRENT SCHEMA
– CURRENT SQLID7

– CURRENT TEMPORAL BUSINESS_TIME
– CURRENT TEMPORAL SYSTEM_TIME
– ENCRYPTION PASSWORD
– SESSION TIME ZONE

7 If the SET CURRENT SQLID statement is executed in a stored procedure or user-defined function package
that has a dynamic SQL behavior other than run behavior, the SET CURRENT SQLID statement does not
affect the authorization ID that is used for dynamic SQL statements in the package. The dynamic SQL
behavior determines the authorization ID. For more information, see DYNAMICRULES bind option (Db2
Commands).

Chapter 2. Language elements in SQL 179

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptdynamicrules.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptdynamicrules.html

• SQL CONNECT statements can change the value of CURRENT SERVER.

Changing register values from IBM Data Server clients and drivers
In addition to using SQL SET statements, you can use the following IBM Data Server client and driver
interfaces to change the values of most of the special registers that are listed under “Changing register
values” on page 179:

• IBM Data Server Driver for JDBC and SQLJ method DB2DataSource.setSpecialRegisters
• For non-Java clients, the <specialregisters> subsection in the in db2dsdriver.cfg file

Use of these interfaces has the following restrictions:

• You cannot change the values of the following special registers:

– CURRENT APPLICATION ENCODING SCHEME
– CURRENT PACKAGESET

• The special register names are allowed to be in mixed case. Extraneous blanks between keywords are
removed.

• The special register assigned value is stored as specified. The value must be valid for the special
register.

• Special register values cannot be expressions, cannot reference other special registers, and cannot
reference global variables.

• For CURRENT REFRESH AGE, the value 99999999999999 is not supported. Use the value ANY instead.
• Db2 treats all special register values that are passed through the client and driver interfaces as literal

strings. For example, if a specified special register value is the same as the name of a special register,
Db2 stores the special register name, and not the special register value.

Determining register values
You can use various statements to determine the value of a special register. For instance, a SELECT
statement or a SET statement will provide the value of a special register. The following examples find the
value of the CURRENT PRECISION special register:

SELECT CURRENT PRECISION FROM SYSIBM.SYSDUMMY1;

SET :hv = CURRENT PRECISION

CCSIDS for register values
Special registers that contain character strings have an associated CCSID. The particular CCSID depends
on the context in which the special register is referenced. For more information, see Determining the
encoding scheme and CCSID of a string (Introduction to Db2 for z/OS).

Datetime special registers
The datetime registers are named CURRENT DATE, CURRENT TIME, and CURRENT TIMESTAMP. Datetime
special registers are stored in an internal format. When two or more of these registers are implicitly or
explicitly specified in a single SQL statement, they represent the same point in time. A datetime special
register is implicitly specified when it is used to provide the default value of a datetime column.

If the SQL statement in which a datetime special register is used is in a user-defined function or stored
procedure that is within the scope of a trigger, Db2 uses the timestamp for the triggering SQL statement to
determine the special register value.

The values of these special registers are based on:

• The time-of-day clock of the processor for the server executing the SQL statement
• The TIMEZONE parameter for this processor. The TIMEZONE parameter is in SYS1.PARMLIB(CLOCKXX).

180 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html

To evaluate the references when the statement is being executed, a single reading from the time-of-
day clock is incremented by the number of hours, minutes, and seconds specified by the TIMEZONE
parameter. The values derived from this are assumed to be the local date, time, or timestamp, where local
means local to the Db2 that executes the statement. This assumption is correct if the clock is set to local
time and the TIMEZONE parameter is zero or the clock is set to UTC (Coordinated Universal Time) and the
TIMEZONE parameter gives the difference from UTC.

Because the datetime special registers and the CURRENT TIMEZONE special register depend on the
parameter PARMTZ(SYS1.PARMLIB(CLOCKXX)), their values are affected if the local time at the server
is changed by the z/OS system command SET CLOCK. The values of the CURRENT DATE and CURRENT
TIMESTAMP special registers might be affected if the local date at the server is changed by the system
command SET DATE8.

Where special registers are processed
In distributed applications, CURRENT APPLICATION ENCODING SCHEME, CURRENT SERVER, and
CURRENT PACKAGESET are processed locally. All other special registers are processed at the server.

Rules for setting special registers by using profile tables
In remote applications, a special register can be referenced with a value from the profile attributes table.
In addition to general rules, there are rules specific to using special registers set in profiles.

Changing register values
A rollback operation has no effect on the values of special registers.

SET statements for the following special registers can be specified in DSN_PROFILE_ATTRIBUTES table
with the SPECIAL_REGISTER keyword. For detailed instructions, see Setting special registers by using
profile tables (Db2 Administration Guide).

SET special register statement Profile-specific considerations

“SET CURRENT ACCELERATOR
statement” on page 2129

“SET CURRENT APPLICATION
COMPATIBILITY statement” on
page 2130

“SET CURRENT DEBUG MODE
statement” on page 2133

“SET CURRENT DECFLOAT
ROUNDING MODE statement” on
page 2134

“SET CURRENT DEGREE
statement” on page 2136

“SET CURRENT EXPLAIN MODE
statement” on page 2137

“SET CURRENT
GET_ACCEL_ARCHIVE
statement” on page 2138

8 Whether the SET DATE command affects these special registers depends on the system level and the
program temporary fix (PTF) level of the system.

Chapter 2. Language elements in SQL 181

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_settingspecialregisterprofiles.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_settingspecialregisterprofiles.html

SET special register statement Profile-specific considerations

“SET CURRENT LOCALE
LC_CTYPE statement” on page
2139

The following syntax variations are not supported in profiles:

• CURRENT LC_CTYPE
• CURRENT_LC_CTYPE

“SET CURRENT MAINTAINED
TABLE TYPES FOR
OPTIMIZATION statement” on
page 2141

The following syntax variations are not supported in profiles:

• CURRENT MAINTAINED TYPES
• CURRENT MAINTAINED TYPES FOR OPTIMIZATION

“SET CURRENT OPTIMIZATION
HINT statement” on page 2142

“SET CURRENT PACKAGE PATH
statement” on page 2143

“SET CURRENT PRECISION
statement” on page 2148

“SET CURRENT QUERY
ACCELERATION statement” on
page 2148

“SET CURRENT QUERY
ACCELERATION WAITFORDATA
statement” on page 2150

“SET CURRENT REFRESH AGE
statement” on page 2153

The value 99999999999999 is not supported.

Use the value ANY instead.

“SET CURRENT ROUTINE
VERSION statement” on page
2154

“SET CURRENT RULES
statement” on page 2156

“SET CURRENT SQLID
statement” on page 2156

If the SET CURRENT SQLID statement is run in a stored procedure
or user-defined function package that has a dynamic SQL behavior
other than run behavior, the SET CURRENT SQLID statement does
not affect the authorization ID that is used for dynamic SQL
statements in the package. The dynamic SQL behavior determines
the authorization ID.

For more information, see DYNAMICRULES bind option (Db2
Commands).

“SET CURRENT TEMPORAL
BUSINESS_TIME statement” on
page 2158

“SET CURRENT TEMPORAL
SYSTEM_TIME statement” on
page 2160

“SET ENCRYPTION PASSWORD
statement” on page 2161

“SET PATH statement” on page
2163

182 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptdynamicrules.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptdynamicrules.html

SET special register statement Profile-specific considerations

“SET SCHEMA statement” on
page 2166

The following syntax variations are not supported in profiles:

• CURRENT_SCHEMA (with underscore)

“SET SESSION TIME ZONE
statement” on page 2168

The following syntax variations are not supported in profiles:

• TIMEZONE
• TIME ZONE
• SESSION TIMEZONE

The following rules apply for the SET statements for special registers:

• An equal sign (=) must be specified between the special register name and the value that is assigned.
• The value that is specified for assignment must be valid for the special register.
• The value must not be an expression, or reference other special registers or variables, unless the

statement is SET CURRENT PACKAGE PATH.
• The value that is specified for assignment is passed through this interface as a literal string, unless the

statement is SET CURRENT PACKAGE PATH. For example, if a value to be assigned is the same as the
name of a special register, Db2 stores the special register name, and not the special register value.

• The maximum length of a SET statement is 1024 bytes.
• The statement must be a Unicode string and encoded with the appropriate CCSID for the application.

Special register values that are set through the profile table take precedence over values that are set
by the application before the first non-SET SQL statement. For example, values set by a profile override
values that are set through a client connection or data source properties when the connection is first
established. The special register values persist for the lifetime of the connection unless the application
explicitly sets the special register. Special register values that are set explicitly by the application
take precedence over values that are set by the profile table facility and values that are set by the
client connection and data source properties. System directed connections, such as three-part name
references, use the values of the special registers of the requesting Db2 site. For example, if a Java
application establishes a connection to Db2 site 1, the special register values are established with the
profile tables from site 1. Later, if the application runs an SQL statement with an implicit three-part name
connection to Db2 site 2, then the special register values that are established on site 1 are referenced
when the SQL statement runs on site 2.

Special register values that are set through the profile table facility observe the existing rules
for inheritance within a routine as defined by INHERIT SPECIAL REGISTERS or DEFAULT SPECIAL
REGISTERS routine options. After a user-defined function or a stored procedure completes, Db2 restores
all special registers to the values they had before invocation.

As with other special register behavior, commits and rollbacks do not change special register values
regardless of how they were established.

Related tasks
Monitoring and controlling Db2 by using profile tables (Db2 Administration Guide)
Related reference
Special registers
A special register is a storage area that is defined for an application process by Db2 and is used to store
information that can be referenced in SQL statements. A reference to a special register is a reference to
a value provided by the current server. If the value is a string, its CCSID is a default CCSID of the current
server.
Profile tables (Db2 Performance)

Chapter 2. Language elements in SQL 183

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createprofiles.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_profiletables.html

CURRENT ACCELERATOR special register
The CURRENT ACCELERATOR special register specifies a preferred target accelerator or accelerators to
which Db2 sends dynamic SQL queries.

The CURRENT ACCELERATOR special register applies only to dynamic SQL queries. For static SQL queries,
you can use the ACCELERATOR bind option to specify a particular accelerator.

If you have multiple accelerators on which the same set of Db2 tables are accelerated, by default
the workload balancing algorithm (WLB) distributes the queries based on the queue length on each
accelerator. When the CURRENT ACCELERATOR special register names a particular eligible accelerator
server, Db2 considers sending eligible SQL to that server before it sends it to other accelerator servers. If
the accelerator server that is named by the CURRENT ACCELERATOR isn't available, Db2 considers other
available accelerator servers.

FL 509 For executing DML statements on an accelerator-only table that is defined in multiple
accelerators, the CURRENT ACCELERATOR special register must specify one of the accelerators in which
the table is defined.

Specifying a particular target accelerator is useful in the following situations:

• To direct queries to different accelerators based on the priorities of the workload. You can direct higher
priority queries to the fastest, highest capacity accelerator, and you can direct lower priority queries to a
slower accelerator.

• To avoid increased elapsed times that can occur when queries are sent to a remote accelerator. The
WLB algorithm doesn't address the latency that occurs when a query is sent to a remote accelerator. If
your environment includes both locally deployed accelerators and remote accelerators (for example, for
disaster recovery), you can send higher priority queries to a local accelerator.

The data type is VARCHAR(8).

The initial value of CURRENT ACCELERATOR is determined by one of the following settings:

• If specified for the bind of a package, the ACCELERATOR bind option. This bind option does not have a
default value.

• Otherwise, the default setting of CURRENT ACCELERATOR is blank (no preferred accelerator).

Example

The following statement sets the CURRENT ACCELERATOR special register so that ACCEL1 is the
preferred accelerator.

SET CURRENT ACCELERATOR = ACCEL1;

Related reference
“SET CURRENT ACCELERATOR statement” on page 2129
The SET CURRENT ACCELERATOR statement changes the value of the CURRENT ACCELERATOR special
register.
ACCELERATOR bind option (Db2 Commands)

CURRENT APPLICATION COMPATIBILITY special register
CURRENT APPLICATION COMPATIBILITY specifies the application compatibility level support for
dynamic SQL statements in packages.

The data type is VARCHAR(10).

Set the value with the SET CURRENT APPLICATION COMPATIBILITY statement.

For packages, the initial value is determined by the value of the APPLCOMPAT bind option. For a user-
defined functions or stored procedures, the initial value is inherited according to the rules in “Special
registers in a user-defined function or a stored procedure” on page 215. For advanced triggers, the initial
value is V12R1.

184 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptaccelerator.html

The following CURRENT APPLICATION COMPATIBILITY values are supported to specify the application
compatibility behavior of dynamic SQL statements:

VvvRrMmmm

Compatibility with the behavior of the identified Db2 function level. For example, V12R1M510
specifies compatibility with the highest available Db2 12 function level. The equivalent function level
or higher must be activated.

For the new capabilities that become available in each application compatibility level, see:

• SQL changes in Db2 13 application compatibility levels
• SQL changes in Db2 12 application compatibility levels

Tip: Extra program preparation steps might be required to increase the application compatibility level
for applications that use data server clients or drivers to access Db2 for z/OS. For more information,
see Setting application compatibility levels for data server clients and drivers (Db2 Application
programming and SQL).

V12R1
Compatibility with the behavior of Db2 12 function level 500. This value has the same result as
specifying V12R1M500.

V11R1
Compatibility with the behavior of Db2 11 new-function mode. After migration to Db2 12, this
value has the same result as specifying V12R1M100. For more information, see V11R1 application
compatibility level (Db2 Application programming and SQL)

V10R1
Compatibility with the behavior of DB2 10 new-function mode. For more information, see V10R1
application compatibility level (Db2 Application programming and SQL).

Example

The following statement sets the host variable CS to the compatibility level.

 EXEC SQL SET :CS = CURRENT APPLICATION COMPATIBILITY;

Related reference
BIND and REBIND options for packages, plans, and services (Db2 Commands)
SET CURRENT APPLICATION COMPATIBILITY statement
The SET CURRENT APPLICATION COMPATIBILITY statement assigns a value to the CURRENT
APPLICATION COMPATIBILITY special register. This special register allows users to control the package
compatibility level behavior for dynamic SQL.
APPL COMPAT LEVEL field (APPLCOMPAT subsystem parameter) (Db2 Installation and Migration)
-ACTIVATE command (Db2) (Db2 Commands)

CURRENT APPLICATION ENCODING SCHEME special register
CURRENT APPLICATION ENCODING SCHEME specifies which encoding scheme is to be used for dynamic
statements. It allows an application to indicate the encoding scheme that is used to process data. This
register is not supported in REXX applications or in stored procedures written in REXX.

The value contained in the special register is a character representation of a CCSID. Although you can use
the values ASCII, EBCDIC, or UNICODE to set the special register, what is stored in the special register is
a character representation of the numeric CCSID that corresponds to the value used in the SET CURRENT
APPLICATION ENCODING SCHEME statement. The value ASCII, EBCDIC, or UNICODE is not stored. The
CCSID_ENCODING scalar function can be used to get a value of ASCII, EBCDIC, or UNICODE from a
numeric CCSID value.

Chapter 2. Language elements in SQL 185

https://www.ibm.com/docs/en/SSEPEK_13.0.0/wnew/src/tpc/db2z_13_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_applcompat.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_activate.html

The data type is CHAR(8). If necessary, the value is padded on the right with blanks so that its length is 8
bytes.

For stored procedures and user-defined functions, the initial value of the CURRENT APPLICATION
ENCODING SCHEME special register is determined by the value of the ENCODING bind option for the
package that is associated with the procedure or function, or by the APPLICATION ENCODING SCHEME
option of the CREATE FUNCTION, ALTER FUNCTION, CREATE PROCEDURE, or ALTER PROCEDURE
statement for a compiled SQL function or a native SQL procedure. If the option was not specified, the
initial value is the value of the field DEFAULT APPLICATION ENCODING SCHEME field on installation panel
DSNTIPF.

For basic triggers, the initial value of the CURRENT APPLICATION ENCODING SCHEME special register
is Unicode. For advanced triggers, the initial value of the CURRENT APPLICATION ENCODING SCHEME
special register is the value of field DEFAULT APPLICATION ENCODING SCHEME on installation panel
DSNTIPF.

Example
The CURRENT APPLICATION ENCODING SCHEME special register can be used like any other special
register:

 EXEC SQL VALUES(CURRENT APPLICATION ENCODING SCHEME) INTO :HV1;
 EXEC SQL INSERT INTO T1 VALUES (CURRENT APPLICATION ENCODING SCHEME);
 EXEC SQL SET :HV1 = CURRENT APPLICATION ENCODING SCHEME;
 EXEC SQL SELECT C1 FROM T1 WHERE C1 = CURRENT APPLICATION ENCODING SCHEME;

Related reference
SET CURRENT APPLICATION ENCODING SCHEME
The SET CURRENT APPLICATION ENCODING SCHEME statement assigns a value to the CURRENT
APPLICATION ENCODING SCHEME special register. This special register allows users to control which
encoding scheme will be used for dynamic SQL statements after the SET statement has been executed.

CURRENT CLIENT_ACCTNG special register
CURRENT CLIENT_ACCTNG contains the value of the accounting string from the client information that is
specified for the connection.

The data type is VARCHAR(255).

The value of the special register can be changed by using one of the following application programming
interfaces (APIs):

• Set Client Information (sqleseti)
• SQLSetConnectAttr (ODBC)
• java.sql.Connection.setClientInfo (JDBC)
• The RRS DSNRLI SIGNON, AUTH SIGNON, CONTEXT SIGNON, or SET_CLIENT_ID function
• The WLM_SET_CLIENT_INFO stored procedure

The value for the accounting string will be obtained first from the accounting string that is set by
the SET_CLIENT_ID function, AUTH SIGNON function, or the Set Client Information (sqleseti) API, or
alternatively from the accounting token set by RRSAF if accounting string has not been set.

The application compatibility value of the package determines the length and blank padding of the
CURRENT CLIENT_ACCTNG special register returned.

If one of these APIs is not used to set the value of the special register, an empty string is returned when
the special register is referenced.

CICS attachment facility

For CICS tasks that access Db2, the CICS attachment facility normally does not pass an accounting
string to Db2, unless the origin data for the CICS task contains adapter data that specifies the origin of

186 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

the CICS task. If origin adapter data is present, the CICS attachment facility passes the data to Db2,
preceded by an eye-catcher. For example:

CICS_ORIGIN_DATA:ADAPTER_DATA_1_2_3:adapter-data

adapter-data is the origin adapter data.

Example:

The following statement assigns the current value of the accounting string for a connection to host
variable :ACCT_STRING.

SET :ACCT_STRING = CURRENT CLIENT_ACCTNG

Related concepts
RRSAF connection functions (Db2 Application programming and SQL)
Application compatibility levels in Db2 12 (Db2 Application programming and SQL)
Related tasks
Providing extended client information to the data source with IBM Data Server Driver for JDBC and
SQLJ-only methods (Db2 Application Programming for Java)
Related reference
WLM_SET_CLIENT_INFO stored procedure
This procedure allows the caller to set client information that is associated with the current connection at
the Db2 for z/OS server.
sqle_client_info data structure

CURRENT CLIENT_APPLNAME special register
CURRENT CLIENT_APPLNAME contains the value of the application name from the client information that
is specified for the connection.

The data type is VARCHAR(255).

The default application name varies, depending on the connection:

• If the connection is from a remote application client driver, the default is the application name as
supplied by the driver. Default values set by the IBM Data Server Driver for JDBC and SQLJ can be
obtained from the DatabaseMetaData.getClientInfoProperties method.

• If the connection is from a remote Db2 12 for z/OS application, the default varies depending on which
attachment facility is used:
TSO attachment facility

The default application name is one of the following cases:

– The TSO logon user ID when the application runs in TSO foreground using TSO online applications
like SPUFI.

– The job name when the application runs in TSO background using TSO batch applications like
DSNTEP2.

RRS attachment facility interface
The correlation ID that is provided at the call of the RRS DSNRLI SIGNON function.

Call attachment facility
The job name.

CICS attachment facility
If the origin data for the CICS task contains adapter data that indicates the origin of the CICS task,
the CICS attachment facility passes the following items to Db2:

– An eye-catcher string
– The ID of the adapter that set the origin data

Chapter 2. Language elements in SQL 187

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_rrsafconnectionfunctions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applicationcompatibility.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_tjvstcli.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_tjvstcli.html
https://www.ibm.com/docs/en/db2/11.5?topic=structures-sqle-client-info

That information is used as the default application name. For example:

CICS_ORIGIN_DATA:ADAPTER_ID:name

name is one of the following values:

– IBM_zOS_Connect_CICS_SP for a CICS task that was initiated as a result of an inbound request
from z/OS Connect

– IBM WebSphere MQ for z/OS for a CICS task that was initiated by the CICS-MQ trigger monitor or
CICS-MQ bridge

If there is no adapter data in the CICS origin data, no data is passed from CICS to Db2. Db2 uses
the first 8 bytes of the correlation ID. In particular, the correlation ID is a 12-byte string for a CICS
transaction, where the first 8 bytes are used as the default application name.

IMS Attachment facility
An 8-byte string, the Program Specification Block (PSB) name, or the program name.

The value of the special register can be changed by using one of the following application programming
interfaces (APIs):

• SQLE_CLIENT_INFO_APPLNAME (sqleseti)
• SQLSetConnectAttr (ODBC)
• java.sql.Connection.setClientInfo (JDBC)
• The RRS DSNRLI SIGNON, AUTH SIGNON, CONTEXT SIGNON, or SET_CLIENT_ID function
• The WLM_SET_CLIENT_INFO stored procedure

When the client application name is explicitly set, it overwrites the default application name described
above and is used as the client application name.

The application compatibility value of the package determines the length and blank padding of the
CURRENT CLIENT_APPLNAME special register returned.

If one of these APIs is not used to set the value of the special register, an empty string is returned when
the special register is referenced.

Monitoring remote application statistics based on CURRENT CLIENT_APPLNAME
(IFCID 411)
You can use start a trace that includes statistics class 10 (IFCID 411) to monitor statistics for remote
DRDA applications based on the CURRENT CLIENT_APPLNAME special register. For more information, see
Statistics trace (Db2 Performance).

Important: Monitoring of applications with IFCID 411 is limited to 6000 unique user ID values. If this
limit is exceeded, Db2 issues DSNL030I with reason code 00D3105D and stops collecting the statistics
for any new application names until DDF is restarted. For best results, use CLIENT_CORR_TOKEN special
register to identify individual connections.

Example

Select the departments that are allowed to use the application that is being used in this connection.

 SELECT DEPT
 FROM DEPT_APPL_MAP
 WHERE APPL_NAME = CURRENT CLIENT_APPLNAME

Related concepts
RRSAF connection functions (Db2 Application programming and SQL)
Application compatibility levels in Db2 12 (Db2 Application programming and SQL)

188 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_statisticstrace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_rrsafconnectionfunctions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applicationcompatibility.html

Related tasks
Providing extended client information to the data source with IBM Data Server Driver for JDBC and
SQLJ-only methods (Db2 Application Programming for Java)
Related reference
WLM_SET_CLIENT_INFO stored procedure
This procedure allows the caller to set client information that is associated with the current connection at
the Db2 for z/OS server.
sqle_client_info data structure

CURRENT CLIENT_CORR_TOKEN special register
CURRENT CLIENT_CORR_TOKEN contains the value of the client correlation token from the client
information that is specified for the connection.

The data type is VARCHAR(255).

The value of the special register can be changed by using one of the following application programming
interfaces (APIs):

• SQLE_CLIENT_INFO_PROGRAMID (sqleseti)
• java.sql.Connection.setClientInfo (JDBC)
• The RRS DSNRLI SIGNON, AUTH SIGNON, CONTEXT SIGNON, or SET_CLIENT_ID function

If one of these APIs is not used to set the value of the special register, the value defaults to the correlation
identifier from the client driver such as an application identifier. If a correlation identifier is not provided
by the client system, an LUWID (Logical Unit of Work ID) is generated which becomes the correlation
token.

Example: Select the departments that are allowed to use the correlation token that is being used in this
connection.

 SELECT DEPT
 FROM DEPT_CORR_TOKEN_MAP
 WHERE CORR_TOKEN_NAME = CURRENT CLIENT_CORR_TOKEN

Related concepts
RRSAF connection functions (Db2 Application programming and SQL)
Related tasks
Providing extended client information to the data source with IBM Data Server Driver for JDBC and
SQLJ-only methods (Db2 Application Programming for Java)
Related reference
WLM_SET_CLIENT_INFO stored procedure
This procedure allows the caller to set client information that is associated with the current connection at
the Db2 for z/OS server.
sqle_client_info data structure

CURRENT CLIENT_USERID special register
CURRENT CLIENT_USERID contains the value of the client user ID from the client information that is
specified for the connection.

The default client user ID is the primary authorization ID used to establish the connection.

The data type is VARCHAR(255).

The value of the special register can be changed by using one of the following application programming
interfaces (APIs):

• SQLE_CLIENT_INFO_USERID (sqleseti)
• SQLSetConnectAttr (ODBC)

Chapter 2. Language elements in SQL 189

https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_tjvstcli.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_tjvstcli.html
https://www.ibm.com/docs/en/db2/11.5?topic=structures-sqle-client-info
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_rrsafconnectionfunctions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_tjvstcli.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_tjvstcli.html
https://www.ibm.com/docs/en/db2/11.5?topic=structures-sqle-client-info

• java.sql.Connection.setClientInfo (JDBC)
• The RRS DSNRLI SIGNON, AUTH SIGNON, CONTEXT SIGNON, or SET_CLIENT_ID function
• The WLM_SET_CLIENT_INFO stored procedure

When the client user ID is explicitly set, it overwrites the primary authorization id described above and is
used as the client user ID.

If the value set by the API exceeds 128 bytes, it is truncated to 128 bytes.

The application compatibility value of the package determines the length and blank padding of the
CURRENT CLIENT_USERID special register returned.

Monitoring remote user statistics based on CURRENT CLIENT_USERID (IFCID 412)
You can start a trace that includes statistics class 11 (IFCID 412) to monitor statistics for remote DRDA
users based on the CURRENT CLIENT_USERID special register. For more information, see Statistics trace
(Db2 Performance).

Important: Monitoring of applications with IFCID 412 is limited to 6000 unique user ID values. If this
limit is exceeded, Db2 issues DSNL030I with reason code 00D3105E and stops collecting the statistics
for any new user IDs until DDF is restarted. For best results, use the CLIENT_CORR_TOKEN special
register to identify individual connections.

Example

Find out in which department the current client user ID works.

 SELECT DEPT
 FROM DEPT_USERID_MAP
 WHERE USER_ID = CURRENT CLIENT_USERID

Related concepts
RRSAF connection functions (Db2 Application programming and SQL)
Application compatibility levels in Db2 12 (Db2 Application programming and SQL)
Related tasks
Providing extended client information to the data source with IBM Data Server Driver for JDBC and
SQLJ-only methods (Db2 Application Programming for Java)
Related reference
WLM_SET_CLIENT_INFO stored procedure
This procedure allows the caller to set client information that is associated with the current connection at
the Db2 for z/OS server.
sqle_client_info data structure
Client info properties support by the IBM Data Server Driver for JDBC and SQLJ (Db2 Application
Programming for Java)

CURRENT CLIENT_WRKSTNNAME special register
CURRENT CLIENT_WRKSTNNAME contains the value of the workstation name from the client information
that is specified for the connection.

The data type is VARCHAR(255).

The default workstation name varies, depending on the connection:

• If the connection originates from a Db2 12 for z/OS requester, it is the client hostname.
• If the connection is from a remote application client driver, it is the client hostname where the request is

submitted. Default values that are set by the IBM Data Server Driver for JDBC and SQLJ can be obtained
from the DatabaseMetaData.getClientInfoProperties method.

• If the connection is from a remote Db2 12 for z/OS application, the default varies depending on which
attachment facility is used:

190 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_statisticstrace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_statisticstrace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_rrsafconnectionfunctions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applicationcompatibility.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_tjvstcli.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_tjvstcli.html
https://www.ibm.com/docs/en/db2/11.5?topic=structures-sqle-client-info
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_r0052001.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_r0052001.html

TSO attachment facility
The default workstation name is one of the following cases:

– The default workstation name is 'TSO' when the application runs in TSO foreground with TSO
online applications like SPUFI.

– The default workstation name is 'BATCH' when the application runs in TSO background with TSO
batch applications like DSNTEP2.

RRS attachment facility interface
The default workstation name is 'RRSAF

Call attachment facility
The default workstation name is 'DB2CALL'.

CICS attachment facility
The default workstation name is the CICS region name.

IMS Attachment facility
The default workstation name is IMS region ID.

The value of the special register can be changed by using one of the following application programming
interfaces (APIs):

• SQLE_CLIENT_INFO_WRKSTNNAME (sqleseti)
• SQLSetConnectAttr (ODBC)
• java.sql.Connection.setClientInfo (JDBC)
• The RRS DSNRLI SIGNON, AUTH SIGNON, CONTEXT SIGNON, or SET_CLIENT_ID function
• The WLM_SET_CLIENT_INFO stored procedure

When the client workstation name is explicitly set, it overwrites the default workstation name described
above and is used as the client workstation name.

The application compatibility value of the package determines the length and blank padding of the
CURRENT CLIENT_WRKSTNNAME special register returned.

If one of these APIs is not used to set the value of the special register, an empty string is returned when
the special register is referenced.

Example: Get the name of the workstation that is being used in this connection.

 SET :WS_NAME = CURRENT CLIENT_WRKSTNNAME

Related concepts
RRSAF connection functions (Db2 Application programming and SQL)
Application compatibility levels in Db2 12 (Db2 Application programming and SQL)
Related tasks
Providing extended client information to the data source with IBM Data Server Driver for JDBC and
SQLJ-only methods (Db2 Application Programming for Java)
Related reference
WLM_SET_CLIENT_INFO stored procedure
This procedure allows the caller to set client information that is associated with the current connection at
the Db2 for z/OS server.
sqle_client_info data structure
Client info properties support by the IBM Data Server Driver for JDBC and SQLJ (Db2 Application
Programming for Java)

Chapter 2. Language elements in SQL 191

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_rrsafconnectionfunctions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applicationcompatibility.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_tjvstcli.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_tjvstcli.html
https://www.ibm.com/docs/en/db2/11.5?topic=structures-sqle-client-info
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_r0052001.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_r0052001.html

CURRENT DATE special register
The CURRENT DATE special register specifies a date that is based on a reading of the time-of-day clock
when the SQL statement is executed at the current server.

If this special register is used more than one time within a single SQL statement, or used with CURRENT
TIME or CURRENT TIMESTAMP within a single statement, all values are based on a single clock reading.9

The value of CURRENT DATE in a user-defined function or stored procedure is inherited according to
the rules in Table 47 on page 215. For other applications, the date is derived by the Db2 that executes
the SQL statement that refers to the special register. For a description of how the date is derived, see
Datetime special registers.

Specifying CURRENT_DATE is equivalent to specifying CURRENT DATE.

Example

Display the average age of employees.

 SELECT AVG(YEAR(CURRENT DATE - BIRTHDATE))
 FROM DSN8C10.EMP;

CURRENT DEBUG MODE special register
CURRENT DEBUG MODE specifies the default value for the DEBUG MODE option when advanced triggers
and certain routines are created. The DEBUG MODE option specifies whether the trigger or routine should
be built with the ability to run in debugging mode.

CURRENT DEBUG MODE specifies the default value for the DEBUG MODE option of the following
statements:

• ALTER FUNCTION for a new version of an SQL scalar function
• ALTER PROCEDURE for a new version of a native SQL procedure
• ALTER TRIGGER (advanced) for a new version of a trigger
• CREATE FUNCTION for an SQL scalar function
• CREATE PROCEDURE for a Java procedure
• CREATE PROCEDURE for a native SQL procedure
• CREATE TRIGGER (advanced) for an advanced trigger

The data type is VARCHAR(8). The following values are valid:

• ALLOW — Specifies that the routine or trigger can be run in debugging mode.
• DISALLOW — Specifies that the routine or trigger cannot be run in debugging mode. A subsequent

ALTER statement can change the DEBUG MODE option to allow the routine or trigger to run in debugging
mode.

• DISABLE — Specifies that the routine or trigger can never be run in debugging mode. When DISABLE
is in effect, the routine or trigger cannot be changed to run in debugging mode. A subsequent ALTER
statement cannot change the DEBUG MODE option to allow or disallow the routine or trigger to run in
debugging mode.

The value of CURRENT DEBUG MODE in a user-defined function, stored procedure, or trigger is
determined according to the rules in Table 47 on page 215. In other contexts the initial value of CURRENT
DEBUG MODE is DISALLOW.

You can change the value of the CURRENT DEBUG MODE special register by running the SET CURRENT
DEBUG MODE statement.

9 Except for the case of a non-atomic multiple row INSERT or MERGE statement.

192 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example

The following statement sets the host variable DEBUG_MODE_OPT to the value of the CURRENT DEBUG
MODE special register.

 VALUES CURRENT DEBUG MODE INTO :DEBUG_MODE_OPT;

Related reference
SET CURRENT DEBUG MODE statement
The SET CURRENT DEBUG MODE statement assigns a value to the CURRENT DEBUG MODE special
register.

CURRENT DECFLOAT ROUNDING MODE special register
CURRENT DECFLOAT ROUNDING MODE specifies the default rounding mode that is used for DECFLOAT
values.

The data type is VARCHAR(128). The following rounding modes are supported:

• ROUND_CEILING — rounds the value towards positive infinity. If all of the discarded digits are zero or if
the sign is negative the result is unchanged other than the removal of the discarded digits. Otherwise,
the result coefficient is incremented by 1.

• ROUND_DOWN — rounds the value towards 0 (truncation). The discarded digits are ignored.
• ROUND_FLOOR — rounds the value towards negative infinity. If all of the discarded digits are zero or if

the sign is positive the result is unchanged other than the removal of discarded digits. Otherwise, the
sign is negative and the result coefficient is incremented by 1.

• ROUND_HALF_DOWN — rounds the value to the nearest value; if the values are equidistant, rounds the
value towards zero. If the discarded digits represent greater than half (0.5) of the value of a one in the
next left position then the result coefficient is incremented by 1. Otherwise the discarded digits are
ignored. This rounding mode is not recommended when creating a portable application because it is not
supported by the IEEE draft standard for floating-point arithmetic.

• ROUND_HALF_EVEN — rounds the value to the nearest value; if the values are equidistant, rounds the
value so that the final digit is even. If the discarded digits represents greater than half (0.5) of the value
of one in the next left position then the result coefficient is incremented by 1. If they represent less than
half, then the result coefficient is not adjusted (that is, the discarded digits are ignored). Otherwise the
result coefficient is unaltered if its rightmost digit is even, or is incremented by 1 if its rightmost digit is
odd (to make an even digit).

• ROUND_HALF_UP — rounds the value to the nearest value; if the values are equidistant, rounds the
value away from zero. If the discarded digits represent greater than or equal to half (0.5) of the value
of one in the next left position then the result coefficient is incremented by 1. Otherwise the discarded
digits are ignored.

• ROUND_UP — rounds the value away from 0. If all of the discarded digits are zero the result is
unchanged other than the removal of discarded digits. Otherwise, the result coefficient is incremented
by 1. This rounding mode is not recommended when creating a portable application because it is not
supported by the IEEE draft standard for floating-point arithmetic.

The initial value of CURRENT DECFLOAT ROUNDING MODE is the value of the ROUNDING bind option or
the native SQL procedure option. If the ROUNDING option is not specified, the initial value is the value of
the DEF DECFLOAT ROUND MODE field on installation panel DSNTIPF.

The value of CURRENT DECFLOAT ROUNDING MODE in a user-defined function or stored procedure is
inherited according to the rules in Table 47 on page 215.

You can change the value of the CURRENT DECFLOAT ROUNDING MODE by executing the statement SET
CURRENT DECFLOAT ROUNDING MODE.

Example: Set the DECFLOAT rounding mode to ROUND_CEILING:

 SET CURRENT DECFLOAT ROUNDING MODE = 'ROUND_CEILING';

Chapter 2. Language elements in SQL 193

Related reference
SET CURRENT DECFLOAT ROUNDING MODE statement
The SET CURRENT DECFLOAT ROUNDING MODE statement assigns a value to the CURRENT DECFLOAT
ROUNDING MODE special register. The special register sets the default rounding mode that is used with
decimal floating point values (DECFLOAT).

CURRENT DEGREE special register
CURRENT DEGREE specifies the degree of parallelism for the execution of queries that are dynamically
prepared by the application process.

The data type of the register is CHAR(3) and the only valid values are 1 (padded on the right with two
blanks) and ANY.

If the value of CURRENT DEGREE is 1 when a query is dynamically prepared, the execution of that query
will not use parallelism. If the value of CURRENT DEGREE is ANY when a query is dynamically prepared,
the execution of that query can involve parallelism.

The initial value of CURRENT DEGREE is determined by the value of field CURRENT DEGREE on
installation panel DSNTIP8. The default for the initial value of that field is 1 unless your installation
has changed it to be ANY by modifying the value in that field. The initial value of CURRENT DEGREE in a
user-defined function or stored procedure is inherited according to the rules in Table 47 on page 215.

You can change the value of the register by executing the statement SET CURRENT DEGREE.

CURRENT DEGREE is a register at the database server. Its value applies to queries that are dynamically
prepared at that server and to queries that are dynamically prepared at another Db2 subsystem as a
result of the use of a Db2 private connection between that server and that Db2 subsystem.

Example: The following statement inhibits parallelism:

 SET CURRENT DEGREE = '1';

Related concepts
Parallel processing (Db2 Performance)
Related tasks
Enabling parallel processing (Db2 Performance)
Disabling query parallelism (Db2 Performance)
Related reference
SET CURRENT DEGREE statement
The SET CURRENT DEGREE statement assigns a value to the CURRENT DEGREE special register.
CURRENT DEGREE field (CDSSRDEF subsystem parameter) (Db2 Installation and Migration)

CURRENT EXPLAIN MODE special register
The CURRENT EXPLAIN MODE special register contains the values that control the EXPLAIN behavior in
regards to eligible dynamic SQL statements.

This facility generates and inserts EXPLAIN information into the EXPLAIN tables. Possible values for the
CURRENT EXPLAIN MODE special register are YES, NO, and EXPLAIN. The data type is VARCHAR(128).

NO
Disable the ability to use EXPLAIN. No EXPLAIN information is kept. NO is the initial value of the
EXPLAIN MODE special register.

YES
Enables the EXPLAIN facility and causes EXPLAIN information to be inserted into the EXPLAIN tables
for eligible dynamic SQL statements after the statement is prepared and executed. All dynamic SQL
statements are compiled and executed normally.

194 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_parallelprocessing.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_enableparallelprocess.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_disablequeryparallel.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_cdssrdef.html

EXPLAIN
Enables the EXPLAIN facility and causes EXPLAIN information to be captured for any eligible dynamic
SQL statement after the statement is prepared. This setting behaves similarly to YES, however,
dynamic statements, except for SET statements, are not executed.

For values YES and EXPLAIN, prepared statements are not saved into the dynamic statement cache.

The initial value is NO. The initial value of CURRENT EXPLAIN MODE in a user-defined function or stored
procedure is inherited according to the rules in “Special registers in a user-defined function or a stored
procedure” on page 215.

The value can be changed using the SET CURRENT EXPLAIN MODE statement.

Prerequisites for using CURRENT EXPLAIN MODE:

• Both the PLAN_TABLE and DSN_STATEMENT_CACHE_TABLE exist on the Db2 server and the table
names are qualified with the current SQLID that is used when running the application.

• The Dynamic statement cache is enabled.
• The client application contains some explainable statements.

Required authorization for using CURRENT EXPLAIN MODE:
If CURRENT EXPLAIN MODE is set to YES or EXPLAIN, the privilege set for the underlying statement
must have the necessary authorization to use the EXPLAIN facility.

When the EXPLAIN privilege is in effect and CURRENT EXPLAIN MODE is set to EXPLAIN, any
SQLCODE that is returned due to the EXPLAIN privilege override any SQLCODE that is returned due to
CURRENT EXPLAIN MODE being set to EXPLAIN.

Considerations when using the CURRENT EXPLAIN MODE special register to explain the acceleration
of rowset queries:

A rowset query cannot be passed to an accelerator server for processing in the following cases:

• If the rowset query is run remotely
• If the rowset query is declared WITH RETURN
• If the rowset query is run under an SQL PL routine

When a rowset query is run with the CURRENT EXPLAIN MODE special register set to YES or EXPLAIN,
the EXPLAIN output indicates whether the local execution of a rowset cursor can be accelerated,
depending on the content of the query. The EXPLAIN output will always indicate that remote rowset
queries, rowset queries that are declared WITH RETURN, and rowset queries that run under an SQL PL
routine cannot be accelerated.

Related reference
SET CURRENT EXPLAIN MODE statement
The SET CURRENT EXPLAIN MODE statement assigns a value to the CURRENT EXPLAIN MODE special
register.

CURRENT GET_ACCEL_ARCHIVE special register
The CURRENT GET_ACCEL_ARCHIVE special register specifies whether a dynamic SQL query that
references a table that is archived on an accelerator server uses the archived data. The special register
does not apply to static SQL queries.

The data type is VARCHAR(255).

Valid values are:

NO
Specifies that if a table is archived on an accelerator server, and a query references that table, the
query does not use the data that is archived.

YES
Specifies that if a table is archived on an accelerator server, and a query references that table, the
query uses the data that is archived.

Chapter 2. Language elements in SQL 195

The initial value of CURRENT GET_ACCEL_ARCHIVE is determined by one of the following settings:

• The value of Db2 subsystem parameter GET_ACCEL_ARCHIVE. The default for the initial value of that
subsystem parameter is NO unless your installation has changed the value.

• If specified for the bind of a package, the GETACCELARCHIVE bind option. This behavior enables the
GETACCELARCHIVE bind option to be used to specify the acceleration archive behavior for dynamic SQL
queries and not only static SQL queries. This bind option does not have a default value.

The initial value of CURRENT GET_ACCEL_ARCHIVE in a user-defined function or stored procedure is
inherited according to the rules in “Special registers in a user-defined function or a stored procedure” on
page 215.

You can change the value of the register by executing the SET CURRENT GET_ACCEL_ARCHIVE
statement.

The precedence order (lowest to highest) for setting the value of the special register is as follows:

• The GET_ACCEL_ARCHIVE subsystem parameter
• The GETACCELARCHIVE bind option, if specified
• An explicit SET CURRENT GET_ACCEL_ARCHIVE statement

Example: The following statement sets the CURRENT GET_ACCEL_ARCHIVE special register so that
when a table is archived on an accelerator server, the table reference does not include the archived data.

 SET CURRENT GET_ACCEL_ARCHIVE=NO;

Related tasks
Enabling acceleration of SQL queries (Db2 Performance)
Related reference
SET CURRENT GET_ACCEL_ARCHIVE statement
The SET CURRENT GET_ACCEL_ARCHIVE statement changes the value of the CURRENT
GET_ACCEL_ARCHIVE special register.

CURRENT LOCALE LC_CTYPE special register
CURRENT LOCALE LC_CTYPE specifies the LC_CTYPE locale that will be used to execute SQL statements
that use a built-in function that references a locale. Functions LCASE, UCASE, and TRANSLATE (with a
single argument) refer to the locale when they are executed.

The data type is CHAR(50). If necessary, the value is padded on the right with blanks so that its length is
50 bytes. The following values are supported:

blank
For a conversion to lowercase, SBCS uppercase characters A-Z are converted to SBCS lowercase
characters a-z, and characters with diacritical marks are not converted. If the string contains MIXED
or DBCS characters, full-width Latin uppercase characters A-Z are converted to full-width lowercase
characters a-z.

For a conversion to uppercase, SBCS lowercase characters a-z are converted to SBCS uppercase
characters A-Z, and characters with diacritical marks are not converted. If the string contains MIXED
or DBCS characters, full-width Latin lowercase characters a-z are converted to full-width uppercase
characters A-Z.

For optimal performance, specify a blank string unless your data must be processed by using rules
that are defined by a specific locale.

UNI
Case conversions use both the NORMAL and SPECIAL casing capabilities as described in Select the
conversions (z/OS: Unicode Services User’s Guide and Reference). UNI cannot be used with EBCDIC
data.

196 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_enablequeryaccel.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/selconv.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/selconv.htm

UNI_60
The conversion uses Unicode Standard 6.0.0 and the NORMAL casing capability, as described in
Select the conversions (z/OS: Unicode Services User’s Guide and Reference). You must not specify
UNI_60 when string-expression is EBCDIC data.

UNI_90
The conversion uses Unicode Standard 9.0.0 and the NORMAL casing capability, as described in
Select the conversions (z/OS: Unicode Services User’s Guide and Reference). You must not specify
UNI_90 when string-expression is EBCDIC data.

UNI_SIMPLE
Case conversions use the NORMAL casing capabilities as described in Select the conversions (z/OS:
Unicode Services User’s Guide and Reference). UNI_SIMPLE cannot be used with EBCDIC data.

locale name
The locale defines the rules for conversion to uppercase or lowercase characters. For information
about locales and their naming conventions for EBCDIC data, see Locale naming conventions (XL C/C+
+ Programming Guide). For information about locales for Unicode and ASCII data, see z/OS Unicode
Services User’s Guide and Reference.

The initial value of CURRENT LOCALE LC_CTYPE is determined by the value of field LOCALE LC_CTYPE on
installation panel DSNTIPF. The default for the initial value of that field is blank unless your installation
has changed the value of that field. The initial value of CURRENT LOCALE LC_CTYPE in a user-defined
function or stored procedure is inherited according to the rules in Table 47 on page 215.

You can change the value of the register by executing the statement SET CURRENT LOCALE LC_CTYPE.

Some examples of locales for EBCDIC data include:

• Fr_BE
• Fr_FR@EURO
• En_US
• Ja_JP

Example
Save the value of current register CURRENT LOCALE LC_CTYPE in host variable HV1, which is defined
as VARCHAR(50).

 EXEC SQL VALUES(CURRENT LOCALE LC_CTYPE) INTO :HV1;

Related concepts
z/OS Unicode Services User’s Guide and Reference
Related reference
SET CURRENT LOCALE LC_CTYPE statement
The SET CURRENT LOCALE LC_CTYPE statement assigns a value to the CURRENT LOCALE LC_CTYPE
special register. The special register allows control over the LC_CTYPE locale for statements that use a
built-in function that refers to a locale, such as LCASE, UCASE, and TRANSLATE (with a single argument).
z/OS XL C/C++ Programming Guide

CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special register
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION specifies a value that identifies the types of
objects that can be considered to optimize the processing of dynamic SQL queries. This register contains
a keyword representing table types.

The data type is VARCHAR(255).

The initial value of CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION is determined by the
value of field CURRENT MAINT TYPES on installation panel DSNTIP81. The default for the initial value
of that field is SYSTEM unless your installation has changed the value of that field. The initial value of
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION in a user-defined function or stored procedure
is inherited according to the rules in Table 47 on page 215.

Chapter 2. Language elements in SQL 197

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/selconv.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/selconv.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/selconv.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/selconv.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cbcpx01/locnamc.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cbcpx01/locnamc.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/abstract.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/abstract.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/abstract.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cbcpx01/abstract.htm

You can change the value of the register by executing the SET CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION statement. The object types controlled by this special register are never considered by
static embedded SQL queries.

Example: Set the CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special register so that all
materialized query tables are considered.

 SET CURRENT MAINTAINED TABLE TYPES ALL;

Related reference
SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION statement
The SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION statement changes the value of the
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special register.

CURRENT MEMBER special register
CURRENT MEMBER specifies the member name of a current Db2 data sharing member on which a
statement is executing. The value of CURRENT MEMBER is a character string.

The data type is CHAR(8). If necessary, the member name is padded to the right with blanks so that its
length is 8 bytes.

The value of a CURRENT MEMBER is a string of blanks when the application process is connected to a Db2
subsystem that is not a member of a data sharing group.

The SQL SET statement cannot change the value of CURRENT MEMBER.

Example: Use one of the following statements to set the host variable MEM to the name of the current Db2
member.

 EXEC SQL SET :MEM = CURRENT MEMBER;

 EXEC VALUES (CURRENT MEMBER) into :MEM;

CURRENT OPTIMIZATION HINT special register
CURRENT OPTIMIZATION HINT specifies the user-defined optimization hint that Db2 should use to
generate the access path for dynamic statements.

The data type is VARCHAR(128).

The value of the register identifies the rows in owner.PLAN_TABLE that Db2 uses to generate the access
path. Db2 uses information in the rows in owner.PLAN_TABLE for which the value of the OPTHINT column
matches the value of the CURRENT OPTIMIZATION special register. If the value of the register is an
empty string or all blanks, Db2 uses normal optimization and ignores optimization hints. If the value of
the register includes any non-blank characters and Db2 was installed without optimization hints enabled
(field OPTIMIZATION HINTS on installation panel DSNTIP8), a warning occurs.

The initial value of CURRENT OPTIMIZATION HINT is the value of the OPTHINT bind option or of
the native SQL procedure option. The initial value of CURRENT OPTIMIZATION HINT in a user-defined
function or stored procedure is inherited according to the rules in Table 47 on page 215. You can change
the value of the special register by executing the statement SET CURRENT OPTIMIZATION HINT.

Example: Set the CURRENT OPTIMIZATION HINT special register so that Db2 uses the optimization plan
hint that is identified by host variable NOHYB when generating the access path for dynamic statements.

 SET CURRENT OPTIMIZATION HINT = :NOHYB

Related tasks
Specifying access paths in a PLAN_TABLE instance (Db2 Performance)
Preparing to influence access paths (Db2 Performance)

198 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_createuseropthints.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_enablehints.html

Related reference
SET CURRENT OPTIMIZATION HINT statement
The SET CURRENT OPTIMIZATION HINT statement assigns a value to the CURRENT OPTIMIZATION
HINT special register.

CURRENT PACKAGE PATH special register
CURRENT PACKAGE PATH specifies a value that identifies the path used to resolve references to packages
that are used to execute SQL statements. This special register applies to both static and dynamic
statements.

The data type is VARCHAR(4096). The value can be an empty or blank string, or a list of one or more
collection IDs, where the collection IDs are enclosed in double quotation marks and separated by
commas. Any quotation marks within the string are repeated as they are in any delimited identifier. The
delimiters and commas are included in the length of the special register.

The initial value of CURRENT PACKAGE PATH is an empty string. The value is a list of collections only if the
application process has explicitly specified a list of collections by means of the SET CURRENT PACKAGE
PATH statement.

The initial value of CURRENT PACKAGE PATH in a user-defined function or procedure is inherited
according to the rules in Table 47 on page 215.

When CURRENT PACKAGE PATH or CURRENT PACKAGESET is set, Db2 uses the values in these registers
to resolve the collection for a package. The value of CURRENT PACKAGE PATH takes priority over
CURRENT PACKAGESET. In a distributed environment, the value of CURRENT PACKAGE PATH at the
remote server takes precedence of the value of CURRENT PACKAGE PATH at the local server (the
requester). For more information on package resolution, see Binding an application plan (Db2 Application
programming and SQL).

Example: In an application that is using SQLJ packages (in collection SQLJ1 and SQLJ2) and a JDBC
package in DB2JAVA, set the CURRENT PACKAGE PATH special register to check SQLJ1 first, followed by
SQLJ2, and DB2JAVA:

 SET CURRENT PACKAGE PATH = SQLJ1, SQLJ2, DB2JAVA;

The following statement sets the host variable to the value of the resulting list:

 SET :HVPKLIST = CURRENT PACKAGE PATH;

The value of the host variable would be "SQLJ1", "SQLJ2", "DB2JAVA".

Related reference
SET CURRENT PACKAGE PATH statement
The SET CURRENT PACKAGE PATH statement assigns a value to the CURRENT PACKAGE PATH special
register.

CURRENT PACKAGESET special register
CURRENT PACKAGESET specifies an empty string, a string of blanks, or the collection ID of the package
that will be used to execute SQL statements.

The data type is VARCHAR(128).

The initial value of CURRENT PACKAGESET is an empty string. The value is a collection ID only if the
application process has explicitly specified a collection ID by means of the SET CURRENT PACKAGESET
statement.

The initial value of CURRENT PACKAGESET in a user-defined function or stored procedure is inherited
according to the rules in Table 47 on page 215.

Chapter 2. Language elements in SQL 199

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_bindplan.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_bindplan.html

Example: Before passing control to another program, identify the collection ID for its package as ALPHA.

 EXEC SQL SET CURRENT PACKAGESET = 'ALPHA';

Related reference
SET CURRENT PACKAGESET statement
The SET CURRENT PACKAGESET statement assigns a value to the CURRENT PACKAGESET special
register.

CURRENT PATH special register
CURRENT PATH specifies the SQL path used to resolve unqualified data type names and function names
in dynamically prepared SQL statements. It is also used to resolve unqualified procedure names that are
specified as host variables in SQL CALL statements (CALL host-variable).

The data type is VARCHAR(2048).

The CURRENT PATH special register contains a list of one or more schema names, where each schema
name is enclosed in delimiters and separated from the following schema by a comma (any delimiters
within the string are repeated as they are in any delimited identifier). The delimiters and commas are
included in the 2048 character length.

For information on when the SQL path is used to resolve unqualified names in both dynamic and static
SQL statements and the effect of its value, see “SQL path” on page 85.

The initial value of the CURRENT PATH special register is determined from the first of one of the following
sets of conditions that is met:

• If the CURRENT PATH special register was assigned a value (by a SET PATH statement) in the scope of
the invoking environment, the special register inherits the value from the invoking environment.

• If the connection is trusted, and both the role as object owner and qualifier options in effect, the special
register is set to:"SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM", "role-name" where role-name is the
role that is associated with the user in the trusted context.

• Otherwise, the special register is set to: "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM", "current-
sqlid-value".

The initial value of the CURRENT PATH special register in an SQL routine or trigger is determined from the
first of one of the following sets of conditions that is met:

• In an SQL routine, the special register inherits the value from the invoking environment, if the special
register was assigned a value (by a SET PATH statement) in the scope of the invoking environment.

• In a trigger, the special register inherits the value from the invoking environment, if the special register
was assigned a value (by a SET PATH statement) in the scope of the invoking environment.

• In an SQL routine or trigger, the special register is set to the value specified for the SQL PATH routine or
trigger option, if specified.

• In an SQL routine or trigger, the special register is set to the value specified for the SQL PATH routine or
trigger option, if specified.

• If the connection is trusted, and both the role as object owner and qualifier options in effect, the special
register is set to:"SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM", "role-name" where role-name is the
role that is associated with the user in the trusted context.

• Otherwise, the special register is set to: "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM", "current-
sqlid-value".

If the value of the CURRENT SQLID special register changes after the initial value of PATH special register
is established, the value of the PATH special register is unaffected when the CURRENT SQLID is updated.
However, if a commit later occurs and a SET PATH statement has not been processed, the value of PATH
special register is reinitialized taking into consideration the current value of the CURRENT SQLID special
register.

200 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

You can change the value of the register by executing the statement SET PATH. For portability across the
platforms, it is recommended that a SET PATH statement be issued at the beginning of an application.

Example: Set the special register so that schema SMITH is searched before the system schemas:

 SET PATH = SMITH, SYSTEM PATH;

Related reference
SET PATH statement
The SET PATH statement assigns a value to the CURRENT PATH special register.

CURRENT PRECISION special register
CURRENT PRECISION specifies the rules to be used when both operands in a decimal operation have
precisions of 15 or less.

The data type of the register is CHAR(5).

Valid values for the CURRENT PRECISION special register include 'DEC15', 'DEC31', or 'Dpp.s' where 'pp'
is either 15 or 31 and 's' is a number in the range 1–9. DEC15 specifies the rules that do not allow a
precision greater than 15 digits, and DEC31 specifies the rules that allow a precision of up to 31 digits.
The rules for DEC31 are always used if either operand has a precision greater than 15. If the form 'Dpp.s'
is used, 'pp' represents the precision that will be used as the rules where DEC15 and DEC31 rules are
used, and 's' represents the minimum divide scale to use for division operations. The separator used in
the form 'Dpp.s' can be either the '.' or the ',' character, regardless of the setting of the default decimal
point.

The initial value of CURRENT PRECISION is determined by the value of field DECIMAL ARITHMETIC
on installation panel DSNTIP4. The default for the initial value is DEC15 unless your installation has
changed it to be DEC31 by modifying the value in that field. The initial value of CURRENT PRECISION in a
user-defined function or stored procedure is inherited according to the rules in Table 47 on page 215.

You can change the value of the register by executing the statement SET CURRENT PRECISION.

CURRENT PRECISION only affects dynamic SQL. When an SQL statement is dynamically prepared and the
value of CURRENT PRECISION is DEC15 or D15.s, where 's' is a number in the range 1–9, DEC15 rules will
apply. When an SQL statement is dynamically prepared and the value of CURRENT PRECISION is DEC31
or D31.s, where 's' is a number in the range 1–9, DEC31 rules will apply. Preparation of a statement
with DEC31 instead of DEC15 is more likely to result in an error, especially for division operations.
Specification of CURRENT PRECISION in the form 'Dpp.s' where 'pp' is either 15 or 31 and 's' represents
the minimum divide scale, will in some cases make division errors less likely when 'pp' is set to 31. For
more information, see “Arithmetic with two decimal operands” on page 251.

Example 1: Set CURRENT PRECISION so that subsequent statements that are prepared use DEC31 rules
for decimal arithmetic:

 SET CURRENT PRECISION = 'DEC31';

Example 2: Set CURRENT PRECISION so that subsequent statements that are prepared use DEC31 rules
for decimal arithmetic with a minimum divide scale of 3:

 SET CURRENT PRECISION = 'D31.3';

Related reference
SET CURRENT PRECISION statement

Chapter 2. Language elements in SQL 201

The SET CURRENT PRECISION statement assigns a value to the CURRENT PRECISION special register.

CURRENT QUERY ACCELERATION special register
The CURRENT QUERY ACCELERATION special register specifies a value that identifies when Db2 sends
dynamic SQL queries to an accelerator server and what Db2 does if the accelerator server fails. The
special register does not apply to static SQL queries.

The data type is VARCHAR(255).

Valid values are:

NONE
Specifies that no queries are sent to an accelerator server.

ENABLE
Specifies that queries are accelerated only if Db2 determines that it is advantageous to do so. If an
accelerator failure occurs while a query is running or if the accelerator returns an error, Db2 returns a
negative SQLCODE to the application.

ENABLE WITH FAILBACK
Specifies that queries are accelerated only if Db2 determines that it is advantageous to do so. If the
accelerator returns an error during the PREPARE or first OPEN for the query, Db2 executes the query
without the accelerator. If the accelerator returns an error during a FETCH or a subsequent OPEN, Db2
returns the error to the user and does not execute the query.

Restriction: FL 504 If the query contains a passthrough-only expression, Db2 returns an error and
does not accelerate the query, even if a matching user-defined function exists. For more information
about passthrough-only expressions, see Accelerating queries with passthrough-only expressions.

ELIGIBLE
Specifies that queries are accelerated if they are eligible for acceleration. Db2 does not use
cost information to determine whether to accelerate the queries. Queries that are not eligible for
acceleration are executed by Db2. If an accelerator failure occurs while a query is running or if the
accelerator returns an error, Db2 returns a negative SQLCODE to the application.

ALL
Specifies that queries are accelerated if they are eligible for acceleration. Db2 does not use
cost information to determine whether to accelerate the queries. Queries that are not eligible for
acceleration are not executed by Db2, and an SQL error is returned. If an accelerator failure occurs
while a query is running or if the accelerator returns an error, Db2 returns a negative SQLCODE to the
application.

The initial value of CURRENT QUERY ACCELERATION is determined by one of the following settings:

• The value of Db2 subsystem parameter QUERY_ACCELERATION. The default for the initial value of this
subsystem parameter is NONE unless your installation has changed the value.

• If specified for the bind of a package, the QUERYACCELERATION bind option. This behavior enables
the QUERYACCELERATION bind option to be used to specify the acceleration behavior for dynamic SQL
queries and not only static SQL queries. This bind option does not have a default value.

The initial value of CURRENT QUERY ACCELERATION in a user-defined function or stored procedure is
inherited according to the rules in “Special registers in a user-defined function or a stored procedure” on
page 215.

You can change the value of the register by executing the SET CURRENT QUERY ACCELERATION
statement.

The precedence order (lowest to highest) for setting the value of the special register is as follows:

• The QUERY_ACCELERATION subsystem parameter
• The QUERYACCELERATION bind option, if specified
• An explicit SET CURRENT QUERY ACCELERATION statement

202 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html

Example: The following statement sets the CURRENT QUERY ACCELERATION special register so that no
query acceleration occurs.

 SET CURRENT QUERY ACCELERATION NONE;

Related concepts
How Db2 determines whether to accelerate eligible queries (Db2 Performance)
Related tasks
Enabling acceleration of SQL queries (Db2 Performance)
Related reference
SET CURRENT QUERY ACCELERATION statement
The SET CURRENT QUERY ACCELERATION statement changes the value of the CURRENT QUERY
ACCELERATION special register.

CURRENT QUERY ACCELERATION WAITFORDATA special register
The CURRENT QUERY ACCELERATION WAITFORDATA special register specifies the maximum amount
of time, if any, that the accelerator delays a dynamic SQL query while the accelerator waits for the
replication of committed Db2 data changes that occurred prior to Db2 running the query. This special
register does not apply to static SQL queries.

The data type is a DECIMAL(5,1) in the form of nnnn.m.

Valid values are a numeric constant in the range of 0.0–3600.0 seconds. For example, a value of 20.0
represents 20.0 seconds (or 20000 milliseconds), and a value of 30.5 represents 30.5 seconds (or 30500
milliseconds). The maximum value of 3600.0 means that the query is delayed for 60 minutes.

The default value is 0.0, which means that the query is not delayed and is run immediately on the
accelerator. Other WAITFORDATA behavior is not applied to the query.

The wait time value can also be specified as an INTEGER numeric constant value ranging from 0 - 3600
seconds, which Db2 will convert to a DECIMAL (5,1) value.

You can change the value of the special register by executing the SET CURRENT QUERY ACCELERATION
WAITFORDATA statement.

The initial value of CURRENT QUERY ACCELERATION WAITFORDATA is determined by one of the following
settings:

• The value of Db2 QUERY_ACCEL_WAITFORDATA subsystem parameter. The default for the initial value
of this subsystem parameter is 0.0 unless your installation has changed the value.

• If specified for the bind of a package, the ACCELERATIONWAITFORDATA bind option. This behavior
enables the ACCELERATIONWAITFORDATA bind option to be used to specify the acceleration behavior
for both dynamic SQL queries and static SQL queries. This bind option does not have a default value.

The initial value of CURRENT QUERY ACCELERATION WAITFORDATA in a user-defined function or stored
procedure is inherited according to the rules in “Special registers in a user-defined function or a stored
procedure” on page 215.

You can change the value of the register by executing the SET CURRENT QUERY ACCELERATION
WAITFORDATA statement.

The precedence order (lowest to highest) for setting the value of the special register is as follows:

• The QUERY_ACCEL_WAITFORDATA subsystem parameter
• The ACCELERATIONWAITFORDATA bind option, if specified
• An explicit SET CURRENT QUERY ACCELERATION WAITFORDATA statement

For more information about the restrictions, requirements, and behaviors associated with CURRENT
QUERY ACCELERATION WAITFORDATA, see “SET CURRENT QUERY ACCELERATION WAITFORDATA
statement” on page 2150.

Chapter 2. Language elements in SQL 203

https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_enablequeryaccel.html

Example: The following statement sets the CURRENT QUERY ACCELERATION WAITFORDATA special
register so that the accelerator delays queries for 180 seconds (three minutes) while it waits for
committed Db2 data changes to be replicated to the accelerator.

 SET CURRENT QUERY ACCELERATION WAITFORDATA 180;

Related reference
SET CURRENT QUERY ACCELERATION WAITFORDATA statement
The SET CURRENT QUERY ACCELERATION WAITFORDATA statement assigns a value to the CURRENT
QUERY ACCELERATION WAITFORDATA special register.
WAIT FOR DATA field (QUERY_ACCEL_WAITFORDATA subsystem parameter) (Db2 Installation and
Migration)
CURRENT QUERY ACCELERATION special register
The CURRENT QUERY ACCELERATION special register specifies a value that identifies when Db2 sends
dynamic SQL queries to an accelerator server and what Db2 does if the accelerator server fails. The
special register does not apply to static SQL queries.

CURRENT REFRESH AGE special register
CURRENT REFRESH AGE specifies a timestamp duration value. This duration is the maximum duration
since a REFRESH TABLE statement has been processed on a system-maintained REFRESH DEFERRED
materialized query table such that the materialized query table can be used to optimize the processing of
a query. This special register affects dynamic statement cache matching.

The data type of the register is DECIMAL(20,6). For a description of durations, see “Datetime operands
and durations” on page 257.

If CURRENT REFRESH AGE has a value of 99999999999999 (ANY), REFRESH DEFERRED materialized
query tables are considered to optimize the processing of a dynamic SQL query. This value represents
9999 years, 99 months, 99 days, 99 hours, and 99 seconds.

The initial value of CURRENT REFRESH AGE is determined by the value of field CURRENT REFRESH AGE
on installation panel DSNTIP81. The default for the initial value of that field is 0 unless your installation
has changed it to ANY by modifying the value of that field. The initial value of CURRENT REFRESH AGE in a
user-defined function or stored procedure is inherited according to the rules in Table 47 on page 215.

You can change the value of the register by executing the SET CURRENT REFRESH AGE statement.

Example : The following example retrieves the current value of the CURRENT REFRESH AGE special
register into the host variable, CURMAXAGE:

 EXEC SQL VALUES (CURRENT REFRESH AGE) INTO :CURMAXAGE;

The value would be '99999999999999.000000'.

Related reference
SET CURRENT REFRESH AGE statement
The SET CURRENT REFRESH AGE statement changes the value of the CURRENT REFRESH AGE special
register.

CURRENT ROUTINE VERSION special register
CURRENT ROUTINE VERSION specifies the version identifier that is to be used when invoking a native
SQL procedure. CURRENT ROUTINE VERSION is used for CALL statements that use a host variable to
specify the procedure name.

The data type of CURRENT ROUTINE VERSION is VARCHAR(64).

The initial value of CURRENT ROUTINE VERSION in a user-defined function or stored procedure is
inherited according to the rules in Table 47 on page 215. In other contexts the initial value of CURRENT
ROUTINE VERSION is an empty string. An empty string indicates that a version identifier is not in effect

204 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_queryaccelerationwfd.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_queryaccelerationwfd.html

for the SQL routine. When an SQL routine that does not have a version identifier in effect is invoked, the
currently active version (as indicated in the catalog) of that routine is used.

You can change the value of the CURRENT ROUTINE VERSION by executing the statement SET CURRENT
ROUTINE VERSION.

Setting the CURRENT ROUTINE VERSION special register to a version identifier might affect native SQL
procedures that are invoked until the value of CURRENT ROUTINE VERSION is changed. If a version of
an SQL procedure has a version identifier that matches the version identifier in the special register, that
version of the SQL procedure is used when the SQL procedure is invoked. If an SQL procedure does not
have a version identifier that matches the version identifier in the special register, the currently active
version of the SQL procedure (as defined in the catalog) is used when the SQL procedure is invoked.

Example: Set the host variable ROUTINE_VER to the value of the CURRENT ROUTINE VERSION special
register:

 VALUES CURRENT ROUTINE VERSION INTO :ROUTINE_VER;

Related reference
SET CURRENT ROUTINE VERSION statement
The SET CURRENT ROUTINE VERSION statement assigns a value to the CURRENT ROUTINE VERSION
special register. The special register sets the override value for the version identifier of native SQL
procedures when they are invoked.

CURRENT RULES special register
CURRENT RULES specifies whether certain SQL statements are executed in accordance with Db2 rules or
the rules of the SQL standard.

The data type of the register is CHAR(3), and the only valid values are 'DB2' and 'STD'.

CURRENT RULES is a register at the database server. If the server is not the local Db2, the initial value of
the register is 'DB2'. Otherwise, the initial value is the same as the value of the SQLRULES bind option. The
initial value of CURRENT RULES in a user-defined function or stored procedure is inherited according to
the rules in “Special registers in a user-defined function or a stored procedure” on page 215.

You can change the value of the register by executing the statement SET CURRENT RULES.

CURRENT RULES affects the statements listed in the following table. The table summarizes when the
statements are affected and shows where to find detailed information. CURRENT RULES also affects
whether Db2 issues an existence error (SQLCODE -204) or an authorization error (SQLCODE -551) when
an object does not exist. For CURRENT RULES 'STD', Db2 issues an authorization error (SQLCODE -551)
when an object does not exist instead of the existence error (SQLCODE -204).

Table 46. Summary of statements affected by CURRENT RULES

Statement What is affected Details in
topic

ALTER TABLE The following behaviors:

• Enforcement of check constraints added.
• Default value of the delete rule for referential

constraints.
• Whether Db2 creates LOB table spaces, auxiliary

tables, and indexes on auxiliary tables for added LOB
columns. See LOB table space implicit creation (Db2
Administration Guide).

• Whether Db2 creates an index for an added ROWID
column that is defined with GENERATED BY DEFAULT.

“ALTER
TABLE
statement”
on page 1232

Chapter 2. Language elements in SQL 205

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicittablespacelob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicittablespacelob.html

Table 46. Summary of statements affected by CURRENT RULES (continued)

Statement What is affected Details in
topic

CREATE TABLE The following behaviors:

• Default value of the delete rule for referential
constraints.

• Whether Db2 creates LOB table spaces, auxiliary tables,
and indexes on auxiliary tables for LOB columns if the
table is explicitly created. See LOB table space implicit
creation (Db2 Administration Guide).

• Whether Db2 creates an index for a ROWID column that
is defined with GENERATED BY DEFAULT if the table is
explicitly created.

“CREATE
TABLE
statement”
on page 1650

GRANT Granting privileges to yourself. “GRANT
statement”
on page 1963

REVOKE Revoking privileges from authorization IDs “REVOKE
statement”
on page 2070

Set CURRENT RULES so that a later ALTER TABLE statement is executed in accordance with the rules of
the SQL standard:

 SET CURRENT RULES = 'STD';

Related reference
SET CURRENT RULES statement
The SET CURRENT RULES statement assigns a value to the CURRENT RULES special register.
SQLRULES bind option (Db2 Commands)

CURRENT SCHEMA special register
The CURRENT SCHEMA special register specifies the schema name used to qualify unqualified database
object references in dynamically prepared SQL statements.

The data type is VARCHAR(128).

For information on when the CURRENT SCHEMA is used to resolve unqualified names in dynamic SQL
statements and the effect of its value, see “Unqualified object name resolution” on page 86.

The CURRENT SCHEMA special register contains a value that is a single identifier without delimiters.

The initial value of the special register is the value of CURRENT SQLID at the time the connection is
established. If the connection is established as a trusted connection with a role as the object owner and
qualifier, the initial value of the special register is the value of the role name that is associated with the
user in the trusted context. The initial value of the special register in a user-defined function or procedure
is inherited according to the rules in Table 47 on page 215.

The value of the special register can be changed by executing the SET SCHEMA statement. The value
of CURRENT SCHEMA is the same as the value of CURRENT SQLID unless a SET SCHEMA statement
has been issued specifying a different value. After a SET SCHEMA statement has been issued in an
application, the values of CURRENT SCHEMA and CURRENT SQLID are separate. Therefore, if the value of
CURRENT SCHEMA needs to be changed, a SET SCHEMA statement must be issued.

Specifying CURRENT_SCHEMA is equivalent to specifying CURRENT SCHEMA.

206 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicittablespacelob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicittablespacelob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptsqlrules.html

Example: Set the schema for object qualification to 'D123'.

SET SCHEMA = 'D123'

CURRENT SERVER special register
CURRENT SERVER specifies the location name of the current server.

The data type is CHAR(16). If necessary, the location name is padded on the right with blanks so that its
length is 16 bytes.

The initial value of CURRENT SERVER depends on the CURRENTSERVER bind option. If CURRENTSERVER
X is specified on the bind subcommand, the initial value is X. If the option is not specified, the initial value
is the location name of the local Db2. The initial value of CURRENT SERVER in a user-defined function
or stored procedure is inherited according to the rules in Table 47 on page 215. The value of CURRENT
SERVER is changed by the successful execution of a CONNECT statement.

The value of CURRENT SERVER is a string of blanks when either of the following conditions apply:

• The application process is in the unconnected state
• The application process is connected to a local Db2 subsystem that does not have a location name.

Example

Set the host variable CS to the location name of the current server.

 EXEC SQL SET :CS = CURRENT SERVER;

CURRENT SQLID special register
CURRENT SQLID specifies the SQL authorization ID of the process.

The data type is VARCHAR(128).

The SQL authorization ID is:

• The authorization ID used for authorization checking on dynamically prepared CREATE, GRANT, and
REVOKE SQL statements.

• The owner of a table space, database, storage group, or synonym created by a dynamically issued
CREATE statement.

The initial value of CURRENT SQLID can be provided by the connection or sign-on exit routine. If not, the
initial value is the primary authorization ID of the process. The value remains in effect until one of the
following events occurs:

• The SQL authorization ID is changed by the execution of a SET CURRENT SQLID statement.
• A SIGNON or re-SIGNON request is received from a CICS transaction subtask or an IMS independent

region.
• The Db2 connection is ended.
• When running in a trusted connection, the user is switched.

The initial value of CURRENT SQLID in a user-defined function or stored procedure is inherited according
to the rules in Table 47 on page 215.

CURRENT SQLID can only be referred to in an SQL statement that is executed by the current server.

CURRENT SQLID cannot be a role.

Examples for SET CURRENT SQLID

Chapter 2. Language elements in SQL 207

Example 1
Set the CURRENT SQLID to the primary authorization ID.

SET CURRENT SQLID = SESSION_USER;

Example 2
Set the SQL authorization ID to 'GROUP34' (one of the authorization IDs of the process).

 SET CURRENT SQLID = 'GROUP34';

CURRENT TEMPORAL BUSINESS_TIME special register
The CURRENT TEMPORAL BUSINESS_TIME special register specifies a TIMESTAMP(12) value that is used
in the default BUSINESS_TIME period specification for references to application-period temporal tables.

When a query references an application-period temporal table and the value of the CURRENT TEMPORAL
BUSINESS_TIME special register is not the null value, the query is affected as follows:

• If the columns of a BUSINESS_TIME period are defined as TIMESTAMP, the following period
specification is implicit:

FOR BUSINESS_TIME AS OF CURRENT TEMPORAL BUSINESS_TIME

• If the columns of a BUSINESS_TIME period are defined as DATE, the following period specification is
implicit: :

FOR BUSINESS_TIME AS OF CAST(CURRENT TEMPORAL BUSINESS_TIME AS DATE)

The initial value of the special register depends on the context as follows:

• If the special register is in a trigger, the initial value is inherited from the invoking application.
• If the special register is in a user-defined function or procedure that is defined with the INHERIT

SPECIAL REGISTERS option, the initial value is inherited from the invoking application.
• If the special register is in a user-defined function or procedure that is defined with the DEFAULT

SPECIAL REGISTERS option, the initial value is the null value.
• In other contexts, the initial value of the special register is the null value.

You can change the value of the special register by using the SET CURRENT TEMPORAL BUSINESS_TIME
statement. If you change the value within a routine, that new value is not passed back to the invoking
application.

Examples
Example of a query that references an application-period temporal table

Assume the following conditions:

• ATT is an application-period temporal table and POLICY_ID is a column in ATT.
• The value of the BUSTIMESENSITIVE bind option is YES.
• The value of CURRENT TEMPORAL BUSINESS_TIME is not null.

Then, suppose that you issue the following query:

SELECT * FROM ATT
WHERE POLICY_ID = 123;

Db2 generates an implicit BUSINESS_TIME period specification for the query as follows:

SELECT * FROM ATT
FOR BUSINESS_TIME AS OF CURRENT TEMPORAL BUSINESS_TIME
WHERE POLICY_ID = 123;

208 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example of a procedure that uses CURRENT TEMPORAL BUSINESS_TIME
Suppose that procedure MYPROC is defined as follows:

CREATE PROCEDURE MYPROC(OUT VAR1 VARCHAR(40), OUT VAR2 VARCHAR(40))
BEGIN
 SELECT CURRENT TEMPORAL BUSINESS_TIME INTO VAR1
 FROM SYSIBM.SYSDUMMY1;

 SET CURRENT TEMPORAL BUSINESS_TIME = TIMESTAMP('2011-01-01') + 5 DAYS ;

 SELECT CURRENT TEMPORAL BUSINESS_TIME INTO VAR2
 FROM SYSIBM.SYSDUMMY1;
END!

Suppose that the application defines string variables VAR1, VAR2, and VAR3 and contains the
following SQL statements:

SET CURRENT TEMPORAL BUSINESS_TIME = TIMESTAMP('2008-01-01') + 5 DAYS ;

CALL MYPROC(VAR1, VAR2);

SELECT CURRENT TEMPORAL BUSINESS_TIME INTO VAR3
FROM SYSIBM.SYSDUMMY1;

After the execution of the SQL statements, the variables have the following values:

• VAR1 has value '2008-01-06-00.00.00.000000000000', which is the CURRENT TEMPORAL
BUSINESS_TIME value that is set before the CALL statement invoked the procedure.

• VAR2 has value '2011-01-06-00.00.00.000000000000', which is the CURRENT TEMPORAL
BUSINESS_TIME value that is set during the CALL statement.

• VAR3 has value '2008-01-06-00.00.00.000000000000', which is the CURRENT TEMPORAL
BUSINESS_TIME value that is set before the CALL statement. The changes of the register value
inside the procedure have no affect on the invoking application.

Example of a query that references CURRENT TEMPORAL BUSINESS_TIME
Assume that IN_TRAY is an application-period temporal table that contains users and subject lines for
notes in the inbox. The following query returns the user ID and subject line for notes in the IN_TRAY
table that were sent on the date that the CURRENT TEMPORAL BUSINESS_TIME special register is set
to.

SELECT SOURCE, SUBJECT
FROM IN_TRAY
WHERE DATE (CURRENT TEMPORAL BUSINESS_TIME) = DATE (RECEIVED)

Related tasks
Querying temporal tables (Db2 Administration Guide)
Related reference
table-reference
A table-reference specifies a result table as either a table or view, or an intermediate table.
BIND and REBIND options for packages, plans, and services (Db2 Commands)
SET CURRENT TEMPORAL BUSINESS_TIME statement
The SET CURRENT TEMPORAL BUSINESS_TIME statement changes the value of the CURRENT TEMPORAL
BUSINESS_TIME special register.
Special registers in a user-defined function or a stored procedure

Chapter 2. Language elements in SQL 209

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_queryingtemporaltables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html

You can use all special registers in a user-defined function or a stored procedure. However, you can
modify only some of those special registers.

CURRENT TEMPORAL SYSTEM_TIME special register
The CURRENT TEMPORAL SYSTEM_TIME special register specifies a TIMESTAMP(12) value that is used in
the default SYSTEM_TIME period specification for references to system-period temporal tables.

When a query references a system-period temporal table and the value of the CURRENT TEMPORAL
SYSTEM_TIME special register is not the null value, the following period specification is implicit:

FOR SYSTEM_TIME AS OF CURRENT TEMPORAL SYSTEM_TIME

The initial value of the special register depends on the context as follows:

• If the special register is in a trigger, the initial value is inherited from the invoking application.
• If the special register is in a user-defined function or procedure that is defined with the INHERIT

SPECIAL REGISTERS option, the initial value is inherited from the invoking application.
• If the special register is in a user-defined function or procedure that is defined with the DEFAULT

SPECIAL REGISTERS option, the initial value is the null value.
• In other contexts, the initial value of the special register is the null value.

You can change the value of the special register by using the SET CURRENT TEMPORAL SYSTEM_TIME
statement. If you change the value within a routine, that new value is not passed back to the invoking
application.

When the value of the CURRENT TEMPORAL SYSTEM_TIME special register is not null and the
SYSTIMESENSITIVE bind option is set to YES, you cannot explicitly specify FOR SYSTEM_TIME in a
select-statement.

Examples
Example of a query that references a system-period temporal table

Assume the following conditions:

• STT is a system-period temporal table, and POLICY_ID is a column of STT.
• The value of the SYSTIMESENSITIVE bind option is YES.
• The value of CURRENT TEMPORAL SYSTEM_TIME is not null.

Then, suppose that you issue the following query:

SELECT * FROM STT
WHERE POLICY_ID = 123;

Db2 generates an implicit SYSTEM_TIME period specification for the query as follows:

SELECT * FROM STT
FOR SYSTEM_TIME AS OF CURRENT TEMPORAL SYSTEM_TIME
WHERE POLICY_ID = 123;

Example of a procedure that uses CURRENT TEMPORAL SYSTEM_TIME
Suppose that procedure MYPROC is defined as follows:

CREATE PROCEDURE MYPROC(OUT VAR1 VARCHAR(40), OUT VAR2 VARCHAR(40))
BEGIN
 SELECT CURRENT TEMPORAL SYSTEM_TIME INTO VAR1
 FROM SYSIBM.SYSDUMMY1;

 SET CURRENT TEMPORAL SYSTEM_TIME = TIMESTAMP('2011-01-01') + 5 DAYS ;

 SELECT CURRENT TEMPORAL SYSTEM_TIME INTO VAR2
 FROM SYSIBM.SYSDUMMY1;
END!

210 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Suppose that the application defines string variables VAR1, VAR2, and VAR3 and contains the
following SQL statements:

SET CURRENT TEMPORAL SYSTEM_TIME = TIMESTAMP('2008-01-01') + 5 DAYS ;

CALL MYPROC(VAR1, VAR2);

SELECT CURRENT TEMPORAL SYSTEM_TIME INTO VAR3
FROM SYSIBM.SYSDUMMY1

After the execution of the SQL statements, the variables have the following values:

• VAR1 has value '2008-01-06-00.00.00.000000000000', which is the CURRENT TEMPORAL
SYSTEM_TIME value that is set before the CALL statement invoked the procedure.

• VAR2 has value '2011-01-06-00.00.00.000000000000', which is the CURRENT TEMPORAL
SYSTEM_TIME value that is set during the CALL statement.

• VAR3 has value '2008-01-06-00.00.00.000000000000', which is the CURRENT TEMPORAL
SYSTEM_TIME value that is set before the CALL statement. The changes of the register value inside
the procedure have no affect on the invoking application.

Example of a query that references a system-period temporal table
Assume that IN_TRAY is a system-period temporal table that contains users and subject lines for
notes in the inbox. The following query returns the user IDs and subject lines based on the state of
the messages in IN_TRAY as of the date that is specified by the CURRENT TEMPORAL SYSTEM_TIME
special register.

SELECT SOURCE, SUBJECT
FROM IN_TRAY

If the special register is set to a non-null value, the previous statement is equivalent to the following
statement:

SELECT SOURCE, SUBJECT
FROM IN_TRAY
FOR SYSTEM_TIME AS OF CURRENT TEMPORAL SYSTEM_TIME

Related tasks
Querying temporal tables (Db2 Administration Guide)
Related reference
table-reference
A table-reference specifies a result table as either a table or view, or an intermediate table.
BIND and REBIND options for packages, plans, and services (Db2 Commands)
SET CURRENT TEMPORAL SYSTEM_TIME statement
The SET CURRENT TEMPORAL SYSTEM_TIME statement changes the value of the CURRENT TEMPORAL
SYSTEM_TIME special register.
Special registers in a user-defined function or a stored procedure
You can use all special registers in a user-defined function or a stored procedure. However, you can
modify only some of those special registers.

CURRENT TIME special register
The CURRENT TIME special register specifies a time that is based on a reading of the time-of-day clock
when the SQL statement is executed at the current server.

If this special register is used more than one time within a single SQL statement, or used with CURRENT
DATE or CURRENT TIMESTAMP within a single statement, all values are based on a single clock reading.10

The value of CURRENT TIME in a user-defined function or stored procedure is inherited according to
the rules in Table 47 on page 215. For other applications, the time is derived by the Db2 that executes

10 Except for the case of a non-atomic multiple row INSERT or MERGE statement.

Chapter 2. Language elements in SQL 211

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_queryingtemporaltables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html

the SQL statement that refers to the special register. For a description of how the date is derived, see
Datetime special registers.

Specifying CURRENT_TIME is equivalent to specifying CURRENT TIME.

Example

Display information about all project activities and include the current date and time in each row of the
result.

 SELECT DSN8C10.PROJACT.*, CURRENT DATE, CURRENT TIME
 FROM DSN8C10.PROJACT;

CURRENT TIMESTAMP special register
The CURRENT TIMESTAMP special register specifies a timestamp that is based on a reading of the
time-of-day clock when the SQL statement is executed at the current server.

If this special register is used more than one time within a single SQL statement, or used with CURRENT
DATE or CURRENT TIME within a single statement, all values are based on a single clock reading.11

The value of CURRENT TIMESTAMP in a user-defined function or stored procedure is inherited according
to the rules in Table 47 on page 215.

Specifying CURRENT_TIMESTAMP is equivalent to specifying CURRENT TIMESTAMP.

If you want a timestamp with a specified precision, the special register can be referenced as CURRENT
TIMESTAMP(integer), where integer can range 0–12. The default precision is 6. SYSDATE can also be
specified as a synonym for CURRENT TIMESTAMP(0).

If you want a timestamp with a time zone, the special register can be referenced as CURRENT
TIMESTAMP (integer) WITH TIME ZONE, or CURRENT TIMESTAMP WITH TIME ZONE. SYSTIMESTAMP
can be specified as an alternative to CURRENT TIMESTAMP(12) WITH TIME ZONE. The time zone is
determined from the CURRENT TIME ZONE special register.

Note: If the CURRENT TIMESTAMP special register is referenced in a timestamp with time zone context
(for example, when compared with a timestamp with time zone column) the implicit time zone for the
CURRENT TIMESTAMP special register will be based on the implicit time zone system parameter, which
could be a different value from the CURRENT TIME ZONE special register. To avoid misinterpretation of
the time zone in this case, CURRENT TIMESTAMP WITH TIME ZONE should be used.

Examples
Example 1

Display information about the full image copies that were taken in the last week.

 SELECT * FROM SYSIBM.SYSCOPY
 WHERE TIMESTAMP > CURRENT TIMESTAMP - 7 DAYS;

Example 2
Insert a row into the IN_TRAY table. The value of the RECEIVED column should be a timestamp that
indicates when the row was inserted. The values for the other three columns come from the host
variables SRC (CHAR(8)), SUB (CHAR(64)), and TXT (VARCHAR(200)).

INSERT INTO IN_TRAY
 VALUES (CURRENT TIMESTAMP, :SRC, :SUB, :TXT)

Example 3
Retrieve the value of the CURRENT TIMESTAMP special register with a precision of 8 and include the
time zone:

11 Except for the case of a non-atomic multiple row INSERT or MERGE statement.

212 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SELECT CURRENT TIMESTAMP(8) WITH TIME ZONE
 FROM SYSIBM.SYSDUMMY1;

CURRENT TIME ZONE special register
The CURRENT TIME ZONE special register specifies a value that contains the difference between UTC and
local time as defined by the current server, if the SESSION TIME ZONE special register has not been set.

The local time difference for the current server is set by z/OS, in the CLOCKxx PARMLIB member.

The data type is DECIMAL(6,0).

The difference between UTC and local time at the current server is represented by a time duration. A time
duration is a decimal number in which the first two digits are the number of hours, the next two digits
are the number of minutes, and the last two digits are the number of seconds. The number of hours is
adjusted, if necessary, to fit in the range between -24 and 24 exclusive.

Subtracting CURRENT TIME ZONE from a local time converts that local time to UTC.

CURRENT TIMEZONE can be specified as an alternative to CURRENT TIME ZONE.

Example

The following statement selects all rows of the IN_TRAY table. Assume that the RECEIVED column is
defined as TIMESTAMP WITHOUT TIME ZONE. Adjust the timestamp value in the RECEIVED column to
UTC by subtracting the value of the CURRENT TIME ZONE special register.

 SELECT RECEIVED - CURRENT TIME ZONE, SOURCE, SUBJECT, NOTE_TEXT
 FROM IN_TRAY;

Related information
CLOCKxx (time of day parameters) (MVS Initialization and Tuning Reference)

ENCRYPTION PASSWORD special register
The ENCRYPTION PASSWORD special register specifies the encryption password and the password hint
(if one exists) that are used by the ENCRYPT_TDES, DECRYPT_BIT, DECRYPT_CHAR, and DECRYPT_DB
built-in functions.

DECRYPT_BIT, DECRYPT_CHAR, and DECRYPT_DB

This special register can only be set, by using the SET ENCRYPTION PASSWORD statement, and cannot be
referenced directly. The ENCRYPTION PASSWORD special register contains the value of the password that
is used by the ENCRYPT_TDES and DECRYPT_BIT, DECRYPT_CHAR, and DECRYPT_DB built-in functions
to encrypt and decrypt data when a password is not explicitly specified as a function argument. The
ENCRYPTION PASSWORD special register can also contain a password hint which is associated with the
values that are encrypted using the encryption password. The password hint is a character string that is
used to help in remembering the password. The GETHINT function is used to return the password hint for
an encrypted value.

The initial value of the ENCRYPTION PASSWORD special register is the empty string (' ').

The initial value of the ENCRYPTION PASSWORD special register in a user-defined function or procedure
is inherited from the invoking application. In other contexts, the initial value of the special register is the
empty string.

The password is not related to Db2 authentication and is used only for data encryption.

Related reference
SET ENCRYPTION PASSWORD statement
The SET ENCRYPTION PASSWORD statement sets the value of the encryption password and, optionally,
the password hint. The ENCRYPT_TDES, DECRYPT_BIT, DECRYPT_CHAR, and DECRYPT_DB built-in
functions use this password and password hint for data encryption unless the functions are invoked

Chapter 2. Language elements in SQL 213

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae200/clock.htm

with an explicitly specified password and hint. The password is not tied to Db2 authentication and is used
only for data encryption.

SESSION TIME ZONE special register
The SESSION TIME ZONE special register specifies a value that identifies the time zone of the application
process.

The data type is VARCHAR(128).

The time zone value is in the format of ±th:tm. th represents the time zone hour offset. tm represents the
time zone minute offset. Valid values for th are between -12 and +14. Valid values for tm are between 0
and 59. SESSION TIMEZONE can be specified as an alternative to SESSION TIME ZONE.

The initial value of the special register in a user-defined function or stored procedure is inherited
according to the rules in “Special registers in a user-defined function or a stored procedure” on page
215. In other contexts the initial value of the special register represents the same time zone as the
CURRENT TIME ZONE special register.

The value of the special register can be changed by executing the SET SESSION TIME ZONE statement.
After a SET SESSION TIME ZONE statement has been processed, the values of the SESSION TIME ZONE
and CURRENT TIME ZONE special register might not reflect the same value.

Example

The following statement set the session time zone to '-8:00'.

 SET SESSION TIME ZONE = '-8:00';

Related reference
SET SESSION TIME ZONE statement
The SET SESSION TIME ZONE statement assigns a value to the SESSION TIME ZONE special register.

SESSION_USER special register
SESSION_USER specifies the primary authorization ID of the process.

The data type is VARCHAR(128).

If SESSION_USER is referred to in an SQL statement that is executed at a remote Db2 and the primary
authorization ID has been translated to a different authorization ID, SESSION_USER specifies the
translated authorization ID. The value of SESSION_USER in a user-defined function or stored procedure is
determined according to the rules in Table 47 on page 215.

USER can be specified as a synonym for SESSION_USER.

Example

Display information about tables, views, and aliases that are owned by the primary authorization ID of the
process.

 SELECT * FROM SYSIBM.SYSTABLES WHERE CREATOR = SESSION_USER;

Related concepts
Authorization ID translations
When certain authorization IDs are sent to a remote DBMS, those authorization IDs might undergo
translation before being used.
Related tasks
Translating inbound IDs (Managing Security)

214 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_translateinboundid.html

USER special register
USER specifies the primary authorization ID of the process. The data type is VARCHAR(128).
SESSION_USER is the preferred spelling.

If USER is referred to in an SQL statement that is executed at a remote Db2 and the primary authorization
ID has been translated to a different authorization ID, USER specifies the translated authorization ID. The
value of USER in a user-defined function or stored procedure is determined according to the rules in Table
47 on page 215.

Example

Display information about tables, views, and aliases that are owned by the primary authorization ID of the
process.

 SELECT * FROM SYSIBM.SYSTABLES WHERE CREATOR = USER;

Related concepts
Authorization ID translations
When certain authorization IDs are sent to a remote DBMS, those authorization IDs might undergo
translation before being used.
Related tasks
Translating inbound IDs (Managing Security)
Related reference
SESSION_USER special register
SESSION_USER specifies the primary authorization ID of the process.

Special registers in a user-defined function or a stored procedure
You can use all special registers in a user-defined function or a stored procedure. However, you can
modify only some of those special registers.

After a user-defined function or a stored procedure completes, Db2 restores all special registers to the
values they had before invocation.

The following table shows information that you need when you use special registers in a user-defined
function or stored procedure.

Table 47. Characteristics of special registers in a user-defined function or a stored procedure

Special register Initial value when INHERIT
SPECIAL REGISTERS option
is specified

Initial value when DEFAULT
SPECIAL REGISTERS option
is specified

Routine can
use SET
statement to
modify?

CURRENT ACCELERATOR Inherited from the invoking
application6; otherwise, no
preferred accelerator is used
and Db2 will determine the
target accelerator

The ACCELERATOR bind
option value if specified for
the user-defined function or
stored procedure package;
otherwise, no preferred
accelerator is used and Db2
will determine the target
accelerator

Yes

CURRENT APPLICATION
COMPATIBILITY

The value of bind option
APPLCOMPAT for the user-
defined function or stored
procedure package

The value of bind option
APPLCOMPAT for the user-
defined function or stored
procedure package

Yes

Chapter 2. Language elements in SQL 215

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_translateinboundid.html

Table 47. Characteristics of special registers in a user-defined function or a stored procedure (continued)

Special register Initial value when INHERIT
SPECIAL REGISTERS option
is specified

Initial value when DEFAULT
SPECIAL REGISTERS option
is specified

Routine can
use SET
statement to
modify?

CURRENT APPLICATION
ENCODING SCHEME

The value of bind option
ENCODING for the user-
defined function or stored
procedure package

The value of bind option
ENCODING for the user-
defined function or stored
procedure package

Yes

CURRENT CLIENT_ACCTNG Inherited from the invoking
application

Inherited from the invoking
application

Not
applicable5

CURRENT CLIENT_APPLNAME Inherited from the invoking
application

Inherited from the invoking
application

Not
applicable5

CURRENT CLIENT_USERID Inherited from the invoking
application

Inherited from the invoking
application

Not
applicable5

CURRENT
CLIENT_WRKSTNNAME

Inherited from the invoking
application

Inherited from the invoking
application

Not
applicable5

CURRENT DATE New value for each SQL
statement in the user-defined
function or stored procedure
package1

New value for each SQL
statement in the user-defined
function or stored procedure
package1

Not
applicable5

CURRENT DEBUG MODE Inherited from the invoking
application

DISALLOW Yes

CURRENT DECFLOAT
ROUNDING MODE

Inherited from the invoking
application

The value of bind option
ROUNDING for the user-
defined function or stored
procedure package

Yes

CURRENT DEGREE CURRENT DEGREE2 The value of field CURRENT
DEGREE on installation panel
DSNTIP8

Yes

CURRENT EXPLAIN MODE Inherited from the invoking
application

NO Yes

CURRENT
GET_ACCEL_ARCHIVE

Inherited from the invoking
application6; otherwise, the
subsystem parameter value
will be used

The GETACCELARCHIVE bind
option value if specified for
the user-defined function or
stored procedure package;
otherwise, the subsystem
parameter value will be used

Yes

CURRENT LOCALE LC_CTYPE Inherited from the invoking
application

The value of field CURRENT
LC_CTYPE on installation panel
DSNTIPF

Yes

CURRENT MAINTAINED TABLE
TYPES FOR OPTIMIZATION

Inherited from the invoking
application

System default value Yes

CURRENT MEMBER New value for each SET host-
variable=CURRENT MEMBER
statement

New value for each SET host-
variable=CURRENT MEMBER
statement

Not
applicable5

216 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 47. Characteristics of special registers in a user-defined function or a stored procedure (continued)

Special register Initial value when INHERIT
SPECIAL REGISTERS option
is specified

Initial value when DEFAULT
SPECIAL REGISTERS option
is specified

Routine can
use SET
statement to
modify?

CURRENT OPTIMIZATION
HINT

The value of bind option
OPTHINT for the user-defined
function or stored procedure
package or inherited from the
invoking application6

The value of bind option
OPTHINT for the user-defined
function or stored procedure
package

Yes

CURRENT PACKAGE PATH An empty string if the routine
was defined with a COLLID
value; otherwise, inherited
from the invoking application4

An empty string, regardless of
whether a COLLID value was
specified for the routine4

Yes

CURRENT PACKAGESET Inherited from the invoking
application3

Inherited from the invoking
application3

Yes

CURRENT PATH The value of bind option PATH
for the user-defined function
or stored procedure package
or inherited from the invoking
application6

The value of bind option PATH
for the user-defined function
or stored procedure package

Yes

CURRENT PRECISION Inherited from the invoking
application

The value of field DECIMAL
ARITHMETIC on installation
panel DSNTIP4

Yes

CURRENT QUERY
ACCELERATION

Inherited from the invoking
application6; otherwise, the
subsystem parameter value
will be used

The QUERYACCELERATION
bind option value if specified
for the user-defined function
or stored procedure package;
otherwise, the subsystem
parameter value will be used

Yes

CURRENT QUERY
ACCELERATION
WAITFORDATA

Inherited from the invoking
application6; otherwise, the
subsystem parameter value
will be used

The
ACCELERATIONWAITFORDAT
A bind option value if specified
for the user-defined function
or stored procedure package;
otherwise, the subsystem
parameter value will be used

Yes

CURRENT REFRESH AGE Inherited from the invoking
application

System default value Yes

CURRENT ROUTINE VERSION Inherited from the invoking
application

The empty string Yes

CURRENT RULES Inherited from the invoking
application

The value of bind option
SQLRULES for the plan
that invokes a user-defined
function or stored procedure

Yes

CURRENT SCHEMA Inherited from the invoking
application

The value of CURRENT
SCHEMA when the routine is
entered

Yes

Chapter 2. Language elements in SQL 217

Table 47. Characteristics of special registers in a user-defined function or a stored procedure (continued)

Special register Initial value when INHERIT
SPECIAL REGISTERS option
is specified

Initial value when DEFAULT
SPECIAL REGISTERS option
is specified

Routine can
use SET
statement to
modify?

CURRENT SERVER Inherited from the invoking
application

Inherited from the invoking
application

Yes

CURRENT SQLID The primary authorization ID
of the application process or
inherited from the invoking
application7

The primary authorization ID
of the application process

Yes8

CURRENT TEMPORAL
BUSINESS_TIME

Inherited from the invoking
application

NULL Yes

CURRENT TEMPORAL
SYSTEM_TIME

Inherited from the invoking
application

NULL Yes

CURRENT TIME New value for each SQL
statement in the user-defined
function or stored procedure
package1

New value for each SQL
statement in the user-defined
function or stored procedure
package1

Not
applicable5

CURRENT TIMESTAMP New value for each SQL
statement in the user-defined
function or stored procedure
package1

New value for each SQL
statement in the user-defined
function or stored procedure
package1

Not
applicable5

CURRENT TIMESTAMP WITH
TIME ZONE

New value for each SQL
statement in the user-defined
function or stored procedure
package1

New value for each SQL
statement in the user-defined
function or stored procedure
package1

Not
applicable5

CURRENT TIME ZONE Inherited from the invoking
application

Inherited from the invoking
application

Not
applicable5

ENCRYPTION PASSWORD Inherited from the invoking
application

Inherited from the invoking
application

Yes

SESSION TIME ZONE Inherited from the invoking
application

The value of CURRENT TIME
ZONE when the routine is
entered

Yes

SESSION_USER or USER Primary authorization ID of the
application process

Primary authorization ID of the
application process

Not
applicable5

218 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 47. Characteristics of special registers in a user-defined function or a stored procedure (continued)

Special register Initial value when INHERIT
SPECIAL REGISTERS option
is specified

Initial value when DEFAULT
SPECIAL REGISTERS option
is specified

Routine can
use SET
statement to
modify?

Notes:

1. If the user-defined function or stored procedure is invoked within the scope of a trigger, Db2 uses the
timestamp for the triggering SQL statement as the timestamp for all SQL statements in the package.

2. Db2 allows parallelism at only one level of a nested SQL statement. If you set the value of the CURRENT
DEGREE special register to ANY, and parallelism is disabled, Db2 ignores the CURRENT DEGREE value.

3. If the routine definition includes a specification for COLLID, Db2 sets CURRENT PACKAGESET to the value
of COLLID. If both CURRENT PACKAGE PATH and COLLID are specified, the CURRENT PACKAGE PATH value
takes precedence and COLLID is ignored.

4. If the function definition includes a specification for PACKAGE PATH, Db2 sets CURRENT PACKAGE PATH to
the value of PACKAGE PATH.

5. Not applicable because no SET statement exists for the special register.
6. If a program within the scope of the invoking program issues a SET statement for the special register before

the user-defined function or stored procedure is invoked, the special register inherits the value from the
SET statement. Otherwise, the special register contains the value that is set by the bind option for the
user-defined function or stored procedure package.

7. If a program within the scope of the invoking program issues a SET CURRENT SQLID statement before the
user-defined function or stored procedure is invoked, the special register inherits the value from the SET
statement. Otherwise, CURRENT SQLID contains the authorization ID of the application process.

8. If the user-defined function or stored procedure package uses a value other than RUN for the
DYNAMICRULES bind option, the SET CURRENT SQLID statement can be executed. However, it does not
affect the authorization ID that is used for the dynamic SQL statements in the package. The DYNAMICRULES
value determines the authorization ID that is used for dynamic SQL statements.

Related concepts
Dynamic rules options for dynamic SQL statements (Db2 Application programming and SQL)
Related reference
BIND and REBIND options for packages, plans, and services (Db2 Commands)
Special registers
A special register is a storage area that is defined for an application process by Db2 and is used to store
information that can be referenced in SQL statements. A reference to a special register is a reference to
a value provided by the current server. If the value is a string, its CCSID is a default CCSID of the current
server.

Column names
The meaning of a column name depends on its context.

A column name can be used to:

• Declare the name of a column, as in a CREATE TABLE statement.
• Specify the name of a column, as in a CREATE FUNCTION statement to name a column of the result

table of a table function.
• Identify a column, as in a CREATE INDEX statement.
• Specify values of the column, as in the following contexts:

– In an aggregate function, a column name specifies all values of the column in the group or
intermediate result table to which the function is applied. (Groups and intermediate result tables

Chapter 2. Language elements in SQL 219

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_dynamicrulesbindoption.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html

are explained in Chapter 6, “Queries,” on page 1007.) For example, MAX(SALARY) applies the function
MAX to all values of the column SALARY in a group.

– In a GROUP BY or ORDER BY clause, a column name specifies all values in the intermediate result
table to which the clause is applied. For example, ORDER BY DEPT orders an intermediate result
table by the values of the column DEPT.

– In an expression, a search condition, or a scalar function, a column name specifies a value for each
row or group to which the construct is applied. For example, when the search condition CODE = 20 is
applied to some row, the value specified by the column name CODE is the value of the column CODE
in that row.

• Provide a column name for an expression to temporarily rename a column, as in the correlation-clause
of a table-reference in a FROM clause or as in the AS clause in the select-clause.

Qualified column names
A qualifier for a column name can be a table name, a view name, an alias name, a synonym, or a
correlation name. Whether a column name can be qualified depends, like its meaning, on its context.

• In some forms of the COMMENT and LABEL statements, a column name must be qualified. This is
shown in the syntax diagrams.

• Where the column name specifies values of the column, a column name can be qualified at the user's
option.

• In the column list of an INSERT statement, a column name can be qualified.
• In the assignment-clause of an UPDATE or a MERGE statement, a column name can be qualified.
• In all other contexts, a column name must not be qualified. This rule will be mentioned in the discussion

of each statement to which it applies.

Where a qualifier is optional, it can serve two purposes. See “Column name qualifiers to avoid ambiguity”
on page 221 for details.

Correlation names
A correlation name can be defined in the FROM clause of a query and after the name of the target table or
view in an UPDATE, MERGE, or DELETE statement.

For example, the following clause establishes Z as a correlation name for X.MYTABLE:

FROM X.MYTABLE Z

With Z defined as a correlation name for table X.MYTABLE, only Z should be used to qualify a reference to
a column of X.MYTABLE in that SELECT statement.

A correlation name is associated with a table, view, nested table expression or table function only within
the context in which it is defined. Hence, the same correlation name can be defined for different purposes
in different statements. In a nested table expression or table function, a correlation name is required.

As a qualifier, a correlation name can be used to avoid ambiguity or to establish a correlated reference. It
can also be used merely as a shorter name for a table or view. In the example, Z might have been used
merely to avoid having to enter X.MYTABLE more than once.

Names that are specified in a FROM clause are either exposed or non-exposed. A correlation name is
always an exposed name. A table name or view name is said to be exposed in that FROM clause if
a correlation name is not specified. For example, in the following FROM clause, a correlation name is
specified for EMPLOYEE, but not for DEPARTMENT; therefore, DEPARTMENT is an exposed name, and
EMPLOYEE is not an exposed name:

FROM EMPLOYEE E, DEPARTMENT

The use of a correlation name in the FROM clause also allows the option of specifying a list of column
names to be associated with the columns of the result table. As with a correlation name, the listed

220 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

column names should be the names that are used to reference the columns in that SELECT statement. For
example, assume that the name of the first column in the DEPT table is DEPTNO. Given this FROM clause
in a SELECT statement:

 FROM DEPT D (NUM,NAME,MGR,ANUM,LOC)

You should use D.NUM instead of D.DEPTNO to reference the first column of the table.

If a list of columns is specified, it must consist of as many names as there are columns in the table-
reference. Each column must be unique and unqualified.

Column name qualifiers to avoid ambiguity
In the context of a function, a GROUP BY clause, an ORDER BY clause, an expression, or a search
condition, a column name refers to values of a column in some table or view in a DELETE, MERGE, or
UPDATE statement or table-reference in a FROM clause.

The tables, views, and table-references12 that might contain the column are called the object tables of
the context. Two or more object tables might contain columns with the same name. One reason for
qualifying a column name is to designate the object from which the column comes. For information on
avoiding ambiguity between SQL parameters and variables and column names, see “References to SQL
parameters and SQL variables in external SQL procedures” on page 2280.

A nested table expression which is preceded by a TABLE keyword will consider table-references that
precede it in the FROM clause as object tables. The table-references that follow it are not considered as
object tables.

Table designators: A qualifier that designates a specific object table is called a table designator. The
clause that identifies the object tables also establishes the table designators for them. For example, the
object tables of an expression in a SELECT statement are named in the FROM clause that follows it, as in
the following statement:

 SELECT DISTINCT Z.EMPNO, EMPTIME, PHONENO
 FROM DSN8C10.EMP Z, DSN8C10.EMPPROJACT
 WHERE WORKDEPT = 'D11'
 AND EMPTIME > 0.5
 AND Z.EMPNO = DSN8C10.EMPPROJACT.EMPNO;

Table designators in the FROM clause are established as follows:

• A name that follows a table or view name is both a correlation name and a table designator. Thus, Z is a
table designator and qualifies the first column name in the select list.

• An exposed table or view name is a table designator. Thus, the qualified table name,
DSN8C10.EMPPROJACT is a table designator and qualifies the second column name in the select list.

Two or more object tables can be instances of the same table. In this case, distinct correlation names
must be used to unambiguously designate the particular instance of the table. In the following example,
the X and Y in the FROM clause are defined to refer, respectively, to the first and second instances of the
DSN8C10.EMP table:

 SELECT *
 FROM DSN8C10.EMP X, DSN8C10.EMP Y;

Avoiding undefined or ambiguous references in Db2 SQL: When a column name refers to values of a
column, the following situations result in errors:

• No object table contains a column with the specified name. The reference is undefined.
• The column name is qualified by a table designator, but the table named does not include a column with

the specified name. Again, the reference is undefined.
• The name is unqualified and more than one object table includes a column with that name. The

reference is ambiguous.

12 In the case of a joined-table, each table-reference within the joined-table is an object table.

Chapter 2. Language elements in SQL 221

Avoid ambiguous references by qualifying a column name with a uniquely defined table designator. If
the column is contained in several object tables with different names, the table names can be used
as designators. Ambiguous references can also be avoided without the use of the table designator by
giving unique names to the columns of one of the object tables using the column name list following the
correlation name.

Two or more object tables can be instances of the same table. A FROM clause that includes n references
to the same table should include at least n - 1 unique correlation names.

For example, in the following FROM clause X and Y are defined to refer, respectively, to the first and
second instances of the table EMP.

 SELECT X.LASTNAME, Y.LASTNAME
 FROM DSN8C10.EMP X, DSN8C10.EMP Y
 WHERE Y.JOB = 'MANAGER'
 AND X.WORKDEPT = Y.WORKDEPT
 AND X.JOB <> 'MANAGER';

When qualifying a column with the exposed table name form of a table designator, either the qualified or
unqualified form of the exposed table name can be used. However, the qualifier used and the table used
must be the same after fully qualifying the table name or view name and the table designator.

Example 1: If the authorization ID of the statement is CORPDATA, the following statement is valid:

 SELECT CORPDATA.EMPLOYEE.WORKDEPT
 FROM EMPLOYEE;

Example 2: If the authorization ID of the statement is REGION, the following statement is invalid
because EMPLOYEE represents the table REGION.EMPLOYEE, but the qualifier for WORKDEPT represents
a different table, CORPDATA.EMPLOYEE:

 SELECT CORPDATA.EMPLOYEE.WORKDEPT -- Incorrect
 FROM EMPLOYEE;

Example 3: If the authorization ID of the statement is REGION, the following statement is invalid because
EMPLOYEE in the select list represents the table REGION.EMPLOYEE, but the explicitly qualified table
name in the FROM clause represents a different table, CORPDATA.EMPLOYEE.

 SELECT EMPLOYEE.WORKDEPT -- Incorrect
 FROM CORPDATA.EMPLOYEE;

Column name qualifiers in correlated references
A reference to a column of a table identified at a higher level is called a correlated reference. Because the
same table or view can be identified at many levels, unique correlation names are recommended as table
designators. It is good practice to use these unique correlation names to qualify column names.

A subselect is a form of a query that can be used as a component of various SQL statements. A subquery is
a form of a fullselect that is enclosed within parenthesis. For example, a subquery can be used in a search
condition. A fullselect that is used to retrieve a single value as an expression within a statement is called
a scalar fullselect or a scalar subquery. A fullselect that is used in the FROM clause of a query is called a
nested table expression.

A subquery can include search conditions of its own, and these search conditions can, in turn, include
subqueries. Thus, an SQL statement can contain a hierarchy of subqueries. Those elements of the
hierarchy that contain subqueries are said to be at a higher level than the subqueries they contain.

Every element of the hierarchy has a clause that establishes one or more table designators. This is the
FROM clause, except in the highest level of a MERGE or UPDATE, where it is the table or view being
updated. A search condition of a subquery can reference not only columns of the tables identified by the
FROM clause of its own element of the hierarchy, but also columns of tables identified at any level along
the path from its own element to the highest level of the hierarchy.

222 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

A correlated reference to column C of table T can be of the form C, T.C, or Q.C, if Q is a correlation name
defined for T. However, a correlated reference in the form of an unqualified column name is not good
practice. The following explanation is based on the assumption that a correlated reference is always in
the form of a qualified column name and that the qualifier is a correlation name.

A qualified column name, Q.C, is a correlated reference only if these three conditions are met:

• Q.C is used in a search condition or in a select list of a subquery.
• Q does not name a table used in the FROM clause of that subquery.
• Q does name a table used at some higher level.

Q.C refers to column C of the table or view at the level where Q is used as the table designator of that
table or view. Because the same table or view can be identified at many levels, unique correlation names
are recommended as table designators. If Q is used to name a table at more than one level, Q.C refers to
the lowest level that contains the subquery that includes Q.C.

If a correlation name is defined as the table designator of the table or view, but the table or view name is
used as the column qualifier instead of the correlation name, an error is returned.

For example, in the following statement, the correlated reference X.WORKDEPT (in the last line) refers to
the value of WORKDEPT in table DSN8C10.EMP at the level of the first FROM clause (which establishes X
as a correlation name for DSN8C10.EMP.). The statement lists employees who make less than the average
salary for their department.

 SELECT EMPNO, LASTNAME, WORKDEPT
 FROM DSN8C10.EMP X
 WHERE SALARY < (SELECT AVG(SALARY)
 FROM DSN8C10.EMP
 WHERE WORKDEPT = X.WORKDEPT);

The following example shows a correlated reference in the select list of the subquery.

 SELECT T1.KEY1
 FROM BP1TBL T1
 GROUP BY T1.KEY1
 HAVING MAX(T1.KEY1) = (SELECT MIN(T1.KEY1) + MIN(T2.KEY1)
 FROM BP2TBL T2);

Related concepts
Queries
A query specifies a result table or an intermediate table. A query is a component of certain SQL
statements.

Resolution of column name qualifiers and column names
The rules for resolving column name qualifiers apply to every SQL statement that includes a subselect and
are applied before synonyms and aliases are resolved.

Names in a FROM clause are either exposed or non-exposed. A correlation name for a table name, view
name, nested table expression, or reference to a table function is always exposed. A table name or a view
name that is not followed by a correlation name is also exposed.

Although Db2 for z/OS does not enforce this rule strictly, in IBM SQL and ANSI/ISO SQL, the exposed
names in a FROM clause must be unique, and the qualifier of a column name must be an exposed
name. Therefore, for good programming practices, ensure that all exposed names are unique and that all
qualified column names are qualified with the appropriate exposed name.

The rules for finding the referent of a column name qualifier are as follows:

1. Let Q be a one-, two-, or three-part name, and let Q.C denote a column name in subselect S. Q must
designate a table or view identified in the statement that includes S and that table or view must have a
column named C. An additional requirement differs for two cases:

Chapter 2. Language elements in SQL 223

• If Q.C is not in a search-condition or S is not a subquery, Q must designate a table or view identified
in the FROM clause of S. For example, if Q.C is in a SELECT clause, Q refers to a table or view in the
following FROM clause.

• If Q.C is in a search-condition and S is a subquery, Q must designate a table or view identified either
in the FROM clause of S or in a FROM clause of a subselect that directly or indirectly includes S. For
example, if Q.C is in a WHERE clause and S is the only subquery in the statement, the table or view
that Q refers to is either in the FROM clause of S or the FROM clause of the subselect that includes S.

2. The same table or view can be identified more than once in the same statement. The particular
occurrence of the table or view that Q refers to is determined by a procedure equivalent to the
following steps:

a. The one- and two-part names in every FROM clause and the one- and two-part qualifiers of column
names are expanded into a fully-qualified form.

For example, if a dynamic SQL statement uses FROM Q and DYNAMICRULES run behavior (RUN) is
in effect, Q is expanded to S.A.Q, where S is the value of CURRENT SERVER and A is the value of
CURRENT SCHEMA. (If DYNAMICRULES bind behavior is in effect instead, A is the plan or package
qualifier as determined during the bind process or the qualifier for the native SQL procedure as
determined when the procedure was defined.) This step is later referred to as "name completion".
An error occurs if the first part of every name (the location) is not the same.

b. Q, now a three-part name, is compared with every name in the FROM clause of S. If Q.C is in a
search-condition and S is a subquery, Q is next compared with every name in the FROM clause of
the subselect that contains S. If that subselect is a subquery, Q is then compared with every name
in the FROM clause of the subselect containing that subquery, and so on. If a FROM clause includes
multiple names, the comparisons in that clause are made in order from left to right.

c. The referent of Q is selected by these rules:

• If Q matches exactly one name, that name is selected.
• If Q matches more than one name, but only one exposed name, that exposed name is selected.
• If Q matches more than one exposed name, the first of those names is selected.
• If Q matches more than one name, none of which are exposed names, the first of those names is

selected.

If Q does not match any name, or if the table or view designated by Q does not include a column
named C, an error occurs.

d. Otherwise, Q.C is resolved to column C of the occurrence of the table or view identified by the
selected name.

3. A warning occurs for any of these cases:

• The selected name is not an exposed name.
• The selected name is an exposed name that has an unexposed duplicate that appears before the

selected name in the ordered list of names to which Q is compared.
• The selected name is an exposed name that has an exposed duplicate in the same FROM clause.
• Another name would have been selected had the matching been performed before name

completion.

The rules for resolving column name qualifiers apply to every SQL statement that includes a subselect
and are applied before synonyms and aliases are resolved. In the case of a searched UPDATE or
DELETE statement, or a MERGE statement, the first clause of the statement identifies the table or
view to be changed. That clause can include a correlation name and, with regard to name resolution,
is equivalent to the first FROM clause of a SELECT statement. For example, a subquery in the search
condition of an UPDATE statement can include a correlated reference to a column of the updated rows.

The rules for column names in the ORDER BY clause are the same as other clauses.

224 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Variables
A variable in an SQL statement specifies a value that can be changed when the SQL statement is
executed. There are several types of variables used in SQL statements.
Global variables

Global variables are either built-in global variables or user-defined global variables. For more
information about global variables, see “Global variables” on page 225.

Session variables
Session variables are either built-in session variables or user-defined session variables. For more
information about session variables, see “Session variables” on page 227.

Host variables
Host variables are defined by statements of a host language. For more information about how to refer
to host variables, see “Host variables” on page 227.

Transition variables
Transition variables are defined in a trigger and refer to either the old or new values of columns of the
subject table or view of a trigger. For more information about how to refer to transition variables, see
“CREATE TRIGGER statement (basic trigger)” on page 1769.

SQL variables
SQL variables are defined by an SQL compound statement in an SQL function or SQL procedure. For
more information about SQL variables, see “References to SQL parameters and variables in SQL PL”
on page 2208.

SQL parameters
SQL parameters are defined in an CREATE FUNCTION (SQL Scalar), CREATE FUNCTION (SQL table), or
CREATE PROCEDURE (SQL) statement. For more information about SQL parameters, see “References
to SQL parameters and variables in SQL PL” on page 2208.

Parameter markers
Parameter markers are specified in an SQL statement that is dynamically prepared, instead of
variables, other than global variables. For more information about parameter markers, see Parameter
markers in the PREPARE statement.

Unless otherwise noted, the term variable in syntax diagrams is used to describe where a global variable,
host variable, transition variable, SQL variable, SQL parameter, or parameter marker can be used.

Global variables
A global variable is a named memory variable that you access through SQL statements. Global variables
let you share relational data between SQL statements without the need for application logic to support
this data transfer.

The Db2 database management system supports the following types of global variables:

Built-in global variable

Built-in global variables are provided with the database manager and are used in SQL statements
to retrieve scalar values associated with the variables. A built-in global variable is available to any
SQL statement that runs on the database manager. Built-in global variables reside in the SYSIBM and
SYSIBMADM schemas. As an example, the CLIENT_IPADDR built-in global variable can be referenced
in an SQL statement to retrieve the IP address of the current client.

For a list of the built-in global variables and information on these variables, see “Built-in global
variables” on page 329.

The READ privilege on a built-in global variable is required for any statement that retrieves the value
of that variable. The READ privilege for the built-in global variables is implicitly granted to PUBLIC
during installation.

The WRITE privilege on an updatable built-in global variable is required for any statement that assigns
a value to that variable. You can control write access to an updatable built-in global variable through
the GRANT (variable privileges) and REVOKE (variable privileges) statements.

Chapter 2. Language elements in SQL 225

Examples: Using built- in global variables

The value of a built-in global variable can be obtained by referencing the variable in the context in
which the value is needed.

SELECT C1, C2
 FROM T1
 WHERE C3 = CLIENT_IPADDR

To access the global variable CLIENT_HOST, run the following query:

SELECT SYSIBM.CLIENT_IPADDR
 FROM SYSIBM.SYSDUMMY1

The query returns the IP address of the current client.

1111:2222:3333:4444:5555:6666:7777:8888

To change the value of an updatable built-in global variable, issue the "SET variable" statement:

SET SYSIBMADM.GET_ARCHIVE = 'Y'

User-defined global variable
A user-defined global variable is available to any active SQL statement that is running on the database
manager on which the variable was defined. The value of a user-defined global variable is associated
with a specific session, and contains a value that is unique to that session. User-defined global
variables let users extend the functionality of the database management system by adding their own
or third-party vendor variable definitions.

A user-defined global variable is created using the CREATE VARIABLE statement, and registered to
the database manager in the catalog. A user-defined global variable resides in the schema in which it
was created. For more information, see “CREATE VARIABLE statement” on page 1808.

You can control access to a user-defined global variable through the “GRANT statement (variable
privileges)” on page 1992 and “REVOKE (variable privileges)” on page 2106 statements. The
authorization that is required to use a global variable depends on where it is defined and how it
is used.

• The authorization ID of an SQL statement that references a user-defined global variable and
retrieves the value must have the READ privilege on the global variable.

• The authorization ID of an SQL statement that references a user-defined global variable and assigns
a value to that variable must have the WRITE privilege on the global variable.

The value of a user-defined global variable can be obtained by referencing the variable in the context
in which the value is needed. The value of a user-defined global variable can be changed with the
following statements:

• EXECUTE
• FETCH
• SET
• SELECT INTO
• VALUES INTO
• CALL, if the variable is an argument to a procedure in which the corresponding parameter is defined

as an OUT or INOUT parameter.

A reference, with an unqualified name, that is intended to resolve to a global variable could also
resolve to an SQL variable, an SQL parameter, or even a column name, depending on the context of
the reference and how the reference is qualified within that context. The implicit schema name for an
unqualified variable name depends on the context in which the name appears:

226 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• If an unqualified variable name is used in a CREATE VARIABLE, or the object of a DROP, COMMENT,
GRANT, or REVOKE statement, the normal process of qualification by the authorization ID is used to
determine the schema name.

• If an unqualified variable name is used in any other context, the SQL path is used to determine
the schema name. The database manager searches the schemas in the SQL path in sequence. The
schema that is selected is the first schema in the SQL path for which the global variable exists in the
schema, and the user has authorization to use the variable. For a description of the SQL path, see
“SQL path” on page 85.

Session variables
A session variable is a named memory variable that you access through SQL statements. Session
variables let you share data between SQL statements without the need for application logic to support
this data transfer.

The Db2 for z/OS supports the following types of session variables:

Built-in session variables
Built-in session variables are provided with the database manager. The value of a built-in session
variable can be obtained by invoking the GETVARIABLE built-in function to retrieve the scalar value
associated with the variable.

For more information about built-in session variables, see “Built-in session variables” on page 336.

User-defined session variables
User-defined session variables can be defined in connection and sign-on routines. A user-defined
session variable is available to any active SQL statement that is running on the database manager
on which the variable was defined. The value of a user-defined session variable is associated with a
specific session and contains a value that is unique to that session. User-defined session variables let
users extend the functionality of the database management system by adding their own or third-party
vendor variable definitions.

Up to 10 user-defined session variables can be defined in the connection exit routine and the sign-
on exit routine. For more information about defining user-defined session variables, see Session
variables in connection and sign-on routines (Managing Security).

You can obtain the value of a user-defined or built-in session variable by invoking the GETVARIABLE
function with the name of the session variable. For more information on retrieving the value of a session
variable, see “GETVARIABLE scalar function” on page 464.

Host variables
Host variables are defined directly by statements of the host language or indirectly by SQL extensions. A
host-variable in an SQL statement must identify a host variable that is described in the program according
to the rules for declaring host variables. Host variables cannot be referenced in dynamic SQL statements;
parameter markers must be used instead.

A host variable is either of these items that is referred to in an SQL statement:

• A variable in a host language such as a PL/I variable, C variable, Fortran variable, REXX variable, Java
variable, COBOL data item, or Assembler language storage area

• A host language construct that was generated by an SQL precompiler from a variable declared using
SQL extensions

Host variables are defined directly by statements in the host language or indirectly by SQL extensions
as described in Db2 object relational extensions (Db2 Application programming and SQL). Host variables
cannot be referenced in dynamic SQL statements; parameter markers must be used instead. For more
information about parameter markers, see “Variables in dynamic SQL” on page 230.

A host-variable in an SQL statement must identify a host variable that is described in the program
according to the rules for declaring host variables.

Chapter 2. Language elements in SQL 227

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_sessionvarconnectsignon.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_sessionvarconnectsignon.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_objectrelationalextensions.html

In PL/I, C, and COBOL, host variables can be referred to in ways that do not apply to Fortran and
Assembler language. This is explained in “Host structures in PL/I, C, and COBOL” on page 235. The
following applies to all host languages.

The term host-variable, as used in the syntax diagrams, shows a reference to a host variable. In a SET host
variable statement and the INTO clause of a FETCH, SELECT INTO, or VALUES INTO statement, a host
variable is an output variable to which a value is assigned by Db2. In a CALL statement, a host variable can
be an output argument that is assigned a value after execution of the procedure, an input argument that
provides an input value for the procedure, or both an input and output argument. In all other contexts, a
host variable is an input variable which provides a value to Db2.

Non-Java variable references

The general form of a host variable reference in all languages other than Java is:

: host-identifier
INDICATOR

: host-identifier

Each host identifier must be declared in the source program, except in a program written in REXX.
The first host-identifier designates the main variable, and the second host-identifier designates the
associated indicator variable. An indicator variable must be a small integer. Depending on the
operation, the main variable either provides a value to the database manager or is provided a value
from the database manager. An input host variable provides a value in the runtime application code
page. An output host variable is provided a value that, if necessary, is converted to the runtime
application code page when the data is copied to the output application variable. A given host variable
can serve as both an input and an output variable in the same program.

The purposes of an indicator variable are to:

• Specify a non-null value. A 0 (zero), or positive value of the indicator variable specifies that the
associated, first host-identifier provides the value of this host variable reference.

• Specify the null value. A negative value of the indicator variable specifies the null value.

In addition, on output, the purposes of an indicator variable are to:

• Indicate that a numeric conversion error (such as a divide by 0 or overflow) has occurred. A value of
-2 for the indicator variable indicates a null result because of either numeric truncation or arithmetic
warnings.

• Indicate that a character could not be converted. A value of -2 for the indicator variable indicates a
null result because of character string conversion warnings.

• Indicate that no value was returned. A value of -3 for the indicator variable indicates a null result
because the current row of the cursor is on a hole that is detected during a multiple row FETCH.

• Report the original length of a truncated string, if the string is not a LOB.
• Report the seconds portion of a time if the time is truncated on assignment to a host variable.

If the second host-identifier is omitted, the host variable does not have an indicator variable. The value
specified by the host variable V1 is always the value of V1, and null values cannot be assigned to the
variable. Thus, do not use this form on output unless the corresponding result column cannot contain
null values. If this form is used for an output host variable, and the returned value is null, Db2 returns
an error at run time.

An indicator variable for an input host variable in an INSERT, MERGE, or UPDATE statement can
also be set to some special values to indicate that a target column is to be set to the default
value, or to indicate that a value should not be assigned to a target column. These special values
are only allowed when extended indicators are enabled. Extended indicators are enabled when the
EXTENDEDINDICATOR(YES) bind option is used, or when the WITH EXTENDED INDICATORS prepare
attribute is specified for the statement.

228 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

When extended indicators are enabled, an input indicator variable for an assignment in an INSERT,
MERGE, or UPDATE statement specifies that the target column for the associated host variable is
assigned one of the following types of values:

• A non-null value: A 0 (zero), or positive value specifies that the associated host-identifier provides
the value of this host variable reference.

• NULL: A -1, -2, -3, -4, or -6 value specifies the null value.
• DEFAULT: A -5 value specifies the default value of the target column.
• UNASSIGNED: A -7 value specifies that this host variable is treated as if a value was not specified

for assignment to the target column in the statement.

These indicator values can also be used in indicator structures with host structures. When extended
indicators are enabled, indicator values other than positive values, zero, and the negative values listed
previously must not be used. The DEFAULT and UNASSIGNED extended indicator values must only be
used in contexts where they are supported (INSERT, MERGE, and UPDATE statements). The DEFAULT
and UNASSIGNED extended indicator values can only be used for an expression containing a single
host parameter or a CAST of a single host parameter that is being assigned to a column. Output
indicators are never set to extended indicator values.

When extended indicators are enabled, rules for data type validation in assignment and comparison
are loosened for a host variable for which the associated indicator value is negative. Data type
assignment and comparison validation rules are not enforced for a host variable for which the
associated indicator value is NULL, DEFAULT, or ASSIGNED.

An SQL statement that references host variables must be within the scope of the declaration of those
host variables. For host variables referenced in the SELECT statement of a cursor, that rule applies to
the OPEN statement rather than to the DECLARE CURSOR statement.

The CCSID of a string host variable is one of the following values:

• If a DECLARE VARIABLE statement with a CCSID clause for the host variable is specified, the CCSID
of the host variable is the CCSID in the DECLARE VARIABLE statement.

• If a DECLARE VARIABLE statement with a CCSID clause is not specified for the host variable, the
host variable CCSID is the default CCSID of the application requester at the time that the SQL
statement that contains the host variable is executed, unless the CCSID is for a foreign encoding
scheme. In that case, the host variable is converted to the default CCSID of the current server.

All references to host variables must be preceded by a colon. If an SQL statement references a
host variable without a preceding colon, the precompiler issues an error for the missing colon or
interprets the host variable as an unqualified column name, which might lead to unintended results.
The interpretation of a host variable without a colon as a column name occurs when the host variable
is referenced in a context in which a column name can also be referenced.

Java variable references

The general form of a host variable reference in Java is:

:

IN

OUT

INOUT

Java-identifier

( Java-expression)

INDICATOR
: Java-identifier

Each Java-identifier must be declared in the source program. The variable designated by the second
Java-identifier is called an indicator variable and must be a short.

Chapter 2. Language elements in SQL 229

In Java, indicator variables are not always needed. Instead, instances of a Java class can be set to
a null value. Variables defined as Java primitive types can not be set to a null value. When using an
extended indicator variable, or when using a Java primitive type in assigning a null value or where the
Java primitive type might be assigned null on output, indicator variables must be used.

If IN, OUT, or INOUT is not specified, the default depends on the context in which the variable is used.
If the Java variable is used in an INTO clause, OUT is the default. Otherwise, IN is the default.

Variables in dynamic SQL
In dynamic SQL statements, parameter markers are used instead of variables other than global variables.
Global variables are the only type of variable that can be specified in a dynamic SQL statement.

A parameter marker is a question mark (?) that represents a position in a dynamic SQL statement where
the application will provide a value; that is, where a variable would be found if the statement string were
a static SQL statement. The following examples show a static SQL statement that uses variables and a
dynamic statement that uses parameter markers:

 INSERT INTO DEPT VALUES (:HV_DEPTNO, :HV_DEPTNAME, :HV_MGRNO, :HV_ADMRDEPT)
 INSERT INTO DEPT VALUES (?, ?, ?, ?)

For more information on parameter markers, see Parameter markers under the PREPARE statement.

LOB variables
Regular LOB variables (CLOB, DBCLOB, and BLOB), LOB locator variables and LOB file reference variables
can be defined in all host languages with a few exceptions.

• Java supports file reference variables, but not locators for LOBs.

Where LOBs are allowed, the term meta-variable variable in a syntax diagram can refer to a regular
variable, a locator variable, or a file reference variable. Because these variables are not native data
types in host programming languages, SQL extensions are used, and the precompilers generate the host
language constructs that are necessary to represent each variable.

When it is possible to define a variable that is large enough to hold an entire LOB value and the
performance benefit of delaying the transfer of data from the server is not required, a LOB locator or
LOB file reference is not needed. However, it is often not acceptable to store an entire LOB value in
temporary storage due to host language restrictions, storage restrictions, or performance requirements.
When storing an entire LOB value at one time is not acceptable, you can use one of the following
alternatives:

• Referencing the LOB value using a LOB locator, and accessing portions of the value
• Storing the entire LOB value in a file, and using a LOB file reference to access the data

LOB locator variables
A LOB locator variable is a host variable that contains the locator representing a LOB value on the
database server.

See “Manipulating LOBs using locators” on page 117 for information about how locators can be used to
manipulate LOB values.

A locator variable in an SQL statement must identify a LOB locator variable described in the program
according to the rules for declaring locator variables. This is always indirectly through an SQL statement.
For example, in C:

 static volatile SQL TYPE IS CLOB_LOCATOR *loc1;

The term locator-variable, as used in the syntax diagrams, shows a reference to a LOB locator variable.
The meta-variable locator-variable can be expanded to include a host-identifier the same as that for
host-variable.

230 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Like all other host variables, a LOB locator variable can have an associated indicator variable. Indicator
variables for LOB locator variables behave in the same way as indicator variables for other data types.
When a null value is returned from the database, the indicator variable is set and the locator host variable
is unchanged. This means a locator can never represent a null value. However, when the indicator variable
associated with a LOB locator is null, the value of the referenced LOB value is null.

If a locator variable does not currently represent any value, an error occurs when the locator variable is
referenced.

When a transaction commits, LOB locators that were acquired by the transaction are released unless a
HOLD LOCATOR statement was issued for the LOB locator. When the transaction ends, all LOB locators are
released.

It is the application programmer's responsibility to guarantee that any LOB locator is used only in SQL
statements that are executed at the same server that originally generated the LOB locator. For example,
assume that a LOB locator is returned from one server and assigned to a LOB locator variable. If that
LOB locator variable is subsequently used in an SQL statement that is executed at a different server
unpredictable results will occur.

XML variables
An XML variable can be defined as a string or file reference variable. Regular XML variables and XML file
reference variables can be defined in all host languages with a few exceptions.

• REXX supports file reference variables for XML.
• Java supports XML and file reference variables for XML.

XML variables can be declared as the following variable types:

Where XML variables are allowed, the meta-variable variable in a syntax diagram can refer to a
regular variable or a file reference variable. Because these variables are not native data types in host
programming languages, SQL extensions are used, and the precompilers generate the host language
constructs that are necessary to represent each variable.

When it is possible to define a variable that is large enough to hold an entire XML value and the
performance benefit of delaying the transfer of data from the server is not required, an XML file reference
is not needed. However, it is often not acceptable to store an entire XML value in temporary storage due
to host language restrictions, storage restrictions, or performance requirements. When storing an entire
XML value at one time is not acceptable, portions of the value can be accessed, or the entire value can be
stored in a file. When the entire value is stored in a file, an XML file reference can be used to access the
data.

XML host variables can be declared as the following variable types:

• XML AS CLOB(n)

Declares a CLOB variable that contains XML data that is encoded in the CCSID for the variable.
• XML AS DBCLOB(n)

Declares a DBCLOB variable that contains XML data that is encoded in the graphic CCSID for the
variable.

• XML AS BLOB(n)

Declares a BLOB variable that contains XML data that is encoded as specified within the data according
to the XML 1.0 specification for determining encoding.

• XML AS CLOB_FILE

Declares a CLOB file reference variable that contains XML data that is encoded in the CCSID for the file
reference variable.

• XML AS DBCLOB_FILE

Declares a DBCLOB file reference variable that contains XML data that is encoded in the CCSID for the
file reference variable.

Chapter 2. Language elements in SQL 231

• XML AS BLOB_FILE

Declares a BLOB file reference variable that contains XML data that is encoded in the CCSID for the file
reference variable.

See “LOB or XML file reference variables ” on page 232 for additional information about file reference
variables.

Although the application XML variable declaration includes a LOB type specification, the variable
declarations all are considered to be the XML data type, not the LOB type that is used in the application
declaration. The application might also use non-XML variables in place of XML variables. For example,
when a prepared statement is executed, the application might use a character variable to replace an XML
parameter marker in the statement.

Although the XML data type is incompatible with all other data types, both XML and non-XML data types
can be used for input to and output from XML data. Applications can use either XML variables, character
variables, or binary string variables for input and output in SQL statements for XML data.

The following table summarizes the conversions built-in data types (including XML) to and from the
supported variable data types within embedded applications. The built-in data types are specified in the
rows. A Y indicates that the built-in data type can be assigned to or assigned from the variable type.

Table 48. Application variable compatibility with the built-in data types for applications that contain embedded SQL

built-in data type

application variable data type

CHAR,
VARCHAR, CLOB,
CLOB_FILE

GRAPHIC,
VARGRAPHIC,
DBCLOB,
DBCLOB_FILE

BINARY,
VARBINARY,
BLOB,
BLOB_FILE

XML AS
CLOB, XML AS
CLOB_FILE

XML AS
DBCLOB, XML AS
DBCLOB_FILE

XML AS BLOB,
XML AS
BLOB_FILE

CHAR Y Y

VARCHAR Y Y

CLOB Y Y

GRAPHIC Y Y

VARGRAPHIC Y Y

DBCLOB Y Y

BINARY Y

VARBINARY Y

BLOB Y

XML Y Y Y Y Y Y

LOB or XML file reference variables
File reference variables are used for direct file input and output for LOB and XML values (when the XML
value is declared using XML AS variable-type), and can be defined in all host languages.

Because these are not native data types, SQL extensions are used and the Db2 precompiler or
coprocessor generates the host language constructs necessary to represent each variable. In the case
of REXX, LOB values are mapped to strings. See “XML variables” on page 231 for more information about
XML host variables.

A file reference variable represents (rather than contains) the file, just as a LOB locator represents, rather
than contains, the LOB data. Database queries, updates, and inserts can use file reference variables to
store or to retrieve single column values.

As with all other host variables, file reference variables can have an associated indicator variable.
Indicator variables for file reference variables behave in the same way as indicator variables for other
data types. When a null value is returned from the database manager, the indicator variable is set, and the
variable is unchanged. When the indicator variable that is associated with a file reference variable is null,

232 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

the value of the referenced LOB or XML object is null. This means that a file reference variable can never
point to a null value.

The length attribute of a file reference variable is assumed to be the maximum length of a LOB or XML
object.

A file reference variable has the following properties:
Data type

BLOB, CLOB, or DBCLOB. This property is specified when the variable is declared using BLOB_FILE,
CLOB_FILE, or DBCLOB_FILE.

Direction
This must be specified by the application program at run time (it is implicitly specified as part of the
File options value). The direction can be either of the following:
Input

Input is used as a source of data on an EXECUTE statement, an OPEN statement, an update
operation, an insert operation, or a delete operation.

Output
Output is used as the target of data. For example, on a FETCH statement or a SELECT INTO
statement.

File name
This must be specified by the application program at run time. It must be the complete path name of
the file. Within an application, a file should only be referenced one time in a file reference variable.

File name length
This must be specified by the application program at run time. It is the length of the file name in bytes.

Data length
Sets the data length to the length of the new data that is written to the file. The length is in bytes. Data
length is unused on input.

File options
Options are set by an INTEGER value in a field in the file reference variable structure. One of the
following values must be specified in an application for each file reference variable before that file
reference variable can be used in the application:
SQL_FILE_READ

This is a regular file that can be opened, read and closed. (The option is SQL-FILE-READ in COBOL,
sql_file_read in FORTRAN, and READ in REXX.) SQL_FILE_READ is an input (from client to server)
file option.

SQL_FILE_CREATE
Create a new file. If the file already exists, an error is returned. (The option is SQL-FILE-CREATE in
COBOL, sql_file_create in FORTRAN, and CREATE in REXX.) SQL_FILE_CREATE is an output (from
server to client) file option.

SQL_FILE_OVERWRITE
If an existing file with the specified name exists, it is overwritten; otherwise a new file is created.
(The option is SQL-FILE-OVERWRITE in COBOL, sql_file_overwrite in FORTRAN, and OVERWRITE
in REXX.). SQL_FILE_OVERWRITE is an output (from server to client) file option.

SQL_FILE_APPEND
If an existing file with the specified name exists, the output is appended to it; otherwise a new file
is created. (The option is SQL-FILE-APPEND in COBOL, sql_file_append in FORTRAN, and APPEND
in REXX.) SQL_FILE_APPEND is an output (from server to client) file option.

The encoding scheme CCSID of the file name is based on the encoding scheme of the application. The
CCSID of the LOB or XML data (the contents of the file) can be set by the application by using a DECLARE
host-variable CCSID statement if the CCSID of the LOB or XML data is different from the CCSID of the
application. Db2 performs any character conversion that is required prior to insertion of the LOB or XML
data into a table or writing of the LOB or XML data to a file.

Chapter 2. Language elements in SQL 233

Result set locator variables
A result set locator variable is a variable that contains the locator that identifies a stored procedure result
set. A result set locator variable in an SQL statement must identify a result set locator variable described
in the program according to the rules for declaring result set locator variables. This is always indirectly
through an SQL statement.

For example, in C:

 static volatile SQL TYPE IS RESULT_SET_LOCATOR VARYING *loc1;

A result set locator variable in an SQL procedure is defined with the RESULT_SET_LOCATOR VARYING
clause in a compound statement.

The meta-variable rs-locator-variable, as used in the syntax diagrams, shows a reference to a result set
locator variable. A host variable that is a result set locator variable can have an association indicator
variable. When the indicator variable that is associated with a result set locator is null, the referenced
result set is not defined.

If a result set locator variable does not currently represent any stored procedure result set, an error
occurs when the locator variable is referenced.

A commit operation destroys all open cursors that were declared in the stored procedure without the
WITH HOLD option and the result set locators that are associated with those cursors. Otherwise, a cursor
and its associated result set locator persist past the commit.

An application that is written in a programming language other than Java can access a result set that is
returned from a stored procedure. A result set locator is used by the invoking application to access the
result set. A result set locator value for a result set can be obtained from an ASSOCIATE LOCATOR
statement or with the DESCRIBE PROCEDURE statement. For more information, see “ASSOCIATE
LOCATORS statement” on page 1380 and “DESCRIBE PROCEDURE statement” on page 1879.

The result set locator value is specified on an ALLOCATE CURSOR statement to define a cursor in the
invoking application and to associate it with a stored procedure result set. For more information, see
“ALLOCATE CURSOR statement” on page 1093.

A DESCRIBE CURSOR statement can be used in the invoking application to obtain information on the
characteristics of the columns of a stored procedure result set. For more information, see “DESCRIBE
CURSOR statement” on page 1869.

The application can then access the rows of the result set using FETCH statements with the allocated
cursor.

Related reference
compound-statement
A compound statement groups other statements together in an SQL routine or advanced trigger. A
compound statement allows the declaration of SQL variables, cursors, and condition handlers.

Array variables
An array variable is a variable that is defined as a user-defined array type.

An array variable can be defined in one of the following ways:

• An array global variable that is defined using the CREATE VARIABLE statement.
• An SQL parameter that is defined using the CREATE FUNCTION (SQL scalar) or CREATE PROCEDURE

(SQL native) statement.
• An SQL variable that is defined using the DECLARE clause of a compound statement.

An array variable (representing an entire array) can be referenced in the following contexts:

• An input argument to the NULL predicate.
• An input argument to the ARRAY_EXISTS predicate.

234 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• An input argument to a built-in array scalar function (ARRAY_DELETE, ARRAY_FIRST, ARRAY_LAST,
ARRAY_NEXT, ARRAY_PRIOR, or TRIM_ARRAY).

• An argument to UNNEST specification.
• The outer SELECT list of a fullselect that does not include a set operator, in the definition of a cursor

that is not scrollable. In this case a FETCH statement for the cursor must specify an array variable as the
target for the corresponding result column of the fullselect for the array variable.

• The outer select list of a SELECT INTO statement, when the target for the corresponding column of the
result table of the fullselect is an array variable.

• The outer select list of a scalar fullselect, on the right side of a SET assignment-statement statement
or an SQL PL assignment-statement statement, when the corresponding target of the assignment is an
array variable.

• The source value for a VALUES INTO statement, when the target for value is an array variable.
• The target of an assignment from a FETCH statement, when the corresponding source data is an array

value, and the FETCH statement is issued in an SQL PL context.
• The target of a SELECT INTO statement, when source data for the corresponding column of the result

table is an array value.
• The target of an assignment for a SET assignment-statement statement or an SQL PL assignment-

statement statement, when the corresponding source value is an array value.
• The target of a VALUES INTO statement, when the source data value is an array value.
• An argument to or from a routine (CALL statement or function invocation).
• The value that is returned in a RETURN statement of an SQL scalar function.
• An ORDER BY or GROUP BY clause of an outer fullselect.
• The source value in a USING clause for an EXECUTE statement or OPEN statement, in an SQL PL

context.

An array variable can also be referenced in an array element specification. An element of a user-defined
array type can be referenced anywhere that an expression that returns the same data type as an element
of that array can be used.

Restriction: An array variable or an array element must not be referenced in an SQL statement, other than
a CALL statement, after a connection at a remote server has been established. This restriction includes
the case of an SQL statement that is executing at a remote server as a result of a three-part name or an
alias that resolves to an object at a remote server.

Related reference
Array element specification
The array element specification returns the element from an array specified by array-index.

Host structures in PL/I, C, and COBOL
A host structure is a PL/I structure, C structure, or COBOL group that is referred to in an SQL statement.

Host structures are defined by statements of the host language, as explained in Overview of programming
applications that access Db2 for z/OS data (Db2 Application programming and SQL). As used here, the
term host structure does not include an SQLCA or SQLDA.

In Java and REXX, there is no equivalent to a host structure.

The form of a host structure reference is identical to the form of a host variable reference. The
reference :S1:S2 is a host structure reference if S1 names a host structure. If S1 designates a host
structure, S2 must be a small integer variable or an array of small integer variables. S1 is the host
structure and S2 is its indicator array.

A host structure can be referred to in any context where a list of host variables can be referenced. A
host structure reference is equivalent to a reference to each of the host variables contained within the
structure in the order which they are defined in the host language structure declaration. The nth variable
of the indicator array is the indicator variable for the nth variable of the host structure.

Chapter 2. Language elements in SQL 235

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_writedb2application.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_writedb2application.html

In PL/I, for example, if V1, V2, and V3 are declared as the variables within the structure S1, the following
two statements are equivalent:

 EXEC SQL FETCH CURSOR1 INTO :S1;
 EXEC SQL FETCH CURSOR1 INTO :V1, :V2, :V3;

If the host structure has m more variables than the indicator array, the last m variables of the host
structure do not have indicator variables. If the host structure has m fewer variables than the indicator
array, the last m variables of the indicator array are ignored. These rules also apply if a reference to a host
structure includes an indicator variable or a reference to a host variable includes an indicator array. If an
indicator array or variable is not specified, no variable of the host structure has an indicator variable.

In addition to structure references, individual host variables or indicator variables in PL/I, C, and COBOL
can be referred to by qualified names. The qualified form is a host identifier followed by a period and
another host identifier. The first host identifier must name a structure, and the second host identifier must
name a host variable at the next level within that structure.

In PL/I, C, and COBOL, the syntax of host-variable is:

:

host-identifier .

 host-identifier

INDICATOR
:

host-identifier .

 host-identifier

In general, a host-variable in an expression must identify a host variable (not a structure) described in the
program according to the rules for declaring host variables. However, there are a few SQL statements that
allow a host variable in an expression to identify a structure, as specifically noted in the descriptions of
the statements.

The following examples show references to host variables and host structures:

 :V1 :S1.V1 :S1.V1:V2 :S1.V2:S2.V4

Host-variable arrays in PL/I, C, C++, and COBOL
A host-variable array is an array in which each element of the array contains a value for the same column.
The first element in the array corresponds to the first value, the second element in the array corresponds
to the second value, and so on.

Host-variable arrays can be referenced only as a simple reference in the following contexts. In syntax
diagrams, host-variable-array designates a reference to a host-variable array.

• In a FETCH statement for a multiple-row fetch. See “FETCH statement” on page 1924.
• In the FOR n ROWS form of the INSERT statement with a host-variable array for the source data. See

“INSERT statement” on page 1996.
• In a MERGE statement with multiple rows of source data. See “MERGE statement” on page 2019.
• In an EXECUTE statement to provide a value for a parameter marker in a dynamic FOR n ROWS form of

the INSERT statement or a MERGE statement. See “EXECUTE statement” on page 1909.

Host-variable arrays are defined by statements of the host language, as explained in the following topics:

• Host-variable arrays in C and C++ (Db2 Application programming and SQL)
• Host-variable arrays in COBOL (Db2 Application programming and SQL)
• Host-variable arrays in PL/I (Db2 Application programming and SQL)

236 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_hostvariablearrayc.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_hostvariablearraycobol.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_hostvariablearraypli.html

Tip: Host-variable arrays are not supported for assembler, FORTRAN, or REXX programs. However,
you can use SQL descriptor areas (SQLDA) to achieve similar results in any host language. For more
information see Defining SQL descriptor areas (SQLDA) (Db2 Application programming and SQL).

The form of a host-variable array reference is similar to the form of a host variable reference. The
reference :COL1:COL1IND is a host-variable array reference if COL1 designates an array. If COL1
designates an array, COL1IND must be a one dimensional array of small integer host variables. The
dimension of the host-variable array must be less than or equal to the dimension of the indicator array. If
an indicator array is not specified, no variable of the main host-variable array has an indicator variable.

Syntax
In PL/I, C, C++, and COBOL, a host-variable-array reference has the following syntax:

: host-identifier
INDICATOR

: host-identifier

Example

In the following example, COL1 is the main host-variable array and COL1IND is its indicator array, If COL1
has 10 elements for fetching a single column of data for multiple rows of data, COL1IND must also have
10 entries.

 EXEC SQL FETCH CURSOR FOR 5 ROWS INTO :COL1 :COL1IND;

Related concepts
Using host-variable arrays in SQL statements (Db2 Application programming and SQL)

Functions
A function is an operation denoted by a function name followed by zero or more operands that are
enclosed in parentheses. It represents a relationship between a set of input values and a set of result
values.

The input values to a function are called arguments. For example, a function can be passed with two
input arguments that have date and time data types and return a value with a timestamp data type as the
result.

Types of functions
There are several ways to classify functions. One way to classify functions is as built-in functions, user-
defined functions, or cast functions that are generated for distinct types.

Built-in functions

Built-in functions include operator functions such as "+", aggregate functions such as AVG, and scalar
functions such as SUBSTR. For a list of the built-in aggregate and scalar functions and information on
these functions, see Chapter 4, “Built-in functions,” on page 341.

The built-in functions are in schema SYSIBM.

The RANK, DENSE_RANK, and ROW_NUMBER specifications are sometimes referred to as built-in
functions. Refer to “OLAP specifications” on page 280 for more information on these specifications.

Chapter 2. Language elements in SQL 237

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_definesqldescriptorarea.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_hostvararraysqlstatement.html

User-defined functions

User-defined functions are functions that are created using the CREATE FUNCTION statement and
registered to the Db2 in the catalog. These functions allow users to extend the function of Db2 by adding
their own or third party vendor function definitions.

A user-defined function is an SQL, external, or sourced function. An SQL function is defined to the
database using only SQL statements. An external function is defined to the database with a reference to
an external program that is executed when the function is invoked. A sourced function is defined to the
database with a reference to a built-in function or another user-defined function. Sourced functions can
be used to override built-in aggregate and scalar functions for use on distinct types.

A user-defined function resides in the schema in which it was registered. The schema cannot be SYSIBM.

To help you define and implement user-defined functions, sample user-defined functions are supplied
with Db2. You can also use these sample user-defined functions in your application program just as you
would any other user-defined function if the appropriate installation job has been run.

For more information, see the following related topics:

• Appendix O, “Sample user-defined functions,” on page 2941
• Creating a user-defined function (Db2 Application programming and SQL)
• “CREATE FUNCTION statement (overview)” on page 1424

Generated user-defined functions for distinct types

Generated user-defined functions for distinct types (also called cast functions) are functions that Db2
automatically generates when a distinct type is created using the CREATE TYPE statement.

Cast functions support casting from the distinct type to the source type and from the source type to the
distinct type. The ability to cast between the data types is important because a distinct type is compatible
only with itself.

The generated cast functions reside in the same schema as the distinct type for which they were created.
The schema cannot be SYSIBM.

For more information, see “CREATE TYPE statement” on page 1795

Other ways classify functions

Functions can also be classified as aggregate, scalar, or table functions, depending on the input data
values and result values.

• An aggregate function receives a set of values for each argument (such as the values of a column)
and returns a single-value result for the set of input values. Aggregate functions are sometimes called
column functions. Built-in functions and user-defined sourced functions can be aggregate functions.
Aggregate functions cannot be external user-defined function or SQL functions. For more information,
see “Aggregate functions” on page 353.

• A scalar function receives a single value for each argument and returns a single-value result. Built-in
functions and user-defined functions, external, sourced, and SQL, can be scalar functions. The functions
that are created for distinct types are also scalar functions. For more information, see “Scalar functions”
on page 382.

• A table function returns a table for the set of arguments it receives. Each argument is a single value. A
table function can only be referenced in the FROM clause of a subselect. A table function can be defined
as an external or SQL function, but a table function cannot be a sourced function.

238 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_defineudf.html

Table functions can be used to apply SQL language processing power to data that is not stored in the
database or to allow access to such data as if it were stored in a table. For example, a table function can
read a file or get data from the web and return a result table.

For more information, see “Table functions” on page 669.

For a list of the aggregate, scalar, and table functions and information on these functions, see Chapter 4,
“Built-in functions,” on page 341.

Function invocation
Each reference to a scalar or aggregate function (either built-in or user-defined) conforms to the following
syntax:

function-name (

ALL

DISTINCT

,

expression

TABLE transition-table-name

)

In the above syntax, expression cannot include an aggregate function. See “Expressions” on page 245 for
other rules for expression.

The ALL or DISTINCT keyword can only be specified for an aggregate function or a user-defined function
that is sourced on an aggregate function.

When a function is invoked within a trigger body, the TABLE keyword can be specified to indicate that an
argument is a trigger transition table. In this case, the corresponding parameter of the function must have
been defined with the TABLE LIKE clause.

Table functions can be referenced only in the FROM clause of a subselect. For more information on
referencing a table function, see the description of the “from-clause” on page 1017.

An array can only be specified as an argument to a function for a parameter that is defined with an
array type. An array element specifies a scalar value, and can therefore be specified as an argument to
a function when the data type of the array element is promotable to the data type of the corresponding
parameter of the function definition.

When the function is invoked, the value of each of its parameters is assigned using storage assignment,
to the corresponding parameter of the function. Control is passed to external functions according to the
calling conventions of the host language. When execution of a user-defined aggregate or scalar function
is complete, the result of the function is assigned, using storage assignment, to the result data type. For
information about assignment rules, see “Assignment and comparison” on page 143.

Additionally, a character FOR BIT DATA argument cannot be passed as input for a parameter that is not
defined as character FOR BIT DATA. Likewise, a character argument that is not FOR BIT DATA cannot be
passed as input for a parameter defined as character FOR BIT DATA.

For compatibility with other SQL implementations, UNIQUE can be specified as a synonym for DISTINCT
in aggregate functions.

Function resolution
After a function is invoked, Db2 must determine which function to execute. This process is called function
resolution and it applies to both built-in and user-defined functions.

A function is invoked by its function name, which is implicitly or explicitly qualified with a schema name,
followed by parentheses that enclose the arguments to the function. Within the database, each function
is uniquely identified by its function signature, which is its schema name, function name, the number of
parameters, and the data types of the parameters. A schema can contain several functions that have the
same name but each of which have a different number of parameters or parameters with different data

Chapter 2. Language elements in SQL 239

types. Also, a function with the same name, number of parameters, and types of parameters can exist in
multiple schemas.

Overloading a function
A function name for which there are multiple function instances with the same number of parameters
in the same schema is called an overloaded function.

Overriding a function
Functions can be overridden across the schemas of an SQL path, in which case there is more than one
function with the same name and the same number of parameters in different schemas of the SQL
path. These functions do not necessarily have different parameter data types.

Function resolution has two steps:

1. Db2 determines the set of candidate functions based on the qualification of the name of the invoked
function, the unqualified name of the invoked function, and the number of arguments that are
specified.

2. Db2 determines the best fit from the set of candidate functions based on the data types of the
arguments of the invoked function as compared with the data types of the parameters of the functions
in the set of candidate functions.

Function resolution is similar for functions that are invoked with a qualified or unqualified function name
with the exception that for an unqualified name, Db2 needs to search more than one schema.

To improve performance of function resolution and to prevent potential issues as new functions are
added, consider invoking user-defined functions by using a fully qualified name, including the schema
name.

For a function invocation that passes a transition table, the data type, length, precision, and scale of each
column in the transition table must exactly match the data type, length, precision, and scale of each
column of the table that is named in the function definition.

The timestamp for the creation of a user-defined function must be older than the timestamp that results
from an explicit bind for the plan or package that contains the function invocation. During automatic bind,
built-in functions that are introduced in a Db2 release that is later than the Db2 release that is used to
explicitly bind the package or plan are not considered for function resolution.

In a CREATE VIEW statement, function resolution occurs at the time the view is created. If another
function with the same name is subsequently created, the view is not affected, even if the new function is
a better fit than the one that was chosen at the time the view was created.

Qualified function resolution
When a function is invoked with a schema name and a function name, Db2 only searches the specified
schema to resolve which function to execute.

Db2 selects candidate functions based on the following criteria:

• The name of the function instance must match the name in the function invocation.
• The number of input parameters in the function instance must match the number of arguments in

the function invocation.
• The authorization ID of the statement must have the EXECUTE privilege to the function instance.

If no function meets these criteria, an error is returned. If one or more candidate functions are found
in the schema, this set of candidate functions is processed for best fit.

For a function invocation that contains untyped parameter markers, the data types of those parameter
markers are considered to match or be promotable to the data types of the parameters in the function
instance.

Unqualified function resolution
When a function is invoked without a qualifier, Db2 searches the list of schemas in the SQL path
to resolve which function instance to execute. For each schema in the SQL path, Db2 searches the
schema for candidate functions based on the following criteria:

• The name of the function instance must match the name in the function invocation.

240 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• The number of input parameters in the function instance must match the number of function
arguments in the function invocation.

• The authorization ID of the statement must have the EXECUTE privilege on the function instance.

: If Db2 does not find any candidate functions, an error is returned.

If no function meets these criteria, an error is returned. If one or more candidate functions are found
in the schema, this set of candidate functions is processed for best fit.

For a function invocation that contains untyped parameter markers, the data types of those parameter
markers are considered to match or be promotable to the data types of the parameters in the function
instance.

Determining the best fit
More than one function with the same name might exist that is a candidate for execution. In that case,
Db2 determines which function is the best fit for the invocation by comparing the data types of the
parameters of each function in the set of candidate functions to determine which function satisfies the
best fit requirements.

Db2 determines the function, or set of functions, that meet the best fit requirements for the invocation by
comparing the argument and parameter data types. The data type of the result of the function or the type
of function (aggregate, scalar, or table) under consideration does not enter into the determination of best
fit.

When determining whether the data types of the parameters are the same as the arguments:

• Synonyms of data types match. For example, DOUBLE and FLOAT are considered to be the same.
• Attributes of a data type (such as length, precision, scale, CCSID) are ignored. Therefore, CHAR(8) and

CHAR(35) are considered to be the same, as are DECIMAL(11,2) and DECIMAL(4,3).
• The character and graphic types are considered to be the same. For example, the following data types

are considered to be the same type: CHAR and GRAPHIC, VARCHAR and VARGRAPHIC, and CLOB and
DBCLOB. CHAR(13) and GRAPHIC(8) are considered to be the same type.

• For this argument, if one function has a data type that fits the function invocation better than the data
types in the other functions, that function is the best fit. The precedence list for the promotion of data
types in shows the data types that fit each data type, in best-to-worst order.

• If the data types of the first parameter for all the candidate functions fit the function invocation equally
well, Db2 repeats this process for the next argument of the function invocation. Db2 continues this
process for each argument until a best fit is found.

A subset of the candidate functions is obtained by considering only those functions for which the data
type of each input argument of the function invocation matches or is promotable to the data type of
the corresponding parameter of the function instance. The precedence list for the promotion of data
types in “Promotion of data types” on page 129 shows the data types that fit (considering promotion)
for each data type in best-to-worst order. If this subset is not empty, the best fit is determined using the
promotable process on this subset of candidate functions. If this subset is empty, and the original set of
candidate functions consisted of a single function, the best fit is determined using the castable process on
the original candidate function. Otherwise, an error is returned.

Promotable process
The promotable process determines the best fit for function resolution by considering only whether input
arguments in the function invocation match or can be promoted to the data type of the corresponding
parameter of the function definition.

For the subset of candidate functions, Db2 compares the parameter lists from left to right, using the
following process:

• The data type of the argument in the function invocation is compared to the data type of the
corresponding parameter in the definition of each candidate function. (synonyms of data types match
and attributes of data type are ignored).

Chapter 2. Language elements in SQL 241

– Attributes of a data type (such as length, precision, scale, CCSID) are ignored. Therefore, CHAR(8)
and CHAR(35) are considered to be the same, as are DECIMAL(11,2) and DECIMAL(4,3).

– The character and graphic types are considered to be the same. For example, the following data types
are considered to be the same type: CHAR and GRAPHIC, VARCHAR and VARGRAPHIC, and CLOB
and DBCLOB. CHAR(13) and GRAPHIC(8) are considered to be the same type.

• For this argument, if one candidate function has a data type that fits the function invocation better than
the data types in the other candidate functions, that function is the best fit. The precedence list for the
promotion of data types in “Promotion of data types” on page 129 shows the data types that fit each
data type, in best-to-worst order.

• If the data types of the first parameter for more than one candidate functions fits the function
invocation equally well, Db2 repeats this process for the next argument of the function invocation.
Db2 continues this process for each argument until a best fit is found.

If only one candidate function remains after comparing all the arguments, that function is the best fit. If
more than one candidate function remains, all the remaining candidate functions are considered to be
equally the best fit. In this case, Db2 selects the function whose schema is first in the SQL path.

If a function is selected, its successful use depends on it being invoked in a context in which the returned
result is allowed. For example, if the function returns a table where a table is not allowed, an error is
returned.

Function resolution and input argument casting
In considering the best fit of a candidate function, Db2 determines if the input arguments can be implicitly
cast to the data type of the corresponding parameter for function resolution.

The castable process determines the best fit of a function, first considering if the input arguments in
the function invocation match or can be promoted to the data type of the corresponding parameter of
the function definition, and then if the input arguments can be implicitly cast to the data type of the
corresponding parameter for function resolution. For the set of candidate functions, Db2 compares the
parameter lists from left to right, using the following process:

• The data type of the argument in the function invocation is compared to the data type of the
corresponding parameter in the definition of the candidate function to ensure that each argument can
be promoted or cast to the corresponding parameter. If not, an error is returned.

If a function is selected, its successful use depends on it being invoked in a context in which the returned
result is allowed. For example, if the function returns a table where a table is not allowed, an error is
returned.

Implicit casting for function resolution: Implicit casting for function resolution is not supported for
arguments with a user-defined type, binary, ROWID, or XML data type. It is also not supported for built-in
or user-defined cast functions. Implicit casting is supported for the following cases:

• A numeric data type can be cast to a value of another numeric data type that is not in the data type
promotion list for the source data type. This includes casting a numeric value to a numeric data type
that is lower in the promotion list.

• A numeric data type can be cast to a character or graphic string data type, except for a LOB.
• A character or graphic string data type, except for a LOB, can be cast to a numeric data type.
• A character or graphic string data type, except for a LOB, can be cast to a date, time, or timestamp data

type.
• A varying length character string data type, except for a LOB, can be cast to a fixed length character data

type.

Best-fit consideration
After determining the function that is the best fit, use of the function still might not be permitted. Each
function is defined to return a result with a specific data type. If this result data type is not compatible
with the context in which the function is invoked, an error occurs.

For example, assume functions named STEP are defined with different data types:

242 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 STEP(SMALLINT)returns CHAR(5)
 STEP(DOUBLE)returns INTEGER

Assume also that the function is invoked with the following function reference (where S is a SMALLINT
column):

 SELECT ... 3+STEP(S) ...

Because there is an exact match on argument type, the first STEP is chosen. An error occurs on the
statement because the result type is CHAR(5) instead of a numeric type as required for an argument of
the addition operator.

In cases where the arguments of the function invocation are not an exact match to the data types of the
parameters of the selected function, the arguments are converted to the data type of the parameter at
execution using the same rules as assignment to columns. See “Assignment and comparison” on page
143. Problems with conversions can also occur when precision, scale, length, or the encoding scheme
differs between the argument and the parameter. Conversion might occur for a character string argument
when the corresponding parameter of the function has a different encoding scheme or CCSID. For
example, an error occurs on function invocation when mixed data that actually contains DBCS characters
is specified as an argument and the corresponding parameter of the function is declared with an SBCS
subtype.

Additionally, a character FOR BIT DATA argument cannot be passed as input for a parameter that is not
defined as character FOR BIT DATA. Likewise, a character argument that is not FOR BIT DATA cannot be
passed as input for a parameter that is defined as character FOR BIT DATA.

An error also occurs in the following examples:

• The function is referenced in a FROM clause, but the function selected by the function resolution step is
a scalar or aggregate function.

• The function calls for a scalar or aggregate function, but the function selected by the resolution step is a
table function.

SQL path considerations for built-in functions
Function resolution applies to all functions, including built-in functions and other functions provided by
Db2. If a function is invoked without its schema name, the SQL path is searched.

With the exception of the Db2 IBM MQ functions, the built-in functions are in schemas SYSIBM or
SYSIBMADM.

Additional functions are available in other schemas, but are not considered as built-in functions because
they are developed as user-defined functions that have no special processing considerations.

If SYSIBM is not first in the path, it is possible that Db2 will select another function instead of the
intended built-in function. If schema "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM" is not explicitly
specified in the SQL path, the schema is implicitly assumed at the front of the path. Db2 adds implicitly
assumed schemas in the order of "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM".

Related concepts
SQL path
The SQL path is an ordered list of schema names. Db2 uses the path to resolve the schema name for
certain unqualified object names that appear in any context other than as the main object of an ALTER,
CREATE, DROP, COMMENT, GRANT, RENAME, or REVOKE statement.

Version resolution
Normally, the currently active version of an SQL function is used for invocation of the function.

However, if the invocation is a recursive invocation that occurs inside the body of the same function, and
the currently active version has changed since the original invocation, the active version is not used. The
version that is used in the original invocation is used for any recursive invocation until the entire function
completes. This preserves the semantics of the version that is used by the original invocation.

Chapter 2. Language elements in SQL 243

The version used in the original invocation is also used when the recursive invocation is indirect. For
example, assume that function FN1 invokes function FN2, which in turn invokes FN1 (indirect, recursive
invocation). The invocation of function FN1 in function FN2 uses the version of FN1 that is active at the
time of the original invocation of function FN1.

Since the currently active version is used at the next invocation (except in recursive invocations), it is
possible that two or more versions of the same function can be run by a given thread. For example,
an invocation of function FN1 in an application causes the currently active version of FN1 to load and
execute. During or after execution of the original invocation of FN1, an ALTER FUNCTION statement
that specifics ACTIVE VERSION FN1_V2 is run and changes the active version of the function FN1 to
version FN1_V2. Subsequent invocations of function FN1 from the same thread will load and execute the
currently active version of the function, FN1_V2.

Examples of function resolution
The following examples illustrate function resolution.

Example 1: Assume that MYSCHEMA contains two functions, both named FUNA, that were registered with
these partial CREATE FUNCTION statements.

1. CREATE FUNCTION MYSCHEMA.FUNA (VARCHAR(10), INT, DOUBLE) ...
2. CREATE FUNCTION MYSCHEMA.FUNA (VARCHAR(10), REAL, DOUBLE) ...

Also assume that a function with three arguments of data types VARCHAR(10), SMALLINT, and DECIMAL
is invoked with a qualified name:

 MYSCHEMA.FUNA(VARCHARCOL, SMALLINTCOL, DECIMALCOL)

Both MYSCHEMA.FUNA functions are candidates for this function invocation because they meet the
criteria specified in “Function resolution” on page 239. The data types of the first parameter for the two
function instances in the schema, which are both VARCHAR, fit the data type of the first argument of the
function invocation, which is VARCHAR, equally well. However, for the second parameter, the data type of
the first function (INT) fits the data type of the second argument (SMALLINT) better than the data type
of second function (REAL). Therefore, Db2 selects the first MYSCHEMA.FUNA function as the function
instance to execute.

Example 2: Assume that these functions were registered with these partial CREATE FUNCTION
statements:

1. CREATE FUNCTION SMITH.ADDIT (CHAR(5), INT, DOUBLE) ...
2. CREATE FUNCTION SMITH.ADDIT (INT, INT, DOUBLE) ...
3. CREATE FUNCTION SMITH.ADDIT (INT, INT, DOUBLE, INT) ...
4. CREATE FUNCTION JOHNSON.ADDIT (INT, DOUBLE, DOUBLE) ...
5. CREATE FUNCTION JOHNSON.ADDIT (INT, INT, DOUBLE) ...
6. CREATE FUNCTION TODD.ADDIT (REAL) ...
7. CREATE FUNCTION TAYLOR.SUBIT (INT, INT, DECIMAL) ...

Also assume that the SQL path at the time an application invokes a function is "TAYLOR" "JOHNSON",
"SMITH". The function is invoked with three data types (INT, INT, DECIMAL) as follows:

 SELECT ... ADDIT(INTCOL1, INTCOL2, DECIMALCOL) ...

Function 5 is chosen as the function instance to execute based on the following evaluation:

• Function 6 is eliminated as a candidate because schema TODD is not in the SQL path.
• Function 7 in schema TAYLOR is eliminated as a candidate because it does not have the correct function

name.
• Function 1 in schema SMITH is eliminated as a candidate because the INT data type is not promotable

to the CHAR data type of the first parameter of Function 1.
• Function 3 in schema SMITH is eliminated as a candidate because it has the wrong number of

parameters.

244 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• Function 2 is a candidate because the data types of its parameters match or are promotable to the data
types of the arguments.

• Both Function 4 and 5 in schema JOHNSON are candidates because the data types of their parameters
match or are promotable to the data types of the arguments. However, Function 5 is chosen as the
better candidate because although the data types of the first parameter of both functions (INT) match
the first argument (INT), the data type of the second parameter of Function 5 (INT) is a better match of
the second argument (INT) than Function 4 (DOUBLE).

• Of the remaining candidates, Function 2 and 5, Db2 selects Function 5 because schema JOHNSON
comes before schema SMITH in the SQL path.

Expressions
An expression specifies a value and can take a number of different forms, such as a simple value,
consisting of only a constant or a column name, or it can be more complex with operators, other
expressions, and more.

Authorization
The use of some of the expressions, such as a scalar-fullselect, sequence-reference, global-variable, or
function-invocation, requires having the appropriate authorization. For these objects, the privilege set that
is defined below must include the following authorization:

• cast-specification. The authorization to reference a user-defined type in a cast specification. For
information about authorization considerations, see “CAST specification” on page 267.

• function-invocation. Authorization to execute the function. For information about how the particular
function is chosen and authorization considerations, see “Function resolution” on page 239.

• scalar-fullselect. For information about authorization considerations, see “Authorization for queries” on
page 1007.

• sequence-reference. The USAGE privilege on the specified sequence, ownership of the sequence,
DATAACCESS authority, or SYSADM authority. For example, with a sequence reference, USAGE
authorization on the sequence is required.

• global-variable. The READ privilege on the specified global variable, ownership of the global variable,
DATAACCESS authority, or SYSADM authority.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the statement is dynamically prepared, the privilege
set is the union of the privilege sets that are held by each authorization ID of the process.

Syntax
The form of an expression is as follows:

Chapter 2. Language elements in SQL 245

operator

+
-

function-invocation
1

( expression)

constant

column-name

variable

special-register

scalar-fullselect
2

time-zone-specific-expression

labeled-duration
3

case-expression
4

cast-specification
5

XMLCAST-specification
6

array-element-specification
7

array-constructor
8

OLAP specification
9

row-change-expression
10

sequence-reference
11

Notes:
1 Must be a scalar function. See “Functions” on page 237 for more information.
2 See “Scalar-fullselect” on page 256 for more information.
3 See Labeled durations for more information.
4 See “CASE expressions” on page 264 for more information.
5 See “CAST specification” on page 267 for more information.
6 See “XMLCAST specification” on page 277 for more information.
7 See “Array element specification” on page 278 for more information.
8 See “Array constructor” on page 279 for more information.
9 See “OLAP specifications” on page 280
10 See “ROW CHANGE expression” on page 291
11 See “Sequence reference” on page 292

operator:

CONCAT

||

/

*
+
-

246 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

labeled-duration:

function-invocation
1

( expression)

constant

column-name

variable

YEAR

YEARS

MONTH

MONTHS

DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECOND

SECONDS

MICROSECOND

MICROSECONDS

Notes:
1 Must be a scalar function.

Expressions without operators
If no operators are used, the result of the expression is the specified value. Each of the following
examples is an expression that specifies a value based on a column named SALARY:

 SALARY :SALARY 'SALARY' MAX(SALARY)

Related concepts
Characters and tokens in SQL
The most basic elements of SQL syntax are characters and tokens. Tokens are the basic syntactical units
of the SQL language.

Concatenation operators in expressions
When two strings operands are concatenated, the result of the expression is a string.

Introductory concepts

String data types (Introduction to Db2 for z/OS)
Concatenation of strings (Introduction to Db2 for z/OS)

The operands of concatenation must be compatible strings. A binary string cannot be concatenated with
a character string, including character strings that are defined as FOR BIT DATA (for more information on

13 In various EBCDIC code pages, Db2 supports code point combinations X'4F4F', X'BBBB', and X'5A5A'
to mean concatenation. X'BBBB' and X'5A5A' are interpreted to mean concatenation only on single byte
character set Db2 subsystems. X'BBBB' is a pair of right brackets characters (']]') in some EBCDIC code
pages and is not used as a concatenation operator when it appears in an array-index expression. Consider
using CONCAT as a concatenation operator instead of X'BBBB' because X'BBBB' might be confused with
right brackets in an array-index expression.

Chapter 2. Language elements in SQL 247

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_stringdatatypes.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_concatenationofstrings.html

the compatibility of data types, see the compatibility matrix in Table 30 on page 144). A distinct type that
is based on a string type can be concatenated only if an appropriate user-defined function is created.

Both CONCAT and the vertical bars (||) represent the concatenation operator. Vertical bars (or the
characters that must be used in place of vertical bars in some countries13) can cause parsing errors in
statements passed from one DBMS to another. The problem occurs if the statement undergoes character
conversion with certain combinations of source and target CCSIDs13. Thus, CONCAT is the preferable
concatenation operator.

If either operand can be null, the result can be null, and if either is null, the result is the null value.
Otherwise, the result consists of the first operand string followed by the second.

The following table shows how the string operands determine the data type and the length attribute of the
result (the order in which the operands are concatenated has no effect on the result).

Table 49. Data type and length of concatenated operands

If one
operand column is

And the other
operand is The data type of the result column is1

CHAR(x) CHAR(y) with a combined
length attribute that is less
than 256

CHAR(x+y)2

CHAR(y) with a combined
length attribute that is
greater than 255

VARCHAR(MIN(x'+y',32764))3

VARCHAR(y)

VARCHAR(x) VARCHAR(y) VARCHAR(MIN(x'+y',32764))3

CLOB(x) CHAR(y) CLOB(MIN(x'+y',2G))

VARCHAR(y)

CLOB(y)

GRAPHIC(y) DBCLOB(MIN(x+y,1G))

VARGRAPHIC(y)

DBCLOB(y)

GRAPHIC(x) CHAR(y) VARGRAPHIC(MIN(x+y,16382)) 4

VARCHAR(y)

VARGRAPHIC(y)

VARGRAPHIC(x) CHAR(y) VARGRAPHIC(MIN(x+y,16382)) 4

VARCHAR(y)

GRAPHIC(y)

GRAPHIC(y)

248 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 49. Data type and length of concatenated operands (continued)

If one
operand column is

And the other
operand is The data type of the result column is1

DBCLOB(x) CHAR(y) DBCLOB(MIN(x+y,1G))

VARCHAR(y)

CLOB(y)

GRAPHIC(y)

VARGRAPHIC(y)

DBCLOB(y)

BINARY(x) BINARY(y) with a combined
length attribute that is less
than 256

BINARY(x+y)

BINARY(y) with a combined
length attribute that is
greater than 255

VARBINARY(MIN(x+y,32764))

VARBINARY(x) VARBINARY(y) VARBINARY(MIN(x+y,32764))

BINARY(y)

BLOB(x) BLOB(y) BLOB(MIN(x+y, 2G))

Notes:

1. • 2G represents 2,147,483,647 bytes
• 1G represents 1,073,741,823 double-byte characters

2. Neither CHAR(x) nor CHAR(y) can contain mixed data. If either operand contains mixed data, the result is
VARCHAR(MIN(x'+y',32764)).

3. If conversion of the first operand is required, x' = 3x; otherwise, it remains x. If conversion of the second
operand is required, y'= 3y; otherwise, it remains y.

4. Both operands are converted to UTF-16, if necessary (that is, the operand is not already UTF-16), and the
results are concatenated.

As the previous table shows, the length of the result is the sum of the lengths of the operands. However,
the length of the result is two bytes less if redundant shift code characters are eliminated from the result.
Redundant shift code characters exist when both character strings are EBCDIC mixed data, and the first
string ends with a "shift-in" character (X'0F') and the second operand begins with a "shift-out" character
(X'0E'). These two shift code characters are removed from the result.

The CCSID of the result is determined by the rules set forth in “Character conversion in set operations and
concatenations” on page 1066. Some consequences of those rules are the following:

• If either operand is BIT data, the result is BIT data.
• The conversion that occurs when SBCS data is compared with mixed data depends on the encoding

scheme. If the encoding scheme is Unicode, the SBCS operand is converted to MIXED. Otherwise, the
conversion depends on the field MIXED DATA on installation panel DSNTIPF for the Db2 that does the
comparison:

– Mixed data if the MIXED DATA option at the server is YES. The result is not necessarily well-formed
mixed data.

– SBCS data if the MIXED DATA option at the server is NO. If the mixed data cannot be converted to
pure SBCS data, an error occurs.

Chapter 2. Language elements in SQL 249

If an operand is a string from a column with a field procedure, the operation applies to the decoded form
of the value. The result does not inherit the field procedure.

One operand of concatenation can be a parameter marker. When one operand is a parameter marker,
its data type and length attributes are considered to be the same as those for the operand that is not a
parameter marker except for a string data type. Refer to Table 49 on page 248 for the formula used to
calculate data type length for untyped parameter markers in the CONCAT operator when another operand
is a string data type. The order of concatenation operations must be considered to determine these
attributes in the case of nested concatenation.

No operand of concatenation can be a distinct type even if the distinct type is based on a character
data type. To concatenate a distinct type, create a user-defined function that is sourced on the CONCAT
operator. For example, if distinct types TITLE and TITLE_DESCRIPTION were both based on data type
VARCHAR(25), the following user-defined function, named ATTACH, could be used to concatenate the two
distinct types:

 CREATE FUNCTION ATTACH (TITLE, TITLE_DESCRIPTION)
 RETURNS VARCHAR(50) SOURCE CONCAT (VARCHAR(), VARCHAR())

Alternatively, the concatenation operator could be overloaded by using a user-defined function to add the
distinct types:

 CREATE FUNCTION "||" (TITLE, TITLE_DESCRIPTION)
 RETURNS VARCHAR(50) SOURCE CONCAT (VARCHAR(), VARCHAR())

Related reference
CONCAT scalar function
The CONCAT function combines two compatible string arguments.

Arithmetic operators in expressions
If arithmetic operators are used, the result of the expression is a number derived from the application of
the operators to the values of the operands.

The result of the expression can be null. If any operand has the null value, the result of the expression
is the null value. Arithmetic operators (except unary plus, which is meaningless) must not be applied
to strings. For example, USER+2 is invalid. Multiplication and division operators must not be applied to
datetime values, which can only be added and subtracted.

The prefix operator + (unary plus) does not change its operand. The prefix operator - (unary minus)
reverses the sign of a nonzero, non-decimal floating-point operand. The prefix operator - (unary minus)
reverses the sign of all decimal floating-point operands, including zero and special values; that is,
signaling and non-signaling NaNs and plus and minus infinity. If the data type of A is small integer, the
data type of -A is large integer. The first character of the token following a prefix operator must not be a
plus or minus sign.

The infix operators specify addition (+), subtraction (-), multiplication (*), and division (/). The value of
the second operand of division must not be zero.

Arithmetic with two integer operands
If both operands of an arithmetic operator are integers, the operation is performed in binary. The result is
a large integer unless either (or both) operand is a big integer, in which case the result is a big integer.

The result of an integer arithmetic operation (including unary minus) must be within the range of the
result type.

Arithmetic with an integer and a decimal operand
If one operand is an integer and the other operand is decimal, the operation is performed in decimal. The
arithmetic operation uses a temporary copy of the integer that has been converted to a decimal number.

250 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The temporary copy of the integer that has been converted to a decimal number has a precision p and
scale 0. p is 19 for a big integer, 11 for a large integer, and 5 for a small integer. In the case of an
integer constant, p depends on the number of digits in the integer constant. p is 5 for an integer constant
consisting of 5 digits or fewer. Otherwise, p is the same as the number of digits in the integer constant.

Arithmetic with an integer and a decimal floating-point operand
If one operand is a small integer, large integer, or big integer and the other is a decimal floating-point
number, the operation is performed in decimal floating point. The arithmetic operation uses a temporary
copy of the integer that has been converted to a decimal floating-point number.

For small integer or large integer, the temporary copy of the integer is converted to DECFLOAT(16). For big
integer, the temporary copy of the big integer is converted to DECFLOAT(34). The rules for two decimal
floating point operands are then applied.

Arithmetic with two decimal operands
If both operands are decimal, the operation is performed in decimal.

The result of any decimal arithmetic operation is a decimal number with a precision and scale that depend
on two factors:
The precision and scale of the operands

In the discussion of operations with two decimal operands, the precision and scale of the first
operand are denoted by p and s, that of the second operand by p' and s'. Thus, for a division, the
dividend has precision p and scale s, and the divisor has precision p' and scale s'.

Whether DEC31 or DEC15 is in effect for the operation
DEC31 and DEC15 specify the rules to be used when both operands in a decimal operation have
precisions of 15 or less. DEC15 specifies the rules which do not allow a precision greater than 15
digits, and DEC31 specifies the rules which allow a precision of up to 31 digits. The rules for DEC31
are always used if either operand has a precision greater than 15.

For static SQL statements, the value of the field DECIMAL ARITHMETIC on installation panel DSNTIP4 or
the SQL processing option DEC determines whether DEC15 or DEC31 is used.

For dynamic SQL statements, the value of the field DECIMAL ARITHMETIC on installation panel DSNTIP4,
the SQL processing option DEC, or the special register CURRENT PRECISION determines whether DEC15
or DEC31 is used according to these rules:

• Field DECIMAL ARITHMETIC applies if either of these conditions is true:

– DYNAMICRULES run behavior applies and the application has not set CURRENT PRECISION.

For a list of the DYNAMICRULES option values that specify run, bind, define, or invoke behavior, see
Table 14 on page 94.

– DYNAMICRULES bind, define, or invoke behavior applies; the value of installation panel field USE FOR
DYNAMICRULES is YES; and the application has not set CURRENT PRECISION.

• SQL processing option DEC applies if DYNAMICRULES bind, define, or invoke behavior is in effect,
the value of installation panel field USE FOR DYNAMICRULES is NO, and the application has not set
CURRENT PRECISION.

• Special register CURRENT PRECISION applies if the application sets the register.

The value of DECIMAL ARITHMETIC is the default value for the SQL processing option and the special
register. SQL statements executed using SPUFI use the value in DECIMAL ARITHMETIC.

Decimal addition and subtraction
For decimal operations, the precision and scale of the result depends on the precision and scale of the
operands.

Chapter 2. Language elements in SQL 251

If the operation is addition or subtraction and the operands do not have the same scale, the operation is
performed with a temporary copy of one of the operands that has been extended with trailing zeros so
that its fractional part has the same number of digits as the other operand.

The precision of the result is the minimum of n and the quantity MAX(p-s,p'-s')+MAX(s,s')+1. The
scale is MAX(s,s'). n is 31 if DEC31 is in effect or if the precision of at least one operand is greater than
15. Otherwise, n is 15.

In COBOL, blanks must precede and follow a minus sign to avoid any ambiguity with COBOL host variable
names (which allow the use of a dash).

Decimal multiplication
For decimal multiplication, the precision and scale of the result depends on the precision and scale of the
operands.

For multiplication, the precision of the result is MIN(n,p+p'), and the scale is MIN(n,s+s'). n is 31 if
DEC31 is in effect or if the precision of at least one operand is greater than 15. Otherwise, n is 15.

If both operands have a precision greater than 15, the operation is performed using a temporary copy of
the operand with the smaller precision. If the operands have the same precision, the second operand is
selected. If more than 15 significant digits are needed for the integral part of the copy, the statement's
execution is ended and an error occurs. Otherwise, the copy is converted to a number with precision 15,
by truncating the copy on the right. The truncated copy has a scale of MAX(0,S-(P-15)), where P and
S are the original precision and scale. If, in the process of truncation, one or more nonzero digits are
removed, SQLWARN7 in SQLCA is set to W, indicating loss of precision.

When both operands have a precision greater than 15, the foregoing formulas for the precision and scale
of the result still apply, with one change: for the operand selected as the copy, use the precision and scale
of the truncated copy; that is, use 15 as the precision and MAX(0,S-(P-15)) for the scale.

Let n denote the value of the operand with the greater precision or the first operand in the case of
operands with the same precision. The number of leading zeros in a 31-digit representation of n must be
greater than the precision of the other operand. This is always the case if the precision of the operand is
15 or less. With greater precisions, overflow can occur even if the precision of the result is less than 31.
For example, the expression:

 10000000000000000000000000. * 1

will cause overflow because the number of leading zeros in the 31-digit representation of the large
number and the precision of the small number are both 5. See “Arithmetic with an integer and a decimal
operand” on page 250.

Arithmetic with an integer and a decimal operand
If one operand is an integer and the other operand is decimal, the operation is performed in decimal. The
arithmetic operation uses a temporary copy of the integer that has been converted to a decimal number.

The temporary copy of the integer that has been converted to a decimal number has a precision p and
scale 0. p is 19 for a big integer, 11 for a large integer, and 5 for a small integer. In the case of an
integer constant, p depends on the number of digits in the integer constant. p is 5 for an integer constant
consisting of 5 digits or fewer. Otherwise, p is the same as the number of digits in the integer constant.

Decimal division
The rules for a specific decimal division depend on whether the DEC31 option is in effect for the
operation, whether p is greater than 15, and whether p' is greater than 15.

The following table shows how the precision and scale of the result depend on these factors. In that table,
the occurrence of "N/A" in a row implies that the indicated factor is not relevant to the case represented
by the row.

252 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 50. Precision (p) and scale (s) of the result of a decimal division

DEC31 p p' P S

Not in effect ≤15 ≤15 15 15-(p-s+s')

In effect ≤15 ≤15 31 N-(p-s+s'), where

N is 30-p' if p' is odd.
N is 29-p' if p' is even.

N/A >15 ≤15 31 N-(p-s+s'), where

N is 30-p' if p' is odd.
N is 29-p' if p' is even.

N/A N/A >15 31 15-(p-s+x), where
x is MAX(0,s'-(p'-15))
(See the following note)

If p' is greater than 15, the division is performed using a temporary copy of the divisor. If more than 15
significant digits are needed for the integral part of the divisor, the statement's execution is ended, and
an error occurs. Otherwise, the copy is converted to a number with precision 15, by truncating the copy
on the right. The truncated copy has a scale of MAX(0,s'-(p'-15)), which is the formula for x. If, in
the process of truncation, one or more nonzero digits are removed, SQLWARN7 in SQLCA is set to W,
indicating loss of precision.

Minimum divide result scale
If the calculated value of 's' is negative, an error occurs. If a minimum divide result scale is specified,
this error does not occur.

The minimum scale is determined according to the following precedence:

Static SQL

1. The precompiler DEC option, if it is set with a non-zero scale.
2. The DECARTH subsystem parameter, if set with a non-zero scale.
3. The MINDVSCL subsystem parameter, if set to value other than NONE.
4. The DECDIV3 subsystem parameter, if set to YES.

Dynamic SQL

1. The CURRENT PRECISION special register, if it is set with a non-zero scale.
2. Either of the following cases:

• For a package that was bound with DYNAMICRULES RUN or if the DYNRULS DECP value is set
to YES: The DECARTH subsystem parameter, if it is set with a non-zero scale.

• For all other cases: The precompiler DEC option, if it is set with a non-zero scale.
3. The MINDVSCL subsystem parameter, if set to value other than NONE.
4. The DECDIV3 subsystem parameter, if set to YES.

SQL statements that are executed using SPUFI
The DECARTH subsystem parameter value.

The default value for both the precompiler DEC option and the CURRENT PRECISION special register
is DECIMAL ARITHMETIC.

A minimum divide result scale of 3 can be specified using the DECDIV3 subsystem parameter setting.
A minimum divide scale result in the range 1–9 can be specified using the DECARTH subsystem
parameter value of the form 'Dpp.s' where 'pp' is 15 or 31 and represents the precision and 's'
represents the minimum divide scale, as a number in the range 1–9. Such a specification overrides

Chapter 2. Language elements in SQL 253

the DECDIV3 subsystem parameter. When a minimum divide result scale is specified, the formula
MAX(s,s'), where s represents the scale derived from the above table and s' represents the value
specified by the minimum divide result scale, is applied and a new scale is derived. The newly derived
scale is the scale of the result and overrides any scale derived using the table above.

For more information, see:

• DECIMAL ARITHMETIC field (DECARTH DECP value) (Db2 Installation and Migration)
• MINIMUM DIVIDE SCALE field (DECDIV3 subsystem parameter) (Db2 Installation and Migration)
• MINDVSCL subsystem parameter in DSN6SPRM (Db2 Installation and Migration)
• USE FOR DYNAMICRULES field (DYNRULS DECP value) (Db2 Installation and Migration)
• SQL processing options (see "DEC(15|31)")

Arithmetic with floating-point operands
If either operand of an arithmetic operator is floating-point, the operation is performed in floating-point.
If necessary, the operands are first converted to double-precision floating-point numbers. Thus, if any
element of an expression is a floating-point number, the result of the expression is a double-precision
floating-point number.

An operation involving a floating-point number and an integer is performed with a temporary copy of the
integer that has been converted to double-precision floating-point. An operation involving a floating-point
number and a decimal number is performed with a temporary copy of the decimal number that has been
converted to double-precision floating-point. The result of a floating-point operation must be within the
range of floating-point numbers.

The order in which floating-point operands (or arguments to functions) are processed can affect the
results slightly because floating-point operands are approximate representations of real numbers.
Because the order in which operands are processed might be implicitly modified by Db2 (for example,
Db2 might decide what degree of parallelism to use and what access plan to use), an application that
uses floating-point operands should not depend on the results being precisely the same each time an SQL
statement is executed.

Arithmetic with a floating-point and a decimal floating-point operand
If one operand is a floating-point number (real or double) and the other is a decimal floating-point
number, the operation is performed in decimal floating-point. The arithmetic operation uses a temporary
copy of the floating-point number that has been converted to a decimal floating-point number.

Arithmetic with two decimal floating-point operands
If both operands are decimal floating point, the operation is performed in decimal floating point.
If one operand is DECFLOAT(n) and the other is DECFLOAT(m), the operation is performed in
DECFLOAT(max(n,m)).

General arithmetic operation rules for DECFLOAT
The following general rules apply to all arithmetic operations on the DECFLOAT data type:

• Every operation on finite numbers is carried out as though an exact mathematical result is computed,
using integer arithmetic on the coefficient where possible.

If the coefficient of the theoretical exact result has no more than the number of digits that reflect its
precision (16 or 34), it is used for the result without change (unless there is an underflow or overflow
condition). If the coefficient has more than the number of digits that reflect its precision, it is rounded
to exactly the number of digits that reflect its precision (16 or 34), and the exponent is increased by the
number of digits that are removed.

For static SQL statements other than CREATE VIEW, the ROUNDING bind option or the native SQL
procedure option determines the rounding mode.

254 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_decarth.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_decdiv3.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_mindvscl.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_dynruls.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_descriptionprocessingoptions.html

For dynamic SQL statements (and static CREATE VIEW statements), the special register CURRENT
DECFLOAT ROUNDING MODE determines the rounding mode.

If the value of the adjusted exponent of the result is less than Emin, an exception condition is returned.
In this case, the calculated coefficient and exponent form the result, unless the value of the exponent
is less than Etiny, in which case the exponent is set to Etiny, the coefficient is rounded (possibly to zero)
to match the adjustment of the exponent, and the sign is unchanged. If this rounding gives an inexact
result, an underflow exception condition is returned.

If the value of the adjusted exponent of the result is larger than Emax, an overflow exception condition is
returned. In this case, the result is as defined as an overflow exception condition and might be infinite.
It will have the same sign as the theoretical result.

• Arithmetic that uses the special value infinity follows the usual rules, where negative infinity is less than
every finite number and positive infinity is greater than every finite number.

Under these rules, an infinite result is always exact. Certain uses of infinity return an invalid operation
condition. The following list is a list of operations that can cause an invalid operation condition and the
result of the operation is NaN when one of the operands is infinity but the other operand is not NaN nor
sNaN.

– Add +infinity to -infinity during an addition or subtraction operation
– Multiply 0 by +infinity or -infinity
– Divide either +infinity or -infinity by either +infinity or -infinity
– The first argument to the MOD function is either +infinity or -infinity
– Either argument of the QUANTIZE function is +infinity or -infinity
– The second argument of the POWER® function is +infinity or -infinity
– A NaN when used as an operand to an arithmetic operation

The following arithmetic rules apply to arithmetic operations and the NaN value:

– The result of any arithmetic operation that has an operand that is a NaN (a quiet NaN or signaling
NaN) is NaN. The sign of the result is copied from the first operand that is a signaling NaN, or if
neither operand is signaling, the sign is copied from the first operand that is a NaN. Whenever a result
is a NaN, the sign of the result depends only on the copied operand.

– The sign of the result of a multiplication or division will be negative only if the operands have different
signs and neither is a NaN.

– The sign of the result of an addition or subtraction will be negative only if the result is less than zero
and neither operand is a NaN, except for the following cases where the result is a negative 0:

- A result is rounded to zero, and the value, before rounding, had a negative sign
- Subtract 0 from -0
- Addition of operands with opposite signs (or subtraction of operands with the same sign), the result

has a coefficient of 0, and the rounding mode is ROUND_FLOOR
- Multiplication or division and the result has a coefficient of 0 and the signs of the operands are

different
- The first argument of the POWER function is -0, and the second argument is a positive odd number
- The argument of the CEIL, FLOOR, or SQRT function is -0
- The first argument of the ROUND or TRUNCATE function is -0

Examples involving special DECFLOAT values:

 INFINITY + 1 = INFINITY
 INFINITY + INFINITY = INFINITY
 INFINITY + -INFINITY = NAN -- exception
 NAN + 1 = NAN
 NAN + INFINITY = NAN
 1 - INFINITY = -INFINITY
 INFINITY - INFINITY = NAN -- exception
 -INFINITY - -INFINITY = NAN -- exception

Chapter 2. Language elements in SQL 255

 -0.0 - 0.0E1 = -0.0
 -1.0 * 0.0E1 = -0.0
 1.0E1 / 0 = INFINITY
 -1.0E5 / 0.0 = -INFINITY
 1.0E5 / -0 = -INFINITY
 INFINITY / -INFINITY = NAN -- exception
 INFINITY / 0 = INFINITY
 -INFINITY / 0 = -INFINITY
 -INFINITY / -0 = INFINITY

Arithmetic with distinct type operands
A distinct type cannot be used with arithmetic operators even if its source data type is numeric. To
perform an arithmetic operation, create a function with the arithmetic operator as its source. For example,
if there were distinct types INCOME and EXPENSES, both of which had DECIMAL(8,2) data types, the
following user-defined function, REVENUE, could be used to subtract one from the other.

 CREATE FUNCTION REVENUE (INCOME, EXPENSES)
 RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Alternately, the - (minus) operator could be overloaded using a function to subtract the new data types.

 CREATE FUNCTION "-" (INCOME, EXPENSES)
 RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Alternatively, the distinct type can be cast to a built-in data type and the result used as an operand of an
arithmetic operator.

Scalar-fullselect
A scalar-fullselect as supported in an expression is a fullselect, enclosed in parentheses, that returns a
single row consisting of a single column value. If the fullselect does not return a row, the result of the
expression is the null value. If more than one row is to be returned for a scalar fullselect, an error occurs.

(fullselect)

If a set operator is not specified in the outermost fullselect and the select list element is an expression
that is simply a column name, the result column name is based on the name of the column. Otherwise, the
result column is unnamed.

If a column mask is defined to mask the column values in the final result, and if a column mask is applied
to the column in the select list of a scalar-fullselect, the result of the scalar-fullselect must not be derived
using set operator EXCEPT or INTERSECT. See Chapter 6, “Queries,” on page 1007 for more information
about how column access controls affect a fullselect.

A scalar fullselect cannot be used in the following instances:

• A CHECK constraint in CREATE TABLE and ALTER TABLE statements
• A CREATE VIEW statement where the view definition includes the WITH CHECK option
• A CREATE FUNCTION (SQL) statement (subselect already restricted from the expression in the RETURN

clause)
• An argument in a CALL statement for an input parameter
• An argument to an aggregate function, other than the XML-expression argument of the XMLAGG function
• An ORDER BY clause
• A GROUP BY clause
• A join-condition of the ON clause for INNER and OUTER JOINs

If the scalar fullselect is a subselect, it is also referred to as a scalar subselect. See “subselect” on page
1009 for more information.

256 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The following examples illustrate the use of scalar-fullselect. Assume that four tables (PARTS, PRODUCTS,
PARTPRICE, and PARTINVENTORY) contain product data.

Example 1 - scalar-fullselect in a WHERE clause:
Find which products have the prices in the range of at least twice the lowest price of all the products
and at most half the price of all the products.

 SELECT PRODUCT, PRICE FROM PRODUCTS A
 WHERE
 PRICE BETWEEN 2 * (SELECT MIN(PRICE) FROM PRODUCTS)
 AND .5 * (SELECT MAX(PRICE) FROM PRODUCTS);

Example 2 - scalar-fullselect in a SELECT list:
For each part, find its price and its inventory.

 SELECT PART,
 (SELECT PRICE FROM PARTPRICE WHERE PART=A.PART),
 (SELECT ONHAND# FROM INVENTORY WHERE PART=A.PART)
 FROM PARTS A;

Datetime operands and durations
Datetime values can be incremented, decremented, and subtracted. These operations can involve
decimal numbers called durations. A duration is a positive or negative number representing an interval of
time.
Labeled durations

The form a labeled duration is as follows:

function-invocation
1

( expression)

constant

column-name

variable

YEAR

YEARS

MONTH

MONTHS

DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECOND

SECONDS

MICROSECOND

MICROSECONDS

Notes:
1 Must be a scalar function.

A labeled duration represents a specific unit of time as expressed by a number (which can be the
result of an expression) followed by one of the seven duration keywords.14 The number specified
is converted as if it were assigned to a DECIMAL(15,0) number, except for SECONDS, which uses
DECIMAL(27,12) to allow 0 to 12 fractional second digits to be included.

14 The singular form of these keywords is also acceptable: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, and
MICROSECOND.

Chapter 2. Language elements in SQL 257

A labeled duration can only be used as an operand of an arithmetic operator in which the other
operand is a value of the data type of date, time, or timestamp. Thus, the expression HIREDATE + 2
MONTHS + 14 DAYS is valid, whereas the expression HIREDATE + (2 MONTHS + 14 DAYS) is not. In
both of these expressions, the labeled durations are 2 MONTHS and 14 DAYS.

Date duration
A date duration represents a number of years, months, and days expressed as a DECIMAL(8,0)
number. To be properly interpreted, the number must have the format yyyymmdd, where yyyy
represents the number of years, mm the number of months, and dd the number of days. The result
of subtracting one DATE value from another, as in the expression HIREDATE - BIRTHDATE, is a date
duration.

Time duration
A time duration represents a number of hours, minutes, and seconds expressed as a DECIMAL(6,0)
number. To be properly interpreted, the number must have the format hhmmss, where hh represents
the number of hours, mm the number of minutes, and ss the number of seconds. The result of
subtracting one TIME value from another is a time duration.

Timestamp duration
A timestamp duration represents a number of years, months, days, hours, minutes, seconds, and
fractional seconds expressed as a DECIMAL(14+s,s) number, where s is the number of fractional
seconds in the range from 0 to 12. To be interpreted properly, the number must have the
format yyyyxxddhhmmss.zzzzzzzzzzzz, where yyyy, xx, dd, hh, mm, ss, and zzzzzzzzzzzz represent,
respectively, the number of years, months, days, hours, minutes, seconds, and fractional seconds.
The result of subtracting one timestamp value from another is a timestamp duration with a scale that
matches the maximum timestamp precision of the timestamp operands.

Time zone specific expressions
Time zone specific expressions can be used to adjust timestamp values and character-string or graphic-
string representations of timestamp values to specific time zones.

time-zone-specific-expressions

function-invocation
1

( expression)

constant

column-name

variable

special-register

scalar-fullselect

case-expression

cast-specification

AT LOCAL

AT TIME ZONE function-invocation
1

( expression)

constant

column-name

variable

special-register

scalar-fullselect

case-expression

cast-specification

Notes:
1 Must be a scalar function.

The first operand for time-zone-specific-expression must be an expression that returns the value of either
a built-in timestamp or a built-in character or graphic string data type. If the first operand is a character
string or graphic string, it must not be a CLOB or DBCLOB value and its value must be a valid character-
string or graphic-string representation of a timestamp. For the valid formats of string representations of
datetime values, see “String representations of datetime values” on page 120.

258 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If the first operand of time-zone-specific-expression returns a TIMESTAMP WITHOUT TIME ZONE value,
the expression is implicitly cast to TIMESTAMP WITH TIME ZONE before being adjusted to the indicated
time zone.

AT LOCAL
Specifies that the timestamp value is to be adjusted for the local time zone using the SESSION TIME
ZONE special register.

AT TIME ZONE
Specifies that the timestamp is to be adjusted for the time zone that is represented by the expression.

expression is a character or graphic string. It must not be a CLOB or DBCLOB value, and its value must
be left justified and be of the form '±th:tm', where th represents the time zone hour between -12 and
+14, and tm represents the time zone minutes in the range 0–59, with values ranging from -12:59 to
+14:00. The value must not be the null value.

The expression returns a TIMESTAMP WITH TIME ZONE value in the indicated time zone.

Syntax alternatives: TIMEZONE can be specified as an alternative to TIME ZONE.

Example 1

CAST('2010-04-12-10:30:00.0 -5:00' AT LOCAL AS TIMESTAMP)

Returns: 2010-04-12-07:30:00.000000.

Example 2
Insert a timestamp value with a time zone into a table, tz, and retrieve it as a timestamp with the local
time zone, with +08:00, and adjusted for UTC. Assume that table tz exists as follows:

CREATE TABLE tz(tstz TIMESTAMP WITH TIME ZONE);

INSERT INTO tz(tstz) VALUES(TIMESTAMP '2010-01-01-10.23.51-08:00');

1. Retrieve the value of the tstz column adjusted for the local time:

SELECT tstz AT LOCAL
 FROM tz;

2. Retrieve the value of the tstz column adjusted for the time zone +08:00:

SELECT tstz AT TIME ZONE '+08:00'
 FROM tz;

3. Retrieve the value of the tstz column adjusted for UTC:

SELECT tstz AT TIME ZONE '+0:00'
 FROM tz;

Datetime arithmetic in SQL
The only arithmetic operations that can be performed on datetime values are addition and subtraction.

If a datetime value is the operand of addition, the other operand must be a duration. The specific rules
governing the use of the addition operator with datetime values follow.

• If one operand is a date, the other operand must be a date duration or labeled duration of years,
months, or days.

• If one operand is a time, the other operand must be a time duration or a labeled duration of hours,
minutes, or seconds.

• If one operand is a timestamp, the other operand must be a duration. Any type of duration is valid.
• Neither operand of the addition operator can be a parameter marker. For a discussion of parameter

markers, see Parameter markers in “PREPARE statement” on page 2042.

Chapter 2. Language elements in SQL 259

The rules for the use of the subtraction operator on datetime values are not the same as those for addition
because a datetime value cannot be subtracted from a duration, and because the operation of subtracting
two datetime values is not the same as the operation of subtracting a duration from a datetime value. The
specific rules governing the use of the subtraction operator with datetime values follow.

• If the first operand is a date, the second operand must be a date, a date duration, a string
representation of a date, or a labeled duration of years, months, or days.

• If the second operand is a date, the first operand must be a date, or a string representation of a date.
• If the first operand is a time, the second operand must be a time, a time duration, a string

representation of a time, or a labeled duration of hours, minutes, or seconds.
• If the second operand is a time, the first operand must be a time, or string representation of a time.
• If the first operand is a timestamp, the second operand must be a timestamp, a string representation

of a timestamp, or a duration. If the second operand is a string representation of a timestamp, it is
implicitly converted to a timestamp with the same precision as the first operand.

• If the second operand is a timestamp, the first operand must be a timestamp or a string representation
of a timestamp. If the first operand is a string representation of a timestamp, it is implicitly converted to
a timestamp with the same precision as the second operand.

• Neither operand of the subtraction operator can be a parameter marker.

When an operand in a datetime expression is a string, it might undergo character conversion before it is
interpreted and converted to a datetime value. When its CCSID is not that of the default for mixed strings,
a mixed string is converted to the default mixed data representation. When its CCSID is not that of the
default for SBCS strings, an SBCS string is converted to the default SBCS representation.

Date arithmetic
Date values can be subtracted, incremented, or decremented.

Subtracting dates: The result of subtracting one date (DATE2) from another (DATE1) is a date duration
that specifies the number of years, months, and days between the two dates. The data type of the result
is DECIMAL(8,0). If DATE1 is greater than or equal to DATE2, DATE2 is subtracted from DATE1. If DATE1
is less than DATE2, however, DATE1 is subtracted from DATE2, and the sign of the result is made negative.
The following procedural description clarifies the steps involved in the operation RESULT = DATE1 -
DATE2.

Date subtraction: result = date1 - date2

• If DAY(DATE2) <= DAY(DATE1) then DAY(RESULT) = DAY(DATE1) - DAY(DATE2)
• If DAY(DATE2) > DAY(DATE1) then DAY(RESULT) = N + DAY(DATE1) - DAY(DATE2) where N

= the last day of MONTH(DATE2). MONTH(DATE2) is then incremented by 1.
• If MONTH(DATE2) <= MONTH(DATE1) then MONTH(RESULT) = MONTH(DATE1) -
MONTH(DATE2)

• If MONTH(DATE2) > MONTH(DATE1) then MONTH(RESULT) = 12 + MONTH(DATE1) -
MONTH(DATE2) and YEAR(DATE2) is incremented by 1.

• YEAR(RESULT) = YEAR(DATE1) - YEAR(DATE2)

For example, the result of DATE('3/15/2005') - '12/31/2004' is 215 (or, a duration of 0 years, 2 months,
and 15 days). In this example, notice that the second operand did not need to be converted to a date.
According to one of the rules for subtraction, described under “Datetime arithmetic in SQL” on page 259,
the second operand can be a string representation of a date if the first operand is a date.

Incrementing and decrementing dates: The result of adding a duration to a date, or of subtracting a
duration from a date, is itself a date. (For the purposes of this operation, a month denotes the equivalent
of a calendar page. Adding months to a date, then, is like turning the pages of a calendar, starting with
the page on which the date appears.) The result must fall between the dates January 1, 0001 and
December 31, 9999 inclusive. If a duration of years is added or subtracted, only the year portion of the

260 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

date is affected. The month is unchanged, as is the day unless the result would be February 29 of a
non-leap-year. Here the day portion of the result is set to 28, and the SQLWARN6 field of the SQLCA is
set to W, indicating that an end-of-month adjustment was made to correct an invalid date. “Description of
SQLCA fields” on page 2303 also describes how SQLWARN6 is set.

Similarly, if a duration of months is added or subtracted, only months and, if necessary, years are affected.
The day portion of the date is unchanged unless the result would be invalid (September 31, for example).
In this case the day is set to the last day of the month, and the SQLWARN6 field of the SQLCA is set to W
to indicate the adjustment.

Adding or subtracting a duration of days will, of course, affect the day portion of the date, and potentially
the month and year. Adding or subtracting a duration of days will not cause an end-of-the-month
adjustment.

Date durations, whether positive or negative, can also be added to and subtracted from dates. As with
labeled durations, the result is a valid date, and SQLWARN6 is set to W to indicate any necessary
end-of-month adjustment.

When a positive date duration is added to a date, or a negative date duration is subtracted from a
date, the date is incremented by the specified number of years, months, and days, in that order. Thus,
DATE1+X, where X is a positive DECIMAL(8,0) number, is equivalent to the expression:

 DATE1 + YEAR(X) YEARS + MONTH(X) MONTHS + DAY(X) DAYS

When a positive date duration is subtracted from a date, or a negative date duration is added to a
date, the date is decremented by the specified number of days, months, and years, in that order. Thus,
DATE1-X, where X is a positive DECIMAL(8,0) number, is equivalent to the expression:

 DATE1 - DAY(X) DAYS - MONTH(X) MONTHS - YEAR(X) YEARS

Adding a month to a date gives the same day one month later unless that day does not exist in the later
month. In that case, the day in the result is set to the last day of the later month. For example, January 28
plus one month gives February 28; one month added to January 29, 30, or 31 results in either February
28 or, for a leap year, February 29. If one or more months is added to a given date and then the same
number of months is subtracted from the result, the final date is not necessarily the same as the original
date.

If one or more months are added to a given date and then the same number of months is subtracted
from the result, the final date is not necessarily the same as the original date. In addition, logically
equivalent expressions might not produce the same result. For example, the following two expressions do
not produce the same result:

 (DATE('2005 01 31') + 1 MONTH) + 1 MONTH -- results in 2005-03-28
 DATE('2005 01 31') + 2 MONTHS -- results in 2005-03-31

The order in which labeled date durations are added to and subtracted from dates can affect the results.
When you add labeled date durations to a date, specify them in the order of YEARS + MONTHS + DAYS.
When you subtract labeled date durations from a date, specify them in the order of DAYS - MONTHS -
YEARS. For example, to add one year and one day to a date, specify:

 DATE1 + 1 YEAR + 1 DAY

To subtract one year, one month, and one day from a date, specify:

 DATE1 - 1 DAY - 1 MONTH - 1 YEAR

Time arithmetic
Times can be subtracted, incremented, or decremented.

Subtracting times: The result of subtracting one time (TIME2) from another (TIME1) is a time duration
that specifies the number of hours, minutes, and seconds between the two times. The data type of the
result is DECIMAL(6,0). If TIME1 is greater than or equal to TIME2, TIME2 is subtracted from TIME1. If

Chapter 2. Language elements in SQL 261

TIME1 is less than TIME2, however, TIME1 is subtracted from TIME2, and the sign of the result is made
negative. The following procedural description clarifies the steps involved in the operation RESULT =
TIME1 - TIME2.

Time subtraction: result = time1 - time2

• If SECOND(TIME2) <= SECOND(TIME1) then SECOND(RESULT) = SECOND(TIME1) -
SECOND(TIME2).

• If SECOND(TIME2) > SECOND(TIME1) then SECOND(RESULT) = 60 + SECOND(TIME1) -
SECOND(TIME2) and MINUTE(TIME2) is incremented by 1.

• If MINUTE(TIME2) <= MINUTE(TIME1) then MINUTE(RESULT) = MINUTE(TIME1) -
MINUTE(TIME2).

• If MINUTE(TIME2) > MINUTE(TIME1) then MINUTE(RESULT) = 60 + MINUTE(TIME1) -
MINUTE(TIME2) and HOUR(TIME2) is incremented by 1.

• HOUR(RESULT) = HOUR(TIME1) - HOUR(TIME2).

For example, the result of TIME('11:02:26') - '00:32:56' is '102930' (a duration of 10 hours, 29
minutes, and 30 seconds). In this example, notice that the second operand did not need to be converted
to a time. According to one of the rules for subtraction, described under “Datetime arithmetic in SQL” on
page 259, the second operand can be a string representation of a time if the first operand is a time.

Incrementing and decrementing times: The result of adding a duration to a time, or of subtracting a
duration from a time, is itself a time. Any overflow or underflow of hours is discarded, thereby ensuring
that the result is always a time. If a duration of hours is added or subtracted, only the hours portion of the
time is affected. Adding 24 hours to the time '00:00:00' results in the time '24:00:00'. However, adding
24 hours to any other time results in the same time; for example, adding 24 hours to the time '00:00:59'
results in the time '00:00:59'. The minutes and seconds are unchanged.

Similarly, if a duration of minutes is added or subtracted, only minutes and, if necessary, hours are
affected. The seconds portion of the time is unchanged.

Adding or subtracting a duration of seconds affects the seconds portion of the time and might affect the
minutes and hours.

Time durations, whether positive or negative, can also be added to and subtracted from times. The result
is a time that has been incremented or decremented by the specified number of hours, minutes, and
seconds, in that order. Thus, TIME1 + X, where X is a positive DECIMAL(6,0) number, is equivalent to the
expression

 TIME1 + HOUR(X) HOURS + MINUTE(X) MINUTES + SECOND(X) SECONDS

Timestamp arithmetic
Timestamps can be subtracted, incremented, or decremented.

If any of the operands are TIMESTAMP WITH TIME ZONE, any TIMESTAMP WITHOUT TIME ZONE values
are implicitly cast to TIMESTAMP WITH TIME ZONE, and the datetime arithmetic operation is performed
in UTC time (ignoring the time zone).

Subtracting timestamps: The result of subtracting one timestamp (TS2) from another (TS1) is a
timestamp duration that specifies the number of years, months, days, hours, minutes, seconds, and
fractional seconds between the two timestamps.

The data type of the result is DECIMAL(14+s,s), where s is the maximum timestamp precision of TS1 and
TS2. If TS1 is greater than or equal to TS2, TS2 is subtracted from TS1. If TS1 is less than TS2. However,
TS1 is subtracted from TS2 and the sign of the result is made negative. A subtraction that involves a
timestamp with a time zone operand is based on the UTC value of the timestamp with the time zone. The
time zone is ignored.

The following procedural description clarifies the steps involved in the operation RESULT = TS1 - TS2.

262 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Timestamp subtraction: result = ts1 - ts2

• If MICROSECOND(TS2) <= MICROSECOND(TS1) then MICROSECOND(RESULT) =
MICROSECOND(TS1) - MICROSECOND(TS2).

• If MICROSECOND(TS2) > MICROSECOND(TS1) then MICROSECOND(RESULT) = 1000000 +
MICROSECOND(TS1)- MICROSECOND(TS2) and SECOND(TS2) is incremented by 1.

• If SECOND(TS2,s) <= SECOND(TS1,s) then SECOND(RESULT,s) = SECOND(TS1,s) -
SECOND(TS2,s).

• If SECOND(TS2,s) > SECOND(TS1,s) then SECOND(RESULT,s) = 60 + SECOND(TS1,s) –
SECOND(TS2,s).

MINUTE(TS2) is incremented by 1.
• If HOUR(TS2) <= HOUR(TS1) then HOUR(RESULT) = HOUR(TS1) - HOUR(TS2).
• If HOUR(TS2) > HOUR(TS1) then HOUR(RESULT) = 24 + HOUR(TS1) - HOUR(TS2) and
DAY(TS2) is incremented by 1.

The minutes part of the timestamps are subtracted as specified in the rules for subtracting times.

The date part of the timestamps is subtracted as specified in the rules for subtracting dates.

Incrementing and decrementing timestamps: The result of adding a duration to a timestamp, or of
subtracting a duration from a timestamp, is itself a timestamp. The precision of the result timestamp
matches the precision of the timestamp operand. The date and time arithmetic is performed as previously
defined, except that an overflow or underflow of hours is carried into the date part of the result, which
must be within the range of valid dates. The time arithmetic portion is similar to time arithmetic,
except that it also considers the fractional seconds included in the duration. For example, subtracting
a duration, X, from a timestamp, TIMESTAMP1, where X is a DECIMAL(14+s,s) number, is equivalent to
the expression:

TIMESTAMP1 - YEAR(X) YEARS - MONTH(X) MONTHS - DAY(X) DAYS
 - HOUR(X) HOURS - MINUTE(X) MINUTES - SECOND(X, s) SECONDS

When subtracting a duration with a non-zero scale or a labeled duration of SECOND or SECONDS with a
value that includes fractions of a second, the subtraction is performed as if the timestamp value has up
to 12 fractional second digits. The resulting value is assigned to a timestamp value with the timestamp
precision of the timestamp operand, which could result in truncation of fractional second digits.

When the result of an operation is midnight, the time portion of the result can be '24.00.00' or '00.00.00'.
A comparison of those two values does not result in 'equal'. Microseconds overflow into seconds.

Precedence of operations
Expressions within parentheses are evaluated first. When the order of evaluation is not specified by
parentheses, prefix operators are applied before multiplication and division, and multiplication, division,
and concatenation are applied before addition and subtraction. Operators at the same precedence level
are applied from left to right.

Example 1: In this example, the first operation is the addition in (SALARY + BONUS) because it is
within parenthesis. The second operation is multiplication because it is a higher precedence level than
the second addition operator and it is to the left of the division operator. The third operation is division
because it is at a higher precedence level than the second addition operator. Finally, the remaining
addition is performed.

 1.10 * (SALARY + BONUS) + SALARY / :VAR3
 (2) (1) (4) (3)

Example 2: In this example, the first operation (CONCAT) combines the character strings in the variables
YYYYMM and DD into a string representing a date. The second operation (-) then subtracts that date

Chapter 2. Language elements in SQL 263

from the date being processed in DATECOL. The result is a date duration that indicates the time elapsed
between the two dates.

 DATECOL - :YYYYMM CONCAT :DD
 (2) (1)

CASE expressions
A CASE expression allows an expression to be selected based on the evaluation of one or more
conditions.

CASE searched-when-clause

simple-when-clause

ELSE NULL

ELSE result-expression

END

searched-when-clause:

WHEN search-condition THEN result-expression

NULL

simple-when-clause:

expression WHEN expression THEN result-expression

NULL

In general, the value of the case-expression is the value of the result-expression following the first
(leftmost) when-clause that evaluates to true. If no case evaluates to true and the ELSE keyword is
present, the result is the value of the result-expression or NULL. If no case evaluates to true and the ELSE
keyword is not present, the result is NULL. When a case evaluates to unknown (because of NULL values),
the case is NOT true and hence is treated the same way as a case that evaluates to false.
searched-when-clause

Specifies a search-condition that is applied to each row or group of table data presented for
evaluation, and the result when that condition is true.

Pair-wise comparison is performed. Implicit cast of each pair follows the same rule as for a basic
predicate. The searched-when-clause performs implicit cast on string and numeric search conditions.

simple-when-clause
Specifies that the value of the expression prior to the first WHEN keyword is tested for equality with
the value of each expression that follows the WHEN keyword. It also specifies the result for when that
condition is true.

The data type of the expression prior to the first WHEN keyword must be compatible with the data
types of the expression that follows each WHEN keyword. The data type of any of the expressions
cannot be a CLOB, DBCLOB or BLOB. In addition, the expression prior to the first WHEN keyword
cannot include a function that is not deterministic or has an external action.

264 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

result-expression or NULL
Specifies the value that follows the THEN and ELSE keywords. It specifies the result of a searched-
when-clause or a simple-when-clause that is true, or the result if no case is true. There must be at
least one result-expression in the CASE expression with a defined data type. NULL cannot be specified
for every case.

All result-expressions must have compatible data types. The attributes of the result are determined
according to the rules that are described in “Rules for result data types” on page 166. When the
result is a string, its attributes include a CCSID. For the rules on how the CCSID is determined, see
Determining the encoding scheme and CCSID of a string (Introduction to Db2 for z/OS).

search-condition
Specifies a condition that is true, false, or unknown about a row or group of table data. The search-
condition can be a predicate, including predicates that contain fullselects (scalar or non-scalar) or
row-value expressions.

If search-condition in a searched-when-clause specifies a quantified predicate or an IN predicate that
includes a fullselect, the CASE expression cannot be used in the following contexts:

• select lists
• a VALUES clause of an INSERT or MERGE statement
• a SET or assignment clause of an UPDATE, MERGE, or DELETE statement
• the right side of a SET or assignment statement
• the definition of a column mask or a row permission

If search-condition in a searched-when-clause specifies an EXISTS predicate, the CASE expression
cannot be used in the following contexts:

• a VALUES clause of an INSERT or MERGE statement
• the right side of a SET or assignment statement
• The diagnostic-string-expression of a SIGNAL statement
• An ORDER BY clause or a GROUP BY clause

END
Ends a case-expression.

If a CASE expression is in a select list that derives the final result table, and if the simple-when-clause or
the searched-when-clause references a basic predicate with a fullselect, column masks cannot be applied
to the columns in the THEN clauses which derive the result of the CASE expression.

If a CASE expression is in a select list that derives the final result table, and if the simple-when-clause
or searched-when-clause references a column for which column access control is activated, the column
mask cannot be applied to the column and an error is returned.

If a CASE expression is in a SET clause of an UPDATE, MERGE, or DELETE statement, a VALUES clause of
an INSERT or MERGE statement, or the fullselect of an INSERT from a fullselect, and if the simple-when-
clause or the searched-when-clause references a column for which column access control is activated, the
column access control is ignored for the column.

Two scalar functions, NULLIF and COALESCE, are specialized to handle a subset of the functionality
provided by CASE. The following table shows the equivalent expressions using CASE or these functions.

Table 51. Equivalent case expressions

CASE expression Equivalent expression

CASE WHEN e1=e2
 THEN NULL ELSE e1 END

NULLIF(e1,e2)

Chapter 2. Language elements in SQL 265

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html

Table 51. Equivalent case expressions (continued)

CASE expression Equivalent expression

CASE WHEN e1 IS NOT NULL
 THEN e1 ELSE e2 END

COALESCE(e1,e2)

CASE WHEN e1 IS NOT NULL
 THEN e1 ELSE COALESCE(e2,...,eN) END

COALESCE(e1,e2,...,eN)

Example 1 (simple-when-clause): Assume that in the EMPLOYEE table the first character of a department
number represents the division in the organization. Use a CASE expression to list the full name of the
division to which each employee belongs.

 SELECT EMPNO, LASTNAME,
 CASE SUBSTR(WORKDEPT,1,1)
 WHEN 'A' THEN 'Administration'
 WHEN 'B' THEN 'Human Resources'
 WHEN 'C' THEN 'Design'
 WHEN 'D' THEN 'Operations'
 END
 FROM EMPLOYEE;

Example 2 (searched-when-clause): You can also use a CASE expression to avoid "division by zero" errors.
From the EMPLOYEE table, find all employees who earn more than 25 percent of their income from
commission, but who are not fully paid on commission:

 SELECT EMPNO, WORKDEPT, SALARY+COMM FROM EMPLOYEE
 WHERE (CASE WHEN SALARY=0 THEN 0
 ELSE COMM/(SALARY+COMM)
 END) > 0.25;

Example 3 (searched-when-clause): You can use a CASE expression to avoid "division by zero" errors in
another way. The following queries show an accumulation or summing operation. In the first query, Db2
performs the division before performing the CASE statement and an error occurs along with the results.

 SELECT REF_ID,PAYMT_PAST_DUE_CT,
 CASE
 WHEN PAYMT_PAST_DUE_CT=0 THEN 0
 WHEN PAYMT_PAST_DUE_CT>0 THEN
 SUM(BAL_AMT/PAYMT_PAST_DUE_CT)
 END
 FROM PAY_TABLE
 GROUP BY REF_ID,PAYMT_PAST_DUE_CT;

However, if the CASE expression is included in the SUM aggregate function, the CASE expression would
prevent the errors. In the following query, the CASE expression screens out the unwanted division
because the CASE operation is performed before the division.

 SELECT REF_ID,PAYMT_PAST_DUE_CT,
 SUM(CASE
 WHEN PAYMT_PAST_DUE_CT=0 THEN 0
 WHEN PAYMT_PAST_DUE_CT>0 THEN
 BAL_AMT/PAYMT_PAST_DUE_CT
 END)
 FROM PAY_TABLE
 GROUP BY REF_ID,PAYMT_PAST_DUE_CT;

Example 4: This example shows how to group the results of a query by a CASE expression without having
to re-type the expression. Using the sample employee table, find the maximum, minimum, and average
salary. Instead of finding these values for each department, assume that you want to combine some
departments into the same group.

 SELECT CASE_DEPT,MAX(SALARY),MIN(SALARY),AVG(SALARY)
 FROM (SELECT SALARY,CASE WHEN WORKDEPT = 'A00' OR WORKDEPT = 'E21'
 THEN 'A00_E21'
 WHEN WORKDEPT = 'D11' OR WORKDEPT = 'E11'

266 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 THEN 'D11_E11'
 ELSE WORKDEPT
 END AS CASE_DEPT
 FROM DSN8C10.EMP) X
 GROUP BY CASE_DEPT;

CAST specification
The CAST specification returns the first operand (the cast operand) converted to the data type that is
specified by data-type.

Syntax for CAST specification

CAST (expression

NULL

parameter-marker

AS data-type)

data-type:

built-in-type

distinct-type-name

array-type

Chapter 2. Language elements in SQL 267

built-in-type:
SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

DECFLOAT

(34)

(16)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

CHARACTER

CHAR

(1 OCTETS)

( length)

CHARACTER

CHAR

VARYING

VARCHAR

( length)

CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

BIT

DATA

CCSID integer

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M OCTETS)

( lob-length) CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

DATA

CCSID integer

GRAPHIC

(1 CODEUNITS16)

( length)

VARGRAPHIC (length)

DBCLOB

(1M CODEUNITS16)

( lob-length)

CCSID ASCII

EBCDIC

UNICODE

integer

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

ROWID

XML

268 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

length:

integer
1

CODEUNITS16

CODEUNITS32

OCTETS

Notes:
1 FL 502 OCTETS and CODEUNITS32 must not be specified with GRAPHIC and VARGRAPHIC when the
first argument is numeric data.

lob-length:

integer

K

M

G

CODEUNITS16

CODEUNITS32

OCTETS

Description for CAST specification
If the data type of either operand is a distinct type, the privilege set must implicitly include EXECUTE
authority on the generated cast functions for the distinct type. The CAST specification allows the second
operand to be cast to a particular encoding scheme or CCSID if the second operand represents character
data. The CCSID clause can be specified following CHAR, VARCHAR, CLOB, GRAPHIC, VARGRAPHIC, and
DBCLOB data types.

expression
Specifies that the cast operand is an expression other than NULL or a parameter marker. The result is
the value of the operand value converted to the specified target data type.

The supported casts are shown in “Casting between data types” on page 130. If the cast is not
supported, an error is returned.

When any data type is cast to a character for graphic data type, a warning if any non-blank characters
are truncated. The warning also occurs if any characters are truncated when a BLOB operand is cast,
or if the time zone characters are truncated when a TIMESTAMP WITH TIME ZONE operand is cast to a
string.

NULL
Specifies that the cast operand is null. The result is a null value with the specified target data type.

parameter-marker
A parameter marker, which is normally considered an expression, has a special meaning as a cast
operand. When the cast operand is a parameter-marker, the data type that is specified represents the
"promise" that the replacement value for the parameter marker will be assignable to the specified
data type (using "store assignment" rules). Such a parameter marker is considered a typed parameter
marker. Typed parameter markers are treated like any other typed value for the purpose of function
resolution, a DESCRIBE of a select list, or column assignment.

data-type
Specifies the data type of the result. If the data type is not qualified, the SQL path is used to find the
appropriate data type. For more information, see “SQL path” on page 85.
SMALLINT

For a small integer.

Chapter 2. Language elements in SQL 269

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html

INTEGER or INT
For a large integer.

BIGINT
For a big integer.

DECIMAL(integer,integer) or DEC(integer,integer)
DECIMAL(integer) or DEC(integer)
DECIMAL or DEC

For a decimal number. The first integer is the precision of the number. That is, the total number
of digits 1–31. The second integer is the scale of the number. That is, the number of digits to the
right of the decimal point, which can range from 0 to the precision of the number.

You can use DECIMAL(p) for DECIMAL(p,0) and DECIMAL for DECIMAL(5,0).

You can also use the word NUMERIC instead of DECIMAL. For example, NUMERIC(8) is equivalent
to DECIMAL(8). Unlike DECIMAL, NUMERIC has no allowable abbreviation.

DECFLOAT(integer)
For a decimal floating-point number. The value of integer must be either 16 or 34 and represents
the number of significant digits that can be stored. If integer is omitted, the DECFLOAT value can
represent 34 significant digits.

FLOAT(integer)
FLOAT

For a floating-point number. If integer is in the range 1– 21 inclusive, the format is single precision
floating-point. If the integer is in the range 22–53 inclusive, the format is double precision
floating-point.

You can use DOUBLE PRECISION or FLOAT for FLOAT(53).

For portability across operating systems, when specifying a floating-point data type, use REAL or
DOUBLE instead of FLOAT.

REAL
For single precision floating-point.

DOUBLE or DOUBLE PRECISION
For double precision floating-point

CHARACTER(integer) or CHAR(integer)
CHARACTER or CHAR

For a fixed-length character string of length integer, which can range 1–255. If the length
specification is omitted, a length of 1 character is assumed.

You can specify that the length of the result be evaluated in a specific number of string units:
CODEUNITS16, CODEUNITS32, or OCTETS. If expression is a character string that is defined as bit
data, CODEUNITS16, or CODEUNITS32 cannot be specified. For more information, see “String unit
specifications” on page 106.

VARCHAR(integer), CHAR VARYING(integer), or CHARACTER VARYING(integer)

For a varying-length character string of maximum length integer in the range 1–32764.

You can specify that the length of the result be evaluated in a specific number of string units:
CODEUNITS16, CODEUNITS32, or OCTETS. If expression is a character string that is defined as bit
data, CODEUNITS16, or CODEUNITS32 cannot be specified. For more information, see “String unit
specifications” on page 106.

CLOB(integer [K|M|G]), CHAR LARGE OBJECT(integer [K|M|G]), or CHARACTER LARGE
OBJECT(integer [K|M|G])
CLOB, CHAR LARGE OBJECT, or CHARACTER LARGE OBJECT

For a character large object (CLOB) string of the specified maximum length in bytes. The maximum
length must be in the range 1–2147483647.

270 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

When integer is not specified, the default length is 1 M. The maximum value that can be specified
for integer depends on whether a units indicator is also specified as shown in the following list.
integer

The maximum value for integer is 2147483647. The maximum length of the string is integer.
integer K

The maximum value for integer is 2097152. The maximum length is 1024 times integer.
integer M

The maximum value for integer is 2048. The maximum length is 1,048,576 times integer.
integer G

The maximum value for integer is 2. The maximum length is 1,073,741,824 times integer.

integer can be separated from K, M, or G by 0 or more spaces.

If you specify a value that evaluates to 2 gigabytes (2,147,483,648), Db2 uses a value that is one
byte less, or 2147483647.

You can specify that the length of the result be evaluated in a specific number of string units:
CODEUNITS16, CODEUNITS32, or OCTETS. For more information, see “String unit specifications”
on page 106.

GRAPHIC(length)
GRAPHIC

For a fixed-length graphic string of length integer, which can range 1–127. If the length
specification is omitted, a length of 1 character is assumed.

You can specify that the length of the result be evaluated in a specific number of string units:
CODEUNITS16 or CODEUNITS32. For more information, see “String unit specifications” on page
106.

VARGRAPHIC(integer)

For a varying-length graphic string of maximum length integer in the range 1–32764.

You can specify that the length of the result be evaluated in a specific number of string units:
CODEUNITS16 or CODEUNITS32. For more information, see “String unit specifications” on page
106.

DBCLOB(integer [K|M|G])
DBCLOB

For a double-byte character large object (DBCLOB) string of the specified maximum length in
double-byte characters. The maximum length must be in the range 1–1,073,741,823.

When integer is not specified, the default length is 1M. The meaning of integer K|M|G is similar to
CLOB. The difference is that the number specified is the number of double-byte characters.

integer can be separated from K, M, or G by 0 or more spaces.

You can specify that the length of the result be evaluated in a specific number of string units:
CODEUNITS16, CODEUNITS32, or OCTETS. For more information, see “String unit specifications”
on page 106.

BINARY(integer)
A fixed-length binary string of length integer. The integer can range 1–255. If the length
specification is omitted, a length of 1 byte is assumed.

BINARY VARYING(integer) or VARBINARY(integer)
A varying-length binary string of maximum length integer in the range 1–32764.

BLOB (integer [K|M|G] or BINARY LARGE OBJECT(integer [K|M|G])
BLOB or BINARY LARGE OBJECT

For a binary large object (BLOB) string of the specified maximum length in bytes. The maximum
length must be in the range 1–2147483647.

Chapter 2. Language elements in SQL 271

When integer is not specified, the default length is 1M. The meaning of integer K|M|G is the same
as for CLOB.

integer can be separated from K, M, or G by 0 or more spaces.

DATE
For a date.

TIME
For a time.

TIMESTAMP(integer) WITHOUT TIME ZONE
For a timestamp. integer specifies the optional timestamp precision attribute and must be in the
range 0–12. The timestamp precision denotes the number of fractional second digits that are
included in the timestamp. The default is 6.

TIMESTAMP(integer) WITH TIME ZONE
For a timestamp with time zone. integer specifies the optional timestamp precision attribute and
must be in the range 0–12. The timestamp precision denotes the number of fractional second
digits that are included in the timestamp. The default is 6.

• If the cast operand is expression, see “Casting between data types” on page 130 and use any of the
target data types that are supported for the data type of the cast operand.

• If the cast operand is NULL, you can use any data type.
• If the cast operand is a parameter-marker:

– If the target data type is a distinct type, the application that uses the parameter marker uses the
base data type of the distinct type.

– If the target data type is an array type:

- The elements in the source array value must be castable to the data type of the elements of the
target array type. The index values for the source array value must be castable to the data type
of the index of the target array type.

- If the target array type is an ordinary array, the cardinality of the source array value must be
less than or equal to the maximum cardinality of the target array type.

– Otherwise, any data type if valid.

CCSID encoding-scheme
Specifies the encoding scheme for the target data type. The specific CCSIDs for SBCS, BIT, and MIXED
data are determined by the default CCSIDs for the server for the specified encoding scheme. The valid
values are ASCII, EBCDIC, and UNICODE.

FOR subtype DATA
Specifies a subtype for a character string value, which has a data type of CHAR, VARCHAR, or CLOB.
Do not use the FOR subtype DATA clause with values of any other data type (including any distinct
type). subtype is one of the following keywords:
SBCS

The value contains single-byte data.
MIXED

The value contains mixed data. Do not specify MIXED if the value of MIXED DECP value is NO.
BIT

Column holds BIT data. Do not specify BIT for a CLOB value. Only character strings are valid when
subtype is BIT.

CCSID integer
Specifies that the target data type be encoded using the CCSID integer. The value must be one of
the CCSID values in DECP. If the second operand is CHAR, VARCHAR, or CLOB, the CCSID specified
must be either a SBCS, or MIXED CCSID, or 65535 for bit data. If the second operand is GRAPHIC,
VARGRAPHIC, or DBCLOB, the CCSID specified must be a DBCS CCSID. See Determining the CCSID
of the result if neither CCSID integer nor CCSID encoding-scheme is specified. See Determining the
CCSID of the result for special considerations regarding CCSID 367.

272 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Notes for CAST specification
Interaction between length and CCSID clauses

If both the length and CCSID clauses are specified, the data is first cast to the specified CCSID, and
then the length is applied. If either CODEUNITS16 or CODEUNITS32 is specified, the specification
of length applies to the units specified. That is, the data is converted to an intermediate form (in
Unicode), the length is applied, and the data is converted to the specified CCSID.

Resolution of cast functions
Db2 uses the implicit or explicit schema name and the data type name of data-type, and function
resolution to determine the specific function to use to convert expression to data-type. See Qualified
function resolution for more information.

Result of the CAST

When numeric data is cast to character data, the data type of the result is a fixed-length character
string, which is similar to the result that the CHAR function would give. (For more information, see
“CHAR scalar function” on page 405.) When character data is cast to numeric data, the data type of
the result depends on the data type of the specified number. For example, character data that is cast
to an integer becomes a large integer, which is similar to the result that the INTEGER function would
give. (For more information see “INTEGER or INT scalar function” on page 483.)

If the data type of the result is character, and the FOR subtype DATA clause is not specified, the
subtype of the result is determined by the following rules:

• If expression is graphic, the subtype of the result is mixed.
• If expression is a datetime data type, the subtype of the result is mixed. The exception is when

the default encoding scheme is EBCDIC and there is no mixed or graphic data on the system for
EBCDIC.

• If expression is a row ID and data-type is not CLOB, the result is bit data.
• If expression is character, the subtype of the result is the same as expression.
• Otherwise, the subtype depends on the encoding scheme of the result. If the encoding scheme

of the result is not Unicode and the MIXED DECP value is NO, the subtype of the result is SBCS.
Otherwise, the subtype of the result is mixed.

Casting constant values to DECFLOAT
To cast a constant value, where the value is negative zero, or a floating point constant to DECFLOAT,
specify the value as a character string constant rather than a numeric constant. For example:

DECFLOAT('-0') -- causes DB2 to retain the negative sign for a
 -- value of negative zero
DECFLOAT('1.00E20') -- causes DB2 to preserve the precision of the
 -- floating point constant

Determining the CCSID and encoding scheme of the result

The CCSID of the result depends on whether the CCSID clause was specified and the context in which
the CAST specification was specified.

If the CCSID clause was specified, the CCSID clause is used to determine the CCSID of the result as
follows:

• If the CCSID clause was specified with EBCDIC, ASCII, or UNICODE, the clause determines the
encoding scheme of the result. The CCSID of the result is the appropriate CCSID (from DECP) for
that encoding scheme for the data type of the result.

• If the CCSID clause was specified with a numeric value representing bit data (65535), the CCSID of
the result depends on the data type of the source. If the source data is not string data, the CCSID of
the result is the appropriate CCSID for the application encoding scheme. See Note 1 in Determining
the encoding scheme and CCSID of a string (Introduction to Db2 for z/OS). If the source is string
data, the encoding scheme of the result is the same as the encoding scheme of expression, but the
result is considered bit data.

Chapter 2. Language elements in SQL 273

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html

• If the CCSID clause was specified with a numeric value, that number is the CCSID of the result.
The encoding scheme of the result is determined from the numeric CCSID. In a CAST specification,
CCSID 367 refers to ASCII data. For example, assume that MYDATA is string data to be cast to
CHAR(10). The following CAST specification returns ASCII SBCS data:

CAST(MYDATA AS CHAR(10) CCSID 367)

To explicitly cast the data to Unicode SBCS, use the following syntax:

CAST(MYDATA AS CHAR(10) CCSID UNICODE
 FOR SBCS DATA)

If the CCSID clause was not specified, the CCSID of the result is 65535 if the result is bit data.
Otherwise, if the data type of the result is a character or graphic string data type, the encoding
scheme and CCSID of the result are is determined as follows:

• If the expression and data-type are both character, the encoding scheme of the result is the same as
expression. For example, assume CHAR_COL is a character column in the following sample:

CAST(CHAR_COL AS VARCHAR(25))

The result of the CAST is a varying length string with the same encoding scheme as the input. The
CCSID of the result is the appropriate CCSID for the encoding scheme and subtype of the result.

• If the expression and data-type are both graphic, the encoding scheme and CCSID of the result is
the same as expression.

• If the result is string and the expression is datetime, the result CCSID is the appropriate CCSID of the
expression encoding scheme and the result subtype is the appropriate subtype of the CCSID.

• If the result is character, the encoding scheme and CCSID of the result depends on the context in
which the CAST specification is specified:

– If the statement follows the rules that are described for type 1 statements in Determining the
encoding scheme and CCSID of a string (Introduction to Db2 for z/OS), the CCSID is determined
as follows:

- If the statement references a table or view, the encoding scheme of that table or view
determines the encoding scheme for the result.

- Otherwise, the encoding scheme is EBCDIC, the default EBCDIC CCSID is used, and the subtype
depends on the MIXED DECP value.

The CCSID of the result is the appropriate CCSID for the encoding scheme and subtype of the
result.

– Otherwise, the CCSID of the result is the appropriate CCSID for the application encoding scheme
and subtype of the result.

• If the result is graphic, the encoding scheme and the CCSID of the result depends on the context in
which the CAST specification is specified:

– If the statement follows the rules that are described for type 1 statements in Determining the
encoding scheme and CCSID of a string (Introduction to Db2 for z/OS), the CCSID is determined
as follows:

- If the statement references a table or view, the encoding scheme of that table or view
determines the encoding scheme for the result.

- Otherwise, the default EBCDIC encoding scheme is used for the result.

The CCSID of the result is the appropriate CCSID for the encoding scheme and data type of the
result.

– Otherwise, the CCSID of the result is the appropriate CCSID for the application encoding scheme
of the result.

• Otherwise, the CCSID of the result depends on the context in which the CAST specification was
specified.

274 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html

– If the statement follows the rules that are described for type 1 in statements in Determining the
encoding scheme and CCSID of a string (Introduction to Db2 for z/OS), the CCSID is determined
as follows:

- If the statement references a table or view, the encoding scheme of that table or view
determines the encoding scheme for the result.

- Otherwise, the default EBCDIC encoding scheme is used for the result.

The CCSID of the result is the appropriate CCSID for the encoding scheme and data type of the
result.

Alternative syntax for casting distinct types

There is alternative syntax for casting a distinct type to its base data type and vice versa. Assume that
a distinct type D_MONEY was defined with the following statement and column MONEY was defined
with that data type.

CREATE TYPE D_MONEY AS DECIMAL(9,2);

DECIMAL(MONEY) is equivalent syntax to CAST(MONEY AS DECIMAL(9,2)). Both forms of the syntax
use the cast function that Db2 generated when the distinct type D_MONEY was created to convert the
distinct type to its source type of DECIMAL(9,2).

However, it is possible that different cast functions might be chosen for the equivalent syntax forms
because of the difference in function resolution, particularly the treatment on unqualified names.
Although the process of function resolution is similar for both, in the CAST specification as described
above, Db2 uses the schema name of the target data type to locate the function. Therefore, if an
unqualified data type name is specified as the target data type, Db2 uses the SQL path to resolve
the schema name of the distinct type and then searches for the function in that schema. In function
notation, when an unqualified function name is specified, Db2 searches the schemas in the SQL path
to find an appropriate function match, as described under “Function resolution” on page 239. For
example, assume that you defined the following distinct types, which implicitly gives you both USAGE
authority on the distinct types and EXECUTE authority on the cast functions that are generated for
them:

CREATE TYPE SCHEMA1.AGE AS DECIMAL(2,0);
 one of the generated cast functions is:
 FUNCTION SCHEMA1.AGE(SYSIBM.DECIMAL(2,0)) RETURNS SCHEMA1.AGE
CREATE TYPE SCHEMA2.AGE AS INTEGER;
 one of the generated cast functions is:
 FUNCTION SCHEMA2.AGE(SYSIBM.INTEGER) RETURNS SCHEMA2.AGE

If STU_AGE, an INTEGER host variable, is cast to the distinct type with either of the following
statements and the SQL path is SYSIBM, SCHEMA1, SCHEMA2:

Syntax 1: CAST(:STU_AGE AS AGE);
Syntax 2: AGE(:STU_AGE);

different cast functions are chosen. For syntax 1, Db2 first resolves the schema name of distinct type
AGE as SCHEMA1 (the first schema in the path that contains a distinct type named AGE for which
you have EXECUTE authority for the appropriate generated cast function). Then it looks for a suitable
function in that schema and chooses SCHEMA1.AGE because the data type of STU_AGE, which is
INTEGER, is promotable to the data type of the function argument, which is DECIMAL(2,0). For syntax
2, Db2 searches all the schemas in the path for an appropriate function and chooses SCHEMA2.AGE.
Db2 selects SCHEMA2.AGE over SCHEMA1.AGE because the data type of its argument (INTEGER)
is an exact match for STU_AGE (INTEGER) and, therefore, a better match than the argument for
SCHEMA1.AGE, which is DECIMAL(2,0).

Syntax alternatives for time zones
: TIMEZONE can be specified as an alternative to TIME ZONE.

Chapter 2. Language elements in SQL 275

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html

Examples for CAST specification
Example 1

Assume that an application needs only the integer portion of the SALARY column, which is defined
as DECIMAL(9,2) from the EMPLOYEE table. The following query for the employee number and the
integer value of SALARY could be prepared.

 SELECT EMPNO, CAST(SALARY AS INTEGER) FROM EMPLOYEE;

Example 2

Assume that two distinct types exist in schema SCHEMAX. Distinct type D_AGE was based on
SMALLINT and is the data type for the AGE column in the PERSONNEL table. Distinct type D_YEAR
was based on INTEGER and is the data type for the RETIRE_YEAR column in the same table. The
following UPDATE statement could be prepared.

 UPDATE PERSONNEL SET RETIRE_YEAR =?
 WHERE AGE = CAST(? AS SCHEMAX.D_AGE);

The first parameter is an untyped parameter marker that has a data type of RETIRE_YEAR. However,
the application will use an integer for the parameter marker. The parameter marker does not need to
be cast because the SET is an assignment.

The second parameter marker is a typed parameter marker that is cast to the distinct type D_AGE.
Casting the parameter marker satisfies the requirement that comparisons must be performed with
compatible data types. The application will use the base data type, SMALLINT, to process the
parameter marker.

Example 3
A CAST specification can be used to explicitly specify the data type of a parameter in a context
where a parameter marker must be typed. In the following example, the CAST specification is used
to tell Db2 to assume that the value that will be provided as input to the TIME function will be
CHAR(20). See “PREPARE statement” on page 2042 for a list of contexts when invoking functions
where parameter markers can be untyped. For all other contexts when invoking a function, the CAST
specification can be used to explicitly specify the type of a parameter marker.

 INSERT INTO ADMF001.CASTSQLJ VALUES(TIME(CAST(? AS CHAR(20))))

Example 4

Assume that an application wants to cast an EBCDIC string to Unicode UTF-8. The string contains the
value 'Jürgen', which is 6 bytes in ASCII or EBCDIC and is 7 bytes in Unicode UTF-8. In the following
query, the CAST specification is invoked with the length clause with CODEUNITS32 specified to ensure
that the data is not truncated. (In this case, CODEUNITS16 could also be specified as the string unit.)

 SELECT CAST('Jürgen' AS VARCHAR(6 CODEUNITS32) CCSID UNICODE)
 FROM SYSIBM.SYSDUMMY1;

For this query, the data is converted from EBCDIC to Unicode UTF-16, the length clause is applied,
and then the UTF-16 result is converted to UTF-8.

Example 5

When a keyword is used for a special value that is expressed as a constant in a context where
the keyword could be interpreted as a name, the CAST specification can be used to explicitly cast
the special value to decimal-floating point. Assume that MYTAB contains columns named C1 and
INFINITY, and that you want to reference the decimal float-point value for infinity in the same SQL
statement. Use the CAST specification to explicitly cast INFINITY as a decimal floating-point value to
ensure that it is not interpreted as the name of a column, parameter or variable:

 SELECT INFINITY -- column named INFINITY
 FROM MYTAB
 WHERE C1 = CAST ('INFINITY' AS DECFLOAT) -- comparison is made with the

276 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 -- decimal floating-point
 -- infinity value

Related concepts
Data types
Db2 supports both IBM-supplied data types (built-in data types) and user-defined data types (distinct
types).
Casting between data types
There are many occasions when a value with a given data type needs to be cast (changed) to a different
data type or to the same data type with a different length, precision, or scale.
Related reference
MIXED DATA field (MIXED DECP value) (Db2 Installation and Migration)

XMLCAST specification
The XMLCAST specification returns the first operand (the cast operand) converted to the type specified by
data-type.

XMLCAST (expression

NULL

parameter-marker

AS data-type)

XMLCAST supports casts involving XML values, including conversions between non-XML data types and
the XML data type. Either the type of the cast operand or the specified data type must be XML. If both the
type of the cast operand and the target data type are XML, XMLCAST acts as a no-op.

expression
If the cast operand is an expression, the result is the argument value converted to the specified target
data type. The expression or the target data type must be the XML data type. expression cannot be a
host variable or parameter marker.

NULL
If the cast operand is the NULL keyword, the target data type must be the XML data type. The result is
a null XML value.

parameter-marker
If the cast operand is a parameter marker, the target data type must be the XML data type.
A parameter marker (specified as a question mark character) is normally considered to be an
expression, but in this case because it has special meaning. When the cast operand is a parameter-
marker, the data type that is specified represents the "promise" that the replacement value for the
parameter marker will be assignable to the specified data type (using assignment rules). Such a
parameter marker is considered to be a typed parameter marker, which is treated like any other
typed value for the purpose of function resolution, a describe operation on a select list, or column
assignment.

data-type
The name of an SQL data type. If the name is not qualified, the SQL path is used to perform data
type resolution. data-type must not specify a distinct type. If a data type has associated attributes,
such as length or precision and scale, these attributes should be included when specifying a value
for data-type. CHAR defaults to a length of 1, and DECIMAL defaults to a precision of 5 and a scale
of 0 if not specified. CLOB and DBCLOB default to a length of 1M. When the target data type is XML
and the source data type is TIMESTAMP, trailing zeroes in the fractional seconds part of the value are
not included in the result. Restrictions on the supported data types are based on the specified cast
operand. The default encoding scheme for string data types is Unicode. The encoding scheme can be
changed by specifying the CCSID clause.

Chapter 2. Language elements in SQL 277

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_mixed.html

Table 52. Supported conversions from Non-XML values to XML values

Source data type Target data type: XML Resulting XML schema type

DATE Y xs:date

TIME Y xs:time

TIMESTAMP(p) WITH TIME
ZONE

Y xs:dateTime

Examples
Example 1: Create a null XML value.

 XMLCAST(NULL AS XML)

Example 2: Convert a value extracted from an XMLQUERY expression into an INTEGER:

 XMLCAST(XMLQUERY('/PRODUCT/QUANTITY'
 PASSING xmlcol) AS INTEGER)

Example 3: Convert a value extracted from an XMLQUERY expression into a varying-length character
string:

 XMLCAST(XMLQUERY('/PRODUCT/NAME'
 PASSING xmlcol) AS VARCHAR(20))

Note that in the above two examples, if the XMLQUERY returns a sequence of more than one node, the
XMLCAST specification will return an error.

Example 4: Convert a value extracted from an SQL scalar subquery into an XML value:

 XMLCAST((SELECT quantity FROM product AS p
 WHERE p.id = 1077) AS XML)

Array element specification
The array element specification returns the element from an array specified by array-index.

array-expression [ array-index]

array-expression
Specifies an SQL variable, SQL parameter, or global variable of an array type, or a CAST specification of
a parameter marker to an array type.

[array-index]
An expression that specifies the array index of the element that is to be extracted from the array.
An array index value for an ordinary array must be castable to INTEGER. The array index value must
be between 1 and the cardinality of the array. An array index value for an associative array must be
castable to the data type of the index for the array type. The array index value must represent an
element that exists in the array. If the index value is a string that is longer than the index data type,
the value is truncated, a warning is issued, and processing continues with the truncated value.

array-index must not be:

• An expression that references the CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP
special register

• A nondeterministic function
• A function that is defined with EXTERNAL ACTION
• A function that is defined with MODIFIES SQL DATA

278 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• A sequence expression

In EBCDIC code pages, X'BBBB' is normally treated as a concatenation operator. Because this sequence
of characters is a pair of right brackets characters (']]') in some EBCDIC code pages, it is not treated as a
concatenation operator when used inside of an array-index expression.

The data type of the result is the data type that is specified for the array on the CREATE TYPE (array)
statement. If array-index is null, or the array is null, the null value is returned.

If the array element is character or graphic data, the CCSID of the result is the CCSID of the array
elements of the array type. If the array element is datetime data, the CCSID of the result is 1208.

Examples

Example 1: Suppose that PHONE_NUMBERS is an array variable that is defined as an array type. The
array type is defined as an ordinary array of CHAR(10) elements. Also suppose that INT_VAR is an integer
variable. The following assignment statements demonstrate how an index for an array element can be
specified.

Set the first element of an array to NULL:

SET PHONE_NUMBERS[1] = NULL;

Set the third element to the value ‘4164789683’:

SET PHONE_NUMBERS[3] = '4164789683';

Set an array element to '4164788888’, and specify the array index with the variable INT_VAR:

SET PHONE_NUMBERS[INT_VAR] = '4164788888';

Set an array element to ‘4164783322’, and specify the array index with the expression INT_VAR+5:

SET PHONE_NUMBERS[INT_VAR + 5] = ‘4164783322’;

Array constructor
An array constructor returns an ordinary array. An array constructor is specified by a list of expressions or
a fullselect.

ARRAY [?

fullselect

,

element-expression

NULL

]

Authorization
No specific authorizations are required to reference an array constructor within an SQL statement.
However, for the statement execution to be successful, all other authorization requirements for the
statement must be satisfied.

fullselect
A fullselect that returns a single column. The data type of the column must be a data type that can
be specified in a CREATE TYPE (array) statement as the data type of an array element. The values
that are returned by the fullselect are the elements of the array. The cardinality of the array is equal
to the number of rows that are returned by the fullselect. An ORDER BY clause in the fullselect can

Chapter 2. Language elements in SQL 279

be used to specify the order among the elements of the array. Otherwise, the order is undefined. The
data type of the elements of the resulting array is the same as the data type of the result column of
the fullselect.

element-expression
An expression that defines the value of an element in the array. The expression must return a value
with a data type that can be specified in a CREATE TYPE (array) statement as the data type of an array
element. The cardinality of the array is equal to the number of element expressions. The first element
expression is assigned to the array element with array index 1. The second element expression is
assigned to the array element with array index 2, and so on. All element expressions must have
compatible data types. The data type of the elements of the resulting array are determined based on
the rules that are described in “Rules for result data types” on page 166.

NULL
Specifies the null value.

If no value is specified within the brackets, the result is an empty array.

An array constructor cannot be specified in an inline SQL function, and can only be specified in the
following specific contexts:

• As a source value for a SET assignment-statement statement or an SQL PL assignment-statement
statement

• As the value that is to be returned in a RETURN statement of a user-defined scalar function

An array constructor cannot be used to construct an associative array. An associative array can be
constructed only by assigning values to individual array elements.

Examples

Example 1: Suppose that the array variable RECENT_CALLS has the array type PHONENUMBERS. Assign
an array of fixed numbers to RECENT_CALLS.

SET RECENT_CALLS = ARRAY[9055553907, 4165554213, 4085553678];

Example 2: Suppose that the array variable DEPT_PHONES has the array type PHONENUMBERS. Assign
array phone numbers that are retrieved from the DEPARTMENT_INFO table to DEPT_PHONES.

SET DEPT_PHONES =
 ARRAY[SELECT DECIMAL(AREA_CODE CONCAT '555' CONCAT EXTENSION,16)
 FROM DEPARTMENT_INFO
 WHERE DEPTID = 624];

OLAP specifications
Online analytical processing (OLAP) specifications provide the ability to return ranking, row numbering,
and aggregation information as a scalar value in the result of a query. An OLAP specification can be
included in an expression, in a select-list, or in the ORDER BY clause of a select-statement. The query
result to which the OLAP specifications is applied is the result table of the innermost subselect that
includes the OLAP specification.

Syntax for OLAP specifications

ordered-OLAP-specification

numbering-specification

aggregation-specification

ordered-OLAP-specification

280 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

CUME_DIST ()
1

PERCENT_RANK ()
1

RANK ()

DENSE_RANK ()

NTILE(num-tiles)
1

lag-function
1

lead-function
1

OVER (

window-partition-clause

window-order-clause)

Notes:
1 FL 504 This passthrough-only function cannot run on Db2 for z/OS without acceleration. See Accelerating
queries with passthrough-only expressions.

lag-function

LAG (expression

, offset

, default-value

, 'RESPECT NULLS'

, 'IGNORE NULLS'

)

lead-function

LEAD (expression

, offset

, default-value

, 'RESPECT NULLS'

, 'IGNORE NULLS'

)

window-partition-clause

PARTITION BY

,

partitioning-expression

window-order-clause

Chapter 2. Language elements in SQL 281

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html

ORDER BY

,

sort-key-expression
ASC

NULLS LAST

ASC NULLS FIRST

DESC
NULLS FIRST

DESC NULLS LAST

numbering-specification

ROW_NUMBER () OVER (

window-partition-clause

window-order-clause

)

aggregation-specification

aggregate-function

OLAP-aggregate-function

OVER (

window-partition-clause

RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

window-order-clause
RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

window-aggregation-group-clause

)

aggregate-function

AVG function

CORRELATION function

COUNT function

COUNT_BIG function

COVARIANCE function

MAX function

MIN function

STDDEV function

SUM function

VARIANCE function

1

Notes:

282 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

1 You cannot specify DISTINCT or ALL for an aggregate function that is included in an aggregation-
specification.

OLAP-aggregate-function

first-value-function

last-value-function

nth-value-function

ratio-to-report-function

1

Notes:
1 FL 504 These passthrough-only functions cannot run on Db2 for z/OS without acceleration. See
Accelerating queries with passthrough-only expressions.

first-value-function

FIRST_VALUE (expression

, 'RESPECT NULLS'

, 'IGNORE NULLS'

)

last-value-function

LAST_VALUE (expression

, 'RESPECT NULLS'

, 'IGNORE NULLS'

)

nth-value-function

NTH_VALUE (expression , nth-row)

ratio-to-report-function

RATIO_TO_REPORT (expression)

window-aggregation-group-clause

ROWS

RANGE

group-start

group-between

group-end

group-start

Chapter 2. Language elements in SQL 283

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html

UNBOUNDED PRECEDING

unsigned-constant PRECEDING

CURRENT ROW

group-between

BETWEEN group-bound-1 AND group-bound-2

group-bound-1

UNBOUNDED PRECEDING

unsigned-constant PRECEDING

unsigned-constant FOLLOWING

CURRENT ROW

group-bound-2

UNBOUNDED FOLLOWING

unsigned-constant PRECEDING

unsigned-constant FOLLOWING

CURRENT ROW

group-end

UNBOUNDED FOLLOWING

unsigned-constant FOLLOWING

RANK, DENSE_RANK, and ROW_NUMBER are sometimes called window functions.

An OLAP specification is not valid in a WHERE, VALUES, GROUP BY, HAVING, or SET clause. An OLAP
specification cannot be used as an argument of an aggregate function.

When invoking an OLAP specification, a window is specified that defines the rows over which the function
is applied and in which order.

The result of a RANK, DENSE_RANK, or ROW_NUMBER specification is BIGINT. The result cannot be null.

CUME_DIST
FL 504 Returns a cumulative distribution of a row within an OLAP window, expressed as a value in the
range of 0.0–1.0. The result is computed by dividing the number of rows preceding or equivalent to
the current row in the OLAP window by the number of rows in the OLAP window.

The data type of the result is DECFLOAT(34). The result cannot be NULL.

Passthrough-only expression: This function is passthrough-only and cannot run on Db2 for z/OS
without acceleration. For information about invoking this function, see Accelerating queries with
passthrough-only expressions.

PERCENT_RANK
FL 504 Returns a relative percentile rank of a row within an OLAP window, expressed as a value in the
range 0.0–1.0. When the number of rows in the OLAP window is greater than 1, the result is computed

284 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

by dividing the RANK of the current row in the OLAP window minus 1 by the number of rows in the
OLAP window minus 1. Otherwise, the result is 0.0.

Passthrough-only expression: This function is passthrough-only and cannot run on Db2 for z/OS
without acceleration. For information about invoking this function, see Accelerating queries with
passthrough-only expressions.

RANK or DENSE_RANK
Specifies that the ordinal rank of a row within the specified window is computed. Rows that are not
distinct with respect to the ordering within the specified window are assigned the same rank. The
results of the ranking can be defined with or without gaps in the numbers that result from duplicate
values.
RANK

Specifies that the rank of a row is defined as 1 plus the number of rows that strictly precede the
row. Thus, if two or more rows are not distinct with respect to the ordering, there will be one or
more gaps in the sequential rank numbering.

DENSE_RANK
Specifies that the rank of a row is defined as 1 plus the number of preceding rows that are distinct
with respect to the ordering. Therefore, there will be no gaps in the sequential rank numbering.

NTILE
FL 504 Returns the quantile rank of a row.

Passthrough-only expression: This function is passthrough-only and cannot run on Db2 for z/OS
without acceleration. For information about invoking this function, see Accelerating queries with
passthrough-only expressions.

num-tiles
An expression that specifies the number of quantiles. The expression must return a value that is
a built-in numeric data type, CHAR, or VARCHAR data type. In a Unicode database, the expression
can also be a GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC
are supported by using implicit casting. If the expression is not a SMALLINT, INTEGER, or BIGINT,
it is cast to BIGINT before the function is evaluated. The value must be greater than 0. The
expression must be a constant, a variable, or a cast of a constant or variable.

The data type of the result of NTILE is the same data type as the data type of num-tiles after any
implicit casting. If the argument can be null, the result can be null. If the argument is null, the result is
the null value.

The NTILE function computes the quantile rank of a row by dividing the ordered rows within the OLAP
window into num-tiles quantiles and returns a value between 1 and MIN(n, num-tiles), where n is the
number of rows within the OLAP window. If n is evenly divisible by num-tiles, the rows in the OLAP
window are grouped into num-tiles quantiles, each containing (n / num-tiles) rows. Otherwise, each
of the quantiles 1 through MOD(n, num-tiles) is assigned (n / num-tiles + 1) rows, and each of the
quantiles (MOD(n, num-tiles) + 1) through num-tiles is assigned (n / num-tiles) rows. The result is the
quantile rank which is associated with the current row.

Equivalent sort keys are not considered when rows are divided into quantiles. Rows with equivalent
sort keys can be assigned to different quantiles based on the non-deterministic order of these sort
keys. Therefore, NTILE is a non-deterministic function.

LAG
FL 504 Returns the expression value for the row at offset rows before the current row. The offset must
be a positive integer constant. An offset value of 0 indicates the current row. If a window-partition-
clause is specified, offset indicates offset rows before the current row and within the current partition.
If offset is not specified, the value 1 is used. If default-value (which can be an expression) is specified,
it will be returned if the offset goes beyond the scope of the current partition. Otherwise, the null
value is returned. If 'IGNORE NULLS' is specified, all rows for which the expression value is the null
value are not considered in the calculation. If 'IGNORE NULLS' is specified and all rows are null,
default-value (or the null value if default-value was not specified) is returned.

Chapter 2. Language elements in SQL 285

https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

Passthrough-only expression: This function is passthrough-only and cannot run on Db2 for z/OS
without acceleration. For information about invoking this function, see Accelerating queries with
passthrough-only expressions.

LEAD
FL 504 Returns the expression value for the row at offset rows after the current row. The offset must
be a positive integer constant. An offset value of 0 indicates the current row. If a window-partition-
clause is specified, offset indicates offset rows after the current row and within the current partition. If
offset is not specified, the value 1 is used. If default-value (which can be an expression) is specified,
it will be returned if the offset goes beyond the scope of the current partition. Otherwise, the null
value is returned. If 'IGNORE NULLS' is specified, all rows for which the expression value is the null
value are not considered in the calculation. If 'IGNORE NULLS' is specified and all rows are null,
default-value (or the null value if default-value was not specified) is returned.

Passthrough-only expression: This function is passthrough-only and cannot run on Db2 for z/OS
without acceleration. For information about invoking this function, see Accelerating queries with
passthrough-only expressions.

ROW_NUMBER
Specifies that a sequential row number is computed for the row that is defined by the ordering,
starting with 1 for the first row. If the ORDER BY clause is not specified in the window, the row
numbers are assigned to the rows in an arbitrary order, as the rows are returned (not according to any
ORDER BY clause in the select-statement).

PARTITION BY partitioning-expression,...
Defines the partition within which the OLAP operation is applied. A partitioning-expression is an
expression that is used in defining the partitioning of the result table. Each column name that is
referenced in a partitioning-expression must unambiguously reference a column of the result table
of the subselect that contains the OLAP specification. A partitioning-expression cannot include a
scalar-fullselect an XMLQUERY or XMLEXISTS expression or any function that is not deterministic or
has an external action.

ORDER BY sort-key-expression,...
Defines the ordering of rows within a partition that is used to determine the value of the OLAP
specification. It does not define the ordering of the result table.
sort-key-expression

Specifies an expression to use in defining the ordering of the rows within a window partition. Each
column name that is referenced in a sort-key-expression must unambiguously reference a column
of the result table of the subselect, including the OLAP specification. A sort-key-expression cannot
include a scalar fullselect, an XMLQUERY or XMLEXISTS expression, or any function that is not
deterministic or that has an external action.

ASC
Specifies that the values of sort-key-expression are used in ascending order.

DESC
Specifies that the values of sort-key-expression are used in descending order.

NULLS FIRST
Specifies that the window ordering considers null values before all non-null values in the sort
order.

NULLS LAST
Specifies that the window ordering considers null values after all non-null values in the sort order.

FIRST_VALUE
FL 504 Returns the expression value for the first row in an OLAP window. If 'IGNORE NULLS'
is specified, all rows for which the expression value is the null value are not considered in the
calculation. If 'IGNORE NULLS' is specified and all values in the OLAP window are null, FIRST_VALUE
returns the null value.

Passthrough-only expression: This function is passthrough-only and cannot run on Db2 for z/OS
without acceleration. For information about invoking this function, see Accelerating queries with
passthrough-only expressions.

286 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only

LAST_VALUE
FL 504 Returns the expression value for the last row in an OLAP window. If 'IGNORE NULLS'
is specified, all rows for which the expression value is the null value are not considered in the
calculation. If 'IGNORE NULLS' is specified and all values in the OLAP window are null, LAST_VALUE
returns the null value.

Passthrough-only expression: This function is passthrough-only and cannot run on Db2 for z/OS
without acceleration. For information about invoking this function, see Accelerating queries with
passthrough-only expressions.

NTH_VALUE
FL 504 Returns the expression value for the nth-row row in an OLAP window.

Passthrough-only expression: This function is passthrough-only and cannot run on Db2 for z/OS
without acceleration. For information about invoking this function, see Accelerating queries with
passthrough-only expressions.

expression
An expression that specifies the current row in an OLAP window. The expression must return a
value that is a built-in data type.

nth-row
An expression that specifies which row of the OLAP window to return. The expression must return
a value that is a built-in numeric data type, a CHAR, or a VARCHAR data type. In a Unicode
database, the expression can also be a GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR,
GRAPHIC, and VARGRAPHIC are supported using implicit casting. If the expression is not a
SMALLINT, INTEGER, or BIGINT, it is cast to BIGINT before the function is evaluated. The value
must be greater than 0. The expression must be a constant, a variable, or a cast of a constant or
variable.

Db2 for z/OS does not support the FROM FIRST, FROM LAST, RESPECT NULLS, and IGNORE NULLS
keywords for this function. Omitting these keywords in Db2 for Linux®, UNIX, and Windows results in
the default behavior FROM FIRST RESPECT NULLS.

RATIO_TO_REPORT
FL 504 Returns the ratio of an argument to the sum of the arguments in an OLAP partition. The
division is always performed using DECFLOAT(34). The result data type is DECFLOAT(34). If the
argument can be null, the result can be null; if the argument is null, the result is the null value.

Passthrough-only expression: This function is passthrough-only and cannot run on Db2 for z/OS
without acceleration. For information about invoking this function, see Accelerating queries with
passthrough-only expressions.

window-aggregation-group-clause
The aggregation group of a given row is a set of rows that is defined in relation to the given row (in the
ordering of the rows in the partition of the given row). window-aggregation-group-clause specifies the
aggregation group. If this clause is not specified and a window-order-clause is also not specified, the
aggregation group consists of all rows of the window partition. The aggregation group of all rows of the
window partition can be explicitly specified using the RANGE or ROWS clauses.

If window-order-clause is specified, but window-aggregation-group-clause is not specified, the
window aggregation group consists of all rows that precede a given row of the partition of the given
row or all rows that are peers of the given row in the window ordering of the window partition that is
defined by the window-order-clause

ROW
Specifies that the aggregation group is defined by counting rows.

RANGE
Specifies that the aggregation group is defined by an offset from a sort key.

group-start
Specifies the starting point for the aggregation group. The aggregation group end is the CURRENT
ROW. Specifying group-start is equivalent to specifying group-between as BETWEEN group-start
AND CURRENT ROW.

Chapter 2. Language elements in SQL 287

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only

group-between
Specifies that the aggregation group start and end based on either ROWS or RANGE.

group-end
Specifies the ending point for the aggregation group. The aggregation group start is the CURRENT
ROW. Specifying group-end is equivalent to specifying group-between as BETWEEN CURRENT ROW
AND group-end.

UNBOUNDED PRECEDING
Specifies that the entire partition that precedes the current row is included in the aggregation
group. This can be specified with either the ROWS or RANGE clauses. Including the entire partition
that precedes the current row can also be specified with multiple sort-key-expressions in the
window-order-clause.

UNBOUNDED FOLLOWING
Specifies that the entire partition that follows the current row is included in the aggregation group.
This can be specified with either the ROWS or RANGE clauses. Including the entire partition that
follows the current row can also be specified with multiple sort-key-expressions in the window-
order-clause.

CURRENT ROW
Specifies that the aggregation group starts or ends based on the current row. IF ROWS is
specified, the current row is the aggregation group boundary. If RANGE is specified, the
aggregation group boundary includes the set of rows with the values specified for the sort-key-
expression as the current row. This clause cannot be specified in group-bound-2 if group-bound-1
specifies unsigned-constant FOLLOWING.

unsigned-constant PRECEDING
Specifies either the range or the number of rows that precede the current row. If ROWS is
specified, unsigned-constant must be zero or a positive integer that indicates a number of rows.
If RANGE is specified, the data type of unsigned-constant must be comparable to the data type of
the sort-key-expression of the window-order-clause. Only one sort-key-expression is allowed, and
the data type of sort-key-expression must allow subtraction. This clause cannot be specified in
group-bound-2 if group-bound-1 is CURRENT ROW or unsigned-constant FOLLOWING.

unsigned-constant FOLLOWING
Specifies either the range or the number of rows that follow the current row. If ROWS is specified,
unsigned-constant must be zero or a positive integer that indicates a number of rows. If RANGE
is specified, the data type of unsigned-constant must be comparable to the data type of the
sort-key-expression of the window-order-clause. Only one sort-key-expression is allowed, and the
data type of sort-key-expression must allow addition.

Notes for OLAP Specification
Using a column mask with an OLAP specification: If a column mask is used to mask the column
values in the final result table and an OLAP specification is referenced in the select list that is used to
derive the final result table, the column mask cannot be applied to the column that is specified in the
partitioning-expression or the sort-key-expression in the OLAP specification.

Syntax alternatives and synonyms: For compatibility, the keywords DENSERANK and ROWNUMBER can be
used as synonyms for DENSE_RANK and ROW_NUMBER respectively.

Examples for OLAP specification

Example 1: Display the ranking of employees that have a total salary of more than $30,000, in order by
last name:

SELECT EMPNO, LASTNAME, FIRSTNME, SALARY+BONUS AS TOTAL_SALARY,
 RANK() OVER(ORDER BY SALARY+BONUS DESC) AS RANK_SALARY
 FROM EMP WHERE SALARY+BONUS > 30000
 ORDER BY LASTNAME;

If the result is to be ordered by rank, ORDER BY LASTNAME would be replaced with ORDER BY
RANK_SALARY.

288 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 2: Rank the departments according to their average total salary:

SELECT WORKDEPT, AVG(SALARY+BONUS) AS AVG_TOTAL_SALARY,
 RANK() OVER(ORDER BY AVG(SALARY+BONUS) DESC) AS RANK_AVG_SAL
 FROM EMP
 GROUP BY WORKDEPT
 ORDER BY RANK_AVG_SAL;

Example 3: Rank the departments according to their education level. Having multiple employees with the
same rank in the department should not increase the next ranking value:

SELECT WORKDEPT, EMPNO, LASTNAME, FIRSTNME, EDLEVEL,
 DENSE_RANK() OVER
 (PARTITION BY WORKDEPT ORDER BY EDLEVEL DESC) AS RANK_EDLEVEL
 FROM EMP
 ORDER BY WORKDEPT, LASTNAME;

Example 4: Provide row numbers in the results of a query:

SELECT ROW_NUMBER() OVER(ORDER BY WORKDEPT, LASTNAME) AS NUMBER,
 LASTNAME, SALARY
 FROM EMP
 ORDER BY WORKDEPT, LASTNAME;

Example 5: List the top five wage earners:

SELECT EMPNO, LASTNAME, FIRSTNME, TOTAL_SALARY, RANK_SALARY
 FROM (SELECT EMPNO, LASTNAME, FIRSTNME, SALARY+BONUS AS TOTAL_SALARY,
 RANK() OVER (ORDER BY SALARY+BONUS DESC) AS RANK_SALARY
 FROM EMP) AS RANKED_EMPLOYEE
 WHERE RANK_SALARY < 6
 ORDER BY RANK_SALARY;

A nested table expression is used to first compute the result, including the ranking, before the rank can be
used in the WHERE clause. A common table expression could also have been used.

Example 6: The following example is used to calculate the 30 day moving average for the stocks 'ABC' and
'XYX' during 2005:

CREATE VIEW V1 AS
 SELECT SYMBOL, TRADINGDATE,
 AVG(CLOSINGPRICE) OVER (PARTITION BY SYMBOL
 ORDER BY TRADINGDATE
 ROWS BETWEEN 29 PRECEDING AND CURRENT
ROW)
 FROM DAILYSTOCKDATA
 WHERE SYMBOL IN ('ABC', 'XYZ')
 AND TRADINGDATE BETWEEN DATE('2005-01-01') - 2 MONTHS AND '2005-12-31';

SELECT SYMBOL, TRADINGDATE, MOVINGAVG30DAY
 FROM V1
 WHERE TRADINGDATE BETWEEN '2005-01-01' AND '2005-12-31'
 ORDER BY SYMBOL, TRADINGDATE;

Example 7: Calculate which quartile (4-quantiles) each employee's salary is in.

 SELECT EMPNO, SALARY, NTILE(4) OVER
 (ORDER BY SALARY) AS QUARTILE
 FROM EMPLOYEE
 ORDER BY SALARY

The result set is:

EMPNO SALARY QUARTILE
------ ----------- -----------
200340 31840.00 1
000290 35340.00 1
200330 35370.00 1
000310 35900.00 1
200310 35900.00 1
000280 36250.00 1
000270 37380.00 1
000300 37750.00 1

Chapter 2. Language elements in SQL 289

200240 37760.00 1
200120 39250.00 1
000320 39950.00 1
000230 42180.00 2
000340 43840.00 2
000170 44680.00 2
000330 45370.00 2
200280 46250.00 2
200010 46500.00 2
000260 47250.00 2
000240 48760.00 2
000250 49180.00 2
000120 49250.00 2
000220 49840.00 2
000190 50450.00 3
000180 51340.00 3
000150 55280.00 3
000200 57740.00 3
000160 62250.00 3
200170 64680.00 3
000110 66500.00 3
000210 68270.00 3
000140 68420.00 3
200140 68420.00 3
200220 69840.00 4
000060 72250.00 4
000130 73800.00 4
000050 80175.00 4
000100 86150.00 4
000090 89750.00 4
000020 94250.00 4
000070 96170.00 4
000030 98250.00 4
000010 152750.00 4

 42 record(s) selected.

Example 8: The query in the following example divides the rows into 3 buckets, grouping them by
maximum salary. The maximum salary is included to show what values go into each bucket:

 SELECT NTILE(3) OVER (ORDER BY MAX_SALARY) AS Bucket,
MAX_SALARY FROM GOSALESDW.EMP_POSITION_DIM;

A portion of the output from the query is in the following table:

Table 53. Example output

BUCKET MAX_SALARY

1 0.00

... ...

1 35000.00

2 5000.00

... ...

2 12000.00

3 13000.00

... ...

3 301500.00

290 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

ROW CHANGE expression
A ROW CHANGE expression returns a token or a timestamp that represents the last change to a row.

ROW CHANGE expression

ROW CHANGE TIMESTAMP

TOKEN

FOR table-designator

TIMESTAMP
Specifies that a timestamp is returned that represents the last time when a row was changed. If the
row has not been changed, the result is the time that the initial value was inserted.

TOKEN
Specifies that a token that is a BIGINT value is returned that represents a relative point in the
modification sequence of a row. If the row has not been changed, the result is a token that represents
when the initial value was inserted.

FOR table-designator
Identifies the table in which the expression is referenced. table-designator must be an exposed
name that uniquely identifies a base table, a view, or a nested table expression of a subselect. If
table-designator identifies a view or a nested table expression, the ROW CHANGE expression returns
the TIMESTAMP or TOKEN of the base table of the view or the nested table expression. The view or
nested table expression must contain only one base table in its outer subselect.

table-designator must not identify:

• An alias, a synonym, or a materialized view
• A nested table expression that is materialized
• A system-period temporal table, if the system time sensitive bind option is set to YES
• An archive-enabled table, if one of the following conditions is true:

– For a static statement, the archive sensitive option in effect is YES.
– For a dynamic statement, the archive sensitive option in effect is YES, and the GET_ARCHIVE

built-in global variable is set to 'Y'.

The result can be null. The ROW CHANGE TIMESTAMP and ROW CHANGE TOKEN expressions are not
deterministic.

Notes
Tables without a row change timestamp column:

For tables without a row change timestamp column, the ROW CHANGE TIMESTAMP expression
returns a timestamp value that reflects changes made to the page instead of to the row. This
timestamp value indicates that at least one row in the page has changed, but does not indicate
which row, or even how many rows, have changed. The ROW CHANGE TIMESTAMP expression might
indicate that a row has changed, however, the change might be for other rows in the same page.

In a data sharing environment, the returned timestamp value is based on the LRSN value of the page
and reflects the most recent time the page was modified.

In a non-data sharing environment, the returned timestamp value is based on the RBA value of the
page. In a non-data sharing environment, changes made to the same page within a half hour of each
other might be indistinguishable. For example, issuing the following SELECT statements in a non-data
sharing environment will possibly return the same value, even though the row was changed between
the two SELECT statements:

CREATE TABLE T1 (C1 INTEGER NOT NULL);
INSERT INTO T1 VALUES (1);
SELECT ROW CHANGE TIMESTAMP FOR T1 FROM T1;

Chapter 2. Language elements in SQL 291

UPDATE T1 SET C1 = 2 WHERE C1 = 1;
SELECT ROW CHANGE TIMESTAMP FOR T1 FROM T1;

Example 1:
The following example returns all the rows that have been changed in the last day:

SELECT * FROM ORDERS
 WHERE ROW CHANGE TIMESTAMP FOR ORDERS >
 CURRENT TIMESTAMP - 24 HOURS;

Example 2:
The following example returns a timestamp value that corresponds to the most recent change to each
row from the EMP table for those employees in department 20:

 SELECT ROW CHANGE TIMESTAMP FOR EMP
 FROM EMP WHERE DEPTNO = 20;

Example 3:
The following example returns a BIGINT value that corresponds to a relative point in the modification
sequence of EMP with employee number '3500':

 SELECT ROW CHANGE TOKEN FOR EMP
 FROM EMP WHERE EMPNO = '3500';

Sequence reference
A sequence is referenced by using the NEXT VALUE and PREVIOUS VALUE expressions specifying the
name of the sequence.

sequence-reference

NEXT VALUE FOR sequence-name

PREVIOUS VALUE FOR sequence-name

NEXT VALUE FORsequence-name
A NEXT VALUE expression generates and returns the next value for a specified sequence. A new value
is generated for a sequence when a NEXT VALUE expression specifies the name of the sequence.
However, if there are multiple instances of a NEXT VALUE expression specifying the same sequence
name within a query, the sequence value is incremented only once for each row of the result, and all
instances of NEXT VALUE return the same value for a row of the result. The NEXT VALUE expression
is a not deterministic with external actions since it causes the sequence value to be incremented.

When the next value for the sequence is generated, if the maximum value for an ascending sequence
or the minimum value for a descending sequence of the logical range of the sequence is exceeded and
the NO CYCLE option is in effect, then an error occurs. To avoid this error, either alter the sequence
attributes to extend the range of value or to enable cycles for the sequence or drop and re-create the
sequence with a different data type that allows a larger range of values.

The data type and length attributes of the result of a NEXT VALUE expression are the same as for the
specified sequence. The result cannot be null.

PREVIOUS VALUE FORsequence-name
A PREVIOUS VALUE expression returns the most recently generated value for the specified sequence
for a previous statement within the current application process. This value can be repeatedly
referenced by using PREVIOUS VALUE expressions to specify the name of the sequence. There can
be multiple instances of PREVIOUS VALUE expressions specifying the same sequence name within a
single statement and they all return the same value.

A PREVIOUS VALUE expression can be used only if a NEXT VALUE expression specifying the same
sequence name has already been referenced in the current application process.

292 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The data type and length attributes of the result of a PREVIOUS VALUE expression are the same as for
the specified sequence. The result cannot be null.

sequence-name
Identifies the sequence that is to be referenced. The combination of name and the implicit or explicit
schema name must identify an existing sequence at the current server. sequence-name must not be
the name of an internal sequence object that is generated by Db2 for an identity column. The contents
of the SQL PATH are not used to determine the implicit qualifier of a sequence name.

Notes
Authorization:

If a sequence is referenced in a statement, the privileges that are held by the authorization ID of the
statement must include at least one of the following:

• For the sequence identified in the statement:

– The USAGE privilege on the sequence
– Ownership of the sequence

• SYSADM or DATAACCESS authority

Generating values with NEXT VALUE:
When a value is generated for a sequence, that value is consumed, and the next time that a value is
requested, a new value will be generated. This is true even when the statement containing the NEXT
VALUE expression fails or is rolled back.

Scope of NEXT VALUE and PREVIOUS VALUE:
The value of PREVIOUS VALUE cannot be directly set and is a result of executing the NEXT VALUE
expression for the sequence. The value of PREVIOUS VALUE persists until the next value is generated
for the sequence in the current session, the sequence is dropped or altered, or the application session
ends.

The value for the sequence cannot persist across a COMMIT or ROLLBACK for a local or remote
application if, after the COMMIT or ROLLBACK, the Db2 application thread or server thread is assigned
to another user or Db2 connection because of some form of thread reuse, re-signon, or connection
pooling is in effect. For example, this can occur for CICS-Db2 applications and for client applications
or middleware products that save the state of a session and then restore the state of a session for
subsequent processing because they are not able to restore the NEXT or PREVIOUS VALUES for a
sequence. In these situations, the availability of the value for a sequence should only be relied on until
the end of the transaction. Examples of where this type of situation can occur include applications
that do the following:

• issue an EXEC CICS SYNCPOINT command
• use XA protocols
• use connection pooling
• use the connection concentrator
• use Sysplex workload balancing
• connect to a z/OS server that uses DDF inactive threads

When there is a need to preserve the value that is associated with NEXT VALUE or PREVIOUS VALUE
expressions across transaction boundaries for local or distributed applications that are subject to
thread reuse, re-signon, or connection pooling, take one of the following actions to prevent the local
or server thread from re-signon, being reused by a different user, or from being pooled:

• Define at least one cursor as WITH HOLD and leave it as OPEN.
• Specify the bind option KEEPDYNAMIC(YES).

Use as a unique key value:
The same sequence number can be used as a unique key value in two separate tables by referencing
the sequence number with a NEXT VALUE expression for the first row (this generates the sequence

Chapter 2. Language elements in SQL 293

value), and a PREVIOUS VALUE expression for the other rows (the instance of PREVIOUS VALUE refers
to the sequence value most recently generated in the current session), as shown in the following
example:

 INSERT INTO ORDER (ORDERNO, CUSTNO)
 VALUES (NEXT VALUE FOR ORDER_SEQ, 123456);
 INSERT INTO LINE_ITEM (ORDERNO, PARTNO, QUANTITY)
 VALUES (PREVIOUS VALUE FOR ORDER_SEQ, 987654, 1);

Allowed use of NEXT VALUE and PREVIOUS VALUE:
The NEXT VALUE and PREVIOUS VALUE expressions can be specified in the following places:

• Within the select-clause of a SELECT statement or SELECT statement that does not contain a
DISTINCT keyword, a GROUP BY clause, an ORDER BY clause, or a set operator.

• Within a VALUES clause of an INSERT statement, including a multiple row INSERT statement with
multiple VALUES clauses and the insert operation of a MERGE statement, which can include a NEXT
VALUE expression for a particular sequence name for each VALUES clause.

• Within the select-clause of the fullselect of an INSERT statement.
• Within the SET clause of a searched or positioned UPDATE statement, including the update

operation of the MERGE statement, though NEXT VALUE cannot be specified in the select-clause
of the fullselect of an expression in the SET clause.

A PREVIOUS VALUE expression can be specified anywhere with a SET clause of an update operation
(the UPDATE or MERGE statement), but a NEXT VALUE expression can be specified only in a SET
clause if it is not within the select-clause of the fullselect of an expression. For instance, the
following uses of sequence references are supported:

UPDATE T SET C1 = (SELECT PREVIOUS VALUE FOR S1 FROM T);
UPDATE T SET C1 = PREVIOUS VALUE FOR S1;
UPDATE T SET C1 = NEXT VALUE FOR S1;

The following uses of sequence references are not supported:

UPDATE T SET C1 = (SELECT NEXT VALUE FOR S1 FROM T);
SET :C2 = (SELECT NEXT VALUE FOR S1 FROM T);

• In a SET host-variable or assignment-statement, except within the select-clause of the fullselect of
an expression.

The following uses of sequence references are supported:

SET ORDERNUM = NEXT VALUE FOR INVOICE;
SET ORDERNUM = PREVIOUS VALUE FOR INVOICE;

The following uses of sequence references are not supported:

SET X = (SELECT NEXT VALUE FOR S1 FROM T);
SET X = (SELECT PREVIOUS VALUE FOR S1 FROM T);

• In a VALUES or VALUES INTO statement though not within the select-clause of the fullselect of an
expression.

• Within the SQL-routine-body of a CREATE or ALTER PROCEDURE statement for a SQL procedure.
• Within the RETURN-statement of a CREATE FUNCTION statement for an SQL function.
• Within the SQL-trigger-body of a CREATE TRIGGER statement (PREVIOUS VALUE is not allowed).

Use of PREVIOUS VALUE in a nested application:
PREVIOUS VALUE is defined to have a linear scope within an application session. Therefore, in a
nested application on entry to a nested function, procedure, or trigger, the nested application inherits
the most recently generated value for a sequence. That is, an invocation of PREVIOUS VALUE in
a nested application reflects sequence activity done in the invoking environment prior to entering
the nested application. In addition, on return from a function, procedure, or trigger, the invoking
application is affected by any sequence activity in the lower level applications. That is, an invocation

294 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

of PREVIOUS VALUE in the invoking application after returning from the nested application reflects
any sequence activity that occurred in the lower level applications.

Restrictions on the use of NEXT VALUE and PREVIOUS VALUE:
Some of the places where the NEXT VALUE and PREVIOUS VALUE expressions cannot be specified
include the following:

• Join condition of a full outer join
• DEFAULT value for a column in a CREATE TABLE or ALTER TABLE statement
• Materialized query table definition in a CREATE TABLE or ALTER TABLE statement
• Condition of a CHECK constraint
• Input value specification for LOAD
• CREATE VIEW statement
• The SELECT list of a subselect that contains a NOT ATOMIC data change statement
• ORDER BY clause when used in an OLAP specification

In addition, the NEXT VALUE expression cannot be specified in the following places:

• A CASE expression
• The parameter list of an aggregate function
• A subquery in a context other than those explicitly allowed
• A SELECT statement for which the outer SELECT contains a DISTINCT operator or a GROUP BY

clause
• A SELECT statement for which the outer SELECT is combined with another SELECT statement using

a set operator
• A join condition of a join
• A nested table expression
• The parameter list of a table function
• A select-clause of the fullselect of an expression in the SET clause of an UPDATE, a DELETE, or a

MERGE statement.
• A WHERE clause of the outer-most SELECT statement or a DELETE, an UPDATE, or a MERGE

statement
• An ORDER BY clause of the outer-most SELECT statement
• The select list of a fullselect that contains an OFFSET clause
• An IF, WHILE, DO UNTIL, or CASE statement in an SQL routine

Using sequence expressions with a cursor:
Normally, a SELECT NEXT VALUE FOR ORDER_SEQ FROM T1 would produce a result table
containing as many generated values from the sequence ORDER_SEQ as the number of rows retrieved
from T1. A reference to a NEXT VALUE expression in the SELECT statement of a cursor refers to a
value that is generated for a row of the result table. A sequence value is generated for a NEXT VALUE
expression each time a row is retrieved.

If blocking is done at a client in a DRDA environment, sequence values might get generated at the Db2
server before the processing of an application's FETCH statement. If the client application does not
explicitly fetch all the rows that have been retrieved from the database, the application will never see
all those values of the sequence that are generated but not fetched (as many values as the rows that
are not fetched). These generated but not fetched values might constitute a gap in the sequence. If it
is important to prevent such a gap in the sequence, do the following:

• Use NEXT VALUE only where it would function without being controlled by a cursor and where
block-fetching by the client will have no effect on it.

• If you must use NEXT VALUE in the SELECT statement of a cursor-definition, weigh the importance
of preventing the gap against performance and other implications of taking the following actions:

Chapter 2. Language elements in SQL 295

– Use FETCH FOR 1 ROW ONLY clause with the SELECT statement.
– Try preventing block-fetch by other means documented in Block fetch (Introduction to Db2 for

z/OS).

Using the PREVIOUS VALUE expression with a cursor:
A reference to the PREVIOUS VALUE expression in a SELECT statement of a cursor is evaluated at
OPEN time. In other words, a reference to the PREVIOUS VALUE expression in the SELECT statement
of a cursor refers to the last value generated by this application process for the specified sequence
prior to the opening of the cursor and, once evaluated at OPEN time, the value returned by PREVIOUS
VALUE within the select statement of the cursor will not change from FETCH to FETCH, even if NEXT
VALUE is invoked with the select statement of the cursor. After the cursor is closed, the value of
PREVIOUS VALUE will be the last NEXT VALUE that is generated by the application process.

IF PREVIOUS VALUE is used in the SELECT statement of a cursor while the cursor is open, the value
of PREVIOUS VALUE would be the last NEXT VALUE that was generated for the sequence before the
cursor was opened. After the cursor is closed, the value of PREVIOUS VALUE would be the last NEXT
VALUE generated by the application process.

Syntax alternatives and synonyms:
For compatibility, the keywords NEXTVAL and PREVVAL can be used as synonyms for NEXT VALUE and
PREVIOUS VALUE respectively.

sequence-name.NEXTVAL can be specified in place of NEXT VALUE FOR sequence-name, and
sequence-name.CURRVAL can be specified in place of PREVIOUS VALUE FOR sequence-name.

Example

Assume that there is a table called ORDER, and that a sequence called ORDER_SEQ is created as follows:

 CREATE SEQUENCE ORDER_SEQ START WITH 1
 INCREMENT BY 1
 NO MAXVALUE
 NO CYCLE
 CACHE 24

The following examples illustrate how to generate an ORDER_SEQ sequence number with a NEXT VALUE
expression:

 INSERT INTO ORDER (ORDERNO, CUSTNO)
 VALUES (NEXT VALUE FOR ORDER_SEQ, 123456);
 UPDATE ORDER SET ORDERNO = NEXT VALUE FOR ORDER_SEQ
 WHERE CUSTNO = 123456;
 VALUES NEXT VALUE FOR ORDER_SEQ INTO :HV_SEQ;

Predicates
A predicate specifies a condition that is true, false, or unknown about a given value, row, or group.

The following rules apply to predicates of any type:

• Predicates are evaluated after the expressions that are operands of the predicate.
• All values that are specified in the same predicate must be compatible.
• Except for the EXISTS predicate, a subquery in a predicate must specify a single column unless the

operand on the other side of the comparison operator is a fullselect.
• The value of a host variable can be null (that is, the variable can have a negative indicator variable).
• The CCSID conversion of operands of predicates that involve two or more operands is done according to

“Conversion rules for comparisons” on page 159.
• Use of an XML value is limited to the NULL or XMLEXISTS predicates.

The types of predicates are:

296 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_blockfetch.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_blockfetch.html

basic predicate

quantified predicate

ARRAY_EXISTS predicate

BETWEEN predicate

DISTINCT predicate

EXISTS predicate

IN predicate

LIKE predicate

NULL predicate

XMLEXISTS predicate

Row-value expression: The operand of several predicates (basic, quantified, DISTINCT, and IN) can be a
row-value-expression:

(

,

expression)

A row-value-expression returns a single row that consists of one or more column values. The values
can be specified as a list of expressions. The number of columns that are returned by the row-value-
expression is equal to the number of expressions that are specified in the list.

For several examples of predicates that use distinct types , see “Assignment and comparison” on page
143. For examples of predicates that use distinct types, see “User-defined type comparisons” on page
164.

Related concepts
Predicates and access path selection (Db2 Performance)
Related tasks
Using predicates efficiently (Db2 Performance)
Writing efficient SQL queries (Db2 Performance)
Related reference
where-clause
The WHERE clause specifies a result table that consists of those rows of R for which the search condition
is true. R is the result of the FROM clause of the subselect.
having-clause
The HAVING clause specifies a result table that consists of those groups of the intermediate result table
for which the search-condition is true. The intermediate result table is the result of the previous clause. If
this clause is not GROUP BY, the intermediate result table is considered a single group with no grouping
columns of the previous clause of the subselect.

Basic predicate
A basic predicate compares two values or compares a set of values with another set of values.

15 The following forms of the comparison operators are also supported in basic and quantified predicates in
code pages where the exclamation point is X'5A': !=, !<, and !> . In addition, the forms ¬=, ¬<, and ¬> are
supported as long as the code point used for the logical not symbol is the correct one for the specified code

Chapter 2. Language elements in SQL 297

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_predicateproperties.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_predicaterules.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_programsqlperf.html

expression =

<>
1

<

>

<=

>=

 expression

row-value-expression =

<>
1

<

>

<=

>=

row-value-expression

Notes:
1 Other comparison operators are also supported.15

When expression is a fullselect, the fullselect must return a single result column with a single value,
whether null or not null. If the value of either operand is null or the result of the fullselect is empty, the
result of the predicate is unknown. Otherwise, the result is either true or false.

When a row-value-expression is specified on the left side of the operator, another row-value-expression,
with an identical number of value expressions, must be specified on the right side. The data types of the
corresponding expressions or columns of the row-value-expressions must be compatible.

If the comparison operator is <, <=, >, or >=, arow-value-expression must not reference a non-
deterministic expression, a function with external action, or a scalar fullselect.

The value of each expression on the left side is compared with the value of its corresponding expression
on the right side. The result of the predicate depends on the operator, as in the following:

• If the operator is =, the result of the predicate is:

– True - if all pairs of corresponding value expressions evaluate to true.
– False - if any one pair of corresponding value expressions evaluates to false.
– Unknown - if the comparisons is neither true nor false. That is, if at least one comparison of

corresponding value expressions is unknown because of a null value and no pair of corresponding
value expressions evaluates to false.

• If the operator is <>, the result of the predicate (Rx1,Rx2,...,Rxn) <> (Ry1,Ry2,...,Ryn) is:

– True - if, and only if, Rxi=Ryi evaluates to false for some value of i. That is, there is at least one pair of
non-null values, Rxi and Ryi, that are not equal to each other.

– False - if, and only if, Rxi=Ryi evaluates to true for every value of i. That is,
Rx1,Rx2,...,Rxn)=(Ry1,Ry2,...,Ryn) is true.

– Unknown - if the comparison is neither true nor false. That is, Rxi or Ryi is a null value for some value
of i, and there is no value of j such that Rxj=Ryj evaluates to false.

• If the operator is <, the result of the predicate is:

page. These forms of the operators are intended only to support existing SQL statements that use them and
are not recommended for use when writing new SQL statements.

A logical not sign (¬) can cause parsing errors in statements passed from one DBMS to another. The
problem occurs if the statement undergoes character conversion with certain combinations of source and
target CCSIDs. To avoid this problem, substitute an equivalent operator for any operator that includes a not
sign. For example, substitute '<>' for '¬=', '<=' for '¬>', and '>=' for '¬<'.

298 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

– True - if, and only if, the first N pairs of the corresponding value expressions are equal and the next
pair has the left value expression less than the right value expression for some value of N. That is, Rxi
= Ryi is true for all values of i < n and Rxn < Ryn is true for some value of n.

– False - if, and only if, all pairs of the corresponding value expressions are equal (Rx = Ry is true) or
the first N pairs of the corresponding value expressions are equal and the next pair has the right value
expression less than the left value expression for some value of N. That is, Rxi = Ryi is true for all
values of i < n and Rxn >= Ryn is true for some value of n.

– Unknown - if the comparison is neither true nor false.
• If the operator is <=, the result of the predicate is:

– True - if, and only if, the first N pairs of the corresponding value expressions are equal and the next
pair has the left value expression less than or equal to the right value expression for some value of N.
That is, Rxi = Ryi is true for all values of i < n and Rxn <= Ryn is true for some value of n.

– False - if, and only if, all pairs of the corresponding value expressions are equal (Rx = Ry is true) or
the first N pairs of the corresponding value expressions are equal and the next pair has the right value
expression less than the left value expression for some value of N. That is, Rxi = Ryi is true for all
values of i < n and Rxn > Ryn is true for some value of n.

– Unknown - if the comparison is neither true nor false.
• If the operator is >, the result of the predicate is:

– True - if, and only if, the first N pairs of the corresponding value expressions are equal and the next
pair has the left value expression greater than the right value expression for some value of N. That is,
Rxi = Ryi is true for all values of i < n and Rxn > Ryn is true for some value of n.

– False - if, and only if, all pairs of the corresponding value expressions are equal (Rx = Ry is true) or
the first N pairs of the corresponding value expressions are equal and the next pair has the right value
expression greater than the left value expression for some value of N. That is, Rxi = Ryi is true for all
values of i < n and Rxn <= Ryn is true for some value of n.

– Unknown - if the comparison is neither true nor false.
• If the operator is >=, the result of the predicate is:

– True - if, and only if, the first N pairs of the corresponding value expressions are equal and the next
pair has the left value expression greater than or equal to the right value expression for some value of
N. That is, Rxi = Ryi is true for all values of i < n and Rxn >= Ryn is true for some value of n.

– False - if, and only if, all pairs of the corresponding value expressions are equal (Rx = Ry is true) or
the first N pairs of the corresponding value expressions are equal and the next pair has the right value
expression greater than the left value expression for some value of N. That is, Rxi = Ryi is true for all
values of i < n and Rxn < Ryn is true for some value of n.

– Unknown - if the comparison is neither true nor false.

Table 54. For values x and y

Predicate Is true if and only if ...

x = y x is equal to y

x <> y x is not equal to y

x < y x is less than y

x > y x is greater than y

x <= y x is less than or equal to y

x >= y x is greater than or equal to y

Examples for values x and y:

 EMPNO = '528671'
 SALARY < 20000

Chapter 2. Language elements in SQL 299

 PRSTAFF <> :VAR1
 SALARY >= (SELECT AVG(SALARY) FROM DSN8C10.EMP)

Example: List the name, first name, and salary of the employee who is responsible for the 'SECRET'
project. This employee might appear in either the PROJA1 or PROJA2 tables. A UNION is used in case the
employee appears in both tables to eliminate duplicate RESPEMP values.

 SELECT LASTNAME, FIRSTNAME, SALARY
 FROM DSN8C10.EMP X
 WHERE EMPNO = (
 SELECT RESPEMP
 FROM PROJA1 Y
 WHERE MAJPROJ = 'SECRET'
 UNION
 SELECT RESPEMP
 FROM PROJA2 Z
 WHERE MAJPROJ = 'SECRET');

Quantified predicate
A quantified predicate compares a value or values with a collection of values.

expression =

<>
1

<

>

<=

>=

SOME

ANY

ALL

( fullselect1)

row-value-expression = SOME

ANY

( fullselect2)

row-value-expression <>
1

ALL ( fullselect2)

Notes:
1 Other comparison operators are also supported.15

When expression is specified, fullselect1 must return a single result column, and can return any number of
values, whether null or not null. The result depends on the operator that is specified:

• When the operator is ALL, the result of the predicate is:

– True – if the result of the fullselect is empty or if the specified relationship is true for every value
returned by the fullselect.

– False – if the specified relationship is false for at least one value returned by the fullselect.
– Unknown – if the specified relationship is not false for any values returned by the fullselect and at

least one comparison is unknown because of a null value.
• When the operator is SOME or ANY, the result of the predicate is:

– True – if the specified relationship is true for at least one value returned by the fullselect.
– False – if the result of the fullselect is empty or if the specified relationship is false for every value

returned by the fullselect.
– Unknown – if the specified relationship is not true for any of the values returned by the fullselect and

at least one comparison is unknown because of a null value.

When row-value-expression is specified, the number of result columns returned by fullselect2 must be
the same as the number of value expressions specified by row-value-expression, and fullselect2 can
return any number of rows of values. The data types of the corresponding expressions of the row value
expressions must be compatible. The value of each expression from row-value-expression is compared

300 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

with the value of the corresponding result column from fullselect2. The value of the predicate depends on
the operator that is specified:

• When the operator is ALL, the result of the predicate is:

– True – if the result of fullselect2 is empty or if the specified relationship is true for every row returned
by fullselect2.

– False – if the specified relationship is false for at least one row returned by fullselect2.
– Unknown – if the specified relationship is not false for any row returned by fullselect2 and at least one

comparison is unknown because of a null value.
• When the operator is SOME or ANY, the result of the predicate is:

– True – if the specified relationship is true for at least one row returned by fullselect2
– False – if the result of the fullselect is empty or if the specified relationship is false for every row

returned by fullselect2.
– Unknown – if the specified relationship is not true for any of the rows returned by fullselect2 and at

least one comparison is unknown because of a null value.

Quantified predicates are equivalent to IN predicates. See Table 60 on page 307 for some examples of
equivalent quantified and IN predicates.

Examples: Use the following tables when referring to the following examples. In all examples, "row n of
TBLA" refers to the row in TBLA for which COLA has the value n.

Table 55. TBLA

COLA

1

2

3

4

Table 56. TBLB

COLB COLC

2 2

3 – –

Table 57. TBLC

COLB COLC

2 2

Example 1: In the following predicate, the fullselect returns the values 2 and 3. The predicate is false for
rows 1, 2, and 3 of TBLA, and is true for row 4.

 COLA > ALL(SELECT COLB FROM TBLB
 UNION
 SELECT COLB FROM TBLC)

Example 2: In the following predicate, the fullselect returns the values 2 and 3. The predicate is false for
rows 1 and 2 of TBLA, and is true for rows 3 and 4.

 COLA > ANY(SELECT COLB FROM TBLB
 UNION
 SELECT COLB FROM TBLC)

Chapter 2. Language elements in SQL 301

Example 3: In the following predicate, the fullselect returns the values 2 and null. The predicate is false
for rows 1 and 2 of TBLA, and is unknown for rows 3 and 4. The result is an empty table.

 COLA > ALL(SELECT COLC FROM TBLB
 UNION
 SELECT COLC FROM TBLC)

Example 4: In the following predicate, the fullselect returns the values 2 and null. The predicate is
unknown for rows 1 and 2 of TBLA, and is true for rows 3 and 4.

 COLA > SOME(SELECT COLC FROM TBLB
 UNION
 SELECT COLC FROM TBLC)

Example 5: In the following predicate, the fullselect returns an empty result column. Hence, the predicate
is true for all rows of TBLA.

 COLA < ALL(SELECT COLB FROM TBLB WHERE COLB>3
 UNION
 SELECT COLB FROM TBLC WHERE COLB>3)

Example 6: In the following predicate, the fullselect returns an empty result column. Hence, the predicate
is false for all rows of TBLA.

 COLA < ANY(SELECT COLB FROM TBLB WHERE COLB>3
 UNION
 SELECT COLB FROM TBLC WHERE COLB>3)

If COLA were null in one or more rows of TBLA, the predicate would still be false for all rows of TBLA.

ARRAY_EXISTS predicate
The ARRAY_EXISTS predicate tests for the existence of an array element with the specified index in an
array.

ARRAY_EXISTS ( array-expression , array-index)

array-expression
Specifies one of the following items:

• An SQL variable, SQL parameter, or global variable of an array type
• A CAST specification of an array or parameter marker to an array type.

array-index
Specifies the index for the array element that is to be tested. An array index value for an ordinary array
must be castable to INTEGER. An array index value for an associative array must be castable to the
data type of the array index.

array-index must not be an expression that references any of the following items:

• The CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP special register
• A nondeterministic function
• A function that is defined with EXTERNAL ACTION
• A function that is defined with MODIFIES SQL DATA
• A sequence expression

The result of the ARRAY_EXISTS predicate is:

• True if array-expression includes an array index that is equal to the result of casting array-index to the
data type of the array index of array-expression.

• False under either of the following conditions:

302 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

– array-expression does not include an array index that is equal to the result of casting array-index to
the data type of the array index of array-expression.

– Either argument is null.
• Cannot be unknown.

Example: Suppose that array variable RECENT_CALLS is defined as an ordinary array of array type
PHONENUMBERS. The following IF statement tests whether the recent calls list has reached the 40th
saved call. If it has, the local integer variable EIGHTY_PERCENT is set to 1:

IF (ARRAY_EXISTS(RECENT_CALLS, 40))
 THEN SET EIGHTY_PERCENT = 1;
END IF

Related concepts
Array types and values
A user-defined array type is a data type that is defined as an array of elements. A user-defined array type
can be either an ordinary array or associative array.

BETWEEN predicate
The BETWEEN predicate determines whether a given value lies between two other given values that are
specified in ascending order.

expression

NOT

BETWEEN expression AND expression

Each of the predicate's two forms has an equivalent search condition, as shown in the following table:

Table 58. BETWEEN predicate and equivalent search conditions

BETWEEN predicate Equivalent search condition

value1 BETWEEN value2 AND value3 value1 >= value2 AND value1 <= value31

value1 NOT BETWEEN value2 AND value3

 or, equivalently:

NOT(value1 BETWEEN value2 AND value3)

value1 < value2 OR value1 > value31

Note: 1. Might not be equivalent if value1, value2, or value3 are columns or derived values based on
columns that are not the same CCSID set because the clause is evaluated in Unicode.

Search conditions are discussed in “Search conditions” on page 319.

If the operands include a mixture of datetime values and valid string representations of datetime values,
all values are converted to the data type of the datetime operand.

Example: Consider the following predicate:

 A BETWEEN B AND C

The following table shows the value of the predicate for various values of A, B, and C.

Value of A Value of B Value of C Value of predicate

1,2, or 3 1 3 true

0 or 4 1 3 false

Chapter 2. Language elements in SQL 303

Value of A Value of B Value of C Value of predicate

0 1 null false

4 null 3 false

null any value any value unknown

2 1 null unknown

3 null 4 unknown

DISTINCT predicate
A distinct predicate compares a value with another value or a set of values with another set of values.

expression IS

NOT

DISTINCT FROM expression

row-value-expression IS

NOT

DISTINCT FROM row-value-expression

expression and row-value-expression cannot be array expressions.

The number of elements that are returned by the row-value-expression that specified after the distinct
operator must match the number of elements that are returned by the row-value-expression that is
specified prior to the distinct operator. The data types of the corresponding columns or expressions of the
row-value-expressions must be compatible. When the predicate is evaluated, the value of each expression
on the left side is compared with the value of its corresponding expression on the right side. The result of
the predicate depends on the form of the predicate.

When the predicate is IS DISTINCT, the result of the predicate is true if at least one comparison of a pair
of corresponding value expressions evaluates to false. Otherwise, the result of the predicate is false. The
result cannot be unknown.

When the predicate IS NOT DISTINCT FROM, the result of the predicate is true if all pairs of
corresponding value expressions evaluate to true (null values are considered equal to null values).
Otherwise, the predicate is false. The result cannot be unknown.

The DISTINCT predicate cannot be used in the following contexts:

• The ON join-condition of a full outer join
• A check constraint
• A quantified predicate

The following DISTINCT predicates are logically equivalent to the corresponding search conditions:

Table 59. DISTINCT predicates and logically equivalent search conditions

DISTINCT predicate Search condition

 value 1 IS NOT DISTINCT FROM value2 (value1 IS NOT NULL
 AND value2 IS NOT NULL
 AND value1 = value 2)
OR
(value1 IS NULL
 AND value2 IS NULL)

value 1 IS DISTINCT FROM value2 NOT (value1 IS NOT DISTINCT FROM value2)

304 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 1: Assume that T1 is a single-column table with three rows. Column C1 has the following values:
1, 2, and null. Consider the following query:

 SELECT * FROM T1
 WHERE C1 IS DISTINCT FROM :HV;

The following table shows the value of the predicate for various values of C1 and the host variable.

Value of C1 Value of HV Result of predicate

1 2 True

2 2 False

null 2 True

1 null True

2 null True

null null False

Example 2: Assume the same table as in the first example, but now consider the negative form of the
predicate in the query:

 SELECT * FROM T1
 WHERE C1 IS NOT DISTINCT FROM :HV;

The following table shows the value of the predicate for various values of C1 and the host variable.

Value of C1 Value of HV Result of predicate

1 2 False

2 2 True

null 2 False

1 null False

2 null False

null null True

EXISTS predicate
The EXISTS predicate tests for the existence of certain rows. The fullselect can specify any number of
columns, and can result in true or false.

EXISTS ( fullselect
1

)

Notes:
1 The outer SELECT list of fullselect must not contain an array value.

The result of the EXISTS predicate:

• Is true only if the number of rows that is specified by the fullselect is not zero.
• Is false only if the number of rows specified by the fullselect is zero.
• Cannot be unknown.

The SELECT clause in the fullselect can specify any number of columns because the values returned by
the fullselect are ignored. For convenience, use:

Chapter 2. Language elements in SQL 305

 SELECT *

Unlike the NULL, LIKE, and IN predicates, the EXISTS predicate has no form that contains the word NOT.
To negate an EXISTS predicate, precede it with the logical operator NOT, as follows:

 NOT EXISTS (fullselect)

The result is then false if the EXISTS predicate is true, and true if the predicate is false. Here, NOT is a
logical operator and not a part of the predicate. Logical operators are discussed in “Search conditions” on
page 319.

Example 1: The following query lists the employee number of everyone represented in DSN8C10.EMP
who works in a department where at least one employee has a salary less than 20000. Like many EXISTS
predicates, the one in this query involves a correlated variable.

 SELECT EMPNO
 FROM DSN8C10.EMP X
 WHERE EXISTS (SELECT * FROM DSN8C10.EMP
 WHERE X.WORKDEPT=WORKDEPT AND SALARY<20000);

Example 2: List the subscribers (SNO) in the state of California who made at least one call during the
first quarter of 2009. Order the results according to SNO. Each MONTHnn table has columns for SNO,
CHARGES, and DATE. The CUST table has columns for SNO and STATE.

 SELECT C.SNO
 FROM CUST C
 WHERE C.STATE = 'CA'
 AND EXISTS (
 SELECT *
 FROM MONTH1
 WHERE DATE BETWEEN '01/01/2009 AND '01/31/2009'
 AND C.SNO = SNO
 UNION ALL
 SELECT *
 FROM MONTH2
 WHERE DATE BETWEEN '02/01/2009 AND '02/28/2009'
 AND C.SNO = SNO
 UNION ALL
 SELECT *
 FROM MONTH3
 WHERE DATE BETWEEN '03/01/2009 AND '03/31/2009'
 AND C.SNO = SNO
)
 ORDER BY C.SNO;

IN predicate
The IN predicate compares a value or values with a set of values.

expression1

NOT

IN ( fullselect1)

(

,

expression2)

row-value-expression

NOT

IN ( fullselect2)

When expression1 is specified, the IN predicate compares a value with a set of values. When fullselect1 is
specified, the fullselect must return a single result column, and can return any number of values, whether
null or not null. The data type of expression1 and the data type of the result column of fullselect1 or
expression2 must be compatible. If expression is a single host variable, the host variable can identify a
structure. Any host variable or structure that is specified must be described in the application program
according to the rules for declaring host structures and variables.

306 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

When a row-value-expression is specified, the IN predicate compares values with a collection of values.
The result table of the fullselect2 must have the same number of columns as the row-value-expression.
The data type of each expression in row-value-expression and the data type of its the corresponding
result column of fullselect2 must be compatible. The value of each expression in row-value-expression
is compared with the value of its corresponding result column of fullselect2. The value of the predicate
depends on the operator that is specified:

• When the operator is IN, the result of the predicate is:

– True if at least one row returned from fullselect2 is equal to the row-value-expression.
– False if the result of fullselect2 is empty or if no row returned from fullselect2 is equal to the

row-value-expression.
– Otherwise, unknown (that is, if the comparison of row-value-expression to the row returned from

fullselect2 evaluates to unknown because of a null value for at least one row returned from fullselect2
and no row returned from fullselect2 is equal to the row-value-expression).

• When the operator is NOT IN, the result of the predicate is:

True if the result of fullselect2 is empty or if the row-value-expression is not equal to any of the rows
returned by fullselect2.

False if the row-value-expression is equal to at least one row returned byfullselect2.

Otherwise, unknown (that is, if the comparison of row-value-expression to the row returned from
fullselect2 evaluates to unknown because of a null value for at least one row returned from fullselect2
and the comparison of row-value-expression to the row returned from fullselect2 is not true for any row
returned by the fullselect2).

The IN predicate is equivalent to the quantified predicate as follows:

Table 60. IN predicate and equivalent quantified predicates

IN predicate Equivalent quantified predicate

expression1 IN (expression2) expression1 = expression2

expression IN (fullselect1) expression = ANY (fullselect1)

expression NOT IN (fullselect1) expression <> ALL (fullselect1)

expression1 IN (expressiona,
 expressionb, ...)

expression1 IN (SELECT * FROM R)

When T is a table with a single row and R is a result
table formed by the following fullselect:

 SELECT value1 FROM T
 UNION
 SELECT value2 FROM T
 UNION
 .
 .
 .
 UNION
 SELECT valuen FROM T

row-value-expression IN (fullselect2) row-value-expression = SOME
(fullselect2)

row-value-expression IN (fullselect2) row-value-expression = ANY
(fullselect2)

row-value-expression NOT IN
(fullselect2)

row-value-expression <> ALL
(fullselect2)

Chapter 2. Language elements in SQL 307

If the operands of the IN predicate have different data types or attributes, the rules that are used to
determine the data type for evaluation of the IN predicate are those for UNION, EXCEPT, and INTERSECT.
For a description, see “Rules for result data types” on page 166.

If the operands of the IN predicate are strings with different CCSIDs, the rules used to determine which
operands are converted are those for operations that combine strings. See #unique_393.

Examples
Example 1

The following predicate is true for any row whose employee is in department D11, B01, or C01.

 WORKDEPT IN ('D11', 'B01', 'C01')

Example 2
The following predicate is true for any row whose employee works in department E11.

 EMPNO IN (SELECT EMPNO FROM DSN8C10.EMP
 WHERE WORKDEPT = 'E11')

Example 3
The following predicate is true if the date that a project is estimated to start (PRENDATE) is within the
next two years.

 YEAR(PRENDATE) IN (YEAR(CURRENT DATE),
 YEAR(CURRENT DATE + 1 YEAR),
 YEAR(CURRENT DATE + 2 YEARS))

Example 4
The following example obtains the phone number of an employee in DSN8C10.EMP where the
employee number (EMPNO) is a value specified within the COBOL structure defined below.

 77 PHNUM PIC X(6).
 01 EMPNO-STRUCTURE.
 05 CHAR-ELEMENT-1 PIC X(6) VALUE '000140'.
 05 CHAR-ELEMENT-2 PIC X(6) VALUE '000340'.
 05 CHAR-ELEMENT-3 PIC X(6) VALUE '000220'.
 .
 .
 .
 EXEC SQL DECLARE PHCURS CURSOR FOR
 SELECT PHONENO FROM DSN8C10.EMP
 WHERE EMPNO IN
 (:EMPNO-STRUCTURE.CHAR-ELEMENT-1,
 :EMPNO-STRUCTURE.CHAR-ELEMENT-2,
 :EMPNO-STRUCTURE.CHAR-ELEMENT-3)
 END-EXEC.
 EXEC SQL OPEN PHCURS
 END-EXEC.
 EXEC SQL FETCH PHCURS INTO :PHNUM
 END-EXEC.

LIKE predicate
The LIKE predicate searches for strings that have a certain pattern.

match-expression

NOT

LIKE pattern-expression

ESCAPE escape-expression

The match-expression is the string to be tested for conformity to the pattern specified in pattern-
expression. Underscore and percent sign characters in the pattern have a special meaning instead of

308 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

their literal meanings unless escape-expression is specified. For more information, see the description of
pattern-expression.

The following rules summarize how a predicate in the form of m LIKE p is evaluated:

• If m or p is null, the result of the predicate is unknown.
• If m and p are both empty, the result of the predicate is true.
• If m is empty and p is not, the result of the predicate is unknown unless p consists of one or more

percent signs.
• If m is not empty and p is empty, the result of the predicate is false.
• Otherwise, if m matches the pattern in p, the result of the predicate is true. The description of pattern-

expression provides a detailed explanation on how the pattern is matched to evaluate the predicate to
true or false.

The way the pattern is matched to evaluate the predicate changes when LIKE blank insignificant
behavior is enabled. For more information, see “LIKE blank insignificant behavior subsystem
parameter” on page 314.

The values for match-expression, pattern-expression, and escape-expression must all be character or
graphic strings or a mixture of both or they must all be binary strings (BLOBs). None of the expressions
can yield a distinct type; however, an expression can be a function that casts a distinct type to its source
type.

There are slight differences in what expressions are supported for each argument. The description of each
argument lists the supported expressions.

match-expression
An expression that specifies the string to be tested for conformity to a certain pattern of characters.

LIKE pattern-expression
An expression that specifies the pattern of characters to be matched.

The expression can be specified by any one of the following:

• A constant
• A special register
• A variable
• A scalar function whose arguments are any of the above (though nested function invocations cannot

be used)
• An array element specification
• A CAST specification whose arguments are any of the above
• An expression that concatenates (using CONCAT or ||) any of the above

The expression must also meet these restrictions:

• The maximum length of pattern-expression must not be larger than 4000 bytes.
• If a host variable is used in pattern-expression, the host variable must be defined in accordance with

the rules for declaring string host variables and must not be a structure. For more information about
the use of host variables with specific programming languages, see Host variables (Db2 Application
programming and SQL).

• If escape-expression is specified, pattern-expression must not contain the escape character that is
identified by escape-expression, except when immediately followed by the escape character, '%', or
'_'. For example, if '+' is the escape character, any occurrences of '+' other than '++', '+_', or '+%' in
the pattern is an error.

The pattern is used to specify the conformance criteria for values in the match-expression where:

• The underscore character (_) represents any single character.
• The percent sign (%) represents a string of zero or more characters.
• Any other character represents a single occurrence of itself.

Chapter 2. Language elements in SQL 309

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_hostvariablearraystructure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_hostvariablearraystructure.html

If the pattern-expression must include either the underscore or the percent character, the escape-
expression is used to specify a character to precede either the underscore or percent character in
the pattern. For character strings, the terms character, percent sign, and underscore refer to SBCS
characters. For graphic strings, the terms refer to double-byte or UTF-16 characters.

If the pattern is specified in a fixed-length string variable, any trailing blanks are interpreted as part
of the pattern. Therefore, it is better to use a varying-length string variable with an actual length that
is the same as the length of the pattern. If the host language does not allow varying-length string
variables, place the pattern in a fixed-length string variable whose length is the length of the pattern.

A rigorous description of the pattern: This more rigorous description of the pattern ignores the use
of the escape-expression.

Let m denote the value of match-expression and let p denote the value of pattern-expression.
The string p is interpreted as a sequence of the minimum number of substring specifiers so each
character of p is part of exactly one substring specifier. A substring specifier is an underscore, a
percent sign, or any non-empty sequence of characters other than an underscore or a percent sign.

The result of the predicate is unknown if m or p is the null value. Otherwise, the result is either true
or false. The result is true if m and p are both empty strings or there exists a partitioning of m into
substrings such that:

• A substring of m is a sequence of zero or more contiguous characters and each character of m is
part of exactly one substring.

• If the nth substring specifier is an underscore, the nth substring of m is any single character.
• If the nth substring specifier is a percent sign, the nth substring of m is any sequence of zero or

more characters.
• If the nth substring specifier is neither an underscore nor a percent sign, the nth substring of m is

equal to that substring specifier and has the same length as that substring specifier.
• The number of substrings of m is the same as the number of substring specifiers.

It follows that if p is an empty string and m is not an empty string, the result is false. Similarly, if m
is an empty string and p is not an empty string consisting of a value other than percentage signs, the
result is false.

The predicate m NOT LIKE p is equivalent to the search condition NOT (m LIKE p).

Mixed data patterns: If match-expression represents mixed data, the pattern is assumed to be mixed
data. For ASCII and EBCDIC, the special characters in the pattern are interpreted as follows:

• An SBCS underscore refers to one SBCS character.
• A DBCS underscore refers to one MBCS character.
• A percent sign (either SBCS or DBCS) refers to a string of zero or more SBCS or MBCS characters.

For EBCDIC, redundant shift bytes in match-expression or pattern-expression are ignored.

For Unicode, the special characters in the pattern are interpreted as follows:

• An SBCS or DBCS underscore refers to one character (either SBCS or MBCS).
• A percent sign (either SBCS or DBCS) refers to a string of zero or more SBCS or MBCS characters.

When the LIKE predicate is used with Unicode data, the Unicode percent sign and underscore use the
code points indicated in the following table:

Character UTF-8 UTF-16

Half-width % X'25' X'0025'

Full-width % X'EFBC85' X'FF05'

Half-width_ X'5F' X'005F'

310 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Character UTF-8 UTF-16

Full-width_ X'EFBCBF' X'FF3F'

The full-width or half-width % matches zero or more characters. The full-width or half-width_
character matches exactly one character. (For ASCII or EBCDIC data, a full-width _ character matches
one DBCS character.)

Binary data patterns: For columns with binary data, the pattern contains bytes. The special bytes in
the pattern are interpreted as follows:

• The code point for an SBCS underscore (X'6D') refers to 1 byte.
• The code point for an SBCS percent (X'6C') refers to any number of bytes.

Parameter marker:

When the pattern specified in a LIKE predicate is a parameter marker and a fixed-length character
variable is used to replace the parameter marker, specify a value for the variable that is the correct
length. If you do not specify the correct length, the select does not return the intended results.

For example, if the variable is defined as CHAR(10) and the value 'WYSE%' is assigned to that variable,
the variable is padded with blanks on assignment. The pattern used is 'WYSE% ', which requests
Db2 to search for all values that start with 'WYSE' and end with five blank spaces unless LIKE blank
insignificant behavior is in effect. If the search was intended to search only for the values that start
with 'WYSE', then assign the value 'WYSE%%%%%%' to the variable.

ESCAPE escape-expression
An expression that specifies the escape character to be used to modify the special meaning of the
underscore (_) and percent (%) characters in pattern-expression. Specifying an expression, which is
optional, allows the LIKE predicate to explicitly test that the value contains a '%' or '_' in the character
positions that you want. The escape character consists of a single SBCS (1 byte) or DBCS (2 bytes)
character. An escape clause is allowed for Unicode mixed (UTF-8) data, but is restricted for ASCII and
EBCDIC mixed data.

The expression can be specified by:

• A constant
• A variable
• A scalar function whose arguments are any of the above (though nested function invocations cannot

be used)
• A CAST specification whose arguments are any of the above

The following rules also apply to the use of the ESCAPE clause and escape-expression:

• The result of escape-expression must be one SBCS or DBCS character or a binary string that
contains exactly 1 byte.

• The ESCAPE clause cannot be used if match-expression is mixed data.
• If escape-expression is specified by a host variable, the host variable must be defined in accordance

with the rules for declaring fixed-length string host variables.

Note: If it is NUL-terminated, a C character string variable of length 2 can be specified.

If the host variable has a negative indicator variable, the result of the predicate is unknown.
• The pattern must not contain the escape character except when followed by the escape character,

'%' or '_'. For example, if '+' is the escape character, any occurrences of '+' other than '++', '+_', or
'+%' in the pattern is an error.

The following table shows the effect of successive occurrences of the escape character, which in this
case is the plus sign (+).

Chapter 2. Language elements in SQL 311

Table 61. Effect of successive occurrences of the escape character

When the pattern string is... The actual pattern is...

+% A percent sign

++% A plus sign followed by zero or more arbitrary
characters

+++% A plus sign followed by a percent sign

Examples
Example 1

The following predicate is true when the string to be tested in NAME has the value SMITH, NESMITH,
SMITHSON, or NESMITHY. It is not true when the string has the value SMYTHE:

 NAME LIKE '%SMITH%'

Example 2

In the predicate below, a host variable named PATTERN holds the string for the pattern:

 NAME LIKE :PATTERN ESCAPE '+'

Assume that the string in PATTERN has the following value:

 AB+_C_%

Observe that in this string, the plus sign preceding the first underscore is an escape character. The
predicate is true when the string being tested in NAME has the value AB_CD or AB_CDE. It is false
when this string has the value AB, AB_, or AB_C.

Example 3

The following two predicates are equivalent; three of the four percent signs in the first predicate are
redundant.

 NAME LIKE 'AB%%%%CD'
 NAME LIKE 'AB%CD'

Example 4
Assume that a distinct type named ZIP_TYPE with a source data type of CHAR(5) exists and an
ADDRZIP column with data type ZIP_TYPE exists in some table TABLEY. The following statement
selects the row if the zip code (ADDRZIP) begins with '9555'.

 SELECT * FROM TABLEY
 WHERE CHAR(ADDRZIP) LIKE '9555%'

Example 5
The RESUME column in sample table DSN8C10.EMP_PHOTO_RESUME is defined as a CLOB. The
following statement selects the RESUME column when the string JONES appears anywhere in the
column.

 SELECT RESUME FROM DSN8C10.EMP_PHOTO_RESUME
 WHERE RESUME LIKE '%JONES%'

Example 6

In the following table, assume COL1 is a column that contains mixed EBCDIC data. The table shows
the results when the predicate in the first column is evaluated using the COL1 value in the second
column:

312 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Predicates COL1 Values Result

WHERE COL1 LIKE 'aaa AB%C 'S

o

S

I

WHERE COL1 LIKE 'aaa AB 'S

o

S

I %S

o C S

I

WHERE COL1 LIKE 'a% S

o C S

I '

S

o C S

I '

WHERE COL1 LIKE 'a S

o _C S

I '

WHERE COL1 LIKE 'S

o

S

I'

WHERE COL1 LIKE 'abS

o C S

I '_

'aaa ABDZCS

o 'S

I

'aaa ABS

o 'S

I

S

I dzx S

o C

'a 'S

I

S

o C
'ax 'S

I

S

o C
'ab 'S

I

S

o DE fg S

o C S

I

'a% 'S

o C S

I

'a S

o XCS

I'

'a S

o XCS

I'
'ax S

o CS

I'

Empty string

'ab S

o C S

I 'd
'ab S

o

S

o

S

I
S

I 'd

True

True

True
True
True

True

True

True

True
True

False

False

Example 7
In the following table, assume COL1 is a column that contains mixed ASCII data. The table shows the
results when the predicate in the first column is evaluated using the COL1 value in the second column:
Predicates COL1 Values Result

WHERE COL1 LIKE ‘aaa AB%C’

WHERE COL1 LIKE ‘aaa AB%C’

‘aaaABDZC’

‘aaaABdzxC’

True

True

Example 8
In the following table, assume COL1 is a column that contains Unicode data. The table shows the
results when the predicate in the first column is evaluated using the COL1 value in the second column:

Table 62. COL1 contain Unicode data

Predicates COL1 values Result

WHERE COL1 LIKE 'aaaAB%C 'aaaABDZC' True

'aaaABdzxC' True

empty string False

WHERE COL1 LIKE 'aaaAB %C' 'aaaABDZC' True

'aaaABdzxC' True

empty string False

WHERE COL1 LIKE '' 'aaaABDZC' False

'aaaABdzxC' False

empty string True

WHERE COL1 LIKE '%' 'aaaABDZC' True

'aaaABdzxC' True

empty string True

WHERE COL1 LIKE ' %' 'aaaABDZC' True

'aaaABdzxC' True

empty string False

Chapter 2. Language elements in SQL 313

Table 62. COL1 contain Unicode data (continued)

Predicates COL1 values Result

WHERE COL1 LIKE ' ' 'aaaABDZC' False

'aaaABdzxC' False

empty string False

LIKE blank insignificant behavior subsystem parameter
When the LIKE_BLANK_INSIGNIFICANT subsystem parameter is enabled, all of the blanks at the end
of a fixed-length string are ignored. This behavior is called LIKE blank insignificant behavior. LIKE blank
significant behavior, in which the blanks at the end of fixed-length strings are significant (not ignored), is
the default behavior during installation or migration. For variable length strings, blanks are significant.

When you set the LIKE_BLANK_INSIGNIFICANT subsystem parameter, LIKE blank insignificant behavior
takes effect the next time an SQL query statement with the LIKE predicate is executed after the statement
is bound or prepared. If the statement is not prepared or bound, the LIKE behavior exhibits LIKE blank
significant behavior regardless of the subsystem parameter setting.

For the following interfaces, enabling or disabling LIKE blank insignificant behavior takes effect
immediately. This applies to both an explicit LIKE predicate (for example, UNLOAD) and an implicit LIKE
predicate (for example, table check constraint).

• INSERT
• UPDATE
• MERGE
• UNLOAD
• REORG
• LOAD
• CHECK DATA

Before the LIKE predicate is applied, any trailing blanks in a CHARACTER or GRAPHIC column are stripped
to the last non-blank character. If the column contains all blanks, the blank in character position 1 is not
stripped. After stripping occurs, the LIKE predicate is applied against the stripped column data.

Tip: After you enable the LIKE_BLANK_INSIGNIFICANT subsystem parameter, existing rows might not
conform to table check constraints that contain a LIKE predicate. Consider running the CHECK DATA utility
on all affected tables to find the records that do not conform to the table check constraint.

The following examples, in which b represents a blank character, demonstrate how the LIKE predicate is
evaluated when LIKE blank insignificant behavior is enabled.

SELECT C1
FROM T1
WHERE C1 LIKE '%xyz';

This LIKE predicate will match the following fixed-length strings:

• abcxyz
• abcxyzb
• abcxyzbb
• abcxyzbb..b'

314 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

While trailing blanks in the column data are insignificant, trailing blanks in the LIKE predicate are
significant. The following example, in whichb represents a blank character, applies to when the LIKE
predicate contains one or more trailing blanks.

SELECT C1
FROM T1
WHERE C1 LIKE '%xyzbb';

This LIKE predicate will not match the following fixed-length strings:

• abcxyz
• abcxyzb
• abcxyzbb
• abcxyzbbb

The following example applies to when the LIKE predicate contains one or more single characters (_) in
the last position.

SELECT C1
FROM T1
WHERE C1 LIKE '%xyz_';

This LIKE predicate will not match the following fixed-length strings, because they are all stripped to the
'abcxyz' string:

• abcxyz
• abcxyzb
• abcxyzbb
• abcxyzbb..b

The following example applies to when the LIKE predicate contains more than one single character (_) in
the last position.

SELECT C1
FROM T1
WHERE C1 LIKE '%xyz__';

This LIKE predicate will not match the following fixed-length strings:

• abcxyz
• abcxyzb
• abcxyzbb
• abcxyzbb..b

The following example applies to when the LIKE predicate contains more than one single character (_)
and a string of zero or more characters (%) are in the last positions.

SELECT C1
FROM T1
WHERE C1 LIKE '%xyz_%_';
This

This LIKE predicate will not match the following fixed-length strings:

• abcxyz
• abcxyzb
• abcxyzbb
• abcxyzbb..b

If the column data contains all blanks, every blank, except the blank in character position one, is stripped
before the LIKE predicate is applied. For example, a CHAR(6) column contains the following values:

Chapter 2. Language elements in SQL 315

bbbbbb

The following LIKE predicates will match:

• LIKE 'b'
• LIKE '_'
• LIKE '%'

The following LIKE predicates will not match:

• LIKE 'bbbbbbb'
• LIKE 'bbbb___'
• LIKE '_______'

Related reference
LIKE_BLANK_INSIGNIFICANT in macro DSN6SPRM (Db2 Installation and Migration)

NULL predicate
The NULL predicate tests for null values.

expression IS

NOT

NULL

The result of a NULL predicate cannot be unknown. If the value of the expression is null, the result is true.
If the value is not null, the result is false. If NOT is specified, the result is reversed.

A parameter marker must not be specified for or within the expression.

Notes
Syntax alternatives:

FL 504 For compatibility with other SQL dialects, you can use ISNULL as an alternative syntax for IS
NULL and NOTNULL as alternative syntax for IS NOT NULL.

Example 1: The following predicate is true whenever PHONENO has the null value, and is false otherwise.

 PHONENO IS NULL

Example 2: The following predicate is true whenever the array MYARRAY has the null value, and is false
otherwise.

 MYARRAY IS NULL

XMLEXISTS predicate
The XMLEXISTS predicate tests whether an XQuery expression returns a sequence of one or more items.

XMLEXISTS (xquery-expression-constant

PASSING
BY REF

,

xquery-argument
1

)

Notes:

316 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_likeblankinsignificant.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

1 xquery-context-item-expression must not be specified more than one time.

xquery-argument

xquery-context-item-expression

xquery-context-item-expression AS identifier

xquery-expression-constant
Specifies a character string constant that is interpreted as an XQuery expression using supported
XQuery language syntax. For information about the XQuery language syntax, see Overview of
pureXML (Db2 Programming for XML). xquery-expression-constant cannot be an XQuery updating
expression. The XQuery expression is evaluated with the arguments specified in xquery-argument.
xquery-expression-constant must not be an empty string or a string of all blanks.

PASSING
Specifies input values and the manner in which these values are passed to the XQuery expression
specified by xquery-expression-constant.

BY REF
Specifies that the XML input value arguments are to be passed by reference. When XML values
are passed by reference, the XQuery evaluation uses the input node trees, preserving all properties
including the original node identities and document order. If two arguments pass the same XML value,
node identity comparisons and document ordering comparisons that involve some nodes that are
contained between the two input arguments might refer to nodes within the same XML node tree.

This clause has no impact on how non-XML values are passed. The non-XML values create a new copy
of the value during the cast to XML.

xquery-argument
Specifies an argument to use in the evaluation of the XQuery expression specified by xquery-
expression-constant. A query argument is an expression that returns a value that is XML, integer,
decimal, or a character or graphic string that is not a LOB. xquery-argument must not return ROWID,
TIMESTAMP, binary string, REAL, DECFLOAT data types, or a character string data type that is bit data,
and must not reference a sequence expression or a OLAP-specification.

An argument specifies a value and the manner in which that value is to be passed. How an
argument in the PASSING clause is used in the XQuery expression depends on whether the argument
is specified as the xquery-context-item-expression or an xquery-variable-expression. The argument
includes an SQL expression that is evaluated before passing the result to the XQuery expression.

• If the resulting value is an XML value, it becomes an input-xml-value. It is passed by reference which
means that the original values, not copies, are used in the evaluation of the XQuery expression.

• If the resulting value is not an XML value, the result of the expression must be able to be cast to
an XML value. The cast value becomes an input-xml-value. An empty string is converted to an XML
empty string.

• If the resulting value is a null value, it is converted to an XML empty sequence if the argument
is xquery-variable-expression. If the argument is xquery-context-expression, the XMLEXISTS
predicates returns unknown.

xquery-context-item-expression
xquery-context-item-expression specifies the initial context item in the XQuery expression
specified by xquery-expression-constant. The value of the initial context item is the result of
xquery-context-item-expression cast to XML. xquery-context-item-expression must not be specified
more than one time.

xquery-context-item-expression must not be a sequence of more than one item. If the result of
xquery-context-item-expression is an empty string, the XQuery expression is evaluated with the
initial context item set to an XML empty string.

Chapter 2. Language elements in SQL 317

https://www.ibm.com/docs/en/SSEPEK_12.0.0/xml/src/tpc/db2z_xmldb2.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/xml/src/tpc/db2z_xmldb2.html

If the xquery-context-item-expression is not specified or is an empty string, the initial context item
in the XQuery expression is undefined, and the XQuery expression must not reference the initial
context item. An XQuery variable is not created for the context item expression.

If the xquery-context-expression is not specified or the input-xml-value that results from the
xquery-context-expression is an XML empty sequence, the initial context item is undefined. If the
XQuery expression refers to the initial context item, it must be specified with a value that is not an
XML empty sequence.

xquery-variable-expression
xquery-variable-expression specifies an argument to the XQuery expression. An XQuery variable
is created for each xquery-variable-expression, and the XQuery variable is set to the result of
xquery-argument-expression cast to XML. If the result of xquery-variable-expression is an empty
string, the XQuery variable is set to an XML empty string. If xquery-variable-expression is null,
the XQuery variable is set to an XML empty sequence. For example, PASSING T.A + T.B as
"sum" creates an XQuery variable named sum. The scope of the XQuery variables created from
the PASSING clause is the XQuery expression that is specified by xquery-expression-constant.

AS identifier
Specifies that the value that is generated by xquery-variable-expression will be passed to xquery-
expression-constant as an XQuery variable named identifier. The length of the name must not be
longer than 128 bytes. The leading dollar sign ($) that precedes variable names in the XQuery
language is not included in identifier. The name must be an XML NCName that is not the same as
identifier for another xquery-variable-expression in the same PASSING clause.

The result of the predicate is determined as follows:

• The result is unknown if xquery-context-item-expression specified in the PASSING clause is a NULL value
• the result is false if the result of the XQuery expression is an empty sequence
• the result is true in all other cases

If the evaluation of the XQuery expression results in an error, XMLEXISTS returns an error. The
XMLEXISTS predicate is not supported in ON clause of outer joins.

Example: Find all the purchase orders that buy a baby monitor. This example finds the product number for
baby monitors from the product table and joins the result to the PurchaseOrders table. It then evaluates
the XQuery expression //item[@partnum = $n] for each row and returns those rows that contain an item
element node with a partNum attribute that is equal to the product number of ‘Baby Monitor'. The context
item for the XQuery expression is PO.POrder. An XQuery variable, $n, is created and initialized to the value
of S.prodno:

 SELECT S.prodno, count(*) as result
 FROM PurchaseOrders PO, Products S
 WHERE XMLEXISTS ('//item[@partNum = $n]'
 PASSING PO.POrder,
 S.prodno AS "n")
 AND S.prod_name = 'Baby Monitor';

The results might be similar to the following:

Prodno result

926-AA 1

318 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Search conditions
A search condition specifies a condition that is true, false, or unknown about a given row or group. When
the condition is true, the row or group qualifies for the results. When the condition is false or unknown,
the row or group does not qualify.

Syntax

NOT

predicate

SELECTIVITY numeric-constant

( search-condition)

AND

OR NOT

predicate

( search-condition)

Description
SELECTIVITY numeric-constant

Specifies the expected selectivity percentage for the predicate. You can specify the SELECTIVITY
clause only when the predicate contains one of the indexable spatial predicate functions and
the predicate is in the form of spatial-predicate-function operator expression, where
operator is either = or <. The selectivity value must be an integer or decimal constant value in the
range in the range 0–1 (inclusive). For example, if you specify 0.01, the spatial predicate function
is expected to filter out all but one percent of all the rows in the table. An error is returned if the
SELECTIVITY clause is specified for a non-spatial predicate function.

The result of a search condition is derived by application of the specified logical operators (AND, OR, NOT)
to the result of each specified predicate. If logical operators are not specified, the result of the search
condition is the result of the specified predicate.

AND and OR are defined in the following table, in which P and Q are any predicates:

Table 63. Truth table for AND and OR

P Q P and Q P or Q

True True True True

True False False True

True Unknown Unknown True

False True False True

False False False False

False Unknown False Unknown

Unknown True Unknown True

Unknown False False Unknown

Unknown Unknown Unknown Unknown

NOT(true) is false and NOT(false) is true, but NOT(unknown) is still unknown. The NOT logical operator
has no affect on an unknown condition. The result of NOT(unknown) is still unknown.

Chapter 2. Language elements in SQL 319

Search conditions within parentheses are evaluated first. If the order of evaluation is not specified by
parentheses, NOT is applied before AND, and AND is applied before OR. The order in which operators at
the same precedence level are evaluated is undefined to allow for optimization of search conditions.

Example 1: In the first of the search conditions below, AND is applied before OR. In the second, OR is
applied before AND.

 SALARY>:SS AND COMM>:CC OR BONUS>:BB
 SALARY>:SS AND (COMM>:CC OR BONUS>:BB)

Example 2: In the first of the search conditions below, NOT is applied before AND. In the second, AND is
applied before NOT.

 NOT SALARY>:SS AND COMM>:CC
 NOT (SALARY>:SS AND COMM>:CC)

Example 3: For the following search condition, AND is applied first. After the application of AND, the OR
operators could be applied in either order without changing the result. Db2 can therefore select the order
of applying the OR operators.

 SALARY>:SS AND COMM>:CC OR BONUS>:BB OR SEX=:GG

Options affecting SQL
Certain Db2 precompiler or coprocessor options (referred to as SQL processing options), Db2 subsystem
parameters (set through the installation panels), bind options, options for CREATE PROCEDURE and
ALTER PROCEDURE statements for native SQL procedures, and special registers affect how SQL
statements can be composed or determine how SQL statements are processed.

The following table summarizes the effect of these options and shows where to find more information.
(Some of the items are described in detail following the table, while other items are described elsewhere.)

Table 64. Summary of items affecting composition and processing of SQL statements

SQL processing
option Other1 Affects

 DYNAMICRULES bind option
or the native SQL procedures
option

The rules that Db2 applies to dynamic SQL
statements. For details about authorization, see
“Authorization IDs and dynamic SQL” on page
94. The option can also affect decimal point
representation, string delimiters, and decimal
arithmetic.

For details about how Db2 applies the options
to dynamic SQL statements when DYNAMICRULES
bind, define, or invoke behavior is in effect, see “SQL
processing options for dynamic statements” on page
322.

 USE FOR DYNAMICRULES Use of options for dynamic statements when
DYNAMICRULES bind, define, or, invoke behavior is
in effect. For details, see “SQL processing options for
dynamic statements” on page 322.

COMMA
PERIOD

DECIMAL POINT IS Representation of decimal points in SQL statements.

For details, see “Decimal point representation” on
page 323.

320 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 64. Summary of items affecting composition and processing of SQL statements (continued)

SQL processing
option Other1 Affects

APOSTSQL
QUOTESQL

SQL STRING DELIMITER Representation of string delimiters in SQL
statements.

For details, see “Apostrophes and quotation marks
as string delimiters” on page 324.

 ASCII CCSID A numeric value that determines the CCSID of ASCII
string data.

For details, see “Mixed data in character strings” on
page 325.

 EBCDIC CCSID A numeric value that determines the CCSID
of EBCDIC string data and whether Katakana
characters can be used in ordinary identifiers.

For details, see “Katakana characters for EBCDIC” on
page 325.

 UNICODE CCSID A numeric value that determines the CCSID of
Unicode string data.

For details, see “Mixed data in character strings” on
page 325.

CCSID MIXED DATA Use of ASCII or EBCDIC character strings with a
mixture of SBCS and DBCS characters.

For details, see “Mixed data in character strings” on
page 325.

DATE
TIME

DATE FORMAT
TIME FORMAT
LOCAL DATE LENGTH
LOCAL TIME LENGTH

Formatting of datetime strings.

For details, see “Formatting of datetime strings” on
page 325.

STDSQL Conformance with the SQL standard.

For details, see “SQL standard language” on page
326.

NOFOR or STDSQL Whether the FOR UPDATE clause must be specified
(in the SELECT statement of the DECLARE CURSOR
statement).

For details, see “Positioned updates of columns” on
page 326.

CONNECT Whether the rules for the CONNECT(1) or
CONNECT(2) SQL processing option apply.

For details about the SQL processing option,
see Descriptions of SQL processing options (Db2
Application programming and SQL).

 SQLRULES bind option Whether a CONNECT statement is processed with
Db2 rules or SQL standard rules.

Chapter 2. Language elements in SQL 321

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_descriptionprocessingoptions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_descriptionprocessingoptions.html

Table 64. Summary of items affecting composition and processing of SQL statements (continued)

SQL processing
option Other1 Affects

 CURRENT RULES special
register

Whether the statements ALTER TABLE, CREATE
TABLE, GRANT, and REVOKE are processed with
Db2 rules or SQL standard rules. For details, see
“CURRENT RULES special register” on page 205.

Whether Db2 automatically creates the LOB table
space, auxiliary table, and index on the auxiliary
table for a LOB column in a base table. For details,
see Creating a table with LOB columns.

Whether Db2 automatically creates an index on a
ROWID column that is defined with GENERATED
BY DEFAULT. For details, see the description of the
clause for “CREATE TABLE statement” on page 1650.

Whether an external stored procedure runs as a
main or subprogram. For details, see “CREATE
PROCEDURE statement (external procedure)” on
page 1580.

 SQLRULES bind option or
CURRENT RULES special
register

Whether SQLCODE +236 is issued when the SQLDA
provided on DESCRIBE or PREPARE INTO is too
small and the result columns do not involve
LOBs or distinct types. For details, see “DESCRIBE
statement” on page 1869 and Appendix G, “SQL
descriptor area (SQLDA),” on page 2313.

DEC DECIMAL ARITHMETIC or
CURRENT PRECISION special
register

Whether DEC15 or DEC31 rules are used when both
operands in a decimal operation have 15 digits or
less.

For details, see “Arithmetic with two decimal
operands” on page 251.

Note: 1 The entries in this column are fields on installation panels unless otherwise noted.

Related concepts
Options for SQL statement processing (Db2 Application programming and SQL)

SQL processing options for dynamic statements
Generally, dynamic statements use the application programming defaults specified on installation
panel DSNTIPF. However, if the value of installation panel field USE FOR DYNAMICRULES is NO and
DYNAMICRULES bind, define, or invoke behavior is in effect, certain SQL processing options are used
instead of the application programming defaults.

The following SQL processing options are used instead of the application programming defaults:

• COMMA or PERIOD
• APOST or QUOTE
• APOSTSQL or QUOTESQL
• DEC(15) or DEC(31)

For some languages, the SQL processing option defaults to a value and no alternative is allowed. If the
value of installation panel field USE FOR DYNAMICRULES is YES, dynamic statements use the application
programming defaults regardless of the value of DYNAMICRULES option.

322 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_optionssqlprocessing.html

For additional information on the effect of SQL processing options and application programming defaults
on:

• Decimal point representation, see “Decimal point representation” on page 323.
• String delimiters, see “Apostrophes and quotation marks as string delimiters” on page 324.
• Decimal arithmetic, see “Arithmetic with two decimal operands” on page 251.

For a list of the DYNAMICRULES option values that specify run, bind, define, or invoke behavior, see Table
14 on page 94.

DECFLOAT rounding mode
All views and SQL functions referenced in an SQL statement must either not have rounding mode
information stored in the SYSENVIRONMENT catalog, or they must all have the same rounding mode
information in the SYSENVIRONMENT catalog.

Decimal point representation
Decimal points in SQL statements are represented with either periods or commas.

Two values control the representation:

• The value of field DECIMAL POINT IS on installation panel DSNTIPF, which can be a comma (,) or period
(.)

• COMMA or PERIOD, which are mutually exclusive SQL processing options for COBOL

These values apply to SQL statements as follows:

• For a distributed operation, the decimal point is the first of the following values that applies:

– The decimal point value specified by the requester
– The value of field DECIMAL POINT IS on panel DSNTIPF at the Db2 where the package is bound

• Otherwise:

– For static SQL statements:

- In a COBOL program, the SQL processing option COMMA or PERIOD determines the decimal point
representation for every static SQL statement. If neither SQL processing option is specified, the
value of DECIMAL POINT IS at precompilation time determines the representation.

- In non-COBOL programs, the decimal representation for static SQL statements is always the period.
– For dynamic SQL statements:

- If DYNAMICRULES run behavior applies, the decimal point is the value of field DECIMAL POINT IS
on installation panel DSNTIPF at the local Db2 when the statement is prepared.

For a list of the DYNAMICRULES option values that specify run, bind, define, or invoke behavior, see
Table 14 on page 94.

- If DYNAMICRULES bind, define, or invoke behavior applies, and the value of installation panel field
USE FOR DYNAMICRULES is YES, the decimal point is the value of field DECIMAL POINT IS.

If bind, define, or invoke behavior applies, and field USE FOR DYNAMIC RULES is NO, the
SQL processing option determines the decimal point representation. For COBOL programs,
which supports SQL processing option COMMA or PERIOD, the decimal point representation is
determined as described above for static SQL statements in COBOL programs. For programs written
in other host languages, the default SQL processing option, which can only be PERIOD, is used.

If the comma is the decimal point, these rules apply:

• In any context, a comma intended as a separator must be followed by a space. Such commas could
appear, for example, in a VALUES clause, an IN predicate, or an ORDER BY clause in which numbers are
used to identify columns.

• In any context, a comma intended as a decimal point must not be followed by a space.

Chapter 2. Language elements in SQL 323

• If the DECIMAL POINT IS field (and not the SQL processing option) determines the comma as the
decimal point, Db2 will recognize either a comma or a period as the decimal point in numbers in
dynamic SQL.

Related reference
DECIMAL POINT IS field (DECIMAL DECP value) (Db2 Installation and Migration)
DYNAMICRULES bind option (Db2 Commands)

Apostrophes and quotation marks as string delimiters
SQL processing options and Db2 installation panel fields control the representation of string delimiters in
COBOL and SQL statements.

The following SQL processing options control the representation of string delimiters:

• APOST and QUOTE are mutually exclusive SQL processing options for COBOL. Their meanings are
exactly what they are for the COBOL compilers:

– APOST names the apostrophe (') as the string delimiter in COBOL statements.
– QUOTE names the quotation mark (") as the string delimiter.

Neither option applies to SQL syntax. Do not confuse them with the APOSTSQL and QUOTESQL options.
• APOSTSQL and QUOTESQL are mutually exclusive SQL processing options for COBOL. Their meanings

are:

– APOSTSQL names the apostrophe (') as the string delimiter and the quotation mark (") as the escape
character in SQL statements.

– QUOTESQL names the quotation mark (") as the string delimiter and the apostrophe (') as the escape
character in SQL statements.

These values apply to SQL statements as follows:

• For a distributed operation, the string delimiter is the first of the following values that applies:

– The SQL string delimiter value specified by the requester
– The value of the field SQL STRING DELIMITER on installation panel DSNTIPF at the Db2 where the

package is bound
• Otherwise:

– For static SQL statements:

In a COBOL program, the SQL processing option APOSTSQL or QUOTESQL determines the string
delimiter and escape character. If neither SQL processing option is specified, the value of field
SQL STRING DELIMITER on installation panel DSNTIPF determines the string delimiter and escape
character.

In a non-COBOL program, the string delimiter is the apostrophe, and the escape character is the
quotation mark.

– For dynamic SQL statements:

- If DYNAMICRULES run behavior applies, the string delimiter and escape character is the value of
field SQL STRING DELIMITER on installation panel DSNTIPF at the local Db2 when the statement is
prepared.

For a list of the DYNAMICRULES option values that specify run, bind, define, or invoke behavior, see
Table 14 on page 94.

- If DYNAMICRULES bind, define, or invoke behavior applies and the value of installation panel field
USE FOR DYNAMICRULES is YES, the string delimiter and escape character is the value of field SQL
STRING DELIMITER.

If bind, define, or invoke behavior applies and USE FOR DYNAMICRULES is NO, the SQL processing
option determines the string delimiter and escape character. For COBOL programs, SQL processing
option APOSTSQL or QUOTESQL determines the string delimiter and escape character. If neither

324 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_decimal.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptdynamicrules.html

SQL processing option is specified, the value of field SQL STRING DELIMITER determines them.
For programs written in other host languages, the default SQL processing option, which can only be
APOSTSQL, determines the string delimiter and escape character.

Katakana characters for EBCDIC
Ordinary identifiers with an EBCDIC encoding scheme can contain Katakana characters if the Db2
installation is set to allow it.

The field EBCDIC CCSID on installation panel DSNTIPF determines the system CCSIDs for EBCDIC-
encoded data. Ordinary identifiers with an EBCDIC encoding scheme can contain Katakana characters if
the field contains the value 5026 or 930. There are no corresponding SQL processing options. EBCDIC
CCSID applies equally to static and dynamic statements. For dynamically prepared statements, the
applicable value is always the one at the local Db2.

Mixed data in character strings
Mixed character data and graphic data are always allowed for Unicode, but for EBCDIC and ASCII, the
specific installation of Db2 determines whether mixed data can be used.

The field MIXED DATA on installation panel DSNTIPF can have the value YES or NO for ASCII or EBCDIC
character strings. The value YES indicates that character strings can contain a mixture of SBCS and DBCS
characters. The value NO indicates that they cannot. Mixed character data and graphic data are always
allowed for Unicode; that is the MIXED DATA field does not have an effect on Unicode data.

For static SQL statements, the value of the CCSID SQL processing option or the derived CCSID for the Db2
coprocessor determines whether ASCII or EBCDIC character strings can contain mixed data. If a mixed
CCSID is used, mixed strings are allowed. If a single-byte CCSID is used, mixed strings are not allowed.

For dynamic SQL statements, the CCSID that is selected to convert the dynamic statement text to
UTF-8 determines whether ASCII or EBCDIC character strings can contain mixed data. The CCSID for a
dynamic statement is determined from the SQLDA override (if any) for the host variable on the PREPARE
statement, the value of the CURRENT ENCODING SCHEME special register, and the ENCODING bind
option.

The value of MIXED DATA affects the parsing of SQL character string constants, the execution of the LIKE
predicate, and the assignment of character strings to host variables when truncation is needed. It can
also affect concatenation, as explained in “Concatenation operators in expressions” on page 247. A value
that applies to a statement executed at the local Db2 also applies to any statement executed at another
server. An exception is the LIKE predicate, for which the applicable value of MIXED DATA is always the one
at the statement's server.

The value of MIXED DATA also affects the choice of system CCSIDs for the local Db2 and the choice of
data subtypes for character columns. When this value is YES, multiple CCSIDs are available for ASCII
and EBCDIC data (SBCS, DBCS, and MIXED). The CCSID specified in the ASCII CCSID or EBCDIC CCSID
field is the MIXED CCSID. In this case, Db2 derives the SBCS and MIXED CCSIDs from the DBCS CCSID
specified installation panel DSNTIPF. Moreover, a character column can have any one of the allowable
data subtypes—BIT, SBCS, or MIXED.

On the other hand, when MIXED DATA is NO, the only ASCII or EBCDIC system CCSIDs are those for SBCS
data. Therefore, only BIT and SBCS can be data subtypes for character columns.

Formatting of datetime strings
The format for a datetime string that is in effect for a statement that is executed at the local Db2 is not
necessarily in effect for a statement that is executed at a different server.

Fields on installation panel DSNTIP4 (DATE FORMAT, TIME FORMAT, LOCAL DATE LENGTH, and LOCAL
TIME LENGTH) and SQL processing options affect the formatting of datetime strings.

The formatting of datetime strings is described in “String representations of datetime values” on page
120. Unlike the subsystem parameters and options previously described, a value in effect for a statement

Chapter 2. Language elements in SQL 325

executed at the local Db2 is not necessarily in effect for a statement executed at a different server. See
“Restrictions on the use of local datetime formats” on page 124 for more information.

SQL standard language
Db2 SQL and the SQL standard are not identical. The STDSQL SQL processing option addresses some of
the differences.

• STDSQL(NO) indicates that conformance with the SQL standard is not intended. The default is the value
of field STD SQL LANGUAGE on installation panel DSNTIP4 (which has a default of NO).

• STDSQL(YES)16 indicates that conformance with the SQL standard is intended.

When a program is precompiled with the STDSQL(YES) option, the following rules apply:

Declaring host variables: All host variable declarations except in Java and REXX must lie between pairs of
BEGIN DECLARE SECTION and END DECLARE SECTION statements:

 BEGIN DECLARE SECTION
 -- one or more host variable declarations
 END DECLARE SECTION

Separate pairs of these statements can bracket separate sets of host variable declarations.

Declarations for SQLCODE and SQLSTATE: The programmer must declare host variables for either
SQLCODE or SQLSTATE, or both. SQLCODE should be defined as a fullword integer and SQLSTATE should
be defined as a 5-byte character string. SQLCODE and SQLSTATE cannot be part of any structure. The
variables must be declared in the DECLARE SECTION of a program; however, SQLCODE can be declared
outside of the DECLARE SECTION when no host variable is defined for SQLSTATE. For PL/I, an acceptable
declaration can look like this:

 DECLARE SQLCODE BIN FIXED(31);
 DECLARE SQLSTATE CHAR(5);

In Fortran programs, the variable SQLCOD should be used for SQLCODE, and either SQLSTATE or SQLSTA
can be used for SQLSTATE.

Definitions for the SQLCA: An SQLCA must not be defined in your program, either by coding its
definition manually or by using the INCLUDE SQLCA statement. When STDSQL(YES) is specified, the Db2
precompiler or coprocessor automatically generates an SQLCA that includes the variable name SQLCADE
instead of SQLCODE and SQLSTAT instead of SQLSTATE. After each SQL statement executes, Db2 assigns
status information to SQLCODE and SQLSTATE, whose declarations are described above, as follows:

• SQLCODE: Db2 assigns the value in SQLCADE to SQLCODE. In Fortran, SQLCAD and SQLCOD are used
for SQLCADE and SQLCODE, respectively.

• SQLSTATE: Db2 assigns the value in SQLSTAT to SQLSTATE. (In Fortran, SQLSTT and SQLSTA are used
for SQLSTAT and SQLSTATE, respectively.)

• No declaration for either SQLSTATE or SQLCODE: Db2 assigns the value in SQLCADE to SQLCODE.

If the precompiler or coprocessor encounters an INCLUDE SQLCA statement, it ignores the statement
and issues a warning message. The precompiler or coprocessor also does not recognize hand-coded
definitions, and a hand-coded definition creates a compile-time conflict with the generated definition. A
similar conflict arises if definitions of SQLCADE or SQLSTAT, other than the ones generated by the Db2
precompiler or coprocessor, appear in the program.

Positioned updates of columns
Certain SQL processing options affect the use of the FOR UPDATE clause to achieve positioned column
updates.

The NOFOR SQL processing option affects the use of the FOR UPDATE clause. The NOFOR option is in
effect when either of the following are true:

16 STDSQL(86) is a synonym, but STDSQL(YES) should be used.

326 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• The NOFOR option is specified.
• The STDSQL(YES) option is in effect.

Otherwise, the NOFOR option is not in effect. The following table summarizes the differences when the
option is in effect and when the option is not in effect:

Table 65. The NOFOR SQL processing option

When NOFOR is in effect When NOFOR is not in effect

The use of the FOR UPDATE clause in the SELECT
statement of the DECLARE CURSOR statement
is optional. This clause restricts updates to the
specified columns and causes the acquisition of
update locks when the cursor is used to fetch
a row. If no columns are specified, positioned
updates can be made to any updatable columns
in the table or view that is identified in the first
FROM clause in the SELECT statement. If the FOR
UPDATE clause is not specified, positioned updates
can be made to any columns that the program has
Db2 authority to update.

The FOR UPDATE clause must be specified.

DBRMs must be built entirely in virtual storage,
which might possibly increase the virtual
storage requirements of the Db2 precompiler or
coprocessor. However, creating DBRMs entirely in
virtual storage might cause concurrency problems
with DBRM libraries.

DBRMs can be built incrementally using the Db2
precompiler or coprocessor.

SQL processing options do not affect ODBC behavior.

Mappings from SQL to XML
Db2 maps SQL to XML data according to industry standards and performs several different mappings.

To construct XML data from SQL data, the following mappings are performed:

• SQL character sets to XML character sets
• SQL identifiers to XML names
• SQL data values to XML data values

Db2 maps SQL to XML data according to industry standards. For complete information, see Information
technology - Database languages - SQL- Part 14: XML-Related Specifications (SQL/XML) ISO/IEC
9075-14:2003.

Mapping SQL character sets to XML character sets
The character set used for XML data is Unicode UTF-8. SQL character data is converted into Unicode when
it is used in XML built-in functions.

Mapping SQL identifiers to XML names
Many SQL identifiers that contain certain characters must be escaped when the SQL identifier is
converted into an XML name.

Strings that start with 'XML', in any case combination, are reserved for standardization, and characters
such as '#', '{', and '}' are not allowed in XML names. Many SQL identifiers containing these characters
need to be escaped when the SQL identifiers are converted into XML names.

Chapter 2. Language elements in SQL 327

Db2 applies full escaping to SQL identifiers that are column names when it derives XML names. The
mapping converts a colon (:) to _x003A_, _x to _x005F_x, and other restricted characters to a string of
the form _xuuuu_ where uuuu is the Unicode value for the character. An identifier with an initial 'XML' (in
any case combination) is escaped by mapping the initial x to _x0078_, or the initial X to _x0058_.

Mapping SQL data values to XML data values
SQL data values are mapped to XML values based on SQL data types.

The following data types are not supported and cannot be used as arguments to XML value constructors:

• ROWID
• Character strings that are defined with the FOR BIT DATA attribute
• Binary strings
• A string or a binary string distinct type that is based on a ROWID, FOR BIT DATA character string, or

BLOB

For supported data types, the encoding scheme for XML values is Unicode.

328 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Chapter 3. Built-in global variables and session
variables

Db2 provides several built-in session variables and built-in global variables.

Built-in session variables contain information about the server and application process. Built-in global
variables contain information about the database manager.

Built-in global variables
Built-in global variables are provided with the database manager and are used in SQL statements to
retrieve scalar values associated with the variables.

As an example, the SYSIBM.PRODUCTID_EXT built-in global variable is referenced in an SQL statement to
retrieve the extended product identifier of the database manager that invoked a function.

Authorization
The authorization ID of any statement that retrieves the value of the global variable is required to have
one of the following:

• The READ privilege on that global variable
• DATAACCESS authority
• SYSADM authority

The READ privilege is granted to PUBLIC for built-in global variables, unless RACF external security is
in use.

The authorization ID of any statement that assigns a value to a global variable is required to have one
of the following:

• The WRITE privilege on that global variable
• DATAACCESS authority
• SYSADM authority

The WRITE privilege is not granted to PUBLIC for built-in global variables. The GRANT (variable
privileges) statement can be used to grant the WRITE privilege to other users.

CATALOG_LEVEL
Contains the current catalog level.

This global variable has the following characteristics:

• It is read only, with values maintained by the system.
• The type is VARCHAR(30).
• The schema is SYSIBM.
• The scope of this global variable is session.

The format is VvvRrMmmm, where vv is the version, r is the release, and mmm is the modification level. For
example, V12R1M510 identifies function level 510. For a list of all available function levels in Db2 12, see
Db2 12 function levels (Db2 for z/OS What's New?).

Values V10R1 and V11R1 are also supported.

© Copyright IBM Corp. 1982, 2024 329

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_db2functionlevels.html

CLIENT_IPADDR
Contains the value of the client IP address for the connection.

For remote client connections, the value is the host IP address of the application that is used to establish
the connection. For local host applications, the value is NULL. For remote host applications, the value is
the IP address that is associated with the Db2 subsystem used to establish the connection as shown by
issuing the -DISPLAY DDF command.

This global variable has the following characteristics:

• It is read only, with values maintained by the system.
• The type is CHAR(39).
• The schema is SYSIBM.
• The scope of this global variable is session.

The value is set by Db2 as obtained from the network. If the client did not connect by using the TCP/IP or
SSL protocol, the value of the global variable is NULL.

1111:2222:3333:4444:5555:6666:7777:8888

Or IPv4-mapped IPv6 format:

::FFFF:9.30.115.135

Related reference
-DISPLAY DDF command (Db2) (Db2 Commands)
Related information
DSNL085I (Db2 Messages)
DSNL089I (Db2 Messages)

DEFAULT_SQLLEVEL
Contains the value of the default value of the SQLLEVEL SQL processing option (DECPSQLL).

This global variable has the following characteristics:

• It is read only, with values maintained by the system.
• The type is VARCHAR(30)
• The schema is SYSIBM.
• The scope of this global variable is session.

The format is VvvRrMmmm, where vv is the version, r is the release, and mmm is the modification level. For
example, V12R1M510 identifies function level 510. For a list of all available function levels in Db2 12, see
Db2 12 function levels (Db2 for z/OS What's New?).

GET_ARCHIVE
Contains a string value that indicates whether a reference to an archive-enabled table in a table-reference
should include rows in the associated archive table.

This global variable has the following characteristics:

• It is updatable, with values maintained by the user.
• The type is CHAR(1).
• The schema is SYSIBMADM.
• The scope of this global variable is session.

The global variable can be set to the following:

330 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_displayddf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnl085i.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnl089i.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_db2functionlevels.html

Y
Specifies that when a table-reference is an archive-enabled table, the table reference includes rows in
the associated archive table.

If the SYSIBMADM.GET_ARCHIVE global variable is set to 'Y' and the ARCHIVESENSITIVE bind option
is set to 'Y', an archive-enabled table cannot be referenced in an SQL table function or in the definition
of a row permission or column mask that is activated by a data change statement or query.

N
Specifies that when a table-reference is an archive-enabled table, the table reference does not
include rows in the associated archive table. This is the default value.

Related concepts
Archive-enabled tables and archive tables (Introduction to Db2 for z/OS)
Related reference
table-reference
A table-reference specifies a result table as either a table or view, or an intermediate table.

MAX_LOCKS_PER_TABLESPACE
Contains a big integer value that specifies the default maximum number of page, row, or LOB locks that an
application can simultaneously hold in a table space.

FL 507

If a single application exceeds the maximum number of locks in a single table space, lock escalation
occurs.

The value that you specify for this field must be less than the value of the MAX_LOCKS_PER_USER built-in
global variable (except when MAX_LOCKS_PER_USER is set to 0).

This global variable has the following characteristics:

• It is updatable, with values maintained by the user.
• The type is BIGINT.
• The schema is SYSIBMADM.
• The scope of this global variable is session.
• The default value is determined from the NUMLKTS subsystem parameter at the start of the

application. Any subsequent changes to the NUMLKTS subsystem parameter do not affect the value
of MAX_LOCKS_PER_TABLESPACE. You can use either of the following SET assignment statements
to reinitialize MAX_LOCKS_PER_TABLESPACE using the current value of the NUMLKTS subsystem
parameter:

SET SYSIBMADM.MAX_LOCKS_PER_TABLESPACE = DEFAULT;

SET SYSIBMADM.MAX_LOCKS_PER_TABLESPACE = NULL;

• The acceptable range of values is 0–104857600

Related reference
LOCKS PER TABLE(SPACE) field (NUMLKTS subsystem parameter) (Db2 Installation and Migration)
LOCKS PER USER field (NUMLKUS subsystem parameter) (Db2 Installation and Migration)

MAX_LOCKS_PER_USER
Contains a big integer value that specifies the maximum number of page, row, or LOB locks that a single
application can concurrently hold for all table spaces.

FL 507

MAX_LOCKS_PER_USER has the following characteristics:

Chapter 3. Built-in global variables and session variables 331

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_archivetables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_numlkts.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_numlkus.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html

• It is updatable, with values maintained by the user.
• The type is BIGINT.
• The schema is SYSIBMADM.
• The scope of this global variable is session.
• The default value is determined from the NUMLKUS subsystem parameter at the start of the

application. Any subsequent changes to the NUMLKUS subsystem parameter do not affect the value of
MAX_LOCKS_PER_USER. You can use either of the following SET assignment statements to reinitialize
MAX_LOCKS_PER_USER using the current value of the NUMLKUS subsystem parameter:

SET SYSIBMADM.MAX_LOCKS_PER_USER = DEFAULT;

SET SYSIBMADM.MAX_LOCKS_PER_USER = NULL;

• The acceptable range of values is 0–104857600

Related reference
LOCKS PER USER field (NUMLKUS subsystem parameter) (Db2 Installation and Migration)

MOVE_TO_ARCHIVE
Contains a string value that indicates whether the deletion of a row of an archive-enabled table should
result in storing a copy of the deleted row in the associated archive table.

This global variable has the following characteristics:

• It is updatable, with values maintained by the user.
• The type is CHAR(1).
• The schema is SYSIBMADM.
• The scope of this global variable is session.

The global variable can be set to the following:
Y

Specifies that a delete of a row in an archive-enabled table will result in storing a copy of the deleted
row in the associated archive table. Additionally, when the global variable is set to 'Y', an insert or
update operation that specifies the archive-enabled table as the target of the statement will return an
error.

E
Specifies that a delete of a row in an archive-enabled table will result in storing a copy of the deleted
row in the associated archive table.

N
Specifies that a delete of a row in an archive-enabled table will not result in storing a copy of a deleted
row in the associated archive table.

The default value is determined from the value of the MOVE_TO_ARCHIVE_DEFAULT subsystem
parameter in macro DSN6SPRM.

Related concepts
Archive-enabled tables and archive tables (Introduction to Db2 for z/OS)

PRODUCTID_EXT
Contains the extended product identifier of the database manager that invoked the function.

This global variable has the following characteristics:

• It is read only, with values maintained by the system.
• The type is VARCHAR(30).
• The schema is SYSIBM

332 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_numlkus.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_archivetables.html

• The scope of this global variable is session.

The format of extended product identifier values is pppvvrrmmm, where ppp is a 3-letter product code
(such as DSN for Db2 for z/OS), vv is the version, rr is the release, and mmm is the modification level. For
example, DSN1201510 represents Db2 12 at the highest released function level.

REPLICATION_OVERRIDE
Indicates whether Db2 is to disable recording of temporal history for a system-period temporal table
and allow an application to specify values for row-begin, row-end,transaction-start-ID, and generated
expression columns.

FL 503The global variable does not affect new values for row-begin, row-end, transaction-start-ID, and
generated expression columns that are not explicitly specified as the target of an assignment clause for a
data change statement. Db2 continues to generate values for these columns in other contexts.

This global variable has the following characteristics:

• It is updatable, with values maintained by the user.
• The type is CHAR(1).
• The schema is SYSIBMADM.
• The scope of this global variable is session.
• The default value is 'N'

The global variable can be set to the following:
N

An application is not allowed to specify values for row-begin, row-end, transaction-start-ID, and
generated expression columns. The recording of temporal history for a system-period temporal table
is enabled.

N is the default.

Y
An application is allowed to specify values for row-begin, row-end, transaction-start-ID, and
generated expression columns. The recording of temporal history for a system-period temporal table
is disabled.

The REPLICATION_OVERRIDE built-in global variable is not intended for general use. It is intended for use
by products that enable Db2 replication. The READ privilege on the variable is granted to PUBLIC. The
WRITE privilege on the variable is not granted to PUBLIC.

Setting the SYSIBMADM.REPLICATION_OVERRIDE built-in global variable to 'Y' overrides the following
default behaviors:

• Row-begin, row-end, transaction-start-ID, and generated expression columns are normally defined so
that Db2 always generates the values. When the override is in effect, insert or update operations can
specify values for row-begin, row-end, transaction-start-ID, or generated expression columns.

• Update and delete operations for system-period temporal tables normally generate historical rows.
When the override is in effect, historical rows are not written to the associated history table for update
and delete operations.

Related reference
SET_MAINT_MODE_RECORD_NO_TEMPORALHISTORY stored procedure

Chapter 3. Built-in global variables and session variables 333

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m503.html

TEMPORAL_LOGICAL_TRANSACTION_TIME
Contains the value that is assigned to the row-begin column of a system-period temporal table, or to the
end column in a history table during an insert, update, or delete operation.

This global variable has the following characteristics:

• It is updatable, with values maintained by the user or the system.
• The type is TIMESTAMP(12) WITHOUT TIME ZONE.
• The schema is SYSIBM.
• The scope of this global variable is session.

The global variable can be set to the following:
NULL

Specifies that temporal logical transactions are not in use. This is the default value. Db2 ensures the
uniqueness of the generated values for row-begin columns in system-period temporal tables, and end
columns in history tables across transactions, assuming that temporal logical transactions have not
been used. If multiple rows are inserted or updated in system-period temporal tables within a single
SQL unit of work, the values for the row-begin columns are the same for all of the rows and are unique
from the values that are generated for the columns by another transaction. If a conflicting unit of work
is updating the same row in the system-period temporal table, and the row to be inserted into the
associated history table would have an end timestamp value greater than the begin timestamp value,
an error is returned. If the begin timestamp value and end timestamp value for the row in the history
table are the same, a row is not inserted into the history table.

Non-null value
Specifies a timestamp value to start a new temporal logical transaction. It is recommended that the
value be later in time than the existing value of the global variable.
While the SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME built-in global variable is set to a non-
null value, the application controls the scope of temporal logical transactions. Db2 does not ensure
the uniqueness of the generated values for row-begin columns in system-period temporal tables, and
end columns in history tables across transactions.
When the TEMPORAL_LOGICAL_TRANSACTIONS global variable is set to 0, within a unit of work, a
single assignment of a non-null value can be made to the global variable.
The variable must not be assigned a value in the body of a before trigger.
The variable must not be assigned a non-null value if values have been assigned to row-begin
columns or transaction-start-ID columns within the same unit of work.
During the execution of a data change operation, the value of the
TEMPORAL_LOGICAL_TRANSACTION_TIME built-in global variable is the value established at the
beginning of the data change statement.

TEMPORAL_LOGICAL_TRANSACTIONS
Specifies whether multiple temporal logical transactions are allowed within a single unit of work.

This global variable has the following characteristics:

• It is updatable, with values maintained by the user or the system.
• The type is SMALLINT.
• It is NOT NULL.
• The schema is SYSIBM.
• The scope of this global variable is session.

The global variable can be set to the following:
0

Disallows multiple temporal logical transactions in a single unit of work. This is the default value.

334 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

1
Allows multiple temporal logical transactions in a single unit of work.

Rules for setting built-in global variables by using profile tables
In remote applications, some built-in global variables can be set with a value from the profile attributes
table. When you set built-in global variables through the profile attributes table, be aware of the following
rules and behavior.

You can set the following built-in global variables by specifying the GLOBAL_VARIABLE value for the
KEYWORDS column in the DSN_PROFILE_ATRRIBUTES table. For detailed instructions, see Setting built-
in global variables by using profile tables (Db2 Administration Guide).

Global variable Examples

“GET_ARCHIVE” on page 330
SET SYSIBMADM.GET_ARCHIVE = 'Y'

FL 507
“MAX_LOCKS_PER_TABLESPACE
” on page 331

SET SYSIBMADM.MAX_LOCKS_PER_TABLESPACE = NULL

FL 507
“MAX_LOCKS_PER_USER” on
page 331

SET SYSIBMADM.MAX_LOCKS_PER_USER = DEFAULT

“MOVE_TO_ARCHIVE” on page
332 SET SYSIBMADM.MOVE_TO_ARCHIVE = 'N'

“TEMPORAL_LOGICAL_TRANSAC
TION_TIME” on page 334 SET SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME =

'2014-11-14-08.05.01.123456789'

“TEMPORAL_LOGICAL_TRANSAC
TIONS” on page 334 SET SYSIBM.TEMPORAL_LOGICAL_TRANSACTIONS = 0

The following rules apply to SET statements for built-in global variables in the
DSN_PROFILE_ATTRIBUTES table:

• The schema qualifier of the variable must be specified.
• The SET statement must have an equal sign (=) between the global variable name and the value that is

assigned.
• Variable names can be specified in mixed case. Extraneous blanks between keywords are removed.
• The value that is specified for assignment must be valid for the variable and must not be an expression,

or reference other special registers or variables.
• The value that is specified for assignment is passed through this interface as a string constant. For

example, if a value to be assigned is the same as the name of a special register, Db2 stores the special
register name, and not the special register value.

• The maximum length of the SET statement is 1024 bytes.
• The statement must be a Unicode string and encoded with the appropriate CCSID for the application.
• The variable is assigned the value and it is stored as specified.

Built-in global variable values persist for the lifetime of the connection unless the application explicitly
sets the global variable. Built-in global variable values that are set explicitly by the application take
precedence over values that are set in the profile tables. System directed connections, such as three-part
name references, use the values of the global variables of the requesting Db2 site. For example, if a Java
application establishes a connection to Db2 site 1, the global variable values are established with the
profile tables from site 1. Later, if the application runs an SQL statement with an implicit three-part name

Chapter 3. Built-in global variables and session variables 335

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_settingglobalvariablesprofiles.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_settingglobalvariablesprofiles.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html

connection to Db2 site 2, then the global variable values that are established on site 1 are referenced
when the SQL statement runs on site 2.

Commit and rollback operations have no effect on the values of global variables, regardless of how they
were established.

The authorization that is required to set built-in global variables is the same that is required to insert rows
into the DSN_PROFILE_TABLE and DSN_PROFILE_ATTRIBUTES tables.

Related tasks
Monitoring and controlling Db2 by using profile tables (Db2 Administration Guide)
Related reference
Built-in global variables
Built-in global variables are provided with the database manager and are used in SQL statements to
retrieve scalar values associated with the variables.
Profile tables (Db2 Performance)

Built-in session variables
Db2 provides several built-in session variables that contain information about the server and application
process. The value of a built-in session variable can be obtained by invoking the GETVARIABLE function
with the name of the built-in session variable.

Db2 provides the following built-in session variables:
SYSIBM.APPLICATION_ENCODING_SCHEME

Contains a string that corresponds to the value that is specified for the APPLICATION ENCODING field
on the DSNTIPF installation panel. The value will be EBCDIC, ASCII, UNICODE, or 1-65533, and this
session variable can never be null.

SYSIBM.COBOL_STRING_DELIMITER
Contains a string that corresponds to the value that is specified for the STRING DELIMITER field on
the DSNTIPF installation panel. The value will be DEFAULT, ", or ', and this session variable can never
be null.

SYSIBM.DATA_SHARING_GROUP_NAME
Contains a string that corresponds to the name of the data sharing group for this Db2 subsystem. If
the subsystem is not part of data sharing group, the null value is returned.

SYSIBM.DATE_FORMAT
Contains a string that corresponds to the value that is specified for the DATE FORMAT field on the
DSNTIP4 installation panel. The value will be ISO, JIS, USA, EUR, or LOCAL, and this session variable
can never be null.

SYSIBM.DATE_LENGTH
Contains a string that corresponds to the value that is specified for the LOCAL DATE LENGTH field on
the DSNTIP4 installation panel. The value will be 10-254, or 0 for no exit, and this session variable
can never be null.

SYSIBM.DECIMAL_ARITHMETIC
Contains a string that corresponds to the value that is specified for the DECIMAL ARITHMETIC field on
the DSNTIP4 installation panel. The value will be DEC15, DEC31, 15, or 31, and this session variable
can never be null.

SYSIBM.DECIMAL_POINT
Contains a string that corresponds to the value that is specified for the DECIMAL POINT IS field on the
DSNTIPF installation panel. The value will be '.' or ',' and this session variable can never be null.

SYSIBM.DEFAULT_DECFLOAT_ROUND_MODE
Contains a string that corresponds to the value that is specified for the DECFLOAT ROUNDING MODE
field on the DSNTIPF installation panel. This session variable can never be null.

336 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createprofiles.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_profiletables.html

SYSIBM.DEFAULT_SSID
Contains a string that corresponds to the value that is specified for the GROUP ATTACH field on the
DSNTIPK installation panel or the SUBSYSTEM NAME field on the DSNTIPM installation panel. This
session variable can never be null.

SYSIBM.DEFAULT_LANGUAGE
Contains a string that corresponds to the value that is specified for the LANGUAGE DEFAULT field on
the DSNTIPF installation panel. The value will be ASM, C, CPP, IBMCOB, FORTRAN, or PL/I, and this
session variable can never be null.

SYSIBM.DEFAULT_LOCALE_LC_CTYPE
Contains a string that corresponds to the value that is specified for the LOCALE LC_CTYPE field on the
DSNTIPF installation panel. This session variable can never be null.

SYSIBM.DISTRIBUTED_SQL_STRING_DELIMITER
Contains a string that corresponds to the value that is specified for the DIST SQL STR DELIMTR field
on the DSNTIPF installation panel. The value will be ", or ', and this session variable can never be null.

SYSIBM.DSNHDECP_NAME
Contains a string that corresponds to the fully qualified data set name of the data set from
which the DSNHDECP or a user-specified application defaults module was loaded. For instance,
'DSN910.SDSNEXIT(DSNHDECP)'. This session variable can never be null.

SYSIBM.DYNAMIC_RULES
Contains a string that corresponds to the value that is specified for the USE FOR DYNAMICRULES field
on the DSNTIP4 installation panel. The value will be YES or NO, and this session variable can never be
null.

SYSIBM.ENCODING_SCHEME
Contains a string that corresponds to the value that is specified for the DEF ENCODING SCHEME field
on the DSNTIPF installation panel. The value will be EBCDIC, ASCII, or UNICODE, and this session
variable can never be null.

SYSIBM.MIXED_DATA
Contains a string that corresponds to the value that is specified for the MIXED DATA field on the
DSNTIPF installation panel. The value will be YES or NO, and this session variable can never be null.

SYSIBM.NEWFUN
Contains a string that represents the default maximum level of the SQL function syntax that is
accepted by the Db2 precompiler or the Db2 coprocessor, regardless of the Db2 function level. For
more information about the NEWFUN option, see Descriptions of SQL processing options.

SYSIBM.PACKAGE_NAME
Contains a string that corresponds to the name of the package that is currently being executed. If a
package is not currently being executed, the null value is returned. (This situation can occur when the
plan that is being executed bound one or more DBRMs directly).

SYSIBM.PACKAGE_SCHEMA
Contains a string that corresponds to the collection ID of the package that is currently being executed.
If a package is not currently being executed, the null value is returned.

SYSIBM.PACKAGE_VERSION
Contains a string that corresponds to the version of the package that is currently being executed. If a
package is not currently being executed, the null value is returned.

SYSIBM.PAD_NUL_TERMINATED
Contains a string that corresponds to the value that is specified for the PAD NUL-TERMINATED field
on the DSNTIP4 installation panel. The value will be YES or NO, and this session variable can never be
null.

SYSIBM.PLAN_NAME
Contains a string that corresponds to the name to the plan that is currently being executed. This
session variable can never be null.

SYSIBM.SECLABEL
Contains a string that corresponds to the RACF SECLABEL value, if any, that has been defined for the
current userid. If a value has not been defined, the null value is returned.

Chapter 3. Built-in global variables and session variables 337

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_descriptionprocessingoptions.html

SYSIBM.SQL_STRING_DELIMITER
Contains a string that corresponds to the value that is specified for the SQL STRING DELIMITER field
on the DSNTIPF installation panel. The value will be DEFAULT, ", or ', and this session variable can
never be null.

SYSIBM.SSID
Contains a string that corresponds to the actual Db2 subsystem identifier for this Db2 subsystem. This
session variable can never be null.

SYSIBM.STANDARD_SQL
Contains a string that corresponds to the value that is specified for the STD SQL LANGUAGE field on
the DSNTIP4 installation panel. The value will be YES or NO, and this session variable can never be
null.

SYSIBM.SYSTEM_NAME
Contains a string that corresponds to the name of the Db2 for z/OS subsystem, as defined in field
SUBSYSTEM NAME on installation panel DSNTIPM. This session variable can never be null.

SYSIBM.SYSTEM_ASCII_CCSID
Contains a value that represents the ASCII CCSIDs that are in use on this system. The information
is returned as a comma-delimited string that corresponds to the ASCII CCSID that was specified on
installation panel DSNTIPF. The three values that are returned correspond to the SBCS, MIXED, and
graphic CCSID that are in use for ASCII data on this system. A value of 65534 for the MIXED or
graphic CCSID indicates that this system does not support storing data in that CCSID. This session
variable can never be null.

SYSIBM.SYSTEM_EBCDIC_CCSID
Contains a value that represents the EBCDIC CCSIDs that are in use on this system. The information
is returned as a comma-delimited string that corresponds to the EBCDIC CCSID that was specified
on installation panel DSNTIPF. The three values that are returned correspond to the SBCS, MIXED,
and graphic CCSID that are in use for EBCDIC data on this system. A value of 65534 for the MIXED
or graphic CCSID indicates that this system does not support storing data in that CCSID. This session
variable can never be null.

SYSIBM.SYSTEM_UNICODE_CCSID
Contains a value that represents the Unicode CCSIDs that are in use on this system. The information is
returned as a comma-delimited string that corresponds to the UNICODE CCSID that was specified on
installation panel DSNTIPF. The three values that are returned correspond to the SBCS, MIXED, and
graphic CCSID that are in use for Unicode data on this system. This session variable can never be null.

SYSIBM.TIME_FORMAT
Contains a string that corresponds to the value that is specified for the TIME FORMAT field on the
DSNTIP4 installation panel. The value will be ISO, JIS, USA, EUR, or LOCAL, and this session variable
can never be null.

SYSIBM.TIME_LENGTH
Contains a string that corresponds to the value that is specified for the LOCAL TIME LENGTH field on
the DSNTIP4 installation panel. The value will be 8-254 or 0 for no exit, and this session variable can
never be null.

SYSIBM.VERSION
Contains a string that represents the version of Db2.

The product identifier (PRDID) value is an 8-byte character value in pppvvrrm format, where: ppp is a
3-letter product code; vv is the version;rr is the release; and m is the modification level. In Db2 12 for
z/OS, the modification level indicates a range of function levels:

DSN12015 for V12R1M500 or higher.
DSN12010 for V12R1M100.

For more information, see Product identifier (PRDID) values in Db2 for z/OS (Db2 Administration
Guide).

This session variable can never be null.

338 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_prdidvalues.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_prdidvalues.html

For example, the following statement sets the value of host variable hv1 to the name of the plan that is
currently being executed:

 SET :hv1 = GETVARIABLE('SYSIBM.PLAN_NAME');

For more information about the GETVARIABLE function, see “GETVARIABLE scalar function” on page 464.

Chapter 3. Built-in global variables and session variables 339

340 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Chapter 4. Built-in functions
A function is an operation denoted by a function name followed by zero or more input values that are
enclosed in parentheses. It represents a relationship between a set of input values and a set of result
values. The input values to a function are called arguments.

The types of functions are aggregate, scalar, and table. A built-in function is classified as a aggregate
function or a scalar function. A user-defined function can be a column, scalar, or table function.

If a column mask is used to mask the column values in the final result table and a column mask is applied
to a column that is an argument for a function, the result of the function might be different because the
column mask is applied to the column before the function operation can take place. For example, applying
a column mask to column SSN can change the result of the aggregate function, COUNT(DISTINCT SSN).

The DISTINCT operation is performed on the unmasked column values. The keyword DISTINCT is not
an argument of the function but rather a specification of an operation that is performed before the
function is applied. If DISTINCT is specified, redundant duplicate values are eliminated before column
mask is applied. If the column in aggregate function with DISTINCT keyword has column mask definition
references columns that are non-grouping column and not the target column of the DISTINCT operation,
the result of aggregate function can vary. Db2 does not guarantee the same row is returned from a group
of duplicates in each execution, thus, the values in those non-DISTINCT/non-grouping columns in the
returned row could be different each time.

OLAP specification and functions
The RANK, DENSE_RANK, and ROW_NUMBER specifications are sometimes referred to as built-in
'functions'. Refer to “OLAP specifications” on page 280 for more information on these specifications.

Db2 MQ functions
Db2 MQ functions integrate IBM MQ messaging operations within SQL statements. The functions help
you integrate IBM MQ messaging with database applications. You can use the functions to access IBM
MQ messaging from within SQL statements and to combine IBM MQ messaging with Db2 database
access.

The functions can be scalar or table functions. For more information on using IBM MQ functions, see
the information on enabling IBM MQ functions in Additional steps for enabling IBM MQ user-defined
functions (Db2 Installation and Migration) and on programming techniques in IBM MQ with Db2 (Db2
Application programming and SQL).

Administrative task scheduler functions
The administrative task scheduler table functions provide information and status about the tasks
that are scheduled to run using the administrative task scheduler. The administrative task scheduler
provides the ability to run stored procedures, JCL jobs, and other administrative tasks according to
a time or an event-based schedule. For more information, see Scheduling administrative tasks (Db2
Administration Guide).

List of supported built-in functions
This section contains an alphabetical list of the built-in functions that Db2 for z/OS supports.

Table 66. Supported built-in functions

Function name Description

“ABS or ABSVAL scalar function” on page
382

Returns the absolute value of its argument

“ACOS scalar function” on page 383 Returns the arc cosine of an argument as an angle, expressed in
radians

© Copyright IBM Corp. 1982, 2024 341

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_enablemqseriesudfs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_enablemqseriesudfs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_webspheremqdb2.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_webspheremqdb2.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_schedulingadmintasks.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_schedulingadmintasks.html

Table 66. Supported built-in functions (continued)

Function name Description

FL 507 “ADD_DAYS scalar function” on
page 383“1” on page 353

Returns a datetime value that represents the first argument plus a
specified number of days

“ADD_MONTHS scalar function” on page
384

Returns a date that represents the date argument plus the
number of months argument

“ADMIN_TASK_LIST table function” on
page 669

Returns a table with one row for each of the tasks that are defined
in the administrative task scheduler task list

“ADMIN_TASK_OUTPUT table function” on
page 673

Returns the output parameter values and result sets, if available.
If the task that was executed is not a stored procedure or the
requested execution status is not available, the function returns
an empty table.

“ADMIN_TASK_STATUS table function” on
page 675

Returns a table with one row for each task in the administrative
task scheduler task list that contains the status for the last time
the task was run

“ARRAY_AGG aggregate function” on page
354

Returns an array in which each value of the input set is assigned
to an element of the array

“ARRAY_DELETE scalar function” on page
386

Returns an array with the requested elements deleted.

“ARRAY_FIRST scalar function” on page
387

Returns the minimum array index value of an array.

“ARRAY_LAST scalar function” on page 388 Returns the maximum array index value of an array.

“ARRAY_NEXT scalar function” on page
389

Returns the next larger array index value for an array, relative to a
specified array index argument.

“ARRAY_PRIOR scalar function” on page
391

Returns the next smaller array index value for an array, relative to
a specified array index argument.

“ARRAY_TRIM scalar function” on page 392 Returns an array after removing elements from the end of an
ordinary array.

“ASCII scalar function” on page 393 Returns the ASCII code value of the most character of the
argument as an integer

“ASCII_CHR scalar function” on page 393 Returns the character that corresponds to the ASCII code value
that is specified by the argument

“ASCII_STR or ASCIISTR scalar function”
on page 394

Returns an ASCII version of the character or graphic string
argument

“ASIN scalar function” on page 395 Returns the arc sine of an argument as an angle, expressed in
radians

“ATAN scalar function” on page 395 Returns the arc tangent of an argument as an angle, expressed in
radians

“ATANH scalar function” on page 395 Returns the hyperbolic arc tangent of an argument as an angle,
expressed in radians

“ATAN2 scalar function” on page 396 Returns the arc tangent of x and y coordinates as an angle,
expressed in radians

“AVG aggregate function” on page 357 Returns the average of a set of numbers

“BLOB scalar function” on page 400 Returns a BLOB representation of its argument

342 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html

Table 66. Supported built-in functions (continued)

Function name Description

“BLOCKING_THREADS table function” on
page 678

Returns a table with one row for each lock or claim that
threads hold against the databases that are specified in the input
parameter

“BIGINT scalar function” on page 396 Returns a big integer representation of its argument

“BITAND, BITANDNOT, BITOR, BITXOR,
and BITNOT scalar functions” on page 398

Return a corresponding base 10 integer value in a data type that is
based on the data type of the input arguments

“BINARY scalar function” on page 397 Returns a fixed-length binary string representation of its argument

FL 507 “BTRIM scalar function” on page
401“1” on page 353

Removes the characters that are specified in a trim string from the
beginning and end of a source string

“CARDINALITY scalar function” on page
402

Returns a value of that represents the number of elements of an
array

“CCSID_ENCODING scalar function” on
page 403

Returns the encoding scheme of a CCSID with a value of ASCII,
EBCDIC, UNICODE, or UNKNOWN

“CEILING or CEIL scalar function” on page
404

Returns the smallest integer greater than or equal to the
argument

“CHAR scalar function” on page 405 Returns a fixed-length character string representation of its
argument

FL 506“CHARACTER_LENGTH or
CHAR_LENGTH scalar function” on page
413

Returns the length of its argument in the number of string units
that are specified

“CHR scalar function” on page 415 Returns the character that corresponds to the ASCII code value
that is specified by the argument

“CLOB scalar function” on page 415 Returns a CLOB representation of the first argument

“COALESCE scalar function” on page 417 Returns the first argument in a set of arguments that is not null

“COLLATION_KEY scalar function” on page
418

Returns a string that represents the collation key of the argument
in the specified collation

“COMPARE_DECFLOAT scalar function” on
page 421

Returns a SMALLINT value that indicates whether two arguments
are equal, or unordered, or whether one argument is greater than
the other

“CONCAT scalar function” on page 422 Returns the concatenation of two strings

“CONTAINS scalar function” on page 422 Returns a result about whether or not a match was found during a
search of a text search index

“CORR or CORRELATION aggregate
function” on page 358

Returns the coefficient of the correlation of a set of number pairs

“COS scalar function” on page 425 Returns the cosine of an argument that is expressed as an angle in
radians

“COSH scalar function” on page 425 Returns the hyperbolic cosine of an argument that is expressed as
an angle in radians

“COUNT aggregate function” on page 358 Returns the number of rows or values in a set of rows or values

“COUNT_BIG aggregate function” on page
359

Same as COUNT, except the result can be greater than the
maximum value of an integer

Chapter 4. Built-in functions 343

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html

Table 66. Supported built-in functions (continued)

Function name Description

FL 506 “COVAR_POP or COVARIANCE or
COVAR aggregate function” on page 360

Returns the population covariance of a set of number pairs

“COVAR_SAMP or COVARIANCE_SAMP
aggregate function” on page 361

Returns unbiased sample covariance (n-1) of a set of number
pairs

FL 504 CUME_DIST“1” on page 353 Returns a cumulative distribution of a row in an OLAP window

FL 504 “CUME_DIST aggregate function”
on page 362“1” on page 353

Returns the cumulative distribution of a row that is hypothetically
inserted into a group of rows

“DATE scalar function” on page 425 Returns a date derived from its argument

“DAY scalar function” on page 426 Returns the day part of its argument

“DAYOFMONTH scalar function” on page
428

Similar to DAY

“DAYOFWEEK scalar function” on page 429 Returns an integer in the range 1–7, where 1 represents Sunday

“DAYOFWEEK_ISO scalar function” on
page 430

Returns an integer in the range 1–7, where 1 represents Monday

“DAYOFYEAR scalar function” on page 431 Returns an integer in the range 1–366, where 1 represents
January 1

“DAYS scalar function” on page 432 Returns an integer representation of a date

FL 507 “DAYS_BETWEEN scalar function”
on page 433“1” on page 353

Returns the number of full days between the specified arguments

“DBCLOB scalar function” on page 434 Returns a DBCLOB representation of its argument

“DECIMAL or DEC scalar function” on page
441

Returns a decimal representation of its argument

“DECFLOAT scalar function” on page 437 Returns a DECFLOAT representation of its argument

“DECFLOAT_FORMAT scalar function” on
page 438

Returns a DECFLOAT(34) value that is based on the interpretation
of the input string using the specified format

“DECFLOAT_SORTKEY scalar function” on
page 440

Returns a binary value that can be used when sorting DECFLOAT
values

“DECODE scalar function” on page 443 Returns a specified result-expression based on a comparison of
input expressions (similar to the CASE expression)

“DECRYPT_BINARY, DECRYPT_BIT,
DECRYPT_CHAR, and DECRYPT_DB scalar
functions” on page 444

Returns the decrypted value of an encrypted argument that was
encrypted using the ENCRYPT_TDES function

FL 505 “DECRYPT_DATAKEY_INTEGER,
DECRYPT_DATAKEY_BIGINT,
DECRYPT_DATAKEY_DECIMAL,
DECRYPT_DATAKEY_VARCHAR,
DECRYPT_DATAKEY_CLOB,
DECRYPT_DATAKEY_VARGRAPHIC,
DECRYPT_DATAKEY_DBCLOB, and
DECRYPT_DATAKEY_BIT scalar functions”
on page 446

Returns the decrypted value of an encrypted argument that was
encrypted using the algorithm that was specified when the data
was encrypted

344 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m505.html

Table 66. Supported built-in functions (continued)

Function name Description

“DEGREES scalar function” on page 449 Returns the number of degrees for an argument that is expressed
in radians

“DIFFERENCE scalar function” on page 450 Returns a value that represents the difference between the
sounds of two strings based on applying the SOUNDEX function
to the strings

“DIGITS scalar function” on page 450 Returns a character string representation of a number

“DOUBLE_PRECISION or DOUBLE scalar
function” on page 451

Returns a double precision floating-point representation of its
argument

“DSN_XMLVALIDATE scalar function” on
page 452

Returns an XML value that is the result of applying XML schema
validation to the first argument

“EBCDIC_CHR scalar function” on page
453

Returns the character that corresponds to the EBCDIC code value
that is specified by the argument

“EBCDIC_STR scalar function” on page 453 Returns an EBCDIC version of the string argument

FL 505 “ENCRYPT_DATAKEY scalar
function” on page 454

Returns the argument as an encrypted value using the specified
key label and algorithm

“ENCRYPT_TDES or ENCRYPT scalar
function” on page 456

Returns the argument as an encrypted value using the Triple DES
encryption algorithm

“EXP scalar function” on page 458 Returns the exponential function of an argument

“EXTRACT scalar function” on page 459 Returns a portion of a date or timestamp based on its arguments

FL 504 FIRST_VALUE“1” on page 353 Returns the expression value for the first row in an OLAP window

“FLOAT scalar function” on page 461 Same as DOUBLE

“FLOOR scalar function” on page 462 Returns the largest integer that is less than or equal to the
argument

“GENERATE_UNIQUE and
GENERATE_UNIQUE_BINARY scalar
functions” on page 462

Returns a character string of bit data that is unique compared to
any other execution of the function

“GETHINT scalar function” on page 463 Returns the embedded password hint from encrypted data, if one
exists

“GETVARIABLE scalar function” on page
464

Returns a varying-length character string representation of the
value of a session variable

“GRAPHIC scalar function” on page 465 Returns a fixed-length graphic string representation of its
argument

“GREATEST scalar function” on page 470 Returns the maximum value in a set of values

“GROUPING aggregate function” on page
363

Returns a value that indicates if a row returned in a GROUP BY
result is a row generated by a grouping set that excludes the
column represented by its argument

FL 506 “HASH scalar function” on page
471

Returns a varying-length value that is the result of applying
the specified algorithm to the first argument. It is intended for
cryptographic purposes.

“HASH_CRC32, HASH_MD5, HASH_SHA1,
and HASH_SHA256 scalar functions” on
page 472

Return a fixed-length value that is the result of applying a
hash algorithm to an input argument. They are intended for
cryptographic purposes.

Chapter 4. Built-in functions 345

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m505.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html

Table 66. Supported built-in functions (continued)

Function name Description

FL 506 “HEX scalar function” on page 474 Returns a hexadecimal representation of its argument

“HOUR scalar function” on page 475 Returns the hour part of its argument

“IDENTITY_VAL_LOCAL scalar function” on
page 476

Returns the most recently assigned value for an identity column

“IFNULL scalar function” on page 479 Returns the first argument in a set of two arguments that is not
null

“INSERT scalar function” on page 480 Returns a string that is composed of an argument inserted into
another argument at the same position where some number of
bytes have been deleted

“INSTR scalar function” on page 482 Returns the starting position of the first occurrence of one string
within another string

“INTEGER or INT scalar function” on page
483

Returns an integer representation of its argument

“JULIAN_DAY” on page 484 Returns an integer that represents the number of days from
January 1, 4712 B.C.

FL 504 LAG“1” on page 353 Returns the expression value for the row at offset rows before the
current row

“LAST_DAY scalar function” on page 485 Returns a date that represents the last day of the month of the
date argument

FL 504 LAST_VALUE“1” on page 353 Returns the expression value for the last row in an OLAP window

“LCASE scalar function” on page 486 Returns a string with the characters converted to lowercase

FL 504 LEAD“1” on page 353 Returns the expression value for the row at offset rows after the
current row

“LEAST scalar function” on page 486 Returns the minimum value in a set of values

“LEFT scalar function” on page 487 Returns a string that consists of the specified number of most
bytes or the specified string units

“LENGTH scalar function” on page 489 Returns the length of its argument

“LN scalar function” on page 490 Returns the natural logarithm of an argument

“LOCATE scalar function” on page 490 Returns the starting position of one string within another string

“LOCATE_IN_STRING scalar function” on
page 493

Returns the starting position of the first occurrence of one string
within another string

“LOG10 scalar function” on page 494 Returns the base 10 logarithm of an argument

“LOWER scalar function” on page 495 Returns a string with the characters converted to lowercase

“LPAD scalar function” on page 498 Returns a string that is padded on the with blanks or a specified
string

“LTRIM scalar function” on page 500 Returns the characters of a string with the leading blanks or
hexadecimal zeros removed

“MAX aggregate function” on page 367 Returns the maximum value in a set of column values in a group

“MAX scalar function” on page 501 Returns the maximum value in a set of values

346 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

Table 66. Supported built-in functions (continued)

Function name Description

“MAX_CARDINALITY scalar function” on
page 502

Returns a value of type BIGINT that represents the maximum
number of elements that an array can contain. This value is the
cardinality that was specified in the CREATE TYPE statement for
an ordinary array type.

“MICROSECOND scalar function” on page
503

Returns the microsecond part of its argument

“MIDNIGHT_SECONDS scalar function” on
page 504

Returns an integer in the range 0–86400 that represents the
number of seconds between midnight and the argument

“MIN aggregate function” on page 369 Returns the minimum value in a set of values in a group

“MIN scalar function” on page 505 Returns the minimum value in a set of values

“MINUTE scalar function” on page 505 Returns the minute part of its argument

“MOD scalar function” on page 506 Returns the remainder of one argument divided by a second
argument

“MONTH scalar function” on page 508 Returns the month part of its argument

“MONTHS_BETWEEN scalar function” on
page 508

Returns an estimate of the number of months between two
arguments

“MQREAD scalar function” on page 510 Returns a message from a specified IBM MQ location (return value
of VARCHAR) without removing the message from the queue

“MQREADALL table function” on page 685 Returns a table containing the messages and message metadata
from a specified IBM MQ location with a VARCHAR column and
without removing the messages from the queue

“MQREADALLCLOB table function” on page
687

Returns a table containing the messages and message metadata
from a specified IBM MQ location with a CLOB column and
without removing the messages from the queue

“MQREADCLOB scalar function” on page
511

Returns a message from a specified IBM MQ location (return value
of CLOB) without removing the message from the queue

“MQRECEIVE scalar function” on page 512 Returns a message from a specified IBM MQ location (return value
of VARCHAR) with removal of message from the queue

“MQRECEIVEALL table function” on page
689

Returns a table containing the messages and message metadata
from a specified IBM MQ location with a VARCHAR column and
with removal of messages from the queue

“MQRECEIVEALLCLOB table function” on
page 691

Returns a table containing the messages and message metadata
from a specified IBM MQ location with a CLOB column and with
removal of messages from the queue

“MQRECEIVECLOB scalar function” on
page 514

Returns a message from a specified IBM MQ location (return value
of CLOB) with removal of message from the queue

“MQSEND scalar function” on page 516 Sends data to a specified IBM MQ location, and returns a varying-
length character string that indicates whether the function was
successful or unsuccessful

“MULTIPLY_ALT scalar function” on page
517

Returns the product of the two arguments as a decimal value,
used when the sum of the argument precisions exceeds 31

“NEXT_DAY scalar function” on page 518 Returns a timestamp that represents the first weekday, specified
by the second argument, after the date argument

Chapter 4. Built-in functions 347

Table 66. Supported built-in functions (continued)

Function name Description

FL 507 “NEXT_MONTH scalar function” on
page 520“1” on page 353

Returns the first day of the next month after the specified date

“NORMALIZE_DECFLOAT scalar function”
on page 520

Returns a DECFLOAT value that is the result of normalizing the
input argument

“NORMALIZE_STRING scalar function” on
page 521

Returns a string value that is the result of normalizing the input
Unicode value

FL 504 NTH_VALUE“1” on page 353 Returns the expression value for the nth-row row in an OLAP
window

FL 504 NTILE“1” on page 353 Returns the quantile rank of a row

“NULLIF scalar function” on page 522 Returns NULL if the arguments are equal; else the first argument

“NVL scalar function” on page 523 Returns the first argument that is not null

“OVERLAY scalar function” on page 523 Returns a string that is composed of an argument inserted into
another argument at the same position where some number of
bytes have been deleted

“PACK scalar function” on page 526 Returns a binary string value that contains a data type array and a
packed representation of each non-null argument

“PERCENTILE_DISC aggregate function” on
page 371

Returns a percentile of a set of values

FL 504 PERCENT_RANK“1” on page 353 Returns a relative percentile rank of a row in an OLAP window

FL 504 “PERCENT_RANK aggregate
function” on page 372“1” on page 353

Returns the relative percentile rank of a row that is hypothetically
inserted into a group of rows

“POSITION scalar function” on page 529 Returns the position of the first occurrence of an argument within
another argument where the position is expressed in terms of the
string units that are specified

“POSSTR or STRPOS scalar function” on
page 532

Returns the position of the first occurrence of an argument within
another argument

FL 506 “POWER or POW scalar function” on
page 533

Returns the value of one argument raised to the power of a
second argument

“QUANTIZE scalar function” on page 534 Returns a DECFLOAT value that is equal in value (except for
any rounding) and sign to the first argument and which has an
exponent set to be equal to the exponent of the second argument

“QUARTER scalar function” on page 535 Returns an integer in the range 1–4 that represents the quarter of
the year for the date specified in the argument

“RADIANS scalar function” on page 536 Returns the number of radians for an argument that is expressed
in degrees

“RAISE_ERROR scalar function” on page
536

Raises an error in the SQLCA with the specified SQLSTATE and
error description

FL 506 “RANDOM or RAND scalar function”
on page 537

Returns a double precision floating-point random number

FL 504 RATIO_TO_REPORT“1” on page 353 Returns the ratio of an argument to the sum of the arguments in
an OLAP partition

348 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

Table 66. Supported built-in functions (continued)

Function name Description

“REAL scalar function” on page 538 Returns a single precision floating-point representation of its
argument

FL 504 “REGEXP_COUNT scalar function”
on page 539“1” on page 353

Returns a count of the number of times that a regular expression
pattern is matched in a string

FL 504 “REGEXP_INSTR scalar function” on
page 541“1” on page 353

Returns the starting or ending position of the matched substring,
depending on the value of the return_option argument

FL 504 “REGEXP_LIKE scalar function” on
page 543“1” on page 353

Returns an INTEGER value of 0 or 1 indicating if the regular
expression pattern is found in a string

FL 504 “REGEXP_REPLACE scalar function”
on page 546“1” on page 353

Returns a modified version of the source string where occurrences
of the regular expression pattern found in the source string are
replaced with the specified replacement string

FL 504 “REGEXP_SUBSTR scalar function”
on page 549“1” on page 353

Returns one occurrence of a substring of a string that matches the
regular expression pattern

FL 507 REGR_AVGX, REGR_AVGY,
REGR_SXX, REGR_SXY, and REGR_SYY“1”
on page 353

Return quantities that can be used to compute various diagnostic
statistics needed for the evaluation of the quality and statistical
validity of a regression model

FL 507 REGR_COUNT“1” on page 353 Returns the number of non-null number pairs used to fit a
regression line

FL 507 REGR_INTERCEPT or
REGR_ICPT“1” on page 353

Returns the y-intercept of a regression line ("b" in the equation y =
a * x + b)

FL 507 REGR_R2“1” on page 353 Returns the coefficient of determination ("R-squared" or
"goodness-of-fit") for a regression

FL 507 REGR_SLOPE“1” on page 353 Returns the slope of a regression line ("a" in the equation y = a * x
+ b)

“REPEAT scalar function” on page 551 Returns a character string composed of an argument repeated a
specified number of times

“REPLACE scalar function” on page 552 Returns a string in which all occurrences of an argument within a
second argument are replaced with a third argument

“RID scalar function” on page 555 Returns the RID of a row

“RIGHT scalar function” on page 556 Returns a string that consists of the specified number of rightmost
bytes or specified string units

“ROUND scalar function” on page 558 Returns a number rounded to the specified number of places to
the right or of the decimal place

“ROUND_TIMESTAMP scalar function” on
page 559

Returns a timestamp rounded to the unit specified by the
timestamp format string

“ROWID scalar function” on page 563 Returns a row ID representation of its argument

“RPAD scalar function” on page 563 Returns a string that is padded on the right with blanks or a
specified string

“RTRIM scalar function” on page 565 Returns the characters of an argument with the trailing blanks or
hexadecimal zeros removed

“SCORE scalar function” on page 566 Returns a relevance score that measures how well a document
matches the query used to search a text search index

Chapter 4. Built-in functions 349

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html

Table 66. Supported built-in functions (continued)

Function name Description

“SECOND scalar function” on page 568 Returns the second part of its argument

“SIGN scalar function” on page 570 Returns the sign of an argument

“SIN scalar function” on page 570 Returns the sine of an argument that is expressed as an angle in
radians

“SINH scalar function” on page 571 Returns the hyperbolic sine of an argument that is expressed as
an angle in radians

“SMALLINT scalar function” on page 571 Returns a small integer representation of its argument

“SOAPHTTPC and SOAPHTTPV scalar
function” on page 573

Returns a CLOB or VARCHAR representation of XML data from a
request to a web service

“SOAPHTTPNC and SOAPHTTPNV scalar
function” on page 574

Returns a complete CLOB or VARCHAR representation of XML
data from a complete request to a web service

“SOUNDEX scalar function” on page 572 Returns a value that represents the sound of the words in the
argument

“SPACE scalar function” on page 575 Returns a string that consists of the number of blanks the
argument specifies

“SQRT scalar function” on page 575 Returns the square root of its argument

“STDDEV_POP or STDDEV aggregate
function” on page 376

Returns the population standard deviation (division by n) of a set
of numbers

“STDDEV_SAMP aggregate function” on
page 377

Returns the sample standard deviation (division by n-1) of a set of
numbers

“STRIP scalar function” on page 576 Returns the characters of a string with the blanks (or specified
character) at the beginning, end, or both beginning and end of the
string removed

FL 506 “STRLEFT scalar function” on page
576

Returns a string that consists of the specified number of most
bytes or the specified string units

FL 506 “STRPOS scalar function” on page
577

Returns the position of the first occurrence of an argument within
another argument

FL 506 “STRRIGHT scalar function” on
page 577

Returns a string that consists of the specified number of rightmost
bytes or specified string units

“SUBSTR scalar function” on page 577 Returns a substring of a string

“SUBSTRING scalar function” on page 579 Returns a substring of a string using the specified string units

“SUM aggregate function” on page 378 Returns the sum of a set of numbers

“TAN scalar function” on page 583 Returns the tangent of an argument that is expressed as an angle
in radians

“TANH scalar function” on page 583 Returns the hyperbolic tangent of an argument that is expressed
as an angle in radians

“TIME scalar function” on page 584 Returns a time derived from its argument

“TIMESTAMP scalar function” on page 584 Returns a timestamp derived from its arguments

“TIMESTAMPADD scalar function” on page
587

Returns a timestamp derived from adding the specified interval to
a timestamp

350 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html

Table 66. Supported built-in functions (continued)

Function name Description

“TIMESTAMP_FORMAT or TO_TIMESTAMP
scalar function” on page 591

Returns a timestamp for a character string expression, using a
specified format to interpret the string

“TIMESTAMP_ISO scalar function” on page
595

Returns a timestamp derived from its arguments

“TIMESTAMPDIFF scalar function” on page
588

Returns an estimated number of the specified intervals based on
the difference between two timestamps

“TIMESTAMP_TZ scalar function” on page
596

Returns a timestamp with a time zone derived from its arguments

“TO_CHAR scalar function” on page 598 Returns a character string representation of a timestamp value
that has been formatted using a specified character template

FL 506 “TO_CLOB scalar function” on page
598

Returns a CLOB representation of the first argument

“TO_DATE scalar function” on page 599 Returns a timestamp value that is based on the interpretation of
the input string using the specified format

“TO_NUMBER scalar function” on page 599 Returns a DECFLOAT(34) value that is based on the interpretation
of the input string using the specified format

“TOTALORDER scalar function” on page
599

Returns a SMALLINT value that indicates the comparison order of
two arguments

FL 506 “TO_TIMESTAMP scalar function”
on page 600

Returns a timestamp for a character string expression, using a
specified format to interpret the string

“TRANSLATE scalar function” on page 600 Returns a string with one or more characters translated

“TRIM scalar function” on page 603 Removes bytes from the beginning, from the end, or from both the
beginning and end of a string expression

“TRIM_ARRAY scalar function” on page
605

Returns an array after removing elements from the end of an
ordinary array.

“TRUNCATE or TRUNC scalar function” on
page 606

Returns a number truncated to the specified number of places to
the right or of the decimal point

“TRUNC_TIMESTAMP scalar function” on
page 607

Returns a timestamp truncated to the unit specified by the
timestamp format string

“UCASE scalar function” on page 610 Returns a string with the characters converted to uppercase

“UNICODE scalar function” on page 610 Returns the Unicode (UTF-16) code value of the most character of
the argument as an integer

“UNICODE_STR or UNISTR scalar function”
on page 611

Returns a string in Unicode (UTF-8 or UTF-16) that represents a
Unicode encoding of the argument

“UNPACK row function” on page 696 Returns a row of values that are derived from unpacking the input
binary string. It is used to unpack a string that was encoded
according to the PACK function

“UPPER scalar function” on page 612 Returns a string with the characters converted to uppercase

“VALUE scalar function” on page 614 Same as COALESCE

“VARBINARY scalar function” on page 614 Returns a varying-length binary string representation of its
argument

Chapter 4. Built-in functions 351

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html

Table 66. Supported built-in functions (continued)

Function name Description

“VARCHAR scalar function” on page 615 Returns the varying-length character string representation of its
argument

“VARCHAR9 scalar function” on page 620 Returns the fixed-length character string representation of its
argument

“VARCHAR_FORMAT scalar function” on
page 623

Returns a varying-length character string representation of a
timestamp, with the string in a specified format

“VARGRAPHIC scalar function” on page
632

Returns a varying-length graphic string representation of its
argument

“VAR_POP or VARIANCE or VAR aggregate
function” on page 379

Returns the biased variance (division by n) of a set of numbers

“VAR_SAMP or VARIANCE_SAMP
aggregate function” on page 380

Returns the sample variance (division by n-1) of a set of numbers

“VERIFY_GROUP_FOR_USER scalar
function” on page 637

Returns a value that indicates whether the primary authorization
ID and the group authorization IDs that are associated with the
first argument are included in the authorization names that are
specified in the list of the second argument.

“VERIFY_ROLE_FOR_USER scalar
function” on page 638

Returns a value that indicates whether the roles that are
associated with the first argument are included in the role names
that are specified in the list of the second argument

“VERIFY_TRUSTED_CONTEXT_ROLE_FOR_
USER scalar function” on page 640

Returns a value that indicates whether the authorization ID that
is associated with first argument has acquired a role in a trusted
connection and whether that acquired role is included in the role
names that are specified in the list of the second argument

“WEEK scalar function” on page 641 Returns an integer that represents the week of the year with
Sunday as the first day of the week

“WEEK_ISO scalar function” on page 642 Returns an integer that represents the week of the year with
Monday as first day of a week

“XMLAGG aggregate function” on page 381 Returns an XML type that represents a concatenation of XML
elements from a collection of XML elements

“XMLATTRIBUTES scalar function” on page
644

Returns an XML sequence that contains an XQuery attribute node
for each non-null argument

“XMLCOMMENT scalar function” on page
645

Returns an XML value with a single comment node from a string
expression

“XMLCONCAT scalar function” on page 645 Returns an XML value that represents a forest of XML elements
generated by concatenating a variable number of arguments

“XMLDOCUMENT scalar function” on page
646

Returns an XML value with a single document node and zero or
more nodes as its children

“XMLELEMENT scalar function” on page
647

Returns an XML value that represents an XML element

“XMLFOREST scalar function” on page 651 Returns an XML value that represents a forest of XML elements
that all share a specific pattern

352 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 66. Supported built-in functions (continued)

Function name Description

“XMLMODIFY scalar function” on page 653 Returns an XML value that might have been modified by
the evaluation of an XQuery updating expression and XQuery
variables that are specified as input arguments

“XMLNAMESPACES scalar function” on
page 656

Returns the declaration of one or more XML namespaces

“XMLPARSE scalar function” on page 657 Returns an XML value from parsing the argument as an XML
document

“XMLPI scalar function” on page 659 Returns an XML value with a single processing instruction node

“XMLQUERY scalar function” on page 659 Returns an XML value from the evaluation of an XPath expression
against a set of arguments

“XMLSERIALIZE scalar function” on page
662

Returns an SQL character string or a BLOB value from an XML
value

“XMLTABLE table function” on page 693 Returns a result table from the evaluation of XQuery expressions,
possibly using specified input arguments as XQuery variables

“XMLTEXT scalar function” on page 665 Returns an XML value with a single text node that contains the
value of the argument

“XMLXSROBJECTID scalar function” on
page 666

Returns the XSR object identifier of the XML schema that is used
to validate the XML document specified in the argument

“XSLTRANSFORM scalar function” on page
667

The XSLTRANSFORM function transforms an XML document into a
different data format. The output can be any form possible for the
XSLT processor, including but not limited to XML, HTML, and plain
text.

Note: This is a Db2-supplied user-defined function.

“YEAR scalar function” on page 668 Returns the year part of its argument

Notes:

1. Supported in Db2 for z/OS as a passthrough-only expression, which is passed through to IBM Db2
Analytics Accelerator for z/OS. For more information, see Accelerating queries with passthrough-only
expressions.

Aggregate functions
An aggregate function, which is also known as a set function, receives a set of values for each argument
(such as the values of a column) and returns a single-value result for the set of input values. Certain rules
apply to all aggregate functions.

The following information applies to all aggregate functions, except for the COUNT(*) and COUNT_BIG(*),
variations of the COUNT and COUNT_BIG functions, and the XMLAGG function.

The argument of an aggregate function is a set of values derived from an expression. The expression
must not include another aggregate function or a scalar fullselect. The scope of the set is a group or an
intermediate result table, as explained in the information on the GROUP BY clause.

If a GROUP BY clause is specified in a query and the intermediate result from the FROM, WHERE, GROUP
BY, and HAVING clauses is the empty set, then the aggregate functions are not applied and the result of
the query is the empty set.

If the GROUP BY clause is not specified in a query and the intermediate result table of the FROM, WHERE,
and HAVING clauses is the empty set, then the aggregate functions are applied to the empty set.

Chapter 4. Built-in functions 353

https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only

For example, the result of the following SELECT statement is the number of distinct values of JOB for
employees in department D11:

 SELECT COUNT(DISTINCT JOB)
 FROM DSN8C10.EMP
 WHERE WORKDEPT = 'D11';

The keyword DISTINCT is not an argument of the function but rather a specification of an operation that
is performed before the function is applied. If DISTINCT is specified, redundant duplicate values are
eliminated before column mask is applied. If the column in aggregate function with DISTINCT keyword
has column mask definition references columns that are non-grouping column and not the target column
of the DISTINCT operation, the result of aggregate function can vary. Db2 does not guarantee the same
row is returned from a group of duplicates in each execution, thus, the values in those non-DISTINCT/
non-grouping columns in the returned row could be different each time.

DISTINCT must not be specified preceding an XML value.

For compatibility with other SQL implementations, UNIQUE can be specified as a synonym for DISTINCT
in aggregate functions.

When interpreting the DISTINCT clause for decimal floating-point values that are numerically equal, the
number of significant digits in the value is not considered. For example, the decimal floating-point number
123.00 is not distinct from the decimal floating-point number 123. The representation of the number
returned from the query will be any one of the representations encountered (for example, either 123.00
or 123).

An aggregate function can be used in a WHERE clause only if that clause is part of a subquery of a
HAVING clause and the column name specified in the expression is a correlated reference to a group. If
the expression includes more than one column name, each column name must be a correlated reference
to the same group.

The result of the COUNT and COUNT_BIG functions cannot be the null value. As specified in the
description of AVG, MAX, MIN, STDDEV, SUM, and VARIANCE, the result is the null value when the
function is applied to an empty set. However, the result is also the null value when the function is
specified in an outer select list, the argument is given by an arithmetic expression, and any evaluation of
the expression causes an arithmetic exception (such as division by zero).

If the argument values of an aggregate function are strings from a column with a field procedure, the
function is applied to the encoded form of the values and the result of the function inherits the field
procedure.

Related reference
group-by-clause
The GROUP BY clause specifies a result table that consists of a grouping of the rows of intermediate result
table that is the result of the previous clause.

ARRAY_AGG aggregate function
The ARRAY_AGG function returns an array in which each value of the input set is assigned to an element
of the array.

Syntax for ordinary array aggregation

ARRAY_AGG( expression

ORDER BY

,

sort-key-expression
ASC

DESC

)

354 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Syntax for associative array aggregation

ARRAY_AGG( index-expression , expression)

The schema is SYSIBM.

Ordinary array aggregation
expression

Specifies an expression that returns a value with a data type that is valid for an array element. The
data type of the expression must be a data type that can be specified in a CREATE TYPE (array)
statement.

expression must not contain a scalar fullselect.

ORDER BY
Specifies the order of the rows from the same grouping set that are processed in the aggregation. If
the ORDER BY clause is not specified, or if the ORDER BY clause cannot differentiate the order of the
sort key value, the rows in the same grouping set are arbitrarily ordered.

If a SELECT clause includes multiple invocations of the ARRAY_AGG function, all invocations of
ARRAY_AGG in the same SELECT clause that explicitly specify an ORDER BY clause must specify the
same order, or not specify an order.

sort-key-expression
Specifies a sort key value that is either a column name or an expression. sort-key-expression must
not reference a column for which a column mask is defined.

If the sort key value is a constant, the constant does not refer to the position of the output column,
but is simply a constant, which implies that there is no sort key.

ASC
Processes the sort key in ascending order. This is the default option.

DESC
Processes the sort key in descending order.

Associative array aggregation
index-expression

Specifies an expression for the index of the associative array.

When the ARRAY_AGG function is invoked in a context in which there is a target user-defined array
data type in the same statement, or the result of the ARRAY_AGG function is explicitly cast to a
user-defined array data type, the data type of index-expression must be castable to the index data
type of the target associative array data type. Otherwise, the expression must return a value with a
data type that is valid for an array element. The data type of the expression must be a data type that
can be specified in a CREATE TYPE (Array) statement.

Duplicate index-expression values must not exist in the grouping set that is used to produce the
associative array.

expression
Specifies an expression that returns a value with a data type that is valid for an array element. The
data type of the expression must be a data type that can be specified in a CREATE TYPE (array)
statement.

The result data type of ARRAY_AGG is an array. The data type of an array element of the result array is the
same as the type of expression.

The ARRAY_AGG function can be invoked only in the following contexts:

• The SELECT list of a SELECT INTO statement

Chapter 4. Built-in functions 355

• The SELECT list of the outermost fullselect in the definition of a cursor that is not scrollable, in an SQL
PL context

• The SELECT list of a scalar subquery that provides a source value for a SET assignment-statement or SQL
PL assignment-statement

• A RETURN statement in an SQL scalar function

The following restrictions apply to ARRAY_AGG:

• ARRAY_AGG cannot be used as part of an OLAP specification.
• A fullselect that contains an invocation of ARRAY_AGG cannot contain an ORDER BY clause.
• A fullselect that contains an invocation of ARRAY_AGG cannot contain a DISTINCT keyword in its

SELECT list.
• The SELECT clause or HAVING clause of the fullselect that contains an invocation of ARRAY_AGG

cannot contain a subquery.
• A SELECT clause that includes an invocation of the ARRAY_AGG function that returns an array of LOBs

must not also include a GROUP BY clause.
• A SELECT clause that includes an invocation of the ARRAY_AGG function must not also include an

invocation of the LISTAGG function or the XMLAGG function.

Examples for ARRAY_AGG

• Use ARRAY_AGG in an assignment statement to assign the values of the DECIMALARRAY ordinary array
to the array INTARRAY.

SET INTARRAY = (SELECT ARRAY_AGG(VAL) FROM UNNEST(DECIMALARRAY) AS T(VAL));

• Use ARRAY_AGG in a SELECT INTO statement to assign the values of the ESALARIES ordinary array to
the array ARRAY2.

SELECT ARRAY_AGG(T.VAL) INTO ARRAY2 FROM UNNEST(ESALARIES) AS T(VAL);

• Use ARRAY_AGG to aggregate a set of phone numbers into an ordinary array. The array elements
are then assigned to ordinary array NUMBERS in order by priority, or in arbitrary order. Suppose that
user-defined type PHONELIST and table EMPLOYEE have the following definitions:

CREATE TYPE PHONELIST AS DECIMAL(10,0) ARRAY[10];

CREATE TABLE EMPLOYEE (ID INTEGER NOT NULL,
 PRIORITY INTEGER NOT NULL,
 PHONENUMBER DECIMAL(10,0),
 PRIMARY KEY(ID, PRIORITY)) ;

The following SQL PL procedure uses a SELECT INTO statement that returns a list of contact numbers
under which an employee can be reached, ordered by priority.

CREATE PROCEDURE GETPHONENUMBERS
 (IN EMPID INTEGER,
 OUT NUMBERS PHONELIST)
 BEGIN
 SELECT ARRAY_AGG(PHONENUMBER ORDER BY PRIORITY)
 INTO NUMBERS
 FROM EMPLOYEE
 WHERE ID = EMPID;
 END

The following SQL PL procedure uses SET assignment-statement to return the list of contact numbers in
an arbitrary order.

CREATE PROCEDURE GETPHONENUMBERS
 (IN EMPID INTEGER,
 OUT NUMBERS PHONELIST)
 BEGIN
 SET NUMBERS =

356 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 (SELECT ARRAY_AGG(PHONENUMBER)
 FROM EMPLOYEE
 WHERE ID = EMPID);
 END

• Use ARRAY_AGG to aggregate a set of phone numbers into an associative array. The array elements are
then assigned to associative array EMPLOYEES.

Suppose that user-defined type EMPPHONES and table EMPLOYEE have the following definitions:

CREATE TYPE EMPPHONES AS DECIMAL(10,0) ARRAY[INTEGER];

CREATE TABLE EMPLOYEE (ID INTEGER NOT NULL,
 PRIORITY INTEGER NOT NULL,
 PHONENUMBER DECIMAL(10,0),
 PRIMARY KEY(ID, PRIORITY)) ;

Create a procedure that uses a SELECT INTO statement to aggregate priority 1 phone numbers into an
associative array that is indexed by IDs from the EMPLOYEE table.

CREATE PROCEDURE GETPHONES
(OUT EMPLOYEES EMPPHONES)
BEGIN
SELECT ARRAY_AGG(ID, PHONENUMBER)
INTO EMPLOYEES
FROM EMPLOYEE WHERE PRIORITY=1;
END

AVG aggregate function
The AVG function returns the average of a set of numbers.

AVG(
ALL

DISTINCT

numeric-expression)

The schema is SYSIBM.

The argument values can be of any built-in numeric data type, and their sum must be within the range of
the data type of the result.

The arguments can also be a character string or graphic string data type. The string input is implicitly cast
to a numeric value of DECFLOAT(34).

The data type of the result is determined as follows:

• DECFLOAT(34) if the argument is DECFLOAT(n).
• Large integer if the argument is small integer.
• Double precision floating-point if the argument is single precision floating-point.
• Otherwise, the result is the same as the data type of the argument.

The result can be null.

If the data type of the argument values is decimal with precision p and scale s, the precision (P) and scale
(S) of the result depend on p and the decimal precision option:

• If p is greater than 15 or the DEC31 option is in effect, P is 31 and S is max(0,28-p+s).
• Otherwise, P is 15 and S is 15-p+s.

The function is applied to the set of values derived from the argument values by the elimination of null
values. If DISTINCT is specified, redundant duplicate values are also eliminated.

Chapter 4. Built-in functions 357

If the function is applied to an empty set, the result is the null value. Otherwise, the result is the average
value of the set. The order in which the summation part of the operation is performed is undefined but
every intermediate result must be within the range of the result data type.

If the type of the result is integer, the fractional part of the average is lost.

Example: Assuming DEC15, set the DECIMAL(15,2) variable AVERAGE to the average salary in department
D11 of the employees in the sample table DSN8C10.EMP.

 EXEC SQL SELECT AVG(SALARY)
 INTO :AVERAGE
 FROM DSN8C10.EMP
 WHERE WORKDEPT = 'D11';

CORR or CORRELATION aggregate function
The CORR function returns the coefficient of the correlation of a set of number pairs.

CORR

CORRELATION

( expression-1 , expression-2)

The schema is SYSIBM.

The argument values must each be the value of any built-in numeric data type.

If an argument is DECFLOAT(n), the result of the function is DECFLOAT(34). Otherwise, the result of the
function is double precision floating-point. The result is between -1 and 1. The result can be null.

The function is applied to the set of (expression-1, expression-2) pairs derived from the argument values
by the elimination of all pairs for which either expression-1 or expression-2 is null.

If the function is applied to an empty set, or if either STDDEV(expression-1) or STDDEV(expression-2) is
equal to zero, the result is a null value. Otherwise, the result is the correlation coefficient for the value
pairs in the set. The result is equivalent to the following expression:

COVARIANCE(expression-1,expression-2)/
 (STDDEV(expression-1)* STDDEV(expression-2))

The order in which the values are aggregated is undefined, but every intermediate result must be within
the range of the result data type.

Using sample table DSN8C10.EMP, set the host variable :corrln (double-precision floating point) to the
correlation between the salary and the bonus for those employees in department (WORKDEPT) 'A00'.

 SELECT CORRELATION(SALARY, BONUS) INTO :corrln
 FROM DSN8C10.EMP WHERE WORKDEPT = 'A00';

:corrln is set to approximately 9.99853953399538E-001.

COUNT aggregate function
The COUNT function returns the number of rows or values in a set of rows or values.

COUNT(
ALL

DISTINCT

expression

*

)

The schema is SYSIBM.

The argument values can be of any built-in data type other than a BLOB, CLOB, DBCLOB, or XML.

358 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The result is a large integer. The result cannot be null.

The argument of COUNT(*) is a set of rows. The result is the number of rows in the set. Any row that
includes only null values is included in the count.

The argument of COUNT(expression) or COUNT(ALL expression) is a set of values. The function is
applied to the set of values derived from the argument values by the elimination of null values. The result
is the number of nonnull values in the set, including duplicates.

The argument of COUNT(DISTINCT expression) is a set of values. The function is applied to the set of
values derived from the argument values by the elimination of null values and redundant duplicate values.
The result is the number of different nonnull values in the set.

Example 1: Set the integer host variable FEMALE to the number of females represented in the sample
table DSN8C10.EMP.

 EXEC SQL SELECT COUNT(*)
 INTO :FEMALE
 FROM DSN8C10.EMP
 WHERE SEX = 'F';

Example 2: Set the integer host variable FEMALE_IN_DEPT to the number of departments that have at
least one female as a member.

 EXEC SQL SELECT COUNT(DISTINCT WORKDEPT)
 INTO :FEMALE_IN_DEPT
 FROM DSN8C10.EMP
 WHERE SEX = 'F';

COUNT_BIG aggregate function
The COUNT_BIG function returns the number of rows or values in a set of rows or values. It is similar to
COUNT except that the result can be greater than the maximum value of an integer.

COUNT_BIG(
ALL

DISTINCT

expression

*

)

The schema is SYSIBM.

The argument values can be of any built-in data type other than a BLOB, CLOB, DBCLOB, or XML.

The result of the function is a decimal number with precision 31 and scale 0. The result cannot be null.

The argument of COUNT_BIG(*) is a set of rows. The result is the number of rows in the set. A row that
includes only null values is included in the count.

The argument of COUNT_BIG(expression) or COUNT_BIG(ALL expression is a set of values. The
function is applied to the set of values derived from the argument values by the elimination of null values.
The result is the number of nonnull values in the set, including duplicates.

The argument of COUNT_BIG(DISTINCT expression) is a set of values. The function is applied to the
set of values derived from the argument values by the elimination of null and redundant duplicate values.
The result is the number of different nonnull values in the set.

Example 1: Set the integer host variable FEMALE to the number of females represented in the sample
table DSN8C10.EMP.

 EXEC SQL SELECT COUNT_BIG(*)
 INTO :FEMALE
 FROM DSN8C10.EMP
 WHERE SEX = 'F';

Chapter 4. Built-in functions 359

Example 2: Set the integer host variable FEMALE_IN_DEPT to the number of departments that have at
least one female as a member.

 EXEC SQL SELECT COUNT_BIG(DISTINCT WORKDEPT)
 INTO :FEMALE_IN_DEPT
 FROM DSN8C10.EMP
 WHERE SEX = 'F';

Example 3: To create a sourced function that is similar to the built-in COUNT_BIG function, the definition
of the sourced function must include the type of the column that can be specified when the new function
is invoked. In this example, the CREATE FUNCTION statement creates a sourced function that takes
a CHAR column as input and uses COUNT_BIG to perform the counting. The result is returned as a
double precision floating-point number. The query shown counts the number of unique departments in
the sample employee table.

 CREATE FUNCTION RICK.COUNT(CHAR()) RETURNS DOUBLE
 SOURCE SYSIBM.COUNT_BIG(CHAR());
 SET CURRENT PATH RICK, SYSTEM PATH;
 SELECT COUNT(DISTINCT WORKDEPT) FROM DSN8C10.EMP;

The empty parenthesis in the parameter list for the new function (RICK.COUNT) means that the input
parameter for the new function is the same type as the input parameter for the function named in the
SOURCE clause. The empty parenthesis in the parameter list in the SOURCE clause (SYSIBM.COUNT_BIG)
means that the length attribute of the CHAR parameter of the COUNT_BIG function is ignored when Db2
locates the COUNT_BIG function.

COVAR_POP or COVARIANCE or COVAR aggregate function
The COVAR_POP function returns the population covariance of a set of number pairs.

FL 506

COVAR_POP

COVARIANCE

COVAR

( expression-1 , expression-2)

The schema is SYSIBM.

The argument values must each be the value of any built-in numeric data type.

If an argument is DECFLOAT(n), the result of the function is DECFLOAT(34). Otherwise, the result of the
function is double precision floating-point. The result can be null.

The function is applied to the set of (expression-1, expression-2) pairs that are derived from the argument
values by the elimination of all pairs for which either expression-1 or expression-2 is null.

If the function is applied to an empty set, the result is a null value. Otherwise, the result is the population
covariance of the value pairs in the set. The result is equivalent to the following output:

1. Let avgexp1 be the result of AVG(expression-1) and let avgexp2 be the result of
AVG(expression-2).

2. The result of COVARIANCE(expression-1,expression-2) is AVG((expression-1 -
avgexp1) * (expression-2 - avgexp2))

The order in which the values are aggregated is undefined, but every intermediate result must be within
the range of the result data type.

360 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html

Example

Using sample table DSN8C10.EMP, set the host variable COVARNCE (double-precision floating-point)
to the population covariance between the salary and the bonus for those employees in department
(WORKDEPT) 'A00'.

 SELECT COVARIANCE(SALARY, BONUS)
 INTO :covarnce
 FROM DSN8C10.EMP
 WHERE WORKDEPT = 'A00'

The value of COVARNCE is set to 1743000.

Notes
Syntax alternatives:

COVAR_POP should be used for conformance to the SQL standard.

COVAR_SAMP or COVARIANCE_SAMP aggregate function
The COVAR_SAMP function returns unbiased sample covariance (n-1) of a set of number pairs.

COVAR_SAMP

COVARIANCE_SAMP

( expression-1 , expression-2)

The schema is SYSIBM.

The argument values must each be the value of any built-in numeric data type.

If an argument is DECFLOAT(n), the result of the function is DECFLOAT(34). Otherwise, the result of the
function is double precision floating-point. The result can be null.

The function is applied to the set of (expression-1, expression-2) pairs that are derived from the argument
values by the elimination of all pairs for which either expression-1 or expression-2 is null.

If the function is applied to an empty set, the result is a null value. Otherwise, the result is the sample
covariance of the value pairs in the set. The result is equivalent to the following output:

1. Let samp_avgexp1 be the result of SUM(expression-1)/n-1 and let samp_avgexp2 be the result of
SUM(expression-2)/n-1.

2. The result of COVAR_SAMP(expression-1, expression-2) is AVG((expression-1 -
samp_avgexp1) * (expression-2 - samp_avgexp2))

The order in which the values are aggregated is undefined, but every intermediate result must be within
the range of the result data type.

The following restrictions apply to COVAR_SAMP:

• COVAR_SAMP cannot be used as part of an OLAP specification.

Notes
Syntax alternatives:

COVAR_SAMP should be used for conformance to the SQL standard.

Chapter 4. Built-in functions 361

Example

Using sample table DSN8C10.EMP, set the host variable COVARNCE (double-precision floating point)
to the sample covariance between the salary and the bonus for those employees in department
(WORKDEPT) 'A00'.

 SELECT COVAR_SAMP(SALARY, BONUS)
 INTO :COVARNCE
 FROM DSN8C10.EMP
 WHERE WORKDEPT = 'A00';

The value of COVARNCE is set to 2178750.

CUME_DIST aggregate function
The CUME_DIST function returns the cumulative distribution of a row that is hypothetically inserted into a
group of rows.

FL 504

Passthrough-only expression: This function is passthrough-only and cannot run on Db2 for z/OS without
acceleration. For information about invoking this function, see Accelerating queries with passthrough-only
expressions.

CUME_DIST (

,

expression) WITHIN GROUP (order-by-clause)

order-by-clause

ORDER BY

,

sort-key asc-option

desc-option

asc-option
ASC NULLS LAST

NULLS FIRST

desc-option

DESC
NULLS FIRST

NULLS LAST

The schema is SYSIBM.

expression
An expression that specifies a row that is hypothetically inserted into a group of rows. The expression
must return a value that is a built-in data type. The expression must be a constant, a variable, or a cast
of a constant or variable.

WITHIN GROUP
Indicates that the aggregation follows the specified ordering within the grouping set.

order-by-clause
ORDER BY

Specifies the order of the rows from the same grouping set that are processed in the aggregation.

362 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only

sort-key
The sort key can be a column name or a sort-key-expression. If the sort key is a constant, it does
not refer to the position of the output column (as in the ordinary ORDER BY clause), but it is a
constant, which implies no sort key.

ASC
Uses the values of the sort-key in ascending order.

DESC
Uses the values of the sort-key in descending order.

NULLS FIRST
The ordering considers null values before all non-null values in the sort order.

NULLS LAST
The ordering considers null values after all non-null values in the sort order.

The number of expressions must be the same as the number of sort-key expressions. The data type of
each expression and the data type of the corresponding sort-key expression must be compatible.

The data type of the result is DECFLOAT(34). The actual result is greater than 0.0 and less than or equal to
1.0.

Example
Set the host variable CD to the cumulative distribution of a hypothetical new employee's salary of 47000
within the salaries of the employees in department 'A00'.

 SELECT CUME_DIST(47000) WITHIN GROUP (ORDER BY SALARY)
 INTO :CD FROM EMPLOYEE WHERE WORKDEPT = 'A00'

Related concepts
How Db2 determines whether to accelerate eligible queries (Db2 Performance)

GROUPING aggregate function
When used in conjunction with grouping-sets and super-groups, the GROUPING function returns a value
that indicates if a row returned in a GROUP BY result is a row generated by a grouping set that excludes
the column represented by expression.

GROUPING( expression)

The schema is SYSIBM.

expression

An expression that matches a grouping-expression from the GROUP BY clause of the same subselect.

The result of the function is a small integer value. The result is one of the following values:
1

The value of expression in the returned row is a null value, and the row was generated by the super-
group. This generated row can be used to provide sub-total values for the GROUP BY expression.

0
The value is other than the previously listed value.

Example
 SELECT SALES_DATE, SALES_PERSON,
 SUM(SALES) AS UNITS_SOLD,
 GROUPING(SALES_DATE) AS DATE_GROUP,
 GROUPING(SALES_PERSON) AS SALES_GROUP
 FROM SALES

Chapter 4. Built-in functions 363

https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html

 GROUP BY CUBE (SALES_DATE, SALES_PERSON)
 ORDER BY SALES_DATE, SALES_PERSON;

The previous query returns results similar to the following:

SALES_DATE SALES_PERSON UNITS_SOLD DATE_GROUP SALES_GROUP
---------- --------------- ----------- ----------- -----------
12/31/1995 GOUNOT 1 0 0
12/31/1995 LEE 6 0 0
12/31/1995 LUCCHESSI 1 0 0
12/31/1995 - 8 0 1
03/29/1996 GOUNOT 11 0 0
03/29/1996 LEE 12 0 0
03/29/1996 LUCCHESSI 4 0 0
03/29/1996 - 27 0 1
03/30/1996 GOUNOT 21 0 0
03/30/1996 LEE 21 0 0
03/30/1996 LUCCHESSI 4 0 0
03/30/1996 - 46 0 1
03/31/1996 GOUNOT 3 0 0
03/31/1996 LEE 27 0 0
03/31/1996 LUCCHESSI 1 0 0
03/31/1996 - 31 0 1
04/01/1996 GOUNOT 14 0 0
04/01/1996 LEE 25 0 0
04/01/1996 LUCCHESSI 4 0 0
04/01/1996 - 43 0 1
- GOUNOT 50 1 0
- LEE 91 1 0
- LUCCHESSI 14 1 0
- - 155 1 1

An application can identify a SALES_DATE sub-total row because the value of DATE_GROUP is 0 and
the value of SALES_GROUP is 1. A SALES_PERSON sub-total row can be identified because the value of
DATE_GROUP is 1 and the value of SALES_GROUP is 0. A grand total row can be identified by the value 1
for both DATE_GROUP and SALES_GROUP.

Related reference
group-by-clause
The GROUP BY clause specifies a result table that consists of a grouping of the rows of intermediate result
table that is the result of the previous clause.
Examples of grouping sets, rollup, and cube queries
You can use GROUPING SETS, ROLLUP, and CUBE clauses of the GROUP BY clause in subselect queries.

LISTAGG aggregate function
The LISTAGG function aggregates a set of strings into one string by concatenating the strings. Optionally, a
separator string can be provided which is inserted between contiguous input strings.

FL 501

LISTAGG(
ALL

DISTINCT

 string-expression
, separator

)

WITHIN GROUP (ORDER BY

,

sort-key
ASC

DESC

)

The schema is SYSIBM.

364 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m501.html

The LISTAGG function aggregates a set of string values for a group into one string by appending the
string-expression values based on the order that is specified in the WITHIN GROUP clause.

The function is applied to the set of values that are derived from the first argument by the elimination of
null values. If a separator argument is specified that is not the null value, the separator value is inserted
between each pair of non-null string-expression values.

string-expression
An expression that specifies the string values to aggregate. The expression must return a value that is
a built-in character string, graphic string, or a binary string data type that is not a LOB. If the value is
a CLOB, it is implicitly cast to VARCHAR before the function is evaluated up to a maximum length of
32704. If the value is a DBCLOB, it is implicitly cast to VARGRAPHIC before the function is evaluated
up to a maximum length of 16352. If the value is a BLOB, it is implicitly cast to VARBINARY before the
function is evaluated up to a maximum length of 32704.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

If string-expression is a column encoded by a field procedure, the decoded value is used in the result.

separator
A constant expression that defines the string that is to be used between non-null string-expression
values. The expression must return a value that is a built-in character string, graphic string, or a binary
string data type.

LOBs are supported through implicit casting. If the value is a CLOB, it is implicitly cast to VARCHAR
before the function is evaluated up to a maximum length of 32704. If the value is a DBCLOB, it is
implicitly cast to VARGRAPHIC before the function is evaluated up to a maximum length of 16352.
If the value is a BLOB, it is implicitly cast to VARBINARY before the function is evaluated up to a
maximum length of 32704.

The separator can be a literal, special register, variable, or an expression that is based on literals,
special registers, or variables, provided that the expression does not include a non-deterministic
function or a function that takes an external action.

WITHIN GROUP
Indicates that the aggregation follows the specified ordering within the grouping set.

If WITHIN GROUP is not specified, the ordering of strings within the result is not deterministic.

ORDER BY
Specifies the order of the rows from the same grouping set that are processed in the aggregation. If
the ORDER BY clause cannot distinguish the order of the column data, the rows in the same grouping
set are arbitrarily ordered.
sort-key

The sort key can be a column name or a sort-key-expression. If the sort key is a constant, it does
not refer to the position of the output column (as in the ORDER BY clause of a query); It is a
constant, which implies no sort key.

If the sort key value is a constant, the constant does not refer to the position of the output column,
but is simply a constant, which implies that there is no sort key.

sort-key must not include a scalar fullselect, or any function that is non-deterministic or has an
external action. sort-key must not reference a column for which a column mask is defined.

If sort-key is encoded by a field procedure, the encoded value determines the order.

ASC
Processes the sort-key in ascending order. This is the default option.

DESC
Processes the sort-key in descending order.

Chapter 4. Built-in functions 365

Result
The result data type of LISTAGG is based on the data type of string-expression, as shown in the following
table:

Data type of string-expression Result data type and length

CHAR(n) or VARCHAR(n) VARCHAR(MIN(MAX(4000,n), 32704)

GRAPHIC(n) or VARGRAPHIC(n) VARGRAPHIC(MIN(MAX(2000,n), 16352)

BINARY(n) or VARBINARY(n) VARBINARY(MIN(MAX(4000,n), 32704)

The result data type can exceed VARCHAR(4000), VARBINARY(4000), or VARGRAPHIC(2000), if a derived
size is used to determine the size of the result. The maximum possible value is the maximum for the
result data type. The following example yields a return data type of VARCHAR(10000):

LISTAGG(CAST(NAME AS VARCHAR(10000)),',')

If the actual length of the aggregated result string exceeds the maximum for the result data type, an error
is returned.

The result can be null. If the function is applied to an empty set, or all of the string-expression values in
the set are null values, the result is a null value.

The following rules also apply:

• If the string-expression and separator are both bit data, the result is bit data. Otherwise, neither
string-expression nor separator can be bit data.

• If string-expression and separator are both SBCS Unicode data, the CCSID of the result is the CCSID for
SBCS Unicode data.

• If string-expression is SBCS Unicode data, and separator is not SBCS Unicode data, the CCSID of the
result is the mixed CCSID for Unicode data.

• Otherwise, the CCSID of the result is the mixed CCSID that corresponds to the CCSID of string-
expression. However, if the input is EBCDIC or ASCII and there is no corresponding system CCSID
for mixed, the CCSID of the result is the CCSID of string-expression.

Results for accelerators: When multiple tables are joined, the result can differ when LISTAGG runs on
an accelerator instead of Db2 for z/OS. To guarantee the same result from both environments, you can
use an ORDER BY clause in a unique sort-key expression. This approach ensures that the result set is
the always the same. However, the order of rows in the result can still differ, unless the statement also
specifies a unique GROUP BY clause for the sort-key expression.

Rules
The following restrictions apply to LISTAGG:

• LISTAGG cannot be used as part of an OLAP specification.
• If DISTINCT is specified for LISTAGG, ORDER BY must be specified and the first sort-key of the ORDER

BY specification must exactly match string-expression.
• A fullselect that contains an invocation of LISTAGG cannot contain an ORDER BY clause.
• A fullselect that contains an invocation of LISTAGG cannot contain a DISTINCT keyword in its SELECT

list.
• A SELECT clause that includes an invocation of the LISTAGG function must not also include an

invocation of the ARRAY_AGG function or the XMLAGG function.

366 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example

Produce an alphabetical list of comma-separated names, grouped by department, from the sample
employee table.

SELECT WORKDEPT,
 LISTAGG(LASTNAME, ', ') WITHIN GROUP(ORDER BY LASTNAME)
 AS EMPLOYEES
 FROM EMP
 GROUP BY WORKDEPT;

The following result is returned.

---------+---------+---------+---------+---------+---------+---------+---------+---------+-------
WORKDEPT EMPLOYEES
---------+---------+---------+---------+---------+---------+---------+---------+---------+-------
A00 HAAS, HEMMINGER, LUCCHESI, O'CONNELL, ORLANDO
B01 THOMPSON
C01 KWAN, NATZ, NICHOLLS, QUINTANA
D11 ADAMSON, BROWN, JOHN, JONES, LUTZ, PIANKA, SCOUTTEN, STERN, WALKER, YAMAMOTO, YOSHIMURA
D21 JEFFERSON, JOHNSON, MARINO, MONTEVERDE, PEREZ, PULASKI, SMITH
E01 GEYER
E11 HENDERSON, PARKER, SCHNEIDER, SCHWARTZ, SETRIGHT, SMITH, SPRINGER
E21 ALONZO, GOUNOT, LEE, MEHTA, SPENSER, WONG

Related reference
Employee table (DSN8C10.EMP) (Introduction to Db2 for z/OS)
Function level 501 (PI70535 - May 2017) (Db2 for z/OS What's New?)
Related information
Grouping values by using the LISTAGG function (Db2 Programming samples)

MAX aggregate function
The MAX function returns the maximum value in a set of values of a group.

MAX(
ALL

DISTINCT

expression)

The schema is SYSIBM.

The arguments must be compatible. For more information on compatibility, refer to the compatibility
matrix in Table 30 on page 144. All arguments except the first argument can be parameter markers.

expression
An expression that returns the value of a built-in data type. Each expression must return a value
that is not a CLOB, DBCLOB, BLOB, ROWID, or XML. Character string arguments and binary string
arguments cannot have a length attribute greater than 32704, and graphic string arguments cannot
have a length attribute greater than 16352.

If there are any mixed character string or graphic string and numeric arguments, the string value is
implicitly cast to a DECFLOAT(34) value.

The result of the function is the largest argument value. The data type of the result and its other attributes
(for example, the length and CCSID of a string or a datetime value) are the same as the data type and
attributes of the argument values. The result can be null.

The function is applied to the set of values derived from the argument values by the elimination of null
values.

If the function is applied to an empty set, the result is the null value. Otherwise, the result is the maximum
value in the set.

The specification of DISTINCT has no effect on the result and is not advised.

Chapter 4. Built-in functions 367

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sampletablesemployeemain.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m501.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/appdevsamp/src/tpc/db2z_appdevsamp_listagg.html

Examples

Example 1: Set the DECIMAL(8,2) variable MAX_SALARY to the maximum monthly salary of the
employees represented in the sample table DSN8C10.EMP.

 EXEC SQL SELECT MAX(SALARY) / 12
 INTO :MAX_SALARY
 FROM DSN8C10.EMP;

Example 2: Find the surname that comes last in the collating sequence for the employees represented in
the sample table DSN8C10.EMP. Set the VARCHAR(15) variable LAST_NAME to that surname.

 EXEC SQL SELECT MAX(LASTNAME)
 INTO :LAST_NAME
 FROM DSN8C10.EMP;

MEDIAN aggregate function
The MEDIAN function returns the median of a set of numbers.

MEDIAN( numeric-expression)

The schema is SYSIBM.

numeric-expression
An expression that returns a built-in numeric data type. numeric-expression must not include a scalar
fullselect, or invoke a function that is non-deterministic or has an external action. numeric-expression
must not reference a column for which a column mask is defined

If the argument is DECFLOAT(n), the result of the function is DECFLOAT(34). Otherwise, the result of the
function is a double precision floating-point number.

The function is applied to the set of values that are derived from the argument values by the elimination of
null values.

The result can be null. If numeric-expression is null or if the function is applied to the empty set, the result
is the null value.

Specifying MEDIAN(numeric-expression) is equivalent to specifying PERCENTILE_CONT(0.5) WITHIN
GROUP (ORDER BY numeric-expression).

Examples for MEDIAN

• The following statement calculates the median salary of the employees in department D11 from the
EMPLOYEE table.

SELECT MEDIAN(SALARY)
FROM EMPLOYEE
WHERE WORKDEPT = ‘D11’;

The result is 24680.00. Department D11 has 11 employees. The middle row of a group of 11 values is
the sixth row. The result of MEDIAN over that group is the value of the sixth row, which is 24680.00.

• The following statement calculates the median salary of the employees in department E21 from the
EMPLOYEE table.

SELECT MEDIAN(SALARY)
FROM EMPLOYEE
WHERE WORKDEPT = ‘E21’;

The result is 24605.00. Department E21 has six employees. Because there are an even number of rows,
the MEDIAN is computed by interpolating a value between the middle two rows. The middle two rows
are the third row with the value 23840.00 and the fourth row with the value 25370.00. MEDIAN is
computed by averaging those two values, which is 24605.00.

368 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• The following statement calculates the median salary of the employees in department E21 from the
EMPLOYEE table.

SELECT MEDIAN(SALARY)
FROM EMPLOYEE
WHERE WORKDEPT = ‘E21’;

The result is 24605.00. Department E21 has six employees. Because there are an even number of rows,
the MEDIAN is computed by interpolating a value between the middle two rows. The middle two rows
are the third row with the value 23840.00 and the fourth row with the value 25370.00. MEDIAN is
computed by averaging those two values, which is 24605.00.

Notes for MEDIAN
When EXPLAIN is issued against an SQL statement that references the MEDIAN function, but the
statement cannot be run on the accelerator server for any reason, the following values are populated
in the PLAN_TABLE table:

• For a SELECT statement, column QBLOCK_TYPE would have the value 'PRUNED', and column
ACCESSTYPE would have the value ' ' (blank).

• For an INSERT statement with a subselect, the PLAN_TABLE rows for the subselect would have column
QBLOCK_TYPE with the value 'NCOSUB', and column ACCESSTYPE with the value ' ' (blank).

Also, when a view is referenced in an SQL statement that uses the MEDIAN function, the tables referred
to in the view must be enabled for acceleration. Those tables referred to in the view do not need to be
enabled for acceleration when the view is created.

MIN aggregate function
The MIN function returns the minimum value in a set of values of a group.

MIN(
ALL

DISTINCT

expression)

The schema is SYSIBM.

The arguments must be compatible. For more information on compatibility, refer to the compatibility
matrix in Table 30 on page 144. All arguments except the first argument can be parameter markers.

expression
An expression that returns the value of a built-in data type. Each expression must return a value
that is not a CLOB, DBCLOB, BLOB, ROWID, or XML. Character string arguments and binary string
arguments cannot have a length attribute greater than 32704, and graphic string arguments cannot
have a length attribute greater than 16352.

If there are any mixed character string or graphic string and numeric arguments, the string value is
implicitly cast to a DECFLOAT(34) value.

The result of the function is the smallest argument value. The data type of the result and its other
attributes (for example, the length and CCSID of a string or a datetime value) are the same as the data
type and attributes of the argument values. The result can be null.

The function is applied to the set of values derived from the argument values by the elimination of null
values.

If the function is applied to an empty set, the result is the null value. Otherwise, the result is the minimum
value in the set.

The specification of DISTINCT has no effect on the result and is not advised.

Chapter 4. Built-in functions 369

Examples

Example 1: Set the DECIMAL(15,2) variable MIN_SALARY to the minimum monthly salary of the
employees represented in the sample table DSN8C10.EMP.

 EXEC SQL SELECT MIN(SALARY) / 12
 INTO :MIN_SALARY
 FROM DSN8C10.EMP;

Example 2: Find the surname that comes first in the collating sequence for the employees represented in
the sample table DSN8C10.EMP. Set the VARCHAR(15) variable LAST_NAME to that surname.

 EXEC SQL SELECT MIN(LASTNAME)
 INTO :LAST_NAME
 FROM DSN8C10.EMP;

PERCENTILE_CONT aggregate function
The PERCENTILE_CONT function returns a percentile of a set of values. The set of values is treated as a
continuous distribution. The calculated percentile is an interpolated value that might not have appeared
in the input set.

PERCENTILE_CONT( percentile-expr) WITHIN GROUP (ORDER BY sort-expression
ASC

DESC

)

The schema is SYSIBM.

percentile-expr
Specifies the percentile that is to be calculated by the function. percentile-expr must return a built-in
numeric, character, or graphic string data type that is not a LOB. If the value is not a numeric data type
is cast to DECFLOAT(34) before the function is evaluated. The value must be in the range 0–1.

WITHIN GROUP
Specifies that the percentile is to be calculated over the rows that are identified in the group.

sort-expression
Specifies the set of values over which to calculate the percentile and the order of the set. sort-
expression must return a built-in numeric data type. A string value is implicitly cast to a numeric value.
sort-expression must not include a scalar fullselect, or any function that is non-deterministic or has an
external action. sort-key-expression must not reference a column for which a column mask is defined.

ASC
Specifies that the percentile is calculated using values from sort-expression in ascending order.

DESC
Specifies that the percentile is calculated using values from sort-expression in descending order.

The result is the value at the percentile that is specified by percentile-expr over the set of values identified
by sort-expression.

For PERCENTILE_CONT, the set of values is treated as a continuous distribution. The calculated percentile
is a interpolated value that might not have appeared in the input set. If the argument is DECFLOAT(n), the
result of the function is DECFLOAT(34). Otherwise, the result of the function is a double-precision floating
point number.

The function is applied to the set of values that are derived from sort-expression by the elimination of null
values.

The result can be null. If percentile-expr is null, or if the function is applied to an empty set, the result is
the null value.

The result of using PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY sort-expression) is
equivalent to MEDIAN(numeric-expression).

370 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Examples for PERCENTILE_CONT

• This example calculates the median salary of the employees in department D11 from the EMP table.

SELECT PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY SALARY)
FROM DSN8C10.EMP
WHERE WORKDEPT = ‘D11’;

The result is 24,680.00. Department D11 has 11 employees. The middle row of a group of 11 values
in the sixth row. Because there are an odd number of rows, the PERCENTILE_CONT function for the
percentile 0.5 returns the value of the sixth row, which is 24,680.00.

• This example calculates the median commission of the employees in department E21 from the EMP
table.

SELECT PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY COMM)
FROM DSN8C10.EMP
WHERE WORKDEPT = ‘E21’;

The result is 1968.50. This example has an even number of rows, so the PERCENTILE_CONT function
is computed by interpolating a value between the two middle rows. The two middle rows are row three
with a value of 1907.00 and row four with a value of 2030.00. PERCENTILE_CONT is computed by
averaging those two values, which is 1968.50.

• This example calculates the 95th percentile of total salary per department from the EMP table.

SELECT PERCENTILE_CONT(0.95) WITHIN GROUP (ORDER BY SALARY+BONUS)
FROM DSN8C10.EMP
GROUP BY WORKDEPT;

PERCENTILE_DISC aggregate function
The PERCENTILE_DISC function returns a percentile of a set of values. Each value in the input set is
treated as a discrete value. The calculated percentile is always a value that appeared in the input set.

PERCENTILE_DISC( percentile-expr) WITHIN GROUP (ORDER BY sort-expression
ASC

DESC

)

The schema is SYSIBM.

percentile-expr
Specifies the percentile that is to be calculated by the function. percentile-expr must return a built-in
numeric, character, or graphic string data type that is not a LOB. If the value is not a numeric data type
is cast to DECFLOAT(34) before the function is evaluated. The value must be in the range 0–1.

WITHIN GROUP
Specifies that the percentile is to be calculated over the rows that are identified in the group.

sort-expression
Specifies the set of values over which to calculate the percentile and the order of the set. sort-
expression must return a built-in numeric data type. sort-expression must not include a scalar
fullselect, or any function that is non-deterministic or has an external action. sort-key-expression must
not reference a column for which a column mask is defined.

ASC
Specifies that the percentile is calculated using values from sort-expression in ascending order.

DESC
Specifies that the percentile is calculated using values from sort-expression in descending order.

The result is the value at the percentile that is specified by percentile-expr over the set of values identified
by sort-expression.

Chapter 4. Built-in functions 371

For PERCENTILE_DISC, each value in the input set is treated as a discrete value. The calculated percentile
is always a value that appeared in the input set. The data type of the result is the same as the data type of
the result of sort-expression.

The function is applied to the set of values that are derived from sort-expression by the elimination of null
values.

The result can be null. If percentile-expr is null, or if the function is applied to an empty set, the result is
the null value.

Examples for PERCENTILE_DISC
• This example calculates the median salary as a discrete value of the employees in department D11

from the EMP table.

SELECT PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY SALARY)
FROM DSN8C10.EMP
WHERE WORKDEPT = ‘D11’;

The result is 24,680.00. Department D11 has 11 employees. The middle row of a group of 11 values
in the sixth row. Because there are an odd number of rows, the PERCENTILE_DISC function for the
percentile 0.5 returns the value of the sixth row, which is 24,680.00.

• This example calculates the median commission as a discrete value of the employees in department
E21 from the EMP table.

SELECT PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY COMM)
FROM DSN8C10.EMP
WHERE WORKDEPT = ‘E21’;

The result is 1907.00. This example has six rows, which is an even number of rows. The
PERCENTILE_DISC function is computed by returning the value of the first of the two middle rows,
which is row three with a value of 1907.00.

• This example calculates the 95th percentile of total salary per department from the EMP table.

SELECT PERCENTILE_DISC(0.95) WITHIN GROUP (ORDER BY SALARY+BONUS)
FROM DSN8C10.EMP
GROUP BY WORKDEPT;

PERCENT_RANK aggregate function
The PERCENT_RANK function returns the relative percentile rank of a row that is hypothetically inserted
into a group of rows.

FL 504

Passthrough-only expression: This function is passthrough-only and cannot run on Db2 for z/OS without
acceleration. For information about invoking this function, see Accelerating queries with passthrough-only
expressions.

PERCENT_RANK (

,

expression) WITHIN GROUP (order-by-clause)

order-by-clause

ORDER BY

,

sort-key asc-option

desc-option

asc-option

372 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only

ASC NULLS LAST

NULLS FIRST

desc-option

DESC
NULLS FIRST

NULLS LAST

The schema is SYSIBM.

expression
An expression that specifies a row that is hypothetically inserted into a group of rows. The expression
must return a value that is a built-in data type. The expression must be a constant, a variable, or a cast
of a constant or variable.

order-by-clause
ORDER BY

Specifies the order of the rows from the same grouping set that are processed in the aggregation.
sort-key

The sort key can be a column name or a sort-key-expression. If the sort key is a constant, it does
not refer to the position of the output column. A constant implies no sort key, unlike a constant in
the ordinary ORDER BY clause.

ASC
Uses the values of the sort-key in ascending order.

DESC
Uses the values of the sort-key in descending order.

NULLS FIRST
The ordering considers null values before all non-null values in the sort order.

NULLS LAST
The ordering considers null values after all non-null values in the sort order.

The number of expressions must be the same as the number of sort-key expressions. The data type of
each expression and the data type of the corresponding sort-key expression must be compatible.

The data type of the result is DECFLOAT(34). The actual result is greater than 0.0 and less than or equal to
1.0.

Example
Set the host variable PR to the relative percentile rank of a hypothetical new employee's salary of 47000
within the salaries of the employees in department 'A00'.

 SELECT PERCENT_RANK(47000) WITHIN GROUP (ORDER BY SALARY)
 INTO :PR FROM EMPLOYEE WHERE WORKDEPT = 'A00'

PR is set to a value of 0.4.

The following result set is shown for reference.

 SELECT SALARY FROM EMPLOYEE WHERE WORKDEPT = 'A00' ORDER BY SALARY

SALARY

 39250.00
 46500.00
 49250.00
 66500.00
 152750.00

 5 record(s) selected.

Chapter 4. Built-in functions 373

Related concepts
How Db2 determines whether to accelerate eligible queries (Db2 Performance)

Regression functions (REGR_AVGX, REGR_AVGY, REGR_COUNT, ...)
The regression functions support the fitting of an ordinary-least-squares regression line of the form y = a *
x + b to a set of number pairs.

FL 507

Passthrough-only expression: This function is passthrough-only and cannot run on Db2 for z/OS without
acceleration. For information about invoking this function, see Accelerating queries with passthrough-only
expressions.

REGR_AVGX

REGR_AVGY

REGR_COUNT

REGR_INTERCEPT

REGR_ICPT

REGR_R2

REGR_SLOPE

REGR_SXX

REGR_SXY

REGR_SYY

(expression1 , expression2)

The schema is SYSIBM.

expression1
An expression that returns a value of any built-in numeric data type. It is interpreted as a value of the
dependent variable (that is, a "y value").

expression2
An expression that returns a value of any built-in numeric data type. It is interpreted as a value of the
independent variable (that is, an "x value").

The REGR_COUNT function returns the number of non-null number pairs used to fit the regression line.

The REGR_INTERCEPT (or REGR_ICPT) function returns the y-intercept of the regression line ("b" in the
equation mentioned previously).

The REGR_R2 function returns the coefficient of determination ("R-squared" or "goodness-of-fit") for the
regression.

The REGR_SLOPE function returns the slope of the line ("a" in the equation mentioned previously).

The REGR_AVGX, REGR_AVGY, REGR_SXX, REGR_SXY, and REGR_SYY functions return quantities that
can be used to compute various diagnostic statistics needed for the evaluation of the quality and
statistical validity of the regression model.

The data type of the result of REGR_COUNT is integer. For the remaining functions, if either argument
is DECFLOAT(n), the data type of the result is DECFLOAT(34); otherwise, the data type of the result is
double-precision floating-point. If either argument is a special decimal floating-point value, the rules
for general arithmetic operations for decimal floating-point apply. For more information, see “General
arithmetic operation rules for DECFLOAT” on page 254

The result can be null. When not null, the result of REGR_R2 is in the range 0–1, and the result of both
REGR_SXX and REGR_SYY is non-negative.

374 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only

Each function is applied to the set of (expression1, expression2) pairs derived from the argument values
by the elimination of all pairs for which either expression1 or expression2 is null.

If the set is not empty and VARIANCE(expression2) is positive, REGR_COUNT returns the number of
non-null pairs in the set, and the remaining functions return results that are defined as follows:

REGR_SLOPE(expression1,expression2) =
COVARIANCE(expression1,expression2)/VARIANCE(expression2)

REGR_INTERCEPT(expression1, expression2) =
AVG(expression1) - REGR_SLOPE(expression1, expression2) * AVG(expression2)

REGR_R2(expression1, expression2) =
POWER(CORRELATION(expression1, expression2), 2) if VARIANCE(expression1)>0
REGR_R2(expression1, expression2) = 1 if VARIANCE(expression1)=0

REGR_AVGX(expression1, expression2) = AVG(expression2)

REGR_AVGY(expression1, expression2) = AVG(expression1)

REGR_SXX(expression1, expression2) =
REGR_COUNT(expression1, expression2) * VARIANCE(expression2)

REGR_SYY(expression1, expression2) =
REGR_COUNT(expression1, expression2) * VARIANCE(expression1)

REGR_SXY(expression1, expression2) =
REGR_COUNT(expression1, expression2) * COVARIANCE(expression1, expression2)

If the set is not empty and VARIANCE(expression2) is equal to zero, then the regression line either has
infinite slope or is undefined. In this case, the functions REGR_SLOPE, REGR_INTERCEPT, and REGR_R2
each return a null value, and the remaining functions return values as defined previously. If the set is
empty, REGR_COUNT returns zero and the remaining functions return a null value.

The order in which the values are aggregated is undefined, but every intermediate result must be within
the range of the result data type.

The regression functions are all computed simultaneously during a single pass through the data. In
general, it is more efficient to use the regression functions to compute the statistics needed for a
regression analysis than to perform the equivalent computations using ordinary column functions such as
AVERAGE, VARIANCE, COVARIANCE, and so forth.

The usual diagnostic statistics that accompany a linear-regression analysis can be computed in terms of
the functions listed previously. For example:
Adjusted R2

1 - ((1 - REGR_R2) * ((REGR_COUNT - 1) / (REGR_COUNT - 2)))
Standard error

SQRT((REGR_SYY-(POWER(REGR_SXY,2)/REGR_SXX))/(REGR_COUNT-2))
Total sum of squares

REGR_SYY
Regression sum of squares

POWER(REGR_SXY,2) / REGR_SXX
Residual sum of squares

(Total sum of squares)-(Regression sum of squares)
t statistic for slope

REGR_SLOPE * SQRT(REGR_SXX) / (Standard error)
t statistic for y-intercept

REGR_INTERCEPT/((Standard error) * SQRT((1/REGR_COUNT)+(POWER(REGR_AVGX,2)/REGR_SXX))

Chapter 4. Built-in functions 375

Examples
• Using the EMPLOYEE table, compute an ordinary-least-squares regression line that expresses the bonus

of an employee in department (WORKDEPT) 'A00' as a linear function of the employee's salary. Set
the host variables SLOPE, ICPT, RSQR (double-precision floating point) to the slope, intercept, and
coefficient of determination of the regression line, respectively. Also set the host variables AVGSAL and
AVGBONUS to the average salary and average bonus, respectively, of the employees in department
'A00', and set the host variable CNT (integer) to the number of employees in department 'A00'
for whom both salary and bonus data are available. Store the remaining regression statistics in host
variables SXX, SYY, and SXY.

SELECT REGR_SLOPE(BONUS,SALARY), REGR_INTERCEPT(BONUS,SALARY),
REGR_R2(BONUS,SALARY), REGR_COUNT(BONUS,SALARY),
REGR_AVGX(BONUS,SALARY), REGR_AVGY(BONUS,SALARY),
REGR_SXX(BONUS,SALARY), REGR_SYY(BONUS,SALARY),
REGR_SXY(BONUS,SALARY)
INTO :SLOPE, :ICPT,
:RSQR, :CNT,
:AVGSAL, :AVGBONUS,
:SXX, :SYY,
:SXY
FROM EMPLOYEE
WHERE WORKDEPT = 'A00'

When using the sample table, the host variables are set to the following approximate values:

SLOPE: +1.71002671916749E-002
ICPT: +1.00871888623260E+002
RSQR: +9.99707928128685E-001
CNT: 3
AVGSAL: +4.28333333333333E+004
AVGBONUS: +8.33333333333333E+002
SXX: +2.96291666666667E+008
SYY: +8.66666666666667E+004
SXY: +5.06666666666667E+006

STDDEV_POP or STDDEV aggregate function
The STDDEV_POP function returns the population standard deviation (division by n) of a set of numbers.

STDDEV_POP

STDDEV

(
ALL

DISTINCT

numeric-expression)

The schema is SYSIBM.

The formula that is used to calculate the result is logically equivalent to:

STDDEV_POP = SQRT(VAR_POP)

The argument values must each be the value of any built-in numeric data type, and their sum must be
within the range of the data type of the result.

The arguments can also be a character string or graphic string data type. The string input is implicitly cast
to a numeric value of DECFLOAT(34).

If the argument is DECFLOAT(n), the result of the function is DECFLOAT(34). Otherwise, the result of the
function is double precision floating-point. The result can be null.

Before the function is applied to the set of values derived from the argument values, null values are
eliminated. If DISTINCT is specified, redundant duplicate values are also eliminated.

If the function is applied to an empty set, the result is the null value. Otherwise, the result is the
population standard deviation of the values in the set.

376 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The order in which the values are aggregated is undefined, but every intermediate result must be within
the range of the result data type.

Notes
Syntax alternatives:

STDDEV_POP should be used for conformance to the SQL standard.

Example

Using sample table DSN8C10.EMP, set the host variable DEV, which is defined as double precision
floating-point, to the population standard deviation of the salaries for the employees in department 'A00'
(WORKDEPT='A00').

 SELECT STDDEV_POP(SALARY)
 INTO :DEV
 FROM DSN8C10.EMP
 WHERE WORKDEPT = 'A00';

The value of DEV is set to an approximate value of 9742.43.

STDDEV_SAMP aggregate function
The STDDEV_SAMP function returns the sample standard deviation (division by n-1) of a set of numbers.

STDDEV_SAMP(
ALL

DISTINCT

numeric-expression)

The schema is SYSIBM.

The formula that is used to calculate the result is logically equivalent to:

STDDEV_SAMP = SQRT(VAR_SAMP)

The argument values must each be the value of any built-in numeric data type, and their sum must be
within the range of the data type of the result.

The arguments can also be a character string or graphic string data type. The string input is implicitly cast
to a numeric value of DECFLOAT(34).

If the argument is DECFLOAT(n), the result of the function is DECFLOAT(34). Otherwise, the result of the
function is double precision floating-point. The result can be null.

Before the function is applied to the set of values derived from the argument values, null values are
eliminated. If DISTINCT is specified, redundant duplicate values are also eliminated.

If the function is applied to an empty set, the result is the null value. Otherwise, the result is the sample
standard deviation of the values in the set.

The order in which the values are aggregated is undefined, but every intermediate result must be within
the range of the result data type.

The following restrictions apply to STDDEV_SAMP:

• STDDEV_SAMP cannot be used as part of an OLAP specification.

Chapter 4. Built-in functions 377

Example

Using sample table DSN8C10.EMP, set the host variable DEV, which is defined as double precision
floating-point, to the sample standard deviation of the salaries for the employees in department 'A00'
(WORKDEPT='A00').

 SELECT STDDEV_SAMP(SALARY)
 INTO :DEV
 FROM DSN8C10.EMP
 WHERE WORKDEPT = 'A00';

The value of DEV is set to approximately 10892.37.

SUM aggregate function
The SUM function returns the sum of a set of numbers.

SUM(
ALL

DISTINCT

numeric-expression)

The schema is SYSIBM.

The argument values can be of any built-in numeric data type, and their sum must be within the range of
the data type of the result.

The arguments can also be a character string or graphic string data type. The string input is implicitly cast
to a numeric value of DECFLOAT(34).

The data type of the result is determined as follows:

• DECFLOAT(34) if the argument is DECFLOAT(n).
• Large integer if the argument is small integer.
• Double precision floating-point if the argument is single precision floating-point.
• Otherwise, the result is the same as the data type of the argument.

The result can be null.

If the data type of the argument values is decimal, the scale of the result is the same as the scale of the
argument values, and the precision of the result depends on the precision of the argument values and the
decimal precision option:

• If the precision of the argument values is greater than 15 or the DEC31 option is in effect, the precision
of the result is min(31,P+10), where P is the precision of the argument values.

• Otherwise, the precision of the result is 15.

The function is applied to the set of values derived from the argument values by the elimination of null
values. If DISTINCT is specified, redundant duplicate values are also eliminated.

If the function is applied to an empty set, the result is the null value. Otherwise, the result is the sum of
the values in the set. The order in which the summation is performed is undefined but every intermediate
result must be within the range of the result data type.

Example: Set the large integer host variable INCOME to the total income from all sources (salaries,
commissions, and bonuses) of the employees represented in the sample table DSN8C10.EMP. If DEC31 is
not in effect, the resultant sum is DECIMAL(15,2) because all three columns are DECIMAL(9,2).

 EXEC SQL SELECT SUM(SALARY+COMM+BONUS)
 INTO :INCOME
 FROM DSN8C10.EMP;

378 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

VAR_POP or VARIANCE or VAR aggregate function
The VAR_POP or VARIANCE or VAR function returns the biased variance (division by n) of a set of
numbers.

VAR_POP

VARIANCE

VAR

(
ALL

DISTINCT

numeric-expression)

The schema is SYSIBM.

The formula that is used to calculate the result is logically equivalent to:

VAR_POP = SUM(X**2)/COUNT(X) - (SUM(X)/COUNT(X))**2

Two asterisks (**) represent exponentiation. The exponentiation operator is not supported by Db2 for
z/OS.

The argument values can be of any built-in numeric type, and their sum must be within the range
of the data type of the result. Before the function is applied to the set of values derived from the
argument values, null values are eliminated. If DISTINCT is specified, redundant duplicate values are also
eliminated.

The arguments can also be a character string or graphic string data type. The string input is implicitly cast
to a numeric value of DECFLOAT(34).

If the argument is DECFLOAT(n), the result of the function is DECFLOAT(34). Otherwise, the result of the
function is double precision floating-point.

The result can be null; if any argument is null, the result is the null value.

Otherwise, the result is the population variance of the values in the set.

The order in which the values are added is undefined, but every intermediate result must be within the
range of the result data type.

Notes
Syntax alternatives:

VAR_POP should be used for conformance to the SQL standard.

Example

Using sample table DSN8C10.EMP, set host variable VARNCE, which is defined as double precision
floating-point, to the population variance of the salaries (SALARY) for those employees in department
(WORKDEPT) 'A00'.

 SELECT VAR_POP(SALARY)
 INTO :VARNCE
 FROM DSN8C10.EMP
 WHERE WORKDEPT = 'A00';

The value of VARNCE is set to 94915000.

Chapter 4. Built-in functions 379

VAR_SAMP or VARIANCE_SAMP aggregate function
The VAR_SAMP or VARIANCE_SAMP function returns the sample variance (division by n-1) of a set of
numbers.

VAR_SAMP

VARIANCE_SAMP

(
ALL

DISTINCT

numeric-expression)

The schema is SYSIBM.

The formula that is used to calculate the result is logically equivalent to:

VAR_SAMP = (SUM(X**2) - ((SUM(X)**2) / (COUNT(*)))) / (COUNT(*) - 1)

Two asterisks (**) represent exponentiation. The exponentiation operator is not supported by Db2 for
z/OS.

The argument values can be of any built-in numeric type, and their sum must be within the range
of the data type of the result. Before the function is applied to the set of values derived from the
argument values, null values are eliminated. If DISTINCT is specified, redundant duplicate values are also
eliminated.

The arguments can also be a character string or graphic string data type. The string input is implicitly cast
to a numeric value of DECFLOAT(34).

If the argument is DECFLOAT(n), the result of the function is DECFLOAT(34). Otherwise, the result of the
function is double precision floating-point.

The result can be null; if any argument is null, the result is the null value.

Otherwise, the result is the sample variance of the values in the set.

The order in which the values are added is undefined, but every intermediate result must be within the
range of the result data type.

The following restrictions apply to VAR_SAMP:

• VAR_SAMP cannot be used as part of an OLAP specification.

Notes
Syntax alternatives:

VAR_SAMP should be used for conformance to the SQL standard.

Example

Using sample table DSN8C10.EMP, set host variable VARNCE, which is defined as double precision
floating-point, to the sample variance of the salaries (SALARY) for those employees in department
(WORKDEPT) 'A00'.

 SELECT VAR_SAMP(SALARY)
 INTO :VARNCE_S
 FROM DSN8C10.EMP
 WHERE WORKDEPT = 'A00';

The value of VARNCE is set to 1186437500.

380 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

XMLAGG aggregate function
The XMLAGG function returns an XML sequence that contains an item for each non-null value in a set of
XML values.

XMLAGG( XML-expression

ORDER BY

,

sort-key
ASC

DESC

)

sort-key

column-name

expression

The schema is SYSIBM.

XML-expression
An expression that returns an XML value.

Unlike the arguments for other aggregate functions, a scalar fullselect is allowed in XML-expression.

ORDER BY
Specifies the order of the rows from the same grouping set that are processed in the aggregation. If
the ORDER BY clause is not specified, or if the ORDER BY clause cannot differentiate the order of the
sort key value, the rows in the same grouping set are arbitrarily ordered.
sort-key

Specifies a sort key value that is either a column name or an expression. The data type of the
column or expression must not be a LOB or an XML value. A character string expression cannot
have a length greater than 4000 bytes. If the sort key value is a constant, it does not refer to
the position of the output column (as in the ordinary ORDER BY clause), but is simply a constant,
which implies no sort key.

The ordering is based on the values of the sort keys, which might or might not be used in
XML-expression.

If the sort key value is a character string that uses an encoding scheme other than Unicode, the
ordering might be different. For example, a column PRODCODE uses EBCDIC. For two values,
('P001' and 'PA01'), relationship 'P001' > 'PA01' is true in EBCDIC, whereas 'P001' < 'PA01' is true
in UTF-8. If the same sort key values are used in XML-expression, use the CAST specification to
convert the sort key to Unicode to keep the ordering of XML values consistent with that of the sort
key.

The function is applied to the set of values derived from the argument values by the elimination of null
values.

The result can be null; if all XML-expression arguments are null. If the function is applied to an empty set,
the result is the null value. Otherwise, the result is an XML sequence that contains an item for each value
in the set.

The following restrictions apply to XMLAGG:

• XMLAGG cannot be used as part of an OLAP specification.
• A SELECT clause that includes an invocation of the XMLAGG function must not also include an

invocation of the ARRAY_AGG function or the LISTAGG function.

Chapter 4. Built-in functions 381

Example: Group employees by their department, generate a 'Department' element for each department
with its name as the attribute, nest all the 'emp' elements for employees in each department, and order
the 'emp' elements by 'lname.'

 SELECT XMLSERIALIZE(XMLDOCUMENT
 (XMLELEMENT
 (NAME "Department",
 XMLATTRIBUTES (e.dept AS "name"),
 XMLAGG (XMLELEMENT (NAME "emp", e.lname)
 ORDER BY e.lname)
)) AS "dept_list"
 AS CLOB(1M))
 FROM employees e
 GROUP BY dept;

The result of the query would look similar to the following result:

 dept_list

<Department name="Accounting">
 <emp>SMITH</emp>
 <emp>Yates</emp>
 </Department>
 <Department name="Shipping">
 <emp>Martin</emp>
 <emp>Oppenheimer</emp>
 </Department>
--

Scalar functions
A scalar function can be used wherever an expression can be used. The restrictions on the use of
aggregate functions do not apply to scalar functions, because a scalar function is applied to single set
of parameter values rather than to sets of values. The argument of a scalar function can be a function.
However, the restrictions that apply to the use of expressions and aggregate functions also apply when an
expression or aggregate function is used within a scalar function. For example, the argument of a scalar
function can be a aggregate function only if a aggregate function is allowed in the context in which the
scalar function is used.

If the argument of a scalar function is a string from a column with a field procedure, the function applies
to the decoded form of the value and the result of the function does not inherit the field procedure.

Example: The following SELECT statement calls for the employee number, last name, and age of each
employee in department D11 in the sample table DSN8C10.EMP. To obtain the ages, the scalar function
YEAR is applied to the expression:

 CURRENT DATE - BIRTHDATE

in each row of DSN8C10.EMP for which the employee represented is in department D11:

 SELECT EMPNO, LASTNAME, YEAR(CURRENT DATE - BIRTHDATE)
 FROM DSN8C10.EMP
 WHERE WORKDEPT = 'D11';

ABS or ABSVAL scalar function
The ABS function returns the absolute value of a number.

ABS

ABSVAL

( numeric-expression)

The schema is SYSIBM.

The argument must be an expression that returns a value of any built-in numeric data type.

382 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The arguments can also be a character string or graphic string data type. The string input is implicitly cast
to a numeric value of DECFLOAT(34).

The result of the function has the same data type and length attribute as the argument.

The result can be null; if the argument is null, the result is the null value.

Notes
Syntax alternatives:

ABS should be used for conformance to the SQL standard.

Example

Assume that host variable PROFIT is a large integer with a value of -50000. The following statement
returns a large integer with a value of 50000.

 SELECT ABS(:PROFIT)
 FROM SYSIBM.SYSDUMMY1;

ACOS scalar function
The ACOS function returns the arc cosine of the argument as an angle, expressed in radians. The ACOS
and COS functions are inverse operations.

ACOS( numeric-expression)

The schema is SYSIBM.

The argument must be an expression that returns the value of any built-in numeric data type except for
DECFLOAT. The value must be greater than or equal to -1 and less than or equal to 1. If the argument is
not a double precision floating-point number, it is converted to one for processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable ACOSINE is DECIMAL(10,9) with a value of 0.070737202. The
following statement:

 SELECT ACOS(:ACOSINE)
 FROM SYSIBM.SYSDUMMY1;

returns a double precision floating-point number with an approximate value of 1.49.

ADD_DAYS scalar function
The ADD_DAYS function returns a datetime value that represents the first argument plus a specified
number of days.

FL 507

Passthrough-only expression: This function is passthrough-only and cannot run on Db2 for z/OS without
acceleration. For information about invoking this function, see Accelerating queries with passthrough-only
expressions.

ADD_DAYS (expression , numeric-expression)

The schema is SYSIBM.

Chapter 4. Built-in functions 383

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only

expression
An expression that specifies the starting date. The expression must return a value that is a DATE,
TIMESTAMP WITHOUT TIME ZONE, CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type. CHAR,
VARCHAR, GRAPHIC, and VARGRAPHIC are supported by using implicit casting. If expression is a
CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string that is accepted by
the TIMESTAMP scalar function and does not contain a time zone.

numeric-expression
An expression that specifies the number of days to add to the starting date specified by expression.
The expression must return a value that is a built-in numeric, CHAR, VARCHAR, GRAPHIC, or
VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported by using
implicit casting. If the expression is not an INTEGER, it is cast to INTEGER before the function is
evaluated. A negative numeric value can be used to subtract days.

The result of the function is a timestamp with the same precision as expression , if expression is a
timestamp. Otherwise, the result of the function is a date. If any argument can be null, the result can be
null; if any argument is null, the result is the null value.

Examples
• Assume that today is January 31, 2007. Set the host variable ADD_DAY with the current day plus 1 day.

 SET :ADD_DAY = ADD_DAYS(CURRENT_DATE, 1)

The host variable ADD_DAY is set with the value representing 2007-02-01.
• Assume that DATE is a host variable with the value July 27, 1965. Set the host variable ADD_DAY with

the value of that day plus 3 days.

 SET :ADD_DAY = ADD_DAYS(:DATE,3)

The host variable ADD_DAY is set with the value representing the day plus 3 days, 1965-07-30.
• The ADD_DAYS function and datetime arithmetic can be used to achieve the same results. The following

examples demonstrate this.

 SET :DATEHV = DATE('2008-2-28') + 4 DAYS
 SET :DATEHV = ADD_DAYS('2008-2-28', 4)

In both cases, the host variable DATEHV is set with the value '2008-03-03'.

Now consider the same examples but with the date '2008-2-29' as the argument.

 SET :DATEHV = DATE('2008-2-29') + 4 DAYS
 SET :DATEHV = ADD_DAYS('2008-2-29', 4)

In both cases, the host variable DATEHV is set with the value '2008-03-04'.
• Assume that DATE is a host variable with the value July 27, 1965. Set the host variable ADD_DAY with

the value of that day minus 3 days.

 SET :ADD_DAY = ADD_DAYS(:DATE,-3)

The host variable ADD_DAY is set to 1965-07-24; the value representing July 27, 1965 minus 3 days.

ADD_MONTHS scalar function
The ADD_MONTHS function returns a date that represents expression plus a specified number of months.

ADD_MONTHS( expression , numeric-expression)

The schema is SYSIBM.

384 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

expression
An expression that specifies the starting date. expression must return a value that is a date,
timestamp, or a valid string representation of a date or timestamp. A string representation is a value
that is a built-in character string data type or graphic string data type, that is not a LOB, and that
has an actual length that is not greater than 255 bytes. A time zone in a string representation of a
timestamp is ignored. For the valid formats of string representations of dates and timestamps, see
“String representations of datetime values” on page 120.

If expression is a TIMESTAMP WITH TIME ZONE value, expression is first cast to a TIMESTAMP
WITHOUT TIME ZONE value with the same precision as expression. If expression is a string,
expression is first cast to DATE.

numeric-expression
An expression that returns a value of any built-in numeric data type. The integer portion of numeric-
expression specifies the number of months to add to the starting date specified by expression.A
negative numeric value is allowed.

numeric-expression can also be a character string or graphic string data type. The string input is
implicitly cast to a numeric value of DECFLOAT(34).

If expression is a timestamp with a time zone value, or a valid string representation of a timestamp with a
time zone value, the result is determined from the UTC representation of the datetime value.

If expression is a timestamp value the result is a TIMESTAMP WITHOUT TIME ZONE with the same
precision as expression. Otherwise, the result is a DATE value.

The result can be null; if any argument is null, the result is the null value.

If expression is the last day of the month or if the resulting month has fewer days than the day component
of expression, the result is the last day of the resulting month. Otherwise, the result has the same day
component as expression. Any hours, minutes, seconds, or fractional seconds information included in
expression is not changed by the function.

The result CCSID is the appropriate CCSID of the argument encoding scheme and the result subtype is the
appropriate subtype of the CCSID.

Example 1: Assume today is January 31, 2007. Set the host variable ADD_MONTH with the last day of
January plus 1 month.

 SET :ADD_MONTH = ADD_MONTHS(LAST_DAY(CURRENT_DATE), 1);

The host variable ADD_MONTH is set with the value representing the end of February, 2007-02-28.

Example 2: Assume DATE is a host variable with the value July 27, 1965. Set the host variable
ADD_MONTH with the value of that day plus 3 months.

 SET :ADD_MONTH = ADD_MONTHS(:DATE,3);

The host variable ADD_MONTH is set with the value representing the day plus 3 months, 1965-10-27.

Example 3: It is possible to achieve similar results with the ADD_MONTHS function and date arithmetic.
The following examples demonstrate the similarities and contrasts.

 SET :DATEHV = DATE('2008-2-28') + 4 MONTHS;

 SET :DATEHV = ADD_MONTHS('2008-2-28', 4);

In both cases, the host variable DATEHV is set with the value '2008–06–29'.

Now consider the same examples but with the date '2008–2–29' as the argument.

 SET :DATEHV = DATE('2008-2-29') + 4 MONTHS;

The host variable DATEHV is set with the value '2008–06–29'.

Chapter 4. Built-in functions 385

 SET :DATEHV = ADD_MONTHS('2008-2-29', 4);

The host variable DATEHV is set with the value '2008–06–30'.

In this case, the ADD_MONTHS function returns the last day of the month, which is June 30, 2008,
instead of June 29, 2008. The reason is that February 29 is the last day of the month. So, the
ADD_MONTHS function returns the last day of June.

Example 4: Assume TSZ is an SQL variable with the timestamp with time zone value
2008-02-29.20.00.00.000000-08.00. Set TIMESZ to the value of that timestamp with time zone value
plus 4 months.

SET TIMESZ: = ADD_MONTHS(TIMESTAMP_TZ(TSZ), 4);

The function returns a timestamp value that represents the timestamp plus 4 months:
2008-06-30-20.00.00.000000-8.00. The result of the ADD_MONTHS function does not contain a time
zone.

Example 5: Assume TSZ is a host variable with the value '2008-02-29-20.00.000000-08.00', which is a
string representation of a timestamp with a time zone value. Set TIMESZ to the value of that timestamp
with a time zone plus 4 months.

SET TIMESZ: = ADD_MONTHS(:TSZ, 4);

With the string representation of a timestamp as input, the ADD_MONTHS function returns a DATE value
that represents the timestamp plus 4 months, 2008-06-30. The host variable TIMESZ is set with the value
that represents the timestamp with time zone plus 4 months.

ARRAY_DELETE scalar function
The ARRAY_DELETE function deletes elements from an array.

ARRAY_DELETE( array-expression

,  array-index1

, array-index2

)

The schema is SYSIBM.

array-expression
An SQL variable, SQL parameter, or global variable of an array type, or a CAST specification that
specifies an SQL variable, SQL parameter, global variable, or parameter marker as the source value.

array-index1
An expression that results in a value that is castable to the data type of the array index. If array-
expression is an ordinary array, array-index1 must be the null value.

array-index2
An expression that results in a value that is castable to the data type of the array index. If array-
expression is an ordinary array, array-index2 must be the null value. If array-index2 is specified and is
a non-null value, array-index1 must be a non-null value that is less than the value of array-index2. If
array-index2 is the null value, ARRAY_DELETE is evaluated as if array-index2 was not specified.

The result of ARRAY_DELETE has the same data type as array-expression.

If array-index1 and array-index2 are not specified, or they are the null value, all of the elements of
array-expression are deleted, and the cardinality of the result array value is 0. If only array-index1 is
specified with a non-null value, the array element at index value array-index1 is deleted. If array-index2
is specified with a non-null value, the elements ranging from index value array-index1 to array-index2,
inclusive, are deleted.

The result can be null; if the first argument is null, the result is the null value.

386 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The ARRAY_DELETE function can be invoked only in the following contexts:

• A source value for SET assignment-statement, an SQL PL assignment-statement, or a VALUES INTO
statement

• The value that is returned in a RETURN statement in an SQL scalar function

Notes
Syntax alternatives

CAST (SQL-variable AS array-type) can be specified as an alternative to SQL-variable. CAST (SQL-
parameter AS array-type) can be specified as an alternative to SQL-parameter.

Examples

Example 1: Suppose that ordinary array variable RECENT_CALLS has the array type PHONENUMBERS. Use
ARRAY_DELETE to delete all the elements from RECENT_CALLS. Assign the result to the RECENT_CALLS
array.

SET RECENT_CALLS = ARRAY_DELETE(RECENT_CALLS);

After the SET statement is executed, RECENT_CALLS is an empty array, which has a cardinality of zero.

An equivalent way of setting RECENT_CALLS to an empty array is to use an array constructor:

SET RECENT_CALLS = ARRAY[];

Example 2: Suppose that PRODUCTS is defined as an associative array type with VARCHAR values for
the array index, and that variables FLOOR_TILES and REMAINIING_TILES are defined as arrays of the
PRODUCTS array type. Use ARRAY_DELETE to assign the elements from the FLOOR_TILES array variable
that do not have an index value between 'PK5100' and 'PS2500', inclusive, to the REMAINING_TILES
array variable.

SET REMAINING_TILES = ARRAY_DELETE(FLOOR_TILES,'PK5100','PS2500');

ARRAY_FIRST scalar function
The ARRAY_FIRST function returns the minimum array index value of an array.

ARRAY_FIRST( array-expression)

The schema is SYSIBM.

array-expression
An SQL variable, SQL parameter, or global variable of an array type, or a CAST specification that
specifies an SQL variable, SQL parameter, global variable, or parameter marker as the source value.

The result of ARRAY_FIRST has the same data type as the array index. If array-expression is not null, and
the array is not empty (the cardinality of the array is greater than 0), the value of the result is the minimum
array index value, which is 1 for an ordinary array.

The result can be null; if the argument is null, the result is the null value.

If the array is empty (the cardinality of the array is 0), the result is the null value.

Notes
Syntax alternatives:

CAST (SQL-variable AS array-type) can be specified as an alternative to SQL-variable. CAST (SQL-
parameter AS array-type) can be specified as an alternative to SQL-parameter.

Chapter 4. Built-in functions 387

Example 1: Suppose that SPECIALNUMBERS is an ordinary array variable, and the elements of the array
are integers. Return the first index value in the array variable SPECIALNUMBERS to the SQL variable
E_CONSTIDX.

SET E_CONSTIDX = ARRAY_FIRST(SPECIALNUMBERS);

The result is 1.

Example 2: Suppose that PHONELIST is an associative array variable with VARCHAR index values. Values
have been assigned to the elements in the array with the following statements:

SET PHONELIST['Home'] = '4443051234';
SET PHONELIST['Work'] = '4443052345';
SET PHONELIST['Cell'] = '4447893456';

The order in which values are assigned to array elements in an associative array does not matter. The
elements of an associative array are stored in the array variable in ascending order of the associated
array index values. After the values have been assigned to the PHONELIST array variable using the SET
assignment-statement statements, the elements in the array variable are ordered as follows:

Index
value Element value

Cell 4447893456

Home 4443051234

Work 4443052345

Assign the value of the first index in the array variable to the character string variable named X.

SET X = ARRAY_FIRST(PHONELIST);

The value of 'Cell' is assigned to X because 'Cell' is the index value of the first element in the array
variable.

Assign the value of the array element with index X to the SQL variable NUMBER_TO_CALL.

SET NUMBER_TO_CALL = PHONELIST[X];

The assignment statement assigns the phone number '4447893456' to NUMBER_TO_CALL.

ARRAY_LAST scalar function
The ARRAY_LAST function returns the maximum array index value of an array.

ARRAY_LAST( array-expression)

The schema is SYSIBM.

array-expression
An SQL variable, SQL parameter, or global variable of an array type, or a CAST specification that
specifies an SQL variable, SQL parameter, global variable, or parameter marker as the source value.

The result of ARRAY_LAST has the same data type as the array index, which is INTEGER for an ordinary
array. If array-expression is not null, and the array is not empty (the cardinality of the array is greater than
0), the value of the result is the maximum array index value, which is the current cardinality of the array
for an ordinary array.

The result can be null; if the argument is null, the result is the null value.

If the array is empty (the cardinality of the array is 0), the result is the null value.

388 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Notes
Syntax alternatives:

CAST (SQL-variable AS array-type) can be specified as an alternative to SQL-variable. CAST (SQL-
parameter AS array-type) can be specified as an alternative to SQL-parameter.

Example 1: Suppose that SPECIALNUMBERS is an ordinary array variable, and the elements of the
array are integers. The cardinality of the array is 10. Return the last index value in the array variable
SPECIALNUMBERS to the SQL variable PI_CONSTIDX.

SET PI_CONSTIDX = ARRAY_LAST(SPECIALNUMBERS);

The result is 10.

Example 2: Suppose that PHONELIST is an associative array variable with VARCHAR index values. Values
have been assigned to the elements in the array with the following statements:

SET PHONELIST['Home'] = '4443051234';
SET PHONELIST['Work'] = '4443052345';
SET PHONELIST['Cell'] = '4447893456';

The order in which values are assigned to array elements in an associative array does not matter. The
elements of an associative array are stored in the array variable in ascending order of the associated
array index values. After the values have been assigned to the PHONELIST array variable using the SET
assignment-statement statements, the elements in the array variable are ordered as follows:

Index
value Element value

Cell 4447893456

Home 4443051234

Work 4443052345

Assign the value of the maximum index in the array variable to the character string variable named X.

SET X = ARRAY_LAST(PHONELIST);

The value of 'Work' is assigned to X because 'Work' is the index value of the last element in the array
variable.

Assign the value of the array element with index X to the SQL variable NUMBER_TO_CALL.

SET NUMBER_TO_CALL = PHONELIST[X];

The assignment statement assigns the phone number '4443052345' to NUMBER_TO_CALL.

ARRAY_NEXT scalar function
The ARRAY_NEXT function returns the next larger array index value for an array, relative to a specified
array index argument.

ARRAY_NEXT( array-expression , array-index)

The schema is SYSIBM.

array-expression
An SQL variable, SQL parameter, or global variable of an array type, or a CAST specification that
specifies an SQL variable, SQL parameter, global variable, or parameter marker as the source value.

Chapter 4. Built-in functions 389

array-index
An expression that results in a value that is castable to the data type of the array index. Valid values
include any valid value for the data type.

array-index must not be an expression that references any of the following items:

• The CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP special register
• A nondeterministic function
• A function that is defined with EXTERNAL ACTION
• A function that is defined with MODIFIES SQL DATA
• A sequence expression

The result of ARRAY_NEXT is the next larger array index value defined in the array, relative to the specified
array-index value. If array-index is less than the minimum index array value in the array, the result is the
first array index value that is defined in the array.

The data type of the result has the same data type as the array index.

The result is null under the following conditions:

• array-expression or array-index is null
• The array that is represented by array-expression is empty (the cardinality of the array is 0)
• The value of array-index is greater than or equal to the value of the last index in the array

Notes
Syntax alternatives:

CAST (SQL-variable AS array-type) can be specified as an alternative to SQL-variable. CAST (SQL-
parameter AS array-type) can be specified as an alternative to SQL-parameter.

Example 1: Suppose that SPECIALNUMBERS is an ordinary array variable, and the elements of the array
are integers. The cardinality of SPECIALNUMBERS is 10. Set the NEXT_CONSTIDX variable to the value of
the array index for the SPECIALNUMBERS array element that follows the array element that is associated
with an array index value of 9.

SET NEXT_CONSTIDX = ARRAY_NEXT(SPECIALNUMBERS,9);

The result is 10.

Example 2: Suppose that PHONELIST is an associative array variable with VARCHAR index values. Values
have been assigned to the elements in the array with the following statements:

SET PHONELIST['Home'] = '4443051234';
SET PHONELIST['Work'] = '4443052345';
SET PHONELIST['Cell'] = '4447893456';

The order in which values are assigned to array elements in an associative array does not matter. The
elements of an associative array are stored in the array variable in ascending order of the associated
array index values. After the values have been assigned to the PHONELIST array variable using the SET
assignment-statement statements, the elements in the array variable are ordered as follows:

Index
value Element value

Cell 4447893456

Home 4443051234

Work 4443052345

390 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Assign the array index value that follows an array index value named 'Fax' to the character string variable
named X.

SET X = ARRAY_NEXT(PHONELIST,'Fax');

Array index value 'Fax' does not exist, but the string 'Home' follows the string 'Fax' in sorting order.
Therefore, 'Home' is assigned to X.

Assign the value of the array element with index X to the SQL variable NUMBER_TO_CALL.

SET NUMBER_TO_CALL = PHONELIST[X];

Because the value of X is 'Home', the assignment statement assigns the phone number '4443051234' to
NUMBER_TO_CALL.

ARRAY_PRIOR scalar function
The ARRAY_PRIOR function returns the next smaller array index value for an array, relative to a specified
array index argument.

ARRAY_PRIOR( array-expression , array-index)

The schema is SYSIBM.

array-expression
An SQL variable, SQL parameter, or global variable of an array type, or a CAST specification that
specifies an SQL variable, SQL parameter, global variable, or parameter marker as the source value.

array-index
An expression that results in a value that is castable to the data type of the array index. Valid values
include any valid value for the data type.

array-index must not be an expression that references any of the following items:

• The CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP special register
• A nondeterministic function
• A function that is defined with EXTERNAL ACTION
• A function that is defined with MODIFIES SQL DATA
• A sequence expression

The result of ARRAY_PRIOR is the next smaller array index value that is defined in the array, relative to the
specified array-index value. If array-index is greater than the maximum index array value in the array, the
result is the last array index value that is defined in the array.

The data type of the result has the same data type as the array index.

The result is null under the following conditions:

• array-expression or array-index is null.
• The array that is represented by array-expression is empty (the cardinality of the array is 0).
• The value of array-index is less than or equal to the value of the first index in the array.

Notes
Syntax alternatives:

CAST (SQL-variable AS array-type) can be specified as an alternative to SQL-variable. CAST (SQL-
parameter AS array-type) can be specified as an alternative to SQL-parameter.

Chapter 4. Built-in functions 391

Example 1: Suppose that SPECIALNUMBERS is an ordinary array variable, and the elements of the array
are integers. The cardinality of SPECIALNUMBERS is 10. Set the PREV_CONSTIDX variable to the value
of the array index for the SPECIALNUMBERS array element that precedes the array element that is
associated with an array index value of 2.

SET PREV_CONSTIDX = ARRAY_PRIOR(SPECIALNUMBERS,2);

The result is 1.

Example 2: Suppose that PHONELIST is an associative array variable with VARCHAR index values. Values
have been assigned to the elements in the array with the following statements:

SET PHONELIST['Home'] = '4443051234';
SET PHONELIST['Work'] = '4443052345';
SET PHONELIST['Cell'] = '4447893456';

The order in which values are assigned to array elements in an associative array does not matter. The
elements of an associative array are stored in the array variable in ascending order of the associated
array index values. After the values have been assigned to the PHONELIST array variable using the SET
assignment-statement statements, the elements in the array variable are ordered as follows:

Index
value Element value

Cell 4447893456

Home 4443051234

Work 4443052345

Assign the array index value that precedes an array index value named 'Fax' to the character string
variable named X.

SET X = ARRAY_PRIOR(PHONELIST,'Fax');

Array index value 'Fax' does not exist, but the string 'Cell' precedes the string 'Fax' in sorting order.
Therefore, 'Cell' is assigned to X.

Assign the array index value that precedes array index value 'Cell' to the character string variable named
X.

SET X = ARRAY_PRIOR(PHONELIST,'Cell');

The null value is assigned to X, because there is no array element before the array element with the index
value 'Cell'.

ARRAY_TRIM scalar function
The ARRAY_TRIM function deletes elements from the end of an ordinary array.

ARRAY_TRIM ( array-expression , numeric-expression)

The ARRAY_TRIM function is identical to the TRIM_ARRAY function. For more information, see
“TRIM_ARRAY scalar function” on page 605.

392 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

ASCII scalar function
The ASCII function returns the leftmost character of the argument as an integer.

ASCII( string-expression)

The schema is SYSIBM.

The argument can be any built-in character or graphic string data type, except for CLOB or DBCLOB. If the
argument is an EBCDIC, Unicode, or graphic string, it is first converted to an SBCS ASCII character string
(CCSID 367)17 before the function is executed.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

Example: The following statement returns the ASCII value for the character 'A':

 SET :hv = ASCII('A');

The host variable, :hv, is set to an integer with the value 65.

ASCII_CHR scalar function
The ASCII_CHR function returns the character that has the ASCII code value that is specified by the
argument.

ASCII_CHR( expression)

The schema is SYSIBM.

expression
An expression that returns a built-in data type of BIGINT, INTEGER, or SMALLINT.

expression can also be a character string or graphic string data type. The string input is implicitly cast
to a numeric value of DECFLOAT(34) which is then assigned to a BIGINT value.

The result of the function is a fixed length character string encoded in the SBCS ASCII CCSID (regardless
of the setting of the MIXED option in DSNHDECP). The length of the result is 1. If the value of expression
is not in the range of 0 to 255, (0 to 127 if the SBCS ASCII CCSID for this system is CCSID 367) the null
value is returned.

The result can be null; if the argument is null, the result is the null value.

Notes
Syntax alternatives:

CHR is a synonym for ASCII_CHR.

Examples

Example 1: Set :hv with the Euro symbol "€" in CCSID 923:

 SET :hv = ASCII_CHR(164); -- x'A4'

17 If the conversion does not exist, the ASCII function will return an error, or a substitution character might be
returned.

Chapter 4. Built-in functions 393

Set :hv with the Euro symbol "€" in CCSID 1252:

 SET :hv = ASCII_CHR(128); -- x'80'

In both cases, the "€" is assigned to :hv, but because the Euro symbol is located at different code points
for the two CCSIDs, the input value is different.

ASCII_STR or ASCIISTR scalar function
The ASCII_STR function returns an ASCII version of the string in the system ASCII CCSID. The system
ASCII CCSID is the SBCS ASCII CCSID on a MIXED=NO system or the MIXED ASCII CCSID on a
MIXED=YES system.

ASCII_STR

ASCIISTR

( string-expression)

The schema is SYSIBM.

string-expression
An expression that returns a value of a built-in character or graphic string. A character string must not
be bit data. string-expression must be an ASCII, EBCDIC, or Unicode string.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

ASCII_STR returns an ASCII version of the string. If the system ASCII CCSID does not support
the backslash (\) character, string-expression must not contain Non-ASCII characters. Non-ASCII
characters are converted to UTF-16 characters and appear in the result in the form \xxxx (or
\xxxx\yyyy for surrogate characters), where xxxx and yyyy represent a UTF-16 code unit.

The length attribute of the result will be MIN((5*n),32704). Where n is the result of applying the
formulas in Table 37 on page 163 based on input and output data types.

The result of the function is a varying-length character string in the system ASCII CCSID. If the actual
length of the result string exceeds the maximum for the return type, an error occurs.

The result can be null; if the argument is null, the result is the null value.

Example
The following example returns the ASCII string equivalent of the Unicode (UTF-8) string,
'4869206D616D6520697320D090D0BDD0B4D180D0B5D0B9202020F0908080':

SET :HV1 =
ASCII_STR(X'48692C206D79206E616D6520697320D090D0BDD0B4D180D0B5D0B920F0908080');

:HV1 is assigned the value 'Hi, my name is \0410\043D\0434\0440\0435\0439 \D800\DC00'. In
this example, the UTF-8 characters D090, D0BD, D0B4, D180, D0B5, and D0B9 are converted
to \0410\043D\0434\0440\0435\0439 and the non-ASCII character F0908080 is converted to
\D800\DC00.

SET :HV1 = ASCII_STR('Hi, my name is А ре (Andrei)');

:HV1 is assigned the value "Hi, my name is \0410\043D\0434\0440\0435\0439 (Andrei)"

394 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

ASIN scalar function
The ASIN function returns the arc sine of the argument as an angle, expressed in radians. The ASIN and
SIN functions are inverse operations.

ASIN( numeric-expression)

The schema is SYSIBM.

The argument must be an expression that returns the value of any built-in numeric data type except for
DECFLOAT. The value must be greater than or equal to -1 and less than or equal to 1. If the argument is
not a double precision floating-point number, it is converted to one for processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

The result is greater than or equal to -π/2 and less than or equal to π/2.

Example: Assume that host variable ASINE is DECIMAL(10,9) with a value of 0.997494987. The following
statement:

 SELECT ASIN(:ASINE)
 FROM SYSIBM.SYSDUMMY1;

returns a double precision floating-point number with an approximate value of 1.50.

ATAN scalar function
The ATAN function returns the arc tangent of the argument as an angle, expressed in radians. The ATAN
and TAN functions are inverse operations.

ATAN( numeric-expression)

The schema is SYSIBM.

The argument must be an expression that returns the value of any built-in numeric data type that is not
DECFLOAT. The value must be greater than or equal to -1 and less than or equal to 1. If the argument is
not a double precision floating-point number, it is converted to one for processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

The result is greater than or equal to -π/2 and less than or equal to π/2.

Example: Assume that host variable ATANGENT is DECIMAL(10,9) with a value of 14.10141995. The
following statement returns a double precision floating-point number with an approximate value of 1.50:

 SELECT ATAN(:ATANGENT)
 FROM SYSIBM.SYSDUMMY1;

ATANH scalar function
The ATANH function returns the hyperbolic arc tangent of a number, expressed in radians. The ATANH and
TANH functions are inverse operations.

ATANH( numeric-expression)

The schema is SYSIBM.

Chapter 4. Built-in functions 395

The argument must be an expression that returns the value of any built-in numeric data type that is not
DECFLOAT. The value must be greater than -1 and less than 1. If the argument is not a double precision
floating-point number, it is converted to one for processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable HATAN is DECIMAL(10,9) with a value of 0.905148254. The following
statement returns a double precision floating-point number with an approximate value of 1.50:

 SELECT ATANH(:HATAN)
 FROM SYSIBM.SYSDUMMY1;

ATAN2 scalar function
The ATAN2 function returns the arc tangent of x and y coordinates as an angle, expressed in radians.

ATAN2( numeric-expression-1 , numeric-expression-2)

The schema is SYSIBM.

The first and second arguments specify the x and y coordinates, respectively.

Each argument must be an expression that returns the value of any built-in numeric data type that is not
DECFLOAT. Both arguments must not be 0. Any argument that is not a double precision floating-point
number is converted to one for processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if any argument is null, the result is the null value.

Example: Assume that host variables HATAN2A and HATAN2B are DOUBLE host variables with values of
1 and 2, respectively. The following statement returns a double precision floating-point number with an
approximate value of 1.1071487:

 SELECT ATAN2(:HATAN2A,:HATAN2B)
 FROM SYSIBM.SYSDUMMY1;

BIGINT scalar function
The BIGINT function returns a big integer representation of either a number or a character or graphic
string representation of a number.

Numeric to Big Integer:

BIGINT( numeric-expression)

String to Big Integer:

BIGINT( string-expression)

The schema is SYSIBM.

Numeric to Big Integer

numeric-expression
An expression that returns a value of any built-in numeric data type.

396 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The result is the same number that would occur if the argument were assigned to a big integer column
or variable. If the whole part of the argument is not within the range of big integers, an error is
returned. The fractional part of the argument is truncated.

String to Big Integer

string-expression
An expression that returns a value of a character or graphic string (except a CLOB and DBCLOB)
with a length attribute that is not greater than 255 bytes. The string must contain a valid string
representation of a number.

The result is the same number that would result from CAST(string-expression AS BIGINT).
Leading and trailing blanks are eliminated and the resulting string must conform to the rules for
forming an integer constant. If the whole part of the argument is not within the range of big integers,
an error is returned.

The result of the function is a big integer.

The result can be null; if the argument is null, the result is the null value.

To increase the portability of applications, use the CAST specification.

Example 1: The following function returns the number 12345 (a BIGINT) for the number 12345.6:

 SELECT BIGINT(12345.6)
 FROM SYSIBM.SYSDUMMY1;

Example 2: The following function returns a BIGINT value of 123456789012 for the number
00123456789012.

 SELECT BIGINT('00123456789012')
 FROM SYSIBM.SYSDUMMY1;

Related reference
CAST specification
The CAST specification returns the first operand (the cast operand) converted to the data type that is
specified by data-type.

BINARY scalar function
The BINARY function returns a BINARY (fixed-length binary string) representation of a string of any type
or of a row ID type.

BINARY( string-expression

, integer

)

The schema is SYSIBM.

string-expression
An expression that returns a value that is a built-in character string, graphic string, binary string, or a
row ID type.

integer
An integer value that specifies the length attribute of the resulting binary string. The value must be an
integer in the range 1–255 inclusive.

If integer is not specified:

• If the string-expression is the empty string constant, an error occurs
• Otherwise, the length attribute of the result is the same as the length attribute of string-expression,

except when the input is graphic data. In this case, the length attribute of the result is twice the
length of string-expression.

Chapter 4. Built-in functions 397

The result of the function is a fixed-length binary string.

The result can be null; if the first argument is null, the result is the null value.

The actual length is the same as the length attribute of the result. If the length of the string-expression
is less than the length of the result, the result is padded with hexadecimal zeroes up to the length of the
result. If the length of the string-expression is greater than the length attribute of the result, truncation is
performed. A warning is returned unless the first input argument is a character string and all the truncated
characters are blanks, or the first input argument is a graphic string and all the truncated characters
are double-byte blanks, or the first input argument is a binary string and all the truncated bytes are
hexadecimal zeroes.

Following examples assume EBCDIC encoding of the input string constants.

Example 1: The following function returns a fixed-length binary string with a length attribute 1 and a value
BX'00'.

 SELECT BINARY('',1)
 FROM SYSIBM.SYSDUMMY1;

Example 2: The following function returns a fixed-length binary string with a length attribute 5 and a value
BX'D2C2C80000'

 SELECT BINARY('KBH',5)
 FROM SYSIBM.SYSDUMMY1;

Example 3: The following function returns a fixed-length binary string with a length attribute 3 and a value
BX'D2C2C8'

 SELECT BINARY('KBH')
 FROM SYSIBM.SYSDUMMY1;

Example 4: The following function returns a fixed-length binary string with a length attribute 3 and a value
BX'D2C2C8'

 SELECT BINARY('KBH ',3)
 FROM SYSIBM.SYSDUMMY1;

Example 5: The following function returns a fixed-length binary string with a length attribute 3 and a value
BX'D2C2C8', a warning is also returned.

 SELECT BINARY('KBH 93',3)
 FROM SYSIBM.SYSDUMMY1;

Example 6: The following function returns a fixed-length binary string with a length attribute 3 and a value
BX'C1C2C3', a warning is also returned.

 SELECT BINARY(BINARY('ABC',5),3)
 FROM SYSIBM.SYSDUMMY1;

BITAND, BITANDNOT, BITOR, BITXOR, and BITNOT scalar functions
The bit manipulation functions operate on the twos complement representation of the integer value of the
input arguments. The functions return the result as a corresponding base 10 integer value in a data type
that is based on the data type of the input arguments.

BITAND

BITANDNOT

BITOR

BITXOR

(expression1 , expression2)

398 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

BITNOT (expression)

The schema is SYSIBM.

Table 67. The bit manipulation funcitons

Function Description
The bit in the twos complement
representation of the result

BITAND Performs a bitwise AND operation. 1 - only if the corresponding bits in
both arguments are 1.

BITANDNOT Clears any bit in the first argument
that is in the second argument.

0 - if the corresponding bit in the
second argument is 1.
copied from the corresponding
bit in the first argument - if
the corresponding bit in the first
argument is not 1.

BITOR Performs a bitwise OR operation. 1 - unless the corresponding bits in
both arguments are 0.

BITXOR Performs a bitwise exclusive OR
operation.

1 - unless the corresponding bits in
both arguments are the same.

BITNOT Performs a bitwise NOT operation. Opposite of the corresponding bit in
the argument.

expression, expression1, or expression2
expression, expression1, or expression2 must be integer values represented by the data types
SMALLINT, INTEGER, BIGINT, or DECFLOAT. Arguments that are of type DECIMAL, REAL, or DOUBLE
are cast to DECFLOAT. The value is truncated to a whole number.

The bit manipulation functions can operate on up to 16 bits for SMALLINT, 32 bits for INTEGER, 64 bits
for BIGINT, and 113 bits for DECFLOAT. The range of supported DECFLOAT values includes integers from
-2122 to 2122 - 1. Special values such as NaN or INFINITY are not supported.

If the two arguments have different data types, the argument that supports fewer bits is cast to a value
with the data type of the argument that supports more bits. This cast impacts the bits that are set for
negative values. For example, -1 as a SMALLINT value has 16 bits set to 1. When -1 is cast to an INTEGER
value, it has 32 bits set to 1.

The result of the functions with two arguments has the data type of the argument that is highest in the
data type precedence list for promotion. If either argument is DECFLOAT, the data type of the result is
DECFLOAT(34).

The result of the BITNOT function has the same data type as the input argument, except that DECIMAL,
REAL, DOUBLE, or DECFLOAT(16) returns DECFLOAT(34).

The result can be null; if any argument is null, the result is the null value.

Due to differences in internal representation between data types and on different hardware platforms,
using functions (such as HEX) or host language constructs to view or compare internal representations
of BIT function results and arguments is data type-dependent and not portable. The data type- and
platform-independent way to view or compare BIT function results and arguments is to use the actual
integer values.

The BITXOR function is can be used to toggle bits in a value.

The BITANDNOT function can be used to clear bits.

BITANDNOT(val, pattern) operates more efficiently than BITAND(val, BITNOT(pattern)).

Chapter 4. Built-in functions 399

The following examples are based on an ITEM table with a PROPERTIES column of type INTEGER.

Return all items for which the third property bit is set.

SELECT ITEMID FROM ITEM
 WHERE BITAND(PROPERTIES, 4) = 4;

Return all items for which the fourth or the sixth property bit is set.

SELECT ITEMID FROM ITEM
 WHERE BITAND(PROPERTIES, 40) <> 0;

Clear the twelfth property of the item whose ID is 3412.

UPDATE ITEM
 SET PROPERTIES = BITANDNOT(PROPERTIES, 2048)
 WHERE ITEMID = 3412;

Set the fifth property of the item whose ID is 3412.

UPDATE ITEM
 SET PROPERTIES = BITOR(PROPERTIES, 16)
 WHERE ITEMID = 3412;

Toggle the eleventh property of the item whose ID is 3412.

UPDATE ITEM
 SET PROPERTIES = BITXOR(PROPERTIES, 1024)
 WHERE ITEMID = 3412;

Switch all the bits in a 16-bit value that has only the second bit on.

SELECT BITNOT(CAST(2 AS SMALLINT))
 FROM SYSIBM.SYSDUMMY1;

This example returns -3 (with a data type of SMALLINT).

BLOB scalar function
The BLOB function returns a BLOB representation of a string of any type or of a row ID type.

BLOB( string-expression

, integer

)

The schema is SYSIBM.

string-expression
An expression that returns a value that is a built-in character string, graphic string, binary string, or a
row ID type.

integer
An integer value that specifies the length attribute of the resulting binary string. The value must be an
integer between 1 and the maximum length of a BLOB.

Do not specify integer if string-expression is a row ID type.

If you do not specify integer and string-expression is an empty string constant, the length attribute of
the result is 1, and the result is an empty string. Otherwise, the length attribute of the result is the
same as the length attribute of string-expression, except when the input is graphic data. In this case,
the length attribute of the result is twice the length of expression.

The result of the function is a BLOB.

The result can be null; if the first argument is null, the result is the null value.

400 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The actual length of the result is the minimum of the length attribute of the result and the actual length
of string-expression (or twice the length of string-expression when the input is graphic data). If the length
of string-expression is greater than the length attribute of the result, truncation is performed. A warning is
returned unless the first input argument is a character string and all the truncated characters are blanks,
or the first input argument is a graphic string and all the truncated characters are double-byte blanks.

Example 1: The following function returns a BLOB for the string 'This is a BLOB'.

 SELECT BLOB('This is a BLOB')
 FROM SYSIBM.SYSDUMMY1;

Example 2: The following function returns a BLOB for the large object that is identified by locator
myclob_locator.

 SELECT BLOB(:myclob_locator)
 FROM SYSIBM.SYSDUMMY1;

Example 3: Assume that a table has a BLOB column named TOPOGRAPHIC_MAP and a VARCHAR column
named MAP_NAME. Locate any maps that contain the string 'Engles Island' and return a single binary
string with the map name concatenated in front of the actual map.

 SELECT BLOB(MAP_NAME || ': ') || TOPOGRAPHIC_MAP
 FROM ONTARIO_SERIES_4
 WHERE TOPOGRAPHIC_MAP LIKE BLOB('%Engles Island%')

BTRIM scalar function
The BTRIM function removes the characters that are specified in a trim string from the beginning and end
of a source string.

FL 507

Passthrough-only expression: This function is passthrough-only and cannot run on Db2 for z/OS without
acceleration. For information about invoking this function, see Accelerating queries with passthrough-only
expressions.

BTRIM (source-string

, trim-string

)

The schema is SYSIBM.

This function compares the binary representation of each character (consisting of one or more bytes) in
the trim string to the binary representation of each character (consisting of one or more bytes) at the
beginning and end of the source string. The database collation does not affect the search. If source-string
is defined as FOR BIT DATA, the search compares each byte in trim-string to the byte at the beginning and
end of source-string.

source-string
An expression that specifies the string from which characters are to be removed. This expression must
return a built-in character string, graphic string, numeric value, or datetime value. If the source string
is:

• A numeric or datetime value, it is implicitly cast to VARCHAR before the function is evaluated
• A CLOB value, the length of the value is limited to the maximum size of a VARCHAR
• A DBCLOB value, the actual length of the value is limited to the maximum size of a VARGRAPHIC

trim-string
An expression that specifies the characters that are to be removed from the beginning and end of the
source string. The expression must return a built-in character string, graphic string, numeric value, or
datetime value. If the trim string is:

• Not a character string or graphic string, it is implicitly cast to VARCHAR before the function is
evaluated

Chapter 4. Built-in functions 401

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only

• A CLOB, the actual length of the value is limited to the maximum size of a VARCHAR
• A DBCLOB, the actual length of the value is limited to the maximum size of a VARGRAPHIC

The type of the source string determines the default trim string:

Type of source string Default trim string

A graphic string double-byte blank

A FOR BIT DATA string X'20'

All other cases single-byte blank

Restrictions:

• If the source string is not defined as FOR BIT DATA, then the trim string cannot be defined as FOR BIT
DATA.

• If one parameter (source string or trim string) is character FOR BIT DATA, then the other parameter
cannot be a graphic.

Result
The data type of the source string determines the data type of the result:

Data type of source string Data type of result

VARCHAR or CHAR VARCHAR

CLOB CLOB

VARGRAPHIC or GRAPHIC VARGRAPHIC

DBCLOB DBCLOB

The length attribute of the data type of the result is the same as the length attribute of the data type of the
source string. The length of the result is the length of the source string minus the number of string units
that were removed. If all of the characters are removed, the result is an empty string with a length of zero.

If any argument can be null, the result can be null. If any argument is null, the result is the null value.

Examples
• The host variable BALANCE1 is of type CHAR(9) and has the value '000345.50'. The following

statement returns the value '345.5':

 SELECT BTRIM(:BALANCE1, '0')
 FROM SYSIBM.SYSDUMMY1

• The host variable BALANCE2 is of type CHAR(9) and has the value ' 345.50'. The following statement
returns the value '345.50'.

 SELECT BTRIM(:BALANCE2)
 FROM SYSIBM.SYSDUMMY1

CARDINALITY scalar function
The CARDINALITY function returns a value of type BIGINT that represents the number of elements of an
array.

CARDINALITY( array-expression)

The schema is SYSIBM.

402 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

array-expression
An SQL variable, SQL parameter, or global variable of an array type, or a CAST specification that
specifies an SQL variable, SQL parameter, global variable, or parameter marker as the source value.

The result of the CARDINALITY function is as follows:

• For an ordinary array, the result is the highest array index for which the array has an assigned element.
Elements that have been assigned the null value are considered to be assigned elements.

• For an associative array, the result is the actual number of unique array index values that are defined in
array-expression.

• For an empty array, the result is 0.

The data type of the result is BIGINT.

The result can be null; if array-expression is null, the result is the null value.

Example 1: Suppose that the array RECENT_CALLS is defined and contains a record of recent calls.
RECENT_CALLS contains three elements. The following SET statement assigns the number of calls that
have been stored in the array so far to SQL variable HOWMANYCALLS:

SET HOWMANYCALLS = CARDINALITY(RECENT_CALLS);

After the statement executes, HOWMANYCALLS contains 3.

Example 2: Suppose that the associative array variable CANADACAPITALS of array type CAPITALSARRAY
contains all of the capitals for the 10 provinces and three territories in Canada, as well as the capital of
the country, Ottawa. The following SET statement assigns the cardinality of CANADACAPTITALS to SQL
variable NUMCAPITALS.

SET NUMCAPITALS = CARDINALITY(CANADACAPITALS) ;

After the statement executes, CANADACAPITALS contains 14.

CCSID_ENCODING scalar function
The CCSID_ENCODING function returns a string value that indicates the encoding scheme of a CCSID that
is specified by the argument.

CCSID_ENCODING( expression)

The schema is SYSIBM.

expression
expression must be an expression that returns a value of a built-in numeric, character, or graphic
string data type that is not a LOB. A character string must not have a length attribute greater than 255,
and a graphic string must not have a length attribute greater than 127. If expression is a character
or graphic string, the string must contain a valid string representation of a number. Leading and
trailing blanks are eliminated and the resulting string must conform to the rules for forming a numeric
constant.

The function returns a value of ASCII, EBCDIC, UNICODE, or UNKNOWN depending on the CCSID
specified by expression.

The result of the function is a fixed-length character string of length 8, which is padded on the right if
necessary.

The result can be null; if the argument is null, the result is the null value.

The CCSID of the result is determined from the context in which the function was invoked. For more
information, refer to Determining the encoding scheme and CCSID of a string (Introduction to Db2 for
z/OS).

Chapter 4. Built-in functions 403

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html

Example 1: The following function returns a CCSID with a value for EBCDIC data.

 SELECT CCSID_ENCODING(37) AS CCSID
 FROM SYSIBM.SYSDUMMY1;

Example 2: The following function returns a CCSID with a value for ASCII data.

 SELECT CCSID_ENCODING(850) AS CCSID
 FROM SYSIBM.SYSDUMMY1;

Example 3: The following function returns a CCSID with a value for Unicode data.

 SELECT CCSID_ENCODING(1208) AS CCSID
 FROM SYSIBM.SYSDUMMY1;

Example 4: The following function returns a CCSID with a value of UNKNOWN.

 SELECT CCSID_ENCODING(1) AS CCSID
 FROM SYSIBM.SYSDUMMY1;

Example 5: The following function returns a CCSID with a value for EBCDIC data. The input data is a
character string.

 SELECT CCSID_ENCODING('37') AS CCSID
 FROM SYSIBM.SYSDUMMY1;

CEILING or CEIL scalar function
The CEILING function returns the smallest integer value that is greater than or equal to the argument.

CEILING

CEIL

( numeric-expression)

The schema is SYSIBM.

The argument must be an expression that returns a value of any built-in numeric data type.

The argument can also be a character string or graphic string data type. The string input is implicitly cast
to a numeric value of DECFLOAT(34).

The result of the function has the same data type and length attribute as the argument except that the
scale is 0 if the argument is DECIMAL. For example, an argument with a data type of DECIMAL(5,5) results
in DECIMAL(5,0).

The result can be null; if the argument is null, the result is the null value.

Examples
Example 1

The following statement shows the use of CEILING on positive and negative values:

 SELECT CEILING(3.5), CEILING(3.1), CEILING(-3.1), CEILING(-3.5)
 FROM SYSIBM.SYSDUMMY1;

This example returns: 04., 04., -03., -03.
Example 2

Using sample table DSN8C10.EMP, find the highest monthly salary for all the employees. Round the
result up to the next integer. The SALARY column has a decimal data type.

 SELECT CEILING(MAX(SALARY)/12)
 FROM DSN8C10.EMP;

404 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

This example returns 04396. because the highest paid employee is Christine Haas who earns
$52750.00 per year. Her average monthly salary before applying the CEILING function is 4395.83.

CHAR scalar function
The CHAR function returns a fixed-length character string representation of the argument.

The syntax of the CHAR function depends on the data type of the input argument. The following types of
input arguments are accepted.

Integer to Character:

CHAR( integer-expression)

Decimal to Character:

CHAR( decimal-expression

, decimal-character

)

Floating-Point to Character:

CHAR( floating-point-expression)

Decimal floating-point to Character:

CHAR( decimal-floating-point-expression)

Character to Character:

CHAR( character-expression

, integer

, CODEUNITS16

CODEUNITS32

OCTETS

)

Graphic to Character:

CHAR( graphic-expression

, integer

, CODEUNITS16

CODEUNITS32

)

Chapter 4. Built-in functions 405

Datetime to Character:

CHAR( datetime-expression
, ISO

USA

EUR

JIS

LOCAL

)

Row ID to Character:

CHAR( row-ID-expression)

The schema is SYSIBM.

The CHAR function returns a fixed-length character string representation of one of the following values:

• An integer number if the first argument is a SMALLINT, INTEGER, or BIGINT
• A decimal number if the first argument is a decimal number
• A double-precision floating-point number if the first argument is a DOUBLE or REAL
• A decimal floating-point number if the first argument is a DECFLOAT
• A character string value if the first argument is any type of character string
• A graphic string if the first argument is an EBCDIC or Unicode graphic string
• A datetime value if the first argument is a date, time, or timestamp
• A row ID value if the first argument is a row ID

The result of the function is a fixed-length character string (CHAR).

The result can be null; if the first argument is null, the result is the null value.

Integer to Character
integer-expression

An expression that returns a value that is a built-in integer data type (SMALLINT, INTEGER, or
BIGINT).

The result is the fixed-length character string representation of the argument in the form of an SQL
integer constant. The result is the smallest number of characters that can be used to represent
the value of the argument, padded with blanks. The result consists of n characters that are the
significant digits that represent the value of the argument with a preceding minus sign if the argument
is negative. A positive value starts with a digit and always includes at least one trailing blank. Leading
zeroes are not included. The result is left justified:

• If the argument is a small integer, the length of the result is 6. If the number of characters in the
result is less than 6, the result is padded on the right with blanks.

• If the argument is a large integer, the length of the result is 11; if the number of characters in the
result is less than 11, the result is padded on the right with blanks.

• If the argument is a big integer, the length of the result is 20. If the number of characters in the
result is less than 20, the result is padded on the right with blanks.

A positive value always includes one trailing blank.

The CCSID of the result is determined from the application encoding scheme.

406 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Decimal to Character
decimal-expression

An expression that returns a value that is a built-in decimal data type. To specify a different
precision and scale for the value of the expression, apply the DECIMAL function before applying
the CHAR function.

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character must not be a digit, a plus sign (+), a minus sign (-), or a blank.
The default is the period (.) or comma (,). For information on what factors govern the choice, see
“Decimal point representation” on page 323.

The result is the fixed-length character string representation of the first argument. The result is the
smallest number of characters that can be used to represent the value of the argument, except that
trailing zeros are included.

The result includes a decimal character and up to p digits, where p is the precision of the decimal-
expression with the preceding minus sign if the argument is negative. A positive value starts with
a digit or the decimalcharacter, and always includes at least one trailing blank. Leading zeros are
not returned. If the scale of decimal-expression is zero, the decimal character is not returned. If the
number of bytes in the result is less than the defined length of the result, the result is padded on the
right with blanks.18

The length of the result is 2 +p, where p is the precision of the decimal-expression.

The CCSID of the result is determined from the application encoding scheme.

Floating-Point to Character
floating-point-expression

An expression that returns a value that is a built-in floating-point data type (DOUBLE or REAL).

The result is the fixed-length character string representation of the argument in the form of an SQL
floating-point constant. If the argument is negative, the first character of the result is a minus sign;
otherwise, the first character is a digit. If the argument is zero, the result is 0E0.

The length of the result is 24. The result includes the smallest number of characters that can
represent the value of the argument such that the mantissa consists of a single digit, other than
zero, followed by a period and a sequence of digits.

If the number of characters in the result is less than 24, the result is padded on the right with blanks.

The CCSID of the result is determined from the application encoding scheme.

Decimal floating-point to Character
decimal-floating-point-expression

An expression that returns a value that is a built-in decimal floating-point data type (DECFLOAT).

The result is the fixed-length character string representation of the argument in the form of an SQL
decimal floating-point constant.

If the result value is Infinity, sNaN, or NaN, the strings 'INFINITY', 'SNAN', and 'NAN', respectively,
are returned. The DECFLOAT special value sNaN does not result in an exception when converted to a
string.

The length of the result is 42. If the number of characters in the result is less than 42, the result is
padded on the right with blanks. Trailing zeros are significant. If the argument is negative, the first
character of the result is a minus sign. Otherwise, the first character is a digit, or a letter if the result
value is Infinity, sNaN, or NaN.

The CCSID of the result is determined from the application encoding scheme.

18 If the function is invoked as CHAR and the BIF_COMPATIBILITY subsystem parameter is set to
V9_DECIMAL_VARCHAR, or if the function is invoked as SYSCOMPAT_V9.CHAR, the result is formatted
the same as the result of the CHAR9 function.

Chapter 4. Built-in functions 407

Character to Character
character-expression

An expression that returns a value of a built-in character string.
integer

The length attribute for the resulting fixed-length character string. The value must be an integer
constant in the range 1–255.

If the length is not specified, the length attribute of the result is the minimum of 255 and the
length attribute of character-expression. If character-expression is an empty string constant, an
error occurs.

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length attribute of the final
result” on page 108 for information about how to calculate the length attribute of the result string.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the unit that is used to express integer. If character-expression is a character string that
is defined as bit data, CODEUNITS16 and CODEUNITS32 cannot be specified.
CODEUNITS16

Specifies that integer is expressed in terms of 16-bit UTF-16 code units.
CODEUNITS32

Specifies that integer is expressed in terms of 32-bit UTF-32 code units.
OCTETS

Specifies that integer is expressed in terms of bytes.
For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see “String unit
specifications” on page 106.

The actual length is the same as the length attribute of the result. If the length of character-expression
is less than the length attribute of the result, the result is padded with blanks to the length of the
result. If the length of character-expression is greater than the length attribute of the result, the result
is truncated. Unless all of the truncated characters are blanks, a warning is returned.

If character-expression is bit data, the result is bit data. Otherwise, the CCSID of the result is the same
as the CCSID of character-expression.

Graphic to Character
graphic-expression

An expression that returns a value of a built-in graphic string.
integer

The length attribute for the resulting fixed-length character string. The value must be an integer
constant in the range 1–255.

If the length is not specified, the length attribute of the result is the minimum of 255 and
the length attribute of graphic-expression. The length attribute of graphic-expression is (3 *
length(graphic-expression)). If graphic-expression is an empty string constant, an error occurs.

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length attribute of the final
result” on page 108 for information about how to calculate the length attribute of the result string.

CODEUNITS16 or CODEUNITS32
Specifies the unit that is used to express integer.
CODEUNITS16

Specifies that integer is expressed in terms of 16-bit UTF-16 code units.
CODEUNITS32

Specifies that integer is expressed in terms of 32-bit UTF-32 code units.
For more information about CODEUNITS16 and CODEUNITS32, see “String unit specifications” on
page 106.

408 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The actual length is the same as the length attribute of the result. If the length of graphic-expression
is less than the length attribute of the result, the result is padded with blanks to the length of the
result. If the length of graphic-expression is greater than the length attribute of the result, the result is
truncated. Unless all of the truncated characters are blanks, a warning is returned.

The CCSID of the result is the character mixed CCSID that corresponds to the graphic CCSID of
graphic-expression.

Datetime to Character
datetime-expression

An expression that is one of the following built-in data types:
date

The result is the character string representation of the date in the format that is specified by
the second argument. If the second argument is omitted, the DATE precompiler option, if one
is provided, otherwise field DATE FORMAT on installation panel DSNTIP4 specifies the format.
If the format is LOCAL, field LOCAL DATE LENGTH on installation panel DSNTIP4 specifies the
length of the result. Otherwise, the length of the result is 10.

LOCAL denotes the local format at the Db2 subsystem that executes the SQL statement. If
LOCAL is used for the format, a date exit routine must be installed at that Db2 subsystem.

An error occurs if the second argument is specified and is not a valid value.

time
The result is the character string representation of the time in the format that is specified by
the second argument. If the second argument is omitted, the TIME precompiler option, if one
is provided, otherwise field TIME FORMAT on installation panel DSNTIP4 specifies the format.
If the format is LOCAL, the field LOCAL TIME LENGTH on installation panel DSNTIP4 specifies
the length of the result. Otherwise, the length of the result is 8.

LOCAL denotes the local format at the Db2 subsystem that executes the SQL statement. If
LOCAL is used for the format, a time exit routine must be installed at that Db2 subsystem.

An error occurs if the second argument is specified and is not a valid value.

timestamp without time zone
The result is the character string representation of the timestamp. If datetime-expression
is a TIMESTAMP(0) value, the length of the result is 19. If datetime-expression is a
TIMESTAMP(integer) value, the length of the result is 20+integer. Otherwise, the length of
the result is 26. The second argument must not be specified.

timestamp with time zone
The result is the character string representation of the timestamp with time zone, formatted
as yyyy-mm-dd-hh.mm.ss.nnnnnn±th:tm with the appropriate number of 'n' characters for the
precision of the timestamp. If datetime-expression is a TIMESTAMP(0) WITH TIME ZONE, the
length of the result is 147. If datetime-expression is a TIMESTAMP(integer) WITH TIME ZONE,
the length of the result is 148+integer. The second argument must not be specified.

The CCSID of the result is determined from the context in which the function is invoked. For more
information, see Determining the encoding scheme and CCSID of a string (Introduction to Db2 for
z/OS).

ISO, EUR, USA, JIS, or LOCAL
Specifies the date or time format of the resulting character string. For more information, see
“String representations of datetime values” on page 120.

Row ID to Character
row-ID-expression

An expression that returns a value that is a built-in row ID data type.

The result is the fixed-length character string representation of the argument. The result is bit data.

The length of the result is 40. If the length of row-ID-expression is less than 40, the result is padded
on the right with hexadecimal zeros to a length of 40.

Chapter 4. Built-in functions 409

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html

Recommendation: To increase the portability of applications, use the CAST specification when the first
argument is numeric, or the first argument is a string and the length argument is specified. For more
information, see “CAST specification” on page 267.

Notes
Syntax alternatives:

CHAR9 can be specified as an alternative to CHAR, except when the first argument is decimal data.
See CHAR9.

Examples
Example 1:

HIREDATE is a DATE column in sample table DSN8C10.EMP. When it represents the date 15
December 1976 (as it does for employee 140), the following example returns the string value
'12/15/1976' in character string variable DATESTRING:

 EXEC SQL SELECT CHAR(HIREDATE, USA)
 INTO :DATESTRING
 FROM DSN8C10.EMP
 WHERE EMPNO = '000140';

Example 2:

Host variable HOUR has a data type of DECIMAL(6,0) and contains a value of 50000. Interpreted
as a time duration, this value is 5 hours. Assume that STARTING is a TIME column in some table.
Then, when STARTING represents 17 hours, 30 minutes, and 12 seconds after midnight, the following
example returns the value '10:30 PM':

 CHAR(STARTING+:HOURS, USA)

Example 3:

Assume that RECEIVED is defined as a TIMESTAMP column in table TABLEY. When the value
of the date portion of RECEIVED represents the date 10 March 1997 and the time portion
represents 6 hours and 15 seconds after midnight, the following example returns the string value
'1997-03-10-06.00.15.000000':

 SELECT CHAR(RECEIVED)
 FROM TABLEY
 WHERE INTCOL = 1234;

Example 4:

For sample table DSN8C10.EMP, the following SQL statement sets the host variable AVERAGE, which
is defined as CHAR(33), to the character string representation of the average employee salary.

 EXEC SQL SELECT CHAR(AVG(SALARY))
 INTO :AVERAGE
 FROM DSN8C10.EMP;

With DEC31, the result of AVG applied to a decimal number is a decimal number with a precision of 31
digits. The only host languages in which such a large decimal variable can be defined are Assembler
and C. For host languages that do not support such large decimal numbers, use the method shown in
this example.

Example 5:

For the rows in sample table DSN8C10.EMP, return the values in column LASTNAME, which is
defined as VARCHAR(15), as a fixed-length character string and limit the length of the results to
10 characters.

 SELECT CHAR(LASTNAME,10)
 FROM DSN8C10.EMP;

410 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

For rows that have a LASTNAME with a length greater than 10 characters (excluding trailing blanks), a
warning that the value is truncated is returned.

Example 6:
FIRSTNAME is a VARCHAR(12) column in a Unicode table T1. One of its values is the 6-character
string 'Jürgen'. When FIRSTNAME has the values shown under 'Function', the results are shown under
'Returns':

 Function ... Returns ...

 CHAR(FIRSTNAME,3,CODEUNITS32) 'Jür ' -- x'4AC3BC722020202020202020'
 CHAR(FIRSTNAME,3,CODEUNITS16) 'Jür ' -- x'4AC3BC722020202020'
 CHAR(FIRSTNAME,3,OCTETS) 'Jü' -- x'4AC3BC'

Example 7

For the rows in sample table DSN8C10.EMP, return the values in column EDLEVEL, which is defined as
SMALLINT, as a fixed-length character string.

 SELECT CHAR(EDLEVEL)
 FROM DSN8C10.EMP;

An EDLEVEL of 18 is returned as CHAR(6) value '18 ' (18 followed by four blanks).

Example 8:

In sample table DSN8C10.EMP, the SALARY column is defined as DECIMAL(9,2). For those employees
who have a salary of 52750.00, return the hire date and the salary, using a comma as the decimal
character in the salary (52750,00).

 SELECT HIREDATE, CHAR(SALARY, ',')
 FROM DSN8C10.EMP
 WHERE SALARY = 52750.00;

The salary is returned as the string value '52750,00'.

Example 9:

Repeat the scenario in Example 8 except subtract the SALARY column from 60000.00 and return the
salary with the default decimal character.

 SELECT HIREDATE, CHAR (60000.00 - SALARY)
 FROM DSN8C10.EMP
 WHERE SALARY = 52750.00;

The salary is returned as the string value '7250.00'.

Example 10:

Assume that host variable SEASONS_TICKETS is defined as INTEGER and has a value of 10000. Use
the DECIMAL and CHAR functions to change the value into the character string ' 10000.00'.

 SELECT CHAR(DECIMAL(:SEASONS_TICKETS,7,2))
 FROM SYSIBM.SYSDUMMY1;

Example 11:

Assume that columns COL1 and COL2 in table T1 are both defined as REAL and that T1 contains
a single row with the values 7.1E+1 and 7.2E+2 for the two columns. Add the two columns and
represent the result as a character string.

 SELECT CHAR(COL1 + COL2)
 FROM T1;

The result is the character value '1.43E2 '.

Related concepts
Data types of columns (Introduction to Db2 for z/OS)

Chapter 4. Built-in functions 411

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_datatypes.html

Related reference
“CHAR9 scalar function” on page 412
The CHAR9 function returns a fixed-length character string representation of the argument. The CHAR9
function is intended for compatibility with previous releases of Db2 for z/OS that depend on the result
format that is returned for decimal input values in Version 9 and earlier.
BIF COMPATIBILITY field (BIF_COMPATIBILITY subsystem parameter) (Db2 Installation and Migration)

CHAR9 scalar function
The CHAR9 function returns a fixed-length character string representation of the argument. The CHAR9
function is intended for compatibility with previous releases of Db2 for z/OS that depend on the result
format that is returned for decimal input values in Version 9 and earlier.

Important: For portable applications that might run on platforms other than Db2 for z/OS, use the CHAR
function instead. Other Db2 family products do not support the CHAR9 function.

The first argument can be any one value of the following types:

• Integer number
• Decimal number
• Floating-point number
• Decimal floating-point number
• Character string
• Graphic string
• Datetime value
• Row ID value

If the first argument is a decimal number, the result is formatted as indicated in the following description.
However, if the first argument is not a decimal number, the result is identical to the result of the CHAR
function.

Decimal to Character:

CHAR9( decimal-expression

, decimal-character

)

Decimal to Character
decimal-expression

An expression that returns a value that is a built-in decimal data type. To specify a different
precision and scale for the value of the expression, apply the DECIMAL function before applying
the CHAR9 function.

decimal-character
Specifies the single-byte character constant (CHAR or VARCHAR) that delimits the decimal digits
in the result character string. The character must not be a digit, a plus sign (+), a minus sign (-),
or a blank. The default is the period (.) or comma (,). For information about the factors that govern
the choice, see “Decimal point representation” on page 323

The result is the fixed-length character string representation of the argument. The result includes a
decimal character and up to p digits, where p is the precision of the decimal-expression with the
preceding minus sign if the argument is negative. Leading and trailing zeros are returned, and a leading
blank is returned for a positive decimal value. The result includes a decimal character even if the scale
of decimal-expression is zero. If the number of bytes in the result is less than the defined length of the
result, the result is padded on the right with blanks.

The length of the result is 2 +p, where p is the precision of the decimal-expression.

412 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_bifcompatibility.html

The length attribute of the result is 2+p where p is the precision of decimal-expression.

The actual length of the result is the smallest number of characters that can be used to represent the
result, except that trailing zeros are included. If the argument is negative, the result begins with a minus
sign. Otherwise, the result begins with a digit. If the scale of decimal-expression is zero, the decimal
character is not returned.

The CCSID of the result is determined from the context in which the function was invoked. For more
information, see Determining the encoding scheme and CCSID of a string (Introduction to Db2 for z/OS).

Examples
The following table shows the difference between the results of the CHAR and CHAR9 functions for
example decimal number arguments.

Table 68. Example results of CHAR and CHAR9 functions

Decimal argument CHAR function result CHAR9 function result

(000.1) '.1 ' ' 000.1'

(1000) '1000 ' ' 1000.'

(1.1) '1.1 ' ' 1.1'

Related concepts
Data types of columns (Introduction to Db2 for z/OS)
Related reference
CHAR scalar function
The CHAR function returns a fixed-length character string representation of the argument.
BIF COMPATIBILITY field (BIF_COMPATIBILITY subsystem parameter) (Db2 Installation and Migration)

CHARACTER_LENGTH or CHAR_LENGTH scalar function
The CHARACTER_LENGTH function returns the length of the first argument in the specified string unit.

FL 506

Character string:

CHARACTER_LENGTH

CHAR_LENGTH

(character-expression , CODEUNITS16

CODEUNITS32

OCTETS

)

Graphic string:

CHARACTER_LENGTH

CHAR_LENGTH

(graphic-expression , CODEUNITS16

CODEUNITS32

)

The schema is SYSIBM.

Character string:

character-expression
An expression that returns a value of a built-in character string. character-expression cannot be bit
data.

Chapter 4. Built-in functions 413

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_datatypes.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_bifcompatibility.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the unit that is used to express the length of the result.
CODEUNITS16

Specifies that the result is expressed in terms of 16-bit UTF-16 code units.
CODEUNITS32

Specifies that the result is expressed in terms of 32-bit UTF-32 code units.
OCTETS

Specifies the result is expressed in terms of bytes.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see “String unit
specifications” on page 106.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

The result is the length of character-expression expressed in the number of string units that were
specified. The length of fixed-length strings includes trailing blanks. The length of varying-length strings is
the actual length and not the maximum length.

Graphic string:

graphic-expression
An expression that returns a value of a built-in graphic string.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

CODEUNITS16 or CODEUNITS32
Specifies the unit that is used to express the length of the result.
CODEUNITS16

Specifies that the result is expressed in terms of 16-bit UTF-16 code units.
CODEUNITS32

Specifies that the result is expressed in terms of 32-bit UTF-32 code units.

For more information about CODEUNITS16 and CODEUNITS32 see “String unit specifications” on
page 106.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

The result is the length of graphic-expression expressed in the number of string units that were specified.
The length of fixed-length strings includes trailing blanks. The length of varying-length strings is the actual
length and not the maximum length.

Example: Assume that NAME is a VARCHAR(128) column, encoded in Unicode UTF-8, that contains the
value 'Jürgen'. The following two queries return the value 6:

 SELECT CHARACTER_LENGTH(NAME,CODEUNITS32)
 FROM T1 WHERE NAME = 'Jürgen';
 SELECT CHARACTER_LENGTH(NAME,CODEUNITS16)
 FROM T1 WHERE NAME = 'Jürgen';

The following two queries return the value 7:

 SELECT CHARACTER_LENGTH(NAME,OCTETS)
 FROM T1 WHERE NAME = 'Jürgen';
 SELECT LENGTH(NAME)
 FROM T1 WHERE NAME = 'Jürgen';

414 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

CHR scalar function
The CHR function returns the character that has the ASCII code value that is specified by the argument.

CHR( expression)

The CHR function is identical to the ASCII_CHR function. For more information, see “ASCII_CHR scalar
function” on page 393.

CLOB scalar function
The CLOB function returns a CLOB representation of a string.

Character to CLOB:

CLOB( character-expression

, integer

, CODEUNITS16

CODEUNITS32

OCTETS

)

Graphic to CLOB:

CLOB( graphic-expression

, integer

, CODEUNITS16

CODEUNITS32

)

The schema is SYSIBM.

Character to CLOB

character-expression
An expression that returns a value of a character string. If character-expression is bit data, an error
occurs.

integer
An integer constant that specifies the length attribute of the resulting CLOB data type. The value must
be between 1 and the maximum length of a CLOB, expressed in the units that are either implicitly or
explicitly specified.

If you do not specify integer and character-expression is an empty string constant, the length attribute
of the result is 1, and the result is an empty string. Otherwise, the length attribute of the result is the
same as the length attribute of character-expression.

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length attribute of the final
result” on page 108 for information on how to calculate the length attribute of the result string.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the unit that is used to express integer.
CODEUNITS16

Specifies that integer is expressed in terms of 16-bit UTF-16 code units.
CODEUNITS32

Specifies that integer is expressed in terms of 32-bit UTF-32 code units.

Chapter 4. Built-in functions 415

OCTETS
Specifies that integer is expressed in terms of bytes.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see “String unit
specifications” on page 106.

The result of the function is a CLOB.

The result can be null; if the first argument is null, the result is the null value.

The actual length of the result is the minimum of the length attribute of the result and the actual length of
character-expression. If the length of character-expression is greater than the length specified, the result
is truncated. Unless all of the truncated characters are blanks, a warning is returned.

The CCSID of the result is the same as the CCSID of character-expression.

Graphic to CLOB

graphic-expression
An expression that returns a value of a graphic string.

integer
An integer constant that specifies the length attribute of the resulting CLOB data type. The value must
be between 1 and the maximum length of a CLOB, expressed in the units that are either implicitly or
explicitly specified.

If you do not specify integer and graphic-expression is an empty string constant, the length attribute
of the result is 1, and the result is an empty string. Otherwise, the length attribute of the result is (3 *
length(graphic-expression)).

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length attribute of the final
result” on page 108 for information on how to calculate the length attribute of the result string.

CODEUNITS16 or CODEUNITS32
Specifies the unit that is used to express integer.
CODEUNITS16

Specifies that integer is expressed in terms of 16-bit UTF-16 code units.
CODEUNITS32

Specifies that integer is expressed in terms of 32-bit UTF-32 code units.

For more information about CODEUNITS16 and CODEUNITS32, see “String unit specifications” on
page 106.

The result of the function is a CLOB.

The result can be null; if the first argument is null, the result is the null value.

The actual length of the result is the minimum of the length attribute of the result and the actual length
of graphic-expression. If the length of graphic-expression is greater than the length specified, the result is
truncated. Unless all of the truncated characters are blanks, a warning is returned.

The CCSID of the result is the character mixed CCSID that corresponds to the graphic CCSID of graphic-
expression.

Notes
Syntax alternatives:

FL 506 TO_CLOB is a synonym for CLOB.

Examples
Example 1: The following function returns a CLOB for the string 'This is a CLOB'.

 SELECT CLOB('This is a CLOB')
 FROM SYSIBM.SYSDUMMY1;

416 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html

Example 2: FIRSTNME is a VARCHAR(12) column in table T1. One of its values is the 6-character string
'Jürgen'. When FIRSTNME has this value:

 Function ... Returns ...
 CLOB(FIRSTNME,3,CODEUNITS32) 'Jür' -- x'4AC3BC72'
 CLOB(FIRSTNME,3,CODEUNITS16) 'Jür' -- x'4AC3BC72'
 CLOB(FIRSTNME,3,OCTETS) 'Jü' -- x'4AC3BC'

COALESCE scalar function
The COALESCE function returns the value of the first nonnull expression.

COALESCE ( expression , expression)

The schema is SYSIBM.

The arguments must be compatible. For more information on compatibility, refer to the compatibility
matrix in Table 30 on page 144. The arguments can be of either a built-in or user-defined data type.

The arguments are evaluated in the order in which they are specified, and the result of the function is the
first argument that is not null. The result can be null only if all arguments can be null. The result is null
only if all arguments are null.

The selected argument is converted, if necessary, to the attributes of the result. The attributes of the
result are determined using the “Rules for result data types” on page 166. If the COALESCE function has
more than two arguments, the rules are applied to the first two arguments to determine a candidate result
type. The rules are then applied to that candidate result type and the third argument to determine another
candidate result type. This process continues until all arguments are analyzed and the final result type is
determined.

If there are any mixed character string or graphic string and numeric arguments, the string value is
implicitly cast to a DECFLOAT(34) value.

The COALESCE function can also handle a subset of the functions provided by CASE expressions. The
result of using COALESCE(e1,e2) is the same as using the expression:

 CASE WHEN e1 IS NOT NULL THEN e1 ELSE e2 END

VALUE can be specified as a synonym for COALESCE.

Example 1: Assume that SCORE1 and SCORE2 are SMALLINT columns in table GRADES, and that nulls are
allowed in SCORE1 but not in SCORE2. Select all the rows in GRADES for which SCORE1 + SCORE2 > 100,
assuming a value of 0 for SCORE1 when SCORE1 is null.

 SELECT * FROM GRADES
 WHERE COALESCE(SCORE1,0) + SCORE2 > 100;

Example 2: Assume that a table named DSN8C10.EMP contains a DATE column named HIREDATE, and
that nulls are allowed for this column. The following query selects all rows in DSN8C10.EMP for which the
date in HIREDATE is either unknown (null) or earlier than 1 January 1960.

 SELECT * FROM DSN8C10.EMP
 WHERE COALESCE(HIREDATE,DATE('1959-12-31')) < '1960-01-01';

The predicate could also be coded as COALESCE(HIREDATE,'1959-12-31') because, for comparison
purposes, a string representation of a date can be compared to a date.

Chapter 4. Built-in functions 417

Example 3: Assume that for the years 1993 and 1994 there is a table that records the sales results of
each department. Each table, S1993 and S1994, consists of a DEPTNO column and a SALES column,
neither of which can be null. The following query provides the sales information for both years.

 SELECT COALESCE(S1993.DEPTNO,S1994.DEPTNO) AS DEPT, S1993.SALES, S1994.SALES
 FROM S1993 FULL JOIN S1994 ON S1993.DEPTNO = S1994.DEPTNO
 ORDER BY DEPT;

The full outer join ensures that the results include all departments, regardless of whether they had sales
or existed in both years. The COALESCE function allows the two join columns to be combined into a single
column, which enables the results to be ordered.

COLLATION_KEY scalar function
The COLLATION_KEY function returns a varying-length binary string that represents the collation key of
the argument in the specified collation.

COLLATION_KEY( string-expression , collation-name

, integer

)

The schema is SYSIBM.

The result of COLLATION_KEY on one string can be compared in binary form with the result of
COLLATION_KEY on another string to determine their order within the specified collation-name. For the
comparison to be meaningful, the results of the COLLATION_KEY must be from the same collation-name.
string-expression

An expression that returns a character or graphic string that is not a LOB for which the collation
key is to be determined. If string-expression is a character string, it must not be FOR BIT DATA. If
string-expression is not in Unicode UTF-16 (CCSID 1200), it is converted to Unicode UTF-16 before
the corresponding collation key is obtained. The length of string-expression must not exceed 32704
bytes of the UTF-16 representation.

collation-name
A string constant or a string host variable that is not a binary string, CLOB, or DBCLOB. collation-name
specifies the collation to use when determining the collation key. If collation-name is not an EBCDIC
value, it is converted to EBCDIC. The length of collation-name must be in the range 1–255 bytes
of the EBCDIC representation. The value of collation-name is not case sensitive and must be a
left justified, valid "short path" collation setting for the parameter CUNBOPRM_Collation_Keyword
in area CUN4BOPR. For detailed information about the "short path" setting in the parameter
CUNBOPRM_Collation_Keyword, see Description of parameters in area CUNBOPRM (z/OS: Unicode
Services User’s Guide and Reference).

The value of the host variable must not be null. If the host variable has an associated indicator
variable, the value of the indicator variable must not indicate a null value. collation-name must be left
justified within the host variable. It must also be padded on the right with blanks if the length is less
than that of the host variable and the host variable is a fixed length CHAR or GRAPHIC data type.

collation-name is in the form of CUN4BOPR_Collation_Keyword specification. You must specify a
value that is acceptable for the z/OS CUNBOPR_Collation_Keyword parameter.

The following table lists some supported values:

Table 69. Collation Keywords Reference

Attribute name Key Possible values

Locale L.R.V <locale>

Strength S 1, 2, 3, 4, I, D

Case_Level K X, O, D

418 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/cunbop.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/cunbop.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/iea3un_Description_of_parameters_in_area_CUN4BOPR.htm

Table 69. Collation Keywords Reference (continued)

Attribute name Key Possible values

Case_First C X, L, U, D

Alternate A N, S, D

Variable_Top T <hex digits>

Normalization N X, O, D

French F X, O, D

Hinayana H X, O, D

The following table describes the abbreviations for the collation keywords:
Abbreviation

Definition
D

default
O

on
X

off
1

primary
2

secondary
3

tertiary
4

quaternary
I

identical
S

shifted
N

non-ignorable
L

lower-first
U

upper-first
The following examples show keywords using the above specifications:

'UCA400R1_AS_LSV_S3_CU'

UCA version 4.0.1; ignore spaces, punctuation and symbols; use Swedish linguistic conventions; use
case-first upper; compare case-sensitive.

'UCA400R1_AN_LSV_S3_CL_NO'

UCA version 4.0.1; do not ignore spaces, punctuation and symbols; use Swedish linguistic
conventions; use case-first lower (or does not set it to mean the same, since lower is used in most
locales as the default); normalization ON; compare case-sensitive.

Chapter 4. Built-in functions 419

integer
An integer value that specifies the length attribute of the result. If specified, the value must be an
integer constant in the range 1–32704.

If the length is not specified, the length attribute of the result is determined as follows:

string-expression Result length attribute

CHAR(n) or VARCHAR(n) MIN (VARBINARY(12n), 32704)

GRAPHIC(n) or VARGRAPHIC(n) MIN (VARBINARY(12n), 32704)

Regardless of whether the length is specified, the length of the collation key must be less than or
equal to the length attribute of the result. The actual result length of the collation key is approximately
six times of the length of string-expression where the length of string-expression is in Unicode
byte representation. For certain collation-name such as UCA410_LKO_RKR (for Korean collation)
the default length attribute of the result, 12n, might not be large enough and an error will be
returned. To avoid such an error, the length attribute of the result must be explicitly specified to a
larger constant. For the proper length attribute of the result, see Description of parameters in area
CUNBOPRM (z/OS: Unicode Services User’s Guide and Reference) for information about target buffer
length considerations for Collation Services.

The result can be null; if the first argument is null, the result is the null value.

The COLLATION_KEY function uses Unicode Collation Services in z/OS to return the collation key.
See Locales supported for collation (z/OS: Unicode Services User’s Guide and Reference) for a list of
supported collation versions.

If Unicode Collation Services are not available when the COLLATION_KEY function is run, an error is
returned.

Example 1: The following query orders the employees by their surnames using the default Unicode
Collation Algorithm V4.0.1(UCA), ignoring spaces, punctuation, and symbols, using Swedish linguistic
conventions, and not comparing case:

 SELECT FIRSTNAME, LASTNAME
 FROM DSN8C10.EMP
 ORDER BY COLLATION_KEY(LASTNAME, 'UCA400R1_AS_LSV_S2');

Example 2: The following query uses the COLLATION_KEY function on the LASTNAME column and the
SALES_PERSON column to obtain the sort keys from the same collation name in order to do a culturally
correct comparison. It finds the departments of employees in Quebec:

 SELECT E.WORKDEPT
 FROM EMPLOYEE AS E INNER JOIN SALES AS S
 ON COLLATION_KEY(E.LASTNAME, 'UCA400R1_LFR_RCA') =
 COLLATION_KEY(S.SALES_PERSON, 'UCA400R1_LFR_RCA')
 WHERE S.REGION = 'Quebec';

Example 3: Create an index EMPLOYEE_NAME_SORT_KEY for table EMPLOYEE based on built-in function
COLLATION_KEY with collation name 'UCA410_LDE' tailored for German.

 CREATE INDEX EMPLOYEE_NAME_SORT_KEY
 ON EMPLOYEE (COLLATION_KEY(LASTNAME, 'UCA410_LDE', 600),
 COLLATION_KEY(FIRSTNAME, 'UCA410_LDE', 600),
 ID);

Related reference
Description of parameters in area CUN4BOPR (z/OS: Unicode Services User’s Guide and Reference)
Locales supported for collation (z/OS: Unicode Services User’s Guide and Reference)

420 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/cunbop.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/cunbop.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/loccol.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/iea3un_Description_of_parameters_in_area_CUN4BOPR.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/loccol.htm

COMPARE_DECFLOAT scalar function
The COMPARE_DECFLOAT function returns a SMALLINT value that indicates whether the two arguments
are equal or unordered, or whether one argument is greater than the other.

COMPARE_DECFLOAT( decfloat-expression1 , decfloat-expression2)

The schema is SYSIBM.

decfloat-expression1
An expression that returns a DECFLOAT value.

decfloat-expression2
An expression that returns a DECFLOAT value.

decfloat-expression1 is compared with decfloat-expression2 and the result is returned according to the
following rules:

• If both arguments are finite, the comparison is algebraic and follows the procedure for DECFLOAT
subtraction. If the different is exactly zero with either sign, the arguments are equal. If a nonzero
difference is positive, the first argument is greater than the second argument. If a nonzero difference is
negative, the first argument is less than the second.

• Positive zero and negative zero compare as equal.
• Positive infinity compares equal to positive infinity.
• Positive infinity compares greater than any finite number.
• Negative infinity compares equal to negative infinity.
• Negative infinity compares less than any finite number.
• Numeric comparison is exact and the result is determined for finite operands as if range and precision

were unlimited. Overflow or underflow cannot occur.
• If either argument is NaN or sNaN (positive or negative), the result is unordered.

Numeric comparison is exact, and the result is determined for finite operands as if the range and precision
were unlimited. An overflow or underflow condition cannot occur.

If one argument is DECFLOAT(16) and the other is DECFLOAT(34), the DECFLOAT(16) value is converted
to DECFLOAT(34) before the comparison is made.

The arguments can also be a character string or graphic string data type. The string input is implicitly cast
to a numeric value of DECFLOAT(34).

One of the following values will be the result:
0

The arguments are exactly equal
1

decfloat-expression1 is less than decfloat-expression2
2

decfloat-expression1 is greater than decfloat-expression2
3

The arguments are unordered

The result of the function is a SMALLINT value.

The result can be null; if any argument is null, the result is the null value.

Examples: The following examples demonstrate the values that will be returned when the function is
used:

 COMPARE_DECFLOAT(DECFLOAT(2.17), DECFLOAT(2.17)) = 0
 COMPARE_DECFLOAT(DECFLOAT(2.17), DECFLOAT(2.170)) = 2

Chapter 4. Built-in functions 421

 COMPARE_DECFLOAT(DECFLOAT(2.170), DECFLOAT(2.17)) = 1
 COMPARE_DECFLOAT(DECFLOAT(2.17), DECFLOAT(0.0)) = 2
 COMPARE_DECFLOAT(INFINITY,INFINITY) = 0
 COMPARE_DECFLOAT(INFINITY,-INFINITY) = 2
 COMPARE_DECFLOAT(DECFLOAT(-2),INFINITY) = 1
 COMPARE_DECFLOAT(NAN,NAN) = 3
 COMPARE_DECFLOAT(DECFLOAT(-0.1),SNAN) = 3

CONCAT scalar function
The CONCAT function combines two compatible string arguments.

CONCAT( string-expression-1 , string-expression-2)

The schema is SYSIBM.

The arguments must be compatible strings. For more information on compatibility, refer to the
compatibility matrix in Table 30 on page 144.

Either argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

The result of the function is a string that consists of the first string followed by the second string.

The result can be null; if any argument is null, the result is the null value.

The CONCAT function is identical to the CONCAT operator. For more information, see “Concatenation
operators in expressions” on page 247.

Example: Using sample table DSN8C10.EMP, concatenate column FIRSTNME with column LASTNAME.
Both columns are defined as varying-length character strings.

 SELECT CONCAT(FIRSTNME, LASTNAME)
 FROM DSN8C10.EMP;

CONTAINS scalar function
The CONTAINS function searches a text search index using criteria that are specified in a search argument
and returns a result about whether or not a match was found.

Requirement: To use the CONTAINS function, Text Search for Db2 for z/OS must be installed and
configured. See IBM Text Search for Db2 for z/OS (IBM Text Search for Db2 for z/OS Installation,
Administration, and Reference) for more information.

CONTAINS (column-name , search-argument

, string-constant
1

)

Notes:
1 string-constant must conform to the rules for the search-argument-options.

search-argument-options

422 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/srchz/src/tpc/tsrch_prodoverview.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/srchz/src/tpc/tsrch_prodoverview.html

1

QUERYLANGUAGE = value

RESULTLIMIT = value

SYNONYM =

OFF

ON

Notes:
1 The same clause must not be specified more than once.

The schema is SYSIBM.

column-name
Specifies a qualified or unqualified name of a column that has a text search index that is to be
searched. The column must exist in the table or view that is identified in the FROM clause in the
statement and the column of the table, or the column of the underlying base table of the view must
have an associated text search index. The underlying expression of the column of a view must be
a simple column reference to the column of an underlying table, directly or through another nested
view.

search-argument
Specifies an expression that returns a value that is a string value (except a LOB) that contains the
terms to be searched for and must not be all blanks or the empty string. The actual length of the
string must not exceed 4096 Unicode characters. The value is converted to Unicode before it is used
to search the text search index. The maximum number of terms per query must not exceed 1024.

string-constant
Identifies a string constant that specifies the search argument options that are in effect for the
function.

The options that can be specified as part of the search-argument-options are as follows:

QUERYLANGUAGE = value
Specifies the query language. The value can be any of the supported language codes. If the
QUERYLANGUAGE option is not specified, the default is the language value of the text search
index that is used when this function is invoked. If the language value of the text search index is
AUTO, the default value for QUERYLANGUAGE is en_US.

RESULTLIMIT = value
Specifies the maximum number of results to be returned from the underlying search engine. The
value can be an integer value in the range 1–2 147 483 647. If the RESULTLIMIT option is not
specified, no result limit is in effect for the query.

This scalar function cannot be called for each row of the result table, depending on the plan that
the optimizer chooses. This function can be called once for the query to the underlying search
engine, and a result set of all of the primary keys that match are returned from the search engine.
This result set is then joined to the table containing the column to identify the result rows. In this
case, the RESULTLIMIT value acts like a FETCH FIRST ?? ROWS from the underlying text search
engine and can be used as an optimization. If the search engine is called for each row of the
result because the optimizer determines that is the best plan, then the RESULTLIMIT option has
no effect. Also, the RESULTLIMIT option has no effect when the CONTAINS function is used along
with the comparison operators (<, >, <=, and >=) or the equality operator (=) and a value of 0
(zero).

SYNONYM = OFF or SYNONYM = ON
Specifies whether to use a synonym dictionary that is associated with the text search index. Use
the Synonym Tool to add a synonym dictionary to the collection. The default is OFF.

Chapter 4. Built-in functions 423

OFF
Do not use a synonym dictionary.

ON
Use the synonym dictionary that is associated with the text search index.

The result of the function is a large integer. If the second argument can be null, the result can be null. If
the second argument is null, the result is the null value. If the third argument is null, the result is as if the
third argument was not specified.

The result is 1 if the document contains a match for the search criteria that are specified in the search
argument. Otherwise, the result is 0.

CONTAINS is a non-deterministic function.

Examples
Example 1

Assume that information about employees' skills are stored in a table named EMP_RESUME. The
following statement finds all of the employees who have "COBOL" in their resume. The text search
argument is not case-sensitive.

SELECT EMPNO
 FROM EMP_RESUME
 WHERE RESUME_FORMAT = 'ascii'
 AND CONTAINS(RESUME, 'cobol') = 1

Example 2

The search argument does not need to be a string constant. The search argument can be any SQL
string expression, including a string contained in a host variable.

The following statement searches for the exact term "ate" in the COMMENT column:

char search_arg[100]; /* input host variable */
...
EXEC SQL DECLARE C3 CURSOR FOR
 SELECT CUSTKEY
 FROM K55ADMIN.CUSTOMERS
 WHERE CONTAINS(COMMENT, :search_arg)= 1
 ORDER BY CUSTKEY;
strcpy(search_arg, "ate");
EXEC SQL OPEN C3;
...

Example 3

The following statement finds 10 students at random who wrote online essays that contain the
phrase "fossil fuel" in Spanish, which is "combustible fósil." These students will be invited for a radio
interview.

Use the synonym dictionary that was created for the associated text search index. Because only
10 students are needed, you can optimize the query by using the RESULTLIMIT option to limit the
number of results from the underlying text search server.

SELECT FIRSTNME, LASTNAME
 FROM STUDENT_ESSAYS
 WHERE CONTAINS(TERM_PAPER, 'combustible fósil',
 'QUERYLANGUAGE= es_ES RESULTLIMIT = 10 SYNONYM=ON') = 1

Example 4

The following example shows how the CAST specification can be used in a dynamically prepared
statement to provide a typed parameter marker as an argument to the CONTAINS function. The CAST
specification defines the data type for the parameter marker (?).

CONTAINS(C1,CAST(? AS CHAR(10)))

424 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

COS scalar function
The COS function returns the cosine of the argument, where the argument is an angle, expressed in
radians. The COS and ACOS functions are inverse operations.

COS( numeric-expression)

The schema is SYSIBM.

The argument must be an expression that returns the value of any built-in numeric data type that is not
DECFLOAT. If the argument is not a double precision floating-point number, it is converted to one for
processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable COSINE is DECIMAL(2,1) with a value of 1.5. The following statement
returns a double precision floating-point number with an approximate value of 0.07:

 SELECT COS(:COSINE)
 FROM SYSIBM.SYSDUMMY1;

COSH scalar function
The COSH function returns the hyperbolic cosine of the argument, where the argument is an angle,
expressed in radians.

COSH( numeric-expression)

The schema is SYSIBM.

The argument must be an expression that returns the value of any built-in numeric data type that is not
DECFLOAT. If the argument is not a double precision floating-point number, it is converted to one for
processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable HCOS is DECIMAL(2,1) with a value of 1.5. The following statement
returns a double precision floating-point number with an approximate value of 2.35:

 SELECT COSH(:HCOS)
 FROM SYSIBM.SYSDUMMY1;

DATE scalar function
The DATE function returns a date that is derived from a value.

DATE( expression)

The schema is SYSIBM.

The argument must be an expression that returns one of the following built-in data types: a date, a
timestamp, a character string, a graphic string, or any numeric data type.

• If expression is a character or graphic string, it must not be a CLOB or DBCLOB, and it must have one of
the following values:

Chapter 4. Built-in functions 425

– A valid string representation of a date or timestamp with an actual length that is not greater than
255 bytes. For the valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 120.

– A character or graphic string with an actual length of 7 that represents a valid date in the form
yyyynnn, where yyyy are digits denoting a year and nnn are digits between 001 and 366 denoting a
day of that year.

• If expression is a number, it must be greater than or equal to one and less than or equal to 3652059.

If expression is not a DATE value, expression is cast as follows:

• If expression is a TIMESTAMP WITH TIME ZONE value, expression is cast to TIMESTAMP WITHOUT
TIME ZONE, with the same precision as expression.

• If expression is a string, expression is cast to DATE.

The result of the function is a date.

The result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

If the argument is a timestamp, the result is the date part of the timestamp.
If the argument is a date, the result is that date.
If the argument is a number, the result is the date that is n-1 days after January 1, 0001, where n is
the integral part of the number.
If the argument is a string, the result is the date that is represented by the string. If the string
contains a time zone, the time zone is ignored. If the CCSID of the string is not the same as the
corresponding default CCSID at the server, the string is first converted to that CCSID.

The result CCSID is the appropriate CCSID of the argument encoding scheme and the result subtype is the
appropriate subtype of the CCSID.

Example 1: Assume that RECEIVED is a TIMESTAMP column in some table, and that one of its values
is equivalent to the timestamp '1988-12-25-17.12.30.000000'. For this value, the following statement
returns the internal representation of 25 December 1988.

 DATE(RECEIVED)

Example 2: Assume that DATCOL is a CHAR(7) column in some table, and that one of its values is the
character string '1989061', which represents a date in the format yyyynnn, where yyyy is the year, and
nnn is the day of the year. For this value, the following statement returns the internal representation of 2
March 1989.

 DATE(DATCOL)

Example 3: Db2 recognizes '1989-03-02' as the ISO representation of 2 March 1989. So, the following
statement returns the internal representation of 2 March 1989.

 DATE('1989-03-02')

DAY scalar function
The DAY function returns the day part of a value.

DAY( expression)

The schema is SYSIBM.

The argument must be an expression that returns one of the following built-in data types: a date, a
timestamp, a character string, a graphic string, or any numeric data type.

426 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• If expression is a character or graphic string, it must not be a CLOB or DBCLOB, and its value must
be a valid string representation of a date or timestamp with an actual length that is not greater
than 255 bytes. For the valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 120.

• If expression is a number, it must be a date duration or a timestamp duration. For the valid formats of
datetime durations, see “Datetime operands” on page 169.

If expression is a timestamp with a time zone value, or a valid string representation of a timestamp with a
time zone, the result is determined from the UTC representation of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

The other rules for the function depend on the data type of the argument:

If the argument is a date, timestamp, or string representation of either, the result is the day part of
the value, which is an integer in the range 1–31.
If the argument is a date duration or timestamp duration, the result is the day part of the value,
which is an integer between -99 and 99. A nonzero result has the same sign as the argument.
If the argument contains a time zone, the result is the day part of the value expressed in UTC.

Examples for DAY
Example 1

Set the INTEGER host variable DAYVAR to the day of the month on which employee 140 in the sample
table DSN8C10.EMP was hired.

 EXEC SQL SELECT DAY(HIREDATE)
 INTO :DAYVAR
 FROM DSN8C10.EMP
 WHERE EMPNO = '000140';

Example 2
Assume that DATE1 and DATE2 are DATE columns in the same table. Assume also that for a given
row in this table, DATE1 and DATE2 represent the dates 15 January 2000 and 31 December 1999,
respectively. Then, for the given row, the following function invocation returns 15.

 DAY(DATE1 - DATE2)

Example 3
The following invocations of the DAY function all return the same result, which is 2. When the input
argument contains a time zone, the result is determined from the UTC representation of the input
value. The string representations of timestamps with a time zone in the example SELECT statement all
have the same UTC representation: 2003-01-02-20.00.00. The day portion of the UTC representation
is 2.

 SELECT DAY('2003-01-02-20.00.00'),
 DAY('2003-01-02-12.00.00-08:00'),
 DAY('2003-01-03-05.00.00+09:00')
 FROM SYSIBM.SYSDUMMY1;

Related concepts
Date, time, and timestamp data types (Introduction to Db2 for z/OS)
Datetime values

Chapter 4. Built-in functions 427

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_datetimetimestamp.html

Datetime values are neither strings nor numbers. Nevertheless, datetime values can be used in certain
arithmetic and string operations and are compatible with certain strings.

DAYOFMONTH scalar function
The DAYOFMONTH function returns the day part of a value. The function is similar to the DAY function,
except DAYOFMONTH does not support a date or timestamp duration as an argument.

DAYOFMONTH( expression)

The schema is SYSIBM.

The argument must be an expression that returns a value of a date, a timestamp, a character string, or a
graphic string built-in data type.

If expression is a character or graphic string, it must not be a CLOB or DBCLOB, and its value must be a
valid string representation of a date or timestamp with an actual length that is not greater than 255 bytes.
For the valid formats of string representations of dates and timestamps, see “String representations of
datetime values” on page 120.

If expression is a timestamp with a time zone value, or a valid string representation of a timestamp with a
time zone, the result is determined from the UTC representation of the datetime value.

The result of the function is a large integer in the range 1–31, which represents the day part of the value.

The result can be null; if the argument is null, the result is the null value.

Examples for DAYOFMONTH
Example 1

Set the INTEGER variable DAYVAR to the day of the month on which employee 140 in sample table
DSN8C10.EMP was hired.

 SELECT DAYOFMONTH(HIREDATE)
 INTO :DAYVAR
 FROM DSN8C10.EMP
 WHERE EMPNO = '000140';

Example 2
The following invocations of the DAYOFMONTH function return the same result, which is 2. When
the input argument contains a time zone, the result is determined from the UTC representation of
the input value. The string representations of timestamps with a time zone in the example SELECT
statement all have the same UTC representation: 2003-01-02-20.00.00. The day portion of the UTC
representation is 2.

SELECT DAYOFMONTH('2003-01-02-20.00.00'),
 DAYOFMONTH('2003-01-02-12.00.00-08:00'),
 DAYOFMONTH('2003-01-03-05.00.00+09:00')
 FROM SYSIBM.SYSDUMMY1;

Related concepts
Date, time, and timestamp data types (Introduction to Db2 for z/OS)
Datetime values

428 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_datetimetimestamp.html

Datetime values are neither strings nor numbers. Nevertheless, datetime values can be used in certain
arithmetic and string operations and are compatible with certain strings.

DAYOFWEEK scalar function
The DAYOFWEEK function returns an integer, in the range 1–7 that represents the day of the week, where
1 is Sunday and 7 is Saturday. The DAYOFWEEK function is similar to the DAYOFWEEK_ISO function.

DAYOFWEEK( expression)

The schema is SYSIBM.

The argument must be an expression that returns a value of one of the following built-in data types: a
date, a timestamp, a character string, or a graphic string.

If expression is a character or graphic string, it must not be a CLOB or DBCLOB, and its value must be a
valid string representation of a date or timestamp with an actual length that is not greater than 255 bytes.
For the valid formats of string representations of dates and timestamps, see “String representations of
datetime values” on page 120.

If expression is a timestamp with a time zone, or a valid string representation of a timestamp with a time
zone, the result is determined from the UTC representation of the datetime value.

The result of the function is a large integer.

Examples for DAYOFWEEK

The result can be null; if the argument is null, the result is the null value.

Example 1
The following statement uses sample table DSN8C10.EMP, set the integer host variable
DAY_OF_WEEK to the day of the week that Christine Haas (EMPNO = '000010') was hired (HIREDATE).
The result is that DAY_OF_WEEK is set to 6, which represents Friday.

 SELECT DAYOFWEEK(HIREDATE)
 INTO :DAY_OF_WEEK
 FROM DSN8C10.EMP
 WHERE EMPNO = '000010';

Example 2
The following query returns four values: 1, 2, 1, and 2.

 SELECT DAYOFWEEK(CAST('10/11/1998' AS DATE)),
 DAYOFWEEK(TIMESTAMP('10/12/1998', '01.02')),
 DAYOFWEEK(CAST(CAST('10/11/1998' AS DATE) AS CHAR(20))),
 DAYOFWEEK(CAST(TIMESTAMP('10/12/1998', '01.02') AS CHAR(26)))
 FROM SYSIBM.SYSDUMMY1;

Example 3
The following invocations of the DAYOFWEEK function all return the value 5, which represents
Thursday. (1 represents Sunday for DAYOFWEEK results.) When the input argument contains a
time zone, the result is determined from the UTC representation of the input value. The string
representations of the example timestamp with time zone values in the SELECT statement all have the
same UTC representation: 2003-01-02-20.00.00.

SELECT DAYOFWEEK('2003-01-02-20.00.00'),
 DAYOFWEEK('2003-01-02-12.00.00-08:00'),
 DAYOFWEEK('2003-01-03-05.00.00+09:00')
 FROM SYSIBM.SYSDUMMY1;

Related concepts
Date, time, and timestamp data types (Introduction to Db2 for z/OS)
Datetime values

Chapter 4. Built-in functions 429

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_datetimetimestamp.html

Datetime values are neither strings nor numbers. Nevertheless, datetime values can be used in certain
arithmetic and string operations and are compatible with certain strings.
Related reference
DAYOFWEEK_ISO scalar function
The DAYOFWEEK_ISO function returns an integer in the range 1–7 that represents the day of the week,
where 1 is Monday and 7 is Sunday. The DAYOFWEEK_ISO function is similar to the DAYOFWEEK function.

DAYOFWEEK_ISO scalar function
The DAYOFWEEK_ISO function returns an integer in the range 1–7 that represents the day of the week,
where 1 is Monday and 7 is Sunday. The DAYOFWEEK_ISO function is similar to the DAYOFWEEK function.

DAYOFWEEK_ISO( expression)

The schema is SYSIBM.

The argument must be an expression that returns a value of one of the following built-in data types: a
date, a timestamp, a character string, or graphic string.

If expression is a character or graphic string, it must not be a CLOB or DBCLOB, and its value must be a
valid string representation of a date or timestamp with an actual length that is not greater than 255 bytes.
For the valid formats of string representations of dates and timestamps, see “String representations of
datetime values” on page 120.

If expression is a timestamp with a time zone, or a valid string representation of a timestamp with a time
zone, the result is determined from the UTC representation of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

Examples for DAYOFWEEK_ISO
Example 1

Using sample table DSN8C10.EMP, set the integer host variable DAY_OF_WEEK to the day of the week
that Christine Haas (EMPNO = '000010') was hired (HIREDATE). The result is that DAY_OF_WEEK is set
to 5, which represents Friday.

 SELECT DAYOFWEEK_ISO(HIREDATE)
 INTO :DAY_OF_WEEK
 FROM DSN8C10.EMP
 WHERE EMPNO = '000010';

Example 2
The following query returns the following values: 7, 1, 7, and 1.

 SELECT DAYOFWEEK_ISO(CAST('10/11/1998' AS DATE)),
 DAYOFWEEK_ISO(TIMESTAMP('10/12/1998', '01.02')),
 DAYOFWEEK_ISO(CAST(CAST('10/11/1998' AS DATE) AS CHAR(20))),
 DAYOFWEEK_ISO(CAST(TIMESTAMP('10/12/1998', '01.02') AS CHAR(26)))
 FROM SYSIBM.SYSDUMMY1;

Example 3
The following table shows what is returned by the DAYOFWEEK_ISO function for various dates.

DATE DAYOFWEEK_ISO returns:

2003-12-28 7

2003-12-31 3

2004-01-01 4

430 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

DATE DAYOFWEEK_ISO returns:

2004-01-10 6

2005-12-31 7

2006-01-01 7

2006-01-03 2

Example 4
The following invocations of the DAYOFWEEK_ISO function all return the same result, which is 4
for Thursday. (1 represents Monday in DAYOFWEEK_ISO results.) When the input argument contains
a time zone, the result is determined from the UTC representation of the input value. The string
representations of timestamps with a time zone in the example SELECT statement all have the same
UTC representation: 2003-01-02-20.00.00.

SELECT DAYOFWEEK_ISO('2003-01-02-20.00.00'),
 DAYOFWEEK_ISO('2003-01-02-12.00.00-08:00'),
 DAYOFWEEK_ISO('2003-01-03-05.00.00+09:00')
 FROM SYSIBM.SYSDUMMY1;

Related concepts
Date, time, and timestamp data types (Introduction to Db2 for z/OS)
Datetime values
Datetime values are neither strings nor numbers. Nevertheless, datetime values can be used in certain
arithmetic and string operations and are compatible with certain strings.
Related reference
DAYOFWEEK scalar function
The DAYOFWEEK function returns an integer, in the range 1–7 that represents the day of the week, where
1 is Sunday and 7 is Saturday. The DAYOFWEEK function is similar to the DAYOFWEEK_ISO function.

DAYOFYEAR scalar function
The DAYOFYEAR function returns an integer, in the range 1–366 that represents the day of the year,
where 1 is January 1.

DAYOFYEAR( expression)

The schema is SYSIBM.

The argument must be an expression that returns a value of one of the following built-in data types: a
date, a timestamp, a character string, or a graphic string.

If expression is a character or graphic string, it must not be a CLOB or DBCLOB, and its value must be a
valid string representation of a date or timestamp with an actual length that is not greater than 255 bytes.
For the valid formats of string representations of dates and timestamps, see “String representations of
datetime values” on page 120.

If expression is a timestamp with a time zone value, or a valid string representation of a timestamp with a
time zone, the result is determined from the UTC representation of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

Chapter 4. Built-in functions 431

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_datetimetimestamp.html

Examples for DAYOFYEAR
Example 1

Using sample table DSN8C10.EMP, set the integer host variable AVG_DAY_OF_YEAR to the average of
the day of the year on which employees were hired (HIREDATE). The result is that AVG_DAY_OF_YEAR
is set to 202.

 SELECT AVG(DAYOFYEAR(HIREDATE))
 INTO :AVG_DAY_OF_YEAR
 FROM DSN8C10.EMP;

Example 2

The following invocations of the DAYOFYEAR function all return the same result, which is 2. When
the input argument contains a time zone, the result is determined from the UTC representation of
the input value. The string representations of timestamps with a time zone in the example SELECT
statement all have the same UTC representation: 2003-01-02-20.00.00.

SELECT DAYOFYEAR('2003-01-02-20.00.00'),
 DAYOFYEAR('2003-01-02-12.00.00-08:00'),
 DAYOFYEAR('2003-01-03-05.00.00+09:00')
 FROM SYSIBM.SYSDUMMY1;

Related concepts
Date, time, and timestamp data types (Introduction to Db2 for z/OS)
Datetime values
Datetime values are neither strings nor numbers. Nevertheless, datetime values can be used in certain
arithmetic and string operations and are compatible with certain strings.

DAYS scalar function
The DAYS function returns an integer representation of a date.

DAYS( expression)

The schema is SYSIBM.

The argument must be an expression that returns a value of one of the following built-in data types: a
date, a timestamp, a character string, or a graphic string.

If expression is a character or graphic string, it must not be a CLOB or DBCLOB, and its value must be a
valid string representation of a date or timestamp with an actual length that is not greater than 255 bytes.
For the valid formats of string representations of dates and timestamps, see “String representations of
datetime values” on page 120.

If expression is a timestamp with a time zone value, or a valid string representation of a timestamp with a
time zone, the result is determined from the UTC representation of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

The result is 1 more than the number of days from January 1, 0001 to D, where D is the date that would
occur if the DATE function were applied to the argument.

Examples for DAYS
Example 1

Set the INTEGER host variable DAYSVAR to the number of days that employee 140 had been with the
company on the last day of 1997.

 EXEC SQL SELECT DAYS('1997-12-31') - DAYS(HIREDATE) + 1
 INTO :DAYSVAR

432 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_datetimetimestamp.html

 FROM DSN8C10.EMP
 WHERE EMPNO = '000140';

Example 2
The following invocations of the DAYS function all return the same result, which is 731217. When
the input argument contains a time zone, the result is determined from the UTC representation of
the input value. The string representations of timestamps with a time zone in the example SELECT
statement all have the same UTC representation: 2003-01-02-20.00.00.

SELECT DAYS('2003-01-02-20.00.00'),
 DAYS('2003-01-02-12.00.00-08:00'),
 DAYS('2003-01-03-05.00.00+09:00')
 FROM SYSIBM.SYSDUMMY1;

Related concepts
Date, time, and timestamp data types (Introduction to Db2 for z/OS)
Datetime values
Datetime values are neither strings nor numbers. Nevertheless, datetime values can be used in certain
arithmetic and string operations and are compatible with certain strings.

DAYS_BETWEEN scalar function
The DAYS_BETWEEN function returns the number of full days between the specified arguments.

FL 507

Passthrough-only expression: This function is passthrough-only and cannot run on Db2 for z/OS without
acceleration. For information about invoking this function, see Accelerating queries with passthrough-only
expressions.

DAYS_BETWEEN (expression1 , expression2)

The schema is SYSIBM.

expression1
An expression that specifies the first datetime value to compute the number of full days between
two datetime values. The expression must return a value that is a DATE, TIMESTAMP WITHOUT
TIME ZONE, CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and
VARGRAPHIC are supported by using implicit casting. If expression1 is a CHAR, VARCHAR, GRAPHIC,
or VARGRAPHIC data type, it must be a valid string that is accepted by the TIMESTAMP scalar function
and does not contain a time zone.

expression2
An expression that specifies the second datetime value to compute the number of full days between
two datetime values. The expression must return a value that is a DATE, TIMESTAMP WITHOUT
TIME ZONE, CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and
VARGRAPHIC are supported by using implicit casting. If expression2 is a CHAR, VARCHAR, GRAPHIC,
or VARGRAPHIC data type, it must be a valid string that is accepted by the TIMESTAMP scalar function
and does not contain a time zone.

If there is less than a full day between expression1 and expression2, the result is zero. If expression1
is later than expression2, the result is positive. If expression1 is earlier than expression2, the result
is negative. If expression1 or expression2 contains time information, this information is also used to
determine the number of full days. If expression1 or expression2 does not contain time information, a
time of midnight (00.00.00) is used for the argument that is missing time information.

The result of the function is an INTEGER. If either argument can be null, the result can be null. If either
argument is null, the result is the null value.

Examples
• Set the host variable NUM_DAYS with the number of full days between 2012-03-03 and 2012-02-28.

Chapter 4. Built-in functions 433

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_datetimetimestamp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only

 SET :NUM_DAYS = DAYS_BETWEEN(DATE '2012-03-03',
 DATE '2012-02-28')

The host variable NUM_DAYS is set to 4 because an additional day is incurred for February 29, 2012.
• Set the host variable NUM_DAYS with the number of full days between 2013-09-11-23.59.59 and

2013-09-01-00.00.00.

 SET :NUM_DAYS = DAYS_BETWEEN(TIMESTAMP '2013-09-11-23.59.59',
 TIMESTAMP '2013-09-01-00.00.00')

The host variable NUM_DAYS is set to 10 because there is 1 second less than a full 11 days between the
arguments. It is positive because the first argument is later than the second argument.

• Set the host variable NUM_DAYS with the number of full days between 2013-09-01-00.00.00 and
2013-09-11-23.59.59.

 SET :NUM_DAYS = DAYS_BETWEEN(TIMESTAMP '2013-09-01-00.00.00',
 TIMESTAMP '2013-09-11-23.59.59')

The host variable NUM_DAYS is set to -10 because there is 1 second less than a full 11 days between
the arguments. It is negative because the first argument is earlier than the second argument.

DBCLOB scalar function
The DBCLOB function returns a DBCLOB representation of a character string value (with the single-byte
characters converted to double-byte characters) or a graphic string value.

Character to DBCLOB:

DBCLOB( character-expression

, integer

, CODEUNITS16

CODEUNITS32

)

Graphic to DBCLOB:

DBCLOB( graphic-expression

, integer

, CODEUNITS16

CODEUNITS32

)

The schema is SYSIBM.

Character to DBCLOB

character-expression
An expression that returns a value that is an EBCDIC-encoded or Unicode-encoded character string. It
cannot be BIT data. The argument does not need to be mixed data, but any occurrences of X'0E' and
X'0F' in the string must conform to the rules for EBCDIC mixed data. (See “Character strings” on page
102 for these rules.)

integer
The length attribute of the resulting DBCLOB. The value of integer must be between 1 and the
maximum length of a DBCLOB, expressed in the units that are either implicitly or explicitly specified.

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length attribute of the final
result” on page 108 for information about how to calculate the length attribute of the result string.
If CODEUNITS32 is specified, the value of integer must be between 1 and the maximum length of a

434 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

DBCLOB divided by two (to allow for an intermediate result string that is long enough to evaluate the
function).

If integer is not specified and character-expression is an empty string constant, the length attribute of
the result is 1, and the result is an empty string. Otherwise, the length attribute of the result is the
same as the length attribute of character-expression.

CODEUNITS16 or CODEUNITS32
Specifies the unit that is used to express integer. If CODEUNITS16 or CODEUNITS32 is specified, the
input is EBCDIC, and there is no system CCSID for EBCDIC GRAPHIC data, an error occurs.
CODEUNITS16

Specifies that integer is expressed in terms of 16-bit UTF-16 code units.
CODEUNITS32

Specifies that integer is expressed in terms of 32-bit UTF-32 code units.

For more information about CODEUNITS16 and CODEUNITS32, see “String unit specifications” on
page 106.

The actual length of the result is the minimum of the length attribute of the result and the actual length
of character-expression. If the length of character-expression, as measured in single-byte characters,
is greater than the specified length of the result, as measured in double-byte characters, the result is
truncated. Unless all the truncated characters are blanks appropriate for character-expression, a warning
is returned.

The CCSID of the result is the graphic CCSID that corresponds to the character CCSID of character-
expression.

For EBCDIC input data, each character of character-expression determines a character of the result. The
argument might need to be converted to the native form of mixed data before the result is derived. Let M
denote the system CCSID for mixed data. The argument is not converted if any of the following conditions
is true:

• The argument is mixed data and its CCSID is M.
• The argument is SBCS data and its CCSID is the same as the system CCSID for SBCS data. In this case,

the operation proceeds as if the CCSID of the argument is M.

Otherwise, the argument is a new string S derived by converting the characters to the coded character set
identified by M. If there is no system CCSID for mixed data, conversion is to the coded character set that
the system CCSID for SBCS data identifies.

The result is derived from S using the following steps:

• Each shift character (X'0E' or X'0F') is removed.
• Each double-byte character remains as is.
• Each single-byte character is replaced by a double-byte character.

The replacement for a single-byte character is the equivalent DBCS character if an equivalent exists.
Otherwise, the replacement is X'FEFE'. The existence of an equivalent character depends on M. If there
is no system CCSID for mixed data, the DBCS equivalent of X'xx' for EBCDIC is X'42xx', except for X'40',
whose DBCS equivalent is X'4040'.

For Unicode input data, each character of character-expression determines a character of the result. The
argument might need to be converted to the native form of mixed data before the result is derived. Let M
denote the system CCSID for mixed data. The argument is not converted if any of the following conditions
is true:

• The argument is mixed data, and its CCSID is M.
• The argument is SBCS data, and its CCSID is the same as the system CCSID for SBCS data. In this case,

the operation proceeds as if the CCSID of the argument is M.

Otherwise, the argument is a new string S derived by converting the characters to the coded character set
identified by M.

Chapter 4. Built-in functions 435

The result is derived from S using the following steps:

• Each non-supplementary character is replaced by a Unicode double-byte character (a UTF-16 code
point). A non-supplementary character in UTF-8 is in the range 1–3 bytes.

• Each supplementary character is replaced by a pair of Unicode double-byte characters (a pair of UTF-16
code points).

The replacement for a single-byte character is the Unicode equivalent character if an equivalent exists.
Otherwise, the replacement is X'FFFD'.

Graphic to DBCLOB

graphic-expression
An expression that returns a value that is an EBCDIC-encoded or Unicode-encoded graphic string.

integer
The length attribute for the resulting varying-length graphic string. The value must be an integer
between 1 and the maximum length of a DBCLOB, expressed in the units that are either implicitly or
explicitly specified.

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length attribute of the final
result” on page 108 for information about how to calculate the length attribute of the result string.

If integer is not specified and graphic-expression is an empty string constant, the length attribute of
the result is 1, and the result is an empty string. Otherwise, the length attribute of the result is the
same as the length attribute of graphic-expression.

CODEUNITS16 or CODEUNITS32
Specifies the unit that is used to express integer. If CODEUNITS16 or CODEUNITS32 is specified, the
input is EBCDIC, and there is no system CCSID for EBCDIC GRAPHIC data, an error occurs.
CODEUNITS16

Specifies that integer is expressed in terms of 16-bit UTF-16 code units.
CODEUNITS32

Specifies that integer is expressed in terms of 32-bit UTF-32 code units.

For more information about CODEUNITS16 and CODEUNITS32, see “String unit specifications” on
page 106.

The actual length of the result is the minimum of the length attribute of the result and the actual length
of graphic-expression. If the length of graphic-expression is greater than the length attribute of the result,
truncation is performed. Unless all of the truncated characters are double-byte blanks, a warning is
returned.

The CCSID of the result is the same as the CCSID of graphic-expression.

The result of the function is a DBCLOB.

The result can be null; if the first argument is null, the result is the null value.

The length attribute and actual length of the result are measured in double-byte characters because the
result is a graphic string.

Example 1: Assume that the application encoding scheme is Unicode. The following statement returns a
graphic (UTF-16) host variable.

 VALUES DBCLOB('123')
 INTO :GHV1;

Example 2: FIRSTNAME is a VARCHAR(12) column (Unicode UTF-8 data) in table T1. One of its values is
the 6-character string 'Jürgen'. When FIRSTNAME has this value:

 Function ... Returns ...
 DBCLOB(FIRSTNAME,3,CODEUNITS32) 'Jür' -- x'004A00FC0072'
 DBCLOB(FIRSTNAME,3,CODEUNITS16) 'Jür' -- x'004A00FC0072'

436 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

DECFLOAT scalar function
The DECFLOAT function returns a decimal floating-point representation of either a number or a character
string representation of a number, a decimal number, an integer, a floating-point number, or a decimal
floating-point number.

Numeric to DECFLOAT:

DECFLOAT( numeric-expression
,34

,16

)

String to DECFLOAT:

DECFLOAT( string-expression
,34

,16

)

The schema is SYSIBM.

Numeric to DECFLOAT

numeric-expression
An expression that returns a value of any built-in numeric data type.

34 or 16
Specifies the number of digits of precision for the result. The default is 34.

String to DECFLOAT

string-expression
An expression that returns a value of a character or graphic string (except a CLOB or DBCLOB) with
a length attribute that is not greater than 255 bytes. Leading and trailing blanks are eliminated, and
the resulting string is folded to uppercase. The expression must conform to the rules for forming a
floating-point, decimal floating-point, integer, or decimal constant.

Use the string-expression syntax variation to specify a negative zero as a constant, or to preserve the
precision of a floating point constant.

34 or 16
Specifies the number of digits of precision for the result. The default is 34.

The result is the same number that would result from CAST(string-expression AS DECFLOAT(n))
or CAST(numeric-expression AS DECFLOAT(n)). Leading and trailing blanks are removed from the
string, and the resulting substring must conform to the rules for forming a string representation of an SQL
decimal-floating point constant.

If necessary, the source is rounded to the precision of the target.

For static SQL statements other than CREATE VIEW, the ROUNDING bind option or the native SQL
procedure option determines the rounding mode.

For dynamic SQL statements (and static CREATE VIEW statements), the special register CURRENT
DECFLOAT ROUNDING MODE determines the rounding mode.

The result of the function is a DECFLOAT with the implicitly or explicitly specified number of digits of
precision.

The result can be null; if the first argument is null, the result is the null value.

Chapter 4. Built-in functions 437

Note: To increase the portability of applications, use the CAST specification. For more information, see
“CAST specification” on page 267.

Example: When a keyword is used for a special value that is expressed as a constant in a context where
the keyword could be interpreted as a name, the DECFLOAT function can be used to explicitly cast the
value to decimal-floating point. Assume that MYTAB contains columns C1 and SNAN, and that you want
to reference the decimal floating-point value for infinity in the same SQL statement. Use the DECFLOAT
function to explicitly cast SNAN as a decimal floating-point value to ensure that it is not interpreted as the
name of a column, parameter or variable:

 SELECT INFINITY -- column named SNAN
 FROM MYTAB
 WHERE C1 = DECFLOAT ('sNaN') -- comparison is made with the
 -- decimal floating-point sNaN value

DECFLOAT_FORMAT scalar function
The DECFLOAT_FORMAT function returns a DECFLOAT(34) value that is based on the interpretation of the
input string using the specified format.

DECFLOAT_FORMAT (string-expression

, format-string

)

The schema is SYSIBM.

string-expression
An expression that returns a value that is a CHAR and VARCHAR data type. If a supplied argument is a
GRAPHIC or VARGRAPHIC data type, it is first converted to VARCHAR before evaluating the function.
Leading and trailing blanks are removed from the string. If format-string is not specified, the resulting
substring must conform to the rules for forming an SQL integer, decimal, floating-point, or decimal
floating-point constant and not be greater than 42 bytes. Otherwise, the resulting substring must
contain the components of a number that corresponds to the format specified by format-string.

format-string
An expression that returns a value that is a built-in character string data type. If a supplied argument
is a graphic string (except DBCLOB), it is first converted to a character string before the function is
evaluated. The actual length must not be greater than 254 bytes.

The value is a template for how string-expression is to be interpreted for conversion to a DECFLOAT
value. format-string must contain a valid combination of the listed format elements according to the
following rules:

• At least one '0' or '9' format element must be specified.
• A sign format element ('S', 'MI', 'PR') can be specified only one time.
• A decimal point format element can be specified only one time.
• Alphabetic format elements must be specified in upper case.
• A prefix format element can only be specified at the beginning of the format string, before any

format elements that are not prefix format elements. When multiple prefix format elements are
specified they can be specified in any order.

• A suffix format element can only be specified at the end of the format string, after any format
elements that are not suffix format elements.

• A comma format element can be the first format element that is not a prefix format element. There
can be any number of comma format elements.

• Blanks must not be specified between format elements. Leading and trailing blanks can be specified
but are ignored.

438 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 70. Format elements for the DECFLOAT_FORMAT function

Format element Description

0 or 9 Each 0 or 9 represents a digit.

S Prefix
If string-expression represents a negative
number, a leading minus sign (−) is expected
at the specified location. If string-expression
represents a positive number, a leading plus
sign (+) or leading blank can be included at
the specified location.

$ Prefix
A leading dollar sign ('$') is expected at the
specified location.

MI Suffix
If string-expression represents a negative
number, a trailing minus sign (−) is expected
at the specified location. If string-expression
represents a positive number, a trailing blank
can be included at the specified location.

PR Suffix
If string-expression represents a negative
number, a leading less than character (<)
and a trailing greater than character (>) are
expected. If string-expression represents a
positive number, a leading blank and a trailing
blank can be included.

’ Represents a group separator. A group separator
is expected at the specified location if there is
a character to the left of it that is not a prefix
character.

. A period represents a decimal point that is
expected at the specified location.

If format-string is not specified, string-expression must conform to the rules for forming an SQL integer,
decimal, floating-point, or decimal floating-point constant and have a length not greater than 42 bytes.

The result is a DECFLOAT(34).

The result can be null; if any argument is null, the result is the null value.

Notes
Syntax alternatives:

TO_NUMBER is a synonym for DECFLOAT_FORMAT.

Examples

Table 71. Examples of DECFLOAT_FORMAT

Example Result

DECFLOAT_FORMAT('123.45') 123.45

Chapter 4. Built-in functions 439

Table 71. Examples of DECFLOAT_FORMAT (continued)

Example Result

DECFLOAT_FORMAT('−123456.78') -123456.78

DECFLOAT_FORMAT('+123456.78') 123456.78

DECFLOAT_FORMAT('1.23E4') 12300

DECFLOAT_FORMAT('123.4', '9999.99') 123.40

DECFLOAT_FORMAT('001,234',
'000,000')

1234

DECFLOAT_FORMAT('1234 ', '9999MI') 1234

DECFLOAT_FORMAT('1234−', '9999MI') -1234

DECFLOAT_FORMAT('+1234', 'S9999') 1234

DECFLOAT_FORMAT('−1234', 'S9999') -1234

DECFLOAT_FORMAT(' 1234 ', '9999PR') 1234

DECFLOAT_FORMAT('<1234>', '9999PR') -1234

DECFLOAT_FORMAT('$123,456.78',
'$999,999.99')

123456.78

DECFLOAT_SORTKEY scalar function
The DECFLOAT_SORTKEY function returns a binary value that can be used when sorting DECFLOAT values.
The sorting occurs in a manner that is consistent with the IEEE 754R specification on total ordering.

DECFLOAT_SORTKEY( decfloat-expression)

The schema is SYSIBM.

decfloat-expression
An expression that returns a DECFLOAT value.

decfloat-expression can also be a character string or graphic string data type. The string input is
implicitly cast to a numeric value of DECFLOAT(34).

The result is a fixed length binary string with a length attribute of 9 if decfloat-expression is a
DECFLOAT(16) value or 17 if decfloat-expression is a DECFLOAT(34) value.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that the following CREATE TABLE statement is used to create a table with a column that
contains DECFLOAT values and the INSERT statements are used to populate the table:

 CREATE TABLE T1(D1 DECFLOAT(16));
 INSERT INTO T1 VALUES (2.100);
 INSERT INTO T1 VALUES (2.10);
 INSERT INTO T1 VALUES (2.1000);
 INSERT INTO T1 VALUES (2.1);

Then the following SELECT statement is used to return the values from D1:

 SELECT D1 FROM T1 ORDER BY D1;

The SELECT statement returns the following values, but because all numbers in the column have the
same value, the ORDER BY clause has no effect and the values are returned in an arbitrary order:

440 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 D1

 2.1
 2.1000
 2.10
 2.100

The following SELECT statement, which includes the DECFLOAT_SORTKEY function in the ORDER BY
clause, returns the properly ordered values:

 SELECT D1
 FROM T1
 ORDER BY (DECFLOAT_SORTKEY(D1));

 D1

 2.1000
 2.100
 2.10
 2.1

DECIMAL or DEC scalar function
The DECIMAL function returns a decimal representation of either a number or a character-string or
graphic-string representation of a number, an integer, or a decimal number.

Numeric to Decimal:

DECIMAL

DEC

( numeric-expression

, precision

, scale

)

String to Decimal:

DECIMAL

DEC

( string-expression

, precision

, scale

, decimal-character

)

The schema is SYSIBM.

Numeric to decimal

numeric-expression
An expression that returns a value of any built-in numeric data type.

precision
An integer constant with a value greater than or equal to 1 and less than or equal to 31.

The default for precision depends on the data type of the numeric-expression:

• 5 for small integer
• 11 for large integer
• 19 for big integer
• 15 for floating point or decimal
• 31 for decimal floating point

Chapter 4. Built-in functions 441

scale
An integer constant that is greater than or equal to zero and less than or equal to precision. The value
specifies the scale of the result. The default value is 0.

The result of the function is the same number that would occur if the argument were assigned to a
decimal column or variable with precision p and scale s, where p and s are specified by the second and
third arguments. An error occurs if the number of significant digits required to represent the whole part of
the number is greater than p-s.

String to decimal

string-expression
An expression that returns a value of a character or graphic string (except a CLOB or DBCLOB)
with a length attribute that is not greater than 255 bytes. The string must contain a valid string
representation of a number. Leading and trailing blanks are removed from the string, and the resulting
substring must conform to the rules for forming a valid string representation of an SQL integer or
decimal constant.

precision
An integer constant with a value in the range 1 to 31. The value of this second argument specifies the
precision of the result. If not specified, the default is 15.

scale
An integer constant that is greater than or equal to zero and less than or equal to precision. The value
specifies the scale of the result. The default value is 0.

decimal-character
A single-byte character constant used to delimit the decimal digits in string-expression from the whole
part of the number. The character cannot be a digit, plus (+), minus (-), or blank. The default value is
period (.) or comma (,); the default value cannot be used in string-expression if a different value for
decimal-character is specified.

Digits are truncated from the end of the decimal number if the number of digits to the right of the decimal
separator character is greater than the scale s. An error is returned if the number of significant digits to
the left of the decimal character (the whole part of the number) in string-expression is greater than p-s.

The result of the function is a decimal number with precision of p and scale of s, where p and s are the
second and third arguments. If the first argument can be null, the result can be null; if the first argument is
null, the result is null.

Notes
Syntax alternatives:

To increase the portability of applications when the precision is specified, use the CAST specification.
For more information, see “CAST specification” on page 267.

Examples
Example 1:

Represent the average salary of the employees in DSN8C10.EMP as an 8-digit decimal number with
two of these digits to the right of the decimal point.

 SELECT DECIMAL(AVG(SALARY),8,2)
 FROM DSN8C10.EMP;

Example 2:

Assume that updates to the SALARY column are input as a character string that uses comma as
the decimal character. For example, the user inputs 21400,50. The input value is assigned to the
host variable NEWSALARY that is defined as CHAR(10), and the host variable is used in the following
UPDATE statement:

442 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 UPDATE DSN8C10.EMP
 SET SALARY = DECIMAL (:NEWSALARY,9,2,',')
 WHERE EMPNO = :EMPID;

DECODE scalar function
The DECODE function compares each expression2 to expression1. If expression1 is equal to expression2,
or both expression1 and expression2 are null, the value of the result-expression is returned. If no
expression2 matches expression1, the value of else-expression is returned. Otherwise a null value is
returned.

DECODE (expression1 , expression2 , result-expression

, else-expression

)

The schema is SYSIBM.

The DECODE function is similar to the CASE expression, with the exception of how DECODE handles null
values:

• A null value in expression1 will match a corresponding null value in expression2.
• If the NULL keyword is used as an argument in the DECODE function, it must be cast to a data type that

is appropriate for comparison.

An argument of DECODE must not represent an array value.

The rules for determining the result type of the result of the DECODE function are based on the
corresponding CASE expression.

The following table shows equivalent DECODE functions and CASE expressions. Both the DECODE
function and the corresponding CASE expression achieve the same result.

Table 72. Equivalent DECODE functions and CASE expressions (each returns the same results)

DECODE function CASE expression Notes

DECODE(c1, 7, 'a',
 6, 'b', 'c')

CASE c1
 WHEN 7 THEN 'a'
 WHEN 6 THEN 'b'
 ELSE 'c'
END

DECODE(c1, var1, 'a',
 var2, 'b')

CASE
WHEN c1 = var1 OR
 (c1 IS NULL AND
 var1 IS NULL) THEN 'a'
WHEN c1 = var2 OR
 (c1 IS NULL AND
 var2 IS NULL) THEN 'b'
ELSE NULL
END

The values of c1, var1, and var2
can be null values.

Chapter 4. Built-in functions 443

Table 72. Equivalent DECODE functions and CASE expressions (each returns the same results) (continued)

DECODE function CASE expression Notes

SELECT ID, DECODE(STATUS,
 'A', 'Accepted',
 D', 'Denied',
CAST(NULL AS VARCHAR(1)),
 'Unknown', 'Other')
FROM CONTRACTS

SELECT ID,
CASE
WHEN STATUS = 'A'
 THEN 'Accepted'
WHEN STATUS = 'D'
 THEN 'Denied'
WHEN STATUS IS NULL
 THEN 'Unknown'
ELSE 'Other'
END
FROM CONTRACTS

DECRYPT_BINARY, DECRYPT_BIT, DECRYPT_CHAR, and DECRYPT_DB scalar
functions

The decryption functions return a value that is the result of decrypting encrypted data. The decryption
functions can decrypt only values that are encrypted by using the ENCRYPT_TDES function.

DECRYPT_BINARY

DECRYPT_BIT

DECRYPT_CHAR

DECRYPT_DB

( encrypted-data

, password-string

DEFAULT , ccsid-constant

)

The schema is SYSIBM.

The password used for decryption is either the password-string value or the ENCRYPTION PASSWORD
value, which is assigned by the SET ENCRYPTION PASSWORD statement.

encrypted-data
An expression that returns a complete, encrypted data value of a CHAR FOR BIT DATA, VARCHAR FOR
BIT DATA, BINARY, or VARBINARY data type. The data string must have been encrypted using the
ENCRYPT_TDES function. The length attribute must be greater than or equal to 0 (zero) and less than
or equal to 32672.

password-string
An expression that returns a CHAR or VARCHAR value with at least 6 bytes and no more than 127
bytes. This expression must be the same password that was used to encrypt the data or decryption
will result in a different value than was originally encrypted. For enhanced security, password-string
should be specified using a host variable rather than a string constant. If the value of the password
argument is null or not provided, the data will be decrypted using the ENCRYPTION PASSWORD value,
which must have been assigned by the SET ENCRYPTION PASSWORD statement.

For a static SQL statement, it is recommended that the password be specified with a host variable
rather than with a string constant.

DEFAULT
The data is decrypted using the ENCRYPTION PASSWORD value, which must have been assigned by
the SET ENCRYPTION PASSWORD statement.

ccsid-constant
A integer constant that specifies the CCSID in which the data should be returned by the decryption
function. If DECRYPT_BIT or DECRYPT_BINARY is specified, ccsid-constant must not be specified. The
default is

• The ENCODING bind option of the plan or package or the APPLICATION ENCODING SCHEMA option
of the CREATE PROCEDURE or ALTER PROCEDURE statement for native SQL procedures that contain
the static SQL statements

444 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• The value of the APPLICATION ENCODING special register for dynamic SQL statements

The data type of the result of the function is determined by the function that is specified and the data type
of the first argument, as shown in the following table. If the cast from the actual type of the encrypted
data to the result of the function is not supported, a warning or error is returned.

Table 73. Result of the decryption function

Function Type of first argument Actual type of
encrypted data

Result

DECRYPT_BINARY FOR BIT DATA “1”
on page 445, BINARY,
VARBINARY

Any string (except for
LOBs)

VARBINARY

DECRYPT_BIT FOR BIT DATA, BINARY,
VARBINARY

CHAR, VARCHAR VARCHAR FOR BIT DATA

DECRYPT_BIT FOR BIT DATA, BINARY,
VARBINARY

GRAPHIC, VARGRAPHIC
(UTF16)

Warning or error

If a warning is returned,
the result is VARCHAR
FOR BIT DATA

DECRYPT_BIT FOR BIT DATA, BINARY,
VARBINARY

GRAPHIC, VARGRAPHIC
(not UTF16)

Warning or error

If a warning is returned,
the result is VARCHAR
FOR BIT DATA

DECRYPT_BIT FOR BIT DATA, BINARY,
VARBINARY

BINARY, VARBINARY Warning or error

If a warning is returned,
the result is VARCHAR
FOR BIT DATA

DECRYPT_CHAR FOR BIT DATA, BINARY,
VARBINARY

CHAR, VARCHAR VARCHAR(3)

DECRYPT_CHAR FOR BIT DATA, BINARY,
VARBINARY

GRAPHIC, VARGRAPHIC
(UTF16)

VARCHAR(3)

DECRYPT_CHAR FOR BIT DATA, BINARY,
VARBINARY

GRAPHIC, VARGRAPHIC
(not UTF16)

Warning or error

If a warning is returned,
the result is VARCHAR(3)

DECRYPT_CHAR FOR BIT DATA, BINARY,
VARBINARY

BINARY, VARBINARY Warning or error

If a warning is returned,
the result is VARCHAR(3)

DECRYPT_DB FOR BIT DATA, BINARY,
VARBINARY

CHAR, VARCHAR,
GRAPHIC, VARGRAPHIC

VARGRAPHIC

DECRYPT_DB FOR BIT DATA, BINARY,
VARBINARY

BINARY, VARBINARY Warning or error

If a warning is
returned, the result is
VARGRAPHIC

Notes:

1. FOR BIT DATA means CHAR or VARCHAR FOR BIT DATA

Chapter 4. Built-in functions 445

If encrypted-data included a hint, the hint is not returned by the function. The length attribute of the result
is the length attribute of encrypted-data minus 8 bytes. The actual length of the value that is returned
by the function will match the length of the original string that was encrypted. If encrypted-data includes
bytes beyond the encrypted string, these bytes are not returned by the function.

Administration of encrypted data: The decryption functions can only decrypt data that was encrypted
using the Triple DES encryption algorithm. Therefore, columns with encrypted data can only be used after
replication if they were encrypted using the Triple DES encryption algorithm.

If the data is decrypted using a different CCSID than the originally encrypted value, it is possible that
expansion might occur when converting the decrypted value to this CCSID. In such situations, the
encrypted-data value must first be cast to a VARCHAR string with a larger number of bytes before
performing the decryption functions.

The result can be null; if the first argument is null, the result is the null value.

For additional information about using the decryption functions, see “ENCRYPT_TDES or ENCRYPT scalar
function” on page 456 and “GETHINT scalar function” on page 463.

Password protection: To prevent inadvertent access to the encryption password, do not specify
password-string as a string constant in the source statement. Instead, use the ENCRYPTION PASSWORD
special register or specify the password using a host variable.

Example 1: Set the ENCRYPTION PASSWORD value to 'Ben123' and use it as the password to insert a
decrypted social security number into the table. Decrypt the value of the added social security number,
using the ENCRYPTION PASSWORD value.

 SET ENCRYPTION PASSWORD ='Ben123';
 INSERT INTO EMP(SSN) VALUES ENCRYPT_TDES('289-46-8832');
 SELECT DECRYPT_CHAR(SSN) FROM EMP;

This example returns the value '289-46-8832'.

Example 2: Decrypt the social security number that is inserted into the table. Instead of using the
ENCRYPTION PASSWORD value, explicitly specify 'Ben123' as the encryption password.

 SELECT DECRYPT_CHAR(SSN,'Ben123') FROM EMP;

This example returns the value '289-46-8832'.

Example 3: Insert a decrypted social security number into the table, explicitly specifying 'Ben123' as the
password. Decrypt the data and have it converted to CCSID 1208.

 SET ENCRYPTION PASSWORD ='Ben123';
 INSERT INTO EMP(SSN) VALUES ENCRYPT_TDES('289-46-8832');
 SELECT DECRYPT_CHAR(SSN) FROM EMP;

When a CCSID is specified, it might be necessary to explicitly cast the data to a longer value to ensure that
there is room for expansion when the data is decrypted. The following example illustrates the technique:

 SELECT DECRYPT_CHAR(CAST(SSN AS VARCHAR(57)),
 'Ben123',1208)
 FROM EMP;

In the first case, where the data is not cast to a longer value, the result is a VARCHAR(11) value. In the
second case, to allow for expansion, SSN is cast as VARCHAR(57) (11 * 3 + 24). Casting the data to
a longer value allows for three times expansion in the normal VARCHAR(11) result. Three times expansion
is often associated with a worst case of ASCII or EBCDIC to Unicode UTF-8 conversion. In both cases in
this example, the result is the VARCHAR(11) value '289-46-8832'.

DECRYPT_DATAKEY_INTEGER, DECRYPT_DATAKEY_BIGINT,
DECRYPT_DATAKEY_DECIMAL, DECRYPT_DATAKEY_VARCHAR,

446 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

DECRYPT_DATAKEY_CLOB, DECRYPT_DATAKEY_VARGRAPHIC,
DECRYPT_DATAKEY_DBCLOB, and DECRYPT_DATAKEY_BIT scalar functions

The data key decryption functions return a value that is the result of decrypting the first argument
(previously encrypted using the ENCRYPT_DATAKEY function) using the algorithm that was specified
when the data was encrypted. The name of the decryption function indicates the desired result data type.
The name of the decryption function that is invoked must correspond to the original data type of the
encrypted data.

FL 505

Authorization
The primary authorization ID that is used to invoke the decrypt function must be authorized to use the key
label that was used to encrypt the data. The key label is saved in the metadata stored with the encrypted
value, so the key label does not need to be specified during decryption. When no ACEE is available for
the primary authorization ID, Db2 creates one to check for the required authorization when the decrypt
function executes. For more information, see When Db2 creates an ACEE (RACF Access Control Module
Guide).

Syntax
Integer:

DECRYPT_DATAKEY_INTEGER

DECRYPT_DATAKEY_BIGINT

( encrypted-data)

Decimal:

DECRYPT_DATAKEY_DECIMAL ( encrypted-data
, 31

, precision

,0

,scale

)

String:

DECRYPT_DATAKEY_VARCHAR

DECRYPT_DATAKEY_CLOB

DECRYPT_DATAKEY_VARGRAPHIC

DECRYPT_DATAKEY_DBCLOB

( encrypted-data)

, ccsid-constant

Bit:

DECRYPT_DATAKEY_BIT ( encrypted-data)

The schema is SYSIBM.

encrypted-data
An expression that returns a built-in VARBINARY or BLOB value. The value must be returned in the
same format that the ENCRYPT_DATAKEY function returns.

Chapter 4. Built-in functions 447

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m505.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/racf/src/tpc/db2z_aceecreation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/racf/src/tpc/db2z_aceecreation.html

ccsid-constant
An integer constant that specifies the CCSID in which the data should be returned by the decryption
function. The value must be one of the CCSID values in DECP. If the result of the function is VARCHAR,
the CCSID specified must be either an SBCS or MIXED CCSID. If the result of the function is CLOB,
the CCSID specified must be a MIXED CCSID if the encoding scheme is Unicode; otherwise the CCSID
specified must be an SBCS or MIXED CCSID. If the result of the function VARGRAPHIC or DBCLOB, the
CCSID specified must be a DBCS CCSID. See Determining the encoding scheme and CCSID of a string
(Introduction to Db2 for z/OS) for special considerations regarding CCSID 367.

If ccsid is not specified when encrypted-data is a character or graphic string, the default is determined
from the encoding scheme and the data type of the result as follows:

• For static SQL statements, the ENCODING bind option of the plan or package or the APPLICATION
ENCODING SCHEME option of the CREATE or ALTER statement for a compiled SQL scalar function,
native SQL procedure, or advanced trigger.

• For dynamic SQL statements, the value of the APPLICATION ENCODING special register.

The default CCSID of the result is determined from the result data type:

• VARCHAR: the default result CCSID is the mixed data CCSID for the encoding scheme.
• CLOB: the default result CCSID is the mixed data CCSID for the encoding scheme.
• VARGRAPHIC or DBCLOB: the default result CCSID is the DBCS CCSID for the encoding scheme.

precision
An integer constant with a value greater than or equal to 1 and less than or equal to 31.

scale
An integer constant that is greater than or equal to zero and less than or equal to precision. The value
specifies the scale of the result.

The data type of the result of the function is determined by the name of the decryption function that is
invoked. The name of the decryption function must indicate the data type of the original value that was
encrypted by the ENCRYPT_DATAKEY function.

Table 74. Data key decryption functions and the data type of the result

Function Data type of the first
argument

Original data type of
the encrypted data

Data type of the result
of the function

DECRYPT_DATAKEY_INT
EGER

VARBINARY INTEGER INTEGER

DECRYPT_DATAKEY_BIG
INT

VARBINARY BIGINT BIGINT

DECRYPT_DATAKEY_DE
CIMAL

VARBINARY DECIMAL DECIMAL (precision,
scale)

DECRYPT_DATAKEY_BIT VARBINARY CHAR FOR BIT DATA,
VARCHAR FOR BIT DATA

VARCHAR FOR BIT DATA

DECRYPT_DATAKEY_VAR
CHAR

VARBINARY CHAR, VARCHAR VARCHAR

DECRYPT_DATAKEY_CLO
B

BLOB CLOB CLOB

DECRYPT_DATAKEY_VAR
GRAPHIC

VARBINARY GRAPHIC, VARGRAPHIC VARGRAPHIC

DECRYPT_DATAKEY_DB
CLOB

BLOB DBCLOB DBCLOB

448 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html

The length attribute of the result is the length attribute of the data type of encrypted-data minus 8 bytes.
If a function returns a string data type, the length attribute of the result is the length attribute of the data
type of encryted-data minus 16 bytes. The actual length of the result is the length of the original string
that was encrypted. If the encrypted-data includes bytes beyond the encrypted string, these bytes are not
returned by the function.

If the first argument is null, the result can be null; if the first argument is null, the result is the null value.

If the result data type is a string, the encrypted data is decrypted to the original CCSID, and then the
intermediate result is cast to the specified CCSID for the result. If the result data type is VARCHAR
FOR BIT DATA, the CCSID of the result is 65535. Otherwise, if the result data type is VARCHAR, CLOB,
DBCLOB, or VARGRAPHIC, the CCSID of the result is ccsid. If the data is decrypted using a different
CCSID than the originally encrypted value, it is possible that expansion might occur when converting
the decrypted value to this CCSID. In such situations, the encrypted-data value must first be cast to a
varying-length string with a larger number of bytes before performing the decryption.

Example
Decrypt the value in the PROTECTED_SSN VARBINARY column. The encrypted data was originally a
character string.

SELECT DECRYPT_DATAKEY_VARCHAR(PROTECTED_SSN)
FROM CUSTOMER
WHERE CID = ?

The CCSID for the result was not specified, so it defaults as described for the ccsid parameter.

Related tasks
Defining columns for data encrypted using the ENCRYPT_DATAKEY built-in function. (Managing Security)
Related reference
ENCRYPT_DATAKEY scalar function
The ENCRYPT_DATAKEY function returns a value that is the result of encrypting the first argument using
the specified key label and algorithm.

DEGREES scalar function
The DEGREES function returns the number of degrees of the argument, which is an angle, expressed in
radians.

DEGREES( numeric-expression)

The schema is SYSIBM.

The argument must be an expression that returns the value of any built-in numeric data type that is not
DECFLOAT. If the argument is not a double precision floating-point number, it is converted to one for
processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable HRAD is a DOUBLE with a value of 3.1415926536. The following
statement returns a double precision floating-point number with an approximate value of 180.0.

 SELECT DEGREES(:HRAD)
 FROM SYSIBM.SYSDUMMY1;

Chapter 4. Built-in functions 449

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_definecol4encryptdatakey.html

DIFFERENCE scalar function
The DIFFERENCE function returns a value, in the range 0–4, that represents the difference between the
sounds of two strings, based on applying the SOUNDEX function to the strings. A value of 4 is the best
possible sound match.

DIFFERENCE( expression-1 , expression-2)

The schema is SYSIBM.

expression-1 or expression-2
Each expression must return a value that is a built-in numeric, character string, or graphic string
data type that is not a LOB. A numeric argument is cast to a character string before the function is
evaluated. For more information on converting a numeric string to a character string, see “VARCHAR
scalar function” on page 615.

The data type of the result is INTEGER.

The result can be null; if any argument is null, the result is the null value.

Example 1: Find the DIFFERENCE and SOUNDEX values for 'CONSTRAINT' and 'CONSTANT':

 SELECT DIFFERENCE('CONSTRAINT','CONSTANT'),
 SOUNDEX('CONSTRAINT'),
 SOUNDEX('CONSTANT')
 FROM SYSIBM.SYSDUMMY1;

This example returns the values 4, C523, and C523. Since the two strings return the same SOUNDEX
value, the difference is 4 (the highest value possible).

Example 2: Find the DIFFERENCE and SOUNDEX values for 'CONSTRAINT' and 'CONTRITE':

 SELECT DIFFERENCE('CONSTRAINT','CONTRITE'),
 SOUNDEX('CONSTRAINT'),
 SOUNDEX('CONTRITE')
 FROM SYSIBM.SYSDUMMY1;

This example returns the values 2, C523, and C536. In this case, the two strings return different
SOUNDEX values, and hence, a lower difference value.

DIGITS scalar function
The DIGITS function returns a character string representation of the absolute value of a number.

DIGITS( numeric-expression)

The schema is SYSIBM.

The argument must be an expression that returns a value that is a SMALLINT, INTEGER, BIGINT, or
DECIMAL built-in numeric data type.

The result of the function is a fixed-length character string representing the absolute value of the
argument without regard to its scale. The result does not include a sign or a decimal point. Instead, it
consists exclusively of digits, including, if necessary, leading zeros to fill out the string. The length of the
string is:

• 5 if the argument is a small integer
• 10 if the argument is a large integer
• 19 if the argument is a big integer
• p if the argument is a decimal number with a precision of p

The result can be null; if the argument is null, the result is the null value.

450 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The CCSID of the result is determined from the context in which the function was invoked. For more
information, see Determining the encoding scheme and CCSID of a string (Introduction to Db2 for z/OS).

Example 1: Assume that an INTEGER column called INTCOL containing a 10-digit number is in a table
called TABLEX. INTCOL has the data type INTEGER instead of CHAR(10) to save space. the following
query lists all combinations of the first four digits in column INTCOL.

 SELECT DISTINCT SUBSTR(DIGITS(INTCOL),1,4)
 FROM TABLEX;

Example 2: Assume that COLUMNX has the data type DECIMAL(6,2), and that one of its values is -6.28.
For this value, the following statement returns the value '000628'.

 DIGITS(COLUMNX)

The result is a string of length six (the precision of the column) with leading zeros padding the string out to
this length. Neither sign nor decimal point appear in the result.

DOUBLE_PRECISION or DOUBLE scalar function
The DOUBLE_PRECISION and DOUBLE functions returns a floating-point representation of either a
number or a character-string or graphic-string representation of a number, an integer, a decimal number,
or a floating-point number.

Numeric to Double:

DOUBLE_PRECISION

DOUBLE

( numeric-expression)

String to Double:

DOUBLE_PRECISION

DOUBLE

( string-expression)

The schema is SYSIBM.

Numeric to Double

numeric-expression
An expression that returns a value of any built-in numeric data type.

The result is the same number that would occur if the expression were assigned to a double precision
floating-point column or variable.

String to Double

string-expression
An expression that returns a value of a character or graphic string (except a CLOB or DBCLOB)
with a length attribute that is not greater than 255 bytes. The string must contain a valid string
representation of a number.

The result is the same number that would result from CAST(string-expression AS DOUBLE
PRECISION). Leading and trailing blanks are removed from the string, and the resulting substring
must conform to the rules for forming a valid string representation of an SQL floating-point, integer, or
decimal constant.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Chapter 4. Built-in functions 451

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html

Notes
Syntax alternatives:

FLOAT is a synonym for DOUBLE or DOUBLE_PRECISION.

To increase the portability of applications, use the CAST specification. For more information, see
“CAST specification” on page 267.

Example

Using sample table DSN8C10.EMP, find the ratio of salary to commission for employees whose
commission is not zero. The columns involved in the calculation, SALARY and COMM, have decimal data
types. To eliminate the possibility of out-of-range results, apply the DOUBLE function to SALARY so that
the division is carried out in floating-point.

 SELECT EMPNO, DOUBLE(SALARY)/COMM
 FROM DSN8C10.EMP
 WHERE COMM > 0;

DSN_XMLVALIDATE scalar function
The DSN_XMLVALIDATE function returns an XML value that is the result of applying XML schema
validation to the first argument of the function. DSN_XMLVALIDATE can validate XML data that has a
maximum length of 2 GB - 1 byte.

DSN_XMLVALIDATE(string-expression

xml-expression

, schema-name-string

target-namespace-uri-string , schema-location-string

)

The schema is SYSIBM.

string-expression
An expression that returns a built-in character, graphic, or binary string. The value must be a well-
formed XML document that conforms to the XML Version 1.0 standard.

xml-expression
An expression that returns an XML value in the XML data type. The value must be a well-formed XML
document that conforms to XML Version 1.0 standard.

schema-name-string
An expression that returns a built-in varying length character string that is not a CLOB. The value
specifies the name of the XML schema object that is used for validation. The value must not be an
empty string or the null value, and the actual length must be less than or equal to 257. If the XML
schema name is qualified, the qualifier must be SYSXSR (SYSXSR is the default qualifier). The value
must identify a registered XML schema in the Db2 XML schema repository.

target-namespace-uri-string
An expression that returns a built-in varying length character string that is not a CLOB, with a length
attribute that is not greater than 1000. The value specifies the target namespace name or universal
resource identifier (URI) of the XML schema that is to be used for validation. If the value is an empty
string of the null value, no namespace is used to locate the XML schema.

schema-location-string
An expression that returns a built-in varying length character string that is not a CLOB, with a length
attribute that is not greater than 1000. The value specifies the XML schema location hint URI of the
XML schema that is to be used for validation. If the value is an empty string of the null value, no
schema location is used to locate the XML schema.

If target-namespace-uri-string and schema-location-string are specified, the combination must identify a
registered XML schema in the Db2 XML schema repository, and there must be only one such registered
XML schema.

452 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

A schema must be registered successfully in the Db2 XML schema repository before it can be used for
DSN_XMLVALIDATE. If the validation fails, Db2 returns an error.

The result of the function is an XML value.

The result can be null; if the first argument is null, the result is the null value.

Example 1: The following example shows how the DSN_XMLVALIDATE function validates the XML data
that is contained in the value_host_var host variable. The XML schema, SYSXSR.ORDERSCHEMA, was
registered prior to this statement:

 INSERT INTO T1(C1) VALUES(
 DSN_XMLVALIDATE(:value_host_var, 'SYSXSR.MYXMLSCHEMA'));

Example 2: The following example is similar to the previous example but references the namespace and
schema location:

 INSERT INTO T1(C1) VALUES(
 DSN_XMLVALIDATE(:value_host_var,
 'http://www.n1.com',
 'http://www.n1.com/report.xsd'));

EBCDIC_CHR scalar function
The EBCDIC_CHR function returns the character that has the EBCDIC code value that is specified by the
argument.

EBCDIC_CHR( expression)

The schema is SYSIBM.

expression
An expression that returns a BIGINT, INTEGER, or SMALLINT built-in data type value.

expression can also be a character string or graphic string data type. The string input is implicitly cast
to a numeric value of DECFLOAT(34) which is then assigned to a BIGINT value.

The result of the function is a CHAR(1) string encoded in the SBCS EBCDIC CCSID (regardless of the
setting of the MIXED option in DSNHDECP). If the value of expression is not in the range 0–255, the null
value is returned.

The result can be null; if the argument is null, the result is the null value.

Example: Set hv with the Euro symbol "€" in CCSID 1140:

 SET :hv = EBCDIC_CHR(159); -- x'9F'

Set hv with the Euro symbol "€" in CCSID 1142:

 SET :hv = EBCDIC_CHR(90); -- x'5A'

In both cases, the "€" is assigned to hv, but because the Euro symbol is located at different code points
for the two CCSIDs, the input value is different.

EBCDIC_STR scalar function
The EBCDIC_STR function returns a string, in the system EBCDIC CCSID, that is an EBCDIC version of the
string.

EBCDIC_STR( string-expression)

The schema is SYSIBM.

Chapter 4. Built-in functions 453

The system EBCDIC CCSID is defined as the SBCS EBCDIC CCSID on a MIXED=NO system or the MIXED
EBCDIC CCSID on a MIXED=YES system.

string-expression
An expression that returns a value of a built-in character or graphic string. If the string is a
character string, it cannot be bit data. string-expression must be an ASCII, EBCDIC, or Unicode string.
EBCDIC_STR returns an EBCDIC version of the string. Non-EBCDIC characters other than the Unicode
replacement character (X'EFBFBD' in UTF-8 encoding or X'FFFD' in UTF-16 encoding), are converted
to the form \xxxx, where xxxx represents a UTF-16 code unit. The Unicode replacement character is
converted to X'3F'.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

The length attribute of the result is calculated using the formulas in Table 37 on page 163. The length
attribute of the result will be MIN((5*n),32704). Where n is the result of applying the formulas in
Table 37 on page 163 based on input and output data types.

The result of the function is an EBCDIC character string (in the system EBCDIC CCSID). If the actual
length of the result string exceeds the maximum for the return type, an error occurs.

The result can be null; if the argument is null, the result is the null value.

Example: The following example returns the EBCDIC string equivalent of the text string "Hi my name is
А ре (Andrei)"

SET :HV1 = EBCDIC_STR('Hi, my name is А ре (Andrei)');

HV1 is assigned the value "Hi, my name is \0410\043D\0434\0440\0435\0439 (Andrei)"

ENCRYPT_DATAKEY scalar function
The ENCRYPT_DATAKEY function returns a value that is the result of encrypting the first argument using
the specified key label and algorithm.

Authorization
The primary authorization ID used to invoke the ENCRYPT_DATAKEY function must be authorized to
use the key label that is specified in key-label-name. Authorization for use of the key label is checked
when the function is invoked. When no ACEE is available for the primary authorization ID, Db2 creates
one to check for the required authorization when the ENCRYPT_DATAKEY function executes. For more
information, see When Db2 creates an ACEE (RACF Access Control Module Guide).

FL 505

Syntax

ENCRYPT_DATAKEY( expression , key-label-name , AES256R

AES256D

)

The schema is SYSIBM.

expression
An expression that contains the data to be encrypted. The expression must return an INTEGER,
BIGINT, DECIMAL, CHAR, VARCHAR, GRAPHIC, VARGRAPHIC, CLOB, or DBCLOB built-in data type.

key-label-name
An expression that contains the ICSF key label name.

A key label is the public name of a protected key and it must be defined in the ICSF key store. The
primary authorization ID used to invoke the ENCRYPT_DATAKEY function must be authorized to use
the key label.

454 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/racf/src/tpc/db2z_aceecreation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m505.html

AES256R
Specifies that the 256-bit AES CBC algorithm with a random initialization vector (IV) is used to encrypt
the data. This algorithm results in a non-deterministic encrypted value and provides the highest level
of protection.

A non-deterministic encrypted value is returned for every input value. The resulting text strings cannot
be compared even when the encrypted values to be compared originated from the same unencrypted
value. An encrypted value must be decrypted before using it in a comparison.

AES256D
Specifies that the 256-bit AES CBC algorithm with a fixed initialization vector (IV) will be used to
encrypt the data. This algorithm results in a deterministic encrypted value. The resulting text value
can be used in equal comparisons against the encrypted text strings. Identical input values encrypted
using this mode all result in the same encrypted value. Equality comparisons can be performed on the
encrypted values without decrypting the values.

The data type of the result is determined by the first argument as shown in the following table:

Table 75. Data type of the results of the ENCRYPT_DATAKEY function

Data type of the first argument Data type of the result

BIGINT, INTEGER, DECIMAL, CHAR, VARCHAR,
GRAPHIC, VARGRAPHIC

VARBINARY

CLOB, DBCLOB BLOB

The length attribute and actual length of the result are determined as follows:

• Length attribute of result in bytes = (((length attribute of source data in bytes + 16 - 1) / 16) * 16) +
15-byte fixed header + 64 bytes for length attribute of key label.

• Actual length of result in bytes = (((actual length of source data in bytes + 16 - 1) / 16) * 16) + 15-byte
fixed header + variable length key label in bytes. If expression is an empty string, the actual length of the
result in bytes = 15-byte fixed header + variable length key label in bytes.

The actual length of the result can be longer than the length of expression. Therefore, when assigning a
resulting encrypted value, ensure that the target is defined with a length attribute that can contain the
entire encrypted value.

The result can be null; if expression is null, the result is the null value.

Notes
Administration of encrypted data

A replicated server must have access to the same security label and same decryption function for Db2
to be able to decrypt the data.

If AES256R is specified, the ENCRYPT_DATAKEY function is a non-deterministic function.

If AES256R and AES256D are mixed within the same column or a different key label is used for each
row, the encrypted values must be decrypted before being used in any sort of comparison.

Example
Encrypt the values in the character column SSN and insert the resulting values into the PROTECTED_SSN
column in the CUSTOMER table: The PROTECTED_SSN column is defined as VARBINARY. Use
'MYKEYLABEL' as the key label, and the AES256D encryption algorithm.

UPDATE CUSTOMER
 SET PROTECTED_SSN = ENCRYPT_DATAKEY(SSN,'MYKEYLABEL', AES256D);

Chapter 4. Built-in functions 455

Related tasks
Defining columns for data encrypted using the ENCRYPT_DATAKEY built-in function. (Managing Security)
Related reference
DECRYPT_DATAKEY_type
The data key decryption functions return a value that is the result of decrypting the first argument
(previously encrypted using the ENCRYPT_DATAKEY function) using the algorithm that was specified
when the data was encrypted. The name of the decryption function indicates the desired result data type.
The name of the decryption function that is invoked must correspond to the original data type of the
encrypted data.

ENCRYPT_TDES or ENCRYPT scalar function
The ENCRYPT_TDES function returns a value that is the result of encrypting the first argument by using
the Triple DES encryption algorithm. The function can also set the password that is used for encryption.

The encryption password can also be set by using the ENCRYPTION PASSWORD value, which is assigned
by using the SET ENCRYPTION PASSWORD statement.

ENCRYPT_TDES( data-string

, password-string

, hint-string

)

The schema is SYSIBM.

data-string
An expression that returns the string value to be encrypted. The string expression must return a
built-in string data type that is not a LOB. The length attribute must be greater than or equal to 0
(zero). The length attribute is limited to 32640 if hint-string is specified and 32672 if hint-string is not
specified.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

password-string
An expression that returns a CHAR or VARCHAR value with at least 6 bytes and no more than 127
bytes.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

The value represents the password that is used to encrypt data-string. If the value of the password
argument is null or not specified, the data is encrypted using the ENCRYPTION PASSWORD value,
which must have been assigned by the SET ENCRYPTION PASSWORD statement.

hint-string
An expression that returns a CHAR or VARCHAR value up to 32 bytes that is to help data owners
remember passwords (for example, 'Ocean' as a hint to remember 'Pacific').

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

If a hint value is specified, the hint is embedded into the result and can be retrieved using the
GETHINT function. If this argument is null or not specified and no hint was specified when the
ENCRYPTION PASSWORD was set, no hint is embedded in the result. If password-string is not
specified, the hint can be specified using the SET ENCRYPTION PASSWORD statement.

The data type of the result is determined by the first argument as shown in the following table:

456 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_definecol4encryptdatakey.html

Table 76. Data type of the results of the ENCRYPT_TDES function

Data type of the first argument Data type of the result

BINARY, VARBINARY VARBINARY

CHAR, VARCHAR, GRAPHIC, VARGRAPHIC VARCHAR FOR BIT DATA

The encoding scheme of the result is the same as the encoding scheme of data-string. If the result is
character data, the result is bit data.

The length attribute of the result is different depending of whether hint-string is specified:

• If hint-string is specified, the length attribute of the result is the length attribute of the non-encrypted
data + 24 bytes + number of bytes to the next 8 byte boundary + 32 bytes for the hint.

• If hint-string is not specified, the length attribute of the result is the length attribute of the non-
encrypted data + 24 bytes + the number of bytes to the next 8 byte boundary.

The result can be null; if the first argument is null, the result is the null value.

The encrypted result is longer than the data-string value. Therefore, when assigning encrypted values,
ensure that the target is declared with a length that can contain the entire encrypted value.

Notes
Data encryption considerations:

Password protection
To prevent inadvertent access to the encryption password, do not specify password-string as
a string constant in the source for a program, procedure, or function. Instead, use the SET
ENCRYPTION PASSWORD statement or a variable.

Encryption algorithm:
The internal encryption algorithm used is Triple DES cipher block chaining (CBC) with padding. The
128-bit secret key is derived from the password using an MD5 hash.

Encryption passwords and data
It is your responsibility to perform password management. After data is encrypted, only the
password that is used to encrypt it can be used to decrypt it. If a different password is used to
decrypt the data than was used to encrypt the data, the results of decryption will not match the
original string. No error or warning is returned. CHAR variables might be padded with blanks if
they are used to set password values. The encrypted result might contain null terminator and
other non-printable characters.

Table column definitions
When defining columns and types to contain encrypted data, always calculate the length attribute
as follows:

• For encrypted data with an embedded hint, the column length should be the length attribute of
the non-encrypted data + 24 bytes + number of bytes to the next 8 byte boundary + 32 bytes for
the hint.

• For encrypted data without an embedded hint, the column length should be the length attribute
of the non-encrypted data + 24 bytes + number of bytes to the next 8 byte boundary.

Here are some sample column length calculations, which assume that a hint is not embedded:

Maximum length of non-encrypted data 6 bytes
24 bytes for encryption key 24 bytes
Number of bytes to the next 8 byte boundary 2 bytes

Encrypted data column length 32 bytes
Maximum length of non-encrypted data 32 bytes
24 bytes for encryption key 24 bytes
Number of bytes to the next 8 byte boundary 0 bytes

Chapter 4. Built-in functions 457

Encrypted data column length 56 bytes

Administration of encrypted data
Encrypted data can be decrypted only on servers that support the decryption of data that
was encrypted using the Triple DES encryption algorithm. Hence, replication of columns with
encrypted data should only be done to servers that support the decryption functions and the same
encryption algorithms.

Syntax alternatives:
ENCRYPT is a synonym for ENCRYPT_TDES. Db2 supports this keyword to provide compatibility with
other products in the Db2 family.

Examples
Example 1:

Encrypt the social security number that is inserted into the table. Set the ENCRYPTION PASSWORD
value to 'Ben123' and use it as the password.

 SET ENCRYPTION PASSWORD ='Ben123';
 INSERT INTO EMP(SSN) VALUES ENCRYPT_TDES ('289-46-8832');

Example 2:
Encrypt the social security number that is inserted into the table. Explicitly specify 'Ben123' as the
encryption password.

INSERT INTO EMP(SSN) VALUES ENCRYPT_TDES ('289-46-8832','Ben123');

Example 3

Encrypt the social security number that is inserted into the table. Specify 'Pacific' as the encryption
password, and provide 'Ocean' as a hint to help the user remember the password of 'Pacific'.

INSERT INTO EMP(SSN) VALUES ENCRYPT_TDES ('289-46-8832','Pacific','Ocean');

The preceding statement returns a double precision floating-point number with an approximate value
of 31.62.

EXP scalar function
The EXP function returns a value that is the base of the natural logarithm (e), raised to a power that is
specified by the argument. The EXP and LN functions are inverse operations.

EXP( numeric-expression)

The schema is SYSIBM.

The argument must be an expression that returns the value of any built-in numeric data type that is not
DECFLOAT. If the argument is not a double precision floating-point number, it is converted to one for
processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable E is DECIMAL(10,9) with a value of 3.453789832. The following
statement returns a double precision floating-point number with an approximate value of 31.62.

 SELECT EXP(:E)
 FROM SYSIBM.SYSDUMMY1;

458 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

EXTRACT scalar function
The EXTRACT function returns a portion of a date or timestamp, based on its arguments.

Extract date values:

EXTRACT(YEAR

MONTH

DAY

FROM date-expression

timestamp-expression

)

Extract time values:

EXTRACT(HOUR

MINUTE

SECOND

FROM time-expression

timestamp-expression

)

Extract time zone values:

EXTRACT(HOUR

MINUTE

SECOND

TIMEZONE_HOUR

TIMEZONE_MINUTE

FROM date-expression

time-expression

timestamp-expression

)

The schema is SYSIBM.

The result can be null; if the argument is null, the result is the null value.

Extract date values
YEAR

Specifies that the year portion of date-expression or timestamp-expression is returned. The result
is identical to the YEAR scalar function. For more information, see “YEAR scalar function” on page
668.

MONTH
Specifies that the month portion of date-expression or timestamp-expression is returned. The
result is identical to the MONTH scalar function. For more information, see “MONTH scalar
function” on page 508.

DAY
Specifies that the day portion of date-expression or timestamp-expression is returned. The result is
identical to the DAY scalar function. For more information, see “DAY scalar function” on page 426.

date-expression
An expression that returns the value of either a built-in date or built-in character string data type.

If date-expression is a character or graphic string, it must not be a CLOB or DBCLOB and its value
must be a valid character-string or graphic-string representation of a date. For the valid formats of
string representations of dates, see “String representations of datetime values” on page 120.

timestamp-expression
An expression that returns the value of either a built-in timestamp or built-in character string data
type.

Chapter 4. Built-in functions 459

If timestamp-expression is a character or graphic string, it must not be a CLOB or DBCLOB and
its value must be a valid character-string or graphic-string representation of a timestamp. For
the valid formats of string representations of timestamps, see “String representations of datetime
values” on page 120.

Extract time values
HOUR

Specifies that the hour portion of time-expression or timestamp-expression is returned. The result
is identical to the HOUR scalar function. For more information, see “HOUR scalar function” on
page 475.

MINUTE
Specifies that the minute portion of time-expression or timestamp-expression is returned. The
result is identical to the MINUTE scalar function. For more information, see “MINUTE scalar
function” on page 505.

SECOND
Specifies that the second portion of time-expression or timestamp-expression is returned. The
result is identical to the SECOND scalar function where the precision and scale of the result
depend on the type of time-expression or timestamp-expression. For more information, see
“SECOND scalar function” on page 568.

time-expression
An expression that returns the value of either a built-in time or built-in character string data type.

If time-expression is a character or graphic string, it must not be a CLOB or DBCLOB and its value
must be a valid string representation of a time. For the valid formats of string representations of
times, see “String representations of datetime values” on page 120.

timestamp-expression
An expression that returns the value of either a built-in timestamp or built-in character string data
type.

If timestamp-expression is a character or graphic string, it must not be a CLOB or DBCLOB and
its value must be a valid string representation of a timestamp. For the valid formats of string
representations of timestamps, see “String representations of datetime values” on page 120.

Extract time zone values
TIMEZONE_HOUR

Specifies that the hour component of the time zone of the timestamp value is returned.
TIMEZONE_HOUR can only be specified if the second argument is a timestamp-expression and
the timestamp-expression contains a time zone.

TIMEZONE_MINUTE
Specifies that the minute component of the time zone of the timestamp value is returned.
TIMEZONE_MINUTE can only be specified if the second argument is a timestamp-expression and
the timestamp-expression contains a time zone.

The values of TIMEZONE_HOUR and TIMEZONE_MINUTE shall either both be non-negative or both be
non-positive.

If the timestamp-expression argument includes a time zone, the result is determined from the UTC
representation of the datetime value.

The data type of the result of the function depends on the part of the datetime value that is specified:

• The result is INTEGER, if one of the following is specified:

– YEAR
– MONTH
– DAY
– HOUR
– MINUTE

460 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

– TIMEZONE_HOUR
– TIMEZONE_MINUTE

• The result is DECIMAL(2+p, p) where p is the fractional second precision, if SECOND is specified with a
TIMESTAMP(p) value.

• The result is DECIMAL(8,6), if SECOND is specified with a TIME value or a string representation of a
TIME or timestamp. The fractional digits contains fractional seconds.

Example 1:
Assume that the column PRSTDATE has an internal value that is equivalent to 2010-12-25. The
following statement returns the value 12:

 SELECT EXTRACT(MONTH FROM PRSTDATE)
 FROM PROJECT;

Example 2:
Assume that host variable PRSTSZ contains the value 2008-02-29-20.00.00.000000-08.30:

SELECT EXTRACT(HOUR FROM :PRSTSZ) FROM PROJECT;

The SELECT statement returns the value 4, which is the hour of the input datetime value expressed in
UTC.

To return the same hour value as expressed in the input, cast the value to TIMESTAMP WITHOUT
TIME ZONE before using the EXTRACT function:

SELECT EXTRACT(HOUR FROM CAST (:PRSTSZ AS TIMESTAMP)) FROM PROJECT;

The SELECT statement returns the value 20, which is the hour as it was originally expressed as a
string in the host variable.

SELECT EXTRACT(TIMEZONE_HOUR FROM :PRSTSZ) FROM PROJECT;

This SELECT statement returns the value -8.

SELECT EXTRACT(TIMEZONE_MINUTE FROM :PRSTSZ) FROM PROJECT;

This SELECT statement returns the value -30.

FLOAT scalar function
The FLOAT function returns a floating-point representation of either a number or a string representation of
a number.

FLOAT( numeric-expression)

The schema is SYSIBM.

Notes
Syntax alternatives:

FLOAT is a synonym for DOUBLE_PRECISION or DOUBLE. For details, see “DOUBLE_PRECISION or
DOUBLE scalar function” on page 451.

Chapter 4. Built-in functions 461

FLOOR scalar function
The FLOOR function returns the largest integer value that is less than or equal to the argument.

FLOOR( numeric-expression)

The schema is SYSIBM.

The argument must be an expression that returns a value of any built-in numeric data type.

The argument can also be a character string or graphic string data type. The string input is implicitly cast
to a numeric value of DECFLOAT(34).

The result of the function has the same data type and length attribute as the argument. When the
argument is DECIMAL, the scale of the result is 0 and not the scale of the input argument. For example, an
argument with a date type of DECIMAL(5,5) results in DECIMAL(5,0).

The result can be null; if the argument is null, the result is the null value.

Example 1: Using sample table DSN8C10.EMP, find the highest monthly salary, rounding the result down
to the next integer. The SALARY column has a decimal data type.

 SELECT FLOOR(MAX(SALARY)/12)
 FROM DSN8C10.EMP;

This example returns 04395 because the highest paid employee is Christine Haas who earns $52750.00
per year. Her average monthly salary before applying the FLOOR function is 4395.83.

Example 2: This example demonstrates using FLOOR with both positive and negative numbers.

 SELECT FLOOR(3.5),
 FLOOR(3.1),
 FLOOR(-3.1),
 FLOOR(-3.5)
 FROM SYSIBM.SYSDUMMY1;

This example returns (leading zeros are shown to demonstrate the precision and scale of the result):

 03. 03. -04. -04.

GENERATE_UNIQUE and GENERATE_UNIQUE_BINARY scalar functions
The GENERATE_UNIQUE and GENERATE_UNIQUE_BINARY functions return a value that is unique,
compared to any other execution of the same function.

GENERATE_UNIQUE()

GENERATE_UNIQUE_BINARY()

The schema is SYSIBM.

The GENERATE_UNIQUE and GENERATE_UNIQUE_BINARY functions are defined as not deterministic.
Although the functions have no arguments, the empty parentheses must be specified when the functions
are invoked.

The result of either of the functions is a unique value that includes the internal form of the Universal
Time, Coordinated (UTC) and, if in a sysplex environment, the sysplex member where the function was
processed.

The data type of the result depends on which function was invoked. GENERATE_UNIQUE returns a bit
data character string 13 bytes long (CHAR(13) FOR BIT DATA). GENERATE_UNIQUE_BINARY returns a
BINARY(16) value.

462 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The result cannot be null.

The results of these functions can be used to provide unique values in a table. The sequence is based on
the time when the function was executed.

These functions differ from using the special register CURRENT TIMESTAMP in that a unique value is
generated for each row of a multiple row insert statement, an insert statement with a fullselect, or an
insert operation in a MERGE statement.

The timestamp value that is part of the result of either of these functions can be determined using
the TIMESTAMP function with the result of GENERATE_UNIQUE or GENERATE_UNIQUE_BINARY as an
argument.

Example: Create a table that includes a column that is unique for each row. Populate this column using
the GENERATE_UNIQUE function. Notice that the UNIQUE_ID column is defined as FOR BIT DATA to
identify the column as a bit data character string.

 CREATE TABLE EMP_UPDATE
 (UNIQUE_ID VARCHAR(13)FOR BIT DATA,
 EMPNO CHAR(6),
 TEXT VARCHAR(1000));
 INSERT INTO EMP_UPDATE VALUES (GENERATE_UNIQUE(),'000020','Update entry 1...');
 INSERT INTO EMP_UPDATE VALUES (GENERATE_UNIQUE(),'000050','Update entry 2...');

This table will have a unique identifier for each row if GENERATE_UNIQUE is always used to set the value
the UNIQUE_ID column. You can create an insert trigger on the table to ensure that GENERATE_UNIQUE
is used to set the value:

 CREATE TRIGGER EMP_UPDATE_UNIQUE
 NO CASCADE BEFORE INSERT ON EMP_UPDATE
 REFERENCING NEW AS NEW_UPD
 FOR EACH ROW MODE DB2SQL
 SET NEW_UPD.UNIQUE_ID = GENERATE_UNIQUE();

With this trigger, the previous INSERT statements that were used to populate the table could be issued
without specifying a value for the UNIQUE_ID column:

 INSERT INTO EMP_UPDATE (EMPNO,TEXT) VALUES ('000020','Update entry 1...');
 INSERT INTO EMP_UPDATE (EMPNO,TEXT) VALUES ('000050','Update entry 2...');

The timestamp (in UTC) for when a row was added to EMP_UPDATE can be returned using:

 SELECT TIMESTAMP(UNIQUE_ID), EMPNO, TEXT FROM EMP_UPDATE;

Therefore, the table does not need a timestamp column to record when a row is inserted.

GETHINT scalar function
The GETHINT function returns a hint for the password if a hint was embedded in the encrypted data. A
password hint is a phrase that helps you remember the password with which the data was encrypted. For
example, 'Ocean' might be used as a hint to help remember the password 'Pacific'.

GETHINT( encrypted-data)

The schema is SYSIBM.

encrypted-data
An expression that returns a string that contains a complete, encrypted data string. encrypted-data
must return a value that is a CHAR FOR BIT DATA, VARCHAR FOR BIT DATA, BINARY, or VARBINARY
built-in data type. The string must have been encrypted using ENCRYPT_TDES function.

The result of the function is VARCHAR(32). The actual length of the result is the actual length of the hint
that was provided when the data was encrypted.

The result can be null; if the argument is null, the result is the null value.

Chapter 4. Built-in functions 463

If no hint was specified when the ENCRYPT_TDES function was used to encrypt the data, the result is the
null value.

The encoding scheme of the result is the same as the encoding scheme of encrypted-data. If encrypted-
data is bit data, the CCSID of the result is the default character CCSID for that encoding scheme.
Otherwise, the CCSID of the result is the same as the CCSID of encrypted-data.

For additional information about this function, see “DECRYPT_BINARY, DECRYPT_BIT, DECRYPT_CHAR,
and DECRYPT_DB scalar functions” on page 444 and “ENCRYPT_TDES or ENCRYPT scalar function” on
page 456.

Example: This example shows how to embed a hint for the password when encrypting data and how to
later use the GETHINT function to retrieve the embedded hint. In this example, the hint 'Ocean' is used to
help remember the encryption password 'Pacific'.

 INSERT INTO EMP (SSN) VALUES ENCRYPT_TDES ('289-46-8832','Pacific','Ocean');
 SELECT GETHINT (SSN) FROM EMP;

The value that is returned is 'Ocean'.

GETVARIABLE scalar function
The GETVARIABLE function returns a varying-length character-string representation of the current value
of the session variable that is identified by the argument.

GETVARIABLE( string-constant

, default-value

, CAST (NULL AS VARCHAR(1))

)

The schema is SYSIBM.

string-constant
Specifies a string constant that contains the name of the session variable whose value is to be
returned. The string constant:

• Must have a length that does not exceed 142 bytes.
• Must contain the fully qualified name of the variable, with no embedded blanks. Delimited identifiers

must not be specified.
• Must not contain lowercase letters or characters that cannot be specified in an ordinary identifier.

The schema qualifier for the variable must be:

• SYSIBM for built-in session variables. For a list of the built-in session variables, see “Built-in session
variables” on page 336.

• SESSION for user-defined session variables. User-defined session variables are established via the
connection or signon exit routines. For more information, see Session variables in connection and
sign-on routines (Managing Security).

default-value
Specifies a string constant that contains the value to be returned if the specified variable does not
exist or is not supported by Db2. default-value must be a string constant that does not exceed 255
bytes.

If default-value is not specified and the specified user-defined session variable does not exist or the
built-in session variable is not supported by Db2, an error is returned.

CAST(NULL AS VARCHAR(1))
Specifies that a null value is to be returned if the specified variable does not exist or is not supported
by Db2.

The data type of the result is VARCHAR(255). The result can be null.

464 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_sessionvarconnectsignon.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_sessionvarconnectsignon.html

The CCSID of the result is the CCSID for Unicode mixed data.

Notes
The GETVARIABLE function cannot obtain the values of built-in global variables or user-defined global
variables.

Examples
Example 1

Use the GETVARIABLE function to set the value of host variable :hv1 to the name of the plan that is
currently being executed. The name of the built-in session variable that contains the name of the plan
is SYSIBM.PLAN_NAME.

 SET :hv1 = GETVARIABLE('SYSIBM.PLAN_NAME');

If Db2 does not support the name of the session variable, an error is returned. For example, the
following statement returns an error because Db2 does not support a built-in session variable that is
named SYSIBM.XYZ.

 SET :hv1 = GETVARIABLE('SYSIBM.XYZ');

Example 2
Use the GETVARIABLE function to set the value of host variable :hv2 to the value for the user that is
defined in user-defined session variable TEST. If the session variable has not been set or cannot be
found, have the function return the value 'TEST FAILED'.

 SET :hv2 = GETVARIABLE('SESSION.TEST','TEST FAILED');

Example 3
Use the GETVARIABLE function to set the value of host variable :hv3 to a string representation of the
SYSTEM EBCDIC CCSIDs. The name of the built-in session variable that contains the system EBCDIC
CCSIDs is SYSIBM.SYSTEM_EBCDIC_CCSID.

 SET :hv3 = GETVARIABLE('SYSIBM.SYSTEM_EBCDIC_CCSID');

Regardless of the setting of the field MIXED DATA on the installation panel (YES or NO), the function
returns three comma-delimited values that correspond to the SBCS, MIXED, and GRAPHIC CCSIDs for
the encoding scheme.

For example, if the statement were issued on a system with the field MIXED DATA on the installation
panel equal to NO and the default system CCSID of 37, this string would be returned:

'37,65534,65534'

If the statement were issued on a system with the field MIXED DATA on the installation panel equal
to YES and a default system CCSID of 930 (the mixed CCSID for the system), this string would be
returned:

'290,930,300'

GRAPHIC scalar function
The GRAPHIC function returns a fixed-length graphic-string representation of the type of the first
argument.

Syntax: Integer to Graphic
FL 502

GRAPHIC( integer-expression)

Chapter 4. Built-in functions 465

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html

Syntax: Decimal to Graphic
FL 502

GRAPHIC( decimal-expression

, decimal-character

)

Syntax: Floating-point to Graphic
FL 502

GRAPHIC( floating-point-expression)

Syntax: Decimal floating-point to Graphic
FL 502

GRAPHIC( decimal-floating-point-expression)

Syntax: Character to Graphic:

GRAPHIC( character-expression

, integer

, CODEUNITS16

CODEUNITS32

)

Syntax: Graphic to Graphic:

GRAPHIC( graphic-expression

, integer

, CODEUNITS16

CODEUNITS32

)

The schema is SYSIBM.

The GRAPHIC function returns a graphic-string representation of:

• FL 502 An integer number if the first argument is a SMALLINT, INTEGER, or BIGINT
• FL 502 A decimal number if the first argument is a decimal number
• FL 502 A double-precision floating-point number if the first argument is a DOUBLE or REAL
• FL 502 A decimal floating-point number if the first argument is DECFLOAT
• A character string if the first argument is any type of character string
• A graphic string if the first argument is an EBCDIC or Unicode graphic string

The result can be null; if the first argument is null, the result is the null value.

The length attribute of the result is measured in double-byte characters because it is a graphic string.

Integer to Graphic
FL 502

466 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html

integer-expression
An expression that returns a value that is an integer data type (either SMALLINT, INTEGER, or
BIGINT).

The result is a fixed-length graphic string of the argument in the form of an SQL integer constant. The
result is the smallest number of characters that can be used to represent the value of the argument,
padded with blanks. The result consists of n characters that are the significant digits that represent the
value of the argument with a preceding minus sign if the argument is negative. A positive value starts with
a digit and always includes at least one trailing blank. Leading zeroes are not included. The result is left
justified.

• If the argument is a small integer, the length of the result is 6. If the number of characters in the result is
less than 6, the result is padded on the right with blanks.

• If the argument is a large integer, the length of the result is 11. If the number of characters in the result
is less than 11, the result is padded on the right with blanks.

• If the argument is a big integer, the length of the result is 20. If the number of characters in the result is
less than 20, the result is padded on the right with blanks.

The CCSID of the result is 1200 (UTF-16).

Decimal to Graphic
FL 502

decimal-expression
An expression that returns a value that is a built-in decimal data type. If a different precision and
scale is wanted, the DECIMAL scalar function can be used to make the change. To specify a different
precision and scale for the value of the expression, apply the DECIMAL function before applying the
GRAPHIC function.

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal digits in the result
graphic string. The character must not be a digit, a plus sign (+), a minus sign (-), or a blank. The
default is the period (.) or comma (,). For information on what factors govern the choice, see Decimal
point representation.

The result is a fixed-length graphic string representation of the first argument. The result is the smallest
number of characters that can be used to represent the value of the argument, except that trailing zeros
are included. The result includes a decimal character and up to p digits, where p is the precision of the
decimal-expression with a preceding minus sign if the argument is negative. A positive value starts with
a digit or the decimal-character, and always includes at least one trailing blank. Leading zeros are not
returned. If the scale of decimal-expression is zero, the decimal character is not returned. If the number
of bytes in the result is less than the defined length of the result, the result is padded on the right with
blanks.

The length of the result is 2+p where p is the precision of the decimal-expression.

The CCSID of the result is 1200 (UTF-16).

Floating-point to Graphic
FL 502

floating-point-expression
An expression that returns a value that is a floating-point data type (DOUBLE or REAL).

The result is a fixed-length graphic string representation of the argument in the form of an SQL floating-
point constant. If the argument is negative, the first character of the result is a minus sign; otherwise, the
first character is a digit. If the argument is zero, the result is 0E0.

The length of the result is 24. The result includes the smallest number of characters that can represent
the value of the argument such that the mantissa consists of a single digit, other than zero, followed by

Chapter 4. Built-in functions 467

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html

a period and a sequence of digits. If the number of characters in the result is less than 24, the result is
padded on the right with blanks.

The CCSID of the result is 1200 (UTF-16).

Decimal floating-point to Graphic
FL 502

decimal-floating-point-expression
An expression that returns a value that is a built-in decimal floating-point data type (DECFLOAT).

The result is a fixed-length graphic string representation of the argument in the form of an SQL decimal
floating-point constant.

If the result value is Infinity, sNaN, or NaN, the strings 'INFINITY', 'SNAN', and 'NAN', respectively, are
returned. The DECFLOAT special value sNaN does not result in an exception when converted to a string.

The length of the result is 42. If the number of characters in the result is less than 42, the result is padded
on the right with blanks. Trailing zeros are significant. If the argument is negative, the first character of the
result is a minus sign. Otherwise, the first character is a digit, or a letter if the DECFLOAT value is Infinity,
sNaN, or NaN.

The CCSID of the result is 1200 (UTF-16).

Character to Graphic
character-expression

An expression that returns a value that is an EBCDIC-encoded or Unicode-encoded character string. It
cannot be BIT data. The argument does not need to be mixed data, but any occurrences of X'0E' and
X'0F' in the string must conform to the rules for EBCDIC mixed data. (See “Character strings” on page
102 for these rules.)

The value of the expression must not be an empty string if integer is not specified or have the value
X'0E0F' if the string is an EBCDIC string.

integer
The length of the resulting fixed-length graphic string in the units that are either implicitly or explicitly
specified. The value must be an integer constant in the range 1–127. If the length of character-
expression is less than the length specified, the result is padded with double-byte blanks to the length
of the result.

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length attribute of the final
result” on page 108 for information about how to calculate the length attribute of the result string.

If integer is not specified, the length of the result for an EBCDIC string is the minimum of 127 and the
length attribute of character-expression, excluding shift characters. For a Unicode (UTF-8) string, the
length is data dependent, but does not exceed 127.

CODEUNITS16 or CODEUNITS32
Specifies the unit that is used to express integer. If CODEUNITS16 or CODEUNITS32 is specified, the
input is EBCDIC, and there is no system CCSID for EBCDIC GRAPHIC data, an error occurs.
CODEUNITS16

Specifies that integer is expressed in terms of 16-bit UTF-16 code units.
CODEUNITS32

Specifies that integer is expressed in terms of 32-bit UTF-32 code units.

For more information about CODEUNITS16 and CODEUNITS32, see “String unit specifications” on
page 106.

The CCSID of the result is the graphic CCSID that corresponds to the character CCSID of character-
expression. If the input is EBCDIC and there is no system CCSID for EBCDIC GRAPHIC data, the CCSID of
the result is X'FFFE'.

468 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html

For EBCDIC data, each character of character-expression determines a character of the result. The
argument might need to be converted to the native form of mixed data before the result is derived. Let M
be the system CCSID for mixed data. The argument is not converted if any of the following conditions is
true:

• The argument is mixed data and its CCSID is M.
• The argument is SBCS data and its CCSID is the same as the system CCSID for SBCS data. In this case,

the operation proceeds as if the CCSID of the argument is M.

Otherwise, the argument is a new string S derived by converting the characters to the coded character set
identified by M. If there is no system CCSID for EBCDIC mixed data, conversion is to the coded character
set that the system CCSID for SBCS data identifies.

The result is derived from S using the following steps:

• Each shift character (X'0E' or X'0F') is removed.
• Each double-byte character remains as is.
• Each single-byte character is replaced by a double-byte character.

The replacement for an SBCS character is the equivalent DBCS character if an equivalent exists.
Otherwise, the replacement is X'FEFE'. The existence of an equivalent character depends on M. If there is
no system CCSID for mixed data, the DBCS equivalent of X'xxxx' for EBCDIC is X'42xx', except for X'40',
whose DBCS equivalent is X'4040'.

For Unicode data:

Each character of character-expression determines a character of the result. The argument might need to
be converted to the native form of mixed data before the result is derived. Let M be the system CCSID for
mixed data. The argument is not converted if any of the following conditions is true:

• The argument is mixed data, and its CCSID is M.
• The argument is SBCS data, and its CCSID is the same as the system CCSID for SBCS data. In this case,

the operation proceeds as if the CCSID of the argument is M.

Otherwise, the argument is a new string S derived by converting the characters to the coded character set
identified by M.

The result is derived from S by using the following steps:

• Each non-supplementary character is replaced by a Unicode double-byte character (a UTF-16 code
point). A non-supplementary character in UTF-8 is in the range 1–3 bytes.

• Each supplementary character is replaced by a pair of Unicode double-byte characters (a pair of UTF-16
code points).

The replacement for a single-byte character is the Unicode equivalent character if an equivalent exists.
Otherwise, the replacement is X'FEFE'.

Graphic to Graphic
graphic-expression

An expression that returns a value that is a graphic string. The graphic string must not be an empty
string if integer is not specified.

integer
The length of the resulting fixed-length graphic string in the units that are either implicitly or
explicitly specified. The value must be an integer constant in the range 1–127. If the length of
graphic-expression is less than the length specified, the result is padded with double-byte blanks to
the length of the result.

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length attribute of the final
result” on page 108 for information about how to calculate the length attribute of the result string.

If integer is not specified, the length of the result is the minimum of 127 and the length attribute of
graphic-expression.

Chapter 4. Built-in functions 469

CODEUNITS16 or CODEUNITS32
Specifies the unit that is used to express integer. If CODEUNITS16 or CODEUNITS32 is specified, the
input is EBCDIC, and there is no system CCSID for EBCDIC GRAPHIC data, an error occurs.
CODEUNITS16

Specifies that integer is expressed in terms of 16-bit UTF-16 code units.
CODEUNITS32

Specifies that integer is expressed in terms of 32-bit UTF-32 code units.

For more information about CODEUNITS16 and CODEUNITS32, see “String unit specifications” on
page 106.

If the length of the graphic-expression is greater than the specified length of the result, the result is
truncated. Unless all the truncated characters are blanks, a warning is returned.

The CCSID of the result is the same as the CCSID of graphic-expression.

Notes
FL 502 Casting numeric data to Unicode:

The result of the GRAPHIC functions is Unicode (UTF-16) when the first argument is numeric data.
The GRAPHIC function can only be invoked with numeric data for the first argument if the containing
statement:

• references Unicode base tables or views only and the statement is qualified to be a single encoding
scheme statement, or

• is considered a multiple encoding scheme statement and the application encoding scheme is
Unicode.

Examples
Example 1:

Assume that MYCOL is a VARCHAR column in TABLEY. The following function returns the string in
MYCOL as a fixed-length graphic string.

 SELECT GRAPHIC(MYCOL)
 FROM TABLEY;

Example 2:

Assume that an EMPLOYEE_U table exists that is similar to the EMPLOYEE sample table except that
it is a Unicode table. The SALARY and COMM columns are defined as DECIMAL with a precision of 9
and a scale of 2. Return the total income for employee Haas as a fixed-length graphic string using the
comma decimal character.

SELECT GRAPHIC(SALARY + COMM, ',')
FROM EMPLOYEE_U
WHERE LASTNAME = 'HAAS'

The result is the value G'56970,00 '.

GREATEST scalar function
The GREATEST function returns the maximum value in a set of values.

GREATEST( expression , expression)

470 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html

The GREATEST function is identical to the MAX scalar function. For more information, see “MAX scalar
function” on page 501.

HASH scalar function
The HASH function returns a varying-length value that is the result of applying the specified algorithm to
the first argument. The function is intended for cryptographic purposes.

FL 506

HASH( expression

, 0

, algorithm)

The schema is SYSIBM.

expression
An expression that represents the string value that is to be hashed. The expression must return a
built-in character string, graphic string, or binary string.

algorithm
An integer constant value of 0, 1, or 2 that indicates the hash algorithm to be used when the function
name is HASH. If no algorithm is specified, the default value of 0 is used which indicates the MD5
algorithm.

The result is produced by applying the hash algorithm, algorithm, to expression.

The result of the function is VARBINARY, and the length attribute of the result depends on the hash
algorithm used. The characteristics of the result are summarized in the following table:

Table 77. Characteristics of the result for each algorithm

Algorithm Value for
algorithm
parameter

Result size Number of
different values
that can be
returned

HASH function
result data type

MD5 0 128 bit 2128 VARBINARY(16)

SHA1 1 160 bit 2160 VARBINARY(20)

SHA256 2 256 bit 2256 VARBINARY(32)

If the first argument can be null, the result can be null. If the first argument is null, the result is the null
value.

Notes
Security considerations:

Security flaws have been identified in both the SHA1 and MD5 algorithms. You can find acceptable
hash algorithms in applicable compliance documentation, such as National Institute of Standards and
Technology (NIST) Special Publication 800-131A.

Syntax alternatives:
The HASH function is similar to the other hashing functions, where the hash algorithm is specified as
part of the function name. For example:

HASH_MD5 (expression)

Invoking the HASH function for hashing is recommended to increase the portability of applications.

Chapter 4. Built-in functions 471

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html

Examples
Example 1:

Invoke the HASH function to use the MD5 algorithm to generate a hashed value.

SELECT HEX(HASH(’ABCDEFGHIJKLMNOPQRZTUVWXYZ’ , 0))
FROM SYSIBM.SYSDUMMYU;

The following value is returned:

X’E433BC7BE26A152E54E2EA0C92778160’

Example 2:
Invoke the HASH_SHA1 function to use the SHA1 algorithm to generate a hashed value.

SELECT HEX(HASH(’ABCDEFGHIJKLMNOPQRZTUVWXYZ’, 1))
FROM SYSIBM.SYSDUMMYU;

The following value is returned:

X’8F34563A0FA4BA1A285C8035935D010629385474’

Example 3:

Invoke the HASH_SHA256 function to use the SHA256 algorithm to generate a hashed value.

SELECT HEX(HASH(’ABCDEFGHIJKLMNOPQRZTUVWXYZ’ , 2))
FROM SYSIBM.SYSDUMMYU;

The following value is returned:

X’403AC046B04F4A749E9810971083997B71F2B6FAF87CECCDE657E93FFCF700F0’

Related reference
HASH_CRC32, HASH_MD5, HASH_SHA1, and HASH_SHA256 scalar functions
The hashing functions return a fixed-length value that is the result of applying a hash algorithm to an input
argument. The functions are intended for cryptographic purposes.

HASH_CRC32, HASH_MD5, HASH_SHA1, and HASH_SHA256 scalar
functions

The hashing functions return a fixed-length value that is the result of applying a hash algorithm to an input
argument. The functions are intended for cryptographic purposes.

HASH_CRC32

HASH_MD5

HASH_SHA1

HASH_SHA256

( expression)

The schema is SYSIBM.

expression
An expression that represents the string value that is to be hashed. The expression must return a
built-in character string, graphic string, or binary string.

The result is produced by applying the hash algorithm to expression. The hash algorithm is determined by
the name of the function that is invoked.

The result of the function is BINARY, and the length attribute of the result depends on the hash algorithm
specified. The characteristics of the result are summarized in the following table.

472 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 78. Characteristics of the result for each algorithm

Function
name

Algorithm Result size Number of
different
values that
can be
returned

Hash function result data type

HASH_CRC3
2

CRC32 32 bit 232 BINARY(4)

HASH_MD5 MD5 128 bit 2128 BINARY(16)

HASH_SHA
1

SHA1 160 bit 2160 BINARY(20)

HASH_SHA
256

SHA2-256 256 bit 2256 BINARY(32)

If the first argument can be null, the result can be null. If the first argument is null, the result is the null
value.

Note that security flaws have been identified in both the SHA1 and MD5 algorithms. You can find
acceptable hash algorithms in applicable compliance documentation, such as National Institute of
Standards and Technology (NIST) Special Publication 800-131A.

Notes
Syntax alternatives:

Hash functions HASH_MD5, HASH_SHA1, and HASH_SHA256 are similar to the following HASH
function, where the hash algorithm is specified as an integer constant value of 0, 1, or 2:

HASH (expression , integer-constant)

For these hash functions, invoking the HASH function for hashing is recommended to increase the
portability of applications.

Examples
Example 1:

Invoke the HASH_CRC32 function to use the CRC32 algorithm to generate a hashed value.

SELECT HEX(HASH_CRC32('ABCDEFGHIJKLMNOPQRZTUVWXYZ'))
FROM SYSIBM.SYSDUMMYU;

The following value is returned:

X'B4B86309'

Example 2:

Invoke the HASH_MD5 function to use the MD5 algorithm to generate a hashed value.

SELECT HEX(HASH_MD5('ABCDEFGHIJKLMNOPQRZTUVWXYZ'))
FROM SYSIBM.SYSDUMMYU;

The following value is returned:

X'E433BC7BE26A152E54E2EA0C92778160'

Example 3:

Invoke the HASH_SHA1 function to use the SHA1 algorithm to generated a hashed value.

Chapter 4. Built-in functions 473

SELECT HEX(HASH_SHA1('ABCDEFGHIJKLMNOPQRZTUVWXYZ'))
FROM SYSIBM.SYSDUMMYU;

The following value is returned:

X'8F34563A0FA4BA1A285C8035935D010629385474'

Example 4:

Invoke the HASH_SHA256 function to use the SHA256 algorithm to generate hashed value.

SELECT HEX(HASH_SHA256('ABCDEFGHIJKLMNOPQRZTUVWXYZ'))
FROM SYSIBM.SYSDUMMYU;

The following value is returned:

X'403AC046B04F4A749E9810971083997B71F2B6FAF87CECCDE657E93FFCF700F0'

Related reference
HASH scalar function
The HASH function returns a varying-length value that is the result of applying the specified algorithm to
the first argument. The function is intended for cryptographic purposes.

HEX scalar function
The HEX function returns a hexadecimal representation of a value.

HEX( expression)

The schema is SYSIBM.

The argument must an expression that returns a value of any built-in data type that is not XML. A
character or binary string must not have a maximum length greater than 16352. A graphic string must not
have a maximum length greater than 8176.

The result of the function is a character string.

The result can be null; if the argument is null, the result is the null value.

The result is a string of hexadecimal digits. The first two represent the first byte of the argument, the next
two represent the second byte of the argument, and so forth. If the argument is a datetime value, the
result is the hexadecimal representation of the internal form of the argument.

If the argument is a fixed-length string and the length of the result is less than 255, the result is a
fixed-length string. Otherwise, the result is a varying-length string with a length attribute that depends on
the following considerations:

If the argument is not a varying-length string, the length attribute of the result string is the same as
the length of the result.
If the argument is a varying-length character or binary string, the length attribute of the result
string is twice the length attribute of the argument.
If the argument is a varying-length graphic string, the length attribute of the result string is four
times the length attribute of the argument.

If expression returns string data, the CCSID of the result is the SBCS CCSID that corresponds to the CCSID
of expression. Otherwise, the CCSID of the result is determined from the context in which the function was
invoked. For more information, see Determining the encoding scheme and CCSID of a string (Introduction
to Db2 for z/OS).

If the argument is a graphic string, the length of the result is four times the maximum length of the
argument. Otherwise, the length of the result is twice the (maximum) length of the argument.

474 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html

Example: Return the hexadecimal representation of START_RBA in the SYSIBM.SYSCOPY catalog table.

 SELECT HEX(START_RBA) FROM SYSIBM.SYSCOPY;

HOUR scalar function
The HOUR function returns the hour part of a value.

HOUR( expression)

The schema is SYSIBM.

The argument must be an expression that returns a value of one of the following built-in data types: a
time, a timestamp, a character string, a graphic string, or a numeric data type.

• If expression is a character or graphic string, it must not be a CLOB or DBCLOB, and its value must be a
valid string representation of a time or timestamp with an actual length of not greater than 255 bytes.
For the valid formats of string representations of times and timestamps, see “String representations of
datetime values” on page 120.

• If expression is a number, it must be a time or timestamp duration. For the valid formats of time and
timestamp durations, see “Datetime operands” on page 169.

If expression is a timestamp with a time zone, or a valid string representation of a timestamp with a time
zone, the result is determined from the UTC representation of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

If the argument is a time, timestamp, or string representation of either, the result is the hour part of
the value, which is an integer in the range 1–24.
If the argument is a time duration or timestamp duration, the result is the hour part of the value,
which is an integer between -99 and +99. A nonzero result has the same sign as the argument.
If the argument contains a time zone, the result is the hour part of the value expressed in UTC.

Example 1: Assume that a table named CLASSES contains a row for each scheduled class. Also assume
that the class starting times are in a TIME column named STARTTM. Select those rows in CLASSES that
represent classes that start after the noon hour.

 SELECT *
 FROM CLASSES
 WHERE HOUR(STARTTM) > 12;

Example 2: The following invocations of the HOUR function returns the same result:

SELECT HOUR('2003-01-02-20.00.00'),
 HOUR('2003-01-02-12.00.00-08:00'),
 HOUR('2003-01-03-05.00.00+09:00')
 FROM SYSIBM.SYSDUMMY1;

For each invocation of the HOUR function in this SELECT statement, the result is 20.

When the input argument contains a time zone, the result is determined from the UTC representation of
the input value. The string representations of a timestamp with a time zone in the SELECT statement all
have the same UTC representation: 2003-01-02-20.00.00.

Chapter 4. Built-in functions 475

IDENTITY_VAL_LOCAL scalar function
The IDENTITY_VAL_LOCAL function returns the most recently assigned value for an identity column.

IDENTITY_VAL_LOCAL()

The schema is SYSIBM.

The IDENTITY_VAL_LOCAL function is not deterministic.19 Although the function has no input parameters,
the empty parentheses must be specified when the function is invoked.

The result is DECIMAL(31,0), regardless of the actual data type of the identity column to which the result
value corresponds.

A qualifying data change statement refers to an insert operation (specified in either an INSERT statement
or a MERGE statement).

The value that is returned is the value that was assigned to the identity column of the table identified in
the most recent qualifying data change statement or LOAD utility operation for a table with an identity
column. The insert operation has to be issued at the same level; that is, the value has to be available
locally within the level at which it was assigned until replaced by the next assigned value. A new level is
initiated when a trigger, function, or stored procedure is invoked. A trigger condition is at the same level as
the associated triggered action.

The assigned value can be a value supplied by the user (if the identity column is defined as GENERATED
BY DEFAULT) or an identity value that was generated by Db2.

The result can be null. The result is null in the following situations:

• When a qualifying data change statement has not been issued for a table containing an identity column
at the current processing level

• When a COMMIT or ROLLBACK of a unit of work occurred since the most recent qualifying data change
statement that assigned a value

The result of the function is not affected by a ROLLBACK TO SAVEPOINT statement.

Notes
Invoking the function within a qualifying data change statement:

Expressions in a qualifying data change statement are evaluated before values are assigned
to the target columns of the qualifying data change statement. Thus, when you invoke
IDENTITY_VAL_LOCAL in a qualifying data change statement, the value that is used is the most
recently assigned value for an identity column from a previous qualifying data change statement.
The function returns the null value if no such qualifying data change statement had been executed
within the same level as the invocation of the IDENTITY_VAL_LOCAL function. Each qualifying data
change statement that involves an IDENTITY column causes the identity value to be copied into
connection-specific storage in Db2. Thus, the most recent identity value is used for a connection,
regardless of what is happening with other concurrent user connections.

Invoking the function following a failed insert operation:
The function returns an unpredictable result when it is invoked after the unsuccessful execution of a
qualifying data change statement for a table with an identity column. The value might be the value
that would have been returned from the function had it been invoked before the failed qualifying
data change statement or the value that would have been assigned had the qualifying data change
statement succeeded. The actual value returned depends on the point of failure and is therefore
unpredictable.

19 Being not deterministic affects what optimization (such as view processing and parallel processing) can
be done when this function is used and in what contexts the function can be invoked. For example, the
RAND function is another built-in scalar function that is not deterministic. Using functions that are not
deterministic within a predicate can cause unpredictable results.

476 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Invoking the function within the SELECT statement of a cursor:
Because the results of the IDENTITY_VAL_LOCAL function are not deterministic, the result of an
invocation of the IDENTITY_VAL_LOCAL function from within the SELECT statement of a cursor can
vary for each FETCH statement.

Invoking the function within the trigger condition of an insert trigger:
The result of invoking the IDENTITY_VAL_LOCAL function from within the condition of an insert trigger
is the null value.

Invoking the function within a triggered action of an insert trigger:
Multiple before or after insert triggers can exist for a table. In such cases, each trigger is processed
separately, and identity values generated by SQL statements issued within a triggered action are not
available to other triggered actions using the IDENTITY_VAL_LOCAL function. This is the case even
though the multiple triggered actions are conceptually defined at the same level.

Do not use the IDENTITY_VAL_LOCAL function in the triggered action of a before insert trigger. The
result of invoking the IDENTITY_VAL_LOCAL function from within the triggered action of a before
insert trigger is the null value.

The value for the identity column of the table for which the trigger is defined cannot be obtained
by invoking the IDENTITY_VAL_LOCAL function within the triggered action of a before insert trigger.
However, the value for the identity column can be obtained in the triggered action by referencing the
trigger transition variable for the identity column.

The result of invoking the IDENTITY_VAL_LOCAL function in the triggered action of an after insert
trigger is the value assigned to an identity column of the table identified in the most recent qualifying
data change statement. That statement is the one invoked in the same triggered action that had a
qualifying data change statement for a table containing an identity column. If a qualifying data change
statement for a table containing an identity column was not executed within the same triggered action
before invoking the IDENTITY_VAL_LOCAL function, then the function returns a null value.

Invoking the function following an insert operation with triggered actions:
The result of invoking the function after an insert that activates triggers is the value actually assigned
to the identity column (that is, the value that would be returned on a subsequent SELECT statement).
This value is not necessarily the value provided in the qualifying data change statement or a value
generated by Db2. The assigned value could be a value that was specified in a SET transition
variable statement within the triggered action of a before insert trigger for a trigger transition variable
associated with the identity column.

Scope of IDENTITY_VAL_LOCAL:
The IDENTITY_VAL_LOCAL value persists until the next insert in the current session into a table that
has an identity column defined on it, or the application session ends. The value is unaffected by
COMMIT or ROLLBACK statements for local applications. The IDENTITY_VAL_LOCAL value cannot be
directly set and is a result of inserting a row into a table. Client applications or middleware products
that save the state of a session and then restore the state of a session for subsequent processing
are not able to restore the IDENTITY_VAL_LOCAL value. In these situations, the availability of the
IDENTITY_VAL_LOCAL value should only be relied on until the end of the transaction. Examples of
where this type of situation can occur include applications that do the following actions:

• use XA protocols
• use connection pooling
• use the connection concentrator
• use sysplex workload balancing
• connect to a z/OS server that uses DDF inactive threads

When there is a need to preserve the value associated with IDENTITY_VAL_LOCAL across transaction
boundaries for distributed applications, define the cursors as WITH HOLD, or specify the bind option
KEEPDYNAMIC(YES) to prevent the server thread from being pooled.

Syntax alternatives:
Use a SELECT FROM data change statement to obtain the assigned value for an identity column. For
more information, see data-change-table-reference.

Chapter 4. Built-in functions 477

Examples
Example 1:

Set the variable IVAR to the value assigned to the identity column in the EMPLOYEE table. The value
returned from the function in the VALUES statement should be 1.

 CREATE TABLE EMPLOYEE
 (EMPNO INTEGER GENERATED ALWAYS AS IDENTITY,
 NAME CHAR(30),
 SALARY DECIMAL(5,2),
 DEPTNO SMALLINT);
 INSERT INTO EMPLOYEE
 (NAME, SALARY, DEPTNO)
 VALUES ('Rupert', 989.99, 50);
 VALUES IDENTITY_VAL_LOCAL() INTO :IVAR;

Example 2:
Assume two tables, T1 and T2, have an identity column named C1. Db2 generates values 1, 2, 3, . . .
for the C1 column in table T1, and values 10, 11, 12, . . . for the C1 column in table T2.

 CREATE TABLE T1 (C1 SMALLINT GENERATED ALWAYS AS IDENTITY,
 C2 SMALLINT);
 CREATE TABLE T2 (C1 DECIMAL(15,0) GENERATED BY DEFAULT AS IDENTITY
 (START WITH 10),
 C2 SMALLINT);
 INSERT INTO T1 (C2) VALUES (5);
 INSERT INTO T1 (C2) VALUES (5);
 SELECT * FROM T1;
 C1 C2
 ----------- ----------

 1 5
 2 5
 VALUES IDENTITY_VAL_LOCAL() INTO :IVAR;

At this point, the IDENTITY_VAL_LOCAL function would return a value of 2 in IVAR. The following
INSERT statement inserts a single row into T2 where column C2 gets a value of 2 from the
IDENTITY_VAL_LOCAL function

 INSERT INTO T2 (C2) VALUES (IDENTITY_VAL_LOCAL());
 SELECT * FROM T2
 WHERE C1 = DECIMAL(IDENTITY_VAL_LOCAL(),15,0);
 C1 C2
 ---------------------------------- ----------

 10 2

Invoking the IDENTITY_VAL_LOCAL function after this insert would result in a value of 10, which is the
value generated by Db2 for column C1 of T2. Assume another single row is inserted into T2. For the
following INSERT statement, Db2 assigns a value of 13 to identity column C1 and gives C2 a value of
10 from IDENTITY_VAL_LOCAL. Thus, C2 is given the last identity value that was inserted into T2.

 INSERT INTO T2 (C2, C1) VALUES (IDENTITY_VAL_LOCAL(), 13);

Example 3:
The IDENTITY_VAL_LOCAL function can also be invoked in an INSERT statement that both invokes the
IDENTITY_VAL_LOCAL function and causes a new value for an identity column to be assigned. The
next value to be returned is thus established when the IDENTITY_VAL_LOCAL function is invoked after
the INSERT statement completes. For example, consider the following table definition:

 CREATE TABLE T1 (C1 SMALLINT GENERATED BY DEFAULT AS IDENTITY,
 C2 SMALLINT);

478 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

For the following INSERT statement, specify a value of 25 for the C2 column, and Db2 generates a
value of 1 for C1, the identity column. This establishes 1 as the value that will be returned on the next
invocation of the IDENTITY_VAL_LOCAL function.

 INSERT INTO T1 (C2) VALUES (25);

In the following INSERT statement, the IDENTITY_VAL_LOCAL function is invoked to provide a value
for the C2 column. A value of 1 (the identity value assigned to the C1 column of the first row)
is assigned to the C2 column, and Db2 generates a value of 2 for C1, the identity column. This
establishes 2 as the value that will be returned on the next invocation of the IDENTITY_VAL_LOCAL
function.

 INSERT INTO T1 (C2) VALUES (IDENTITY_VAL_LOCAL());

In the following INSERT statement, the IDENTITY_VAL_LOCAL function is again invoked to provide a
value for the C2 column, and the user provides a value of 11 for C1, the identity column. A value of
2 (the identity value assigned to the C1 column of the second row) is assigned to the C2 column. The
assignment of 11 to C1 establishes 11 as the value that will be returned on the next invocation of the
IDENTITY_VAL_LOCAL function.

Afte

 INSERT INTO T1 (C2, C1) VALUES (IDENTITY_VAL_LOCAL(), 11);

r the 3 INSERT statements have been processed, table T1 contains the following actions:

 SELECT * FROM T1;
 C1 C2
 ----------- -----------

 1 25
 2 1
 11 2

The contents of T1 illustrate that the expressions in the VALUES clause are evaluated
before the assignments for the columns of the INSERT statement. Thus, an invocation of an
IDENTITY_VAL_LOCAL function invoked from a VALUES clause of an INSERT statement uses the most
recently assigned value for an identity column in a previous INSERT statement.

IFNULL scalar function
The IFNULL function returns the first nonnull expression.

IFNULL( expression , expression)

The schema is SYSIBM.

IFNULL is identical to the COALESCE scalar function except that IFNULL is limited to two arguments
instead of multiple arguments. For a description, see “COALESCE scalar function” on page 417.

Example: For all the rows in sample table DSN8C10.EMP, select the employee number and salary. If the
salary is missing (is null), have the value 0 returned.

 SELECT EMPNO, IFNULL(SALARY,0)
 FROM DSN8C10.EMP;

Chapter 4. Built-in functions 479

INSERT scalar function
The INSERT function returns a string where, beginning at start in source-string, length characters have
been deleted and insert-string has been inserted.

INSERT (source-string , start , length , insert-string

, CODEUNITS16

CODEUNITS32

OCTETS

)

The schema is SYSIBM.

The INSERT function returns a string where length characters have been deleted from source-string,
beginning at start, and where insert-string has been inserted into source-string, beginning at start.

source-string
An expression that specifies the source string. The expression must return a value that is a built-in
character string, graphic string, or binary string data type that is not a LOB. The actual length of the
string must be greater than or equal to 1 and less than or equal to 32704 bytes.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

start
An expression that returns an integer. The integer specifies the starting point within the source string
where the deletion of bytes and the insertion of another string is to begin. The value of the integer
must be in the range of 1 to the length of source-string plus one. If OCTETS is specified and the result
is graphic data, the value must be an odd value between 1 and twice the length of source-string plus
one.

The argument can also be a character string or graphic string data type. The string argument is
implicitly cast to a DECFLOAT(34) data type which is then assigned to an INTEGER.

length
An expression that specifies the length of the string to replace in source-string starting at start. length
must be an expression that returns a value of the built-in INTEGER data type. length is expressed
in the string unit specified, and the value must be in the range of 0 to the length of source-string. If
OCTETS is specified and the result is graphic data, length must be even and be between 0 and twice
the length of source-string. Not specifying length is equivalent to specifying a value of 1, except when
OCTETS is specified and the result is graphic data, in which case, not specifying length is equivalent to
specifying a value of 2.

The argument can also be a character string or graphic string data type. The string argument is
implicitly cast to a DECFLOAT(34) data type which is then assigned to an INTEGER.

insert-string
An expression that specifies the string to be inserted into the source string, starting at the position
identified by start. The expression must return a value that is a built-in character string, graphic string,
or binary string data type that is not a LOB.

source-string and insert-string must have compatible data types.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the units that are used to express start and length. If source-string is a character string
that is defined as bit data, CODEUNITS16 and CODEUNITS32 cannot be specified. If source-string

480 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

is a graphic string, OCTETS cannot be specified. If source-string is a binary string, CODEUNITS16,
CODEUNITS32, and OCTETS cannot be specified.

If a string unit is not explicitly specified, the data type of the result determines the unit that is used:

• If the result is a graphic string, a string unit is two bytes. For ASCII and EBCDIC data, this
corresponds to a double byte character. For Unicode, this corresponds to a UTF-16 code point.

• Otherwise, a string unit is a byte.

CODEUNITS16
Specifies that start and length are expressed in terms of 16-bit UTF-16 code units.

CODEUNITS32
Specifies that start and length are expressed in terms of 32-bit UTF-32 code units.

OCTETS
Specifies that start and length are expressed in terms of bytes.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see “String unit
specifications” on page 106.

If source-string and insert-string have different CCSID sets, insert-string (the string to be inserted) is
converted to the CCSID of source-string (the source string).

The encoding scheme of the result is the same as source-string. The data type of the result of the function
depends on the data type of source-string and insert-string:

• VARCHAR if source-string is a character string. The CCSID of the result depends on the arguments:

– If either source-string or insert-string is character bit data, the result is bit data.
– If source-string is SBCS Unicode data and insert-string is not SBCS Unicode data, the CCSID of the

result is the mixed CCSID for Unicode data.
– If both source-string and insert-string are SBCS Unicode data, the CCSID of the result is the CCSID for

SBCS Unicode data.
– Otherwise, the CCSID of the result is the mixed CCSID that corresponds to the CCSID of source-string.

However, if the input is EBCDIC or ASCII and there is no corresponding system CCSID for mixed, the
CCSID of the result is the CCSID of source-string.

• VARGRAPHIC if source-string is a graphic. The CCSID of the result is the same as the CCSID of source-
string.

• VARBINARY if source-string and insert-string are both binary strings.

The length attribute of the result depends on the arguments:

• If start and length are constants, the length attribute of the result is:

 L1 - MIN((L1 - V2 + 1), V3) + L4

where:

L1 is the length attribute of source-string
V2 is the value of start
V3 is the value of length
L4 is the length attribute of insert-string

• Otherwise, the length attribute of the result is the length attribute of source-string plus the length
attribute of insert-string. In this case, the length attribute of source-string plus the length attribute of
insert-string must not exceed 32704 for a VARCHAR result or 16352 for a VARGRAPHIC result.

If CODEUNITS16 or CODEUNITS32 is specified, the insert operation is performed on a Unicode version of
the data. If needed, the data is converted to an intermediate form in order to evaluate the function. If an
intermediate form is used, the actual length of the result depends on the original data (source-string and
insert-string), and the representation of that data in Unicode. See “Determining the length attribute of the
final result” on page 108 for more information on how to calculate the length attribute of the result string.

Chapter 4. Built-in functions 481

If CODEUNITS16 or CODEUNITS32 are not specified, the actual length of the result is:

A1 - MIN((A1 - V2 + 1), V3) + A4

where:

A1 is the actual length of source-string
V2 is the value of start
V3 is the value of length
A4 is the actual length of insert-string

If the actual length of the result string exceeds the maximum for the return data type, an error occurs.

The result can be null; if any argument is null, the result is the null value.

Example 1: The following example shows how the string 'INSERTING' can be changed into other strings.
The use of the CHAR function limits the length of the resulting string to 10 bytes.

 SELECT CHAR(INSERT('INSERTING',4,2,'IS'),10),
 CHAR(INSERT('INSERTING',4,0,'IS'),10),
 CHAR(INSERT('INSERTING',4,2,''),10)
 FROM SYSIBM.SYSDUMMY1;

This example returns 'INSISTING ', 'INSISERTIN', and 'INSTING '

Example 2: The previous example demonstrated how to insert text into the middle of some text. This
example shows how to insert text before some text by using 1 as the starting point (start).

 SELECT CHAR(INSERT('INSERTING',1,0,'XX'),10),
 CHAR(INSERT('INSERTING',1,1,'XX'),10),
 CHAR(INSERT('INSERTING',1,2,'XX'),10),
 CHAR(INSERT('INSERTING',1,3,'XX'),10)
 FROM SYSIBM.SYSDUMMY1;

This example returns 'XXINSERTIN', 'XXNSERTING', 'XXSERTING ', and 'XXERTING '

Example 3: The following example shows how to insert text after some text. Add 'XX' at the end of string
'ABCABC'. Because the source string is 6 characters long, set the starting position to 7 (one plus the
length of the source string).

 SELECT CHAR(INSERT('ABCABC',7,0,'XX'),10)
 FROM SYSIBM.SYSDUMMY1;

This example returns 'ABCABCXX '.

Example 4: The following example shows how the string 'Hegelstraße' can be changed to 'Hegelstrasse'.

 SELECT VARCHAR(INSERT('Hegelstraße',10,1,'ss'),15)
 FROM SYSIBM.SYSDUMMY1;

This example returns 'Hegelstrasse'.

INSTR scalar function
The INSTR function returns the position at which an argument starts within a specified string.

INSTR( source-string , search-string
, start

, instance
, CODEUNITS16

CODEUNITS32

OCTETS

)

The schema is SYSIBM.

482 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

INSTR is identical to LOCATE_IN_STRING. For details, see “LOCATE_IN_STRING scalar function” on page
493.

INTEGER or INT scalar function
The INTEGER function returns an integer representation of either a number or a character string or
graphic string representation of an integer.

Numeric to Integer:

INTEGER

INT

( numeric-expression)

String to Integer:

INTEGER

INT

( string-expression)

The schema is SYSIBM.

Numeric to Integer
numeric-expression

An expression that returns a value of any built-in numeric data type.

The result is the same number that would occur if the argument were assigned to a large integer
column or variable. If the whole part of the argument is not within the range of large integers, an
error occurs. The fractional part of the argument is truncated.

String to Integer
string-expression

An expression that returns a value of a character or graphic string (except a CLOB or DBCLOB)
with a length attribute that is not greater than 255 bytes. The string must contain a valid string
representation of a number.

The result is the same number that would result from CAST(string-expression AS
INTEGER). Leading and trailing blanks are eliminated and the resulting string must conform to
the rules for forming an integer constant. If the whole part of the argument is not within the range
of large integers, an error is returned.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

Notes
Syntax alternatives:

To increase the portability of applications, use the CAST specification. For more information, see
“CAST specification” on page 267.

Chapter 4. Built-in functions 483

Examples
Example 1:

Using sample table DSN8C10.EMP, find the average salary of the employees in department A00,
rounding the result to the nearest dollar.

 SELECT INTEGER(AVG(SALARY)+.5)
 FROM DSN8C10.EMP
 WHERE WORKDEPT = 'A00';

Example 2:
Using sample table DSN8C10.EMP, select the EMPNO column, which is defined as CHAR(6), in integer
form.

 SELECT INTEGER(EMPNO)
 FROM DSN8C10.EMP;

JULIAN_DAY
The JULIAN_DAY function returns an integer value that represents a number of days from January 1,
4713 B.C. (the start of the Julian date calendar) to the date that is specified in the argument.

JULIAN_DAY( expression)

The schema is SYSIBM.

The argument must be an expression that returns one of the following data types: a date, a timestamp,
or a valid string representation of a date or timestamp. An argument with a character string data type
must not be a CLOB. An argument with a graphic string data type must not be a DBCLOB. A string
argument must have an actual length that is not greater than 255 bytes. For the valid formats of string
representations of dates and timestamps, see “String representations of datetime values” on page 120.

If expression is a timestamp with a time zone, or a valid string representation of a timestamp with a time
zone, the result is determined from the UTC representation of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

Examples for JULIAN_DAY
Example 1

Using sample table DSN8C10.EMP, set the integer host variable JDAY to the Julian day of the day
that Christine Haas (EMPNO = '000010') was employed (HIREDATE = '1965-01-01'). The result is that
JDAY is set to 2438762.

 SELECT JULIAN_DAY(HIREDATE)
 INTO :JDAY
 FROM DSN8C10.EMP
 WHERE EMPNO = '000010';

Example 2
Set integer host variable JDAY to the Julian day for January 1, 1998. The result is that JDAY is set to
2450815.

 SELECT JULIAN_DAY('1998-01-01')
 INTO :JDAY
 FROM SYSIBM.SYSDUMMY1;

Example 3
The following invocations of the JULIAN_DAY functions all return the same result, which is 2452642.
When the input argument contains a time zone, the result is determined from the UTC representation

484 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

of the input value. The string representations of timestamps with a time zone in the example SELECT
statement all have the same UTC representation: 2003-01-02-20.00.00.

SELECT JULIAN_DAY('2003-01-02-20.00.00'),
 JULIAN_DAY('2003-01-02-12.00.00-08:00'),
 JULIAN_DAY('2003-01-03-05.00.00+09:00')
 FROM SYSIBM.SYSDUMMY1;

Related concepts
Date, time, and timestamp data types (Introduction to Db2 for z/OS)
Datetime values
Datetime values are neither strings nor numbers. Nevertheless, datetime values can be used in certain
arithmetic and string operations and are compatible with certain strings.
Related reference
DAYOFWEEK scalar function
The DAYOFWEEK function returns an integer, in the range 1–7 that represents the day of the week, where
1 is Sunday and 7 is Saturday. The DAYOFWEEK function is similar to the DAYOFWEEK_ISO function.

LAST_DAY scalar function
The LAST_DAY scalar function returns a date that represents the last day of the month of the date
argument.

LAST_DAY( expression)

The schema is SYSIBM.

expression
An expression that specifies the starting date. The expression must returns a value of one of the
following data types:

• a date
• a timestamp
• a valid string representation of a date or timestamp

An argument with a character string data type must not be a CLOB. An argument with a graphic string
data type must not be a DBCLOB. A string argument must have an actual length that is not greater
than 255 bytes. A time zone in a string representation of a timestamp is ignored. For the valid formats
of string representations of dates and timestamps, see “String representations of datetime values” on
page 120.

If expression is a TIMESTAMP WITH TIME ZONE value, expression is first cast to a TIMESTAMP
WITHOUT TIME ZONE value with the same precision as expression.

The result of the function has the same data type as expression, unless expression is a string, in which
case the result data type is DATE.

The result CCSID is the appropriate CCSID of the argument encoding scheme and the result subtype is the
appropriate subtype of the CCSID.

The result can be null; if the argument is null, the result is the null value.

Any hours, minutes, seconds, or fractional seconds information that is included in expression is not
changed by the function.

Example 1: Set the host variable END_OF_MONTH with the last day of the current month.

 SET :END_OF_MONTH = LAST_DAY(CURRENT_DATE);

The host variable END_OF_MONTH is set with the value representing the end of the current month. If the
current day is 2000-02-10, END_OF_MONTH is set to 2000-02-29.

Chapter 4. Built-in functions 485

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_datetimetimestamp.html

Example 2: Set the host variable END_OF_MONTH with the last day of the month in EUR format for the
given date.

 SET :END_OF_MONTH = CHAR(LAST_DAY('1965-07-07'), EUR);

The host variable END_OF_MONTH is set with the value '31.07.1965'.

Example 3: Assume that host variable PRSTSZ contains '2008-02-29.20.00.000000 -08.30'. The
TIMESTAMP WITH TIME ZONE value is implicitly cast to TIMESTAMP WITHOUT TIME ZONE before the
LAST_DAY function is evaluated.

SELECT LAST_DAY(:PRSTSZ)
 FROM PROJECT;

The LAST_DAY function returns the value '31' (month in UTC is March).

Example 4: Assume PRSTSZ is a host variable with the string value '2008-04-15.20.00.000000-08.30'.
The string value, which is a string representation of a timestamp with a time zone, is implicitly cast to
a DATE before the LAST_DAY function is evaluated. The LAST_DAY function returns the last day of the
month as a DATE value.

SELECT LAST_DAY(:PRSTSZ)
 FROM PROJECT;

The LAST_DAY function returns the value ‘2008-04-30', the last day of the month of April, as a DATE
value.

Example 5: Assuming that the default date format is ISO, the following select statement returns '2000–
04–30', which is the last day of April in 2000:

SELECT LAST_DAY('2000-04-24')
 FROM SYSIBM.SYSDUMMY1;

LCASE scalar function
The LCASE function returns a string in which all the characters are converted to lowercase characters.

LCASE( string-expression

, locale-name-string , integer

)

The schema is SYSIBM.

The LCASE function is identical to the LOWER function. For more information, see “LOWER scalar
function” on page 495.

LEAST scalar function
The LEAST function returns the minimum value in a set of values.

LEAST( expression , expression)

The LEAST function is identical to the MIN scalar function. For more information, see “MIN scalar
function” on page 505.

486 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

LEFT scalar function
The LEFT function returns a string that consists of the specified number of leftmost bytes of the specified
string units.

Character string:

LEFT( character-expression , length
, CODEUNITS16

CODEUNITS32

OCTETS

)

The schema is SYSIBM.

The LEFT function returns the leftmost string of character-expression, graphic-expression, or binary-
expression consisting of length of the string units that are specified implicitly or explicitly.

character-expression
An expression that specifies the string from which the result is derived. The string must be a
character string. A substring of character-expression is zero or more contiguous code points of
character-expression.

The string can contain mixed data. Depending on the units that are specified to evaluate the function,
the result is not necessarily a properly formed mixed data character string.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

length
An expression that specifies the length of the result. The value must be an integer between 0 and n,
where n is the length attribute of character-expression, expressed in the units that are either implicitly
or explicitly specified.

The argument can also be a character string or graphic string data type. The string input is implicitly
cast to a numeric value of DECFLOAT(34) which is then assigned to an INTEGER value.

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length attribute of the final
result” on page 108 for information about how to calculate the length attribute of the result string.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the unit that is used to express integer. If string-expression is a character string that is
defined as bit data, CODEUNITS16 and CODEUNITS32 cannot be specified. If string-expression is
a graphic string, OCTETS cannot be specified. If string-expression is a binary string, CODEUNITS16,
CODEUNITS32, and OCTETS cannot be specified.
CODEUNITS16

Specifies that integer is expressed in terms of 16-bit UTF-16 code units.
CODEUNITS32

Specifies that integer is expressed in terms of 32-bit UTF-32 code units.
OCTETS

Specifies that integer is expressed in terms of bytes.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see “String unit
specifications” on page 106.

The character-expression, graphic-expression, or binary-expression is effectively padded on the right with
the necessary number of padding characters so that the specified substring of the expression always
exists. The encoding scheme of the data determines the padding character:

• For ASCII SBCS data or ASCII mixed data, the padding character is X'20'.

Chapter 4. Built-in functions 487

• For ASCII DBCS data, the padding character depends on the CCSID; for example, for Japanese (CCSID
301) the padding character is X'8140', while for simplified Chinese it is X'A1A1'.

• For EBCDIC SBCS data or EBCDIC mixed data, the padding character is X'40'.
• For EBCDIC DBCS data, the padding character is X'4040'.
• For Unicode SBCS data or UTF-8 (Unicode mixed data), the padding character is X'20'.
• For UTF-16 (Unicode DBCS) data, the padding character is X'0020'.
• For binary data, the padding character is X'00'.

The result of the function is a varying-length string with a length attribute that is the same as the length
attribute of the first expression and a data type that depends on the data type of the expression:

• VARCHAR if character-expression is CHAR or VARCHAR
• CLOB if character-expression is CLOB
• VARGRAPHIC if graphic-expression is GRAPHIC or VARGRAPHIC
• DBCLOB if graphic-expression is DBCLOB
• VARBINARY if binary-expression is BINARY or VARBINARY
• BLOB if binary-expression is BLOB

The actual length of the result is determined from length.

The result can be null; if any argument is null, the result is the null value.

The CCSID of the result is the same as that of the first expression.

Notes
Syntax alternatives:

FL 506 STRLEFT is a synonym for LEFT.

Examples

Example 1: Assume that host variable ALPHA has a value of 'ABCDEF'. The following statement returns
'ABC', which are the three leftmost characters in ALPHA:

 SELECT LEFT(:ALPHA,3)
 FROM SYSIBM.SYSDUMMY1;

Example 2: Assume that host variable NAME, which is defined as VARCHAR(50), has a value of 'KATIE
AUSTIN' and the integer host variable FIRSTNAME_LEN has a value of 5. The following statement returns
the value 'KATIE':

 SELECT LEFT(:NAME, :FIRSTNAME_LEN)
 FROM SYSIBM.SYSDUMMY1;

Example 3: The following statement returns a zero length string.

 SELECT LEFT('ABCABC',0)
 FROM SYSIBM.SYSDUMMY1;

Example 4: The FIRSTNME column in sample EMP table is defined as VARCHAR(12). Find the first name
for an employee whose last name is 'BROWN' and return the first name in a 10-byte string.

 SELECT LEFT(FIRSTNME,10)
 FROM DSN8C10.EMP
 WHERE LASTNAME='BROWN';

This function returns a VARCHAR(10) string that has the value of 'DAVID' followed by 5 blank characters.

488 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html

Example 5: FIRSTNAME is a VARCHAR(12) column in table T1. One of its values is the 6-character string
'Jürgen'. When FIRSTNAME has this value:

 Function ... Returns ...
 LEFT(FIRSTNAME,2,CODEUNITS32) 'Jü' -- x'4AC3BC'
 LEFT(FIRSTNAME,2,CODEUNITS16) 'Jü' -- x'4AC3BC'
 LEFT(FIRSTNAME,2,OCTETS) 'J ' -- x'4A20' A truncated string

Example 6: In the following example, the last invocation of the LEFT function returns a partial surrogate
character:

 Function ... Returns ...
 LEFT('Jürgen',2,CODEUNITS32) 'Jü' -- x'4AC3BC'
 LEFT('Jürgen',2,CODEUNITS16) 'Jü' -- x'4AC3BC'
 LEFT('Jürgen',2,OCTETS) 'J ' -- x'4A20' A truncated string
 HEX(LEFT('Jürgen',2)) x'4AC3' -- The letter 'J' and a partial character

LENGTH scalar function
The LENGTH function returns the length of a value.

LENGTH( expression)

The schema is SYSIBM.

The argument must be an expression that returns a value of any built-in data type that is not XML.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

The result is the length of the argument. The length does not include the null indicator byte of column
arguments that allow null values. The length of strings includes blanks. The length of a varying-length
string is the actual length, not the maximum length.

The length of a graphic string is the number of double-byte characters. Unicode UTF-16 data is treated as
graphic data; a UTF-16 supplementary character takes two DBCS characters to represent and as such is
counted as two DBCS characters.

The length of all other values is the number of bytes used to represent the value:

• 2 for small integer
• 4 for large integer
• 8 for big integer
• The integer part of (p/2)+1 for decimal numbers with precision p
• 16 for DECFLOAT(34)
• 8 for DECFLOAT(16)
• 4 for single precision floating-point
• 8 for double precision floating-point
• The length of the string for strings
• 4 for DATE
• 3 for TIME
• 10 for TIMESTAMP
• 12 for TIMESTAMP WITH TIME ZONE
• 7+((p+1)/2) for TIMESTAMP(p)
• 9+((p+1)/2) for TIMESTAMP(p) WITH TIME ZONE
• The length of the row ID

Chapter 4. Built-in functions 489

Example 1: Assume that FIRSTNME is a VARCHAR(12) column that contains 'ETHEL' for employee 280.
The following query returns the value 5:

 SELECT LENGTH(FIRSTNME)
 FROM DSN8C10.EMP
 WHERE EMPNO = '000280';

Example 2: Assume that HIREDATE is a column of data type DATE. Then, regardless of value the following
statement returns the value 4:

 LENGTH(HIREDATE)

And the following function returns the value 10:

 LENGTH(CHAR(HIREDATE, EUR))

LN scalar function
The LN function returns the natural logarithm of the argument. The LN and EXP functions are inverse
operations.

LN( numeric-expression)

The schema is SYSIBM.

The argument must be an expression that returns the value of any built-in numeric data type that is not
DECFLOAT. If the argument is not a double precision floating-point number, it is converted to one for
processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Notes
Syntax alternatives:

LOG is a synonym for LN. However, it is supported only for compatibility with previous Db2 releases.
LN should be used instead of LOG because some database managers and applications implement LOG
as the natural logarithm of a number instead of the common logarithm of a number.

Examples

Example: Assume that host variable NATLOG is DECIMAL(4,2) with a value of 31.62. The following
statement returns a double precision floating-point number with an approximate value of 3.45:

 SELECT LN(:NATLOG)
 FROM SYSIBM.SYSDUMMY1;

LOCATE scalar function
The LOCATE function returns the position at which the first occurrence of an argument starts within
another argument.

LOCATE( search-string , source-string
, start , CODEUNITS16

CODEUNITS32

OCTETS

)

490 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The schema is SYSIBM.

The LOCATE function returns the starting position of search-string within source-string. If search-string is
not found and neither argument is null, the result is zero. If search-string is found, the result is a number
from 1 to the actual length of source-string. If search-string has a length of zero, the result returned by the
function is 1. If the optional start is specified, it indicates the character position in source-string at which
the search is to begin. An optional string unit can be specified to indicate in what units the start and result
of the function are expressed.

search-string
An expression that specifies the string that is to be searched for. search-string must return a value
that is a built-in character string data type, graphic string data type, or binary string data type with an
actual length that is no greater than 4000 bytes.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

source-string
An expression that specifies the source string in which the search is to take place. source-string must
return a value that is a built-in character string data type, graphic string data type, or binary string data
type.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

start
An expression that specifies the position within search-string where the search is to start.

start is expressed in the specified string unit and must return an integer value that is greater than or
equal to zero.

The argument can also be a character string or graphic string data type. The string input is implicitly
cast to a numeric value of DECFLOAT(34) which is then assigned to an INTEGER value.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit that is used to express start and the result. If source-string is a character
string that is defined as bit data, CODEUNITS16 and CODEUNITS32 cannot be specified. If
source-string is a graphic string, OCTETS cannot be specified. If source-string is a binary string,
CODEUNITS16, CODEUNITS32, and OCTETS cannot be specified.
CODEUNITS16

Specifies that start and the result are expressed in terms of 16-bit UTF-16 code units.
CODEUNITS32

Specifies that start and the result are expressed in terms of 32-bit UTF-32 code units.
OCTETS

Specifies that start and the result are expressed in terms of bytes.

If a string unit is not explicitly specified, the data type of the result determines the string unit that
is used. If the result is graphic data, start and the returned position are expressed in two-byte units;
otherwise, they are expressed in bytes.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see “String unit
specifications” on page 106.

The first and second arguments must have compatible string types. For more information on
compatibility, see “Conversion rules for comparisons” on page 159.

The result of the function is a large integer.

The result can be null; if any argument is null, the result is the null value.

Chapter 4. Built-in functions 491

Notes
Similar functions:

If start is specified, the LOCATE function is similar to the following POSITION function, where string-
units is CODEUNITS16, CODEUNITS32, or OCTETS:

 POSITION(search-string,
 SUBSTRING(source-string, start, string-units)) + start - 1

If start is not specified, the search begins at the first position of source-string and the LOCATE function
is similar to the following POSITION function, where string-units is CODEUNITS16, CODEUNITS32, or
OCTETS:

 POSITION(search-string, source-string, string-units)

For more information, see “POSITION scalar function” on page 529.

Examples
Example 1:

Find the location of the first occurrence of the character 'N' in the string 'DINING'.

 SELECT LOCATE('N', 'DINING')
 FROM SYSIBM.SYSDUMMY1;

The result is the value 3.
Example 2:

For all the rows in the table named IN_TRAY, select the RECEIVED column, the SUBJECT column, and
the starting position of the string 'GOOD' within the NOTE_TEXT column.

 SELECT RECEIVED, SUBJECT, LOCATE('GOOD', NOTE_TEXT)
 FROM IN_TRAY
 WHERE LOCATE('GOOD', NOTE_TEXT) <> 0;

Example 3:

Locate the character 'ß' in the string 'Jürgen lives on Hegelstraße', and set the host variable LOCATION
with the position, as measured in CODEUNITS32 units, within the string.

 SET :LOCATION = LOCATE('ß','Jürgen lives on Hegelstraße',1,CODEUNITS32);

The value of host variable LOCATION is set to 26.

Example 4:
Locate the character 'ß' in the string 'Jürgen lives on Hegelstraße', and set the host variable LOCATION
with the position, as measured in CODEUNITS16 units, within the string.

 SET :LOCATION = LOCATE('ß','Jürgen lives on Hegelstraße',1,CODEUNITS16);

The value of host variable LOCATION is set to 26.
Example 5:

Locate the character 'ß' in the string 'Jürgen lives on Hegelstraße', and set the host variable LOCATION
with the position, as measured in OCTETS, within the string.

 SET :LOCATION = LOCATE('ß','Jürgen lives on Hegelstraße',1,OCTETS);

The value of host variable LOCATION is set to 27.

492 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

LOCATE_IN_STRING scalar function
The LOCATE_IN_STRING function returns the position at which an argument starts within a specified
string.

LOCATE_IN_STRING( source-string , search-string
, start

, instance
, CODEUNITS16

CODEUNITS32

OCTETS

)

The schema is SYSIBM.

The LOCATE_IN_STRING function returns the starting position of a string (called the search-string) within
another string (called the source-string). If the search-string is not found and neither argument is null,
the result is zero. If the search-string is found, the result is a number from 1 to the actual length of the
source-string.

If the optional start is specified, an optional instance number can also be specified. The instance
argument is used to determine the specific occurrence of search-string within source-string. Each unique
instance can include any of the characters in a previous instance, but not all characters in a previous
instance. An optional string unit can be specified to indicate in what units the start and result of the
function are expressed.

If the search-string has a length of zero, the result returned by the function is 1. If the source-string
has a length of zero, the result returned by the function is 0. If neither condition exists, and if the value
of search-string is equal to an identical length of a substring of contiguous positions within the value
of source-string, the result returned by the function is the starting position of that substring within the
source-string value; otherwise, the result returned by the function is 0.

source-string
An expression that specifies the source string in which the search is to take place. source-string must
return a value that is a built-in character string data type, graphic string data type, or binary string data
type.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

search-string
An expression that specifies the string that is the object of the search. search-string must return a
value that is a built-in character string data type, graphic string data type, or binary string data type
with an actual length that is no greater than 4000 bytes.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

start
An expression that specifies the position within source-string at which the search is to start. The
expression must return a value that is a built-in INTEGER or SMALLINT data type.

The argument can also be a character string or graphic string data type. The string input is implicitly
cast to a numeric value of DECFLOAT(34) which is then assigned to an INTEGER value.

If the value of the integer is greater than zero, the search begins at start and continues for each
position to the end of the string. If the value of the integer is less than zero, the search begins at the
LENGTH(source-string) + start + 1 and continues for each position to the beginning of the string.

If start is not specified, the default is 1. If the value of the integer is zero, an error is returned.

instance
An expression that specifies which instance of search-string to search for within source-string. The
expression must return a value that is a built-in INTEGER or SMALLINT data type. If instance is not
specified, the default is 1. The value of the integer must be greater than or equal to one.

Chapter 4. Built-in functions 493

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit that is used to express start and the result. If source-string is a character
string that is defined as bit data, CODEUNITS16 and CODEUNITS32 cannot be specified. If
source-string is a graphic string, OCTETS cannot be specified. If source-string is a binary string,
CODEUNITS16, CODEUNITS32, and OCTETS cannot be specified.
CODEUNITS16

Specifies that start and the result are expressed in terms of 16-bit UTF-16 code units.
CODEUNITS32

Specifies that start and the result are expressed in terms of 32-bit UTF-32 code units.
OCTETS

Specifies that start and the result are expressed in terms of bytes.

If a string unit is not explicitly specified, the data type of the result determines the string unit that
is used. If the result is graphic data, start and the returned position are expressed in two-byte units;
otherwise, they are expressed in bytes.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see “String unit
specifications” on page 106.

The first and second arguments must have compatible string types. For more information on
compatibility, see “Conversion rules for comparisons” on page 159.

At each search position, a match is found when the substring at that position and LENGTH(search-string) -
1 values to the right of the search position in source-string, is equal to search-string.

The result of the function is a large integer. The result is the starting position of the instance of
search-string within source-string. The value is relative to the beginning of the string (regardless of the
specification of start).

The result can be null; if any argument is null, the result is the null value.

Notes
Syntax alternatives:

INSTR is a synonym for LOCATE_IN_STRING.

Examples
Example 1:

Find the position of an occurrence of the character 'N' in the string 'WINNING' by searching from the
start of the string as measured in bytes, within the string.

SELECT LOCATE_IN_STRING('WINNING','N',1,3,OCTETS),
 LOCATE_IN_STRING('WINNING','N',3,2,OCTETS),
 LOCATE_IN_STRING('WINNING','N',3,3,OCTETS),
 LOCATE_IN_STRING('WINNING','N',-1,3,OCTETS),
 LOCATE_IN_STRING('WINNING','N',-3,2,OCTETS),
 LOCATE_IN_STRING('WINNING','N',-3,3,OCTETS)
FROM SYSIBM.SYSDUMMY1;

Returns the values:

6 4 6 3 3 0

LOG10 scalar function
The LOG10 function returns the common logarithm (base 10) of a number.

LOG10( numeric-expression)

The schema is SYSIBM.

494 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The argument is an expression that returns the value of any built-in numeric data type that is not
DECFLOAT. If the argument is not a double precision floating-point number, it is converted to one for
processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable HLOG is an INTEGER with a value of 100. The following statement
returns a double precision floating-point number with an approximate value of 2:

 SELECT LOG10(:HLOG)
 FROM SYSIBM.SYSDUMMY1;

LOWER scalar function
The LOWER function returns a string in which all the characters are converted to lowercase characters.

LOWER( string-expression

, locale-name-string , integer

)

The schema is SYSIBM.

string-expression
An expression that specifies the string to be converted. string-expression must return a value that is
a built-in character or graphic string. A character string argument must not be a CLOB, and a graphic
string argument must not be a DBCLOB. If string-expression is an EBCDIC graphic string, a blank string
must not be specified for locale-name-string. If string-expression is bit data, locale-name-string must
not be specified.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

locale-name-string
A string constant or a string host variable other than a CLOB or DBCLOB that specifies a valid locale
name. If locale-name-string is not in EBCDIC, it is converted to EBCDIC. The length of locale-name-
string must be in the range 1–255 bytes of the EBCDIC representation. The value of locale-name-
string is not case sensitive and must be a valid locale. For information on locales and their naming
conventions, see Building and using Dynamic Link Libraries (DLLs) (XL C/C++ Programming Guide).
Some examples of locales include:

Fr_BE
Fr_FR@EURO
En_US
Ja_JP

The conversion process is determined by the value that is specified for the locale name, as follows:

blank
SBCS uppercase characters A-Z are converted to SBCS lowercase characters a-z, and characters
with diacritical marks are not converted. If the string contains MIXED or DBCS characters, full-
width Latin uppercase characters A-Z are converted to full-width lowercase characters a-z. For
optimal performance, specify a blank string unless your data must be processed by using the rules
that are defined by a specific locale.

UNI
The conversion uses both the NORMAL and SPECIAL casing capabilities as described in Select the
conversions (z/OS: Unicode Services User’s Guide and Reference). You must not specify UNI when
string-expression is EBCDIC data.

Chapter 4. Built-in functions 495

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cbcpx01/dllsim.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/selconv.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/selconv.htm

UNI_60
The conversion uses Unicode Standard 6.0.0 and the NORMAL casing capability, as described in
Select the conversions (z/OS: Unicode Services User’s Guide and Reference). You must not specify
UNI_60 when string-expression is EBCDIC data.

UNI_90
The conversion uses Unicode Standard 9.0.0 and the NORMAL casing capability, as described in
Select the conversions (z/OS: Unicode Services User’s Guide and Reference). You must not specify
UNI_90 when string-expression is EBCDIC data.

UNI_SIMPLE
Case conversions use the NORMAL casing capabilities as described in Select the conversions
(z/OS: Unicode Services User’s Guide and Reference). UNI_SIMPLE cannot be used with EBCDIC
data.

locale name
The locale defines the rules for conversion to lowercase characters.

The value of the host variable must not be null. If the host variable has an associated indicator
variable, the value of the indicator variable must not indicate a null value. The locale name must be:

• left justified within the host variable
• padded on the right with blanks if its length is less than that of the host variable and the host

variable is in fixed length character or graphic data type

If locale-name-string is not specified, the locale is determined by special register CURRENT LOCALE
LC_CTYPE. For information about the special register, see “CURRENT LOCALE LC_CTYPE special
register” on page 196. However, if an index references the LOWER function, the local is determined as
follows (in order) to determine if the index can be used:

• At prepare time: using the value in the CURRENT LOCALE LC_CTYPE special register
• At bind time: using the value in the LOCALE LC_CTYPE field on installation panel DSNTIPF

If the index is chosen in the access path, the locale in the CURRENT LOCALE LC_CTYPE special
register must remain the same at run time, and prepare or bind time. To avoid this dependency, do not
omit locale-name-string.

If the LOWER function is referenced in an expression-based index, locale-name-string must be
specified. See the examples section for an example of how the index can be used in a query.

integer
An integer value that specifies the length attribute of the result. If specified, integer must be an
integer constant in the range 1–32704 bytes in the representation of the encoding scheme of string-
expression.

If integer is not specified, the length attribute of the result is the same as the length of string-
expression.

For Unicode data, usage of the LOWER function can result in expansion if certain characters are
processed. For example, LOWER ('Ì') —UX'00CC'— will result in UX'006903070300' (if the LT_LT locale
is in effect at the time). You should ensure that the result length is large enough to contain the result
of the expression.

The result can be null; if the argument is null, the result is the null value.

Notes
Syntax alternatives:

LCASE is a synonym for LOWER. LOWER should be used for conformance to the SQL standard.

496 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/selconv.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/selconv.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/selconv.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/selconv.htm

Examples
Example 1:

Return the characters in the value of host variable NAME in lowercase. NAME has a data type of
VARCHAR(30) and a value of 'Christine Smith'. Assume that the locale in effect is blank.

 SELECT LCASE(:NAME)
 FROM SYSIBM.SYSDUMMY1;

The result is the value 'christine smith'.
Example 2:

Return the lowercase of 'Ì'. Assume that the locale in effect is LT_LT.

SELECT LOWER('Ì')
 FROM SYSIBM.SYSDUMMYU;

This would result in an error because of the expansion that occurs when certain Unicode characters
are processed. To avoid the error, you would need to use the following statement instead:

SELECT LOWER(VARCHAR('Ì', 3))
 FROM SYSIBM.SYSDUMMYU;

The result of the preceding statement is the value UX'006903070300'.
Example 3:

Create an index EMPLOYEE_NAME_LOWER for table EMPLOYEE based on built-in function LOWER
with locale name 'LT_LT'.

 CREATE INDEX EMPLOYEE_NAME_LOWER
 ON EMPLOYEE (LOWER(LASTNAME, 'LT_LT', 60),
 LOWER(FIRSTNAME, 'LT_LT', 60),
 ID);

Example 4:
Create an index LNAME for table T1 based on the LOWER function with the default local value, ' '. Then
specify the same expression in a query.

 CREATE INDEX LNAME
 ON TI (LOWER(LASTNAME, ' '));

 SELECT LOWER(LASTNAME, ' ')
 FROM TI
 WHERE LOWER(LASTNAME, ' ') = 'smith';

Example 5:
Create an index LNAME that is based on the LOWER function with a locale name 'FR_CA' for the table
T1. Then specify the same expression in a query except locale-name-string is omitted.

 CREATE INDEX LNAME
 ON TI (LOWER(LASTNAME, 'FR_CA'));

If the query is a dynamic statement and the CURRENT LOCALE LC_CTYPE special register contains
'FR_CA':

 SELECT LASTNAME
 FROM TI
 WHERE LOWER(LASTNAME)='smith';

At prepare time, locale 'FR_CA' in CURRENT LOCALE LC_CTYPE is used for LOWER(LASTNAME) in the
predicate to determine whether index LNAME can be used for index access. If index LNAME is used in
access path selection, at run time, the locale in CURRENT LOCALE LC_CTYPE must remain the same.

If the query is a static statement and locale 'FR_CA' has been set on the LOCALE LC_CTYPE field of
installation panel DSNTIPF:

Chapter 4. Built-in functions 497

 SELECT LASTNAME
 FROM TI
 WHERE LOWER(LASTNAME)='smith';

At bind time, local 'FR_CA' in the LOCALE LC_CTYPE file of installation panel DSNTIPF is used for
LOWER(LASTNAME) in the predicate to determine whether index LNAME is used for index access. If
index LNAME is chosen in access path selection, the locale in the CURRENT LOCALE LC_CTYPE special
register must contain 'FR_CA'.

Related concepts
z/OS Unicode Services User’s Guide and Reference
Related reference
z/OS XL C/C++ Programming Guide

LPAD scalar function
The LPAD function returns a string that is composed of string-expression that is padded on the left, with
pad or blanks. The LPAD function treats leading or trailing blanks in string-expression as significant.

LPAD( string-expression , integer

, pad

)

Padding occurs only if the actual length of string-expression is less than integer, and if pad is not an empty
string.

The schema is SYSIBM.

string-expression
An expression that specifies the source string. The expression must return a value that is a built-in
string data type that is not a LOB.

integer
An integer constant that specifies the length of the result. The value must be zero or a positive integer
that is less than or equal to n, where n is 32704 if string-expression is a character or binary string, or
where n is 16352 if string-expression is a graphic string.

pad
An expression that specifies the string with which to pad. The expression must return a value that is
a built-in string data type that is not a LOB. If pad is not specified, the pad character is determined as
follows:

• SBCS blank character if string-expression is a character string.
• DBCS blank character if string-expression is a graphic string.
• Hexadecimal zero (X'00'), if string-expression is a binary string.

The result of the function is a varying length string that has the same CCSID of string-expression. string-
expression and pad must have compatible data types. If the string expressions have different CCSID sets,
then pad is converted to the CCSID set of string-expression. If either string-expression or pad is FOR BIT
DATA, no character conversion occurs.

The length attribute of the result depends on integer. If integer is greater than 0, the length attribute of the
result is integer. If integer is 0, the length attribute of the result is 1.

The actual length of the result is determined from integer. If integer is 0, the actual length is 0, and the
result is the empty result string. If integer is less than the actual length of string-expression, the actual
length is integer and the result is truncated.

The result can be null; if any argument is null, the result is the null value.

498 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/abstract.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cbcpx01/abstract.htm

Example 1: Assume that NAME is a VARCHAR(15) column that contains the values 'Chris', 'Meg', and 'Jeff'.
The following query will pad a value on the left with periods.

 SELECT LPAD(NAME,15,'.') AS NAME
 FROM T1;

The results are similar to the following output:

 NAME

 Chris
 Meg
 Jeff

Example 2: Similar to Example 1, the following query will only pad each value to a length of 5:

 SELECT LPAD(NAME,5,'.') AS NAME
 FROM T1;

The results are similar to the following output:

 NAME

 Chris
 ..Meg
 .Jeff

Example 3: Assume that NAME is a CHAR(15) column containing the values 'Chris', 'Meg', and 'Jeff. 'Note
that the LPAD function does not pad because NAME is a fixed length character field and is blank padded
already. However, since the length of the result is 5, the columns are truncated:

 SELECT LPAD(NAME,5,'.') AS NAME
 FROM T1;

The results are similar to the following output:

 NAME

 Chris
 Meg
 Jeff

Example 4: Assume that NAME is a VARCHAR(15) column containing the values 'Chris', 'Meg', and 'Jeff'.
Note that in some cases, a partial instance of the pad specification is returned.

 SELECT LPAD(NAME,15,'123') AS NAME
 FROM T1

The results are similar to the following output:

NAME

1231231231Chris
123123123123Meg
12312312312Jeff

Chapter 4. Built-in functions 499

LTRIM scalar function
The LTRIM function removes bytes from the beginning of a string expression based on the content of a
trim expression.

LTRIM (string-expression

, trim-expression

)

The schema is SYSIBM.

The LTRIM function removes all of the characters that are contained in trim-expression from the beginning
of string-expression. The search is done by comparing the binary representation of each character (which
consists of one or more bytes) in trim-expression to the bytes at the beginning of string-expression.
If the string-expression is defined as FOR BIT DATA, the search is done by comparing each byte in
trim-expression to the byte at the beginning of string-expression.

string-expression
An expression that specifies the source string. The argument must be an expression that returns a
value that is a built-in string data type that is not a LOB, or a numeric data type. If the value is not a
string data type, it is implicitly cast to VARCHAR before the function is evaluated. If string-expression
is not FOR BIT DATA, trim-expression must not be FOR BIT DATA.

trim-expression
An expression that specifies the characters to remove from the beginning of string-expression. The
expression must return a value that is a built-in string data type that is not a LOB, or a numeric data
type. If the value is not a string data type, it is implicitly cast to VARCHAR before the function is
evaluated.

The default for trim-expression depends on the data type of string-expression:

• A DBCS blank if string-expression is a DBCS graphic string. For ASCII, the CCSID determines the hex
value that represents a DBCS blank. For example, for Japanese (CCSID 301), X'8140' represents a
DBCS blank, while for Simplified Chinese, X'A1A1' represents a DBCS blank. For EBCDIC, X'4040'
represents a DBCS blank.

• A UTF-16 or UCS-2 blank (X'0020') if string-expression is a Unicode graphic string.
• A value of X'00' if string-expression is a binary string.
• Otherwise, a single byte blank. For EBCDIC, X'40' represents a blank. If not EBCDIC, X'20'

represents a blank.

string-expression and trim-expression must have compatible data types. If string-expression and trim-
expression have different CCSID sets, trim-expression is converted to the CCSID of string-expression.

The result of the function depends on the data type of string-expression:

• VARCHAR if string-expression is a character string. If string-expression is defined as FOR BIT DATA the
result is FOR BIT DATA.

• VARGRAPHIC if string-expression is a graphic string.
• VARBINARY if string-expression is a binary string.

The length attribute of the result is the same as the length attribute of string-expression.

The actual length of the result for a character or binary string is the length of string-expression minus the
number of bytes that are removed. The actual length of the result for a graphic string is the length (in
the number of double byte characters) of string-expression minus the number of double byte characters
removed. If all of the characters bytes are removed, the result is an empty string (the length is zero).

The result can be null; if the argument is null, the result is the null value.

The CCSID of the result is the same as that of string-expression.

500 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Notes
Valid content for EBCDIC mixed string input:

If string-expression is an EBCDIC mixed string, the string must contain valid EBCDIC mixed data.

Examples
Example: Use the LTRIM function to remove individual numbers in the second argument from the
beginning of the first argument:

SELECT LTRIM ('123DEFG123', '321'),
 LTRIM ('12DEFG123', '321'),
 LTRIM ('123123222XYZ22', '123'),
 LTRIM ('12321', '213'),
 LTRIM ('XYX123 ', '321')
 FROM SYSIBM.SYSDUMMY1

The result is 'DEFG123', 'DEFG123', 'XYZ22', '' (an empty string - all characters removed), and
'XYX123' (no characters removed).

The LTRIM function does not remove instances of '1', '2', and '3' on the right side of the string,
following characters that are not '1', '2', or '3'.

Example: Use the LTRIM function to remove individual special characters in the second argument
from the beginning of the first argument:

SELECT LTRIM ('[[-78]]', '- []')
 FROM SYSIBM.SYSDUMMY1

The result is '78]]'.

Example: Use the LTRIM function to remove dollar signs and periods in the second argument from the
beginning of the first argument:

SELECT LTRIM ('...$V..$AR', '$.')
 FROM SYSIBM.SYSDUMMY1

The result is 'V..$AR'.

Example: Use the LTRIM function to trim full multi-byte X'D090' characters:
Assume that these strings are encoded in UTF-8.

SELECT LTRIM (X'D090D091D092', X'D090')
 FROM SYSIBM.SYSDUMMY1

The result is X'D091D092'.

Note that the function does not remove individual bytes x'D0' and x'90'.

MAX scalar function
The MAX scalar function returns the maximum value in a set of values.

MAX( expression , expression)

The schema is SYSIBM.

The arguments must be compatible. For more information on compatibility, refer to the compatibility
matrix in Table 30 on page 144. All but the first argument can be parameter markers. There must be two
or more arguments.

Each argument must be an expression that returns a value of any built-in data type other than a CLOB,
DBCLOB, BLOB, ROWID, or XML.

Chapter 4. Built-in functions 501

Character string arguments and binary string arguments cannot have a length attribute greater than
32704, and graphic string arguments cannot have a length attribute greater than 16352.

The arguments are evaluated in the order in which they are specified. The result of the function is the
maximum argument value.

The result can be null; if any argument is null, the result is the null value.

The selected argument is converted, if necessary, to the attributes of the result. The attributes of the
result are determined using the “Rules for result data types” on page 166. If the MAX function has more
than two arguments, the rules are applied to the first two arguments to determine a candidate result type.
The rules are then applied to that candidate result type and the third argument to determine another
candidate result type. This process continues until all arguments are analyzed and the final result type
and CCSID is determined.

Notes
Syntax alternatives:

GREATEST is a synonym for MAX.

Examples

Example 1: Assume the host variable M1 is a DECIMAL(2,1) host variable with a value of 5.5, host variable
M2 is a DECIMAL(3,1) host variable with a value of 4.5, and host variable M3 is a DECIMAL(3,2) host
variable with a value of 6.25. The following function returns the value 6.25.

 MAX(:M1,:M2,:M3)

Example 2: Assume the host variable M1 is a CHAR(2) host variable with a value of 'AA', host variable M2 is
a CHAR(3) host variable with a value of 'AA ', and host variable M3 is a CHAR(4) host variable with a value
of 'AA A'. The following function returns the value 'AA A'.

 MAX(:M1,:M2,:M3)

MAX_CARDINALITY scalar function
The MAX_CARDINALITY function returns a value of type BIGINT that represents the maximum number of
elements that an array can contain. This value is the cardinality that was specified in the CREATE TYPE
statement for an ordinary array type.

MAX_CARDINALITY( array-expression)

The schema is SYSIBM.

array-expression
An SQL variable, SQL parameter, or global variable of an array type, or a CAST specification that
specifies an SQL variable, SQL parameter, global variable, or parameter marker as the source value.

The result of the MAX_CARDINALITY function is as follows:

• For an ordinary array, the result is the maximum number of elements that an array can contain.
• For an associative array, the result is the null value.

The data type of the result is BIGINT.

If the argument is an associative array, the result can be null and the result is the null value. Otherwise,
the result cannot be null.

Examples

502 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 1: Suppose that array type PHONENUMBERS and array variable RECENT_CALLS are defined as
follows:

CREATE TYPE PHONENUMBERS AS DECIMAL(10,0) ARRAY[50];
CREATE VARIABLE RECENT_CALLS PHONENUMBERS;

The following statement sets LIST_SIZE to the maximum cardinality with which RECENT_CALLS was
defined.

SET LIST_SIZE = MAX_CARDINALITY(RECENT_CALLS);

After the statement executes, LIST_SIZE contains 50.

MICROSECOND scalar function
The MICROSECOND function returns the microsecond part of a value.

MICROSECOND( expression)

The schema is SYSIBM.

The argument must be an expression that returns a value of one of the following built-in data types: a
timestamp, a character string, a graphic string, or a numeric data type.

• If expression is a character or graphic string, it must not be a CLOB or DBCLOB, and its value must
be a valid string representation of a timestamp with an actual length of not greater than 255 bytes.
For the valid formats of string representations of times and timestamps, see “String representations of
datetime values” on page 120.

• If expression is a number, it must be a timestamp duration. For the valid formats of timestamp
durations, see “Datetime operands” on page 169.

If expression is a timestamp with a time zone, or a valid string representation of a timestamp with a time
zone, the result is determined from the UTC representation of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

If the argument is a timestamp or string representation of a timestamp, the result is the
microsecond part of the value, which is an integer in the range 0–999999. If the precision of the
timestamp exceeds 6, the value is truncated.
If the argument is a duration, the result is the microsecond part of the value, which is an integer
between -999999 and 999999. A nonzero result has the same sign as the argument.

Example 1: Assume that table TABLEX contains a TIMESTAMP column named TSTMPCOL and a SMALLINT
column named INTCOL. Select the microseconds part of the TSTMPCOL column of the rows where the
INTCOL value is 1234:

 SELECT MICROSECOND(TSTMPCOL) FROM TABLEX
 WHERE INTCOL = 1234;

Example 2: The following invocations of the MICROSECOND function returns the same result:

SELECT MICROSECOND('2003-01-02-20.00.00.123456'),
 MICROSECOND('2003-01-02-12.00.00.123456-08:00'),
 MICROSECOND('2003-01-03-05.00.00.123456+09:00')
 FROM SYSIBM.SYSDUMMY1;

For each invocation of the MICROSECOND function in this SELECT statement, the result is 123456.

Chapter 4. Built-in functions 503

When the input argument contains a time zone, the result is determined from the UTC representation of
the input value. The string representations of a timestamp with a time zone in the SELECT statement all
have the same UTC representation: 2003-01-02-20.00.00.123456.

MIDNIGHT_SECONDS scalar function
The MIDNIGHT_SECONDS function returns an integer, in the range 0–86400, that represents the number
of seconds between midnight and the time that is specified in the argument.

MIDNIGHT_SECONDS( expression)

The schema is SYSIBM.

The argument must be an expression that returns a value of one of the following built-in data types: a
time, a timestamp, a character string, or a graphic string. If expression is a character or graphic string, it
must not be a CLOB or DBCLOB, and its value must be a valid string representation of a time or timestamp
with an actual length of not greater than 255 bytes. For the valid formats of string representations of
times and timestamps, see “String representations of datetime values” on page 120.

If expression is a timestamp with a time zone, or a valid string representation of a timestamp with a time
zone, the result is determined from the UTC representation of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

Example 1: Find the number of seconds between midnight and 00:01:00, and midnight and 13:10:10.
Assume that host variable XTIME1 has a value of '00:01:00', and that XTIME2 has a value of '13:10:10'.

SELECT MIDNIGHT_SECONDS(:XTIME1), MIDNIGHT_SECONDS(:XTIME2)
 FROM SYSIBM.SYSDUMMY1;

This example returns 60 and 47410. Because there are 60 seconds in a minute and 3600 seconds in an
hour, 00:01:00 is 60 seconds after midnight ((60 * 1) + 0), and 13:10:10 is 47410 seconds ((3600 * 13) +
(60 * 10) + 10).

Example 2: Find the number of seconds between midnight and 24:00:00 of a specified day, and between
midnight and 00:00:00 of the following day.

SELECT MIDNIGHT_SECONDS('2019-05-20-24:00:00'),
 MIDNIGHT_SECONDS('2019-05-21-00:00:00')
 FROM SYSIBM.SYSDUMMY1;

This example returns 86400 and 0. Although the two MIDNIGHT_SECONDS arguments represent the
same point in time, different values are returned.

Example 3: The following invocations of the MIDNIGHT_SECONDS function return the same result:

SELECT MIDNIGHT_SECONDS('2003-01-02-20.10.05.123456'),
 MIDNIGHT_SECONDS('2003-01-02-12.10.05.123456-08:00'),
 MIDNIGHT_SECONDS('2003-01-03-05.10.05.123456+09:00')
 FROM SYSIBM.SYSDUMMY1;

For each invocation of the MIDNIGHT_SECONDS function in this SELECT statement, the result is 72605.

When the input argument contains a time zone, the result is determined from the UTC representation of
the input value. The string representations of a timestamp with a time zone in the SELECT statement all
have the same UTC representation: 2003-01-02-20.10.05.123456.

504 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

MIN scalar function
The MIN scalar function returns the minimum value in a set of values.

MIN( expression , expression)

The schema is SYSIBM.

The arguments must be compatible. For more information on compatibility, refer to the compatibility
matrix in Table 30 on page 144. All but the first argument can be parameter markers. There must be two
or more arguments.

Each argument must be an expression that returns a value of any built-in data type other than a CLOB,
DBCLOB, BLOB, ROWID, or XML.

Character string arguments and binary string arguments cannot have a length attribute greater than
32704, and graphic string arguments cannot have a length attribute greater than 16352.

The arguments are evaluated in the order in which they are specified. The result of the function is the
minimum argument value.

The result can be null; if any argument is null, the result is the null value.

The selected argument is converted, if necessary, to the attributes of the result. The attributes of the
result are determined using the “Rules for result data types” on page 166. If the MIN function has more
than two arguments, the rules are applied to the first two arguments to determine a candidate result type.
The rules are then applied to that candidate result type and the third argument to determine another
candidate result type. This process continues until all arguments are analyzed and the final result type
and CCSID is determined.

Notes
Syntax alternatives:

LEAST is a synonym for MIN.

Examples
Example 1: Assume the host variable M1 is a DECIMAL(2,1) host variable with a value of 5.5, host variable
M2 is a DECIMAL(3,1) host variable with a value of 4.5, and host variable M3 is a DECIMAL(3,2) host
variable with a value of 6.25. The following function returns the value 4.5.

 MIN(:M1,:M2,:M3)

Example 2: Assume the host variable M1 is a CHAR(2) host variable with a value of 'AA', host variable M2 is
a CHAR(3) host variable with a value of 'AAA', and host variable M3 is a CHAR(4) host variable with a value
of 'AAAA'. The following function returns the value 'AA'.

 MIN(:M1,:M2,:M3)

MINUTE scalar function
The MINUTE function returns the minute part of a value.

MINUTE( expression)

The schema is SYSIBM.

Chapter 4. Built-in functions 505

The argument must be an expression that returns a value of one of the following built-in data types: a
time, a timestamp, a character string, a graphic string, or a numeric data type.

• If expression is a character or graphic string, it must not be a CLOB or DBCLOB, and its value must be a
valid string representation of a time or timestamp with an actual length of not greater than 255 bytes.
For the valid formats of string representations of times and timestamps, see “String representations of
datetime values” on page 120.

• If expression is a number, it must be a time or timestamp duration. For the valid formats of time and
timestamp durations, see “Datetime operands” on page 169"/>.

If expression is a timestamp with a time zone, or a valid string representation of a timestamp with a time
zone, the result is determined from the UTC representation of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

If the argument is a time, timestamp, or string representation of either, the result is the minute part
of the value, which is an integer in the range 0–59.
If the argument is a time duration or timestamp duration, the result is the minute part of the value,
which is an integer between -99 and 99. A nonzero result has the same sign as the argument.
If the argument contains a time zone, the result is the minute part of the value expressed in UTC.

Examples
Example 1

Assume that a table named CLASSES contains one row for each scheduled class. Assume also that the
class starting times are in the TIME column named STARTTM. Using these assumptions, select those
rows in CLASSES that represent classes that start on the hour.

 SELECT * FROM CLASSES
 WHERE MINUTE(STARTTM) = 0;

Example 2
Each invocation of the MINUTE function in the following SELECT statement returns the same result,
which is 10.

SELECT MINUTE('2003-01-02-20.10.05.123456'),
 MINUTE('2003-01-02-12.10.05.123456-08:00'),
 MINUTE('2003-01-03-05.10.05.123456+09:00')
 FROM SYSIBM.SYSDUMMY1;

When the input argument contains a time zone, the result is determined from the UTC representation
of the input value. The string representations of a timestamp with a time zone in the SELECT
statement all have the same UTC representation: 2003-01-02-20.10.05.123456. The minute portion
of the UTC representation is 10.

MOD scalar function
The MOD function divides the first argument by the second argument and returns the remainder.

MOD( numeric-expression-1 , numeric-expression-2)

The schema is SYSIBM.

The formula used to calculate the remainder is:

 MOD(x,y) = x - FLOOR(x/y) * y

506 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Where x/y is the truncated integer result of the division. The result is negative only if the first argument is
negative.

Each argument must be an expression that returns a value of any built-in numeric data type.

The arguments can also be a character string or graphic string data type. The string input is implicitly cast
to a numeric value of DECFLOAT(34).

The result can be null; if any argument is null, the result is the null value.

The attributes of the result are based on the arguments as follows:

• If both arguments are large or small integers, the data type of the result is large integer.
• If both arguments are integers and at least one argument is a big integer, the data type of the result is

big integer.
• If one argument is an integer and the other is a decimal, the data type of the result is decimal with the

same precision and scale as the decimal argument.
• If both arguments are decimal, the data type of the result is decimal. The precision of the result is
min(p-s,p'-s') + max(s,s'), and the scale of the result is max(s,s'), where the symbols p and
s denote the precision and scale of the first argument, and the symbols p' and s' denote the precision
and scale of the second argument.

• If one argument is a floating-point number, and the other is not a DECFLOAT, or both argument is a
floating-point number, the data type of the result is double precision floating-point.

The operation is performed in floating-point. If necessary, the operands are first converted to double
precision floating-point numbers. For example, an operation that involves a floating-point number and
either an integer or a decimal number is performed with a temporary copy of the integer or decimal
number that has been converted to double precision floating-point. The result of a floating-point
operation must be within the range of floating-point numbers.

• If either argument is a DECFLOAT, the data type of the result is DECFLOAT(34).

If either argument is a special decimal floating point value, the general rules for arithmetic operations
apply. For more information, see “General arithmetic operation rules for DECFLOAT” on page 254.

If one argument is a DECFLOAT and the second argument is zero, the result is NaN and an invalid
operation condition is returned.

Example: Assume that M1 and M2 are two host variables. Find the remainder of dividing M1 by M2.

 SELECT MOD(:M1,:M2)
 FROM SYSIBM.SYSDUMMY1;

The following table shows the result for this function for various values of M1 and M2.

M1 data type M1 value M2 data type M2 value
Result of
MOD(:M1,:M2)

INTEGER 5 INTEGER 2 1

INTEGER 5 DECIMAL(3,1) 2.2 0.6

INTEGER 5 DECIMAL(3,2) 2.20 0.60

DECIMAL(4,2) 5.50 DECIMAL(4,1) 2.0 1.50

DECFLOAT 1 DECFLOAT -INFINITY 1

DECFLOAT -0 DECFLOAT INFINITY -0

DECFLOAT -0 DECFLOAT -INFINITY -0

Chapter 4. Built-in functions 507

MONTH scalar function
The MONTH function returns the month part of a value.

MONTH( expression)

The schema is SYSIBM.

The argument must be an expression that returns one of the following built-in data types: a date, a
timestamp, a character string, a graphic string, or a numeric data type.

• If expression is a character or graphic string, it must not be a CLOB or DBCLOB, and its value must be a
valid string representation of a date or timestamp with an actual length of not greater than 255 bytes.
For the valid formats of string representations of dates and timestamps, see “String representations of
datetime values” on page 120.

• If expression is a number, it must be a date or timestamp duration. For the valid formats of date and
timestamp durations, see “Datetime operands” on page 169.

If expression is a timestamp with a time zone, or a valid string representation of a timestamp with a time
zone, the result is determined from the UTC representation of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

If the argument is a date, timestamp, or string representation of either, the result is the month part
of the value, which is an integer in the range 1–12.
If the argument is a date duration or timestamp duration, the result is the month part of the value,
which is an integer between -99 and 99. A nonzero result has the same sign as the argument.
If the argument contains a time zone, the result is the month part of the value expressed in UTC.

Example 1: Select all rows in the sample table DSN8C10.EMP for employees who were born in May:

 SELECT * FROM DSN8C10.EMP
 WHERE MONTH(BIRTHDATE) = 5;

Example 2: The following invocations of the MONTH function returns the same result:

SELECT MONTH('2003-01-02-20.10.05.123456'),
 MONTH('2003-01-02-12.10.05.123456-08:00'),
 MONTH('2003-01-03-05.10.05.123456+09:00')
 FROM SYSIBM.SYSDUMMY1;

For each invocation of the MONTH function in this SELECT statement, the result is 1.

When the input argument contains a time zone, the result is determined from the UTC representation
of the input value. The string representations of a timestamp with a time zone in the SELECT statement
all have the same UTC representation: 2003-01-02-20.10.05.123456. The month portion of the UTC
representation is 1.

MONTHS_BETWEEN scalar function
The MONTHS_BETWEEN function returns an estimate of the number of months between two arguments.

MONTHS_BETWEEN( expression1 , expression2)

The schema is SYSIBM.

508 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

expression1 or expression2
Expressions that return a value of any of the following built-in data types: a date, a timestamp, a
character string, or a graphic string. If either expression is a character or graphic string, it must not
be a CLOB or DBCLOB, and its value must be a valid string representation of a date or timestamp
with an actual length that is not greater than 255 bytes. A time zone in a string representation of a
timestamp is ignored. For the valid formats of string representations of dates and timestamps, see
“String representations of datetime values” on page 120.

If expression1 is a TIMESTAMP WITH TIME ZONE value, expression1 is first cast to TIMESTAMP WITHOUT
TIME ZONE with the same precision as expression1. If expression2 is a TIMESTAMP WITH TIME
ZONE value, expression2 is first cast to TIMESTAMP WITHOUT TIME ZONE with the same precision as
expression2.

If expression1 represents a date that is later than expression2, the result is positive. If expression1
represents a date that is earlier than expression2, the result is negative.

• If expression1 and expression2 represent dates or timestamps with the same day of the month, or both
arguments represent the last day of their respective months, the result is a the whole number difference
based on the year and month values, ignoring any time portions of timestamp arguments.

• Otherwise, the whole number part of the result is the difference based on the year and month values.
The fractional part of the result is calculated from the remainder based on an assumption that every
month has 31 days. If either argument represents a timestamp, the arguments are effectively processed
as timestamps with maximum precision, and the time portions of these values are also considered
when determining the result.

The result of the function is a DECIMAL(31,15).

The result can be null; if any argument is null, the result is the null value.

Examples 1: The following example calculates the months between two dates:

 SELECT MONTHS_BETWEEN ('2008-01-17','2008-02-17')
 AS MONTHS_BETWEEN
 FROM SYSIBM.SYSDUMMY1;

The results of this statement are similar to the following results:

MONTHS_BETWEEN

-1.00000000000000

Examples 2: The following example calculates the months between two dates:

 SELECT MONTHS_BETWEEN ('2008-02-20','2008-01-17')
 AS MONTHS_BETWEEN
 FROM SYSIBM.SYSDUMMY1;

The results of this statement are similar to the following results:

MONTHS_BETWEEN

1.096774193548387

Example 3: Calculate the number of months that project AD3100 will take. Assume that the start date is
1982-01-01 and the end date is 1983-02-01:

SELECT MONTHS_BETWEEN (PRENDATE, PRSDATE)
 FROM PROJECT
 WHERE PROJNO='AD3100';

The result is 13.000000000000000.

Example 4: The following table illustrates the use of the MONTHS_BETWEEN function in certain
situations:

Chapter 4. Built-in functions 509

Table 79. Additional examples using MONTHS_BETWEEN

Value for expression1 Value for expression2

Value returned
by MONTHS_BETWEEN
(expression1,expression2)

Value returned by ROUND
(MONTHS_BETWEEN
(expression1,expression2)*31,2
)

2005-02-02 2005-01-01 1.032258064516129 32.00

2007-11-01-09.00.00.00000 2007-12-07-14.30.12.12345 -1.200945386592741 -37.23

2007-12-13-09.40.30.00000 2007-11-13-08.40.30.00000 1.0000000000000001 31.001

2007–03–15 2007–02–20 0.8387096774193542 26.002

2008-02-29 2008-02-28-12.00.00 0.016129032258064 0.50

2008-03-29 2008-02-29 1.000000000000000 31.00

2008-03-30 2008-02-29 1.032258064516129 32.00

2008-03-31 2008-02-29 1.0000000000000003 31.003

Notes:

1. The time difference is ignored because the day of the month is the same for both values.
2. The result is not 23 because, even though February has 28 days, the assumption is that all months have 31 days.
3. The result is not 33 because both dates are the last day of their respective month, and so the result is only based on the year and

month portions.

MQREAD scalar function
The MQREAD function returns a message from a specified IBM MQ location without removing the
message from the queue.

MQREAD(

receive-service

, service-policy

)

The schema is DB2MQ.

The MQREAD function returns a message from the IBM MQ location that is specified by receive-service,
using the quality-of-service policy that is defined in service-policy. Performing this operation does not
remove the message from the queue that is associated with receive-service, but instead returns the
message at the beginning of the queue.

receive-service
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service point that is defined in the DB2MQ.MQSERVICE table. A service point is a
logical end-point from which a message is sent or received. A service point definition includes the
name of the IBM MQ queue manager and the name of the queue. See IBM MQ Application Messaging
Interface for more details.

If receive-service is not specified or is the null value, DB2.DEFAULT.POLICY is used.

service-policy
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service policy that is defined in the DB2MQ.MQPOLICY table. A service policy specifies
a set of quality-of-service options that are to be applied to this messaging operation. These options
include message priority and message persistence. See IBM MQ Application Messaging Interface for
more details.

510 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If service-policy is not specified or is the null value, DB2.DEFAULT.POLICY is used.

The result of the function is a varying-length string with a length attribute of 4000. The result can be null.
If no messages are available to be returned, the result is the null value.

The CCSID of the result is the system CCSID that was in effect at the time that the IBM MQ function was
installed into Db2.

Examples
Example 1: Retrieve the message at the beginning of the queue that is specified by the default
service (Db2.DEFAULT.SERVICE), using the default policy (Db2.DEFAULT.POLICY)

 SELECT MQREAD()
 FROM SYSIBM.SYSDUMMY1;

The message at the beginning of the queue specified by the default server and using the default policy
is returned as VARCHAR(4000).

Example 2: Read the message from the beginning of the queue specified by the service MYSERVICE,
using the default policy (Db2.DEFAULT.POLICY)

.

 SELECT MQREAD('MYSERVICE')
 FROM SYSIBM.SYSDUMMY1;

The message at the beginning of the queue specified by MYSERVICE and using Db2.DEFAULT.POLICY
is returned as VARCHAR(4000).

Example 3: Read the message from the beginning of the queue specified by the service MYSERVICE,
using the policy MYPOLICY

 SELECT MQREAD('MYSERVICE','MYPOLICY')
 FROM SYSIBM.SYSDUMMY1;

The message at the beginning of the queue specified by MYSERVICE and using the policy MYPOLICY is
returned as VARCHAR(4000).

MQREADCLOB scalar function
The MQREADCLOB function returns a message from a specified IBM MQ location without removing the
message from the queue.

MQREADCLOB(

receive-service

, service-policy

)

The schema is DB2MQ.

The MQREADCLOB function returns a message from the IBM MQ location that is specified by receive-
service, using the quality-of-service policy that is defined in service-policy. Performing this operation does
not remove the message from the queue that is associated with receive-service, but instead returns the
message at the beginning of the queue.

receive-service
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service point that is defined in the DB2MQ.MQSERVICE table. A service point is a
logical end-point from which a message is sent or received. A service point definition includes the
name of the IBM MQ queue manager and the name of the queue. See IBM MQ Application Messaging
Interface for more details.

Chapter 4. Built-in functions 511

If receive-service is not specified or is the null value, DB2.DEFAULT.POLICY is used.

service-policy
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service policy that is defined in the DB2MQ.MQPOLICY table. A service policy specifies
a set of quality-of-service options that are to be applied to this messaging operation. These options
include message priority and message persistence. See IBM MQ Application Messaging Interface for
more details.

If service-policy is not specified or is the null value, DB2.DEFAULT.POLICY is used.

The result of the function is a CLOB with a length attribute of 1 MB. The result can be null. If no messages
are available to be returned, the result is the null value.

The CCSID of the result is the system CCSID that was in effect at the time that the IBM MQ function was
installed into Db2.

Examples
Example 1: Read the message from the beginning of the queue specified by the default service
(Db2.DEFAULT.SERVICE), using the default policy (Db2.DEFAULT.POLICY)

 SELECT MQREADCLOB()
 FROM SYSIBM.SYSDUMMY1;

The message at the beginning of the queue specified by the default service and using the default
policy is returned as a CLOB.

Example 2: Read the message from the beginning of the queue specified by the service MYSERVICE,
using the default policy (Db2.DEFAULT.POLICY)

 SELECT MQREADCLOB('MYSERVICE')
 FROM SYSIBM.SYSDUMMY1;

The message at the beginning of the queue specified by MYSERVICE and using the default policy is
returned as a CLOB.

Example 3: Read the message from the beginning of the queue specified by the service MYSERVICE,
using the policy MYPOLICY

 SELECT MQREADCLOB('MYSERVICE','MYPOLICY')
 FROM SYSIBM.SYSDUMMY1;

The message at the beginning of the queue specified by MYSERVICE and using the policy MYPOLICY is
returned as a CLOB.

MQRECEIVE scalar function
The MQRECEIVE function returns a message from a specified IBM MQ location and removes the message
from the queue.

MQRECEIVE(

receive-service

, service-policy

, correl-id

)

The schema is DB2MQ.

512 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The MQRECEIVE function returns a message from the IBM MQ location specified by receive-service, using
the quality-of-service policy defined in service-policy. Performing this operation removes the message
from the queue that is associated with receive-service.

receive-service
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service point that is defined in the DB2MQ.MQSERVICE table. A service point is a
logical end-point from which a message is sent or received. A service point definition includes the
name of the IBM MQ queue manager and the name of the queue. See IBM MQ Application Messaging
Interface for more details.

If receive-service is not specified or is the null value, DB2.DEFAULT.POLICY is used.

service-policy
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service policy that is defined in the DB2MQ.MQPOLICY table. A service policy specifies
a set of quality-of-service options that are to be applied to this messaging operation. These options
include message priority and message persistence. See IBM MQ Application Messaging Interface for
more details.

If service-policy is not specified or is the null value, DB2.DEFAULT.POLICY is used.

correl-id
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The expression must have an actual length that is no greater than 24 bytes. The value of
the expression specifies the correlation identifier that is associated with this message. A correlation
identifier is often specified in request-and-reply scenarios to associate requests with replies. Only
those messages with a matching correlation identifier are returned.

A fixed length string with trailing blanks is considered a valid value. However, when the correl-id
is specified on another request such as MQSEND, the correl-id must be specified the same to be
recognized as a match. For example, specifying a value of 'test' for correl-id for this function does not
match a correl-id value of 'test ' (with trailing blanks) specified earlier on an MQSEND request.

If correl-id is not specified, is an empty string, or is the null value, a correlation identifier is not used,
and the message at the beginning of the queue is returned.

The result of the function is a varying-length string of length attribute of 4000. The result can be null. The
result is null if no messages are available to return.

The CCSID of the result is the system CCSID that was in effect at the time that the IBM MQ function was
installed into Db2.

Examples
Example 1: Retrieve the message from beginning of the queue specified by the default service
(Db2.DEFAULT.SERVICE), using the default policy (Db2.DEFAULT.POLICY)

 SELECT MQRECEIVE()
 FROM SYSIBM.SYSDUMMY1;

The message at the beginning of the queue is returned as VARCHAR(4000) and is deleted from the
queue. The queue is specified by the default service and using the default policy.

Example 2: Retrieve the first message from the beginning of the queue specified by the service
MYSERVICE, using the default policy, Db2.DEFAULT.POLICY

 SELECT MQRECEIVE('MYSERVICE')
 FROM SYSIBM.SYSDUMMY1;

Chapter 4. Built-in functions 513

The message at the beginning of the queue is returned as VARCHAR(4000) and is deleted
from the queue. The queue is specified by the service MYSERVICE using the default policy,
Db2.DEFAULT.POLICY.

Example 3: Retrieve the message from the beginning of the queue specified by the service
MYSERVICE, using the policy MYPOLICY

.

 SELECT MQRECEIVE('MYSERVICE','MYPOLICY')
 FROM SYSIBM.SYSDUMMY1;

The message at the beginning of the queue is returned as VARCHAR(4000) and the message is
deleted from the queue. The queue is specified by the service MYSERVICE using the policy MYPOLICY.

Example 4: Retrieve the first message with a correlation identifier that matches '1234' from the
beginning of the queue specified by the service MYSERVICE, using the policy MYPOLICY.

 SELECT MQRECEIVE('MYSERVICE','MYPOLICY','1234')
 FROM SYSIBM.SYSDUMMY1;

The first message with CORRELID of '1234' from the beginning of the queue is returned as
VARCHAR(4000) and is deleted from the queue. The queue is specified by MYSERVICE and using
MYPOLICY.

MQRECEIVECLOB scalar function
The MQRECEIVECLOB function returns a message from a specified IBM MQ location and removes the
message from the queue.

MQRECEIVECLOB(

receive-service

, service-policy

, correl-id

)

The schema is DB2MQ.

The MQRECEIVECLOB function returns a message from the IBM MQ location that is specified by receive-
service, using the quality-of-service policy that is defined in service-policy. Performing this operation
removes the message from the queue that is associated with receive-service.

receive-service
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service point that is defined in the DB2MQ.MQSERVICE table. A service point is a
logical end-point from which a message is sent or received. A service point definition includes the
name of the IBM MQ queue manager and the name of the queue. See IBM MQ Application Messaging
Interface for more details.

If receive-service is not specified or is the null value, DB2.DEFAULT.POLICY is used.

service-policy
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service policy that is defined in the DB2MQ.MQPOLICY table. A service policy specifies
a set of quality-of-service options that are to be applied to this messaging operation. These options
include message priority and message persistence. See IBM MQ Application Messaging Interface for
more details.

If service-policy is not specified or is the null value, DB2.DEFAULT.POLICY is used.

514 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

correl-id
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The expression must have an actual length that is no greater than 24 bytes. The value of
the expression specifies the correlation identifier that is associated with this message. A correlation
identifier is often specified in request-and-reply scenarios to associate requests with replies. Only
those messages with a matching correlation identifier are returned.

A fixed length string with trailing blanks is considered a valid value. However, when the correl-id
is specified on another request such as MQSEND, the correl-id must be specified the same to be
recognized as a match. For example, specifying a value of 'test' for correl-id for this function does not
match a correl-id value of 'test ' (with trailing blanks) specified earlier on an MQSEND request.

If correl-id is not specified, is an empty string, or is the null value, a correlation identifier is not used,
and the message at the beginning of the queue is returned.

The result of the function is a CLOB with a length attribute of 1 MB. The result can be null. If no messages
are available to be returned, the result is the null value.

The CCSID of the result is the system CCSID that was in effect at the time that the IBM MQ function was
installed into Db2.

Examples
Example 1: Retrieve the message from the beginning of the queue specified by the default service
(Db2.DEFAULT.SERVICE), using the default policy (Db2.DEFAULT.POLICY)

 SELECT MQRERECEIVECLOB()
 FROM SYSIBM.SYSDUMMY1;

The message at the beginning of the queue is returned as a CLOB and is deleted from the queue. The
queue is specified by the default service and using the default policy.

Example 2: Retrieve the message from the beginning of the queue specified by the service
MYSERVICE, using the policy (Db2.DEFAULT.POLICY)

 SELECT MQRECEIVECLOB('MYSERVICE')
 FROM SYSIBM.SYSDUMMY1;

The message at the beginning of the queue is returned as a CLOB and is deleted from the queue. The
queue is specified by MYSERVICE and using the default policy.

Example 3: Retrieve the message from the beginning of the queue specified by the service
MYSERVICE, using the policy MYPOLICY

 SELECT MQRECEIVECLOB('MYSERVICE','MYPOLICY')
 FROM SYSIBM.SYSDUMMY1;

The message at the beginning of the queue is returned as a CLOB and is deleted from the queue. The
queue is specified by MYSERVICE and using the policy MYPOLICY.

Example 4: Retrieve the first message from the beginning of the queue with a correlation identifier
that matches '1234' from the queue specified by the service MYSERVICE, using the policy MYPOLICY

 SELECT MQRECEIVECLOB('MYSERVICE','MYPOLICY','1234')
 FROM SYSIBM.SYSDUMMY1;

The first message at the beginning of the queue with a correlation identifier with '1234' is returned
as a CLOB and is deleted from the queue. The queue is specified by MYSERVICE and using the policy
MYPOLICY.

Chapter 4. Built-in functions 515

MQSEND scalar function
The MQSEND function sends data to a specified IBM MQ location.

MQSEND(

send-service ,

service-policy ,

msg-data

, correl-id
1

)

Notes:
1 correl-id cannot be specified unless a send service and a service policy are also specified.

The schema is DB2MQ.

The MQSEND function sends the data that is contained in msg-data to the IBM MQ location that is
specified by send-service, using the quality-of-service policy that is defined in service-policy.

send-service
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service point that is defined in the DB2MQ.MQSERVICE table. A service point is a
logical end-point from which a message is sent or received. A service point definition includes the
name of the IBM MQ queue manager and the name of the queue.

If send-service is not specified or is the null value, Db2.DEFAULT.SERVICE is used.

service-policy
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service policy that is defined in the DB2MQ.MQPOLICY table. A service policy specifies
a set of quality-of-service options that are to be applied to this messaging operation. These options
include message priority and message persistence. See IBM MQ Application Messaging Interface for
more details.

If service-policy is not specified or is the null value, DB2.DEFAULT.POLICY is used.

msg-data
An expression that returns a value that is a built-in character string data type. If the expression is a
CLOB, the value must not be longer than 1 MB. Otherwise, the value must not be longer than 4000
bytes. The value of the expression is the message data that is to be sent through IBM MQ. A null value,
an empty string, and a fixed length string with trailing blanks are all considered valid values.

correl-id
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The expression must have an actual length that is no greater than 24 bytes. The value of
the expression specifies the correlation identifier that is associated with this message. A correlation
identifier is often specified in request-and-reply scenarios to associate requests with replies. correl-id
must not be specified unless send-service and service-policy are also specified.

A fixed length string with trailing blanks is considered a valid value. However, when the correl-id is
specified on another request such as MQRECEIVE, the correl-id must be specified the same to be
recognized as a match. For example, specifying a value of 'test' for correl-id on MQSEND does not
match a correl-id value of 'test ' (with trailing blanks) specified subsequently on an MQRECEIVE
request.

If correl-id is not specified, is an empty string, or is the null value, a correlation identifier is not sent.

The returned value is a varying-length character string with the value '1' if function execution was
successful, or an error message if function execution was unsuccessful.

516 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The CCSID of the result is the system CCSID that was in effect at the time that the IBM MQ function was
installed into Db2.

Notes
The application needs to check the SQLCODE after issuing the MQSEND function. If the SQLCODE is not 0,
the application needs to retrieve and handle the returned error message.

Examples
Example 1: Send the string "Testing msg" to the default service (Db2.DEFAULT.SERVICE), using the
default policy (Db2.DEFAULT.POLICY) and no correlation identifier

 SELECT MQSEND('Testing msg')
 FROM SYSIBM.SYSDUMMY1;

The message is sent to the default service, using the default policy.
Example 2: Send the message 'Testing 345' to the service MYSERVICE, using the policy MYPOLICY,
with no correlation identifier

 SELECT MQSEND('MYSERVICE','MYPOLICY','Testing 345')
 FROM SYSIBM.SYSDUMMY1;

The message 'Testing 345' is sent to the MYSERVICE service, using the policy MYPOLICY.
Example 3: Send the message 'Testing 123' to the service MYSERVICE, using the policy MYPOLICY
and the correlation identifier 'TEST3'

 SELECT MQSEND('MYSERVICE','MYPOLICY','Testing 123','TEST3')
 FROM SYSIBM.SYSDUMMY1;

The message 'Testing 123' is sent to the service MYSERVICE, using the policy MYPOLICY and the
correlation identifier "TEST3".

Example 4: Send the message 'Testing 901' to the service "MYSERVICE", using the default policy
(Db2.DEFAULT.POLICY), and no correlation identifier

 SELECT MQSEND('MYSERVICE','Testing 901')
 FROM SYSIBM.SYSDUMMY1;

The message 'Testing 901' is sent to the service MYSERVICE, using the default policy
(Db2.DEFAULT.POLICY).

MULTIPLY_ALT scalar function
The MULTIPLY_ALT scalar function returns the product of the two arguments. This function is an
alternative to the multiplication operator and is especially useful when the sum of the precisions of the
arguments exceeds 31.

MULTIPLY_ALT( exact-numeric-expression-1 , exact-numeric-expression-2)

The schema is SYSIBM.

Each argument must be an expression that returns the value of one of the following built-in numeric data
types: DECIMAL, BIGINT, INTEGER, or SMALLINT.

The result of the function is a DECIMAL. The precision and scale of the result are determined as follows,
using the symbols p and s to denote the precision and scale of the first argument, and the symbols p' and
s' to denote the precision and scale of the second argument.

• The precision is MIN(31, p+p')
• The scale is:

Chapter 4. Built-in functions 517

– 0 if the scale of both arguments is 0
– MIN(31, s+s') if p+p' is less than or equal to 31
– MAX(MIN(3, s+s'), 31-(p-s+p'-s')) if p+p' is greater than 31.

The result can be null; if any argument is null, the result is the null value.

The MULTIPLY_ALT function is a better choice than the multiplication operator when performing decimal
arithmetic where you want a scale of at least 3 and the sum of the precisions exceeds 31. In these cases,
the internal computation is performed so that overflows are avoided and then assigned to the result type
value using truncation for any loss of scale in the final result. Note that the possibility of overflow of the
final result is still possible when the scale is 3.

The following table compares the result data types from the MULTIPLY_ALT function with the result data
type of the multiplication operator when decimal data is used:

Type of Argument1 Type of Argument2 Result using
MULTIPLY_ALT

Result using
multiplication operator

DECIMAL(31,3) DECIMAL(15,8) DECIMAL(31,3) DECIMAL(31,11)

DECIMAL(26,23) DECIMAL(10,1) DECIMAL(31,19) DECIMAL(31,24)

DECIMAL(18,17) DECIMAL(20,19) DECIMAL(31,29) DECIMAL(31,31)

DECIMAL(16,3) DECIMAL(17,8) DECIMAL(31,9) DECIMAL(31,11)

DECIMAL(26,5) DECIMAL(11,0) DECIMAL(31,3) DECIMAL(31,5)

DECIMAL(21,1) DECIMAL(15,1) DECIMAL(31,2) DECIMAL(31,2)

Example

The following example multiplies two values where the data type of the first argument is DECIMAL(26,3)
and the data type of the second argument is DECIMAL(9,8). The data type of the result is DECIMAL(31,7).

SELECT MULTIPLY_ALT(98765432109876543210987.654,5.43210987)
FROM SYSIBM.SYSDUMMY1

The result is 536504678578875294857887.5277415.

The complete product of these two numbers is 536504678578875294857887.52774154498, but the
last 4 digits are truncated to match the scale of the result data type. Using the multiplication operator with
the same values will cause an arithmetic overflow, since the result data type is DECIMAL(31,11) and the
result value has 24 digits left of the decimal, but the result data type only supports 20 digits.

NEXT_DAY scalar function
The NEXT_DAY function returns a datetime value that represents the first weekday, named by string-
expression, that is later than the date in expression.

NEXT_DAY( expression , string-expression)

The schema is SYSIBM.

If expression is a timestamp or valid string representation of a timestamp, the timestamp value has the
same hours, minutes, seconds, and partial seconds as expression. If expression is a date, or a valid string
representation of a date, then the hours, minutes, seconds, and partial seconds value of the result is 0.

expression
An expression that returns one of the following built-in data types: a date, a timestamp, a character
string, or a graphic string. If expression is a character or graphic string, it must not be a CLOB or
DBCLOB, and its value must be a valid string representation of a date or timestamp with an actual

518 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

length of not greater than 255 bytes. A time zone in a string representation of a timestamp is ignored.
For the valid formats of string representations of dates and timestamps, see “String representations
of datetime values” on page 120.

If expression does not have data type TIMESTAMP WITHOUT TIME ZONE, expression is cast as
follows:

• If expression is a TIMESTAMP WITH TIME ZONE value, expression is cast to TIMESTAMP WITHOUT
TIME ZONE, with the same precision as expression.

• Otherwise, expression is cast to TIMESTAMP(6) WITHOUT TIME ZONE.

string-expression
An expression that returns a built-in character or graphic string data type that is not a LOB. For
portability across the platforms, the value should compare equal to the full name of a day of the week
or should compare equal to the abbreviation of a day of the week. For example:

Day of week Abbreviation

MONDAY MON

TUESDAY TUE

WEDNESDAY WED

THURSDAY THU

FRIDAY FRI

SATURDAY SAT

SUNDAY SUN

The minimum length of the input value is the length of the abbreviation. Leading blanks must not be
specified in string-expression. Trailing blanks are trimmed from string-expression. The resulting value
is folded to uppercase. Any characters other than blank that immediately follow a valid abbreviation
are ignored.

If expression is a timestamp, the result is a TIMESTAMP WITHOUT TIME ZONE value with the same
precision as expression. If expression is DATE, the result is a DATE value. Otherwise, the result is a
TIMESTAMP(6) WITHOUT TIME ZONE value.

Any hours, minutes, seconds, or fractional seconds information that is included in expression is not
changed by the function. If expression is a string that represents a date, the time information in the
resulting timestamp value is all set to zero.

The result can be null; if any argument is null, the result is the null value.

The result CCSID is the appropriate CCSID of the argument encoding scheme and the result subtype is the
appropriate subtype of the CCSID.

Example 1: Set the host variable NEXTDAY with a timestamp for the date of the Tuesday that follows April
24, 2007.

 SET :NEXTDAY = NEXT_DAY(TIMESTAMP '2007-04-24-00.00.00.000000', 'TUESDAY');

The host variable NEXTDAY is set with the value of '2007-05-01-00.00.00.000000', since April, 24, 200 is
itself a Tuesday'.

Example 2: Set the host variable vNEXTDAY with the date of the first Monday in May, 2007. Assume the
host variable vDAYOFWEEK = 'MON':

 SET :vNEXTDAY = NEXT_DAY(LAST_DAY(CURRENT_DATE),:vDAYOFWEEK);

The host variable vNEXTDAY is set with the value of '2007-05-07', assuming that the value of the
CURRENT_DATE special register is '2007-04-24'.

Chapter 4. Built-in functions 519

NEXT_MONTH scalar function
The NEXT_MONTH function returns the first day of the next month after the specified date.

FL 507

Passthrough-only expression: This function is passthrough-only and cannot run on Db2 for z/OS without
acceleration. For information about invoking this function, see Accelerating queries with passthrough-only
expressions.

NEXT_MONTH (datetime-expression)

The schema is SYSIBM.

datetime-expression
An expression that specifies a date after which the first day of the next month is to be returned. The
expression must return a value that is a DATE, TIMESTAMP WITHOUT TIME ZONE, CHAR, VARCHAR,
GRAPHIC, or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported
using implicit casting. If datetime-expression is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data
type, it must be a valid string accepted by the TIMESTAMP scalar function and does not contain a time
zone.

The result of the function is DATE. If the argument can be null, the result can be null. If the argument is
null, the result is the null value.

Examples
• The following example returns the date value of the first day of the next month after the date specified

by the input:

values next_month('2007-02-18')
 Result: 2007-03-01

NORMALIZE_DECFLOAT scalar function
The NORMALIZE_DECFLOAT function returns a DECFLOAT value that is the result of the argument, set
to its simplest form. That is, a non-zero number that has any trailing zeros in the coefficient has those
zeros removed by dividing the coefficient by the appropriate power of ten and adjusting the exponent
accordingly. A zero has its exponent set to 0.

NORMALIZE_DECFLOAT( decfloat-expression)

The schema is SYSIBM.

decfloat-expression
The argument must be an expression that returns a DECFLOAT value.

decfloat-expression can also be a character string or graphic string data type. The string input is
implicitly cast to a numeric value of DECFLOAT(34).

If the argument is a special decimal floating point value then the general rules for arithmetic operations
apply. For more information, see “General arithmetic operation rules for DECFLOAT” on page 254

The result of the function is a DECFLOAT(16) value if the data type of decfloat-expression is
DECFLOAT(16). Otherwise, the result of the function is a DECFLOAT(34) value.

The result can be null; if the argument is null, the result is the null value.

520 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only

Examples: The following examples show the result of using the NORMALIZE_DECFLOAT function on
various DECFLOAT values:

 NORMALIZE_DECFLOAT(DECFLOAT(2.1)) = 2.1
 NORMALIZE_DECFLOAT(DECFLOAT(-2.0)) = -2
 NORMALIZE_DECFLOAT(DECFLOAT(1.200)) = 1.2
 NORMALIZE_DECFLOAT(DECFLOAT(-120)) = -1.2E+2
 NORMALIZE_DECFLOAT(DECFLOAT(120.00)) = 1.2E+2
 NORMALIZE_DECFLOAT(DECFLOAT(0.00)) = 0
 NORMALIZE_DECFLOAT(-NAN) = -NAN
 NORMALIZE_DECFLOAT(-INFINITY) = -INFINITY

NORMALIZE_STRING scalar function
The NORMALIZE_STRING function takes a Unicode string argument and returns a normalized string that
can be used for comparison.

The NORMALIZE_STRING function can convert two strings that look the same (such as Å, which can be
encoded in UTF-16 as X'00C5' and as X'0041030a') but might not be encoded using the same Unicode
code point, to a normalized form that can be compared.

NORMALIZE_STRING( unicode-string ,

NFC

NFD

NFKC

NFKD

, integer

)

The schema is SYSIBM.

unicode_string
An expression that returns a value of a built-in character string or graphic string data type that is
either Unicode UTF-8 or Unicode UTF-16, and is not a LOB. The CAST specification can be used to
convert ASCII or EBCDIC data to Unicode for use with this function.

NFC, NFD, NFKC, or NFKD
Specifies the normalized form:
NFC

Canonical Decomposition followed by Canonical Composition
NFD

Canonical Decomposition
NFKC

Compatibility Decomposition followed by Canonical Composition
NFKD

Compatibility Decomposition
integer

The length attribute, in bytes if the string is a character string, or in double byte code points if the
string is a graphic string, for the resulting variable length string. The value must be an integer in the
range 1–32704 if the source string is character, or 16352 if the source string is graphic.

The result of the function is a varying length string with a data type that depends on the data type of
unicode-string:

• VARCHAR if unicode-string is CHAR or VARCHAR
• VARGRAPHIC if unicode-string is GRAPHIC or VARGRAPHIC

The CCSID of the result is the same as the CCSID of unicode-string.

The length attribute of the result depends on whether integer is specified. If integer is specified, the length
attribute of the result is integer bytes or double byte code points. If integer is not specified, the length

Chapter 4. Built-in functions 521

attribute of the result is MIN(3*n,32704) for character strings, or MIN(3*n,16352) for graphic strings,
where n is the length attribute of the source.

The result can be null; if the first argument is null, the result is the null value.

Example 1: In the following example, "ábc" is normalized to normalization form NFC:

 SET :hv1 = NORMALIZE_STRING('ábc',NFC) -- x'0061030100620063'

hv1 is set to 'ábc' -- X'00E100620063'. Using normalization form NFC, the two code-point sequence
X'00610301', which represents the character 'á', is normalized to X'00E1' which is also the pre-composed
equivalent of X'00610301'.

Example 2: In the following example, "ábc" is normalized to normalization form NFD.

 SET :hv1 = NORMALIZE_STRING('ábc',NFD) -- x'00E100620063'

hv1 is set to 'ábc' -- X'0061030100620063'. Using normalization form NFD, the code point X'00E1' is
decomposed into the two code-point sequence X'00610301', which consists of the Latin lower case letter
A and the combining acute accent character.

NULLIF scalar function
The NULLIF function returns the null value if the two arguments are equal; otherwise, it returns the value
of the first argument.

NULLIF( expression , expression)

The schema is SYSIBM.

The two arguments must be compatible. The arguments can be of either a built-in or user-defined distinct
type. Neither argument can be a BLOB, CLOB, DBCLOB, or XML. Character-string and graphic-string
arguments are compatible with datetime values. For more information on compatibility, refer to the
compatibility matrix in Table 30 on page 144.

If there are any mixed character string or graphic string and numeric arguments, the string value is
implicitly cast to a DECFLOAT(34) value.

The attributes of the result are the attributes of the first argument.

Notes
Syntax alternatives:

The result of using NULLIF(e1,e2) is the same as using the CASE expression:

 CASE WHEN e1=e2 THEN NULL ELSE e1 END

When e1=e2 evaluates to unknown because one or both arguments is null, CASE expressions
consider the evaluation not true. In this case, NULLIF returns the value of the first argument.

Examples
Example 1:

Assume that host variables PROFIT, CASH, and LOSSES have decimal data types with the values of
4500.00, 500.00, and 5000.00 respectively. The following function returns a null value:

 NULLIF (:PROFIT + :CASH , :LOSSES)

522 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

NVL scalar function
The NVL function returns the first argument that is not null.

NVL (expression , expression)

The schema is SYSIBM.

The NVL function is identical to the COALESCE function. For more information, see “COALESCE scalar
function” on page 417.

OVERLAY scalar function
The OVERLAY function returns a string that is composed of one argument that is inserted into another
argument at the same position where some number of bytes have been deleted.

OVERLAY (source-string , insert-string , start

, length

,

CODEUNITS16

CODEUNITS32

OCTETS

)

The schema is SYSIBM.

The OVERLAY function returns a string where a substring of length, beginning at start has been deleted
from source-string, and where insert-string has been inserted into source-string beginning at start. If the
value of start plus length is greater than the length of source-string, the substring that is deleted is from
start to the end of source-string.

If the length of the result string exceeds the maximum for the return type, an error is returned.

source-string
An expression that specifies the source string. The expression must return a value that is a built-in
character string, graphic string, or binary string data type that is not a LOB.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

The actual length of the string must be greater than or equal to 1 byte and less than or equal to 32704
bytes.

insert-string
An expression that specifies the string that is inserted into source-string, starting at the position that
is identified by start. insert-string must return a value that is a built-in character string, graphic string,
or binary string data type that is not a LOB. source-string and insert-string must have compatible data
types.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

start
An expression that returns an integer. The integer specifies the starting point within the source string
where the deletion of bytes and the insertion of another string is to begin. The value of the integer
must be in the range of 1 to the length of source-string plus one. If OCTETS is specified and the result
is graphic data, the value must be an odd value between 1 and twice the length of source-string plus
one.

Chapter 4. Built-in functions 523

The argument can also be a character string or graphic string data type. The string input is implicitly
cast to a numeric value of DECFLOAT(34) which is then assigned to an INTEGER value.

length
An expression that specifies the length of the string to replace in source-string starting at start. length
must be an expression that returns a value of the built-in INTEGER data type. length is expressed
in the string unit specified, and the value must be in the range of 0 to the length of source-string. If
OCTETS is specified and the result is graphic data, length must be even and be between 0 and twice
the length of source-string. Not specifying length is equivalent to specifying a value of 1, except when
OCTETS is specified and the result is graphic data, in which case, not specifying length is equivalent to
specifying a value of 2.

The argument can also be a character string or graphic string data type. The string input is implicitly
cast to a numeric value of DECFLOAT(34) which is then assigned to an INTEGER value.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the units that are used to express start and length in the result. If source-string is a
character string that is defined as bit data, CODEUNITS16 and CODEUNITS32 cannot be specified.
If source-string is a graphic string, OCTETS cannot be specified. If source-string is a binary string,
CODEUNITS16, CODEUNITS32, and OCTETS cannot be specified.

If a string unit is not explicitly specified, the data type of the result determines the unit that is used. If
the result is a graphic string, a string unit is two bytes. For ASCII and EBCDIC data, this corresponds
to a double byte character. For Unicode, this corresponds to a UTF-16 code point. Otherwise, a string
unit is a byte.

CODEUNITS16
Specifies that start and length are expressed in terms of 16-bit UTF-16 code units.

CODEUNITS32
Specifies that start and length are expressed in terms of 32-bit UTF-32 code units.

OCTETS
Specifies that start and length are expressed in terms of bytes.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see “String unit
specifications” on page 106. length must be an even number if source-string is graphic data and
OCTETS is specified

If source-string and insert-string have different CCSID sets, insert-string (the string to be inserted) is
converted to the CCSID of source-string (the source string).

The encoding scheme of the result is the same as source-string. The data type of the result of the function
depends on the data type of source-string and insert-string:

• VARCHAR if source-string is a character string. The CCSID of the result depends on the arguments:

– If either source-string or insert-string is character bit data, the result is bit data.
– If both source-string and insert-string are SBCS:

- If both source-string and insert-string are SBCS Unicode data, the CCSID of the result is the CCSID
for SBCS Unicode data.

- If source-string is SBCS Unicode data and insert-string is not SBCS Unicode data, the CCSID of the
result is the mixed CCSID for Unicode data.

- Otherwise, the CCSID of the result is the same as the CCSID of source-string.
– Otherwise, the CCSID of the result is the mixed CCSID that corresponds to the CCSID of source-string.

However, if the input is EBCDIC or ASCII and there is no corresponding system CCSID for mixed, the
CCSID of the result is the CCSID of source-string.

• VARGRAPHIC if source-string is a graphic. The CCSID of the result is the same as the CCSID of source-
string.

• VARBINARY if source-string and insert-string are both binary strings.

The length attribute of the result depends on the arguments:

524 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• If start and length are constants, the length attribute of the result is:

 L1 - MIN((L1 - V2 + 1), V3) + L4

where:

L1 is the length attribute of source-string
V2 is the value of start
V3 is the value of length
L4 is the length attribute of insert-string

• Otherwise, the length attribute of the result is the length attribute of source-string plus the length
attribute of insert-string. In this case, the length attribute of source-string plus the length attribute of
insert-string must not exceed 32704 for a VARCHAR result or 16352 for a VARGRAPHIC result.

If CODEUNITS16 or CODEUNITS32 is specified, the insert operation is performed on a Unicode version of
the data. If needed, the data is converted to an intermediate form in order to evaluate the function. If an
intermediate form is used, the actual length of the result depends on the original data (source-string and
insert-string), and the representation of that data in Unicode. See “Determining the length attribute of the
final result” on page 108 for more information on how to calculate the length attribute of the result string.

If CODEUNITS16 or CODEUNITS32 are not specified, the actual length of the result is:

A1 - MIN((A1 - V2 + 1), V3) + A4

where:

A1 is the actual length of source-string
V2 is the value of start
V3 is the value of length
A4 is the actual length of insert-string

If the actual length of the result string exceeds the maximum for the return data type, an error occurs.

The result can be null; if any argument is null, the result is the null value.

Notes
Syntax alternatives:

The OVERLAY function is similar to the INSERT function, except that the length argument is optional.
For more information, see “INSERT scalar function” on page 480.

Examples
Example 1:

The following example shows how the string 'INSERTING' can be changed into other strings. The use
of the CHAR function limits the length of the resulting string to 10 bytes.

 SELECT CHAR(OVERLAY('INSERTING','IS',4,2,OCTETS),10),
 CHAR(OVERLAY('INSERTING','IS',4,0,OCTETS),10),
 CHAR(OVERLAY('INSERTING','',4,2,OCTETS),10)
 FROM SYSIBM.SYSDUMMY1;

This example returns 'INSISTING ', 'INSISERTIN', and 'INSTING '
Example 2:

Use the OVERLAY function to insert the character 'C' into the Unicode string '&N~AB', where '&' is the
character for the musical symbol, G CLEF, and '~' is the character for combining tilde. The following
table shows the Unicode string in different Unicode encoding forms:

Unicode
format & N ~ A B

UTF-8 X'F09D849E' X'4E' X'CC83' X'41' X'42'

Chapter 4. Built-in functions 525

Unicode
format & N ~ A B

UTF-16 X'D834DD1E' X'004E' X'0303' X'0041' X'0042'

Assume the host variable UTF8_VAR contains the UTF-8 representation of '&N~AB', and UTF16_VAR
contains the UTF-16 representation of '&N~AB'. Then the following SELECT statement is run:

 SELECT OVERLAY (:UTF8_VAR, 'C', 1, CODEUNITS16),
 OVERLAY (:UTF8_VAR, 'C', 1, CODEUNITS32),
 OVERLAY (:UTF8_VAR, 'C', 1, OCTETS)
 FROM SYSIBM.SYSDUMMY1

This statement returns the following values:

 C N~AB
 CN~AB
 C?N~AB -- ? is the invalid UTF-8 sequence X'9D849E'

Assume that the previous SELECT statement was not run, but the following SELECT statement is run:

 SELECT OVERLAY (:UTF8_VAR, 'C', 5, CODEUNITS16),
 OVERLAY (:UTF8_VAR, 'C', 5, CODEUNITS32),
 OVERLAY (:UTF8_VAR, 'C', 5, OCTETS)
 FROM SYSIBM.SYSDUMMY1;

This statement returns the values:

 &N~CB
 &N~AC
 &C~AB

Assume that the previous SELECT statement was not run, but the following SELECT statement is run:

 SELECT OVERLAY (:UTF16_VAR, 'C', 1, CODEUNITS16),
 OVERLAY (:UTF16_VAR, 'C', 1, CODEUNITS32)
 FROM SYSIBM.SYSDUMMY1;

This statement returns the values:

 C?N~AB
 CN~AB

Assume that the previous SELECT statement was not run, but the following SELECT statement is run:

 SELECT OVERLAY (:UTF16_VAR, 'C', 5, CODEUNITS16),
 OVERLAY (:UTF16_VAR, 'C', 5, CODEUNITS32),
 FROM SYSIBM.SYSDUMMY1;

This statement returns the values:

 &N~CB
 &N~AC

PACK scalar function
The PACK function returns a binary string value that contains a data type array and a packed
representation of each non-null expression argument.

PACK (CCSID 1208

CCSID DEFAULT

,

,

expression)

526 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The schema is SYSIBM.

CCSID 1208
Specifies that CCSID 1208 is used to encode character string values.

CCSID DEFAULT
Specifies that character strings are to be packed in their original encoding, as-is, without CCSID
conversion.

expression
An expression that returns a value to be encoded in the result string. The expression must be a built-in
data type that is not DECFLOAT, GRAPHIC, VARGRAPHIC, ROWID, a LOB, XML, or a character string
defined as FOR BIT DATA.

The result of the PACK function is a binary string that is constructed from the following items:

• A flag byte that is reserved for future use
• A 2-byte integer value that indicates the number of arguments encoded in the resulting string
• The data type array that contains an element with data type information for each of the encoded

arguments
• The encoded values for the expression arguments in the order as specified in the function invocation.

The resulting binary string is formatted as follows:

2-byte length Flag byte Number of items Data type array
Encoded data

values

VARBINARY length VARBINARY data

The data type array includes an element for each expression argument in the same order as specified
in the function invocation. Each array element contains a 2-byte SQLTYPE value that indicates the data
type of the corresponding expression. When the SQLTYPE value is an odd number, the corresponding
expression represents a null value and the value is not encoded in the resulting string. When the SQLTYPE
value is an even number, the resulting string contains an encoded representation of the value depending
on the data type. The following table describes the data types:

Table 80. Data types for the expression of the PACK function

Data type of
expression Description of the encoded representation of the value in the resulting string

SMALLINT,
INTEGER, or
BIGINT

The value of expression as a 16-bit signed binary integer, 32-bit signed binary
integer, or 64-bit signed binary integer depending on the data type

decimal(p,s)1 A sequence of 1-byte precision p, 1-byte scale s, and (p+2)/2 bytes of the signed
packed-decimal number

real2 or double3 The value of expression as a 64-bit IEEE floating-point format

CHAR or VARCHAR A sequence of the 2-byte CCSID of the string encoding, followed by the 2-byte
length of the string and then the argument data in the specified CCSID encoding

BINARY or
VARBINARY

A sequence of: 2-byte length of the string, followed by the argument data

DATE A 4-byte unsigned packed-decimal number representation of the date in the form
of YYYYMMDD

TIME A 3-byte unsigned packed-decimal number representation of the time in the form
of HHMMSS

Chapter 4. Built-in functions 527

Table 80. Data types for the expression of the PACK function (continued)

Data type of
expression Description of the encoded representation of the value in the resulting string

TIMESTAMP(p)
WITHOUT TIME
ZONE

A sequence of a 2-byte unsigned binary integer value of the precision p, followed
by 7+ (p+1)/2 bytes of an unsigned packed-decimal number representation of the
timestamp in the form of YYYYMMDDHHMMSSNN, where NN is zero to six bytes of
the fractional seconds, depending on the precision p

TIMESTAMP(p)
WITH TIME ZONE

A sequence of a 2-byte unsigned binary integer value of the precision p, followed
by 7+ (p+1)/2 bytes of an unsigned packed-decimal number representation of the
timestamp in the form of YYYYMMDDHHMMSSNN, where NN is zero to six bytes of
the fractional seconds, depending on the precision p, and then followed by 2 bytes
of an unsigned packed-decimal number representation of the time zone (with high
order bit set for negative time zone value)

Note: The data types in lower case are defined as follows:

1. decimal = DECIMAL(p,s) or NUMERIC(p,s)
2. real = REAL or FLOAT(n) where n is the specification for a single precision floating point
3. double = DOUBLE, DOUBLE PRECISION, FLOAT or FLOAT(n) where n is the specification for a double

precision floating point

The synonyms for the data types, in either long or short form, are considered the same as those that are
listed.

All numeric data is represented in big endian format.

The result of the function is VARBINARY. The length attribute of the result is MIN (32704, the length of
the header + length of data type array + SUM(maximum lengths of encoded expression values)). The
result cannot be null.

Example 1: The following statement shows that the VARCHAR, DATE, and DOUBLE values are packed into
a binary string, and the string is then returned to the application:

 SELECT PACK(CCSID 1208, 'Alina', DATE'1977-08-01', DOUBLE(0.5))
 FROM SYSIBM.SYSDUMMYU;

The statement returns a VARBINARY string with the following content (The result is displayed in
hexadecimal format and includes space separators for readability. The actual result is not in hexadecimal
format and does not include any space separators):

 00 0003 01C4 0180 01E0 04B80005416C696E61 19770801 3FE0000000000000

The character string 'Alina' is in UTF-8 (CCSID 1208) format regardless of the string's original encoding
because of the CCSID 1208 specification in the PACK invocation.

The resulting string is VARBINARY(30). The length attribute of 30 is determined by the following
elements:

1 (flag byte)
+2 (size of number of items)
+2*3 (2-byte data type times number of items)
+2 (CCSID) + 2 (length) + 5 (VARCHAR(5) data length)
+4 (DATE data length)
+8 (DOUBLE length)

The actual length of the result is also 30.

528 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 2: The following statement shows that when NULL values are packed into a binary string, they do
not occupy any space in the encoded values portion of the result:

SELECT PACK(CCSID DEFAULT, '', CAST(NULL AS TIME),
 CAST('Bridget' AS VARCHAR(20) CCSID EBCDIC))
 FROM SYSIBM.SYSDUMMYU;

The statement returns a VARBINARY string with the following content. (The result is displayed in
hexadecimal format and includes space separators for readability. The actual result is not in hexadecimal
format and does not include any space separators.)

00 0003 01C4 0185 01C4 04B80000 00250007C2D9C9C4C7C5E3

The character string '' (empty string) is packed in its original CCSID 1208 format, and 'Bridget' is packed in
its original CCSID 37 format, because of the CCSID DEFAULT specification in the PACK invocation.

The resulting string is VARBINARY(40). The length attribute of 40 is determined by the following
elements:

1 (flag byte)
+2 (size of number of items)
+2*3 (2-byte data type times number of items)
+2 (CCSID) + 2 (length) + 0 (empty string data length)
+3 (TIME data length)
+2 (CCSID) + 2 (length) + 20 (VARCHAR(20) max length)

The actual length of the resulting string is 24, which is determined by the following elements

1 (flag byte)
+2 (size of number of items)
+2*3 (2-byte data type times number of items)
+2 (CCSID) + 2 (length) + 0 (empty string data length)
+0 (NULL)
+2 (CCSID) + 2 (length) + 7 (VARCHAR(20) actual length)

Related reference
SQLTYPE and SQLLEN
The contents of the SQLTYPE and SQLLEN fields of the SQLDA depends on the SQL statement that is
returning the value.
UNPACK row function
The UNPACK function returns a row of values that are derived from unpacking the input binary string. It is
used to unpack a string that was encoded according to the PACK function.

POSITION scalar function
The POSITION function returns the position of the first occurrence of an argument within another
argument, where the position is expressed in terms of the string units that are specified.

POSITION (search-string , source-string , CODEUNITS16

CODEUNITS32

OCTETS

)

The schema is SYSIBM.

If search-string is not found and neither argument is null, the result is 0. If search-string is found, the
result is a number from 1 to the actual length of source-string, expressed in the units that are explicitly
specified.

Chapter 4. Built-in functions 529

search-string
An expression that specifies the string for which to search. search-string must return a value that is
any built-in string data type with an actual length that is no greater than 4000 bytes.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

The expression can be specified by any of the following items:

• A constant
• A special register
• A variable
• A scalar function whose arguments are any of the above (although nested function invocations

cannot be used)
• An array element specification
• An expression that concatenates (using CONCAT or ||) any of the above
• A CAST specification whose arguments are any of the above
• A column name

These rules are similar to those that are described for pattern-expression for the LIKE predicate.
source-string

An expression that specifies the source string in which the search is to take place. source-string must
return a value that is any built-in string data type.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

The expression can be specified by any of the following items:

• A constant
• A special register
• A variable
• A scalar function whose arguments are any of the above (though nested function invocations cannot

be used)
• A column name
• An array element specification
• A CAST specification whose arguments are any of the above
• An expression that concatenates (using CONCAT or ||) any of the above

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit that is used to express the result. If source-string is a character string that is
defined as bit data, CODEUNITS16, or CODEUNITS32 cannot be specified. If source-string is a graphic
string, OCTETS cannot be specified.
CODEUNITS16

Specifies that the result is expressed in terms of 16-bit UTF-16 code units.
CODEUNITS32

Specifies that the result is expressed in terms of 32-bit UTF-32 code units.
OCTETS

Specifies that the result is expressed in terms of bytes.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see “String unit
specifications” on page 106.

The first and second arguments must have compatible string types. For more information on
compatibility, see “Conversion rules for operations that combine strings”.

530 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If the search string and source string have different CCSID sets, then the search-string is converted to the
CCSID set of the source string. If either CODEUNITS16 or CODEUNITS32 is specified, the function might
be evaluated on a temporary copy of the data in Unicode.

The strings can contain mixed data. If OCTETS is specified:

• For ASCII data, if the search string or source string contains mixed data, the search string is found only
if the same combination of single-byte and double-byte characters are found in the source string in
exactly the same positions.

• For EBCDIC data, if the search string or source string contains mixed data, the search string is found
only if any shift-in or shift-out characters are found in the source string in exactly the same positions,
ignoring any redundant shift characters.

• For UTF-8 data, if the search string or source string contains mixed data, the search string is found
only if the same combination of single-byte and multi-byte characters are found in the source string in
exactly the same position.

The result of the function is a large integer. The POSITION function accepts mixed data strings.

The result can be null; if any argument is null, the result is the null value.

When the POSITION function is invoked with OCTETS, the function operates on a strict byte-count basis
without regard to single-byte or double-byte characters.

If the CCSID of the search string is different than the CCSID of the source string, it is converted to the
CCSID of the source string.

The value of the result is determined by applying these rules in the order in which they appear:

• If search-string has a length of zero, the result is 1.
• If source-string has a length of zero, the result is 0.
• If the value of search-string is equal to an identical length of substring of contiguous positions within

the value of source-string, the result is the starting position of the first such substring within the source
string value.

• Otherwise, the result is 0. This includes the case where search-string is longer than source-string.

Examples
Example1:

Select the RECEIVED column, the SUBJECT column, and the starting position of the string 'GOOD
BEER' within the NOTE_TEXT column for all rows in the IN_TRAY table that contain that string.

 SELECT RECEIVED, SUBJECT, POSITION('GOOD BEER', NOTE_TEXT, OCTETS)
 FROM IN_TRAY
 WHERE POSITION('GOOD BEER', NOTE_TEXT, OCTETS) <> 0;

Example 2:

Find the position of the character 'ß' in the string 'Jürgen lives on Hegelstraße', and set the host
variable LOCATION with the position, as measured in CODEUNITS32 units, within the string.

SET :LOCATION = POSITION('ß','Jürgen lives on Hegelstraße',CODEUNITS32);

The value of host variable LOCATION is set to 27.

Example 3:

Find the position of the character 'ß' in the string 'Jürgen lives on Hegelstraße', and set the host
variable LOCATION with the position, as measured in OCTETS, within the string.

SET :LOCATION = POSITION('ß','Jürgen lives on Hegelstraße',OCTETS);

The value of host variable LOCATION is set to 28.

Chapter 4. Built-in functions 531

Related reference
“LOCATE scalar function” on page 490
The LOCATE function returns the position at which the first occurrence of an argument starts within
another argument.

POSSTR or STRPOS scalar function
The POSSTR function returns the position of the first occurrence of an argument within another argument.

POSSTR( source-string , search-string)

The schema is SYSIBM.

If search-string is not found and neither argument is null, the result is 0. If search-string is found, the
result is a number from 1 to the actual length of source-string.

source-string
An expression that specifies the source string in which the search is to take place. source-string must
return a value that is a built-in character string data type, graphic string data type, or binary string data
type.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

search-string
An expression that specifies the string for which to search. search-string must return a value that is a
built-in character string data type, graphic string data type, or binary string data type with an actual
length that is no greater than 4000 bytes.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

The first and second arguments must have compatible string types. For more information on
compatibility, see “Conversion rules for comparisons” on page 159.

If the search-string and source-string have different CCSID sets, then the search-string is converted to the
CCSID set of the source-string.

Both search-string and source-string have zero or more contiguous positions. For character strings and
binary strings, a position is a byte. For graphic strings, a position is a DBCS character. Graphic Unicode
data is treated as UTF-16 data; a UTF-16 supplementary character takes two DBCS characters to
represent and as such is counted as two DBCS characters.

The strings can contain mixed data.

• For ASCII data, if search-string or source-string contains mixed data, search-string is found only if the
same combination of single-byte and double-byte characters are found in source-string in exactly the
same positions.

• For EBCDIC data, if search-string or source-string contains mixed data, search-string is found only if
any shift-in or shift-out characters are found in source-string in exactly the same positions, ignoring any
redundant shift characters.

• For UTF-8 data, if search-string or source-string contains mixed data, search-string is found only if the
same combination of single-byte and multi-byte characters are found in source-string in exactly the
same position.

• If none of the above conditions are met, the result is 0.

The result of the function is a large integer. The value of the result is determined by applying these rules in
the order in which they appear:

• If the length of search-stringis zero, the result is 1.

532 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• If the length of source-string is zero, the result is 0.
• If the value of search-string is equal to an identical length substring of contiguous positions from the

value of source-string, the result is the starting position of the first such substring within the value of
source-string.

The result can be null; if any argument is null, the result is the null value.

Notes
Syntax alternatives:

FL 506 STRPOS is a synonym for POSSTR.

POSSTR operates on a strict byte-count basis without regard to single-byte or double-byte characters.
It is recommended that if either the search-string or source-string contains mixed data, POSITION
should be used instead of POSSTR. The POSITION function operates on a character basis. In an
EBCDIC encoding scheme, any shift-in and shift-out characters are not required to be in exactly
the same position and their only significance is to indicate which characters are SBCS and which
characters are DBCS.

Examples

Example: Select the RECEIVED column, the SUBJECT column, and the starting position of the string
'GOOD BEER' within the NOTE_TEXT column for all rows in the IN_TRAY table that contain that string.

 SELECT RECEIVED, SUBJECT, POSSTR(NOTE_TEXT, 'GOOD BEER')
 FROM IN_TRAY
 WHERE POSSTR(NOTE_TEXT, 'GOOD BEER') <> 0;

Related reference
“LOCATE scalar function” on page 490
The LOCATE function returns the position at which the first occurrence of an argument starts within
another argument.
“LOCATE_IN_STRING scalar function” on page 493
The LOCATE_IN_STRING function returns the position at which an argument starts within a specified
string.
“POSITION scalar function” on page 529
The POSITION function returns the position of the first occurrence of an argument within another
argument, where the position is expressed in terms of the string units that are specified.

POWER or POW scalar function
The POWER function returns the value of the first argument to the power of the second argument.

FL 506

POWER

POW

( numeric-expression-1 , numeric-expression-2)

The schema is SYSIBM.

Each argument must be an expression that returns the value of any built-in numeric data type. If either
argument includes a DECIMAL or REAL data type, but not a DECFLOAT data type, the arguments are
converted to a double precision floating-point number for processing by the function. If either argument
includes a DECFLOAT data type, the arguments are converted to DECFLOAT for processing by the function.

The result of the function depends on the data type of the arguments:

• If both arguments are SMALLINT or INTEGER, the result is INTEGER.
• If either argument is a DECFLOAT, the data type of the result is DECFLOAT(34).

Chapter 4. Built-in functions 533

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html

If either argument is a DECFLOAT and one of the following statements is true, the result is NaN and an
invalid operation condition:

– both arguments are zero
– the second argument has a non-zero fractional part
– the second argument has more than 9 digits
– the second argument is Infinite

• Otherwise, the result is DOUBLE.

The result can be null; if any argument is null, the result is the null value.

Examples
Example 1

Assume that host variable HPOWER is INTEGER with a value of 3. The following statement returns the
value 8.

 SELECT POWER(2,:HPOWER)
 FROM SYSIBM.SYSDUMMY1;

Example 2
The following statement returns the value 1.

 SELECT POWER(0,0)
 FROM SYSIBM.SYSDUMMY1;

QUANTIZE scalar function
The QUANTIZE function returns a DECFLOAT value that is equal in value (except for any rounding) and
sign to the first argument and that has an exponent that is set to equal the exponent of the second
argument.

QUANTIZE( expression-1 , expression-2)

The schema is SYSIBM.

The number of digits that is returned (16 or 34) is the same as the number of digits in expression-1.
expression-1

The argument must be an expression that returns a value of any built-in numeric data type. If the
argument is not a DECFLOAT value, it is converted to DECFLOAT(34) for processing.

The argument can also be a character string or graphic string data type. The string input is implicitly
cast to a numeric value of DECFLOAT(34).

expression-2
The argument must be an expression that returns a value of any built-in numeric data type. If the
argument is not a DECFLOAT value, it is converted to DECFLOAT(34) for processing. expression-2 is an
expression that is used as an example pattern that will be used to rescale expression-1. The sign and
coefficient of the second argument are ignored.

The argument can also be a character string or graphic string data type. The string input is implicitly
cast to a numeric value of DECFLOAT(34).

If one argument (after conversion) is DECFLOAT(16) and the other is DECFLOAT(34), the DECFLOAT(16)
argument is converted to DECFLOAT(34) before the function is processed.

The coefficient of the result is derived from that of expression-1. It is rounded, if necessary (if the
exponent is being increased), multiplied by a power of ten (if the exponent is being decreased), or remains
unchanged (if the exponent is already equal to that of expression-2).

534 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

For static SQL statements other than CREATE VIEW, the ROUNDING bind option or the native SQL
procedure option determines the rounding mode.

For dynamic SQL statements (and static CREATE VIEW statements), the special register CURRENT
DECFLOAT ROUNDING MODE determines the rounding mode.

Unlike other arithmetic operations on the DECFLOAT data type, if the length of the coefficient after the
quantize operation is greater than the precision specified by expression-2, a warning occurs. This ensures
that, unless there is an error condition, the exponent of the result of QUANTIZE is always equal to that of
expression-2. Furthermore:

• If either argument is NaN, NaN is returned
• If either argument is sNaN, NaN is returned and an exception occurs
• If both arguments are infinity (positive or negative), infinity (positive or negative) is returned.
• If one argument is infinity (positive or negative) and the other argument is not infinity (positive or

negative), NaN is returned and an exception occurs

The result of the function is a DECFLOAT(16) value if both arguments are DECFLOAT(16). Otherwise, the
result of the function is a DECFLOAT(34) value.

The result can be null; if any argument is null, the result is the null value.

Examples: The following examples illustrate the value that is returned for the QUANTIZE function given
the input DECFLOAT values:

 QUANTIZE(2.17, DECFLOAT(0.001)) = 2.170
 QUANTIZE(2.17, DECFLOAT(0.01)) = 2.17
 QUANTIZE(2.17, DECFLOAT(0.1)) = 2.2
 QUANTIZE(2.17, DECFLOAT('1E+0')) = 2
 QUANTIZE(2.17, DECFLOAT('1E+1')) = 0E+1
 QUANTIZE(2, DECFLOAT(INFINITY)) = NAN –- exception
 QUANTIZE(-0.1, DECFLOAT(1)) = 0
 QUANTIZE(0, DECFLOAT('1E+5')) = 0E+5
 QUANTIZE(217, DECFLOAT('1E-1')) = 217.0
 QUANTIZE(217, DECFLOAT('1E+0')) = 217
 QUANTIZE(217, DECFLOAT('1E+1')) = 2.2E+2
 QUANTIZE(217, DECFLOAT('1E+2')) = 2E+2

QUARTER scalar function
The QUARTER function returns an integer in the range 1–4 that represents the quarter of the year in which
the date resides. For example, any dates in January, February, or March return the integer 1.

QUARTER( expression)

The schema is SYSIBM.

The argument must be an expression that returns one of the following built-in data types: a date, a
timestamp, a character string, or a graphic string. If expression is a character or graphic string data type, it
must not be a CLOB or DBCLOB, and its value must be a valid string representation of a date or timestamp
with an actual length of not greater than 255 bytes. For the valid formats of string representations of
dates and timestamps, see “String representations of datetime values” on page 120.

If expression is a timestamp with a time zone, or a valid string representation of a timestamp with a time
zone, the result is determined from the UTC representation of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

Example 1: The following function returns 3 because August is in the third quarter of the year.

 SELECT QUARTER('2008-08-25')
 FROM SYSIBM.SYSDUMMY1

Chapter 4. Built-in functions 535

Example 2: Using sample table DSN8C10.PROJ, set the integer host variable QUART to the quarter of the
year in which activity number 70 for project 'AD3111' occurred. Activity completion dates are recorded in
column ACENDATE.

 SELECT QUARTER(ACENDATE)
 INTO :QUART
 FROM DSN8C10.PROJ
 WHERE PROJNO = 'AD3111' AND ACTNO = 70;

QUART is set to 4.

Example 3: The following invocations of the QUARTER function returns the same result:

SELECT QUARTER('2003-01-02-20.10.05.123456'),
 QUARTER('2003-01-02-12.10.05.123456-08:00'),
 QUARTER('2003-01-03-05.10.05.123456+09:00')
 FROM SYSIBM.SYSDUMMY1;

For each invocation of the QUARTER function in this SELECT statement, the result is 1.

When the input argument contains a time zone, the result is determined from the UTC representation
of the input value. The string representations of a timestamp with a time zone in the SELECT statement
all have the same UTC representation: 2003-01-02-20.10.05.123456. The month portion of the UTC
representation is 1 for January, which is in the first quarter.

RADIANS scalar function
The RADIANS function returns the number of radians for an argument that is expressed in degrees.

RADIANS( numeric-expression)

The schema is SYSIBM.

The argument must be an expression that returns the value of any built-in numeric data type that is not
DECFLOAT. If the argument is not a double precision floating-point number, it is converted to one for
processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable HDEG is an INTEGER with a value of 180. The following statement
returns a double precision floating-point number with an approximate value of 3.1415926536.

 SELECT RADIANS(:HDEG)
 FROM SYSIBM.SYSDUMMY1;

RAISE_ERROR scalar function
The RAISE_ERROR function causes the statement that invokes the function to return an error with the
specified SQLSTATE (along with SQLCODE -438) and error condition. The RAISE_ERROR function always
returns the null value with an undefined data type.

RAISE_ERROR( sqlstate , diagnostic-string)

The schema is SYSIBM.

sqlstate
An expression that returns a character string (CHAR or VARCHAR) of exactly 5 characters.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a
VARCHAR(5) data type.

536 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The sqlstate value must follow these rules for application-defined SQLSTATEs:

• Each character must be from the set of digits ('0' through '9') or non-accented upper case letters ('A'
through 'Z').

• The SQLSTATE class (first two characters) cannot be '00', '01', or '02' because these are not error
classes.

• If the SQLSTATE class (first two characters) starts with the character '0' through '6' or 'A' through 'H',
the subclass (last three characters) must start with a letter in the range 'I' through 'Z'.

• If the SQLSTATE class (first two characters) starts with the character '7', '8', '9', or 'I' though 'Z', the
subclass (last three characters) can be any of '0' through '9' or 'A through 'Z'.

diagnostic-string
An expression that returns a character string with a data type of CHAR or VARCHAR and a length of up
to 70 bytes. The string contains EBCDIC data that describes the error condition. If the string is longer
than 70 bytes, it is truncated.

Since the data type of the result of RAISE_ERROR is undefined, it can only be used in a SET host-variable
or SQL procedure languageassignment-statement. To use this function in another context, such as alone
in a select list, you must use a cast specification to give a data type to the null value that is returned. The
RAISE_ERROR function is most useful with CASE expressions.

Example: For each employee in sample table DSN8C10.EMP, list the employee number and education
level. List the education level as 'Post Graduate', 'Graduate' and 'Diploma' instead of the integer that it is
stored as in the table. If an education level is greater than '20', raise an error ('70001') with a description.

 SELECT EMPNO,
 CASE WHEN EDLEVEL < 16 THEN 'Diploma'
 WHEN EDLEVEL < 18 THEN 'Graduate'
 WHEN EDLEVEL < 21 THEN 'Post Graduate'
 ELSE RAISE_ERROR('70001',
 'EDUCLVL has a value greater than 20')
 END
 FROM DSN8C10.EMP;

RANDOM or RAND scalar function
The RANDOM function returns a random floating-point value in the range 0–1. An argument can be
specified as an optional seed value.

FL 506

RANDOM

RAND

(

numeric-expression

)

The schema is SYSIBM.

numeric-expression
If numeric-expression is specified, it is used as the seed value. The argument must be an expression
that returns a value of a built-in integer data type (SMALLINT or INTEGER). The value must be in the
range 0–2,147,483,646.

The argument can also be a character string or graphic string data type. The string input is implicitly
cast to a numeric value of DECFLOAT(34) and then assigned to an INTEGER value.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

A specific seed value, other than zero, will produce the same sequence of random numbers for a specific
instance of a RANDOM function in a query each time the query is executed. The seed value is used only for
the first invocation of an instance of the RANDOM function within a statement. RANDOM(0) is processed
the same as RANDOM().

Chapter 4. Built-in functions 537

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html

Notes
Determinism:

RANDOM is a non-deterministic function.

Examples
Example 1

Assume that host variable HRAND is an INTEGER with a value of 100. The following statement returns
a random floating-point number in the range 0–1, such as the approximate value .0121398:

 SELECT RANDOM(:HRAND)
 FROM SYSIBM.SYSDUMMY1;

Example
To generate values in a numeric interval other than 0 to 1, multiply the RAND function by the size
of the interval that you want. For example, to get a random number in the range 0–10, such as the
approximate value 5.8731398, multiply the function by 10:

 SELECT (RANDOM(:HRAND) * 10)
 FROM SYSIBM.SYSDUMMY1;

REAL scalar function
The REAL function returns a single-precision floating-point representation of either a number or a string
representation of a number.

Numeric to Real:

REAL( numeric-expression)

String to Real:

REAL( string-expression)

The schema is SYSIBM.

Numeric to Real

numeric-expression
An expression that returns a value of any built-in numeric data type.

The result is the same number that would occur if the argument were assigned to a single precision
floating-point column or variable. If the numeric value of the argument is not within the range of single
precision floating-point, an error occurs.

String to Real

string-expression
An expression that returns a value of a character or graphic string (except a CLOB or DBCLOB)
with a length attribute that is not greater than 255 bytes. The string must contain a valid string
representation of a number.

The result is the same number that would result from CAST(string-expression AS REAL).
Leading and trailing blanks are eliminated and the resulting string must conform to the rules for
forming an SQL floating-point, integer, or decimal constant.

The result of the function is a single precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

538 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Notes
Syntax alternatives:

To increase the portability of applications, use the CAST specification. For more information, see
“CAST specification” on page 267.

Examples
Example 1:

Using sample table DSN8C10.EMP, find the ratio of salary to commission for employees whose
commission is not zero. The columns involved, SALARY and COMM, have decimal data types. To
express the result in single precision floating-point, apply REAL to SALARY so that the division
is carried out in floating-point (actually double precision) and then apply REAL to the complete
expression so that the results are returned in single precision floating-point.

 SELECT EMPNO, REAL(REAL(SALARY)/COMM)
 FROM DSN8C10.EMP
 WHERE COMM > 0;

REGEXP_COUNT scalar function
The REGEXP_COUNT scalar function returns a count of the number of times that a regular expression
pattern is matched in a string.

FL 504

Passthrough-only expression: This function is passthrough-only and cannot run on Db2 for z/OS without
acceleration. For information about invoking this function, see Accelerating queries with passthrough-only
expressions.

REGEXP_COUNT (source-string , pattern-expression

, start

, flags

, CODEUNITS32

, CODEUNITS16

OCTETS

)

The schema is SYSIBM.

source-string
An expression that specifies the string in which the search is to take place. This expression must
return a built-in character string, graphic string, numeric value, Boolean value, or datetime value. A
numeric, Boolean, or datetime value is implicitly cast to VARCHAR before the function is evaluated. A
character string cannot specify the FOR BIT DATA attribute.

pattern-expression
An expression that specifies the regular expression string that is the pattern for the search. This
expression must return a built-in character string, graphic string, numeric value, Boolean value, or
datetime value. A numeric, Boolean, or datetime value is implicitly cast to VARCHAR before the
function is evaluated. A character string cannot specify the FOR BIT DATA attribute.

start
An expression that specifies the position within source-string at which the search is to start. The
expression must return a built-in character string, graphic string, Boolean, or numeric value. If the
value is not of type INTEGER, it is implicitly cast to INTEGER before the function is evaluated. The
value of the integer must be greater than or equal to 1. If OCTETS is specified and the source string
is graphic data, the value of the integer must be odd. The default start value is 1. See parameter
description for CODEUNITS16, CODEUNITS32, or OCTETS for the string unit that applies to the start
position.

Chapter 4. Built-in functions 539

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only

flags
An expression that specifies flags that controls aspects of the pattern matching. The expression must
return a built-in character string that does not specify the FOR BIT DATA attribute. The string can
include one or more valid flag values and the combination of flag values must be valid. An empty
string is the same as the value 'c'. The default flag value is 'c'.

Table 81. Supported flag values

Flag
value Description

c Specifies that matching is case-sensitive. This flag is the default value if 'c' or 'i' is not
specified. This value must not be specified with a value of 'i'.

i Specifies that matching is case insensitive. This value must not be specified with a value
of 'c'.

m Specifies that the input data can contain more than one line. By default, the '^' in a pattern
matches only the start of the input string; the '$' in a pattern matches only the end of the
input string. If this flag is set, "^" and "$" also matches at the start and end of each line
within the input string.

n Specifies that the '.' character in a pattern matches a line terminator in the input string. By
default, the '.' character in a pattern does not match a line terminator. A carriage-return
and line-feed pair in the input string behaves as a single-line terminator and matches a
single "." in a pattern.

s Specifies that the '.' character in a pattern matches a line terminator in the input string.
This value is a synonym for the 'n' value.

x Specifies that white space characters in a pattern are ignored, unless escaped.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit of the start value:

• CODEUNITS16 specifies that the start value is expressed in 16-bit UTF-16 code units.
• CODEUNITS32 specifies that the start value is expressed in 32-bit UTF-32 code units. This is the

default.
• OCTETS specifies that the start value is expressed in bytes.

If the string unit is specified as CODEUNITS16 or OCTETS, and if the string unit of the source string is
CODEUNITS32, an error is returned.

For more information, see “String unit specifications” on page 106.

The result of the function is an INTEGER that represents the number of occurrences of the pattern
expression within the source string. If the pattern expression is not found and no argument is null, the
result is 0.

If any argument of the REGEXP_COUNT function can be null, the result can be null. If any argument is null,
the result is the null value.

Notes
• The regular expression processing is done by using the International Components for Unicode (ICU)

regular expression interface.
• Considerations for non-Unicode databases:

– A regular expression pattern supports only halfwidth control characters; use a character string data
type for the pattern expression argument. A character string data type can be used for the pattern
expression argument even when a graphic string data type is used for the source string argument.

540 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

– The source string argument must be a graphic string data type if the pattern expression argument is a
graphic string data type.

For more information, see Regular expression control characters.

Example
Count the number of times "Steven" or "Stephen" occurs in the string "Steven Jones and Stephen Smith
are the best players".

SELECT REGEXP_COUNT(
 'Steven Jones and Stephen Smith are the best players', 'Ste(v|ph)en')
 FROM sysibm.sysdummy1

The result is 2.

REGEXP_INSTR scalar function
The REGEXP_INSTR scalar function returns the starting or ending position of the matched substring,
depending on the value of the return_option argument.

FL 504

Passthrough-only expression: This function is passthrough-only and cannot run on Db2 for z/OS without
acceleration. For information about invoking this function, see Accelerating queries with passthrough-only
expressions.

REGEXP_INSTR (source-string , pattern-expression

, start
, occurrence

, return_option

, flags

, group

, CODEUNITS32

, CODEUNITS16

OCTETS

)

The schema is SYSIBM.

source-string
An expression that specifies the string in which the search is to take place. This expression must
return a built-in character string, graphic string, numeric value, Boolean value, or datetime value. A
numeric, Boolean, or datetime value is implicitly cast to VARCHAR before the function is evaluated. A
character string cannot specify the FOR BIT DATA attribute.

pattern-expression
An expression that specifies the regular expression string that is the pattern for the search. This
expression must return a built-in character string, graphic string, numeric value, Boolean value, or
datetime value. A numeric, Boolean, or datetime value is implicitly cast to VARCHAR before the
function is evaluated. A character string cannot specify the FOR BIT DATA attribute.

start
An expression that specifies the position within source-string at which the search is to start. The
expression must return a built-in character string, graphic string, Boolean, or numeric value. If the
value is not of type INTEGER, it is implicitly cast to INTEGER before the function is evaluated. The
value of the integer must be greater than or equal to 1. If OCTETS is specified and the source string
is graphic data, the value of the integer must be odd. The default start value is 1. See parameter

Chapter 4. Built-in functions 541

https://www.ibm.com/docs/en/db2/11.5?topic=sql-regular-expression-control-characters
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only

description for CODEUNITS16, CODEUNITS32, or OCTETS for the string unit that applies to the start
position.

occurrence
An expression that specifies which occurrence of the pattern expression within the source string to
search for. The expression must return a built-in character string, graphic string, Boolean, or numeric
value. If the value is not of type INTEGER, it is implicitly cast to INTEGER before the function is
evaluated. This value must be greater than or equal 1. The default occurrence value is 1, which
indicates that only the first occurrence of the pattern expression is considered.

return-option
An expression that specifies what is returned relative to the occurrence. The expression must return a
built-in character string, graphic string, Boolean, or numeric value. If the value is not of type INTEGER,
it is implicitly cast to INTEGER before the function is evaluated. This value must be 0 or 1:

• A value of 0 returns the position of the first string unit of the occurrence.
• A value of 1 returns the position of the string unit that follows the occurrence.

The default return option value is 0.
flags

An expression that specifies flags that controls aspects of the pattern matching. The expression must
return a built-in character string that does not specify the FOR BIT DATA attribute. The string can
include one or more valid flag values and the combination of flag values must be valid. An empty
string is the same as the value 'c'. The default flag value is 'c'.

Table 82. Supported flag values

Flag
value Description

c Specifies that matching is case-sensitive. This flag is the default value if 'c' or 'i' is not
specified. This value must not be specified with a value of 'i'.

i Specifies that matching is case insensitive. This value must not be specified with a value
of 'c'.

m Specifies that the input data can contain more than one line. By default, the '^' in a pattern
matches only the start of the input string; the '$' in a pattern matches only the end of the
input string. If this flag is set, "^" and "$" also matches at the start and end of each line
within the input string.

n Specifies that the '.' character in a pattern matches a line terminator in the input string. By
default, the '.' character in a pattern does not match a line terminator. A carriage-return
and line-feed pair in the input string behaves as a single-line terminator and matches a
single "." in a pattern.

s Specifies that the '.' character in a pattern matches a line terminator in the input string.
This value is a synonym for the 'n' value.

x Specifies that white space characters in a pattern are ignored, unless escaped.

group
An expression that specifies which capture group of the pattern expression is used to determine the
position within source string to return. The expression must return a built-in character string, graphic
string, Boolean, or numeric value. If the value is not of type INTEGER, it is implicitly cast to INTEGER
before the function is evaluated. This value must be greater than or equal to 0 and must not be greater
than the number of capture groups in the pattern expression. The default group value is 0, which
indicates that the position is based on the string that matches the entire pattern.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit of both the start value and the result:

• CODEUNITS16 specifies that the start value and result are expressed in 16-bit UTF-16 code units.

542 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• CODEUNITS32 specifies that the start value and result are expressed in 32-bit UTF-32 code units.
This is the default.

• OCTETS specifies that the start value and result are expressed in bytes.

If the string unit is specified as CODEUNITS16 or OCTETS, and the string unit of the source string is
CODEUNITS32, an error is returned.

For more information, see “String unit specifications” on page 106.

The result of the function is a large integer. If the pattern expression is found, the result is a number from
1 to n, where n is the actual length of the source string plus 1. The result value represents the position
expressed in the string units used to process the function. If the pattern expression is not found and no
argument is null, the result is 0.

If any argument of the REGEXP_INSTR function can be null, the result can be null. If any argument is null,
the result is the null value.

Notes
• The regular expression processing is done by using the International Components for Unicode (ICU)

regular expression interface.
• Considerations for non-Unicode databases:

– A regular expression pattern supports only halfwidth control characters; use a character string data
type for the pattern expression argument. A character string data type can be used for the pattern
expression argument even when a graphic string data type is used for the source string argument.

– The source string argument must be a graphic string data type if the pattern expression argument is a
graphic string data type.

For more information, see Regular expression control characters.

Examples
Example 1:

Find the first occurrence of a 'o' that has a character that is preceding it.

SELECT REGEXP_INSTR('hello to you', '.o',1,1)
 FROM sysibm.sysdummy1

The result is 4, which is the position of the second 'l' character.
Example 2:

Find the second occurrence of a 'o' that has a character that is preceding it.

SELECT REGEXP_INSTR('hello to you', '.o',1,2)
 FROM sysibm.sysdummy1

The result is 7, which is the position of the character 't'.
Example 3:

Find the position after the third occurrence of the first capture group of the regular expression '(.o).'
using case insensitive matching.

SELECT REGEXP_INSTR('hello TO you', '(.o).', 1,3,1,'i',1)
 FROM sysibm.sysdummy1

The result is 12, which is the position of the character 'u' at the end of the string.

REGEXP_LIKE scalar function
The REGEXP_LIKE scalar function returns an INTEGER value of 0 or 1 indicating if the regular expression
pattern is found in a string.

FL 504

Chapter 4. Built-in functions 543

https://www.ibm.com/docs/en/db2/11.5?topic=sql-regular-expression-control-characters
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

Passthrough-only expression: This function is passthrough-only and cannot run on Db2 for z/OS without
acceleration. For information about invoking this function, see Accelerating queries with passthrough-only
expressions.

Db2 for z/OS casts the result of this function to an INTEGER (1 = 'true', 0 = 'false'). Db2 for z/OS currently
does not support Boolean functions or data types.

REGEXP_LIKE (source-string , pattern-expression

, start

, flags

, CODEUNITS32

, CODEUNITS16

OCTETS

)

The schema is SYSIBM.

source-string
An expression that specifies the string in which the search is to take place. This expression must
return a built-in character string, graphic string, numeric value, Boolean value, or datetime value. A
numeric, Boolean, or datetime value is implicitly cast to VARCHAR before the function is evaluated. A
character string cannot specify the FOR BIT DATA attribute.

pattern-expression
An expression that specifies the regular expression string that is the pattern for the search. This
expression must return a built-in character string, graphic string, numeric value, Boolean value, or
datetime value. A numeric, Boolean, or datetime value is implicitly cast to VARCHAR before the
function is evaluated. A character string cannot specify the FOR BIT DATA attribute.

start
An expression that specifies the position within source-string at which the search is to start. The
expression must return a built-in character string, graphic string, Boolean, or numeric value. If the
value is not of type INTEGER, it is implicitly cast to INTEGER before the function is evaluated. The
value of the integer must be greater than or equal to 1. If OCTETS is specified and the source string
is graphic data, the value of the integer must be odd. The default start value is 1. See parameter
description for CODEUNITS16, CODEUNITS32, or OCTETS for the string unit that applies to the start
position.

flags
An expression that specifies flags that controls aspects of the pattern matching. The expression must
return a built-in character string that does not specify the FOR BIT DATA attribute. The string can
include one or more valid flag values and the combination of flag values must be valid. An empty
string is the same as the value 'c'. The default flag value is 'c'.

Table 83. Supported flag values

Flag
value Description

c Specifies that matching is case-sensitive. This flag is the default value if 'c' or 'i' is not
specified. This value must not be specified with a value of 'i'.

i Specifies that matching is case insensitive. This value must not be specified with a value
of 'c'.

m Specifies that the input data can contain more than one line. By default, the '^' in a pattern
matches only the start of the input string; the '$' in a pattern matches only the end of the
input string. If this flag is set, "^" and "$" also matches at the start and end of each line
within the input string.

544 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only

Table 83. Supported flag values (continued)

Flag
value Description

n Specifies that the '.' character in a pattern matches a line terminator in the input string. By
default, the '.' character in a pattern does not match a line terminator. A carriage-return
and line-feed pair in the input string behaves as a single-line terminator and matches a
single "." in a pattern.

s Specifies that the '.' character in a pattern matches a line terminator in the input string.
This value is a synonym for the 'n' value.

x Specifies that white space characters in a pattern are ignored, unless escaped.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit of the start value:

• CODEUNITS16 specifies that the start value is expressed in 16-bit UTF-16 code units.
• CODEUNITS32 specifies that the start value is expressed in 32-bit UTF-32 code units. This is the

default.
• OCTETS specifies that the start value is expressed in bytes.

If the string unit is specified as CODEUNITS16 or OCTETS, and if the string unit of the source string is
CODEUNITS32, an error is returned.

For more information, see “String unit specifications” on page 106.

The result of the function is an INTEGER value of 0 or 1. If the pattern expression is found, the result is
true. If the pattern expression is not found, the result is false. If the value of any of the arguments is null,
the result is unknown.

Notes
• The regular expression processing is done by using the International Components for Unicode (ICU)

regular expression interface.
• Considerations for non-Unicode databases:

– A regular expression pattern supports only halfwidth control characters; use a character string data
type for the pattern expression argument. A character string data type can be used for the pattern
expression argument even when a graphic string data type is used for the source string argument.

– The source string argument must be a graphic string data type if the pattern expression argument is a
graphic string data type.

– The source string and replacement string arguments must both be character string data types or both
be graphic string data types.

For more information, see Regular expression control characters.

Examples
Example 1:

Select the employee number where the last name is spelled LUCCHESSI, LUCHESSI, or LUCHESI from
the EMPLOYEE table without considering upper or lower case letters.

 SELECT EMPNO FROM EMPLOYEE
 WHERE REGEXP_LIKE(LASTNAME,'luc+?hes+?i','i') = 1

The result is 1 row with EMPNO value '000110'.
Exmaple 2:

Select any invalid product identifier values from the PRODUCT table. The expected format is 'nnn-nnn-
nn' where 'n' is a digit 0–9.

Chapter 4. Built-in functions 545

https://www.ibm.com/docs/en/db2/11.5?topic=sql-regular-expression-control-characters

SELECT PID FROM PRODUCT
 WHERE NOT REGEXP_LIKE(pid,'[0-9]{3}-[0-9]{3}-[0-9]{2}') = 1

The result is 0 rows because all the product identifiers match the pattern.

REGEXP_REPLACE scalar function
The REGEXP_REPLACE scalar function returns a modified version of the source string where occurrences
of the regular expression pattern found in the source string are replaced with the specified replacement
string.

FL 504

Passthrough-only expression: This function is passthrough-only and cannot run on Db2 for z/OS without
acceleration. For information about invoking this function, see Accelerating queries with passthrough-only
expressions.

REGEXP_REPLACE (source-string , pattern-expression

, replacement-string

, start
, occurrence

, flags

, CODEUNITS32

, CODEUNITS16

OCTETS

)

The schema is SYSIBM.

source-string
An expression that specifies the string in which the search is to take place. This expression must
return a built-in character string, graphic string, numeric value, Boolean value, or datetime value. A
numeric, Boolean, or datetime value is implicitly cast to VARCHAR before the function is evaluated. A
character string cannot specify the FOR BIT DATA attribute.

pattern-expression
An expression that specifies the regular expression string that is the pattern for the search. This
expression must return a built-in character string, graphic string, numeric value, Boolean value, or
datetime value. A numeric, Boolean, or datetime value is implicitly cast to VARCHAR before the
function is evaluated. A character string cannot specify the FOR BIT DATA attribute.

replacement-string
An expression that specifies the replacement string for matching substrings. The expression must
return a value that is a built-in character string, graphic string, numeric value, Boolean value, or
datetime value. A numeric, Boolean, or datetime value is implicitly cast to VARCHAR before the
function is evaluated. A character string cannot specify the FOR BIT DATA attribute. The default
replacement string is the empty string.

The content of the replacement string can include references to capture group text from the search to
use in the replacement text. These references are of the form '$n' or '\n', where n is the number of the
capture group and 0 represents the entire string that matches the pattern. The value for n must be in
the range 0-9 and not greater than the number of capture groups in the pattern. For example, either
'$2' or '\2' can be used to refer to the content found in the source string for the second capture group
that is specified in the pattern expression. If the pattern expression must include a literal reference to
a '$' or '\' character, that character must be preceded with an '/' character as an escape character ('\$'
or '\\').

546 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only

start
An expression that specifies the position within source-string at which the search is to start. The
expression must return a built-in character string, graphic string, Boolean, or numeric value. If the
value is not of type INTEGER, it is implicitly cast to INTEGER before the function is evaluated. The
value of the integer must be greater than or equal to 1. If OCTETS is specified and the source string
is graphic data, the value of the integer must be odd. The default start value is 1. See parameter
description for CODEUNITS16, CODEUNITS32, or OCTETS for the string unit that applies to the start
position.

occurrence
An expression that specifies which occurrence of the pattern expression within the source string
is to be searched for and replaced. The expression must return a built-in character string, graphic
string, Boolean, or numeric value. If the value is not of type INTEGER, it is implicitly cast to INTEGER
before the function is evaluated. The occurrence value must be greater than or equal to 0. The default
occurrence value is 0, which indicates that all occurrences of the pattern expression in the source
string are replaced.

flags
An expression that specifies flags that controls aspects of the pattern matching. The expression must
return a built-in character string that does not specify the FOR BIT DATA attribute. The string can
include one or more valid flag values and the combination of flag values must be valid. An empty
string is the same as the value 'c'. The default flag value is 'c'.

Table 84. Supported flag values

Flag
value Description

c Specifies that matching is case-sensitive. This flag is the default value if 'c' or 'i' is not
specified. This value must not be specified with a value of 'i'.

i Specifies that matching is case insensitive. This value must not be specified with a value
of 'c'.

m Specifies that the input data can contain more than one line. By default, the '^' in a pattern
matches only the start of the input string; the '$' in a pattern matches only the end of the
input string. If this flag is set, "^" and "$" also matches at the start and end of each line
within the input string.

n Specifies that the '.' character in a pattern matches a line terminator in the input string. By
default, the '.' character in a pattern does not match a line terminator. A carriage-return
and line-feed pair in the input string behaves as a single-line terminator and matches a
single "." in a pattern.

s Specifies that the '.' character in a pattern matches a line terminator in the input string.
This value is a synonym for the 'n' value.

x Specifies that white space characters in a pattern are ignored, unless escaped.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit of the start value:

• CODEUNITS16 specifies that the start value is expressed in 16-bit UTF-16 code units.
• CODEUNITS32 specifies that the start value is expressed in 32-bit UTF-32 code units. This is the

default.
• OCTETS specifies that the start value is expressed in bytes.

If the string unit is specified as CODEUNITS16 or OCTETS, and if the string unit of the source string is
CODEUNITS32, an error is returned.

For more information, see “String unit specifications” on page 106.

Chapter 4. Built-in functions 547

The result of the function is a string. If there are no occurrences of the pattern to be replaced and no
argument is null, the original string is returned. The data type of the string is the same data type as the
source string, except for CHAR, which becomes VARCHAR, and VARGRAPHIC, which becomes GRAPHIC.

The length attribute of the result data type is determined based on the length attributes of the source
string and the replacement string by using the following calculation:

 MIN(MaxTypeLen, LAS+(LAS+1)*LAR)

where MaxTypeLen represents the maximum length attribute for the data type of the result, LAS
represents the length attribute for the data type of the source string, and LAR represents the length
attribute for the data type of the replacement string. If the replacement string is not specified, the value
for LAR is 0. If the actual length of the result string exceeds the maximum for the return data type, an
error is returned.

If the replacement string is specified, the result buffer length is 32672 bytes. If the replacement string
is not specified, the result buffer length is the same as the length of the source string except for the
following data types:

Table 85. Data types with different result buffer lengths

Data Type Length (in bytes)

numerical 42

date 10

time 8

timestamp 32

If any argument of the REGEXP_REPLACE function can be null, the result can be null. If any argument is
null, the result is the null value.

Notes
• The regular expression processing is done by using the International Components for Unicode (ICU)

regular expression interface.
• Considerations for non-Unicode databases:

– A regular expression pattern supports only halfwidth control characters; use a character string data
type for the pattern expression argument. A character string data type can be used for the pattern
expression argument even when a graphic string data type is used for the source string argument.

– The source string argument must be a graphic string data type if the pattern expression argument is a
graphic string data type.

– The source string and replacement string arguments must both be character string data types or both
be graphic string data types.

For more information, see Regular expression control characters.

Example
Replace the second occurrence of the pattern 'R.d' with 'Orange' using a case sensitive search.

SELECT REGEXP_REPLACE(
 'Red Yellow RED Blue Red Green Blue', 'R.d','Orange',1,2,'c')
 FROM sysibm.sysdummy1

The result is 'Red Yellow RED Blue Orange Green Blue'.

548 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/db2/11.5?topic=sql-regular-expression-control-characters

REGEXP_SUBSTR scalar function
The REGEXP_SUBSTR scalar function returns one occurrence of a substring of a string that matches the
regular expression pattern.

FL 504

Passthrough-only expression: This function is passthrough-only and cannot run on Db2 for z/OS without
acceleration. For information about invoking this function, see Accelerating queries with passthrough-only
expressions.

REGEXP_SUBSTR (source-string , pattern-expression

, start
, occurrence

, flags

, group

, CODEUNITS32

, CODEUNITS16

OCTETS

)

The schema is SYSIBM.

source-string
An expression that specifies the string in which the search is to take place. This expression must
return a built-in character string, graphic string, numeric value, Boolean value, or datetime value. A
numeric, Boolean, or datetime value is implicitly cast to VARCHAR before the function is evaluated. A
character string cannot specify the FOR BIT DATA attribute.

pattern-expression
An expression that specifies the regular expression string that is the pattern for the search. This
expression must return a built-in character string, graphic string, numeric value, Boolean value, or
datetime value. A numeric, Boolean, or datetime value is implicitly cast to VARCHAR before the
function is evaluated. A character string cannot specify the FOR BIT DATA attribute.

start
An expression that specifies the position within source-string at which the search is to start. The
expression must return a built-in character string, graphic string, Boolean, or numeric value. If the
value is not of type INTEGER, it is implicitly cast to INTEGER before the function is evaluated. The
value of the integer must be greater than or equal to 1. If OCTETS is specified and the source string
is graphic data, the value of the integer must be odd. The default start value is 1. See parameter
description for CODEUNITS16, CODEUNITS32, or OCTETS for the string unit that applies to the start
position.

occurrence
An expression that specifies which occurrence of the pattern expression within source-string to search
for. The expression must return a built-in character string, graphic string, Boolean, or numeric value. If
the value is not of type INTEGER, it is implicitly cast to INTEGER before the function is evaluated. The
occurrence value must be greater than or equal 1. The default occurrence value is 1, which indicates
that only the first occurrence of the pattern expression is considered.

flags
An expression that specifies flags that controls aspects of the pattern matching. The expression must
return a built-in character string that does not specify the FOR BIT DATA attribute. The string can
include one or more valid flag values and the combination of flag values must be valid. An empty
string is the same as the value 'c'. The default flag value is 'c'.

Chapter 4. Built-in functions 549

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only

Table 86. Supported flag values

Flag
value Description

c Specifies that matching is case-sensitive. This flag is the default value if 'c' or 'i' is not
specified. This value must not be specified with a value of 'i'.

i Specifies that matching is case insensitive. This value must not be specified with a value
of 'c'.

m Specifies that the input data can contain more than one line. By default, the '^' in a pattern
matches only the start of the input string; the '$' in a pattern matches only the end of the
input string. If this flag is set, "^" and "$" also matches at the start and end of each line
within the input string.

n Specifies that the '.' character in a pattern matches a line terminator in the input string. By
default, the '.' character in a pattern does not match a line terminator. A carriage-return
and line-feed pair in the input string behaves as a single-line terminator and matches a
single "." in a pattern.

s Specifies that the '.' character in a pattern matches a line terminator in the input string.
This value is a synonym for the 'n' value.

x Specifies that white space characters in a pattern are ignored, unless escaped.

group
An expression that specifies which capture group of the pattern expression within source string to
return. The expression must return a built-in character, binary, or graphic string, or a Boolean value. If
the value is not of type INTEGER, it is implicitly cast to INTEGER before the function is evaluated. The
group value must be greater than or equal to 0 and must not be greater than the number of capture
groups in the pattern expression. The default group value is 0, which indicates that the string that
matches the entire pattern is to be returned.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit of the start value:

• CODEUNITS16 specifies that the start value is expressed in 16-bit UTF-16 code units.
• CODEUNITS32 specifies that the start value is expressed in 32-bit UTF-32 code units. This is the

default.
• OCTETS specifies that the start value is expressed in bytes.

If the string unit is specified as CODEUNITS16 or OCTETS, and if the string unit of the source string is
CODEUNITS32, an error is returned.

For more information, see “String unit specifications” on page 106.

The result of the function is a string. The data type of the string is the same data type as the source string,
except for CHAR, which becomes VARCHAR; and GRAPHIC, which becomes and VARGRAPHIC. The length
attribute of the result data type is same as the length attribute of the source string. The actual length of
the result is the length of the occurrence in the string that matches the pattern expression. If the pattern
expression is not found, the result is the null value.

The result buffer length is the same as the length of the source string except for the following data types:

Table 87. Data types with different result buffer lengths

Data Type Length (in bytes)

numerical 42

date 10

time 8

550 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 87. Data types with different result buffer lengths (continued)

Data Type Length (in bytes)

timestamp 32

The result of the REGEXP_SUBSTR function can be null. If any argument is null, the result is the null value.

Notes
• The regular expression processing is done by using the International Components for Unicode (ICU)

regular expression interface.
• Considerations for non-Unicode databases:

– A regular expression pattern supports only halfwidth control characters; use a character string data
type for the pattern expression argument. A character string data type can be used for the pattern
expression argument even when a graphic string data type is used for the source string argument.

– The source string argument must be a graphic string data type if the pattern expression argument is a
graphic string data type.

For more information, see Regular expression control characters.

Examples
Example 1:

Return the string which matches any character preceding a 'o'.

SELECT REGEXP_SUBSTR('hello to you', '.o',1,1)
 FROM sysibm.sysdummy1

The result is 'lo'.
Example 2:

Return the third string occurrence which matches any character preceding a 'o'.

SELECT REGEXP_SUBSTR('hello to you', '.o',1,3)
 FROM sysibm.sysdummy1

The result is 'yo'.

REPEAT scalar function
The REPEAT function returns a character string that is composed of an argument that is repeated a
specified number of times.

REPEAT( expression , integer)

The schema is SYSIBM.

expression
An expression that specifies the string to be repeated. The expression must return a value that is a
built-in character string, graphic string, or binary string data type that is not a LOB.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

The actual length of the string must be greater or equal to 1 and less than or equal to 32704 bytes.
integer

integer must be a positive large integer value that specifies the number of times to repeat the string.

Chapter 4. Built-in functions 551

https://www.ibm.com/docs/en/db2/11.5?topic=sql-regular-expression-control-characters

The argument can also be a character string or graphic string data type. The string input is implicitly
cast to a numeric value of DECFLOAT(34) which is then assigned to an INTEGER value.

The result can be null; if any argument is null, the result is the null value.

The encoding scheme of the result is the same as expression. The data type of the result of the function
depends on the data type of expression:

• VARBINARY if expression is a binary string
• VARCHAR if expression is a character string
• VARGRAPHIC if expression is graphic string

The CCSID of the result is the same as the CCSID of expression.

If integer is a constant, the length attribute of the result is the length attribute of expression times integer.
Otherwise, the length attribute depends on the data type of the result:

• 4000 for VARBINARY and VARCHAR
• 2000 for VARGRAPHIC

The actual length of the result is the actual length of expression times integer. If the actual length of the
result string exceeds the maximum for the return type, an error occurs.

Example 1: Repeat 'abc' two times to create 'abcabc'.

 SELECT REPEAT('abc',2)
 FROM SYSIBM.SYSDUMMY1;

Example 2: List the phrase 'REPEAT THIS' five times. Use the CHAR function to limit the output to 60
bytes.

 SELECT CHAR(REPEAT('REPEAT THIS',5), 60)
 FROM SYSIBM.SYSDUMMY1;

This example results in 'REPEAT THISREPEAT THISREPEAT THISREPEAT THISREPEAT THIS '.

Example 3: For the following query, the LENGTH function returns a value of 0 because the result of
repeating a string zero times is an empty string, which is a zero-length string.

 SELECT LENGTH(REPEAT('REPEAT THIS',0))
 FROM SYSIBM.SYSDUMMY1;

Example 4: For the following query, the LENGTH function returns a value of 0 because the result of
repeating an empty string any number of times is an empty string, which is a zero-length string.

 SELECT LENGTH(REPEAT('', 5))
 FROM SYSIBM.SYSDUMMY1;

REPLACE scalar function
The REPLACE function replaces all occurrences of search-string in source-string with replace-string. If
search-string is not found in source-string, source-string is returned unchanged.

REPLACE (source-string , search-string

, replace-string

)

The schema is SYSIBM.

source-string
An expression that specifies the source string. The expression must return a value that is a built-in
character string, graphic string, or binary string data type that is not a LOB and it cannot be an empty
string.

552 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

The actual length of source-string must be 32764 bytes or less for character and binary strings or
16382 or less for graphic strings.

search-string
An expression that specifies the string to be removed from the source string. The expression must
return a value that is a built-in character string, graphic string, or binary string data type that is not a
LOB; the value cannot be an empty string.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

The actual length of search-string must be 4000 bytes or less for character and binary strings or 2000
or less for graphic strings, unless the CCISD of search-string is Unicode DBCS. If the CCSID is Unicode
DBCS, the actual length must be 16382 or less.

replace-string
An expression that specifies the replacement string. The expression must return a value that is a
built-in character string, graphic string, or binary string data type that is not a LOB.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

The actual length of replace-string must be 32764 bytes or less for character and binary strings or
16382 or less for graphic strings.

If replace-string is not specified or is an empty string, nothing replaces the string that is removed from
the source string.

All three arguments must have compatible data types. If the expressions have different CCSID sets, then
the expressions are converted to the CCSID set of source-string.

The data type of the result of the function depends on the data type of source-string, search-string, and
replace-string:

• VARCHAR if source-string is a character string. The encoding scheme of the result is the same as
source-string. The CCSID of the result depends on the arguments:

– If source-string, search-string, or replace-string is bit data, the result is bit data.
– If source-string, search-string, and replace-string are all SBCS Unicode data, the CCSID of the result is

the CCSID for SBCS Unicode data.
– If source-string is SBCS Unicode data, and search-string or replace-string is not SBCS Unicode data,

the CCSID of the result is the mixed CCSID for Unicode data.
– Otherwise, the CCSID of the result is the mixed CCSID that corresponds to the CCSID of source-string.

However, if the input is EBCDIC or ASCII and there is no corresponding system CCSID for mixed, the
CCSID of the result is the CCSID of source-string.

• VARGRAPHIC if source-string is a graphic. The encoding scheme of the result is the same as source-
string. The CCSID of the result is the same as the CCSID of source-string.

• VARBINARY if source-string, search-string, and replace-string are binary strings.

The length attribute of the result depends on the arguments:

• If the length attribute of replace-string is less than or equal to the length attribute of search-string, the
length attribute of the result is the length attribute of source-string.

• If the length attribute of replace-string is greater than the length attribute of search-string, the length
attribute of the result is determined as follows depending on the data type of the result:

– For VARCHAR or VARBINARY:

- If L1 < = 4000, the length attribute of the result is MIN(4000, (L3*(L1/L2)) +
MOD(L1,L2))

Chapter 4. Built-in functions 553

- Otherwise, the length attribute of the result is MIN(32764, (L3*(L1/L2)) + MOD(L1,L2))
– For VARGRAPHIC:

- If L1 < = 2000, the length attribute of the result is MIN(2000, (L3*(L1/L2)) +
MOD(L1,L2))

- Otherwise, the length attribute of the result is MIN(16382, (L3*(L1/L2)) + MOD(L1,L2))

where:

L1 is the length attribute of source-string
L2 is the length attribute of search-string if the search string is a string constant. Otherwise, L2 is 1.
L3 is the length attribute of replace-string

If the result is a character string or binary string, the length attribute of the result must not exceed 32764.
If the result is a graphic string, the length attribute of the result must not exceed 16382.

The actual length of the result is the actual length of source-string plus the number of occurrences of
search-string that exist in source-string multiplied by the actual length of replace-string minus the actual
length of search-string. If the actual length of the result string exceeds the maximum for the return data
type, an error occurs.

The result can be null; if any argument is null, the result is the null value.

Examples
Example 1

Replace all occurrences of the character 'N' in the string 'DINING' with 'VID'. Use the CHAR function to
limit the output to 10 bytes.

 SELECT CHAR(REPLACE('DINING','N','VID'),10)
 FROM SYSIBM.SYSDUMMY1;

The result is the string 'DIVIDIVIDG'.

Example 2
Replace string 'ABC' in the string 'ABCXYZ' with nothing, which is the same as removing 'ABC' from the
string.

 SELECT REPLACE('ABCXYZ','ABC','')
 FROM SYSIBM.SYSDUMMY1;

The result is the string 'XYZ'.
Example 3

Replace string 'ABC' in the string 'ABCCABCC' with 'AB'. This example illustrates that the result can
still contain the string that is to be replaced (in this case, 'ABC') because all occurrences of the string
to be replaced are identified prior to any replacement.

 SELECT REPLACE('ABCCABCC','ABC','AB')
 FROM SYSIBM.SYSDUMMY1;

The result is the string 'ABCABC'.

Related concepts
Character strings
A character string is a sequence of bytes. The length of the string is the number of bytes in the sequence.
If the length is zero, the value is called the empty string. The empty string should not be confused with the
null value.
Binary strings
A binary string is a sequence of bytes.
Graphic strings

554 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

A graphic string is a sequence of double-byte characters.

RID scalar function
The RID function returns the record ID (RID) of a row. The RID is used to uniquely identify a row.

RID( table-designator)

The schema is SYSIBM.

The function might return a different value when it is invoked multiple times for a row. For example, after
the REORG utility is run, the RID function might return a different value for a row than would have been
returned prior to the REORG utility being run. The RID function is not deterministic.

table-designator
table-designator must be an exposed name that uniquely identifies a base table, a view, or a nested
table expression of a subselect in which the function is referenced.

If table-designator specifies a view or a nested table expression, the RID function returns the RID of
the base table of the view or nested table expression. The specified view or nested table expression
must contain only one base table in its outer subselect.

table-designator must not identify:

• A table function
• A collection-derived table
• An alias, a synonym, or a materialized view
• A nested table expression that is materialized
• A system-period temporal table, if the system time sensitive bind option is YES
• An archive-enabled table, if one of the following conditions is true:

– For a static statement, the archive sensitive option in effect is YES.
– For a dynamic statement, the archive sensitive option in effect is YES, and the GET_ARCHIVE

built-in global variable is set to 'Y'.

The result of the function is BIGINT. The result can be null.

Notes
Considerations for RID values:

Db2 might reuse RID numbers when a REORG operation is performed. If the RID function is used to
obtain a value for a row and an application depends on that value remaining the same as long as the
row exists, consider the following alternatives:

• Add a ROWID column to the table to provide a value that can be associated with each row, rather
than invoking the RID function to generate a value for a row.

• Define a primary key for the table, using the columns of the primary key to ensure uniqueness,
rather than invoking the RID function to generate a value for a row.

Examples
Example 1:

Return the RID and last name of employees who are in department '20':

SELECT RID(EMP), LASTNAME
 FROM EMP
 WHERE DEPTNO = '20';

Chapter 4. Built-in functions 555

Example 2:
Return the RID and last name of employees who are in department '20', in a query that specifies
a correlation name of A for table EMP. A is the exposed name for table EMP, so it is used as the
argument to the RID function.

SELECT RID(A), LASTNAME
 FROM EMP AS A
 WHERE DEPTNO = '20';

If EMP is specified as the argument to the RID function instead of the exposed name, A, an error is
returned.

Example 3:
Set the host variable HV_EMP_RID as the value of the RID for the employee with the employee
number of '3500':

SELECT RID(EMP) INTO :HV_EMP_RID
 FROM EMP
 WHERE EMPNO = '3500';

RIGHT scalar function
The RIGHT function returns a string that consists of the specified number of rightmost bytes or specified
string unit from a string.

RIGHT( string-expression , integer
, CODEUNITS16

CODEUNITS32

OCTETS

)

The schema is SYSIBM.

string-expression
An expression that specifies the string from which the result is derived. The string must be any
built-in string data type. A substring of string-expression is zero or more contiguous code points of
string-expression. A partial surrogate character in the expression is replaced with a blank.

The string can contain mixed data. Depending on the units that are specified to evaluate the function,
the result is not necessarily a properly formed mixed data character string.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

integer
An expression that specifies the length of the result. The value must be an integer between 0 and n,
where n is the length attribute of string-expression, expressed in the units that are either implicitly or
explicitly specified.

The argument can also be a character string or graphic string data type. The string input is implicitly
cast to a numeric value of DECFLOAT(34) which is then assigned to an INTEGER value.

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length attribute of the final
result” on page 108 for information about how to calculate the length attribute of the result string.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the unit that is used to express integer. If string-expression is a character string that is
defined as bit data, CODEUNITS16 and CODEUNITS32 cannot be specified. If string-expression is
a graphic string, OCTETS cannot be specified. If string-expression is a binary string, CODEUNITS16,
CODEUNITS32, and OCTETS cannot be specified.
CODEUNITS16

Specifies that integer is expressed in terms of 16-bit UTF-16 code units.

556 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

CODEUNITS32
Specifies that integer is expressed in terms of 32-bit UTF-32 code units.

OCTETS
Specifies that integer is expressed in terms of bytes.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see “String unit
specifications” on page 106.

The string-expression is effectively padded on the right with the necessary number of padding characters
so that the specified substring of string-expression always exists. The encoding scheme of the data
determines the padding character:

• For ASCII SBCS data or ASCII mixed data, the padding character is X'20'.
• For ASCII DBCS data, the padding character depends on the CCSID; for example, for Japanese (CCSID

301) the padding character is X'8140', while for simplified Chinese it is X'A1A1'.
• For EBCDIC SBCS data or EBCDIC mixed data, the padding character is X'40'.
• For EBCDIC DBCS data, the padding character is X'4040'.
• For Unicode SBCS data or UTF-8 data (Unicode mixed data), the padding character is X'20'.
• For UTF-16 data (Unicode DBCS data), the padding character is X'0020'.
• For binary data, the padding character is X'00'.

The result of the function is a varying-length string with a length attribute that is the same as the length
attribute of string-expression and a data type that depends on the data type of string-expression:

• VARBINARY if string-expression is BINARY or VARBINARY
• VARCHAR if string-expression is CHAR or VARCHAR
• CLOB if string-expression is CLOB
• VARGRAPHIC if string-expression is GRAPHIC or VARGRAPHIC
• DBCLOB if string-expression is DBCLOB
• BLOB if string-expression is BLOB

The actual length of the result is determined from integer.

The result can be null; if any argument is null, the result is the null value.

The CCSID of the result is the same as that of string-expression.

Notes
Syntax alternatives:

FL 506 STRRIGHT is a synonym for RIGHT.

Examples

Example 1: Assume that host variable ALPHA has a value of 'ABCDEF'. The following statement returns the
value 'DEF', which are the three rightmost characters in ALPHA.

 SELECT RIGHT(ALPHA,3)
 FROM SYSIBM.SYSDUMMY1;

Example 2: The following statement returns a zero length string.

 SELECT RIGHT('ABCABC',0)
 FROM SYSIBM.SYSDUMMY1;

Example 3: FIRSTNME is a VARCHAR(12) column in table T1. When FIRSTNME has the 6-character string
'Jürgen' as a value:

 Function ... Returns ...
 RIGHT(FIRSTNME,5,CODEUNITS32) 'ürgen' -- x'C3BC7267656E'

Chapter 4. Built-in functions 557

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html

 RIGHT(FIRSTNME,5,CODEUNITS16) 'ürgen' -- x'C3BC7267656E'
 RIGHT(FIRSTNME,5,OCTETS) ' rgen' -- x'207267656E' A truncated string

Example 4: In the following example, the last invocation of the RIGHT function returns a partial surrogate
character:

 Function ... Returns ...
 RIGHT('Jürgen',5,CODEUNITS32) 'ürgen' -- x'C3BC7267656E'
 RIGHT('Jürgen',5,CODEUNITS16) 'ürgen' -- x'C3BC7267656E'
 RIGHT('Jürgen',5,OCTETS) ' rgen' -- x'207267656E' A truncated string
 HEX(RIGHT('Jürgen',5)) x'BC7267656E' -- A partial character followed by 'rgen'

ROUND scalar function
The ROUND function returns a number that is rounded to the specified number of places to the right or
left of the decimal place.

ROUND (numeric-expression-1

, 0

, numeric-expression-2

)

The schema is SYSIBM.

numeric-expression-1
An expression that returns a value of any built-in numeric data type.

If expression-1 is a decimal floating-point data type, the DECFLOAT ROUNDING MODE will not be
used. The rounding behavior of ROUND corresponds to a value of ROUND_HALF_UP. If you want a
different rounding behavior, use the QUANTIZE function.

The argument can also be a character string or graphic string data type. The string input is implicitly
cast to a numeric value of DECFLOAT(34).

numeric-expression-2

An expression that returns a value that is a built-in numeric, character string or graphic string data
type. If the value is not of type INTEGER, it is implicitly cast to INTEGER before evaluating the
function.

The absolute value of integer specifies the number of places to the right of the decimal point
for the result if numeric-expression-2 is not negative. If numeric-expression-2 is negative, numeric-
expression-1 is rounded to the sum of the absolute value of numeric-expression-2+1 number of places
to the left of the decimal point.

If the absolute value of numeric-expression-2 is larger than the number of digits to the left of the
decimal point, the result is 0. (For example, ROUND(748.58,-4) returns 0.)

If numeric-expression-1 is positive, a digit value of 5 is rounded to the next higher positive number. If
numeric-expression-1 is negative, a digit value of 5 is rounded to the next lower negative number.

The result of the function has the same data type and length attribute as the first argument except that
the precision is increased by one if the argument is DECIMAL and the precision is less than 31. For
example, an argument with a data type of DECIMAL(5,2) results in DECIMAL(6,2). An argument with a
data type of DECIMAL(31,2) results in DECIMAL(31,2).

The result can be null; if any argument is null, the result is the null value.

Example 1: Calculate the number '873.726' rounded to '2', '1', '0', '-1', and '-2' decimal places
respectively.

 SELECT ROUND(873.726,2),
 ROUND(873.726,1),
 ROUND(873.726,0),
 ROUND(873.726,-1),
 ROUND(873.726,-2),

558 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 ROUND(873.726,-3),
 ROUND(873.726,-4)
 FROM SYSIBM.SYSDUMMY1;

This example returns the values '0873.730', '0873.700', '0874.000', '0870.000', '0900.000', '1000.000',
and '0000.000'.

Example 2: To demonstrate how numbers are rounded in positive and negative values, calculate the
numbers '3.5', '3.1', '-3.1', '-3.5' rounded to '0' decimal places.

 SELECT ROUND(3.5,0),
 ROUND(3.1,0),
 ROUND(-3.1,0),
 ROUND(-3.5,0)
 FROM SYSIBM.SYSDUMMY1;

This example returns the values '04.0', '03.0', '-03.0', and '-04.0'. (Notice that in the positive value '3.5' is
rounded up to the next higher number while in the negative value '-3.5' is rounded down to the next lower
negative number.)

ROUND_TIMESTAMP scalar function
The ROUND_TIMESTAMP scalar function returns a timestamp that is rounded to the unit that is specified
by the timestamp format string. If format-string is not specified, expression is rounded to the nearest day,
as if 'DD' was specified for format-string.

ROUND_TIMESTAMP (expression

, 'DD'

, format-string

)

The schema is SYSIBM.

expression
FL 507 An expression that returns a value of any of the following built-in data types: a date, a
timestamp, a character string, or a graphic string. If expression is a character or graphic string, it
must not be a CLOB or DBCLOB, and its value must be a valid string representation of a timestamp
with an actual length that is not greater than 255 bytes. A time zone in a string representation of a
timestamp is ignored. For the valid formats of string representations of dates and timestamps, see
“String representations of datetime values” on page 120.

Passthrough-only support: FL 507 If expression is a date, Db2 passes the function through to IBM
Db2 Analytics Accelerator as a passthrough-only expression. For more information, see Accelerating
queries with passthrough-only expressions.

format-string
An expression that returns a built-in character string or graphic string data type, with a length that is
not greater than 255 bytes. format-string contains a template of how the timestamp represented by
expression should be rounded. For example, if format-string is 'DD', the timestamp that is represented
by expression is rounded to the nearest day. format-string must be a valid template for a timestamp,
and not include leading or trailing blanks.

Allowable values for format-string are listed in the following table.

Chapter 4. Built-in functions 559

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html#accel-passthrough-only

Table 88. ROUND_TIMESTAMP and TRUNC_TIMESTAMP format models

Format model Description of rounding
or truncating for the
format model

ROUND_TIMESTAMP example TRUNC_TIMESTAMP example

CC
SCC

Century.

One greater than the
first two digits of a four
digit year.

For
ROUND_TIMESTAMP,
rounds up on the 50th
year of the century.

Input Value:
1897-12-04-12.22.22.000000
Result:
1901-01-01-00.00.00.000000

Input Value:
1897-12-04-12.22.22.000000
Result:
1801-01-01-00.00.00.000000

SYYYY
YYYY
YEAR
SYEAR
YYY
YY
Y

Year.

For
ROUND_TIMESTAMP,
rounds up on July 1 to
January 1st of the next
year.

Input Value:
1897-12-04-12.22.22.000000
Result:
1898-01-01-00.00.00.000000

Input Value:
1897-12-04-12.22.22.000000
Result:
1897-01-01-00.00.00.000000

IYYY
IYY
IY
I

ISO year.

For
ROUND_TIMESTAMP,
rounds up on July 1 to
the first day of the next
ISO year. The first day of
the ISO year is defined
as the Monday of the
first ISO week.

Input Value:
1897-12-04-12.22.22.000000
Result:
1898-01-03-00.00.00.000000

Input Value:
1897-12-04-12.22.22.000000
Result:
1897-01-04-00.00.00.000000

Q Quarter.

For
ROUND_TIMESTAMP,
rounds up on the 16th
day of the second
month of the quarter.

Input Value:
1999-06-04-12.12.30.000000
Result:
1999-07-01-00.00.00.000000

Input Value:
1999-06-04-12.12.30.000000
Result:
1999-04-01-00.00.00.000000

MONTH
MON
MM
RM

Month.

For
ROUND_TIMESTAMP,
rounds up on the 16th
day of the month.

Input Value:
1999-06-18-12.12.30.000000
Result:
1999-07-01-00.00.00.000000

Input Value:
1999-06-18-12.12.30.000000
Result:
1999-06-01-00.00.00.000000

560 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 88. ROUND_TIMESTAMP and TRUNC_TIMESTAMP format models (continued)

Format model Description of rounding
or truncating for the
format model

ROUND_TIMESTAMP example TRUNC_TIMESTAMP example

WW Same day of the week
as the first day of the
year.

For
ROUND_TIMESTAMP,
rounds up on the 12th
hour of the 4th day of
the week, with respect
to the first day of the
year.

Input Value:
2000-05-05-12.12.30.000000
Result:
2000-05-06-00.00.00.000000

Input Value:
2000-05-05-12.12.30.000000
Result:
2000-04-29-00.00.00.000000

IW Same day of the week
as the first day of the
ISO year.

For
ROUND_TIMESTAMP,
rounds up on the 12th
hour of the 4th day of
the week, with respect
to the first day of the
ISO year.

Input Value:
2000-05-05-12.12.30.000000
Result:
2000-05-08-00.00.00.000000

Input Value:
2000-05-05-12.12.30.000000
Result:
2000-05-01-00.00.00.000000

W Same day of the week
as the first day of the
month.

For
ROUND_TIMESTAMP,
rounds up on the 12th
hour of the 4th day of
the week, with respect
to the first day of the
month.

Input Value:
2000-06-21-12.12.30.000000
Result:
2000-06-22-00.00.00.000000

Input Value:
2000-06-21-12.12.30.000000
Result:
2000-06-15-00.00.00.000000

DDD
DD
J

Day.

For
ROUND_TIMESTAMP,
rounds up on the 12th
hour of the day.

Input Value:
2000-05-17-12.59.59.000000
Result:
2000-05-18-00.00.00.000000

Input Value:
2000-05-17-12.59.59.000000
Result:
2000-05-17-00.00.00.000000

DAY
DY
D

Starting day of the
week.

For
ROUND_TIMESTAMP,
rounds up with respect
to the 12th hour of the
4th day of the week. The
first day of the week is
always Sunday.

Input Value:
2000-05-17-12.59.59.000000
Result:
2000-05-21-00.00.00.000000

Input Value:
2000-05-17-12.59.59.000000
Result:
2000-05-14-00.00.00.000000

Chapter 4. Built-in functions 561

Table 88. ROUND_TIMESTAMP and TRUNC_TIMESTAMP format models (continued)

Format model Description of rounding
or truncating for the
format model

ROUND_TIMESTAMP example TRUNC_TIMESTAMP example

HH
HH12
HH24

Hour.

For
ROUND_TIMESTAMP,
rounds up at 30
minutes.

Input Value:
2000-05-17-23.59.59.000000
Result:
2000-05-18-00.00.00.000000

Input Value:
2000-05-17-23.59.59.000000
Result:
2000-05-17-23.00.00.000000

MI Minute.

For
ROUND_TIMESTAMP,
rounds up at 30
seconds.

Input Value:
2000-05-17-23.58.45.000000
Result:
2000-05-17-23.59.00.000000

Input Value:
2000-05-17-23.58.45.000000
Result:
2000-05-17-23.58.00.000000

SS Second.

For
ROUND_TIMESTAMP,
rounds up at 500000
microseconds.

Input Value:
2000-05-17-23.58.45.500000
Result:
2000-05-17-23.58.46.000000

Input Value:
2000-05-17-23.58.45.500000
Result:
2000-05-17-23.58.45.000000

If expression does not have data type TIMESTAMP WITHOUT TIME ZONE, expression is cast as follows:

• If expression is a TIMESTAMP WITH TIME ZONE value, expression is cast to TIMESTAMP WITHOUT
TIME ZONE, with the same precision as expression.

• Otherwise, expression is cast to TIMESTAMP(6) WITHOUT TIME ZONE.

The result of the function has the same data type as the data type to which expression is cast.

The result can be null; if any argument is null, the result is the null value.

The result CCSID is the appropriate CCSID of the argument encoding scheme and the result subtype is the
appropriate subtype of the CCSID.

Examples
• Set the host variable RND_TMSTMP with the input timestamp rounded to the nearest year value.

 SET :RND_TMSTMP = ROUND_TIMESTAMP(TIMESTAMP_FORMAT('2000-08-14 17:30:00',
 'YYYY-MM-DD HH24:MI:SS'), 'YEAR');

The value set is '2001-01-01-00.00.00.000000'.
• Assume PRSTSZ is an SQL variable with the TIMESTAMP WITH TIME ZONE value

'2008-04-15.20.00.000000-08:30'. The input value is first cast to TIMESTAMP WITHOUT TIME ZONE
(as '2008-04-15.20.00.000000') for the ROUND_TIMESTAMP function.

SELECT ROUND_TIMESTAMP(PRSTSZ)
 FROM PROJECT;

The ROUND_TIMESTAMP function returns a TIMESTAMP WITHOUT TIME ZONE value of
'2008-04-16.00.00.000000'.

562 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

ROWID scalar function
The ROWID function returns a row ID representation of its argument.

ROWID( expression)

The schema is SYSIBM.

The argument must be an expression that returns a value of a built-in character string data type, other
than a CLOB, with a maximum length that is no greater than 255 bytes. Although the character string can
contain any value, it is recommended that the character string contain a ROWID value that was previously
generated by Db2 to ensure a valid ROWID value is returned. For example, the function can be used to
convert a ROWID value that was cast to a CHAR value back to a ROWID value.

If the actual length of expression is less than 40, the result is not padded. If the actual length of
expression is greater than 40, the result is truncated. If non-blank characters are truncated, a warning is
returned.

The result of the function is a ROWID value.

The length attribute of the result is 40. The actual length of the result is the length of expression.

The result can be null; if the argument is null, the result is the null value.

A null ROWID value cannot be used as the value for a row ID column in the database.

Examples
Example 1:

Assume that table EMPLOYEE contains a row ID column, 'EMP_ROWID'. Also assume that
the table contains a row that is identified by a ROWID value that is equivalent to
X'F0DFD230E3C0D80D81C201AA0A280100000000000203'. Using direct row access, select the
employee number for that row.

 SELECT EMPNO
 FROM EMPLOYEE
 WHERE EMP_ROWID=ROWID(X'F0DFD230E3C0D80D81C201AA0A280100000000000203');

RPAD scalar function
The RPAD function returns a string that is padded on the right with blanks or a specified string.

RPAD( string-expression , integer

, pad

)

The schema is SYSIBM.

The RPAD function returns a string composed of string-expression padded on the right, with pad or blanks.
The RPAD function treats leading or trailing blanks in string-expression as significant. Padding will only
occur if the actual length of string-expression is less than integer, and pad is not an empty string.

string-expression
An expression that specifies the source string. The expression must return a value that is a built-in
string data type that is not a LOB.

integer
An integer constant that specifies the length of the result. The value must be zero or a positive integer
that is less than or equal to n, where n is 32704 if string-expression is a character or binary string, or
where n is 16352 if string-expression is a graphic string.

Chapter 4. Built-in functions 563

pad
An expression that specifies the string with which to pad. The expression must return a value that is
a built-in string data type that is not a LOB. If pad is not specified, the pad character is determined as
follows:

• SBCS blank character if string-expression is a character string.
• DBCS blank character if string-expression is a graphic string.
• Hexadecimal zero (X'00'), if string-expression is a binary string.

The result of the function is a varying length string that has the same CCSID of string-expression. string-
expression and pad must have compatible data types. If the string expressions have different CCSID sets,
then pad is converted to the CCSID set of string-expression. If either string-expression or pad is FOR BIT
DATA, no character conversion occurs. The actual length of the result is determined from integer.

The length attribute of the result depends on integer. If integer is greater than 0, the length attribute of the
result is integer. If integer is 0, the length attribute of the result is 1.

The actual length of the result is determined from integer. If integer is 0, the actual length is 0, and the
result is the empty string. If integer is less than the actual length of string-expression, the actual length is
integer and the result is truncated.

The result can be null; if any argument is null, the result is the null value.

Example 1: Assume that NAME is a VARCHAR(15) column that contains the values 'Chris', 'Meg', and 'Jeff'.
The following query will completely pad out a value on the right with periods.

 SELECT RPAD(NAME,15,'.') AS NAME
 FROM T1;

The results are similar to the following output:

 NAME

 Chris..........
 Meg............
 Jeff...........

Example 2: Similar to Example 1, the following query will completely pad out a value on the right with pad
(note that in some cases there is a partial instance of the padding specification):

 SELECT RPAD(NAME,15,'123') AS NAME
 FROM T1;

The results are similar to the following output:

 NAME

 Chris1231231231
 Meg123123123123
 Jeff12312312312

Example 3: Similarly, the following query will only pad each value to a length of 5:

 SELECT RPAD(NAME,5,'.') AS NAME
 FROM T1;

The results are similar to the following output:

 NAME

 Chris
 Meg..
 Jeff.

564 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 4: Assume that NAME is a CHAR(15) column that contains the values 'Chris', 'Meg', and 'Jeff'.
Note that the result of RTRIM in the following example is a varying length string with the blanks removed:

 SELECT RPAD(RTRIM(NAME),15,'.') AS NAME
 FROM T1;

The results are similar to the following output:

 NAME

 Chris..........
 Meg............
 Jeff...........

RTRIM scalar function
The RTRIM function removes bytes from the end of a string expression based on the content of a trim
expression.

RTRIM (string-expression

, trim-expression

)

The schema is SYSIBM.

The RTRIM function removes all of the characters contained in trim-expression from the end of string-
expression. The search is done by comparing the binary representation of each character (which consists
of one or more bytes) in trim-expression to the bytes at the end of string-expression. If string-expression is
defined as FOR BIT DATA, the search is done by comparing each byte in trim-expression to the byte at the
end of string-expression.

string-expression
An expression that specifies the source string. The argument must be an expression that returns a
value that is a built-in string data type that is not a LOB, or a numeric data type. If the value is not a
string data type, it is implicitly cast to VARCHAR before the function is evaluated. If string-expression
is not FOR BIT DATA, trim-expression must not be FOR BIT DATA.

trim-expression
An expression that specifies the characters to remove from the end of string-expression. The
expression must return a value that is a built-in string data type that is not a LOB, or a numeric
data type. If the value is not a string data type, it is implicitly cast to VARCHAR before the function is
evaluated.

The default for trim-expression depends on the data type of string-expression:

• A DBCS blank if string-expression is a DBCS graphic string. For ASCII, the CCSID determines the hex
value that represents a DBCS blank. For example, for Japanese (CCSID 301), X'8140' represents a
DBCS blank, while for Simplified Chinese, X'A1A1' represents a DBCS blank. For EBCDIC, X'4040'
represents a DBCS blank.

• A UTF-16 or UCS-2 blank (X'0020') if string-expression is a Unicode graphic string.
• A value of X'00' if string-expression is a binary string.
• Otherwise, a single byte blank. For EBCDIC, X'40' represents a blank. When not EBCDIC, X'20'

represents a blank.

string-expression and trim-expression must have compatible data types. If string-expression and trim-
expression have different CCSID sets, trim-expression is converted to the CCSID of string-expression.

The result of the function depends on the data type of string-expression.

• VARCHAR if string-expression is a character string. If string-expression is defined as FOR BIT DATA, the
result is FOR BIT DATA.

• VARGRAPHIC if string-expression is a graphic string.

Chapter 4. Built-in functions 565

• VARBINARY if string-expression is a binary string.

The length attribute of the result is the same as the length attribute of string-expression.

The actual length of the result for a character or binary string is the length of string-expression minus the
number of bytes removed. The actual length of the result for a graphic string is the length (in number of
double byte characters) of string-expression minus the number of double byte characters removed. If all
of the characters are removed, the result is an empty string (the length is zero).

The result can be null; if the argument is null, the result is the null value.

The CCSID of the result is the same as that of string-expression.

Notes
Valid content for EBCDIC mixed string input:

If string-expression is an EBCDIC mixed string, the string must contain valid EBCDIC mixed data.

Examples
Example: Use the RTRIM function to remove individual numbers in the second argument from the end
(right side) of the first argument:

SELECT RTRIM ('123DEFG123', '321'),
 RTRIM ('12322XYZ12322222', '123'),
 RTRIM ('12321', '213'),
 RTRIM ('123XYX', '321')
 FROM SYSIBM.SYSDUMMY1

The result is '123DEFG', '12322XYZ', '' (empty string - all characters removed), and '123XYX' (no
characters removed).

The RTRIM function does not remove instances of '1', '2', and '3' at the beginning of the string, before
characters that are not '1', '2', or '3'.

Example: Use the RTRIM function to remove individual characters in the second argument from the
end (right side) of the first argument:

SELECT RTRIM ('((-78.0))' , '-0.()')
 FROM SYSIBM.SYSDUMMY1

The result is '((-78'.

Example: Use the RTRIM function to remove dollar signs and periods in the second argument from the
end (right side) of the first argument:

SELECT RTRIM ('...VAR...', '$.')
 FROM SYSIBM.SYSDUMMY1

The result is '...$VAR'.

SCORE scalar function
The SCORE function searches a text search index using criteria that are specified in a search argument
and returns a relevance score that measures how well a document matches the query.

Requirement: To use the SCORE function, Text Search for Db2 for z/OS must be installed and configured.
See IBM Text Search for Db2 for z/OS (IBM Text Search for Db2 for z/OS Installation, Administration, and
Reference) for more information.

SCORE (column-name , search-argument

, string-constant
1

)

Notes:

566 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/srchz/src/tpc/tsrch_prodoverview.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/srchz/src/tpc/tsrch_prodoverview.html

1 string-constant must conform to the rules for the search-argument-options.

search-argument-options

1

QUERYLANGUAGE = value

RESULTLIMIT = value

SYNONYM =

OFF

ON

Notes:
1 The same clause must not be specified more than once.

The schema is SYSIBM.

column-name
Specifies a qualified or unqualified name of a column that has a text search index that is to be
searched. The column must exist in the table or view that is identified in the FROM clause in the
statement and the column of the table, or the column of the underlying base table of the view must
have an associated text search index. The underlying expression of the column of a view must be
a simple column reference to the column of an underlying table, either directly or through another
nested view.

search-argument
Specifies an expression that returns a value that is a string value (except a LOB) that contains the
terms to be searched for and must not be all blanks or the empty string. The actual length of the
string must not exceed 4096 Unicode characters. The value is converted to Unicode before it is used
to search the text search index. The maximum number of terms per query must not exceed 1024.

string-constant
Identifies a string constant that specifies the search argument options that are in effect for the
function.

The options that can be specified as part of the search-argument-options are as follows:

QUERYLANGUAGE = value
Specifies the query language. The value can be any of the supported language codes. If the
QUERYLANGUAGE option is not specified, the default is the language value of the text search
index that is used when this function is invoked. If the language value of the text search index is
AUTO, the default value for QUERYLANGUAGE is en_US.

RESULTLIMIT = value
Specifies the maximum number of results that are to be returned from the underlying search
engine. The value can be an integer value in the range 1–2 147 483 647. If the RESULTLIMIT
option is not specified, no result limit is in effect for the query.

This scalar function cannot be called for each row of the result table, depending on the plan that
the optimizer chooses. This function can be called once for the query to the underlying search
engine, and a result set of all of the primary keys that match are returned from the search engine.
This result set is then joined to the table containing the column to identify the result rows. In this
case, the RESULTLIMIT value acts like a FETCH FIRST ?? ROWS from the underlying text search
engine and can be used as an optimization. If the search engine is called for each row of the
result because the optimizer determines that is the best plan, then the RESULTLIMIT option has
no effect.

Chapter 4. Built-in functions 567

SYNONYM = OFF or SYNONYM = ON
Specifies whether to use a synonym dictionary that is associated with the text search index. Use
the Synonym Tool to add a synonym dictionary to the collection. The default is OFF.
OFF

Do not use a synonym dictionary.
ON

Use the synonym dictionary that is associated with the text search index.

The result of the function is a double-precision floating-point number. If the second argument can be null,
the result can be null. If the second argument is null, the result is the null value. If the third argument is
null, the result is as if the third argument was not specified.

The result is greater than 0 but less than 1 if the column contains a match for the search criteria that the
search argument specifies. The better a document matches the query, the more relevant the score and
the larger the result value. If the column does not contain a match, the result is 0.

Notes
Determinism:

SCORE is a non-deterministic function.

Examples

Assume that information about employees' skills are stored in a table named EMP_RESUME. The following
statement generates a list of employees in the order of how well their resumes matches the query
"programmer AND (java OR cobol)", along with a relevance value that is normalized between 0 (zero) and
100.

SELECT EMPNO, INTEGER(SCORE(RESUME, 'programmer AND
 (java OR cobol)') * 100) AS RELEVANCE
 FROM EMP_RESUME
 WHERE RESUME_FORMAT = 'ascii'
 AND CONTAINS(RESUME, 'programmer AND (java OR cobol)') = 1
 ORDER BY RELEVANCE DESC

Db2 first evaluates the CONTAINS predicate in the WHERE clause, and therefore, does not evaluate the
SCORE function in the SELECT list for every row of the table. In this case, the arguments for SCORE and
CONTAINS must be identical.

SECOND scalar function
The SECOND function returns the seconds part of a value with optional fractional seconds.

SECOND( expression

, integer-constant

)

The schema is SYSIBM.

expression
expression must be an expression that returns a value of one of the following built-in data types: a
time, a timestamp, a character string, a graphic string, or a numeric data type.

• If expression is a character or graphic string, it must not be a CLOB or DBCLOB, and its value must
be a valid string representation of a time or timestamp with an actual length that is not greater
than 255 bytes. For the valid formats of string representations of times and timestamps, see “String
representations of datetime values” on page 120.

• If expression is a number, it must be a time or timestamp duration. For the valid formats of time and
timestamp durations, see “Datetime operands” on page 169.

568 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

integer-constant
integer-constant must be an integer constant that represents the scale for the fractional seconds
portion of expression. The value must be in the range 0 through 12. If integer-constant is not specified,
the result does not include fractional seconds.

If expression is a timestamp with a time zone, or a valid string representation of a timestamp with a time
zone, the result is determined from the UTC representation of the datetime value.

The result of the function with a single argument is a large integer. The result of the function with two
arguments is DECIMAL(2+s,s) where s is the value of integer-constant.

The result can be null; if the first argument is null, the result is the null value.

The other rules depend on the data type of the argument:

If the argument is a time, timestamp, or string representation of a time or a timestamp:
The result is the seconds part of the value (0 to 59) and any fractional seconds that are included in the
value. If the second argument is specified, the result includes integer-constant digits of the fractional
seconds part of the value where applicable. If there are no fractional seconds in the value, zeros are
returned.

If the argument is a time duration or timestamp duration:
The result is the seconds part of the value (-99 to 99) and any fractional seconds that are included
in the value. If the second argument is specified, the result includes integer-constant digits of the
fractional seconds part of the value where applicable. If there are no fractional seconds in the value,
zeros are returned. A nonzero result has the same sign as the expression.

Example 1: Assume that the variable TIME_DUR is declared in a PL/I program as DECIMAL(6,0) and
can therefore be interpreted as a time duration. When TIME_DUR has the value 153045, the following
function returns the value 45.

 SECOND(:TIME_DUR)

Example 2: Assume that RECEIVED is a TIMESTAMP column and that one of its values is the internal
equivalent of '1988-12-25-17.12.30.000000'. The following function returns the value 30.

 SECOND(RECEIVED)

Example 3: The following invocations of the SECOND function returns the same result:

SELECT SECOND('2003-01-02-20.10.05.123456'),
 SECOND('2003-01-02-12.10.05.123456-08:00'),
 SECOND('2003-01-03-05.10.05.123456+09:00')
 FROM SYSIBM.SYSDUMMY1;

For each invocation of the SECOND function in this SELECT statement, the result is 5.

When the input argument contains a time zone, the result is determined from the UTC representation
of the input value. The string representations of a timestamp with a time zone in the SELECT statement
all have the same UTC representation: 2003-01-02-20.10.05.123456. The second portion of the UTC
representation is 5.

Example 4: Return the seconds with fractional seconds from a current timestamp with milliseconds.

SELECT SECOND(CURRENT_TIMESTAMP(3),3)
 FROM SYSIBM.SYSDUMMY1;

The SELECT statement returns a DECIMAL(5,3) value that is based on the current timestamp and could be
something like 54.321.

Chapter 4. Built-in functions 569

SIGN scalar function
The SIGN function returns an indicator of the sign of the argument.

SIGN( numeric-expression)

The schema is SYSIBM.

The returned value is one of the following values:
-1

if the argument is less than zero
- 0

if the argument is DECFLOAT negative zero
0

if the argument is zero
1

if the argument is greater than zero

The argument must be an expression that returns a value of any built-in numeric data type, except
DECIMAL(31,31).

The argument can also be a character string or graphic string data type. The string input is implicitly cast
to a numeric value of DECFLOAT(34).

The result has the same data type and length attribute as the argument, except that precision is increased
by one if the argument is DECIMAL and the scale of the argument is equal to its precision. For example, an
argument with a data type of DECIMAL(5,5) will result in DECIMAL(6,5).

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable PROFIT is a large integer with a value of 50000.

 SELECT SIGN(:PROFIT)
 FROM SYSIBM.SYSDUMMY1;

This example returns the value 1.

SIN scalar function
The SIN function returns the sine of the argument, where the argument is an angle, expressed in radians.

SIN( numeric-expression)

The schema is SYSIBM.

The SIN and ASIN functions are inverse operations.

The argument must be an expression that returns the value of any built-in numeric data type that is not
DECFLOAT. If the argument is not a double precision floating-point number, it is converted to one for
processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable SINE is DECIMAL(2,1) with a value of 1.5. The following statement
returns a double precision floating-point number with an approximate value of 0.99.

 SELECT SIN(:SINE)
 FROM SYSIBM.SYSDUMMY1;

570 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SINH scalar function
The SINH function returns the hyperbolic sine of the argument, where the argument is an angle,
expressed in radians.

SINH( numeric-expression)

The schema is SYSIBM.

The argument must be an expression that returns the value of any built-in numeric data type that is not
DECFLOAT. If the argument is not a double precision floating-point number, it is converted to one for
processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Examples
Example 1:

Assume that host variable HSINE is DECIMAL(2,1) with a value of 1.5. The following statement returns
a double precision floating-point number with an approximate value of 2.12.

 SELECT SINH(:HSINE)
 FROM SYSIBM.SYSDUMMY1;

SMALLINT scalar function
The SMALLINT function returns a small integer representation either of a number or of a string
representation of a number.

Numeric to Smallint:

SMALLINT( numeric-expression)

String to Smallint:

SMALLINT( string-expression)

The schema is SYSIBM.

Numeric to Smallint

numeric-expression
An expression that returns a value of any built-in numeric data type.

The result is the same number that would occur if the argument were assigned to a small integer
column or variable. If the whole part of the argument is not within the range of small integers, an error
occurs. If present, the decimal part of the argument is truncated.

String to Smallint

string-expression
An expression that returns a value of character or graphic string (except a CLOB or DBCLOB) with a
length attribute that is not greater than 255 bytes for a character string or 127 for a graphic string. The
string must contain a valid string representation of a number.

Chapter 4. Built-in functions 571

The result is the same number that would result from CAST(string-expression AS SMALLINT).
Leading and trailing blanks are eliminated and the resulting string must conform to the rules for
forming an SQL integer constant.

The result of the function is a small integer.

The result can be null; if the argument is null, the result is the null value.

Notes
Syntax alternatives:

To increase the portability of applications, use the CAST specification. For more information, see
“CAST specification” on page 267.

Examples
Example 1:

Using sample table DSN8C10.EMP, find the average education level (EDLEVEL) of the employees in
department 'A00'. Round the result to the nearest full education level.

 SELECT SMALLINT(AVG(EDLEVEL)+.5)
 FROM DSN8C10.EMP
 WHERE DEPT = 'A00';

Assuming that the five employees in the department have education levels of '19', '18', '14', '18', and
'14', the result is '17'.

SOUNDEX scalar function
The SOUNDEX function returns a 4-character code that represents the sound of the words in the
argument. The result can be compared to the results of the SOUNDEX function of other strings.

SOUNDEX( expression)

The schema is SYSIBM.

expression
An expression that must return a value of any built-in numeric, character, or graphic string data type
that is not a LOB. A numeric, mixed character, or graphic string value is cast to a Unicode SBCS
character string before the function is evaluated. For more information about converting numeric data
to a character string, see “VARCHAR scalar function” on page 615. For more information about
converting mixed or graphic strings to Unicode SBCS, see “CAST specification” on page 267.

The data type of the result is CHAR(4).

The result can be null; if the argument is null, the result is the null value.

The CCSID of the result is the Unicode SBCS CCSID.

The SOUNDEX function is useful for finding strings for which the sound is known but the precise spelling
is not. It makes assumptions about the way that letters and combinations of letters sound that can help
to search for words with similar sounds. The comparison of words can be done directly or by passing
the strings as arguments to the DIFFERENCE function. For more information, see “DIFFERENCE scalar
function” on page 450.

Example 1: Use the SOUNDEX function to find a row where the sound of the LASTNAME value closely
matches the phonetic spelling of 'Loucesy':

 SELECT EMPNO, LASTNAME
 FROM DSN910.EMPLOYEE
 WHERE SOUNDEX(LASTNAME) = SOUNDEX('Loucesy');

This example returns the following row:

572 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 000110 LUCCHESSI;

SOAPHTTPC and SOAPHTTPV scalar function
The SOAPHTTPC function returns a CLOB representation of XML data that results from a SOAP request
to the web service that is specified by the first argument. The SOAPHTTPV function returns a VARCHAR
representation of XML data that results from a SOAP request to the web service that is specified by the
first argument.

SOAPHTTPC

SOAPHTTPV

( endpoint_url , soap_action , soap_body)

The schema is DB2XML.

These functions are deprecated and might not be available in future releases of Db2.

endpoint_url
An expression that returns a value of a built-in character string or graphic string data type that is not a
LOB. The value specifies the URL of the web service endpoint for which Db2 is acting as a client.

soap_action
An expression that returns a value of a built-in character string or graphic string data type that is not
a LOB. The value specifies a SOAP action URI reference. If it is required for the web service that is
specified in endpoint_url, the required value is defined in the WSDL of that web service.

soap_body
An expression that returns a value of a built-in character string data type that is defined as
VARCHAR(3072) or CLOB(1M). The value specifies the name of an operation with the requested
namespace URI, an encoding style, and input arguments. soap_body can include well-formed XML
content for the SOAP body. The specific operations and arguments for a web service are defined in the
WSDL of the specified web service.

If the arguments can be null, the result can be null; if all of the arguments are null, the result is the null
value.

The result can be null; if all of the arguments are null, the result is the null value.

Example 1: The following SQL statement retrieves information (as VARCHAR data) about a web service:

 SELECT DB2XML.SOAPHTTPV(
 'http://www.myserver.com/services/db2sample/ivt.dadx/SOAP',
 'http://tempuri.org/db2sample/ivt.dadx',
 '<testInstallation xmlns="http://tempuri.org/db2sample/ivt.dadx" />')
 FROM SYSIBM.SYSDUMMY1

Example 2: The following SQL statement inserts the results (as CLOB data) from a request to a web
service into a table:

 INSERT INTO EMPLOYEE(XMLCOL)
 VALUES (DB2XML.SOAPHTTPC(
 'http://www.myserver.com/services/db2sample/list.dadx/SOAP',
 'http://tempuri.org/db2sample/list.dadx',
 '<listDepartments xmlns="http://tempuri.org/db2sample/list.dadx">
 <deptNo>A00</deptNo>
 </listDepartments>'))

Chapter 4. Built-in functions 573

SOAPHTTPNC and SOAPHTTPNV scalar function
The SOAPHTTPNC and SOAPHTTPNV functions allow you to specify a complete SOAP message as input
and to return complete SOAP messages from the specified web service. The returned SOAP messages are
CLOB or VARCHAR representations of the returned XML data.

SOAPHTTPNC

SOAPHTTPNV

( endpoint_url , soap_action , soap_input)

The schema is DB2XML.

endpoint_url
Specifies the URL of the web service for which Db2 is acting as a client. endpoint_url is defined as a
VARCHAR(4096) value. The URL is in the following format:

proto://[user[:password]@]hostname[:port]/[path]

Where proto can be http or https.
soap_action

Specifies a SOAP action URI reference. soap_action is defined as a VARCHAR(4096) value. Depending
on the web server, soap_action might be required. If it is required for the web service that is specified
in endpoint_url, the required value is defined in the WSDL of that web service.

soap_input
Specifies an XML document that contains the complete SOAP message. soap_input can contain
optional SOAP headers and must contain a SOAP body that specifies the operation name
and parameters to the web service. soap_input should be well-formed XML that is defined as
VARCHAR(32672) or CLOB(1M).

Example 1: The following SQL statement retrieves information (as VARCHAR data) about a web service:

 SELECT DB2XML.SOAPHTTPNV(
 'http://rpc.geocoder.us/service/soap/',
 '"http://rpc.geocoder.us/Geo/Coder/US#geocode_address"',
 '<?xml version="1.0" encoding="UTF-8" ?>' ||
 '<SOAP-ENV:Envelope ' ||
 'xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" ' ||
 'xmlns:xsd="http://www.w3.org/2001/XMLSchema" ' ||
 'xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">' ||
 '<SOAP-ENV:Body>' ||
 '<ns0:geocode_address ' ||
 'xmlns:ns0="http://rpc.geocoder.us/Geo/Coder/US/" ' ||
 'SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">' ||
 '<address xsi:type="xsd:string">555 Bailey Avenue, San Jose,' ||
 'CA,95141</address>' ||
 '</ns0:geocode_address>' ||
 '</SOAP-ENV:Body>' ||
 '</SOAP-ENV:Envelope>')
 FROM SYSIBM.SYSDUMMY1;

Example 2: The following SQL statement inserts the results (as CLOB data) from a request to a web
service into a table:

 INSERT INTO EMPLOYEE(XMLCOL)
 VALUES (DB2XML.SOAPHTTPNC(
 'http://www.myserver.com/services/db2sample/list.dadx/SOAP',
 'http://tempuri.org/db2sample/list.dadx',
 '<?xml version="1.0" encoding="UTF-8" ?>' ||
 '<SOAP-ENV:Envelope ' ||
 'xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" ' ||
 'xmlns:xsd="http://www.w3.org/2001/XMLSchema" ' ||
 'xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">' ||
 '<SOAP-ENV:Body>' ||
 '<listDepartments xmlns="http://tempuri.org/db2sample/list.dadx">
 <deptNo>A00</deptNo>
 </listDepartments>' ||

574 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 '</SOAP-ENV:Body>' ||
 '</SOAP-ENV:Envelope>'))

SPACE scalar function
The SPACE function returns a character string that consists of the number of SBCS blanks that the
argument specifies.

SPACE( numeric-expression)

The schema is SYSIBM.

numeric-expression
An expression that returns the value of any built-in integer data type. The expression specifies the
number of SBCS blanks for the result, and it must be between 0 and 32764.

The argument can also be a character string or graphic string data type. The string input is implicitly
cast to a numeric value of DECFLOAT(34) which is then assigned to a BIGINT value.

The result of the function is a varying-length character string (VARCHAR) that contains SBCS data.

If numeric-expression is a constant, the length attribute of the result is the constant. Otherwise, the length
attribute of the result is 4000. The actual length of the result is the value of numeric-expression. The
actual length of the result must not be greater than the length attribute of the result.

The result can be null; if the argument is null, the result is the null value.

Example: The following statement returns a character string that consists of 5 blanks followed by a
zero-length string.

 SELECT SPACE(5), SPACE(0)
 FROM SYSIBM.SYSDUMMY1;

Related concepts
Character strings
A character string is a sequence of bytes. The length of the string is the number of bytes in the sequence.
If the length is zero, the value is called the empty string. The empty string should not be confused with the
null value.

SQRT scalar function
The SQRT function returns the square root of the argument.

SQRT( numeric-expression)

The schema is SYSIBM.

The argument must be an expression that returns the value of any built-in numeric data type. If the
argument is DECFLOAT, the operation is performed in DECFLOAT. Otherwise, the argument is converted to
a double precision floating-point number for processing by the functions.

The argument can also be a character string or graphic string data type. The string input is implicitly cast
to a numeric value of DECFLOAT(34).

If the argument is DECFLOAT(n), the result is DECFLOAT(n). Otherwise, the result of the function is a
double precision floating-point number. If the argument is a special decimal floating point value, the
general rules for arithmetic operations apply. For more information, see “General arithmetic operation
rules for DECFLOAT” on page 254

The result can be null; if the argument is null, the result is the null value.

Chapter 4. Built-in functions 575

Example: Assume that host variable SQUARE is defined as DECIMAL(2,1) and has a value of 9.0. Find the
square root of SQUARE.

 SELECT SQRT(:SQUARE)
 FROM SYSIBM.SYSDUMMY1;

This example returns a double precision floating-point number with an approximate value of 3.

STRIP scalar function
The STRIP function removes blanks or another specified character from the end, the beginning, or both
ends of a string expression.

STRIP( string-expression

,

BOTH

B

LEADING

L

TRAILING

T

, trim-constant

)

The schema is SYSIBM.

The STRIP function is similar to the TRIM scalar function.

Notes
Valid content for EBCDIC mixed string input:

If string-expression is an EBCDIC mixed string, the string must contain valid EBCDIC mixed data.
Related reference
TRIM scalar function
The TRIM function removes bytes from the beginning, from the end, or from both the beginning and end of
a string expression.

STRLEFT scalar function
The STRLEFT function returns a string that consists of the specified number of leftmost bytes of the
specified string units.

FL 506

Character string:

STRLEFT( character-expression , length
, CODEUNITS16

CODEUNITS32

OCTETS

)

The STRLEFT function is identical to the LEFT function. For more information, see “LEFT scalar function”
on page 487.

576 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html

STRPOS scalar function
The STRPOS function returns the position of the first occurrence of an argument within another argument.

FL 506

STRPOS( source-string , search-string)

The STRPOS function is identical to the POSSTR function. For more information, see “POSSTR or STRPOS
scalar function” on page 532.

STRRIGHT scalar function
The STRRIGHT function returns a string that consists of the specified number of rightmost bytes or
specified string unit from a string.

FL 506

STRRIGHT ( string-expression , integer
, CODEUNITS16

CODEUNITS32

OCTETS

)

The STRRIGHT function is identical to the RIGHT function. For more information, see “RIGHT scalar
function” on page 556.

SUBSTR scalar function
The SUBSTR function returns a substring of a string.

SUBSTR( string-expression , start

, length

)

The schema is SYSIBM.

string-expression
An expression that specifies the string from which the result is derived. The string must be a
character, graphic, or binary string. If string-expression is a character string, the result of the function
is a character string. If it is a graphic string, the result of the function is a graphic string. If it is a binary
string, the result of the function is a binary string.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

A substring of string-expression is zero or more contiguous characters of string-expression. If string-
expression is a graphic string, a character is a DBCS character. If string-expression is a character string
or a binary string, a character is a byte. The SUBSTR function accepts mixed data strings. However,
because SUBSTR operates on a strict byte-count basis, the result will not necessarily be a properly
formed mixed data string.

start
An expression that specifies the position within string-expression to be the first character of the result.
The value of the large integer must be between 1 and the length attribute of string-expression. (The
length attribute of a varying-length string is its maximum length.) A value of 1 indicates that the first
character of the substring is the first character of string-expression.

Chapter 4. Built-in functions 577

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html

The argument can also be a character string or graphic string data type. The string input is implicitly
cast to a numeric value of DECFLOAT(34) which is then assigned to an INTEGER value.

length
An expression that specifies the length of the resulting substring. If specified, length must be an
expression that returns a value that is a built-in large integer data type.

The argument can also be a character string or graphic string data type. The string input is implicitly
cast to a numeric value of DECFLOAT(34) which is then assigned to an INTEGER value.

The value must be greater than or equal to 0 and less than or equal to n, where n is the length
attribute of string-expression - start + 1. The specified length must not, however, be the
large integer constant 0.

If length is explicitly specified, string-expression is effectively padded on the right with the necessary
number of characters so that the specified substring of string-expression always exists. Hexadecimal
zeros are used as the padding character when string-expression is binary data. Otherwise, a blank is
used as the padding character.

If string-expression is a fixed-length string, omission of length is an implicit specification of
LENGTH(string-expression) - start + 1, which is the number of characters (or bytes)
from the character (or byte) specified by start to the last character (or byte) of string-expression.
If string-expression is a varying-length string, omission of length is an implicit specification of the
greater of zero or LENGTH(string-expression) - start + 1. If the resulting length is zero, the
result is an empty string.

If length is explicitly specified by a large integer constant that is 255 or less, and string-expression is
not a LOB, the result is a fixed-length string with a length attribute of length. If length is not explicitly
specified, but string-expression is a fixed-length string and start is an integer constant, the result is a
fixed-length string with a length attribute equal to LENGTH(string-expression) - start + 1.
In all other cases, the result is a varying-length string. If length is explicitly specified by a large integer
constant, the length attribute of the result is length; otherwise, the length attribute of the result is the
same as the length attribute of string-expression.

The result can be null; if any argument is null, the result is the null value.

The CCSID of the result is the CCSID of string-expression.

Example 1: FIRSTNME is a VARCHAR(12) column in sample table DSN8C10.EMP. When FIRSTNME has
the value 'MAUDE':

 Function: Returns:

 SUBSTR(FIRSTNME,2,3) -- 'AUD'
 SUBSTR(FIRSTNME,2) -- 'AUDE'
 SUBSTR(FIRSTNME,2,6) -- 'AUDE' followed by two blanks
 SUBSTR(FIRSTNME,6) -- a zero-length string
 SUBSTR(FIRSTNME,6,4) -- four blanks

Example 2: Sample table DSN8C10.PROJ contains column PROJNAME, which is defined as VARCHAR(24).
Select all rows from that table for which the string in PROJNAME begins with 'W L PROGRAM'.

 SELECT * FROM DSN8C10.PROJ
 WHERE SUBSTR(PROJNAME,1,12) = 'W L PROGRAM ';

Assume that the table has only the rows that were supplied by Db2. Then the predicate is true for just
one row, for which PROJNAME has the value 'W L PROGRAM DESIGN'. The predicate is not true for the
row in which PROJNAME has the value 'W L PROGRAMMING' because, in the predicate's string constant,
'PROGRAM' is followed by a blank.

Example 3: Assume that a LOB locator named my_loc represents a LOB value that has a length of 1
gigabyte. Assign the first 50 bytes of the LOB value to host variable PORTION.

 SET :PORTION = SUBSTR(:my_loc,1,50);

578 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 4: Assume that host variable RESUME has a CLOB data type and holds an employee's resume.
This example shows some of the statements that find the section of department information in the
resume and assign it to host variable DeptBuf. First, the POSSTR function is used to find the beginning and
ending location of the department information. Within the resume, the department information starts with
the string 'Department Information Section' and ends immediately before the string 'Education Section'.
Then, using these beginning and ending positions, the SUBSTR function assigns the information to the
host variable.

 SET :DInfoBegPos = POSSTR(:RESUME, 'Department Information Section');
 SET :DInfoEnPos = POSSTR(:RESUME, 'Education Section');
 SET :DeptBuf = SUBSTR(:RESUME, :DInfoBegPos, :DInfoEnPos - :DInfoBegPos);

SUBSTRING scalar function
The SUBSTRING function returns a substring of a string.

Character:

SUBSTRING (character-expression , start

, length

, CODEUNITS16

CODEUNITS32

OCTETS

)

Graphic:

SUBSTRING (graphic-expression , start

, length

, CODEUNITS16

CODEUNITS32

)

Binary:

SUBSTRING (binary-expression , start

, length

)

The schema is SYSIBM.

Character

character-expression
An expression that specifies the string from which the result is derived. The string must be a built-in
character string.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

The result of the function is a character string.

A substring of character-expression is zero or more contiguous units of character-expression. If
CODEUNITS32 is specified, a unit is a Unicode UTF-32 character. If CODEUNITS16 is specified, a
unit is a Unicode UTF-16 character. If OCTETS is specified, a unit is a byte.

Chapter 4. Built-in functions 579

start
An expression that specifies the position within the character-expression that is to be the first string
unit of the result. start is expressed in the specified string unit, and must return an integer value.

The argument can also be another numeric value, a character string, or a graphic string data type. The
input is implicitly cast to a numeric value of DECFLOAT(34) which is then assigned to an INTEGER
value.

The value of start can be positive, negative, or zero. A value of 1 indicates that the first string unit of
the result is the first string unit of character-expression.

length
An expression that specifies the maximum length of the resulting substring.

If character-expression is a fixed-length string, omission of length is an implicit specification of
CHARACTER_LENGTH(character-expression) - start + 1, which is the number of string
units (CODEUNITS16, CODEUNITS32, or OCTETS) from start to the last position of character-
expression.

If character-expression is a varying length string, omission of length is an implicit specification of
zero or CHARACTER_LENGTH(character-expression) - start + 1, whichever is greater. If
the resulting length is zero, the result is an empty string.

If specified, length must be an expression that returns a value of an integer data type.

The argument can also be another numeric value, a character string, or a graphic string data type. The
input is implicitly cast to a numeric value of DECFLOAT(34) which is then assigned to an INTEGER
value.

The value must be greater than or equal to 0. If a value greater than n is specified, where n is the
length attribute of character-expression - start+ 1, then n is used as the length of the
resulting substring. The value is expressed in the units that are explicitly specified.

For more information, see Rigorous description of the actual length and result.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit that is used to express start and length. If character-expression is a character
string that is defined as bit data, CODEUNITS16 and CODEUNITS32 cannot be specified.
CODEUNITS16

Specifies that start and length are expressed in terms of 16-bit UTF-16 code units.
CODEUNITS32

Specifies that start and length are expressed in terms of 32-bit UTF-32 code units.
OCTETS

Specifies that start and length are expressed in terms of bytes.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see “String unit
specifications” on page 106.

Graphic

graphic-expression
An expression that specifies the string from which the result is derived. The string must be a built-in
graphic string. The result of the function is a graphic string. A partial surrogate character in the
expression is replaced with a blank.

A substring of graphic-expression is zero or more contiguous units of graphic-expression. If
CODEUNITS32 is specified, a unit is a Unicode UTF-32 character. If CODEUNITS16 is specified, a
unit is a Unicode UTF-16 character.

start
An expression that specifies the position within the graphic-expression that is to be the first string unit
of the result. start is expressed in the specified string unit, and must return an integer value. The value
of start can be positive, negative, or zero. A value of 1 indicates that the first string unit of the result is
the first string unit of graphic-expression.

580 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The argument can also be another numeric value, a character string, or a graphic string data type.
The string input is implicitly cast to a numeric value of DECFLOAT(34) which is then assigned to an
INTEGER value.

length
An expression that specifies the maximum length of the resulting substring.

If graphic-expression is a fixed-length string, omission of length is an implicit specification
of CHARACTER_LENGTH(graphic-expression) - start +1, which is the number of units
(CODEUNITS16, CODEUNITS32) either explicitly or implicitly specified, from the start position to the
last position of graphic-expression. If graphic-expression is a varying length string, omission of length
is an implicit specification of zero or CHARACTER_LENGTH(graphic-expression) -start +1,
which is the number of units (CODEUNITS16, CODEUNITS32) either explicitly or implicitly specified,
whichever is greater. If the resulting length is zero, the result is an empty string.

If specified, length must be an expression that returns a value of an integer data type.

The argument can also be another numeric value, a character string, or a graphic string data type.
The string input is implicitly cast to a numeric value of DECFLOAT(34) which is then assigned to an
INTEGER value.

The value must be greater than or equal to 0. If a value greater than n is specified, where n is the
length attribute of graphic-expression - start+ 1, then n is used as the length of the resulting
substring. The value is expressed in the units that are explicitly specified.

For more information, see Rigorous description of the actual length and result.

CODEUNITS16 or CODEUNITS32
Specifies the string unit that is used to express start and length.
CODEUNITS16

Specifies that start and length are expressed in terms of 16-bit UTF-16 code units.
CODEUNITS32

Specifies that start and length are expressed in terms of 32-bit UTF-32 code units.

For more information about CODEUNITS16 and CODEUNITS32, see “String unit specifications” on
page 106.

Binary

binary-expression
An expression that specifies the string from which the result is derived. The string must be a built-in
binary string. The result of the function is a binary string.

A substring of binary-expression is zero or more contiguous units of binary-expression.

start
An expression that specifies the position within binary-expression to be the first byte of the result. It
must be an integer value. start can be negative or zero. (The length attribute of a varying-length string
is its maximum length.) A value of 1 indicates that the first byte of the substring is the byte unit of
binary-expression.

length
An expression that specifies the length of the resulting substring.

If binary-expression is a fixed-length string, omission of length is an implicit specification of
LENGTH(binary-expression) - start +1 from the start position to the last position of
binary-expression. If binary-expression is a varying length string, omission of length is an implicit
specification of zero or CHARACTER_LENGTH(binary-expression) -start +1, whichever is
greater. If the resulting length is zero, the result is an empty string.

If specified, length must be a value of an integer data type. The value must be greater than or equal to
0 If a value greater than n is specified, where n is the length attribute of binary-expression - start+ 1,
then n is used as the length of the resulting substring.

For more information, see Rigorous description of the actual length and result.

Chapter 4. Built-in functions 581

Rigorous description of the actual length and result

In this description, the term character means the “unit specified by string units” or "bytes" if the input is
binary.

Let C be the value of the first argument, let LC be the length in characters of C, and let S be the value of
the start.

• If length is specified, let L be the value of length and let E be S+L. Otherwise, let E be the larger of LC
+ 1 and S.

• If either C, S, or L is the null value, the result of the function is the null value.
• If E is less than S, an exception condition is raised: data exception — substring error.
• Otherwise:

– If S is greater than LC or if E is less than 1 (one), the result of the function is a zero-length string.
– Otherwise:

- Let S1 be the larger of S and 1 (one). Let E1 be the smaller of E and LC+1. Let L1 be E1–S1.
- The result of the function is a character string that contains the L1 characters of C starting at

character number S1 in the same order that the characters appear in C.

The data type of the result depends on the data type of the first argument, as shown in the following table.

Table 89. Data type of the result of SUBSTRING

Data type of the first argument Data type of the result

CHAR or VARCHAR VARCHAR

CLOB CLOB

If character-expression is mixed data, the result is
mixed data. Otherwise, the result is SBCS data.

GRAPHIC or VARGRAPHIC VARGRAPHIC

DBCLOB DBCLOB

BINARY or VARBINARY VARBINARY

BLOB BLOB

The length attribute of the result is equal to the length attribute of the first argument. If CODEUNITS16
or CODEUNITS32 is specified, see “Determining the length attribute of the final result” on page 108 for
information about how to calculate the length attribute of the result string.

The result can be null; if any argument is null, the result is the null value.

If the first argument is character or graphic data, the CCSID of the result is the same as that of the first
argument.

Example 1: C1 is a VARCHAR(12) column in table T1. One of its values is the string 'ABCDEFG'. When C1
has the value 'ABCDEFG':

 Function: Returns:

 SUBSTRING(C1,-2,2,OCTETS) -- a zero-length string
 SUBSTRING(C1,-2,4,OCTETS) 'A'
 SUBSTRING(C1,-2,OCTETS) 'ABCDEFG'
 SUBSTRING(C1,0,1,OCTETS) -- a zero-length string

582 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 2: FIRSTNAME is a VARCHAR(12) column in table T1. One of its values is the 6-character string
'Jürgen'. When FIRSTNAME has the value 'Jürgen':

 Function: Returns:
 --
 SUBSTRING(FIRSTNAME,1,2,CODEUNITS32) 'Jü' -- x'4AC3BC'
 SUBSTRING(FIRSTNAME,1,2,CODEUNITS16) 'Jü' -- x'4AC3BC'
 SUBSTRING(FIRSTNAME,1,2,OCTETS) 'J ' -- x'4A20' (a truncated string)
 SUBSTRING(FIRSTNAME,8,CODEUNITS16) -- a zero-length string
 SUBSTRING(FIRSTNAME,8,4,OCTETS) -- a zero-length string

TAN scalar function
The TAN function returns the tangent of the argument, where the argument is an angle, expressed in
radians.

TAN( numeric-expression)

The schema is SYSIBM.

The TAN and ATAN functions are inverse operations.

The argument must be an expression that returns the value of any built-in numeric data type that is not
DECFLOAT. If the argument is not a double precision floating-point number, it is converted to one for
processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable TANGENT is DECIMAL(2,1) with a value of 1.5. The following
statement returns a double precision floating-point number with an approximate value of 14.10 .

 SELECT TAN(:TANGENT)
 FROM SYSIBM.SYSDUMMY1;

TANH scalar function
The TANH function returns the hyperbolic tangent of the argument, where the argument is an angle,
expressed in radians.

TANH( numeric-expression)

The schema is SYSIBM.

The TANH and ATANH functions are inverse operations.

The argument must be an expression that returns the value of any built-in numeric data type that is not
DECFLOAT. If the argument is not a double precision floating-point number, it is converted to one for
processing by the function.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Example: Assume that host variable HTANGENT is DECIMAL(2,1) with a value of 1.5. The following
statement returns a double precision floating-point number with an approximate value of 0.90.

 SELECT TANH(:HTANGENT)
 FROM SYSIBM.SYSDUMMY1;

Chapter 4. Built-in functions 583

TIME scalar function
The TIME function returns a time that is derived from a value.

TIME( expression)

The schema is SYSIBM.

The argument must be an expression that returns a value of one of the following built-in data types: a
time, a timestamp, a character string, or a graphic string. If expression is a character or graphic string,
it must not be a CLOB or DBCLOB, and its value must be a valid string representation of a time or
timestamp with an actual length of not greater than 255 bytes. A time zone in a string representation of a
timestamp is ignored. For the valid formats of string representations of times and timestamps, see “String
representations of datetime values” on page 120.

If expression is a TIMESTAMP WITH TIME ZONE value, expression is first cast to TIMESTAMP WITHOUT
TIME ZONE, with the same precision as expression.

If expression is not a TIME value, expression is cast as follows:

• If expression is a TIMESTAMP WITH TIME ZONE value, expression is cast to TIMESTAMP WITHOUT
TIME ZONE, with the same precision as expression.

• If expression is a string, expression is cast to TIME.

The result of the function is a time.

The result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

If the argument is a time
the result is that time.

If the argument is a timestamp
the result is the time part of the timestamp.

If the argument is a string
the result is the time or time part of the timestamp represented by the string. If the CCSID of the
string is not the same as the corresponding default CCSID at the server, the string is first converted to
that CCSID.

The result CCSID is the appropriate CCSID of the argument encoding scheme and the result subtype is the
appropriate subtype of the CCSID.

Example: Assume that a table named CLASSES contains one row for each scheduled class. Assume also
that the class starting times are in the TIME column named STARTTM. Using these assumptions, select
those rows in CLASSES that represent classes that start at 1:30 P.M.

 SELECT *
 FROM CLASSES
 WHERE TIME(STARTTM) = '13:30:00';

TIMESTAMP scalar function
The TIMESTAMP function returns a TIMESTAMP WITHOUT TIME ZONE value from its argument or
arguments.

TIMESTAMP( expression-1

, expression-2

)

The schema is SYSIBM.

584 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The rules for the arguments depend on whether the second argument is specified.

• If only one argument is specified:

The argument must be an expression that returns a value of one of the following built-in data types: a
date, a timestamp, a character string, a graphic string, or a binary string. If expression-1 is a character or
graphic string, it must not be a CLOB or DBCLOB and it must have one of the following values:

– A valid string representation of a date or timestamp with an actual length that is not greater than 255
bytes. A time zone in a string representation of a timestamp is ignored. For the valid formats of string
representations of timestamps, see “String representations of datetime values” on page 120.

– A character string or graphic string with an actual length of 8 that is assumed to be a IBM zSystems
Store Clock value.

– A character string with an actual length of 13 that is assumed to be a result from the
GENERATE_UNIQUE function.

– A character string or graphic string with an actual length of 14 that represents a valid date and time in
the form yyyyxxddhhmmss, where yyyy is the year, xx is the month, dd is the day, hh is the hour, mm is
the minute, and ss is the seconds.20

If expression-1 is a binary string, it must not be a BLOB and its value must be one of the following:

– A binary string with an actual length of 8 bytes that is assumed to be a IBM zSystems Store Clock
value.

– A binary string with an actual length of 16 bytes that is assumed to be a IBM zSystems Store Clock
extended value.

– A binary string with an actual length of 13 bytes that is assumed to be a result from the
GENERATE_UNIQUE function.

• If both arguments are specified:

– If the data type of the second argument is not an integer:

The first argument must be an expression that returns a value of one of the following built-in data
types: a date, a character string, or a graphic string. The second argument must be an expression
that returns a value of one of the following built-in data types: a time, a character string, or a graphic
string. A character string or graphic string must be a valid string representation of a time.

If expression-1 is a character string or graphic string, it must not be a CLOB or DBCLOB, and its value
must be a valid string representation of a date with an actual length that is not greater than 255
bytes. If expression-2 is a character string or graphic string, it must not be a CLOB or DBCLOB, and its
value must be a valid string representation of a time with an actual length that is not greater than 255
bytes. For the valid formats of string representations of dates and times, see “String representations
of datetime values” on page 120.

– If the data type of the second argument is integer:

The first argument must be an expression that returns a value of one of the following built-in data
types: a timestamp, a date, a character string, or a graphic string. The second argument must be an
integer constant in the range 0 to 12 that represents the timestamp precision.

If expression-1 is a character string or graphic string, it must not be a CLOB or DBCLOB, and its value
must be a valid string representation of a timestamp or a date with an actual length that is not greater
than 255 bytes.

If expression-1 is a binary string, it must not be a BLOB, and its value must conform to the rules for
when only one argument is specified. The second argument must be an integer constant in the range
0 to 12 that represents the timestamp precision.

The result of the function is a TIMESTAMP WITHOUT TIME ZONE value.

20 A character or graphic string with an actual length of 14 that represents a valid date and time (as allowed
for the TIMESTAMP function) is also allowed as input to other scalar functions that accept a timestamp as
an input argument.

Chapter 4. Built-in functions 585

The timestamp precision and other rules depend on whether the second argument is specified:

If both arguments are specified and the second argument is not an integer:
The result is a TIMESTAMP(6) WITHOUT TIME ZONE value with the date that is specified by the first
argument and the time that is specified by the second argument. The fractional seconds part of the
timestamp is zero.

If both arguments are specified and the second argument is an integer:
The result is a TIMESTAMP WITHOUT TIME ZONE value with the precision that is specified in the
second argument.

If only one argument is specified and it is a TIMESTAMP (p) WITHOUT TIME ZONE:
The result is that TIMESTAMP (p) WITHOUT TIME ZONE value.

If only one argument is specified and it is a TIMESTAMP(p) WITH TIME ZONE:
The result is the argument value, cast to TIMESTAMP(p) WITHOUT TIME ZONE. The value is the local
timestamp, not UTC.

If only one argument is specified and it is a date:
The result is that date with an assumed time of midnight that is cast to TIMESTAMP(0) WITHOUT
TIME ZONE.

If only one argument is specified and it is a character or graphic string:
The result is the TIMESTAMP(6) WITHOUT TIME ZONE value that is represented by that string
extended with any missing time information. If the argument is a string of length 14, the TIMESTAMP
has a fractional seconds part of zero. The string value must not contain a specification of time zone.

If only one argument is specified and it is a binary string:
The result is the TIMESTAMP(6) WITHOUT TIME ZONE value that is represented by that string. If the
year value in the resulting timestamp is greater than 9999 an error is returned.

If the arguments include only date information, the time information in the result value is all zeros.

The result can be null; if any argument is null, the result is the null value.

If an argument is a string with a CCSID that is not the same as the corresponding default CCSID at the
server, the string is first converted to that CCSID.

The result CCSID is the appropriate CCSID of the argument encoding scheme and the result subtype is
the appropriate subtype of the CCSID. If both arguments are specified and their encoding schemes are
different, the result CCSID is the appropriate CCSID of the application encoding scheme.

Notes
Specifying an LRSN as an argument:

When a 6-byte LRSN is used as the argument to the TIMESTAMP function, it must be left justified and
padded on the right to a total length of 8 bytes. When a 10-byte LRSN is used, it must be left justified
and padded on the right to a total length of 16 bytes.

Effect of leap seconds or the system time zone on the result of the TIMESTAMP function with a binary
value as the first argument:

Db2 does not adjust for leap seconds or the system time zone when it converts an IBM zSystems
Store Clock value or an IBM zSystems Store Clock extended value to a timestamp value.

Syntax alternatives:
If only one argument is specified, the CAST specification should be used for maximal portability. For
more information, see “CAST specification” on page 267.

TIMESTAMP_TZ is a similar function. For more information, see “TIMESTAMP_TZ scalar function” on
page 596.

Examples
Example: TIMESTAMP with a DATE column and a TIME column as arguments

Assume that table TABLEX contains a DATE column named DATECOL and a TIME column named
TIMECOL. For some row in the table, assume that DATECOL represents 25 December 2008 and

586 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

TIMECOL represents 17 hours, 12 minutes, and 30 seconds after midnight. The following function
returns the value '2008-12-25-17.12.30.000000'.

 TIMESTAMP(DATECOL, TIMECOL)

Example: TIMESTAMP with a timestamp with time zone argument
Assume that host variable PRSTSZ contains '2008-02-29.20.00.000000 -08.30. The following
statement returns the value '2008-02-29.20.00.000000':

SELECT TIMESTAMP(:PRSTSZ)
 FROM PROJECT;

Example: TIMESTAMP with a timestamp and an integer as arguments
The following invocation of the TIMESTAMP function converts a timestamp string with 7 digits
of fractional seconds to a TIMESTAMP(9) WITHOUT TIME ZONE value and returns a value of
'2007-09-24-15.53.37.216247400':

 TIMESTAMP('2007-09-24-15.53.37.2162474',9);

TIMESTAMPADD scalar function
The TIMESTAMPADD function returns the result of adding the specified number of the designated interval
to the timestamp value.

TIMESTAMPADD( interval , number , expression)

The schema is SYSIBM.

interval
An expression that returns a value of a built-in SMALLINT or INTEGER data type. The following values
are valid values for interval:

Table 90. Valid values for intervals

Valid values for interval equivalent intervals

1 Microseconds

2 Seconds

4 Minutes

8 Hours

16 Days

32 Weeks

64 Months

128 Quarters

256 Years

number
An expression that returns a value of a built-in SMALLINT or INTEGER data type.

expression
An expression that returns a value of a built-in TIMESTAMP WITHOUT TIME ZONE data type.

The result of the function is timestamp without time zone, with the same timestamp precision as
expression.

The result can be null; if any argument is null, the result is the null value.

Chapter 4. Built-in functions 587

The result is determined using the normal rules for datetime arithmetic. See “Datetime arithmetic in SQL”
on page 259. When the interval to add is expressed as weeks, the result is calculated as if number x 7
days had been specified. When the interval to add is expressed as quarters, the result is calculated as if
number x 3 months had been specified.

Example 1: The following example will add 40 years to the specified timestamp. An interval of 256
designates years, while 40 specifies the number of intervals to add. The following statement returns the
value '2005-07-27-15.30.00.000000'.

 SELECT TIMESTAMPADD(256,40,TIMESTAMP('1965-07-27-15.30.00'))
 FROM SYSIBM.SYSDUMMY1;

Example 2: The following example will add 18 months to the specified timestamp. An interval of 64
designates months, while 18 specifies the number of intervals to add. The following statement returns the
value '2008-07-20-08.08.00.000000'.

 SELECT TIMESTAMPADD(64,18,TIMESTAMP('2007-01-20-08.08.00'))
 FROM SYSIBM.SYSDUMMY1;

Example 3: The following example will subtract 16 quarters (4 years) from the specified timestamp. An
interval of 128 designates quarters, while -16 specifies the number of intervals to add (the '-' adds a
negative amount). The following statement returns the value '2003-09-28-05.30.00.000000'.

 SELECT TIMESTAMPADD(128,-16,TIMESTAMP('2007-09-28-05.30.00'))
 FROM SYSIBM.SYSDUMMY1;

Example 4: The following example will add 18 weeks to the specified timestamp. An interval of 32
designates weeks, while 18 specifies the number of intervals to add. The following statement returns the
value '2007-05-27-08.08.00.000000'.

SELECT TIMESTAMPADD(32,18,TIMESTAMP('2007-01-20-08.08.00'))
 FROM SYSIBM.SYSDUMMY1;

TIMESTAMPDIFF scalar function
The TIMESTAMPDIFF function returns an estimated number of intervals of the type that is defined by the
first argument, based on the difference between two timestamps.

TIMESTAMPDIFF( numeric-expression , string-expression)

The schema is SYSIBM.

numeric-expression
An expression that returns a value that is a built-in SMALLINT or INTEGER data type. The value
specifies the interval that is used to determine the difference between two timestamps. The following
table lists the valid values for numeric-expression:

Table 91. Valid values for numeric-expression and equivalent intervals that are used to determine the
difference between two timestamps

Valid values for numeric-expression equivalent intervals

1 Microseconds

2 Seconds

4 Minutes

8 Hours

16 Days

32 Weeks

588 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 91. Valid values for numeric-expression and equivalent intervals that are used to determine the
difference between two timestamps (continued)

Valid values for numeric-expression equivalent intervals

64 Months

128 Quarters

256 Years

string-expression

An expression that returns a value of a built-in character string or a graphic string data type that is not
a LOB. The value is expected to be the result of subtracting two timestamps and converting the result
to a character string of length 22. The string value must not have more than 6 digits to the right of a
decimal point.

If the supplied argument is a graphic string, it is first converted to a character string before the
function is executed.

The following table describes the elements of string-expression:

Table 92. TIMESTAMPDIFF String Elements

String elements Valid values
Character position from the
decimal point (negative is left)

Years 1-9998 or blank -14 to -11

Months 0-11 or blank -10 to -9

Days 0-30 or blank -8 to -7

Hours 0-24 or blank -6 to -5

Minutes 0-59 or blank -4 to -3

Seconds 0-59 -2 to -1

Decimal separator period 0

Microsecond 000000-999999 1 to 6

The result of the function is an integer with the same sign as the second argument.

The result can be null; if any argument is null, the result is the null value.

The returned value is determined for each interval as indicated by the following table:

Table 93. TIMESTAMPDIFF Computations

Result interval Computation using duration elements

Years years

Quarters integer value of (months+(years*12))/3

Months months + (years*12)

Weeks integer value of ((days+(months*30))/7)+(years*52)

Days days + (months*30)+(years*365)

Hours hours+ ((days + (months*30)+(years*365))*24)

Minutes (the absolute value of the duration must not exceed
40850913020759.999999)

minutes + (hours+((days+(months*30)+(years*365))*24))*60

Seconds (the absolute value of the duration must be less than
680105031408.000000)

seconds + (minutes+(hours+((days+(months*30)
+(years*365))*24))*60)*60

Chapter 4. Built-in functions 589

Table 93. TIMESTAMPDIFF Computations (continued)

Result interval Computation using duration elements

Microseconds (the absolute value of the duration must be less
than 3547.483648)

microseconds + (seconds+(minutes*60))*1000000

The following assumptions are used in estimating a difference:

• One year has 365 days
• One year has 52 weeks
• One year has 12 months
• One month has 30 days
• One day has 24 hours
• One hour has 60 minutes
• One minute has 60 seconds

The use of these assumptions imply that some result values are an estimate of the interval. Consider the
following examples:

• Difference of 1 month where the month has less than 30 days.

TIMESTAMPDIFF(16, CHAR(TIMESTAMP('1997-03-01-00.00.00')
 - TIMESTAMP('1997-02-01-00.00.00')))

The result of the timestamp arithmetic is a duration of 00000100000000.000000, or 1 month. When
the TIMESTAMPDIFF function is invoked with 16 for the interval argument (days), the assumption of 30
days in a month is applied and the result is 30.

• Difference of 1 day less than 1 month where the month has less than 30 days.

TIMESTAMPDIFF(16, CHAR(TIMESTAMP('1997-03-01-00.00.00')
 - TIMESTAMP('1997-02-02-00.00.00')))

The result of the timestamp arithmetic is a duration of 00000027000000.000000, or 27 days. When
the TIMESTAMPDIFF function is invoked with 16 for the interval argument (days), the result is 27.

• Difference of 1 day less than 1 month where the month has 31 days.

TIMESTAMPDIFF(64, CHAR(TIMESTAMP('1997-09-01-00.00.00')
 - TIMESTAMP('1997-08-02-00.00.00')))

The result of the timestamp arithmetic is a duration of 00000030000000.000000, or 30 days. When
the TIMESTAMPDIFF function is invoked with 64 for the interval argument (months), the result is 0. The
days portion of the duration is 30, but it is ignored because the interval specified months.

Example: The following statement estimates the age of employees in months and returns that value as
AGE_IN_MONTHS:

SELECT
 TIMESTAMPDIFF(64, CAST(CURRENT_TIMESTAMP-CAST(BIRTHDATE AS TIMESTAMP)
 AS CHAR(22)))
 AS AGE_IN_MONTHS
 FROM EMPLOYEE;

590 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

TIMESTAMP_FORMAT or TO_TIMESTAMP scalar function
The TIMESTAMP_FORMAT function returns a TIMESTAMP WITHOUT TIME ZONE value that is based on
the interpretation of the input string using the specified format.

TIMESTAMP_FORMAT (string-expression , format-string

, 6

, precision-constant

)

The schema is SYSIBM.

string-expression
An expression that returns a value of any built-in character or graphic string data type, other than
a CLOB or DBCLOB, with an actual length that is not greater than 255 bytes. The string-expression
must contain the components of a timestamp that correspond to the format that is specified in
format-string, except for hour, minute, second, or fractional seconds.

format-string
An expression that returns a value that is a built-in character or graphic string data type, other than a
CLOB or DBCLOB. The actual length must not be greater than 255 bytes. The value is a template for
how string-expression is interpreted and then converted to a timestamp value.

A valid format-string must contain at least one format element, must not contain multiple
specifications for any component of a timestamp, and can contain any combination of the format
elements, unless otherwise noted in the following table. For example, format-string cannot contain
both YY and YYYY, because both are used to interpret the year component of a string-expression. Two
format elements can be separated by one or more of the following separator characters:

• minus sign (-)
• period (.)
• forward slash (/)
• comma (,)
• apostrophe (')
• semicolon (;)
• colon (:)
• blank ()

Separator characters can also be specified at the start or end of format-sting. These separator
characters can be used in any combination in the format string, for example 'YYYY/MM-DD HH:MM.SS'.
Separator character that is specified in a string-expression are used to separate components and are
not required to match the separator character that is specified in the format-string.

Table 94. Format elements for the TIMESTAMP_FORMAT function

Format element

Related
timestamp
component Description

AM or PM 1 hour Meridian indicator (morning or evening) without periods.
This format element uses the exact strings "AM" or "PM".

A.M. or P.M. 1 hour Meridian indicator (morning or evening) with periods. This
format element uses the exact strings "A.M." or "P.M."

D 1 none Day of the week (1-7).

Chapter 4. Built-in functions 591

Table 94. Format elements for the TIMESTAMP_FORMAT function (continued)

Format element

Related
timestamp
component Description

DD day Day of the month (0-31).

DDD month, day Day of the year (001-366).

FF or FFn fractional
seconds

Fractional seconds (0-999999999999). The number n is
used to specify the number of digits that is expected in the
string-expression. Valid values for n are 1-12 with no leading
zeros.

Specifying FF is equivalent to specifying FF6. When the
component in string-expression that corresponds to the FF
format element is followed by a separator character or is
the last component, the number of digits for the fractional
seconds can be less than what is specified by the format
element. In this case, zero digits are padded onto the right
of the number of specified digits.

HH hour HH behaves the same as HH12.

HH12 hour Hour of the day (01-12) in 12-hour format. AM is the default
meridian indicator.

HH24 hour Hour of the day (00-24) in 24-hour format.

J year, month, and
day

Julian day, the number of days since January 1, 4713 BC.
(0000000-9999999)

MI minute Minute (00-59).

MM month Month (01-12).

MONTH, Month, or
month 1, 2

month Name of the month in English.

MON, Mon, or mon
1, 2

month Abbreviated name of the month in English.

NNNNNN microseconds Microseconds, in the same format as FF6.
(000000-999999).

RR year Last two digits of the adjusted year (00-99).

RRRR year RRRR behaves the same as YYYY.

SS seconds Seconds (00-59).

SSSSS hours, minutes,
and seconds

Seconds since the previous midnight (00000–86400).

Y year Last digit of the year (0-9). First three digits of the current
year are used to determine the full 4-digit year.

YY year Last two digits of the year (00-99). First two digits of the
current year are used to determine the full 4-digit year.

YYY year Last three digits of the year (000-999). First digit of the
current year is used to determine the full 4-digit year.

YYYY year 4-digit year (0000-9999).

592 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 94. Format elements for the TIMESTAMP_FORMAT function (continued)

Format element

Related
timestamp
component Description

Notes:

1. This format element is case sensitive.
2. Only these exact spellings and case combinations can be used. If this format element is specified

in an invalid case combination an error is returned.
3. The D format element does not contribute to any components of the resulting timestamp.

However, a specified value for this format element must be correct for the combination of the
day component of the resulting timestamp. For example, a value of '5' for string-expression is
valid for a format string value of 'D'. However, value of '9' for string-expression would result in an
error for the same format-string.

The RR format element can be used to change how a specification for a year is to be interpreted by
adjusting the value to produce a 4-digit value depending on the last two digits of the current year
according to the following table:

Table 95. Correspondence of adjusted year value and timestamp component

Digits of the current year
Two-digit year in string-
expression

First two digits of the year
component of timestamp

00-50 00-49 First two digits of the current
year

51-99 00-49 First two digits of the current
year + 1

00-50 50-99 First two digits of the current
year -1

51-99 50-99 First two digits of the current
year

For example, if the current year is 2007, '86' with format 'RR' means 1986, but if the current year is
2052, it means 2086.

The following defaults are used when a format-string does not include a format element for one of the
following components of a timestamp:

Timestamp component Default

year current year, as 4 digits

month current month. as 2 digits

day 01 (first day of the month)

hour 00

minute 00

second 00

fractional seconds a number of zeros to match the timestamp precision of the result

If string-expression does not include a value that corresponds to an hour, minute, second, or fractional
seconds format element that is specified in the format-string, the same defaults are used.

Chapter 4. Built-in functions 593

Leading zeros can be specified for any component of the timestamp value (that is, month, day, hour,
minutes, seconds) that does not have the maximum number of significant digits for the corresponding
format element in the format-string.

A substring of the string-expression that represents a component of a timestamp (such as year,
month, day, hour, minutes, seconds) can include fewer than the maximum number of digits for that
component of the timestamp that is indicated by the corresponding format element. Any missing
digits default to zero. For example, with a format-string of 'YYYY-MM-DD HH24:MI:SS', an input value
of '999-3-9 5:7:2' produces the same result as '0999-03-09 05:07:02'.

precision-constant
An integer constant that specifies the timestamp precision of the result. The value must be in the
range 0 to 12. If precision-constant is not specified, the timestamp precision defaults to 6.

The result of the function is a TIMESTAMP with a precision that is based on precision-constant.

If either of the first two arguments can be null, the result can be null; if either of the first two arguments is
null, the result is the null value.

The result CCSID is the appropriate CCSID of the encoding scheme of the first argument and the result
subtype is the appropriate subtype of the CCSID.

Notes
Julian and Gregorian calendar:

The transition from the Julian calendar to the Gregorian calendar on 15 October 1582 is taken into
account by this function.

Determinism:
TIMESTAMP_FORMAT is a deterministic function. However, the following invocations of the function
depend on the value of the special register CURRENT TIMESTAMP.

• format-string is not a constant
• format-string is a constant and includes format elements that are locale sensitive
• format-string is a constant and does not include a format element that fully defines the year (that is,

J or YYYY). In this case the current year is used.
• format-string is a constant and does not include a format element that fully defines the month (for

example, J, MM, MONTH, or MON). In this case the current month is used.

These invocations, which depend on the value of a special register, cannot be used wherever special
registers cannot be used.

Using the 'D', 'Y', and 'y' format elements:
Db2 for z/OS does not support the 'DY', 'dy', and 'Dy' format elements that are supported by other
platforms. If 'DY' or 'Dy' is specified in the format string, it is interpreted as the 'D' format element
followed by the 'Y' or 'y' format element. This behavior might change in a future release. To ensure
that a 'D' followed by 'Y' or 'y' is interpreted as two separate format elements, include a separator
character after the 'D' format element.

Syntax alternatives:

FL 506 TO_TIMESTAMP is a synonym for TIMESTAMP_FORMAT.

TO_DATE is a synonym for TIMESTAMP_FORMAT.

Examples
Example 1:

Insert a row into the IN_TRAY table with a receiving timestamp that is equal to one second before the
beginning of the year 2000 (December 31, 1999 at 23:59:59).

INSERT INTO IN_TRAY (RECEIVED)
 VALUES (TIMESTAMP_FORMAT('1999-12-31 23:59:59', 'YYYY-MM-DD HH24:MI:SS'))

594 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html

Example 2:
An application receives strings of date information into a variable called INDATEVAR. This value is not
strictly formatted and might include two or four digits for years, and one or two digits for months
and days. Date components might be separated with minus sign (-) or forward-slash (/) characters
and are expected to be in day, month, and year order. Time information consists of hours (in 24-hour
format) and minutes, and is usually separated by a colon. Sample values include '15/12/98 13:48'
and '9-3-2004 8:02'. Insert such values into the IN_TRAY table.

INSERT INTO IN_TRAY (RECEIVED)
 VALUES (TIMESTAMP_FORMAT(:INDATEVAR, 'DD/MM/RRRR HH24:MI'))

The use of 'RRRR' in the format allows for 2-digit and 4-digit year values and assigns the missing first
two digits based on the current year. If 'YYYY' is used, input values with a 2-digit year will have leading
zeros. The forward-slash separator also allows the minus sign character. Assuming a current year of
2007, resulting timestamp values from the sample values are as follows:

'15/12/98 13:48' --> 1998-12-15-13.48.00.000000
'9-3-2004 8:02' --> 2004-03-09-08.02.00.000000

TIMESTAMP_ISO scalar function
The TIMESTAMP_ISO function returns a timestamp value that is based on a date, a time, or a timestamp
argument.

TIMESTAMP_ISO( expression)

The schema is SYSIBM.

If the argument is a date, TIMESTAMP_ISO inserts a value of zero for the time and the partial seconds
parts of the timestamp. If the argument is a time, TIMESTAMP_ISO inserts the value of CURRENT DATE for
the date part of the timestamp and a value of zero for the partial seconds part of the timestamp.

expression
An expression that returns a value of one of the following built-in data types:

• a TIMESTAMP WITHOUT TIME ZONE
• a date
• a time
• a character string
• or a graphic string

If expression is a character or graphic string, it must not be a CLOB or DBCLOB and its value must
be a valid string representation of a date, a time, or a timestamp. For the valid formats of string
representations of dates, times, and timestamps, see “String representations of datetime values” on
page 120.

If expression is a timestamp, the result of the function is timestamp without time zone, with the same
precision as expression. Otherwise, the result of the function is a TIMESTAMP (6) WITHOUT TIME ZONE.

The result can be null; if the argument is null, the result is the null value.

Notes
Syntax alternatives:

Use the CAST specification for maximum portability. For more information, see “CAST specification”
on page 267.

Chapter 4. Built-in functions 595

Examples
Example 1:

Assume the following date value '1965-07-27'. The following statement returns the value
'1965-07-27-00.00.00.000000'.

 SELECT TIMESTAMP_ISO(DATE('1965-07-27'))
 FROM SYSIBM.SYSDUMMY1

TIMESTAMP_TZ scalar function
The TIMESTAMP_TZ function returns a TIMESTAMP WITH TIME ZONE value from the input arguments.

TIMESTAMP_TZ( expression-1

, expression-2

)

The schema is SYSIBM.

expression-1
An expression that returns a value of one of the following built-in data types:

• a timestamp without time zone
• a timestamp with time zone
• a character string
• a graphic string

If expression-1 is a character string or a graphic string, it must conform to the following rules:

• It must not be a CLOB or DBCLOB
• Its value must be a valid string representation of a timestamp without a time zone or a timestamp

with a time zone value
• It must have an actual length that is not greater than 255 bytes

For the valid formats of string representations of datetime values, see “String representations of
datetime values” on page 120.

If expression-2 is specified, expression-1 must be a timestamp without a time zone, or a string
representation of a timestamp without a time zone.

expression-2
An expression that returns a character string or a graphic string.

If expression-2 is a character string or graphic string, it must not be a CLOB or DBCLOB, and its value
must be a valid string representation of a time zone in the format of '±th:tm' with values ranging from
-24:00 to +24:00, where th represents time zone hour and tm represents time zone minute.

The result of the function is equivalent to invoking the CAST specification, as indicated in the following
table:

Table 96. TIMESTAMP_TZ function and equivalent CAST specification

TIMESTAMP_TZ function syntax Equivalent CAST specification syntax

TIMESTAMP_TZ(timestamp_wo_tz) CAST(timestamp_wo_tz AS TIMESTAMP WITH
TIME ZONE)

TIMESTAMP_TZ(timestamp_wo_tz, n) CAST(timestamp_wo_tz AS TIMESTAMP(n)
WITH TIME ZONE)

TIMESTAMP_TZ(timestamp_wo_tz,
timezone)

CAST(CONCAT(VARCHAR(timestamp_wo_tz,
timezone) AS TIMESTAMP WITH TIME ZONE)

596 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 96. TIMESTAMP_TZ function and equivalent CAST specification (continued)

TIMESTAMP_TZ function syntax Equivalent CAST specification syntax

TIMESTAMP_TZ(timestamp_wo_tz,
timezone, n)

CAST(CONCAT(VARCHAR(timestamp_wo_tz,
timezone) AS TIMESTAMP(n) WITH TIME
ZONE)

TIMESTAMP_TZ(timestamp_w_tz) CAST(timestamp_w_tz AS TIMESTAMP WITH
TIME ZONE)

TIMESTAMP_TZ(timestamp_w_tz, n) CAST(timestamp_w_tz AS TIMESTAMP(n)
WITH TIME ZONE)

TIMESTAMP_TZ(timestamp_w_tz, timezone) N/A

TIMESTAMP_TZ(timestamp_w_tz, timezone,
n)

N/A

timestamp_wo_tz
A timestamp without time zone value.

timestamp_w_tz
A timestamp with time zone value.

timezone
A time zone value.

n
The precision value.

When a string representation of a timestamp is a single-byte character set (SBCS) with a CCSID that is not
the same as the default CCSID for SBCS data, that value is converted to the default CCSID for SBCS data
before it is interpreted and converted to a timestamp value.

Notes
Syntax alternatives:

If only one argument is specified, the CAST specification should be used to ensure maximal
portability. For more information, see “CAST specification” on page 267

FROM_TZ can be specified as a synonym for TIMESTAMP_TZ when TIMESTAMP_TZ specifies both
expression-1 and expression-2.

Examples
Example 1:

Assume that TIMES is a host variable with the value 2008-02-29-20.00.00.000000 and that TZ is a
host variable with the value -3:00. Convert the value of TIMES and TZ to a timestamp with time zone.

SET :TIMESZ = TIMESTAMP_TZ(:TIMES, :TZ);

The host variable TIMESZ is set with the value that represents the timestamp with time zone as
2008-02-29-20.00.00.000000 -03:00.

Chapter 4. Built-in functions 597

TO_CHAR scalar function
The TO_CHAR function returns a character string representation of a timestamp value that has been
formatted using a specified character template.

Character to VARCHAR
TO_CHAR (character-expression)

Timestamp to VARCHAR
TO_CHAR (timestamp-expression , format-string)

Decimal floating-point to VARCHAR
TO_CHAR (decimal-floating-point-expression

, format-string

)

The TO_CHAR scalar function is identical to the VARCHAR FORMAT scalar function. For more information,
see “VARCHAR_FORMAT scalar function” on page 623.

TO_CLOB scalar function
The TO_CLOB function returns a CLOB representation of a string.

FL 506

Character to CLOB:

TO_CLOB( character-expression

, integer

, CODEUNITS16

CODEUNITS32

OCTETS

)

Graphic to CLOB:

TO_CLOB( graphic-expression

, integer

, CODEUNITS16

CODEUNITS32

)

The TO_CLOB function is identical to the CLOB function. For more information, see “CLOB scalar function”
on page 415.

598 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html

TO_DATE scalar function
The TO_DATE function returns a timestamp value that is based on the interpretation of the input string
using the specified format.

TO_DATE (string-expression , format-string

, 6

, precision-constant

)

The TO_DATE scalar function is identical to the TIMESTAMP_FORMAT scalar function. For more
information, see TIMESTAMP_FORMAT.

TO_NUMBER scalar function
The TO_NUMBER function returns a DECFLOAT(34) value that is based on the interpretation of the input
string using the specified format.

TO_NUMBER (string-expression

, format-string

)

The schema is SYSIBM.

The TO_NUMBER scalar function is identical to the DECFLOAT_FORMAT scalar function. For more
information, see “DECFLOAT_FORMAT scalar function” on page 438.

TOTALORDER scalar function
The TOTALORDER function returns an ordering for DECFLOAT values. The TOTALORDER function returns a
small integer value that indicates how expression1 compares with expression2.

TOTALORDER( expression1 , expression2)

The schema is SYSIBM.

expression1
An expression that returns a built-in DECFLOAT value.

The argument can also be a character string or graphic string data type. The string input is implicitly
cast to a numeric value of DECFLOAT(34).

expression2
An expression that returns a built-in DECFLOAT value.

The argument can also be a character string or graphic string data type. The string input is implicitly
cast to a numeric value of DECFLOAT(34).

Numeric comparison is exact, and the result is determined for finite operands as if range and precision are
unlimited. An overflow or underflow conditions cannot occur.

If one value is DECFLOAT(16) and the other is DECFLOAT(34), the DECFLOAT(16) value is converted to
DECFLOAT(34) before the comparison is made.

TOTALORDER determines ordering based on the total order predicate rules of IEEE 754R, with the
following result:

• -1 if the first argument is lower in order compared to the second.
• 0 if both arguments have the same order.

Chapter 4. Built-in functions 599

• 1 if the first argument is higher in order compared to the second.

The ordering of the special values and finite numbers is as follows:

 -NAN<-SNAN<-INFINITY<-0.10<-0.100<-0<0<0.100<0.10<INFINITY<SNAN<NAN

The result of the function is a SMALLINT value.

The result can be null; if any argument is null, the result is the null value.

Examples: The following examples show the use of the TOTALORDER function to compare decimal
floating point values:

 TOTALORDER(-INFINITY, -INFINITY) = 0
 TOTALORDER(DECFLOAT(-1.0), DECFLOAT(-1.0)) = 0
 TOTALORDER(DECFLOAT(-1.0), DECFLOAT(-1.00)) = -1
 TOTALORDER(DECFLOAT(-1.0), DECFLOAT(-0.5)) = -1
 TOTALORDER(DECFLOAT(-1.0), DECFLOAT(0.5)) = -1
 TOTALORDER(DECFLOAT(-1.0), INFINITY) = -1
 TOTALORDER(DECFLOAT(-1.0), SNAN) = -1
 TOTALORDER(DECFLOAT(-1.0), NAN) = -1
 TOTALORDER(NAN, DECFLOAT(-1.0)) = 1
 TOTALORDER(-NAN, -NAN) = 0
 TOTALORDER(-SNAN, -SNAN) = 0
 TOTALORDER(NAN, NAN) = 0
 TOTALORDER(SNAN, SNAN) = 0

TO_TIMESTAMP scalar function
The TO_TIMESTAMP function returns a TIMESTAMP WITHOUT TIME ZONE value that is based on the
interpretation of the input string using the specified format.

FL 506

TO_TIMESTAMP (string-expression , format-string

, 6

, precision-constant

)

The TO_TIMESTAMP function is identical to the TIMESTAMP_FORMAT function. For more information, see
“TIMESTAMP_FORMAT or TO_TIMESTAMP scalar function” on page 591.

TRANSLATE scalar function
The TRANSLATE function returns a value in which one or more characters of the first argument might have
been converted to other characters.

TRANSLATE( string-expression

, to-string

, from-string

, ' '

, pad

)

The schema is SYSIBM.

string-expression
An expression that specifies the string to be converted. string-expression must return a value that is
a built-in character or graphic string data type that is not a LOB. If string-expression is an EBCDIC or

600 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html

ASCII graphic string and string-expression is the only argument that is specified, the locale name that
is specified by the CURRENT LOCALE LC_CTYPE special register must be a non-blank string.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

to-string
An expression that specifies the characters to which certain characters in string-expression are to be
converted. This string is sometimes called the output translation table. to-string must return a value
that is a built-in character or graphic string data type that is not a LOB.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

If the length of to-string is less than the length of from-string, to-string is padded to the length of
from-string with the pad or a blank. If the length of to-string is greater than from-string, the extra
characters in to-string are ignored without warning.

from-string
An expression that specifies the characters that if found in string-expression are to be converted. This
string is sometimes called the input translation table. When a character in from-string is found, the
character in string-expression is converted to the character in to-string that is in the corresponding
position of the character in from-string.

from-string must return a value that is a built-in character or graphic string data type that is not a LOB.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

If from-string contains duplicate characters, the first occurrence of the character is used, and no
warning is issued. The default value for from-string is a string that starts with the character X'00' and
ends with the character X'FF' (decimal 255).

pad
An expression that specifies the character with which to pad to-string if its length is less than from-
string. pad is an expression that must return a value that is a built-in character or graphic string
data type that is not a LOB and has a length of 1. A length of 1 is one single byte for character
strings and one double byte string for graphic strings. The default is a blank that is appropriate for
string-expression.

If string-expression is the only argument that is specified, the string is converted to uppercase based on
the locale name that is specified by the CURRENT LOCALE LC_CTYPE special register, as follows:

blank
SBCS lowercase characters a-z are converted to SBCS uppercase characters A-Z, and characters
with diacritical marks are not converted. If the string contains MIXED or DBCS characters, full-width
lowercase characters a-z are converted to full-width Latin uppercase characters A-Z. For optimal
performance, specify a blank string unless your data must be processed by using rules that are
defined by a specific locale.

UNI
The conversion uses both the NORMAL and SPECIAL casing capabilities as described in Select the
conversions (z/OS: Unicode Services User’s Guide and Reference). You must not specify UNI when
string-expression is EBCDIC data.

UNI_90
The conversion uses Unicode Standard 9.0.0 and the NORMAL casing capability, as described in
Select the conversions (z/OS: Unicode Services User’s Guide and Reference). You must not specify
UNI_60 when string-expression is EBCDIC data.

UNI_90
The conversion uses Unicode Standard 6.0.0 and the NORMAL casing capability, as described in
Select the conversions (z/OS: Unicode Services User’s Guide and Reference). You must not specify
UNI_90 when string-expression is EBCDIC data.

Chapter 4. Built-in functions 601

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/selconv.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/selconv.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/selconv.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/selconv.htm

UNI_SIMPLE
Case conversions use the NORMAL casing capabilities as described in Select the conversions (z/OS:
Unicode Services User’s Guide and Reference). UNI_SIMPLE cannot be used with EBCDIC data.

locale name
The locale defines the rules for conversion to uppercase characters.

For Unicode data, usage of the TRANSLATE function (the TRANSLATE function with one argument is
equivalent to the UPPER function) can result in expansion if certain characters are processed. You should
ensure that the result string is large enough to contain the result of the expression.

If more than one argument is specified, the result string is built one piece at a time from string-expression.
If string-expression is CHAR or VARCHAR, a piece is one byte long. If string-expression is GRAPHIC or
VARGRAPHIC, a piece is two bytes long.

For each piece in string-expression, the from-string is searched for that same piece.

• If the piece in string-expression matches a piece in from-string, and there is a corresponding piece in
to-string, that piece in to-string is moved to the result string. If the piece in string-expression matches
a piece in from-string, but there is no corresponding piece in to-string, the pad is moved to the result
string.

• If the piece in string-expression does not match any piece in from-string, the piece in string-expression
is moved to the result string.

The string can contain mixed data. If only one argument is specified, the UPPER function is performed on
the argument, and the rules for operating on mixed data in the UPPER function are observed. Full-width
Latin lowercase a-z are converted to full-width Latin uppercase letters A-Z. If more than one argument is
specified, the function operates as previously described for CHAR and VARCHAR data. The result is not
necessarily a properly formed mixed data character string.

The encoding scheme of the result is the same as string-expression. The data type of the result of the
function depends on the data type of string-expression, to-string, from-string, and pad:

• VARCHAR if string-expression is a character string. The CCSID of the result depends on the arguments:

– If string-expression, to-string, from-string, or pad is bit data, the result is bit data.
– If string-expression, to-string, from-string, and pad are all SBCS:

- If string-expression, to-string, from-string, and pad are all SBCS Unicode data, the CCSID of the
result is the CCSID for SBCS Unicode data.

- If string-expression is SBCS Unicode data, and to-string, from-string, or pad are not SBCS Unicode
data, the CCSID of the result is the mixed CCSID for Unicode data.

- Otherwise, the CCSID of the result is the same as the CCSID of string-expression.
– Otherwise, the CCSID of the result is the mixed CCSID that corresponds to the CCSID of string-

expression. However, if the input is EBCDIC or ASCII and there is no corresponding system CCSID for
mixed, the CCSID of the result is the CCSID of string-expression.

• VARGRAPHIC if string-expression is a graphic. The CCSID of the result is the same as the CCSID of
source-string.

The result can be null; if the first argument is null, the result is the null value.

Examples
Example 1

Return the string 'abcdef' in uppercase characters. Assume that the locale in effect is blank.

 SELECT TRANSLATE ('abcdef')
 FROM SYSIBM.SYSDUMMY1

The result is the value 'ABCDEF'.

602 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/selconv.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/selconv.htm

Example 2
Assume that host variable SITE has a data type of VARCHAR(30) and contains 'Hanauma Bay'.

 SELECT TRANSLATE (:SITE)
 FROM SYSIBM.SYSDUMMY1

Returns the value 'HANAUMA BAY'. The result is all uppercase characters because only one argument
is specified.

 SELECT TRANSLATE (:SITE, 'j', 'B')
 FROM SYSIBM.SYSDUMMY1

Returns the value 'Hanauma jay'.

 SELECT TRANSLATE (:SITE, 'ei', 'aa')
 FROM SYSIBM.SYSDUMMY1

Returns the value 'Heneume Bey'.

 SELECT TRANSLATE (:SITE, 'bA', 'Bay', '%')
 FROM SYSIBM.SYSDUMMY1

Returns the value 'HAnAumA bA%'.

 SELECT TRANSLATE (:SITE, 'r', 'Bu')
 FROM SYSIBM.SYSDUMMY1

Returns the value 'Hana ma ray'.

Example 3
Assume that host variable SITE has a data type of VARCHAR(30) and contains 'Pivabiska Lake Place'.

 SELECT TRANSLATE (:SITE, '$$', 'Ll')
 FROM SYSIBM.SYSDUMMY1

Returns the value 'Pivabiska $ake P$ace'.

 SELECT TRANSLATE (:SITE, 'pLA', 'Place', '.')
 FROM SYSIBM.SYSDUMMY1

Returns the value 'pivAbiskA LAk. pLA..'.

Related concepts
z/OS Unicode Services User’s Guide and Reference

TRIM scalar function
The TRIM function removes bytes from the beginning, from the end, or from both the beginning and end of
a string expression.

TRIM (

BOTH

B

LEADING

L

TRAILING

T

trim-constant

FROM

string-expression)

The schema is SYSIBM.

Chapter 4. Built-in functions 603

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/abstract.htm

The first argument, if specified, indicates whether characters are removed from the end or the beginning
of the string. If the first argument is not specified, the characters are removed from both the end and the
beginning of the string.

trim-constant
Specifies a constant that indicates the binary, SBCS, or DBCS character that is to be removed. If
string-expression is a character string, trim-constant must be an SBCS or DBCS single-character (2
bytes) constant. If string-expression is a binary string, trim-constant must be a single-byte binary
string constant. If string-expression is a DBCS graphic or DBCS-only string, trim-constant must be a
graphic constant that consists of a single DBCS character.

The default for trim-constant depends on the data type of string-expression:

• A DBCS blank if string-expression is a DBCS graphic string. For ASCII, the CCSID determines the hex
value that represents a DBCS blank. For example, for Japanese (CCSID 301), X'8140' represents a
DBCS blank, while for Simplified Chinese, X'A1A1' represents a DBCS blank. For EBCDIC, X'4040'
represents a DBCS blank.

• A UTF-16 or UCS-2 blank (X'0020') if string-expression is a Unicode graphic string.
• A value of X'00' if string-expression is a binary string.
• Otherwise, a single byte blank. For EBCDIC, X'40' represents a blank. When not EBCDIC, X'20'

represents a blank.

string-expression
An expression that returns a value that is a built-in character string data type, graphic data type,
binary string data type, or numeric data type. string-expression must not be a LOB. If string-expression
is numeric, it is cast to a character string before the function is evaluated. For more information about
converting numeric to a character string, see “VARCHAR scalar function” on page 615.

string-expression and trim-expression must have compatible data types.

The data type of the result depends on the data type of string-expression:

• If string-expression is a character string data type, the result is VARCHAR. If string-expression is defined
as FOR BIT DATA the result is FOR BIT DATA.

• If string-expression is a graphic string data type, the result is VARGRAPHIC.
• If string-expression is a binary string data type, the result is VARBINARY.

The length attribute of the result is the same as the length attribute of string-expression. The actual length
of the result is the length of string-expression minus the number of characters removed. If all of the
characters are removed, the result is an empty string.

If string-expression can be null, the result can be null; if string-expression is null, the result is the null
value.

The CCSID of the result is the same as that of string-expression.

Notes
Valid content for EBCDIC mixed string input:

If string-expression is an EBCDIC mixed string, the string must contain valid EBCDIC mixed data.

Examples
Example: Assume the host variable HELLO of type CHAR(9) has a value of ' Hello '.

SELECT TRIM(:HELLO), TRIM(TRAILING FROM :HELLO)
 FROM SYSIBM.SYSDUMMY1

Results in 'Hello' and ' Hello' respectively.

604 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example: Assume the host variable BALANCE of type CHAR(9) has a value of '000345.50'.

SELECT TRIM(L '0' FROM :BALANCE)
 FROM SYSIBM.SYSDUMMY1

Results in '345.50'

Related reference
STRIP scalar function
The STRIP function removes blanks or another specified character from the end, the beginning, or both
ends of a string expression.

TRIM_ARRAY scalar function
The TRIM_ARRAY function deletes elements from the end of an ordinary array.

TRIM_ARRAY ( array-expression , numeric-expression)

The schema is SYSIBM.

array-expression
An SQL variable, SQL parameter, or global variable of an ordinary array type, or a CAST specification of
a parameter marker to an array type. An associative array type cannot be specified.

numeric-expression
Specifies the number of elements that are trimmed from the end of the array. numeric-expression can
be any numeric data type with a value that can be cast to INTEGER. The value of numeric-expression
must be greater than or equal to 0 and less than or equal to the cardinality of array-expression.

TRIM_ARRAY returns a value with the same array type as array-expression, with the cardinality reduced
by the value of INTEGER(numeric-expression).

The result can be null; if any argument is null, the result is the null value.

The TRIM_ARRAY function can be invoked only in the following contexts:

• A source value for SET assignment-statement or SQL PL assignment-statement, or a VALUES INTO
statement

• The value that is returned in a RETURN statement in an SQL scalar function

Notes
Syntax alternatives:

CAST (SQL-variable AS array-type) can be specified as an alternative to SQL-variable. CAST (SQL-
parameter AS array-type) can be specified as an alternative to SQL-parameter.

ARRAY_TRIM is a synonym for the TRIM_ARRAY built in function.

Examples
Example 1:

Suppose that PHONENUMBERS is a user-defined array type that is defined as an ordinary array.
RECENT_CALLS is an array variable of the PHONENUMBERS type. The following statement removes
the last element from the array variable RECENT_CALLS.

SET RECENT_CALLS = TRIM_ARRAY(RECENT_CALLS,1);

Example 2:

Suppose that INTARRAY is a user-defined array type that is defined as an ordinary array with
integer elements. SPECIALNUMBERS and LOWPRIMES are array variables of the INTARRAY type. The

Chapter 4. Built-in functions 605

SPECIALNUMBERS array contains the values of all the prime numbers less than 1000, which is 168
values. The following statement assigns the 10 smallest prime numbers in the SPECIALNUMBERS
array to the first 10 elements of the LOWPRIMES array.

SET LOWPRIMES = TRIM_ARRAY(SPECIALNUMBERS,CARDINALITY(SPECIALNUMBERS)-10);

TRUNCATE or TRUNC scalar function
The TRUNCATE function returns the first argument, truncated as specified. Truncation is to the number of
places to the right or left of the decimal point this is specified by the second argument.

TRUNCATE

TRUNC

(numeric-expression-1

, 0

, numeric-expression-2

)

The schema is SYSIBM.

numeric-expression-1
An expression that returns a value of any built-in numeric data type.

If expression-1 is a decimal floating-point data type, the DECFLOAT ROUNDING MODE will not be
used. The rounding behavior of TRUNCATE corresponds to a value of ROUND_DOWN. If you want a
different rounding behavior, use the QUANTIZE function.

The argument can also be a character string or graphic string data type. The string input is implicitly
cast to a numeric value of DECFLOAT(34).

numeric-expression-2
An expression that returns a value that is a built-in SMALLINT or INTEGER data type. The absolute
value of the integer specifies the number of places to truncate. The value of numeric-expression-2
determines whether truncation is to the right or left of the decimal point.

If numeric-expression-2 is not negative, numeric-expression-1 is truncated to the absolute value of
numeric-expression-2 places to the right of the decimal point.

If numeric-expression-2 is negative, numeric-expression-1 is truncated to 1 + (the absolute value of
numeric-expression-2) places to the left of the decimal point. If 1 + (the absolute value of numeric-
expression-2) is greater than or equal to the number of digits to the left of the decimal point, the result
is 0. For example, TRUNCATE(748.58,-4) returns 0.

The argument can also be a character string or graphic string data type. The string input is implicitly
cast to a numeric value of DECFLOAT(34), which is then assigned to an INTEGER value.

The result of the function has the same data type and length attribute as the first argument.

The result can be null; if any argument is null, the result is the null value.

Example 1: Using sample employee table DSN8C10.EMP, calculate the average monthly salary for the
highest paid employee. Truncate the result to two places to the right of the decimal point.

 SELECT TRUNCATE(MAX(SALARY/12),2)
 FROM DSN8C10.EMP;

Because the highest paid employee in the sample employee table earns $52750.00 per year, the example
returns the value 4395.83.

Example 2: Return the number 873.726 truncated to 2, 1, 0, -1, -2, -3, and -4 decimal places respectively.

 SELECT TRUNC(873.726,2),
 TRUNC(873.726,1),
 TRUNC(873.726,0),
 TRUNC(873.726,-1),
 TRUNC(873.726,-2),
 TRUNC(873.726,-3),

606 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 TRUNC(873.726,-4)
 FROM TABLEX
 WHERE INTCOL = 1234;

This example returns the values 873.720, 873.700, 873.000, 870.000, 800.000, 0000.000, and
0000.000.

Example 3: Calculate both positive and negative numbers.

SELECT TRUNCATE(3.5, 0),
 TRUNCATE(3.1, 0),
 TRUNCATE(-3.1, 0),
 TRUNCATE(-3.5, 0)
 FROM TABLEX;

This example returns: the values 3.0, 3.0, -3.0, -3.0.

TRUNC_TIMESTAMP scalar function
The TRUNC_TIMESTAMP function returns a TIMESTAMP WITHOUT TIME ZONE value that is the
expression, truncated to the unit that is specified by the format-string. If format-string is not specified,
expression is truncated to the nearest day, as if 'DD' was specified for format-string.

TRUNC_TIMESTAMP (expression
'DD'

, format-string

)

The schema is SYSIBM.

expression
An expression that returns a value of any of the following built-in data types: a timestamp, a character
string, or a graphic string. If expression is a character or graphic string, it must not be a CLOB or
DBCLOB, and its value must be a valid string representation of a timestamp with an actual length that
is not greater than 255 bytes. A time zone in a string representation of a timestamp is ignored. For
the valid formats of string representations of dates and timestamps, see “String representations of
datetime values” on page 120.

format-string
An expression that returns a built-in character string or graphic string data type, with a length that is
not greater than 255 bytes. format-string contains a template of how the timestamp represented
by expression should be truncated. For example, if format-string is 'DD', the timestamp that is
represented by expression is truncated to the nearest day. format-string must be a valid template
for a timestamp, and not include leading or trailing blanks. Allowable values for format-string are
listed in the following table.

Table 97. ROUND_TIMESTAMP and TRUNC_TIMESTAMP format models

Format model Description of rounding
or truncating for the
format model

ROUND_TIMESTAMP example TRUNC_TIMESTAMP example

CC
SCC

Century.

One greater than the
first two digits of a four
digit year.

For
ROUND_TIMESTAMP,
rounds up on the 50th
year of the century.

Input Value:
1897-12-04-12.22.22.000000
Result:
1901-01-01-00.00.00.000000

Input Value:
1897-12-04-12.22.22.000000
Result:
1801-01-01-00.00.00.000000

Chapter 4. Built-in functions 607

Table 97. ROUND_TIMESTAMP and TRUNC_TIMESTAMP format models (continued)

Format model Description of rounding
or truncating for the
format model

ROUND_TIMESTAMP example TRUNC_TIMESTAMP example

SYYYY
YYYY
YEAR
SYEAR
YYY
YY
Y

Year.

For
ROUND_TIMESTAMP,
rounds up on July 1 to
January 1st of the next
year.

Input Value:
1897-12-04-12.22.22.000000
Result:
1898-01-01-00.00.00.000000

Input Value:
1897-12-04-12.22.22.000000
Result:
1897-01-01-00.00.00.000000

IYYY
IYY
IY
I

ISO year.

For
ROUND_TIMESTAMP,
rounds up on July 1 to
the first day of the next
ISO year. The first day of
the ISO year is defined
as the Monday of the
first ISO week.

Input Value:
1897-12-04-12.22.22.000000
Result:
1898-01-03-00.00.00.000000

Input Value:
1897-12-04-12.22.22.000000
Result:
1897-01-04-00.00.00.000000

Q Quarter.

For
ROUND_TIMESTAMP,
rounds up on the 16th
day of the second
month of the quarter.

Input Value:
1999-06-04-12.12.30.000000
Result:
1999-07-01-00.00.00.000000

Input Value:
1999-06-04-12.12.30.000000
Result:
1999-04-01-00.00.00.000000

MONTH
MON
MM
RM

Month.

For
ROUND_TIMESTAMP,
rounds up on the 16th
day of the month.

Input Value:
1999-06-18-12.12.30.000000
Result:
1999-07-01-00.00.00.000000

Input Value:
1999-06-18-12.12.30.000000
Result:
1999-06-01-00.00.00.000000

WW Same day of the week
as the first day of the
year.

For
ROUND_TIMESTAMP,
rounds up on the 12th
hour of the 4th day of
the week, with respect
to the first day of the
year.

Input Value:
2000-05-05-12.12.30.000000
Result:
2000-05-06-00.00.00.000000

Input Value:
2000-05-05-12.12.30.000000
Result:
2000-04-29-00.00.00.000000

608 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 97. ROUND_TIMESTAMP and TRUNC_TIMESTAMP format models (continued)

Format model Description of rounding
or truncating for the
format model

ROUND_TIMESTAMP example TRUNC_TIMESTAMP example

IW Same day of the week
as the first day of the
ISO year.

For
ROUND_TIMESTAMP,
rounds up on the 12th
hour of the 4th day of
the week, with respect
to the first day of the
ISO year.

Input Value:
2000-05-05-12.12.30.000000
Result:
2000-05-08-00.00.00.000000

Input Value:
2000-05-05-12.12.30.000000
Result:
2000-05-01-00.00.00.000000

W Same day of the week
as the first day of the
month.

For
ROUND_TIMESTAMP,
rounds up on the 12th
hour of the 4th day of
the week, with respect
to the first day of the
month.

Input Value:
2000-06-21-12.12.30.000000
Result:
2000-06-22-00.00.00.000000

Input Value:
2000-06-21-12.12.30.000000
Result:
2000-06-15-00.00.00.000000

DDD
DD
J

Day.

For
ROUND_TIMESTAMP,
rounds up on the 12th
hour of the day.

Input Value:
2000-05-17-12.59.59.000000
Result:
2000-05-18-00.00.00.000000

Input Value:
2000-05-17-12.59.59.000000
Result:
2000-05-17-00.00.00.000000

DAY
DY
D

Starting day of the
week.

For
ROUND_TIMESTAMP,
rounds up with respect
to the 12th hour of the
4th day of the week. The
first day of the week is
always Sunday.

Input Value:
2000-05-17-12.59.59.000000
Result:
2000-05-21-00.00.00.000000

Input Value:
2000-05-17-12.59.59.000000
Result:
2000-05-14-00.00.00.000000

HH
HH12
HH24

Hour.

For
ROUND_TIMESTAMP,
rounds up at 30
minutes.

Input Value:
2000-05-17-23.59.59.000000
Result:
2000-05-18-00.00.00.000000

Input Value:
2000-05-17-23.59.59.000000
Result:
2000-05-17-23.00.00.000000

MI Minute.

For
ROUND_TIMESTAMP,
rounds up at 30
seconds.

Input Value:
2000-05-17-23.58.45.000000
Result:
2000-05-17-23.59.00.000000

Input Value:
2000-05-17-23.58.45.000000
Result:
2000-05-17-23.58.00.000000

Chapter 4. Built-in functions 609

Table 97. ROUND_TIMESTAMP and TRUNC_TIMESTAMP format models (continued)

Format model Description of rounding
or truncating for the
format model

ROUND_TIMESTAMP example TRUNC_TIMESTAMP example

SS Second.

For
ROUND_TIMESTAMP,
rounds up at 500000
microseconds.

Input Value:
2000-05-17-23.58.45.500000
Result:
2000-05-17-23.58.46.000000

Input Value:
2000-05-17-23.58.45.500000
Result:
2000-05-17-23.58.45.000000

expression is cast as follows:

• If expression is a timestamp with time zone value, expression is cast to a timestamp without time zone
value, with the same precision as expression.

• Otherwise, expression is cast to TIMESTAMP(6) WITHOUT TIME ZONE.

The result of the function is a timestamp with time zone.

The result can be null; if any argument is null, the result is the null value.

The result CCSID is the appropriate CCSID of the argument encoding scheme and the result subtype is the
appropriate subtype of the CCSID.

Example: Set the host variable TRNK_TMSTMP with the specified date rounded to the nearest year value.

 SET :TRNK_TMSTMP = TRUNC_TIMESTAMP('2008-03-14-17.30.00', 'YEAR');

The host variable TRNK_TMSTMP is set with the value '2008-01-01-00.00.00.000000'.

UCASE scalar function
The UCASE function returns a string in which all the characters have been converted to uppercase
characters, based on the CCSID of the argument.

UCASE( string-expression

, locale-name-string , integer

)

The UCASE function is identical to the UPPER function. For more information, see “UPPER scalar function”
on page 612.

UNICODE scalar function
The UNICODE function returns the Unicode UTF-16 code value of the leftmost character of the argument
as an integer.

UNICODE( string-expression)

The schema is SYSIBM.

string-expression can be of any built-in string data type that is not a LOB.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

If the argument is ASCII, EBCDIC, or Unicode UTF-8, it is first converted to a Unicode UTF-16 string
(CCSID 1200) before the function is executed.

610 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The result of the function is an INTEGER.

The result can be null; if the argument is null, the result is the null value.

Example: The following example returns the Unicode value of as an integer and assigns the value to
the host variable hv:

Set :hv = UNICODE(' ');hv is set to an integer with a value '23792'.

UNICODE_STR or UNISTR scalar function
The UNICODE_STR function returns a string in Unicode UTF-8 or UTF-16, depending on the specified
option. The string represents a Unicode encoding of the input string.

UNICODE_STR

UNISTR

( string-expression
, UTF8

, UTF16

)

The schema is SYSIBM.

string-expression
An expression that returns a value of a built-in character or graphic string. A character string must not
be bit data. Values that are preceded by a backslash ('\') are treated as Unicode UTF-16 characters
(for example '\0041' is the Unicode UTF-16 representation for 'A'). A double backslash '\\' indicates a
backslash in the string. A partial surrogate character in the expression is replaced with a blank.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

UTF8 or UTF16
Specifies the Unicode encoding of the result. If UTF8 is specified, the result is returned as a Unicode
UTF-8 character string. If UTF16 is specified, the result is returned as a Unicode UTF-16 graphic
string. UTF8 is the default.

The result of the function depends on the second argument:

• VARCHAR if UTF8 is specified
• VARGRAPHIC if UTF16 is specified

The length attribute of the result depends on the second argument (UTF8 or UTF16). The length attribute
of the result is calculated using the formulas in Table 37 on page 163. If the result is a character string,
the length attribute of the result is MIN(n,32704). If the result is a graphic string, the length attribute
of the result is MIN(n,16352). Where n is the result of applying the formulas in Table 37 on page 163
based on input and output data types.

If the actual length of the result string exceeds the maximum for the return type, an error occurs.

The result can be null; if the argument is null, the result is the null value.

Examples
Example 1:

The following example sets the host variable HV1 to a VARCHAR value that represents the Unicode
UTF-8 string that corresponds to the argument:

 SET :HV1 = UNICODE_STR('Hi, my name is \5CF0');

HV1 is assigned a Unicode UTF-8 string with the following value 'Hi, my name is '

Chapter 4. Built-in functions 611

UPPER scalar function
The UPPER function returns a string in which all the characters have been converted to uppercase
characters.

UPPER( string-expression

, locale-name-string , integer

)

The schema is SYSIBM.

string-expression
An expression that specifies the string to be converted. string-expression must return a value that is
a built-in character or graphic string. A character string argument must not be a CLOB, and a graphic
string argument must not be a DBCLOB. If string-expression is an EBCDIC graphic string, a blank string
must not be specified for locale-name-string. If string-expression is bit data, locale-name-string must
not be specified.

locale-name-string
A string constant or a string host variable other than a CLOB or DBCLOB that specifies a valid locale
name. If locale-name-string is not in EBCDIC, it is converted to EBCDIC. The length of locale-name-
string must be in the range 1–255 bytes of the EBCDIC representation. The value of locale-name-
string is not case sensitive and must be a valid locale. For information about locales and their naming
conventions, see Locale naming conventions (XL C/C++ Programming Guide). Some examples of
locales include:

Fr_BE
Fr_FR@EURO
En_US
Ja_JP

The conversion process is determined by the value that is specified for the locale name, as follows:

blank
SBCS lowercase characters a-z are converted to SBCS uppercase characters A-Z, and characters
with diacritical marks are not converted. If the string contains MIXED or DBCS characters, full-
width lowercase characters a-z are converted to full-width Latin uppercase characters A-Z. For
optimal performance, specify a blank string unless your data must be processed by using the rules
that are defined by a specific locale.

UNI
The conversion uses both the NORMAL and SPECIAL casing capabilities as described in Select the
conversions (z/OS: Unicode Services User’s Guide and Reference). You must not specify UNI when
string-expression is EBCDIC data.

UNI_60
The conversion uses Unicode Standard 6.0.0 and the NORMAL casing capability, as described in
Select the conversions (z/OS: Unicode Services User’s Guide and Reference). You must not specify
UNI_60 when string-expression is EBCDIC data.

UNI_90
The conversion uses Unicode Standard 9.0.0 and the NORMAL casing capability, as described in
Select the conversions (z/OS: Unicode Services User’s Guide and Reference). You must not specify
UNI_90 when string-expression is EBCDIC data.

UNI_SIMPLE
Case conversions use the NORMAL casing capabilities as described in Select the conversions
(z/OS: Unicode Services User’s Guide and Reference). UNI_SIMPLE cannot be used with EBCDIC
data.

locale name
The locale defines the rules for conversion to uppercase characters.

612 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cbcpx01/locnamc.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/selconv.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/selconv.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/selconv.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/selconv.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/selconv.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/selconv.htm

The value of the host variable must not be null. If the host variable has an associated indicator
variable, the value of the indicator variable must not indicate a null value. The locale name must be:

• left justified within the host variable
• padded on the right with blanks if its length is less than that of the host variable and the host

variable is in fixed length CHAR or GRAPHIC data type

If locale-name-string is not specified, the locale is determined by special register CURRENT LOCALE
LC_CTYPE. For information about the special register, see “CURRENT LOCALE LC_CTYPE special
register” on page 196.

If the UPPER function is referenced in an expression-based index, locale-name-string must be
specified

integer
An integer value that specifies the length attribute of the result. If specified, integer must be an
integer constant in the range 1–32704 bytes in the representation of the encoding scheme of string-
expression.

If integer is not specified, the length attribute of the result is the same as the length of string-
expression.

For Unicode data, usage of the UPPER function can result in expansion if certain characters are
processed. For example, UPPER(UX'FB03') will result in UX'004600460049'. You should ensure
that the result string is large enough to contain the result of the expression.

The result can be null; if the argument is null, the result is the null value.

Notes
Syntax alternatives:

UCASE is a synonym for UPPER. UPPER should be used for conformance to the SQL standard.

Examples
Example 1:

Return the string 'abcdef' in uppercase characters. Assume that the locale in effect is blank.

 SELECT UPPER('abcdef')
 FROM SYSIBM.SYSDUMMY1

The result is the value 'ABCDEF'.
Example 2:

Return the string 'ffi' in the uppercase characters ('FFI'). Assume that the locale in effect is "UNI".

SELECT UPPER(UX'FB03')
 FROM SYSIBM.SYSDUMMYU;

This would result in an error because of the expansion that occurs when certain Unicode characters
are processed. To avoid the error, you would need to use the following statement instead:

SELECT UPPER(CAST(UX'FB03' AS VARCHAR(3))
 FROM SYSIBM.SYSDUMMYU;

The result of the preceding statement is the value 'FFI'.
Example 3:

Create an index EMPLOYEE_NAME_UPPER for table EMPLOYEE based on built-in function UPPER with
locale name 'Fr_FR@EURO'.

 CREATE INDEX EMPLOYEE_NAME_UPPER
 ON EMPLOYEE (UPPER(LASTNAME, 'Fr_FR@EURO', 60),
 UPPER(FIRSTNAME, 'Fr_FR@EURO', 60),
 ID);

Chapter 4. Built-in functions 613

The result is the value 'ABCDEF'.
Related concepts
z/OS Unicode Services User’s Guide and Reference
Related reference
z/OS XL C/C++ Programming Guide

VALUE scalar function
The VALUE function returns the value of the first non-null expression.

VALUE ( expression , expression)

The schema is SYSIBM.

The VALUE function is identical to the COALESCE function. COALESCE should be used for conformance to
SQL standard. For more information, see “COALESCE scalar function” on page 417.

VARBINARY scalar function
The VARBINARY function returns a VARBINARY (varying-length binary string) representation of a string of
any type.

VARBINARY( string-expression

, integer

)

The schema is SYSIBM.

string-expression
An expression that returns a value that is a built-in character string, graphic string, binary string, or a
row ID type.

integer
An integer value that specifies the length attribute of the resulting binary string. The value must be an
integer in the range 1–32704 inclusive. If integer is not specified:

• If the string-expression is the empty string constant, the length attribute of the result is 1.
• Otherwise, the length attribute of the result is the same as the length attribute of the string-

expression, unless the string-expression is a graphic string. In this case, the length attribute of the
result is twice the length attribute of the string-expression.

The result of the function is a varying-length binary string.

The result can be null; if the first argument is null, the result is the null value.

The actual length of the result is the minimum of the length attribute of the result and the actual
length of the string-expression (or twice the length of the string-expression if string-expression returns
a graphic string). If the length of the string-expression is greater than the length attribute of the result,
truncation is performed, and a warning is returned unless the string-expression is a character string and
all the truncated characters are blanks, or the string-expression is a graphic string and all the truncated
characters are double-byte blanks.

Example 1: The following function returns a varying-length binary string with a length attribute 1, actual
length 0, and a value of empty string:

 SELECT VARBINARY('')
 FROM SYSIBM.SYSDUMMY1;

614 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/abstract.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cbcpx01/abstract.htm

Example 2: The following function returns a varying-length binary string with a length attribute 5, actual
length 3, and a value BX'D2C2C8':

 SELECT VARBINARY('KBH',5)
 FROM SYSIBM.SYSDUMMY1;

Example 3: The following function returns a varying-length binary string with a length attribute 3, actual
length 3, and a value BX'D2C2C8'

 SELECT VARBINARY('KBH ',3)
 FROM SYSIBM.SYSDUMMY1;

Example 4: The following function returns a varying-length binary string with a length attribute 3, actual
length 3, and a value BX'D2C2C8', a warning is also returned.

 SELECT VARBINARY('KBH-93',3)
 FROM SYSIBM.SYSDUMMY1;

Example 5: The following function returns a varying-length binary string with a length attribute 3, actual
length 3, and a value BX'C1C2C3', a warning is also returned.

 SELECT VARBINARY(BINARY('ABC',5),3)
 FROM SYSIBM.SYSDUMMY1;

VARCHAR scalar function
The VARCHAR function returns a varying-length character string representation of the value specified by
the first argument.

The syntax of the VARCHAR function depends on the data type of the input argument. The following types
of input arguments are accepted.

Integer to Varchar:

VARCHAR( integer-expression)

Decimal to Varchar:

VARCHAR( decimal-expression

, decimal-character

)

Floating-point to Varchar:

VARCHAR( floating-point-expression)

Decimal floating point to Varchar:

VARCHAR( decimal-floating-point-expression)

Chapter 4. Built-in functions 615

Character to Varchar:

VARCHAR( character-expression

, integer

, CODEUNITS16

CODEUNITS32

OCTETS

)

Graphic to Varchar:

VARCHAR( graphic-expression

, integer

, CODEUNITS16

CODEUNITS32

)

Datetime to Varchar:

VARCHAR( datetime-expression)

Row ID to Varchar:

VARCHAR( row-ID-expression)

The schema is SYSIBM.

The VARCHAR function returns a varying-length character string representation of one of the following
values:

• An integer number if the first argument is a SMALLINT, INTEGER, or BIGINT
• A decimal number if the first argument is a decimal number
• A double-precision floating-point number if the first argument is a DOUBLE or REAL
• A decimal floating-point number if the first argument is a DECFLOAT
• A character string value if the first argument is any type of character string
• A graphic string if the first argument is an EBCDIC or Unicode graphic string
• A datetime value if the first argument is a date, time, or timestamp
• A row ID value if the first argument is a row ID

The result of the function is a varying-length character string (VARCHAR).

The result can be null; if the first argument is null, the result is the null value.

Integer to Varchar
integer-expression

An expression that returns a value that is a built-in integer data type (SMALLINT, INTEGER,
BIGINT).

The result is a varying-length character string representation of the argument in the form of an
SQL integer constant. The actual length of the result is the smallest number of characters that can
be used to represent the value of the argument. The result consists of n characters that are the

616 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

significant digits that represent the value of the argument with a preceding minus sign if the argument
is negative. A positive value starts with a digit. Leading zeroes are not included.

• If the argument is a small integer, the length attribute of the result is 6.
• If the argument is a large integer, the length attribute of the result is 11.
• If the argument is a big integer, the length attribute of the result is 20.

The CCSID of the result is determined from the application encoding scheme.

Decimal to Varchar
decimal-expression

An expression that returns a value that is a built-in decimal data type. To specify a different
precision and scale for the expression's value, apply the DECIMAL function to the expression
before applying the VARCHAR function.

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character must not be a digit, a plus sign (+), a minus sign (-), or a blank.
The default is the period (.) or comma (,). For information on what factors govern the choice, see
“Decimal point representation” on page 323.

The result is a varying-length character string representation of the first argument. The actual length
of the result is the smallest number of characters that can be used to represent the result, except
that trailing zeros are included. The result includes a decimal character and up to p digits where
p is the precision of decimal-expression with a preceding minus sign if the argument is negative. A
positive value starts with a digit or the decimal-character. Leading zeros are not returned. If the scale
of decimal expression is zero, the decimal character is not returned.

The length attribute of the result is 2+p where p is the precision of decimal-expression.
21

The CCSID of the result is determined from the application encoding scheme.

Floating-point to Varchar
floating-point-expression

An expression that returns a value that is a built-in floating-point data type.

The result is a varying-length character string representation of the argument in the form of an SQL
floating-point constant. If the argument is negative, the first character of the result is a minus sign;
otherwise, the first character is a digit. If the argument is zero, the result is 0E0.

The length attribute of the result is 24. The actual length of the result is the smallest number of
characters that can represent the value of the argument such that the mantissa consists of a single
digit other than zero followed by a period and a sequence of digits.

The CCSID of the result is determined from the application encoding scheme.

Decimal floating-point to Varchar
decimal-floating-point-expression

An expression that returns a value that is the built-in DECFLOAT data type.

The result is the varying-length character string representation of the argument in the form of an SQL
decimal floating-point constant.

If the result value is one of the special values Infinity, sNaN, or NaN, the strings ’INFINITY’, ’SNAN’,
or ’NAN’, respectively, are returned. The DECFLOAT special value sNaN does not result in an exception
when it is converted to a string.

21 If the BIF_COMPATIBILITY system parameter is set to V9_DECIMAL_VARCHAR, or if the
SYSCOMPAT_V9.VARCHAR function is used, the format of the result matches the result of the VARCHAR9
function with decimal input.

Chapter 4. Built-in functions 617

The length attribute of the result is 42. The actual length of the result is the smallest number of
characters that represents the value of the argument, including the sign, digits, and period. Trailing
zeros are significant. If the argument is negative, the first character of the result is a minus sign.
Otherwise, the first character is a digit, or a letter if the result value is Infinity, sNaN, or NaN.

The CCSID of the result is determined from the application encoding scheme.

Character to Varchar
character-expression

An expression that returns a value that is a built-in character data type.
integer

Specifies the length attribute for the resulting varying-length character string. The value must be
between 1 and 32764, expressed in the units that are either implicitly or explicitly specified. If the
length is not specified, the length of the result is the same as the length of character-expression.

If CODEUNITS16, CODEUNITS32, or OCTETS is specified, see “Determining the length attribute
of the final result” on page 108 for information about how to calculate the length attribute of the
result string.

If a length attribute is not specified and if the character-expression is an empty string constant,
the length attribute of the result is 1 and the result is an empty string. Otherwise, the length
attribute of the result is the same as the length attribute of the first argument.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the unit that is used to express integer. If character-expression is a character string that
is defined as bit data, CODEUNITS16 and CODEUNITS32 cannot be specified.
CODEUNITS16

Specifies that integer is expressed in terms of 16-bit UTF-16 code units.
CODEUNITS32

Specifies that integer is expressed in terms of 32-bit UTF-32 code units.
OCTETS

Specifies that integer is expressed in terms of bytes.
For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see “String unit
specifications” on page 106.

The actual length of the result is the minimum of the length attribute of the result and the actual
length of character-expression. If the length of character-expression is greater than the length
attribute of the result, the result is truncated. Unless all the truncated characters are blanks
appropriate for character-expression, a warning is returned.

If character-expression is bit data, the result is bit data. Otherwise, the CCSID of the result is the same
as the CCSID of character-expression.

Graphic to Varchar
graphic-expression

An expression that returns a value that is a built-in graphic data type.
integer

The length attribute for the resulting varying-length graphic string. The value must be in the range
1–32704, expressed in the units that are either implicitly or explicitly specified.

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length attribute of the final
result” on page 108 for information about how to calculate the length attribute of the result string.

If a length attribute is not specified, the length attribute of the result is determined as follows
(where n is the length attribute of the first argument):

• If the graphic-expression is the empty graphic string constant, the length attribute of the result
is 1.

• If the result is SBCS data, the result length is n.

618 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• If the result is mixed data, the result length is 3*(length(graphic-expression).

CODEUNITS16 or CODEUNITS32
Specifies the unit that is used to express integer.
CODEUNITS16

Specifies that integer is expressed in terms of 16-bit UTF-16 code units.
CODEUNITS32

Specifies that integer is expressed in terms of 32-bit UTF-32 code units.
For more information about CODEUNITS16 or CODEUNITS32, see “String unit specifications” on
page 106.

The actual length of the result is the minimum of the length attribute of the result and the actual
length of graphic-expression. If the length of the graphic expression is greater than the length
attribute of the result, the result is truncated. Unless all the truncated characters were blanks
appropriate for graphic-expression, a warning is returned.

The CCSID of the result is the character mixed CCSID that corresponds to the graphic CCSID of
graphic-expression.

Datetime to Varchar

datetime-expression
An expression whose value has one of the following three built-in data types:
date

The result is a varying-length character string representation of the date in the format that
is specified by the DATE precompiler option, if one is provided, or else field DATE FORMAT
on installation panel DSNTIP4 specifies the format. If the format is to be LOCAL, field LOCAL
DATE LENGTH on installation panel DSNTIP4 specifies the length of the result. Otherwise, the
length attribute and actual length of the result is 10.

LOCAL denotes the local format at the Db2 that executes the SQL statement. If LOCAL is used
for the format, a time exit routine must be installed at that Db2.

An error occurs if the second argument is specified and is not a valid value.

time
The result is a varying-length character string representation of the time in the format
specified by the TIME precompiler option, if one is provided, or else field TIME FORMAT on
installation panel DSNTIP4 specifies the format. If the format is to be LOCAL, the field LOCAL
TIME LENGTH on installation panel DSNTIP4 specifies the length of the result. Otherwise, the
length attribute and actual length of the result is 8.

LOCAL denotes the local format at the Db2 that executes the SQL statement. If LOCAL is used
for the format, a time exit routine must be installed at that Db2.

An error occurs if the second argument is specified and is not a valid value.

timestamp
The result is the character string representation of the timestamp with time zone. The second
argument must not be specified.

• If datetime-expression is a TIMESTAMP (0) WITHOUT TIME ZONE, the length of the result is
19.

• If datetime-expression is a TIMESTAMP (p) WITHOUT TIME ZONE, the length of the result is
20+p where p is the timestamp precision. The second argument must not be specified.

• If datetime-expression is a TIMESTAMP (0) WITH TIME ZONE, the length of the result is 25.
• If datetime-expression is a TIMESTAMP (p) WITH TIME ZONE, the length of the result is 26

+p where p is the timestamp precision. The second argument must not be specified

Chapter 4. Built-in functions 619

The CCSID of the result is determined from the context in which the function was invoked. For
more information, see Determining the encoding scheme and CCSID of a string (Introduction to
Db2 for z/OS).

Row ID to Varchar
row-ID-expression

An expression that returns a value that is a built-in row ID data type.

The result is a varying-length character string representation (VARCHAR) of the argument. It is bit
data.

The length attribute of the result is 40. The actual length of the result is the length of row-ID-
expression.

Notes
Syntax alternatives: VARCHAR9 can be specified as an alternative to VARCHAR. The result of the
function is the same, except when the first argument is decimal data.

Examples

Example 1: Assume that host variable JOB_DESC is defined as VARCHAR(8). Using sample table
DSN8C10.EMP, set JOB_DESC to the varying-length string equivalent of the job description (column JOB
defined as CHAR(8)) for the employee with the last name of 'QUINTANA'.

 SELECT VARCHAR(JOB)
 INTO :JOB_DESC
 FROM DSN8C10.EMP
 WHERE LASTNAME = 'QUINTANA';

Example 2: FIRSTNME is a VARGRAPHIC(6) column in a Unicode table T1. One of its values is the string
'Jürgen' (X'004A00FC007200670055006E'). When FIRSTNME has this value:

 Function ... Returns ...
 --
 VARCHAR(FIRSTNME,3,CODEUNITS32) 'Jür' -- x'4AC3BC72'
 VARCHAR(FIRSTNME,3,CODEUNITS16) 'Jür' -- x'4AC3BC72'
 VARCHAR(FIRSTNME,3,OCTETS) 'Jü' -- x'4AC3BC'

Related concepts
Data types of columns (Introduction to Db2 for z/OS)
Related reference
“VARCHAR9 scalar function” on page 620
The VARCHAR9 function returns a fixed-length character string representation of the argument. The
VARCHAR9 function is intended for compatibility with previous releases of Db2 for z/OS that depend on
the result format that is returned for decimal input values in Version 9 and earlier.
BIF COMPATIBILITY field (BIF_COMPATIBILITY subsystem parameter) (Db2 Installation and Migration)

VARCHAR9 scalar function
The VARCHAR9 function returns a fixed-length character string representation of the argument. The
VARCHAR9 function is intended for compatibility with previous releases of Db2 for z/OS that depend on
the result format that is returned for decimal input values in Version 9 and earlier.

Important: For portable applications that might run on platforms other than Db2 for z/OS, use the
VARCHAR function instead. Other Db2 family products do not support the VARCHAR9 function.

The first argument can be any value of the of the following types:

• Integer number
• Decimal number
• Floating-point number

620 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_datatypes.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_bifcompatibility.html

• Character string
• Graphic string
• Datetime value
• Row ID value

If the first argument is a decimal number, the result is formatted as indicated in the following description.
However, if the first argument is not a decimal number, the result is identical to the result of the VARCHAR
function.

Decimal to Varchar:

VARCHAR9( decimal-expression

, decimal-character

)

Decimal to Varchar
decimal-expression

An expression that returns a value that is a built-in decimal data type. To specify a different
precision and scale for the expression's value, apply the DECIMAL function to the expression
before applying the VARCHAR9 function.

decimal-character
Specifies the single-byte character constant (CHAR or VARCHAR) that is used to delimit the
decimal digits in the result character string. The character must not be a digit, a plus sign (+), a
minus sign (-), or a blank. The default is the period (.) or comma (,). For information about the
factors that govern the choice, see “Decimal point representation” on page 323

The result is a varying-length character string representation of the argument. The result includes a
decimal character and up to p digits where p is the precision of decimal-expression with a preceding
minus sign if the argument is negative. Leading and trailing zeros are returned. The result includes a
decimal character even if the scale of decimal-expression is zero.

The CCSID of the result is determined from the context in which the function was invoked. For more
information, see Determining the encoding scheme and CCSID of a string (Introduction to Db2 for z/OS).

Examples
The following table shows the difference between the results of the VARCHAR and VARCHAR9 functions
for example decimal number arguments.

Table 98. Example results of VARCHAR and VARCHAR9 functions

Decimal Argument VARCHAR Function Result VARCHAR9 Function Result

(000.1) '.1' '0.1'

(1000.) '1000' '1000. '

(1.1) '1.1' '1.1'

Related concepts
Data types of columns (Introduction to Db2 for z/OS)
Related reference
VARCHAR scalar function
The VARCHAR function returns a varying-length character string representation of the value specified by
the first argument.
BIF COMPATIBILITY field (BIF_COMPATIBILITY subsystem parameter) (Db2 Installation and Migration)

Chapter 4. Built-in functions 621

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_datatypes.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_bifcompatibility.html

VARCHAR_BIT_FORMAT scalar function
The VARCHAR_BIT_FORMAT function returns a bit data string representation of a character string that has
been formatted using a format-string.

VARCHAR_BIT_FORMAT( expression

, format-string

)

expression
An expression that returns a value of any built-in numeric, character-string, or graphic-string data type
that is not a LOB. A numeric or graphic argument is cast to a VARCHAR data type before evaluating the
function. expression must not return bit data..

All leading and trailing blanks are removed from expression before evaluating the function.

If a format-string is specified, the length of expression must be equal to the length of the format-string
and the value of expression must conform to the template specified by the format-string. If aformat-
string is not specified, the value of expression (after removing leading and trailing blanks) should be
an even number of characters from the ranges '0' to '9', 'a' to 'f', and 'A' to 'F'. If the length is an odd
number of characters, the string is padded on the right with one '0' character.

format-string
An expression that returns a built-in character string or graphic string data type. format-string
contains a template for how the value for expression is to be interpreted. format-string must not
return bit data.

The valid format strings are: 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx' and 'XXXXXXXX-
XXXX-XXXX-XXXX-XXXXXXXXXXXX', where each 'x' or 'X' corresponds to one hexadecimal digit in
the result. If 'X' is specified, the corresponding hexadecimal digit must not be a lower case character.
If 'x' is specified, the corresponding hexadecimal digit must not be an upper case character.

The result is a varying-length bit data string. The length attribute of the result is half the length attribute
of expression. If a format-string is not specified, the actual length is half the actual length of expression
(after leading and trailing blanks have been removed and padding to an even number of characters). If a
format-string is specified, the actual length is half the actual length of the format-string (after removing
the non-digit separator characters). If any of the arguments can be null, the result can be null; if any of the
arguments is null, the result is the null value.

Examples
Represent a Universal Unique Identifier in its binary form

SELECT VARCHAR_BIT_FORMAT (’d83d6360-1818-11db-9804-b622a1ef5492’,
’xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx’)
FROM SYSIBM.SYSDUMMY1

Result returned: X’D83D6360181811DB9804B622A1EF5492’
Represent a Universal Unique Identifier in its binary form:

SELECT VARCHAR_BIT_FORMAT (’D83D6360-1818-11DB-9804-B622A1EF5492’,
’XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX’)
FROM SYSIBM.SYSDUMMY1

Result returned: X’D83D6360181811DB9804B622A1EF5492’
Represent a string of hexadecimal characters in binary form:

SELECT VARCHAR_BIT_FORMAT (’ef01abC9’) FROM SYSIBM.SYSDUMMY1

Result returned: X’EF01ABC9’

622 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

VARCHAR_FORMAT scalar function
The VARCHAR_FORMAT function returns a character string representation of the first argument, in the
format indicated by format-string if it is specified.

Character to VARCHAR
VARCHAR_FORMAT( character-expression)

Timestamp to VARCHAR
VARCHAR_FORMAT( timestamp-expression , format-string)

Numeric to VARCHAR
VARCHAR_FORMAT( numeric-expression

, format-string

)

The schema is SYSIBM.

Character to VARCHAR
character-expression

An expression that returns a value that must be a built-in CHAR or VARCHAR data type. If a supplied
argument is a GRAPHIC or VARGRAPHIC data type, it is first converted to VARCHAR before evaluating
the function.

The length attribute of the result and the actual length are determined as follows:

• If string-expression is an empty string constant, the length attribute of the result is 1.
• Otherwise, the length attribute of the result is that same as the length attribute of string-expression.
• The actual length of the result is the minimum of the length attribute of the result and the actual length

of string-expression.

The value of the result is the same as the value of character-expression.

If character-expression returns graphic data, the CCSID of the result is the character mixed CCSID that
corresponds to the graphic argument. If character-expression returns bit data, the result is bit data.
Otherwise, the CCSID of the result is the same as the CCSID of character-expression.

Timestamp to VARCHAR
timestamp-expression

An expression that returns a value that must be a DATE or TIMESTAMP, or a valid character string or
graphic string representation of a date or timestamp that is not a CLOB or DBCLOB. If the argument is
a graphic string representation of a data or timestamp, it is first converted to a character string before
evaluating the function.

If timestamp-expression is a DATE or a valid string representation of a date, it is first converted to a
TIMESTAMP(0) value, assuming a time of exactly midnight (00.00.00). If the HH12 format element
is specified and the time component of the first argument is 24:00:00, the input timestamp value is
adjusted to 00:00:00 and the date is incremented by one day.

For the valid formats of string representations of datetime values, see “String representations of
datetime values” on page 120.

Chapter 4. Built-in functions 623

format-string
An expression that returns a built-in character string or graphic string data type that is not a LOB
and has a length attribute that is not greater than 255 bytes. If the value is not a CHAR or VARCHAR
data type, it is implicitly cast to VARCHAR before the function is evaluated. If the expression returns
timestamp data type, the resulting substring must conform to the rules for formatting a timestamp. If
the expression returns timestamp with a time zone, the resulting substring must conform to the rules
for formatting a timestamp with time zone.

The value is a template for how timestamp-expression is to be formatted.

A valid format-string can contain a combination of the format elements listed below. Two format
elements can be separated by one or more of the following separator characters.

• minus sign (-)
• period (.)
• forward slash (/)
• comma (,)
• apostrophe (')
• semicolon (;)
• colon (:)
• blank ()

Separator characters can also be specified at the start or end of format-string. format-string can also
be an empty string, a string of blanks, or a string of separator characters.

The following table lists the valid format elements that format-string can contain.

Table 99. Valid format elements of format-string

Format element
Description (assuming the default is to return
leading zeros)

AM or PM 1 Meridian indicator (morning or evening) without
periods.

This format element uses the exact strings “AM” or
“PM”.

A.M. or P.M. 1 Meridian indicator (morning or evening) with periods.

This format element uses the exact strings “A.M.” or
“P.M.”.

CC Century (00-99).

If the last two digits of the four digit year are zero, the
result is the first two digits of the year. Otherwise, the
result is the first two digits of the year plus one.

D 1 Day of the week (1-7).

1 is Sunday and 7 is Saturday.

DD Day of the month (01-31).

DDD Day of the year (001-366).

624 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 99. Valid format elements of format-string (continued)

Format element
Description (assuming the default is to return
leading zeros)

FF or FFn Fractional seconds (0-999999).

The number n is used to specify the number of digits
to include in the returned value. Valid values for n
are 1-12 (FF1-FF12) with no leading zeros. Specifying
FF is equivalent to specifying FF6. If the timestamp
precision of timestamp-expression is less than what is
specified by the format, zero digits are padded onto
the right of the specified digits.

HH Hour of the day (01-12).

HH12 Hour of the day (01-12).

HH24 Hour of the day (00-24).

ID ISO day of the week (1-7).

1 is Monday and 7 is Sunday.

IW ISO week of the year (01-53).

The week starts on Monday and includes 7 days. Week
1 is the first week of the year to contain a Thursday,
which is equivalent to the first week of the year to
contain January 4.

I ISO year (0-9). The last digit of the year based on the
ISO week that is returned.

IY ISO year (00-99).

The last two digits of the year based on the ISO week
that is returned.

IYY ISO year (000-999).

The last three digits of the year based on the ISO week
that is returned.

IYYY ISO year (0000-9999).

The last four digits of the year based on the ISO week
that is returned.

J Julian date (0000000-9999999).

MI Minute (00-59).

MM Month (01-12).

January is 01.

MONTH, Month, or month 1, 2 Name of the month in uppercase, sentence case, or
lowercase format in English.

MON, Mon, or mon 1, 2 Three-character abbreviated name of the month in
uppercase, sentence case, or lowercase format in
English.

Chapter 4. Built-in functions 625

Table 99. Valid format elements of format-string (continued)

Format element
Description (assuming the default is to return
leading zeros)

NNNNNN Microseconds (000000-999999).

This format is equivalent to specifying FF6.

Q Quarter (1-4).

January through March is 1.

RR Last two digits of the year (00-99). RR behaves the
same as YY.

RRRR Year (0000-9999).

RRRR behaves the same as YYYY.

SS Seconds (00-59).

SSSSS Seconds since the previous midnight (00000-86400).

TZH Time zone hour. (-24 to +24, This range
accommodates daylight saving time changes.)

TZM Time zone minute (00–59).

W Week of the month (1-5).

Week 1 starts on the first day of the month and ends
on the seventh day.

WW Week of the year (01-53).

Week 1 begins on January 1 and ends on January 7.

Y Last digit of the year (0-9).

YY Last two digits of the year (00-99).

YYY Last three digits of the year (000-999).

YYYY Year (0000-9999).

Notes:

1. This format element is case sensitive. In cases where the format elements are ambiguous, the case
insensitive format elements will be considered first.

2. Only these exact spellings and case combinations can be used. If this format element is specified in an
invalid case combination an error is returned.

If timestamp-expression is a TIMESTAMP WITHOUT TIME ZONE value, format-string must not contain
TZH or TZM.

The result is a representation of timestamp-expression in the format specified by format-string. format-
string is interpreted as a series of format elements that can be separated by one or more separator
characters. A string of characters in format-string is interpreted as the longest matching format element
in the previous table. If two format elements that contain the same characters are not separated by
a separator character, the specification is interpreted, starting from the left, as the longest matching
element in the table, and continues until matches are found for the remainder of the format string. For
example, 'YYYYYYDD' is interpreted as the format elements, 'YYYY', 'YY', and 'DD'.

626 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If the first argument is timestamp with time zone, or the second argument is a constant that contains a
format element for a time zone, the resulting string contains a timestamp with time zone. Otherwise, the
resulting string does not contain a time zone.

The result is the varying-length character string that contains timestamp-expression in the format that is
specified by format-string. If format-string is a constant, The length attribute of the result is the maximum
of 255 and the length attribute of format-string. Otherwise, the length attribute is 255. The format-string
determines the actual length of the result. The actual length must not be greater than the length attribute
of the result.

The result can be null; if any argument is null, the result is the null value.

The CCSID of the result is determined from the context in which the function is invoked. For more
information, see Determining the encoding scheme and CCSID of a string (Introduction to Db2 for z/OS).

Decimal floating-point to VARCHAR
numeric-expression

An expression that returns a value of any built-in numeric data type. If the argument is not a decimal
floating-point value, it is converted to DECFLOAT(34) for processing.

format-string
An expression that must return a value that is a built-in CHAR, VARCHAR, or numeric data type. If
the value is not a CHAR or VARCHAR data type, it is implicitly cast to VARCHAR before evaluating the
function. If the supplied argument is a GRAPHIC or VARGRAPHIC data type, it is first converted to
VARCHAR before evaluating the function. The actual length must not be greater than 254 bytes.

The value is a template for how numeric-expression is to be formatted. A format-string must contain a
valid combination of the listed format elements according to the following rules:

• A sign format element ('S', 'MI', 'PR') can be specified only one time.
• A decimal point format element can be specified only one time.
• Alphabetic format elements must be specified in upper case.
• A prefix format element can only be specified at the beginning of the format string, before any

format elements that are not prefix format elements. When multiple prefix format elements are
specified they can be specified in any order.

• A suffix format element can only be specified at the end of the format string, after any format
elements that are not suffix format elements. When multiple suffix format elements are specified
they can be specified in any order.

• A comma format element must not be the first format element that is not a prefix format element.
There can be any number of comma format elements.

• Blanks must not be specified between format elements. Leading and trailing blanks can be specified
but are ignored when formatting the result.

Table 100. Format elements for the VARCHAR_FORMAT (numeric to VARCHAR) function

Format element Description

0 Each 0 represents a significant digit.

Leading zeros in a number are formatted as
zeros.

9 Each 9 represents a significant digit that can be
included at the specified location.

Leading zeros in a number are formatted as
blanks. Only group separators that have at
least one digit to the left of the separator are
generated.

Chapter 4. Built-in functions 627

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html

Table 100. Format elements for the VARCHAR_FORMAT (numeric to VARCHAR) function (continued)

Format element Description

S Prefix
If numeric-expression is a negative number, a
leading minus sign (−) is included. If numeric-
expression is a positive number, a leading
plus sign (+) is included in the result.

$ Prefix
A leading dollar sign ($) is included the result.

MI Suffix
If numeric-expression is a negative number,
a trailing minus sign (−) is included in the
result. If numeric-expression is a positive
number, a trailing blank is included in the
result.

PR Suffix
If numeric-expression is a negative number, a
leading less than character (<) and a trailing
greater than character (>) are included in
the result. If numeric-expression is a positive
number, a leading blank and a trailing blank
are included in the result.

, (comma) Each comma represents a group separator that
is included at the specified location in the result
provided there would be a character to the left
of it that is not a prefix character. This comma is
used a group separator.

. (period/decimal point) A period represents the decimal point that is
included at the specified location in the result.
This period is used as a decimal point.

If format-string is not specified, the function is equivalent to VARCHAR(numeric-expression).

The result is a representation of the numeric-expression value (which might be rounded) in the format that
is specified by format-string. Prior to being formatted, the value of numeric-expression is rounded by using
the ROUND function, if the number of digits to the right of the decimal point is greater than the number of
digit format elements ('0' or '9') to the right of the decimal point in format-string. format-string is applied
according to the following rules:

• The result does not include any digit characters to the left of the decimal point if all of the following
conditions are true:

– -1 < rounded-input-value < 1
– format-string does not include a '0' format element to the left of the decimal point
– format-string includes at least one digit format element ('0' or '9') to the right of the decimal point

• The result includes a single 0 character immediately before the implicit or explicit decimal point if all of
the following conditions are true:

– The value of rounded-input-value is 0 or -0
– format-string includes only the '9' digit format elements to the left of the implicit or explicit decimal

point
– format-string does not include any digit format elements to the right of the decimal point

628 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• If format-string includes both '0' and '9' format elements to the left of the decimal point, the position of
the first digit format element from the beginning of the format string determines the presence of leading
blanks or zeroes. All '9' format elements specified after the leftmost '0' format element to the left of the
implicit or explicit decimal point are treated the same as if a '0' format element had been specified. For
example, the format-string value '99099' is the same as the value '99000'.

• If the number of digits to the right of the decimal point in rounded-input-value is less than the number
of digit format elements to the right of the decimal point in format-string, the result includes the number
of digit characters to the right of the decimal point that corresponds to the number of digit format
elements to the right of the decimal point in format-string, padded to the right with zeros.

• If the number of digits to the left of the decimal point in rounded-input-value is greater than the number
of digit format elements to the left of the decimal point in format-string, the result is a string of number
sign (#) characters that matches the length that format-string produces in the result for valid values.

• If the value of rounded-input-value represents any of the positive or negative special values, Infinity,
sNaN, or NaN, the string 'INFINITY', 'SNAN', 'NAN', '-INFINITY', '-SNAN', or '-NAN' is returned without
using the format that is specified by format-string. The decimal floating-point special value sNaN does
not result in an exception when converted to a string.

• If format-string does not include any of the sign format elements 'S', ''MI', or 'PR', and the value of
rounded-input-value is negative, a minus sign (−) is included in the result. Otherwise, a blank is included
in the resulting string. The minus sign or blank immediately precedes the first digit of the result to the
left of the decimal point, or the decimal point if there are no digits to the left of the decimal point.

The result is a varying-length character string representation of rounded-input-value. If a single argument
is specified the length attribute is 42. Otherwise the length attribute is 254. The actual length of the
result is determined by format-string, if specified. Otherwise, the actual length of the result is the smallest
number of characters that can represent the value of rounded-input-value. If the resulting string exceeds
the length attribute of the result, the result will be truncated.

The CCSID of the result is determined from the context in which the function is invoked. For more
information, see Determining the encoding scheme and CCSID of a string (Introduction to Db2 for z/OS)

Notes
Julian and Gregorian calendar:

For timestamp to a varying length character string, the transition from the Julian calendar to the
Gregorian calendar on 15 October 1582 is taken into account by this function.

Determinism:
VARCHAR_FORMAT is a deterministic function.

Using the 'D', 'Y', and 'y' format elements:
Db2 for z/OS does not support the 'DY', 'dy', and 'Dy' format elements that are supported by other
platforms. If 'DY' or 'Dy' is specified in the format string, it is interpreted as the 'D' format element
followed by the 'Y' or 'y' format element. This behavior might change in a future release. To ensure
that a 'D' followed by 'Y' or 'y' is interpreted as two separate format elements, include a separator
character after the 'D' format element.

Syntax alternatives:
TO_CHAR is a synonym for VARCHAR_FORMAT.

Examples
Example 1: Timestamp to VARCHAR

Set the character variable TVAR to a string representation of the timestamp value of RECEIVED from
CORPDATA.IN_TRAY, formatted as 'YYYY-MM-DD HH24:MI:SS.

 SELECT VARCHAR_FORMAT(RECEIVED,'YYYY-MM-DD HH24:MI:SS')
 INTO :TVAR
 FROM CORPDATA.IN_TRAY;

Assuming that the value in the RECEIVED column is 'January 1, 2000 at 10am', the following string is
returned:

Chapter 4. Built-in functions 629

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html

'2000-01-01 10:00:00'

Assuming that the value in the RECEIVED column is now one second before the beginning of the year
2000 ('December 31, 1999 at 23:59:59pm', the following string is returned:

'1999-12-31 23:59:59'

The result would be different if HH12 had been specified instead of HH24 in the format string:

'1999-12-31 11:59:59'

Example 2: Timestamp to VARCHAR
Assume that the variable TMSTAMP is defined as a TIMESTAMP and has the following value:
2007-03-09-14.07.38.123456. The following examples show several invocations of the function and
the resulting string values. The result data type in each case is VARCHAR(255).

Function invocation Result
------------------- ------
VARCHAR_FORMAT(TMSTAMP,'YYYYMMDDHHMISSFF3') 20070309020738123
VARCHAR_FORMAT(TMSTAMP,'YYYYMMDDHH24MISS') 20070309140738
VARCHAR_FORMAT(TMSTAMP,'YYYYMMDDHHMI') 200703090207
VARCHAR_FORMAT(TMSTAMP,'DD/MM/YY') 09/03/07
VARCHAR_FORMAT(TMSTAMP,'MM-DD-YYYY') 03-09-2007
VARCHAR_FORMAT(TMSTAMP,'J') 2454169
VARCHAR_FORMAT(TMSTAMP,'Q') 1
VARCHAR_FORMAT(TMSTAMP,'W') 2
VARCHAR_FORMAT(TMSTAMP,'IW') 10
VARCHAR_FORMAT(TMSTAMP,'WW') 10
VARCHAR_FORMAT(TMSTAMP,'Month') March
VARCHAR_FORMAT(TMSTAMP,'MONTH') MARCH
VARCHAR_FORMAT(TMSTAMP,'MON') MAR

Example 3: Timestamp to VARCHAR
Assume that the variable DTE is defined as a DATE and has the value of '2007-03-09'. The following
examples show several invocations of the function and the resulting string values. The result data type
in each case is VARCHAR(255):

 Function invocation Result
------------------- ------
VARCHAR_FORMAT(DTE,'YYYYMMDD') 20070309
VARCHAR_FORMAT(DTE,'YYYYMMDDHH24MISS') 20070309000000

Assuming that today is May 26, 2008, the function returns:

26-MAY-2007

If the format string is 'YYYY-MON-YYYY', the result would be:

2007-MAY-2007

Example 4: Timestamp to VARCHAR
Format the hour of the specified string representation of a timestamp using a 12 hour clock and a 24
hour clock:

 SELECT
 VARCHAR_FORMAT(TIMESTAMP('1979-04-07-14.00.00.000000'), 'HH'),
 VARCHAR_FORMAT(TIMESTAMP('1979-04-07-14.00.00.000000'), 'HH12'),
 VARCHAR_FORMAT(TIMESTAMP('1979-04-07-14.00.00.000000'), 'HH24'),
 VARCHAR_FORMAT(TIMESTAMP('2000-01-01-00.00.00.000000'), 'HH'),
 VARCHAR_FORMAT(TIMESTAMP('2000-01-01-12.00.00.000000'), 'HH'),
 VARCHAR_FORMAT(TIMESTAMP('2000-01-01-24.00.00.000000'), 'HH'),
 VARCHAR_FORMAT(TIMESTAMP('2000-01-01-00.00.00.000000'), 'HH12'),
 VARCHAR_FORMAT(TIMESTAMP('2000-01-01-12.00.00.000000'), 'HH12'),
 VARCHAR_FORMAT(TIMESTAMP('2000-01-01-24.00.00.000000'), 'HH12'),
 VARCHAR_FORMAT(TIMESTAMP('2000-01-01-00.00.00.000000'), 'HH24'),
 VARCHAR_FORMAT(TIMESTAMP('2000-01-01-12.00.00.000000'), 'HH24'),
 VARCHAR_FORMAT(TIMESTAMP('2000-01-01-24.00.00.000000'), 'HH24')
 FROM SYSIBM.SYSDUMMY1;

630 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The previous SELECT statement returns the following values:

'02' '02' '14' '12' '12' '12' '12' '12' '12' '00' '12' '24'

Note that the values '00' and '24' on a 24 hour scale both map to a value of '12' on a 12 hour scale.
Example 5: Timestamp with time zone to VARCHAR

Assume that column PRSTSZ contains a timestamp with time zone value of
'2008-02-29.20.00.000000 -08:00'. The following statement returns the value '2008-02-29
20:00:00.000000 -08:00'.

SELECT VARCHAR_FORMAT(PRSTSZ, 'YYYY-MM-DD HH24:MI:SS.NNNNNN TZH:TZM'))
 FROM PROJECT;

Example 6: decimal floating-point to VARCHAR
Assume that the variables POSNUM and NEGNUM are defined as DECFLOAT(34) and have the
following values: '1234.56' and '-1234.56', respectively. The following examples show several
invocations of the function and the resulting string values. The result data type in each case is
VARCHAR(254).

Function invocation Result

VARCHAR_FORMAT(POSNUM) '1234.56'

VARCHAR_FORMAT(NEGNUM) '-1234.56'

VARCHAR_FORMAT(POSNUM,'9999.99') ' 1234.56'

VARCHAR_FORMAT(NEGNUM,'9999.99') '-1234.56'

VARCHAR_FORMAT(POSNUM,'99999.99') ' 1234.56'

VARCHAR_FORMAT(NEGNUM,'99999.99') ' -1234.56'

VARCHAR_FORMAT(POSNUM,'00000.00') ' 01234.56'

VARCHAR_FORMAT(NEGNUM,'00000.00') '-01234.56'

VARCHAR_FORMAT(POSNUM,'9999.99MI')
'1234.56 '

VARCHAR_FORMAT(NEGNUM,'9999.99MI') '1234.56-'

VARCHAR_FORMAT(POSNUM,'S9999.99')
'+1234.56'

VARCHAR_FORMAT(NEGNUM,'S9999.99') '-1234.56'

VARCHAR_FORMAT(POSNUM,'9999.99PR')
' 1234.56 '

VARCHAR_FORMAT(NEGNUM,'9999.99PR') '<1234.56>'

Chapter 4. Built-in functions 631

Function invocation Result

VARCHAR_FORMAT(POSNUM,'S$9,999.99')
'+$1,234.56'

VARCHAR_FORMAT(NEGNUM,'S$9,999.99')
'-$1,234.56'

VARGRAPHIC scalar function
The VARGRAPHIC function returns a varying-length graphic string representation of the first argument.

Syntax for integer to vargraphic
FL 502

VARGRAPHIC( integer-expression)

Syntax for decimal to vargraphic
FL 502

VARGRAPHIC( decimal-expression

, decimal-character

)

Syntax for floating-point to vargraphic
FL 502

VARGRAPHIC( floating-point-expression)

Syntax for decimal floating-point to vargraphic
FL 502

VARGRAPHIC( decimal-floating-point-expression)

Syntax for character to vargraphic:

VARGRAPHIC( character-expression

, integer

, CODEUNITS16

CODEUNITS32

)

Syntax for graphic to vargraphic:

VARGRAPHIC( graphic-expression

, integer

, CODEUNITS16

CODEUNITS32

)

632 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html

The schema is SYSIBM.

The GRAPHIC function returns a varying length-graphic-string representation of:

• FL 502 An integer number if the first argument is a SMALLINT, INTEGER, or BIGINT
• FL 502 A decimal number if the first argument is a decimal number
• FL 502 A double-precision floating-point number if the first argument is a DOUBLE or REAL
• FL 502 A decimal floating-point number if the first argument is DECFLOAT
• A character string if the first argument is any type of character string
• A graphic string if the first argument is an EBCDIC or Unicode graphic string

The result can be null; if the first argument is null, the result is the null value.

The length attribute and actual length of the result are measured in double-byte characters because the
result is a graphic string.

Integer to vargraphic
FL 502

integer-expression
An expression that returns a value that is an integer data type (either SMALLINT, INTEGER, or
BIGINT).

The result is a varying-length graphic string of the argument in the form of an SQL integer constant. The
actual length of the result is the smallest number of characters that can be used to represent the value of
the argument. The result consists of n characters that are the significant digits that represent the value of
the argument with a preceding minus sign if the argument is negative. A positive value starts with a digit.
Leading zeroes are not included.

• If the argument is a small integer, the length attribute of the result is 6.
• If the argument is a large integer, the length attribute of the result is 11.
• If the argument is a big integer, the length attribute of the result is 20.

The CCSID of the result is 1200 (UTF-16).

Decimal to vargraphic
FL 502

decimal-expression
An expression that returns a value that is a built-in decimal data type. If a different precision and
scale is wanted, the DECIMAL scalar function can be used to make the change. To specify a different
precision and scale for the value of the expression, apply the DECIMAL function before applying the
VARGRAPHIC function.

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal digits in the result
graphic string. The character must not be a digit, a plus sign (+), a minus sign (-), or a blank. The
default is the period (.) or comma (,). For information on what factors govern the choice, see Decimal
point representation.

The result is a varying-length graphic string representation of the first argument. The actual length of the
result is the smallest number of characters that can be used to represent the result, except that trailing
zeros are included. The result includes a decimal character and up to p digits, where p is the precision
of the decimal-expression with a preceding minus sign if the argument is negative. A positive value starts
with a digit or the decimal-character, and always includes at least one trailing blank. Leading zeros are not
returned. If the scale of decimal-expression is zero, the decimal character is not returned. If the number
of bytes in the result is less than the defined length of the result, the result is padded on the right with
blanks.

Chapter 4. Built-in functions 633

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html

The length of the result is 2+p where p is the precision of the decimal-expression.

The CCSID of the result is 1200 (UTF-16).

Floating-point to vargraphic
FL 502

floating-point-expression
An expression that returns a value that is a floating-point data type (DOUBLE or REAL).

The result is a varying-length graphic string representation of the argument in the form of an SQL floating-
point constant. If the argument is negative, the first character of the result is a minus sign; otherwise, the
first character is a digit. If the argument is zero, the result is 0E0.

The length of the result is 24. The actual length of the result includes the smallest number of characters
that can represent the value of the argument such that the mantissa consists of a single digit, other than
zero, followed by a period and a sequence of digits. If the number of characters in the result is less than
24, the result is padded on the right with blanks.

The CCSID of the result is 1200 (UTF-16).

Decimal floating-point to vargraphic
FL 502

decimal-floating-point expression
An expression that returns a value that is a built-in decimal floating-point data type (DECFLOAT).

The result is a varying-length graphic string representation of the argument in the form of an SQL decimal
floating-point constant.

If the result value is Infinity, sNaN, or NaN, the strings 'INFINITY', 'SNAN', and 'NAN', respectively, are
returned. The DECFLOAT special value sNaN does not result in an exception when converted to a string.

The length of the result is 42. The actual length of the result is the smallest number of characters
that represents the value of the argument, including the sign, digits, and the period. Trailing zeros are
significant. If the argument is negative, the first character of the result is a minus sign. Otherwise, the first
character is a digit, or a letter if the DECFLOAT value is Infinity, sNaN, or NaN.

The CCSID of the result is 1200 (UTF-16).

Character to vargraphic
character-expression

An expression that returns a value of a built-in character string data type that contains an EBCDIC-
encoded or Unicode-encoded character string value. It cannot be BIT data. The argument does not
need to be mixed data, but any occurrences of X'0E' and X'0F' in the string must conform to the rules
for EBCDIC mixed data. (See “Character strings” on page 102 for these rules.)

integer
The length attribute of the resulting varying-length graphic string. The value must be an integer
constant in the range 1–16352.

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length attribute of the final
result” on page 108 for information about how to calculate the length attribute of the result string.

If integer is not specified and if the character-expression is an empty string constant or has a value
X'0E0F', the length attribute of the result is 1 and the result is an empty string. Otherwise, the length
attribute of the result is the same as the length attribute of the first argument.

CODEUNITS16 or CODEUNITS32
Specifies the unit that is used to express integer. If CODEUNITS16 or CODEUNITS32 is specified, the
input is EBCDIC, and there is no corresponding CCSID for EBCDIC GRAPHIC data, an error occurs.

634 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html

CODEUNITS16
Specifies that integer is expressed in terms of 16-bit UTF-16 code units.

CODEUNITS32
Specifies that integer is expressed in terms of 32-bit UTF-32 code units.

For more information about CODEUNITS16 and CODEUNITS32, see “String unit specifications” on
page 106.

The actual length of the result is the minimum of the length attribute of the result and the actual length
of character-expression. If the length of character-expression, as measured in single-byte characters,
is greater than the specified length of the result, as measured in double-byte characters, the result is
truncated. Unless all the truncated characters are blanks appropriate for character-expression, a warning
is returned.

The CCSID of the result is the graphic CCSID that corresponds to the character CCSID of character-
expression. If the input is EBCDIC and there is no system CCSID for EBCDIC GRAPHIC data, the CCSID of
the result is X'FFFE'.

For EBCDIC input data:

Each character of character-expression determines a character of the result. The argument might need to
be converted to the native form of mixed data before the result is derived. Let M denote the system CCSID
for mixed data. The argument is not converted if any of the following conditions is true:

• The argument is mixed data and its CCSID is M.
• The argument is SBCS data and its CCSID is the same as the system CCSID for SBCS data. In this case,

the operation proceeds as if the CCSID of the argument is M.

Otherwise, the argument is a new string S derived by converting the characters to the coded character set
identified by M. If there is no system CCSID for mixed data, conversion is to the coded character set that
the system CCSID for SBCS data identifies.

The result is derived from S using the following steps:

• Each shift character (X'0E' or X'0F') is removed.
• Each double-byte character remains as is.
• Each single-byte character is replaced by a double-byte character.

The replacement for a single-byte character is the equivalent DBCS character if an equivalent exists.
Otherwise, the replacement is X'FEFE'. The existence of an equivalent character depends on M. If there
is no system CCSID for mixed data, the DBCS equivalent of X'xx' for EBCDIC is X'42xx', except for X'40',
whose DBCS equivalent is X'4040'.

For Unicode input data:

Each character of character-expression determines a character of the result. The argument might need to
be converted to the native form of mixed data before the result is derived. Let M denote the system CCSID
for mixed data. The argument is not converted if any of the following conditions is true:

• The argument is mixed data, and its CCSID is M.
• The argument is SBCS data, and its CCSID is the same as the system CCSID for SBCS data. In this case,

the operation proceeds as if the CCSID of the argument is M.

Otherwise, the argument is a new string S derived by converting the characters to the coded character set
identified by M.

The result is derived from S using the following steps:

• Each non-supplementary character is replaced by a Unicode double-byte character (a UTF-16 code
point). A non-supplementary character in UTF-8 is in the range 1–3 bytes.

• Each supplementary character is replaced by a pair of Unicode double-byte characters (a pair of UTF-16
code points).

Chapter 4. Built-in functions 635

The replacement for a single-byte character is the Unicode equivalent character if an equivalent exists.
Otherwise, the replacement is X'FFFD'.

Graphic to vargraphic
graphic-expression

An expression that returns a value of a built-in graphic string data type that contains an EBCDIC-
encoded or Unicode-encoded graphic string value.

integer
The length attribute for the resulting varying-length graphic string. The value must be an integer
constant in the range 1–16352.

If CODEUNITS16 or CODEUNITS32 is specified, see “Determining the length attribute of the final
result” on page 108 for information about how to calculate the length attribute of the result string.

If integer is not specified and if the graphic-expression is an empty string constant, the length attribute
of the result is 1 and the result is an empty string. Otherwise, the length attribute of the result is the
same as the length attribute of the first argument.

CODEUNITS16 or CODEUNITS32
Specifies the unit that is used to express integer. If CODEUNITS16 or CODEUNITS32 is specified, the
input is EBCDIC, and there is no corresponding CCSID for EBCDIC GRAPHIC data, an error occurs.
CODEUNITS16

Specifies that integer is expressed in terms of 16-bit UTF-16 code units.
CODEUNITS32

Specifies that integer is expressed in terms of 32-bit UTF-32 code units.

For more information about CODEUNITS16 and CODEUNITS32, see “String unit specifications” on
page 106.

The actual length of the result depends on the number of characters in graphic-expression. If the length of
graphic-expression is greater than the length specified, the result is truncated. Unless all of the truncated
characters are double-byte blanks, a warning is returned.

The CCSID of the result is the same as the CCSID of graphic-expression.

Notes
FL 502 Casting numeric data to Unicode: The result of the VARGRAPHIC functions is Unicode (UTF-16)
when the first argument is numeric data. The VARGRAPHIC function can only be invoked with numeric
data for the first argument if the containing statement:

• references Unicode base tables or views only and the statement is qualified to be a single encoding
scheme statement, or

• is considered a multiple encoding scheme statement and the application encoding scheme is Unicode.

Examples
Example 1:

FL 502 Assume that an EMPLOYEE_U table exists that is similar to the EMPLOYEE sample table except
that it is a Unicode table. The EDLEVEL column is defined as SMALLINT. Assume that employee
Christine Haas was in school for 18 years. The following statement returns the EDLEVEL column value
as a varying-length graphic string.

SELECT VARGRAPHIC(EDLEVEL)
 FROM EMPLOYEE_U
 WHERE LASTNAME = 'HAAS'

The result value is G'18'.

636 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html

Example 2:

FL 502 Assume that an EMPLOYEE_U table exists that is similar to the EMPLOYEE sample table
except that it is a Unicode table. The SALARY and COMM columns are defined as DECIMAL with a
precision of 9 and a scale of 2. Assume that employee Christine Haas has a salary of $52750.00 and a
commission of $4220.00. Return the total of the salary and commission for employee Christine Haas
as a varying-length graphic string using the comma decimal character.

SELECT VARGRAPHIC(SALARY + COMM, ',')
 FROM EMPLOYEE_U
 WHERE LASTNAME = 'HAAS'

The result value is G'56970,00'.

VERIFY_GROUP_FOR_USER scalar function
The VERIFY_GROUP_FOR_USER function returns a value that indicates whether the primary authorization
ID and the secondary authorization IDs that are associated with the first argument are in the authorization
names that are specified in the list of the second argument.

VERIFY_GROUP_FOR_USER (SESSION_USER

USER

, group-name-expression

)

The schema is SYSIBM.

SESSION_USER or USER
Specifies the value of the SESSION_USER (or USER) special register.

group-name-expression
An expression that specifies an authorization name. The existence of the authorization name at the
current server is not verified. group-name-expression must return a built-in character string data type
or graphic string data type that is not a LOB. The string must have a length that does not exceed the
maximum length of an SQL identifier. The content of the string is not folded to uppercase and is not
left justified.

The result of the function is a large integer. The result cannot be null.

The result is 1 if the primary or secondary authorization IDs that are associated with the user that is
identified by the SESSION_USER (or USER) special register is in the list that is specified by group-name-
expression. Otherwise, the result is 0.

Notes
Syntax alternatives:

The VERIFY_GROUP_FOR_USER function is deterministic within a connection. It is not deterministic
across connections. The function can be referenced in a CREATE MASK or a CREATE PERMISSION
statement and is considered for table expressions or the merging of views.

Examples
Example 1:

In the following example, the EMPLOYEE table has column access control enabled. If the connection
is established outside a trusted context and Mary, who has a secondary authorization ID of "MGR",
queries the social security number of Tom from the EMPLOYEE table, the social security number is
returned. When Mary is no longer a manager, the same query displays the last four digits of Tom's
social security number.

Chapter 4. Built-in functions 637

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html

Assume that a user who has SECADM authority has created the following column mask:

CREATE MASK SSN_MASK ON EMPLOYEE
 FOR COLUMN SSN
 RETURN
 CASE WHEN VERIFY_GROUP_FOR_USER(SESSION_USER, 'MGR') = 1
 THEN SSN
 ELSE 'XXX-XX-' || SUBSTR(SSN, 8, 4)
 END
 ENABLE;

COMMIT;

An ALTER TABLE statement is then issued to activate the column mask on the EMPLOYEE table:

ALTER TABLE EMPLOYEE
 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

Mary connects to Db2, issues the following query, then disconnects from Db2:

SELECT SSN
 FROM EMPLOYEE
 WHERE NAME = 'Tom';

Mary receives Tom's social security number.

When Mary is no longer a manager, the secondary authorization ID, MGR is removed for her
authorization ID. The next time Mary connects to Db2 and issues the following command, only the
last four digits of Tom's social security number are displayed because of the column mask SSN_MASK:

SELECT SSN
 FROM EMPLOYEE
 WHERE NAME = 'Tom';

VERIFY_ROLE_FOR_USER scalar function
The VERIFY_ROLE_FOR_USER function returns a value that indicates whether the roles that are
associated with the authorization ID that is specified in the first argument are included in the role names
that are specified in the list of the second argument.

If the only way to acquire a role is under a trusted connection that is associated
with a trusted context, the VERIFY_ROLE_FOR_USER function is equivalent to the
VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER function.

VERIFY_ROLE_FOR_USER (SESSION_USER

USER

, role-name-expression

)

The schema is SYSIBM.

SESSION_USER or USER
Specifies the value of the SESSION_USER (or USER) special register.

role-name-expression
An expression that specifies a role name. The existence of the role name at the current server is not
verified. role-name-expression must return a built-in character string data type or graphic string data
type that is not a LOB. The string must have a length that does not exceed the maximum length of an
SQL identifier. The content of the string is not folded to uppercase and is not left justified.

638 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The result of the function is a large integer. The result cannot be null.

The result is 1 if any of the roles that are associated with the user that is identified by the SESSION_USER
(or USER) special register is in the list of roles specified by role-name-expression. Otherwise, the result is
0.

Notes
Determinism:

The VERIFY_ROLE_FOR_USER function is deterministic within a trusted connection. It is not
deterministic across trusted connections. The function can be referenced in a CREATE MASK or a
CREATE PERMISSION statement and is considered for table expressions or the merging of views.

Examples
Example 1:

Assume that the following statements have been issued to create specific roles and the trusted
context CTX1:

CREATE ROLE EMPLOYEE;
COMMIT;

CREATE ROLE MGR;
COMMIT;

CREATE ROLE PAYROLL;
COMMIT;

CREATE TRUSTED CONTEXT CTX1
 BASED UPON CONNECTION USING SYSTEM AUTHID ADMF001
 ATTRIBUTES (ADDRESS '9.30.131.203', ENCRYPTION 'LOW')
 DEFAULT ROLE EMPLOYEE
 ENABLE
 WITH USE FOR SAM, JOE ROLE MGR WITH AUTHENTICATION;

COMMIT;

Joe, who is a manager, issues the following dynamic query through the trusted connection CTX1 to
view the salaries of the employees in the DSN8910.EMP table that are in his department:

SELECT SALARY FROM DSN8910.EMP
 WHERE VERIFY_ROLE_FOR_USER(SESSION_USER,'MGR','PAYROLL')= 1
 AND WORKDEPT = ?;

Example 2:
For the following example, suppose that a user with SECADM authority needs to control access for
specific users who execute a statement that is accessing a table:
Is the current user, B, using role X to run a statement owned by user C

SESSION_USER = B AND
VERIFY_ROLE_FOR_USER(SESSION_USER, 'X')

Is the current user, B, using role X to run a statement owned by role D

SESSION_USER = B AND
VERIFY_ROLE_FOR_USER(SESSION_USER, 'X')

Is the current user, B, using role B to execute a dynamic statement

SESSION_USER = B AND
VERIFY_ROLE_FOR_USER(SESSION_USER, 'B')

Chapter 4. Built-in functions 639

VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER scalar function
The VERIFY_TRUSTED_CONTEXT_FOR_USER function returns a value that indicates whether the
authorization ID that is associated with first argument has acquired a role in a trusted connection and
whether that acquired role is included in the role names that are specified in the list of the second
argument.

VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER (SESSION_USER

USER

, role-name-expression)

The schema is SYSIBM.

SESSION_USER or USER
Specifies the value of the SESSION_USER (or USER) special register.

role-name-expression
An expression that specifies a role name. The existence of the role name at the current server is not
verified. role-name-expression must return a built-in character string data type or graphic string data
type that is not a LOB. The string must have a length that does not exceed the maximum length of an
SQL identifier. The content of the string is not folded to uppercase and is not left justified.

The result of the function is a large integer. The result cannot be null.

The result is 1 if the user that is identified by the SESSION_USER (or USER) special register has acquired
a role under a trusted connection that is associated with a trusted context and that role is in the list of
role-name-expression. Otherwise, the result is 0.

Notes
Determinism:

The VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER function is deterministic within a trusted
connection. It is not deterministic across trusted connections. The function can be referenced in a
CREATE MASK or a CREATE PERMISSION statement and is considered for table expressions or the
merging of views.

Examples
Example 1:

Assume that the following statements have been issued to create specific roles and the trusted
context CTX1:

CREATE ROLE EMPLOYEE;
COMMIT;

CREATE ROLE MGR;
COMMIT;

CREATE ROLE PAYROLL;
COMMIT;

CREATE TRUSTED CONTEXT CTX1
 BASED UPON CONNECTION USING SYSTEM AUTHID ADMF001
 ATTRIBUTES (ADDRESS '9.30.131.203', ENCRYPTION 'LOW')
 DEFAULT ROLE EMPLOYEE
 ENABLE
 WITH USE FOR SAM, JOE ROLE MGR WITH AUTHENTICATION;

COMMIT;

640 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Joe, who is a manager, issues the following dynamic query through the trusted connection CTX1 to
view the salaries of the employees in the DSN8910.EMP table that are in his department:

SELECT SALARY FROM DSN8910.EMP
 WHERE VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER,'MGR','PAYROLL')= 1
 AND WORKDEPT = ?;

Example 2:
For the following example, suppose that a user with SECADM authority needs to control access for
specific users who execute a statement that is accessing a table:
Is the current user, B, using role X to run a statement owned by user C?

SESSION_USER = B AND
VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER, 'X')

Is the current user, B, using role X to run a statement owned by role D?

SESSION_USER = B AND
VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER, 'X')

Is the current user, B, using role B to execute a dynamic statement?

SESSION_USER = B AND
VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER, 'B')

WEEK scalar function
The WEEK function returns an integer in the range of 1 to 54 that represents the week of the year. The
week starts with Sunday, and January 1 is always in the first week.

WEEK( expression)

The schema is SYSIBM.

The argument must be an expression that returns a value of one of the following built-in data types: a
date, a timestamp, a character string, or a graphic string. If expression is a character or graphic string, it
must not be a CLOB or DBCLOB, and its value must be a valid string representation of a date or timestamp
with an actual length that is not greater than 255 bytes. For the valid formats of string representations of
dates and timestamps, see “String representations of datetime values” on page 120.

If expression is a timestamp with a time zone, or a valid string representation of a timestamp with a time
zone, the result is determined from the UTC representation of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

Example 1: Using sample table DSN8C10.PROJ, set the integer host variable WEEK to the week of the year
that project 'AD2100' ended.

 SELECT WEEK(PRENDATE)
 INTO :WEEK
 FROM DSN8C10.PROJ
 WHERE PROJNO = 'AD2100';

The result is that WEEK is set 6.

Example 2: The following invocations of the WEEK function returns the same result:

SELECT WEEK('1993-08-10-20.00.00'),
 WEEK('1993-08-10-20.00.00-08:00'),
 WEEK('1993-08-10-20.00.00+09:00')
 FROM SYSIBM.SYSDUMMY1;

Chapter 4. Built-in functions 641

For each invocation of the WEEK function in this SELECT statement, the result is 33.

When the input argument contains a time zone, the result is determined from the UTC representation of
the input value. The string representations of a timestamp with a time zone in the SELECT statement all
have the same UTC representation: '1993-08-10-20.00.00'.

WEEK_ISO scalar function
The WEEK_ISO function returns an integer in the range of 1 to 53 that represents the week of the year.
The week starts with Monday and includes seven days. Week 1 is the first week of the year that contains a
Thursday, which is equivalent to the first week that contains January 4.

WEEK_ISO( expression)

With the WEEK_ISO function, the first one, two, or three days in January might be included in the last
week of the previous year. Likewise, the last one, two, or three days in December might be included in the
first week of the next year.

The schema is SYSIBM.

The argument must be a date, a timestamp, or a valid string representation of a date or timestamp. A
string representation must not be a CLOB or DBCLOB value and must have an actual length that is not
greater than 255 bytes. For the valid formats of string representations of dates and timestamps, see
“String representations of datetime values” on page 120.

If expression is a timestamp with a time zone, or a valid string representation of a timestamp with a time
zone, the result is determined from the UTC representation of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

Example 1: Using sample table DSN8C10.PROJ, set the integer host variable WEEKISO to the week of the
year that project 'AD2100' ended.

 SELECT WEEK_ISO(PRENDATE)
 INTO :WEEKISO
 FROM DSN8C10.PROJ
 WHERE PROJNO = 'AD2100';

Example 2: The following list shows what is returned by the WEEK_ISO function for various dates.

 DATE: WEEK_ISO returns:

 2003-12-28 52
 2003-12-31 1
 2004-01-01 1
 2005-01-01 53
 2005-01-04 1
 2005-12-31 52
 2006-01-01 52
 2006-01-03 1

Example 3: The following invocations of the WEEK_ISO function returns the same result:

SELECT WEEK_ISO('1993-08-10-20.00.00'),
 WEEK_ISO('1993-08-10-20.00.00-08:00'),
 WEEK_ISO('1993-08-10-20.00.00+09:00')
 FROM SYSIBM.SYSDUMMY1;

For each invocation of the WEEK_ISO function in this SELECT statement, the result is 32.

When the input argument contains a time zone, the result is determined from the UTC representation of
the input value. The string representations of a timestamp with a time zone in the SELECT statement all
have the same UTC representation: '1993-08-10-20.00.00' .

642 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

WRAP scalar function
The WRAP built-in function encodes a readable data definition statement into an obfuscated data
definition statement. The procedural logic and embedded SQL statements in an obfuscated data definition
statement are scrambled in such a way that any intellectual property in the logic cannot be easily
extracted.

WRAP (object-definition-string)

The schemas is SYSIBM.

The WRAP function is not deterministic.

object-defintion-string
A string of any built-in character type that contains any of the following data definition statements:

• CREATE FUNCTION (compiled SQL scalar)
• CREATE FUNCTION (inlined SQL scalar)
• CREATE FUNCTION (SQL table)
• CREATE PROCEDURE (SQL - native)
• CREATE TRIGGER (basic)
• CREATE TRIGGER (advanced)

object-defintion-string must not be bit data, and it cannot contain the VERSION keyword.

The result is a string of type CLOB(2M) that contains an encoded version of the input statement. The
result cannot be null. The encoded statement consists of the following parts:

• The original statement up to and including the routine signature or trigger name.
• The WRAPPED keyword.
• The product identifier of the database manager that invoked the function.

The product identifier (PRDID) value is an 8-byte character value in pppvvrrm format, where: ppp is a
3-letter product code; vv is the version;rr is the release; and m is the modification level. In Db2 12 for
z/OS, the modification level indicates a range of function levels:

DSN12015 for V12R1M500 or higher.
DSN12010 for V12R1M100.

For more information, see Product identifier (PRDID) values in Db2 for z/OS (Db2 Administration Guide).
• The encoded remainder of the data definition statement, in the form of a string of letters (a-z and A-Z),

digits (0-9), underscores, and colons. It is converted to Unicode UTF-8 before it is encoded. An error is
issued if object-definition-string cannot be converted or if the intermediate string exceeds the maximum
length for SQL statements. A warning occurs if a character is converted to the substitution character.

The encoded data definition statement can be up to one-third longer than the plain text form of the
statement. If the result exceeds the maximum length for SQL statements, an error is issued.

Important: The encoding of the statement is meant to obfuscate the content and is not considered a form
of strong encryption.

Examples
Example 1

The following example, produces an obfuscated version of a function that computes a yearly salary
from an hourly wage given a 40 hour work week.

SELECT WRAP('CREATE FUNCTION salary(wage DECFLOAT)
RETURNS DECFLOAT
RETURN wage * 40 * 52')
FROM SYSIBM.SYSDUMMY1

Chapter 4. Built-in functions 643

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_prdidvalues.html

The result is similar to the following form:

CREATE FUNCTION salary(wage DECFLOAT) WRAPPED DSN12015
ablGWmdiWmtyTmduTmJqTmtaUmtCUmZqUmdiXodK3idaWmdaWmdaWmZG1mIaG
icaGy31TyStm_qGbe3sDxdxjtC8ymVGLpMXnuL8lkmNuRhhZ6qYJ2YYdXGaa

Example 2
The following statement produced an obfuscated version of a trigger that sets a complex default
value.

SELECT WRAP('CREATE OR REPLACE TRIGGER trig1
BEFORE INSERT ON emp
REFERENCING NEW AS n FOR EACH ROW
WHEN (n.bonus IS NULL)
SET n.bonus = n.salary * .04')
FROM SYSIBM.SYSDUMMY1

The result is similar to the following form:

CREATE TRIGGER trig1 WRAPPED DSN12015
ablGWmdiWmtyTmduTmJqTmtaUmtGUnteUmZKWmtqWidaWmdaWmdaXmdyWncaGica
GK6ot_81NzyodncdrRIJFp_tBjpJeIwg_dTKNHcdtHPSaNCpmqBKH2pMwExkRTJW
Zr:dJd0_gSbehW:4Xx1UGPGnDxvmJfa5ZAGOr_1sfFiyaPrkOXzt5UMTmsASfyJR
ksbPfM2dlATbq:0RW

Related tasks
Obfuscating source code of SQL procedures, SQL functions, and triggers (Db2 Administration Guide)
Related reference
CREATE_WRAPPED stored procedure
The CREATE_WRAPPED procedure encodes a readable data definition statement into an obfuscated data
definition statement and then deploys the object in the database. The procedural logic and embedded
SQL statements in an obfuscated data definition statement are scrambled in such a way that any
intellectual property in the logic cannot be easily extracted.

XMLATTRIBUTES scalar function
The XMLATTRIBUTES function constructs XML attributes from the arguments. This function can be used
as an argument only for the XMLELEMENT function.

XMLATTRIBUTES(

,

attribute-value-expression

AS attribute-name

)

The schema is SYSIBM.

The result is an XML sequence that contains an XQuery attribute node for each non-null attribute-value-
expression argument.

attribute-value-expression
An expression that returns a value for the attribute. The data type of attribute-value-expression must
not be ROWID, a LOB, a distinct type that is based on a ROWID or a LOB, or XML.

The result of attribute-value-expression is mapped to an XML value according to the rules for mapping
an SQL value to an XML value. If the expression is not a simple column reference, an attribute name
must be specified.

AS attribute-name
Specifies an attribute name. The name is an SQL identifier that must be in the form of an XML qualified
name, or QName. If attribute-name is a qualified name, the namespace prefix must be declared within
the scope of the qualified name.

644 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_obfuscateroutinetrigger.html

attribute-name cannot be 'xmlns' or prefixed with 'xmlns:'. A namespace is declared using the function
XMLNAMESPACES. The attribute names for an element must be unique for the XML element to be
well-formed.

If attribute-name is not specified, the expression for attribute-value must be a column name. The
attribute name will be created from the column name using the fully escaped mapping from a column
name to an XML attribute name.

The result of the function is an XML value. The result can be null; if all attribute-value-expression
arguments are null, the result is the null value.

XMLCOMMENT scalar function
The XMLCOMMENT function returns an XML value with a single comment node from a string expression.
The content of the comment node is the value of the input string expression, mapped to Unicode (UTF-8).

XMLCOMMENT( string-expression)

The schema is SYSIBM.

string-expression
An expression that returns a value of a built-in character or graphic string that is not a LOB and
is not bit data. The result of string-expression is converted to UTF-8 and then parsed to check for
conformance to the content of XML comment as specified by the following rules:

• '--' (double-hyphen) must not occur in the string expression
• The string expression must not end with a hyphen ('-')
• Each character of the string can be any Unicode character, excluding the surrogate blocks, X'FFFE',

and X'FFFF'

If string-expression does not conform to the previous rules, an error is returned.

The result of the function is an XML value that is an XML sequence that contains one XML comment node.

The result can be null; if the argument is null, the result is the null value.

Example: Generate an XML comment:

 SELECT XMLCOMMENT('This is an XML comment')
 FROM SYSIBM.SYSDUMMY1;

The result of the query would look similar to the following result:

<!--This is an XML comment-->

XMLCONCAT scalar function
The XMLCONCAT function returns an XML sequence that contains the concatenation of a variable number
of XML input arguments.

XMLCONCAT( XML-expression

,

XML-expression

)

The schema is SYSIBM.

XML-expression
An expression that returns an XML value.

Chapter 4. Built-in functions 645

The data type of the result is XML. The result of the function is an XML sequence that contains the
concatenation of the non-null input XML values. Null values in the input are ignored. The result can be
null; if the result of every input value is null, the result is the null value.

Example: Concatenate first name and last name elements by using 'first' and 'last' element names for
each employee.

 SELECT XMLSERIALIZE(XMLCONCAT
 (XMLELEMENT (NAME "first", e.fname),
 XMLELEMENT (NAME "last", e.lname)
)) AS "result"
 FROM employees e;

The result of the query would look similar to the following result:

result

 <first>John</first><last>Smith</last>
 <first>Mary</first><last>Smith</last>

XMLDOCUMENT scalar function
The XMLDOCUMENT function returns an XML value with a single document node and zero or more nodes
as its children. The content of the generated XML document node is specified by a list of expressions.

XMLDOCUMENT(

,

XML-expression)

The schema is SYSIBM.

XML-expression
An expression that returns an XML value. A sequence item in the XML value must not be an attribute
node. If XML-expression returns a null value, it is ignored for further processing. However, if all
XML-expression values are null, the result of the function is the null value.

The result of the function is an XML value.

The result can be null; if all of the arguments are null, the result is the null value.

The resulting XML value is built from the list of XML-expression arguments. The children of the resulting
document node are constructed as follows:

1. All of the non-null XML values that are returned by XML-expression are concatenated together. The
result is a sequence of nodes or atomic values, which is referred to in the following steps as the input
sequence. Any document node in the input sequence is replaced by copies of its children.

2. For each node in the input sequence, a new deep copy of the node is constructed. A deep copy of
a node is a copy of the whole subtree that is rooted at that node, including the node itself and its
descendants and attributes. Each copied node has a new node identity. Copied element nodes are
given the type annotation 'xdt:untyped', and copied attribute nodes are given the type annotation
'xdt:untypedAtomic'. For each adjacent sequence of one or more atomic values that is returned in the
input sequence, a new text node is constructed that contains the result of casting each atomic value
to a string, with a single blank character inserted between adjacent values. The resulting sequence of
nodes is called the content sequence. Adjacent text nodes in the content sequence are merged into
a single text node by concatenating the contents of the text nodes with no intervening blanks. After
concatenation, any text node that contains a zero-length string is deleted from the content sequence.

3. The nodes in the content sequence become the children of the new document node.

Example 1: Insert a constructed document into an XML column:

 INSERT INTO T1 VALUES(123,
 (SELECT XMLDOCUMENT(XMLELEMENT(NAME "Emp",

646 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 e.fname || ' ' || e.lname),
 XMLCOMMENT('This is just a simple example'))
 FROM EMPLOYEE e
 WHERE e.empid = 123));

XMLELEMENT scalar function
The XMLELEMENT function returns an XML value that is an XML element node.

XMLELEMENT (NAME element-name

, xmlnamespace-declaration

, xmlattributes-function , element-content-expression

OPTION
1

EMPTY ON NULL

NULL ON NULL
2

XMLBINARY
USING

BASE64

XMLBINARY
USING

HEX

3

)

Notes:
1 The OPTION clause can only be specified if at least one xmlattributes-function or element-content-
expression is specified
2 If element-content-expression is not specified, EMPTY ON NULL and NULL ON NULL must not be
specified.
3 The same clause must not be specified more than one time.

The schema is SYSIBM.

NAME element-name
Specifies the name of an XML element. element-name is an SQL identifier that must be in the form of
an XML qualified name, or QName. If the name is qualified, the namespace prefix must be declared
within the scope.

xmlnamespaces-declaration
Specifies the XML namespace declarations that are the result of the XMLNAMESPACES function. The
namespaces that are declared are in the scope of the XMLELEMENT function. The namespaces apply
to any nested XML functions within the XMLELEMENT function, regardless of whether or not they
appear inside another subselect. See “XMLNAMESPACES scalar function” on page 656 for more
information on declaring XML namespaces.

If xmlnamespaces-declaration is not specified, namespace declarations are not associated with the
constructed XML element node.

xmlattributes-function
Specifies the attributes for the XML element. The attributes are the result of the XMLATTRIBUTES
function. See “XMLATTRIBUTES scalar function” on page 644 for more information on constructing
attributes.

If xmlattributes-function is not specified, attributes are not explicitly part of the constructed XML
element node.

Chapter 4. Built-in functions 647

element-content-expression
The content of the generated XML element node is specified by an expression or a list of expressions.
Each element-content-expression must return a value of any built-in data type or distinct type.
The expression is used to construct the namespace declarations, attributes, and content of the
constructed element node.

If element-content-expression is not specified, an empty string is used as the content for the element
and NULL ON NULL or EMPTY ON NULL must not be specified.

OPTION
Specifies additional options for constructing the XML element. This clause has no impact on nested
invocations of the XMLELEMENT function invocations that are specified in element-content-expression.
EMPTY ON NULL or NULL ON NULL

Specifies if a null value or an empty element is returned when the values of each element-content-
expression is a null value. This option only affects null handling of element contents, not attribute
values. The option is not inherited by a nested invocation of XMLELEMENT function within an
element-content-expression.
EMPTY ON NULL

If the value of each element-content-expression is null, an empty element is returned.

EMPTY ON NULL is the default.

NULL ON NULL
If the value of each element-content-expression is null, a null value is returned.

XMLBINARY USING BASE64 or XMLBINARY USING HEX
Specifies the assumed encoding of binary input data, character string data with the FOR BIT DATA
attribute, ROWID, or a distinct type that is based on one of these types. The encoding applies to
element content or attribute values.
XMLBINARY USING BASE64

Specifies that the assumed encoding is base64 characters, as defined for XML schema type
xs:base64Binary. The base64 encoding uses a 64-character subset of US-ASCII (10 digits,
26 lowercase characters, 26 uppercase characters, '+' and '/') to represent every 6 bits of
the binary or bit data by one printable character in the subset. These characters are selected
so that they are universally representable. In addition, the '=' character represents a line
pad character. Using this method, the size of the encoded data is 33 percent larger than the
original binary or bit data.

XMLBINARY USING BASE64 is the default.

XMLBINARY USING HEX
Specifies that the assumed encoding is hexadecimal characters as defined for XML schema
type xs:hexBinary encoding. The hex encoding represents each byte (8 bits) with two
hexadecimal characters. Using this method, the encoded data is twice the size of the original
binary or bit data.

This function takes an element name, an optional collection of namespace declarations, an optional
collection of attributes, and zero or more optional arguments that make up the content of the XML
element. The result is an XML sequence that contains an XML element node or the null value. If the
results of all element-content-expression arguments are empty strings, the result is an XML sequence that
contains an empty element.

The result of the function is an XML value. The result can be null; if all element-content-expression
arguments are null and the NULL ON NULL option is in effect, the result is the null value.

Notes
Constructing an element node:

The resulting element node is constructed as follows:

648 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

1. xmlnamespace-declaration adds a set of in-scope namespaces for the constructed element. Each
in-scope namespace associates a namespace prefix (or the default namespace) with a namespace
URI. The in-scope namespaces define the set of namespace prefixes that are available for
interpreting QNames within the scope of the element.

2. If the xmlattributes-function is specified, it is evaluated and the result is a sequence of attribute
nodes.

3. Each element-content-expression is evaluated and the result is converted into a sequence of nodes
as follows:

• If the result type is not XML, it is converted to an XML text node that contains the result of the
element-content-expression this is mapped to XML.

• If the result type is XML, the result is a sequence of items. Some of the items in that sequence
might be document nodes. Each document node in the sequence is replaced by the sequence of
its top-level children. Then for each node in the resulting sequence, a new deep copy of the node
is constructed, including its children and attributes. Each copied node has a new node identity.
Copied element nodes are given the type annotation xdt:untyped, and copied attribute nodes are
given the type annotation xdt:untypedAtomic. For each adjacent sequence of one or more atomic
values that are returned in the sequence, a new text node is constructed that contains the result
of casting each atomic value to a string, with a single blank character inserted between adjacent
values. If any of these atomic values cannot be cast into a string, an error is returned.

4. The result sequence of xmlattributes-function and the resulting sequences of all element-content-
expression clauses are concatenated into one sequence which is called the content sequence. Any
sequence of adjacent text nodes in the content sequence is merged into a single text node by
concatenating their contents, with no intervening blanks. After concatenation, any text node that is
a zero-length string is deleted from the content sequence.

5. If the content sequence contains an attribute node that follows a node that is not an attribute
node, an error is returned. Attribute nodes that occur in the content sequence become attributes
of the new element node. If two or more of these attribute nodes have the same name, an error is
returned. A namespace declaration is created that corresponds to any namespace that is used in
the names of the attribute nodes if the namespace URI is not in the in-scope namespaces of the
constructed element.

6. Element, text, comment, and processing instruction nodes in the content sequence become the
children of the constructed element node.

7. The constructed element node is given a type annotation of xdt:untyped, and each of its attributes
is given a type annotation of xdt:untypedAtomic. The node name of the constructed element node
is the XML element name that is specified after the NAME keyword.

Rules for using namespaces within XMLELEMENT:
The following rules describe scoping of namespaces:

• The namespaces that are declared in the XMLNAMESPACES function are the in-scope namespaces
of the element node that are constructed by the XMLELEMENT function. If the element node is
serialized, each of its in-scope namespaces will be serialized as a namespace attribute unless it is
an in-scope namespace of the parent of the element node and the parent element is also serialized.

• The scope of these namespaces is the lexical scope of the XMLELEMENT function, including the
element name, the attribute names that are specified in the XMLATTRIBUTES function, and all
element-content-expressions. These are used to resolve the QNames in the scope.

• If an XMLQUERY or XMLEXISTS function is in an element-content-expression, the namespaces
become the statically known namespaces of the XQuery expression of the XMLQUERY or XMLEXISTS
function. Statically known namespaces are used to resolve the QNames that are in the XQuery
expression. If the XQuery prolog declares a namespace that has the same prefix within the scope of
the XQuery expression, the namespace that is declared in the prolog will override the namespaces
that are declared in the XMLNAMESPACES function.

• If an attribute of the constructed element comes from element-content-expression, its namespace
might not already be declared as an in-scope namespace of the constructed element. In this case,
a new namespace is created for it. If the prefix of the attribute name is already bound to a different

Chapter 4. Built-in functions 649

URI by a in-scope namespace, Db2 generates a different prefix to be used in the attribute name.
A namespace is created for this generated prefix. The name of the generated prefix follows the
following pattern: db2ns-xx, where xx is a pair of characters chosen from the set [A-Z,a-z,0-9].

Examples
Example 1:

The following statement uses the XMLELEMENT function to create an XML element that contains an
employees name. The statement also stores the employee number as an attribute named serial. If
there is a null value in the referenced column, the function returns the null value:

 SELECT e.empno, e.firstnme, e.lastname,
 XMLELEMENT (NAME "foo:Emp",
 XMLNAMESPACES('http://www.foo.com' AS "foo"),
 XMLATTRIBUTES(e.empno as "serial"),
 e.firstnme,
 e.lastname
 OPTION NULL ON NULL) AS "Result"
 FROM EMP e
 WHERE e.edlevel = 12;

The result of the query would look similar to the following result:

 EMPNO FIRSTNME LASTNAME Result
----- -------- -------- ------------------------------------

A0001 John Parker <foo:Emp xmlns:foo="http://www.foo.com"
 serial="A0001">JohnParker</foo:Emp>
B0001 (null) Smith <foo:Emp xmlns:foo="http://www.foo.com"
 serial="B0001">Smith</foo:Emp>
B0002 (null) (null) (null)
(null) (null) (null) (null)

Example 2:
The following example is similar to Example 1, however, when a null value is in one of the referenced
columns, an empty element is returned:

 SELECT e.empno, e.firstnme, e.lastname,
 XMLELEMENT (NAME "foo:Emp",
 XMLNAMESPACES('http://www.foo.com' AS "foo"),
 XMLATTRIBUTES(e.empno as "serial"),
 e.firstnme,
 e.lastname
 OPTION EMPTY ON NULL) AS "Result"
 FROM EMP e
 WHERE e.edlevel = 12;

The result of the query would look similar to the following result:

 EMPNO FIRSTNME LASTNAME Result
 ----- -------- -------- -------------------------------------

 A0001 John Parker <foo:Emp xmlns:foo="http://www.foo.com"
 serial="A0001">JohnParker</foo:Emp>
 B0001 (null) Smith <foo:Emp xmlns:foo="http://www.foo.com"
 serial="B0001">Smith</foo:Emp>
 B0002 (null) (null) <foo:Emp xmlns:foo="http://www.foo.com"
 serial="B0002"/>
 (null) (null) (null) <foo:Emp xmlns:foo="http://www.foo.com"/>

650 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

XMLFOREST scalar function
The XMLFOREST function returns an XML value that is a sequence of XML element nodes.

XMLFOREST (

xmlnamespace-function ,

,

element-content-expression

AS element-name

OPTION
1

EMPTY ON NULL

NULL ON NULL

XMLBINARY
USING

BASE64

XMLBINARY
USING

HEX

2

)

Notes:
1 The OPTION clause can only be specified if at least one xmlattributes-function or element-content-
expression is specified.
2 The same clause must not be specified more than one time.

The schema is SYSIBM.

xmlnamespace-function
Specifies the XML namespace declarations that are the result of the XMLNAMESPACES function. The
namespaces that are declared are in the scope of the XMLFOREST function. The namespaces apply
to any nested XML functions within the XMLFOREST function, regardless of whether or not those
functions appear inside another subselect. See “XMLNAMESPACES scalar function” on page 656 for
more information on declaring XML namespaces.

If xmlnamespace-function is not specified, namespace declarations are not associated with the
constructed sequence of XML element nodes.

element-content-expression
Specifies an expression that returns a value that is used for the content of a generated XML element.
The result of the expression is mapped to an XML value according to the mapping rules from an SQL
value to an XML value. If the expression is not a simple column reference, element-name must be
specified.

AS element-name
Specifies an identifier that is used for the XML element name.

An XML element name must be an XML QName. If the name is qualified, the namespace prefix must
be declared within the scope.

If element-name is not specified, element-content-expression must be a column name. The element
name is created from the column name using the fully escaped mapping from a column name to a
QName.

OPTION
Specifies options for the result for NULL values, binary data, and bit data. The options will not be
inherited by the XMLELEMENT or XMLFOREST functions that appear in element-content-expression.

Chapter 4. Built-in functions 651

EMPTY ON NULL or NULL ON NULL
Specifies if a null value or an empty element is returned when the values of each element-content-
expression is a null value. EMPTY ON NULL and NULL on NULL only affect null handling of the
element-content-expression arguments, not the handling of values from an xmlattributes-function
argument.
EMPTY ON NULL

If the value of each element-content-expression is null, an empty element is returned.

EMPTY ON NULL is the default.

NULL ON NULL
If the value of each element-content-expression is null, a null value is returned.

XMLBINARY USING BASE64 or XMLBINARY USING HEX
Specifies the assumed encoding of binary input data, character string data with the FOR BIT DATA
attribute, ROWID, or a distinct type that is based on one of these types. The encoding applies to
element content or attribute values.
XMLBINARY USING BASE64

Specifies that the assumed encoding is base64 characters, as defined for XML schema type
xs:base64Binary encoding. The base64 encoding uses a 64-character subset of US-ASCII (10
digits, 26 lowercase characters, 26 uppercase characters, '+' and '/') to represent every 6
bits of the binary or bit data by one printable character in the subset. These characters are
selected so that they are universally representable. In addition, the '=' character represents a
line pad character. Using this method, the size of the encoded data is 33 percent larger than
the original binary or bit data.

XMLBINARY USING BASE64 is the default.

XMLBINARY USING HEX
Specifies that the assumed encoding is hexadecimal characters, as defined for XML schema
type xs:hexBinary encoding. The hex encoding represents each byte (8 bits) with two
hexadecimal characters. Using this method, the encoded data is twice the size of the original
binary or bit data.

The XMLFOREST function can be expressed using the XMLCONCAT and XMLELEMENT functions.

This function takes an optional set of namespace declarations and one or more arguments that make up
the name and element content for one or more element nodes. The result is an XML sequence containing
a sequence of element nodes or the null value.

The result of the function is an XML value. The result can be null; if all the element-content-expression
arguments are null and the NULL ON NULL option is in effect, the result is the null value.

Example: Generate an Emp element for each employee in the sample EMP table who was hired in 1980
or later. Concatenate the values of columns FIRSTNME and LASTNAME to form the Name attribute of
the Emp element. Use XMLFOREST to create two nested elements of the Emp element: The Hiredate
element and the Department element. The Hiredate element value is the HIREDATE column value. The
Department element value is the WORKDEPT column value.

SELECT e.EMPNO AS "ID",
 XMLSERIALIZE(
 XMLELEMENT(
 NAME "Emp",
 XMLATTRIBUTES(e.FIRSTNME || ' ' || e.LASTNAME AS "Name"),
 XMLFOREST(e.HIREDATE AS "Hiredate",e.WORKDEPT AS "Department"))
 AS CLOB(100))
 AS "Result"
 FROM EMP e
 WHERE YEAR(HIREDATE)>='1980';

The query returns results similar to these:

ID Result
--
000070 <Emp Name="EVA PULASKI">
 <Hiredate>1980-09-30</Hiredate>

652 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 <Department>D21</Department>
 </Emp>
000100 <Emp Name="THEODORE SPENSER">
 <Hiredate>1980-06-19</Hiredate>
 <Department>E21</Department>
 </Emp>
000270 <Emp Name="MARIA PEREZ">
 <Hiredate>1980-09-30</Hiredate>
 <Department>D21</Department>
 </Emp>
000290 <Emp Name="JOHN PARKER">
 <Hiredate>1980-05-30</Hiredate>
 <Department>E11</Department>
 </Emp>

XMLMODIFY scalar function
The XMLMODIFY function returns an XML value that might have been modified by the evaluation of an
XQuery updating expression and XQuery variables that are specified as input arguments.

XMLMODIFY (xquery-update-constant

,

,

xquery-variable-expression AS identifier

)

The schema is SYSIBM.

xquery-update-constant
Specifies an SQL character string constant that is interpreted as an XQuery updating expression that
uses supported XQuery language syntax. xquery-update-constant must be one of the following items:

• An insert expression.
• A delete expression.
• A replace expression.
• A FLWOR expression that contains an updating expression in its return clause.
• A conditional expression that contains an updating expression in its then or else clause.
• A sequence expression that contains two or more updating expressions, separate by commas. All

operands are either updating expressions or an empty sequence.

xquery-update-constant must not be an empty string or a string of all blanks.

xquery-variable expression
xquery-variable-expression specifies an SQL expression whose value is available to the XQuery
expression that is specified by xquery-update-constant during execution.

The data type of xquery-variable-expression can be XML, integer, decimal, or a character or graphic
string that is not a LOB. xquery-variable-expression must not return a ROWID, TIMESTAMP, binary
string, REAL, DECFLOAT data types, or a character string that is bit data, and xquery-variable-
expression must not reference a sequence expression. If the result value is of type XML, it is passed
by reference, which means that the original values, not copies, are used in the evaluation of the
XQuery expression. A null XML value is converted to an XML empty sequence. If the resulting value
is not of type XML, the result of the expression must be castable to an XML value. A null value is
converted to an XML empty sequence. The non-XML values creates a new copy of the value during the
cast to XML.

An XQuery variable is created for each xquery-variable-expression this is specified, and the XQuery
variable is set to a value that is equal to the input-xml-value.

Chapter 4. Built-in functions 653

AS identifier
Specifies that the value that is generated by xquery-variable-expression is passed to xquery-update-
constant as an XQuery variable named identifier. The length of the name must not be longer than 128
bytes. If the length of the name is longer than 128 bytes, an error is returned. The leading dollar sign
($) that precedes variable names in the XQuery language is not included in identifier. The name must
be an XML 1.0 NCName that is not the same as the identifier for another xquery-variable-expression
in the same PASSING clause. If the identifier is not an XML 1.0 NCName an error is returned. If
more than one xquery-variable expression have the same name, an error is returned. If the result of
an xquery-variable expression is null, an empty sequence is assigned to the corresponding XQuery
variable.

The XMLMODIFY function can only be used in an SQL UPDATE statement or within the update clause of an
SQL MERGE statement. The XMLMODIFY function must be the topmost expression on the right hand side
of the SET assignment clause of the update.

In an XMLMODIFY invocation, updating expressions cannot modify new nodes that are added by other
updating expressions. For example, if an updating expression adds a new element node, another updating
expression cannot change the newly created node.

For an XMLMODIFY invocation, the Db2 database manager applies updating expressions in the following
order:

1. The following operations, in a non-deterministic order:

• Insert operations that do not use ordering keywords, such as before, after, as first, or as last
• Replace operations in which the keyword value of is specified, and the target node is an attribute

node, text node, comment node, or processing instruction node
2. Insert operations that use ordering keywords such as before, after, as first, or as last
3. Replace operations in which the keyword value of is not specified
4. Replace operations in which the keyword value of is specified, and the target node is an element node
5. All delete operations

The target-xml-column is the XML column in the SET assignment clause that is to be updated by the value
that is returned by the XMLMODIFY function. The initial context item in the XQuery updating expression
is the value of the target-xml-column that is passed by reference. Only the value of the target-xml-column
can be modified by the XQuery updating expression. In other words, the target expression nodes in the
XQuery updating expression must be a node in the value of target-xml-column. The target-xml-column
must be an XML column that is defined in the XML versioning format.

The value of target-xml-column that is modified by the XQuery updating expression is returned by the
function. If the value of target-xml-column is null, the function returns null. Otherwise, the result of
the XMLMODIFY function must be a well-formed XML document. If the XQuery updating expressions
makes no modifications to the value of target-xml-column, the unmodified XML value is returned by the
function. The XMLMODIFY function preserves the original node identities and the document order of
target-xml-column. Although XMLMODIFY modifies target-xml-column by reference, for each row that is
updated by the SQL UPDATE statement, any reference to target-xml-column in the SQL UPDATE statement
is the value of the target-xml-column before the row is updated.

Example 1: The following is an example of an XMLMODIFY function with an XQuery insert expression.
Assume that a table contains a column named PO that contains an XML document, 'purchaseOrders':

UPDATE purchaseOrders
 SET PO = XMLMODIFY('declare namespace ipo="http://www.example.com/IPO";
 declare namespace pyd="http://www.examplepayment.com";
 insert node $payment/@pyd:paidDate
 as first into /ipo:purchaseOrder/billTo',
 XMLPARSE(DOCUMENT
 '<payment xmlns:pyd="http://
www.examplepayment.com"
 pyd:paidDate="2000-01-07">278.94
 </payment>') AS "payment")

654 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The result of the purchaseOrders XML document in the PO column is as follows:

<ipo:purchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO"
 xmlns:pyd="http://www.examplepayment.com"
 orderDate="1999-12-01" pyd:paidDate="2000-01-07">

<shipTo exportCode="1" xsi:type="ipo:UKAddress">
<name>Helen Zoe</name>
 <street>47 Eden Street</street>
 <city>Cambridge</city>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 .
 .
 .
 </ipo:purchaseOrder>

Example 2: Assume that table PURCHASEORDER contains a column named PORDER that contains the
following XML document:

<ipo:purchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO"
 xmlns:pyd="http://www.examplepayment.com"
 orderDate="1999-12-01" pyd:paidDate="2000-01-07">
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>47 Eden Street</street>
 <city>Cambridge</city>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <items>
 <item partNum="872-AA">
 <productName>Lawnmower</productName>
 <quantity>1</quantity>
 <USPrice>149.99</USPrice>
 <shipDate>2011-05-20</shipDate>
 </item>
 <item partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>178.99</USPrice>
 <comment>Not shipped</comment>
 </item>
 </items>
</ipo:purchaseOrder>

The following is an example of an XMLMODIFY function with an XQuery replace expression and an XQuery
delete expression.

UPDATE PURCHASEORDER
 SET PORDER = XMLMODIFY(
 'declare namespace ipo="http://www.example.com/IPO";
 replace value of node /ipo:purchaseOrder/items/item[@partNum="872-AA"]/quantity
 with xs:integer(2),
 delete node /ipo:purchaseOrder/items/item[@partNum="945-ZG"]’);

After the UPDATE statement executes, the result is as follows:

<ipo:purchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO"
 xmlns:pyd="http://www.examplepayment.com"
 orderDate="1999-12-01" pyd:paidDate="2000-01-07">
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>47 Eden Street</street>
 <city>Cambridge</city>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <items>
 <item partNum="872-AA">
 <productName>Lawnmower</productName>
 <quantity>2</quantity>
 <USPrice>149.99</USPrice>

Chapter 4. Built-in functions 655

 <shipDate>2011-05-20</shipDate>
 </item>
</items>
</ipo:purchaseOrder>

Related concepts
Basic updating expressions (Db2 Programming for XML)

XMLNAMESPACES scalar function
The XMLNAMESPACES function constructs namespace declarations from the arguments. This function
can be used as an argument only for specific functions, such as the XMLELEMENT function and the
XMLFOREST function.

XMLNAMESPACES(

,

namespace-uri AS namespace-prefix

DEFAULT namespace-uri

NO DEFAULT

1

)

Notes:
1 The DEFAULT or NO DEFAULT clause can only be specified one time.

The schema is SYSIBM.

The result is one or more XML namespace declarations containing in-scope namespaces for each non-null
input value.

namespace-uri
Specifies an SQL character string constant that contains the namespace name or a universal
resource identifier (URI). The character string constant must not be an empty string if it is used
with namespace-prefix. namespace-uri cannot be http://www.w3.org/XML/1998/namespace or
http://www.w3.org/2000/xmlns/.

AS namespace-prefix
Specifies a namespace prefix. The prefix is an SQL identifier that must be in the form of an XML
NCName. The prefix must not be "xml" or "xmlns". The prefix must be unique within the list of
namespace declarations.

The following namespace prefixes are pre-defined in SQL/XML: "xml", "xs", "xsd", "xsi", and "sqlxml".
Their bindings are:

• xmlns:xml = "http://www.w3.org/XML/1998/namespace"
• xmlns:xs = "http://www.w3.org/2001/XMLSchema"
• xmlns:xsd = "http://www.w3.org/2001/XMLSchema"
• xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
• xmlns:sqlxml= "http://standards.iso.org/iso/9075/2003/sqlxml"

DEFAULT namespace-uri or NO DEFAULT
Specifies whether a default namespace is to be used within the scope of this namespace declaration.

The scope of this namespace declaration is the specified XML element and all XML expressions that
are contained in the specified XML element.

DEFAULT namespace-uri
Specifies the default namespace to use within the scope of this namespace declaration. The
namespace-uri applies for unqualified names in the scope unless it is overridden in a nested scope
by another DEFAULT declaration or by a NO DEFAULT declaration.

656 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/xml/src/tpc/db2z_basicupdatingexpression.html

namespace-uri specifies an SQL character string constant that contains a namespace name or
universal resource identifier (URI). The character string constant can be an empty string in the
context of the DEFAULT clause.

NO DEFAULT
Specifies that no default namespace is to be used within the scope of this namespace declaration.
There is no default namespace in the scope unless the NO DEFAULT clause is overridden in a
nested scope by a DEFAULT declaration.

The result of the function is an XML value that is an XML sequence that contains an XML namespace
declaration for each specified namespace. The result cannot be null.

Example 1: Generate an "employee" element for each employee. The employee element is associated
with XML namespace "urn:bo', which is bound to prefix "bo". The element contains attributes for names
and a hiredate subelement.

SELECT e.empno, XMLSERIALIZE(XMLELEMENT(NAME "bo:employee",
 XMLNAMESPACES('urn:bo' as "bo"),
 XMLATTRIBUTES(e.lastname, e.firstnme),
 XMLELEMENT(NAME "bo:hiredate", e.hiredate)) AS CLOB(50))
 FROM employee e where e.edlevel = 12;

The result of the query would be similar to the following result:

00029 <bo:employee xmlns:bo="urn:bo" LASTNAME="PARKER" FIRSTNME="JOHN">
 <bo:hiredate>198-5-3</bo:hiredate>
 </bo:employee>
00031 <bo:employee xmlns:bo="urn:bo" LASTNAME="SETRIGHT"
 FIRSTNME="MAUDE">
 <bo:hiredate>1964-9-12</bo:hiredate>
 </bo:employee>

Example 2: Generate two elements for each employee using XMLFOREST. The first "lastname" element
is associated with the default namespace "http://hr.org", and the second "job" element is associated with
XML namespace "http://fed.gov", which is bound to prefix "d".

SELECT empno, XMLSERIALIZE(XMLFOREST(
 XMLNAMESPACES(DEFAULT 'http://hr.org', 'http://fed.gov' AS "d"),
 lastname, job AS "d:job") AS CLOB(50))
FROM employee where edlevel = 12;

The result of the query would be similar to the following result:

00029 <LASTNAME xmlns="http://hr.org" xmlns:d="http://fed.gov">PARKER
 </LASTNAME>
 <d:job xmlns="http://hr.org" xmlns:d="http://fed.gov">
 OPERATOR</d:job>
00031 <LASTNAME xmlns="http://hr.org" xmlns:d="http://fed.gov">
 SETRIGHT</LASTNAME>
 <d:job xmlns="http://hr.org" xmlns:d="http://fed.gov">
 OPERATOR</d:job>

XMLPARSE scalar function
The XMLPARSE function parses the argument as an XML document and returns an XML value.

XMLPARSE (DOCUMENT string-expression

XML-host-variable

STRIP WHITESPACE

PRESERVE WHITESPACE

)

The schema is SYSIBM.

Chapter 4. Built-in functions 657

DOCUMENT
Specifies that the character string expression to be parsed must evaluate to a well-formed XML
document that conforms to XML 1.0.

string-expression
An expression that returns a character, graphic, or binary string.

string-expression must evaluate to a character string that conforms to the definition of a well-formed
XML document as defined in XML 1.0.

XML-host-variable
An XML host variable that contains a well-formed XML document as defined in XML 1.0. XML-host-
variable must not be binary XML data.

STRIP WHITESPACE or PRESERVE WHITESPACE
Specifies whether whitespace is to be removed or preserved. Any DTD attributes for xml:space have
no impact on whitespace handling.
STRIP WHITESPACE

Specifies that whitespace (space that is between element nodes without any non-whitespace text
nodes) will be stripped unless the nearest containing element has a value of 'preserve' for the
xml:space attribute.

STRIP WHITESPACE is the default.

PRESERVE WHITESPACE
Specifies that all whitespace is preserved, even when the nearest containing element has a value
of 'default' for the xml:space attribute.

The result of the function is XML. If string-expression can be null, the result can be null; if string-
expression is null, the result is the null value.

Notes
Direct use of XMLPARSE with character string input:

Applications should avoid direct use of the XMLPARSE function with character string input and should
send strings that contain XML documents directly by using host variables to maintain the match
between the external encoding and the encoding in the XML declaration. If XMLPARSE must be used
in this situation, a BLOB type should be specified as the argument to avoid code page conversion.

Examples
Example 1:

The following example inserts an XML document into the EMP table and preserves the whitespace in
the original XML document. Assume that hv contains the value, '<a xml:space='preserve'>
<c>c</c>b ':

 INSERT INTO EMP (id, xvalue) VALUES(1001,
 XMLPARSE(DOCUMENT :hv
 PRESERVE WHITESPACE));

XMLPARSE will treat the value in hv for the insert statement as equivalent to the following value:

<a xml:space='preserve'> <c>c</c>b

Example 2:
The following example inserts an XML document into the EMP table and strips the whitespace in
the original XML document. Assume that hv contains the value, '<a xml:space='preserve'> <b
xml:space='default'> <c>c</c>b ':

 INSERT INTO EMP (id, xvalue) VALUES(1001,
 XMLPARSE(DOCUMENT :hv
 STRIP WHITESPACE));

658 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

XMLPARSE will treat the value in hv for the insert statement as equivalent to the following value:

 <a xml:space='preserve'>
 <b xml:space='default'><c>c</c>b

XMLPI scalar function
The XMLPI function returns an XML value with a single processing instruction node.

XMLPI (NAME pi-name

, string-expression

)

The schema is SYSIBM.

NAME pi-name
Specifies the name of a processing instruction. The name is an SQL identifier that must be in the form
of an XML NCName. The name must not contain "xml" in any case combination.

string-expression
An expression that returns a value of a built-in character or graphic string that is not a LOB and is not
bit data The resulting string will be converted to UTF-8 and parsed to check for conformance to the
content of XML processing instruction as specified by the following rules:

• The string must not contain the substring '?>' as this terminates a processing instruction.
• Each character can be any Unicode character, excluding the surrogate blocks, X'FFFE', and X'FFFF'.

If the resulting string does not conform to the preceding rules, an error is returned. The resulting
string becomes the contents of the constructed processing instruction node. If string-expression is not
specified or is an empty string, the contents of the procession instruction node are empty.

The result of the function is an XML value. The result can be null; if the string-expression argument is null,
the result is the null value.

Example: Generate an XML processing instruction node:

 SELECT XMLPI(NAME "Instruction", 'Push the red button')
 FROM SYSIBM.SYSDUMMY1;

The result looks similar to the following results:

 <?Instruction Push the red button?>

XMLQUERY scalar function
The XMLQUERY function returns an XML value from the evaluation of an XQuery expression, by using
specified input arguments, a context item, and XQuery variables.

XMLQUERY (xquery-expression-constant

PASSING
BY REF

,

xquery-argument
1

RETURNING SEQUENCE
BY REF

EMPTY ON EMPTY
)

Chapter 4. Built-in functions 659

Notes:
1 xquery-context-item-expression must not be specified more than one time.

xquery-argument:

xquery-context-item-expression

xquery-variable-expression AS identifier

The schema is SYSIBM.

xquery-expression-constant
Specifies an SQL character string constant that is interpreted as an XQuery expression using
supported XQuery language syntax. For information about the supported XQuery expressions, see
XQuery prologs and expressions (Db2 Programming for XML). xquery-expression-constant cannot be
an XQuery updating expression. The XQuery expression is evaluated with the arguments specified in
xquery-argument, and returns an output sequence that is also returned as the result of the XMLQUERY
function. xquery-expression-constant must not be an empty string or a string of all blanks.

PASSING
Specifies input values and the manner in which these values are passed to the XQuery expression that
is specified by xquery-expression-constant.

BY REF
Specifies that the XML input value arguments are to be passed by reference. When XML values are
passed by reference, the XQuery evaluation uses the input node trees which preserves all properties,
including the original node identities and document order. If two arguments pass the same XML
value, node identity comparisons and document ordering comparisons involving some nodes that are
contained between the two input arguments might refer to nodes that are within the same XML node
tree.

BY REF has no impact on how non-XML values are passed. The non-XML values create a new copy of
the value during the cast to XML.

xquery-argument
Specifies an argument that is passed to the XQuery expression that is specified by xquery-expression-
constant. A query argument is an expression that returns a value that is XML, integer, decimal, or a
character or graphic string that is not a LOB. xquery-argument must not return ROWID, TIMESTAMP,
binary string, REAL, DECFLOAT data types, or a character string data type that is bit data, and must not
reference a sequence expression.

xquery-argument specifies both a value and the manner in which that value is to be passed.
How an argument in the PASSING clause is used in the XQuery expression depends on whether
the argument is specified as xquery-context-item-expression or xquery-variable-expression. xquery-
argument includes an SQL expression that is evaluated before passing the result to the XQuery
expression.

• If the resulting value is of type XML, it becomes an input-xml-value. It is passed by reference, which
means that the original values, not copies, are used in the evaluation of the XQuery expression. A
null XML value is converted to an XML empty sequence.

• If the resulting value is not of type XML, the result of the expression must be able to be cast to an
XML value. A null value is converted to an XML empty sequence. The converted value becomes an
input-xml-value.

When xquery-expression-constant is evaluated, an XQuery variable receives a value that is equal to
input-xml-value and a name as specified by the AS clause.

xquery-context-item-expression
xquery-context-item-expression specifies the initial context item in the XQuery expression
specified by xquery-expression-constant. The value of the initial context item is the result of

660 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/xml/src/tpc/db2z_xpxqprologexpression.html

xquery-context-item-expression cast to XML. xquery-context-item-expression must not be specified
more than one time.

xquery-context-item-expression must not be a sequence of more than one item. If input-xml-value
is an empty XML string, the XQuery expression is evaluated with the initial context item set to an
empty XML string. If the value of input-xml-value is null, the function returns a null value.

If the xquery-context-item-expression is not specified or is an empty sequence, the initial context
item in the XQuery expression is undefined and the XQuery expression must not reference the
initial context item.

An XQuery variable is not created for the context item expression.

xquery-variable-expression
xquery-variable-expression specifies an SQL expression whose value is available to the XQuery
expression that is specified by xquery-expression-constant during execution. The sequence cannot
contain a sequence reference.

An XQuery variable is created for each xquery-variable-expression, and the XQuery variable is
set to a value equal to input-xml-value. For example, PASSING T.A + T.B AS "sum" creates
an XQuery variable named sum. The scope of the XQuery variables that are created from the
PASSING clause is the XQuery expression that is specified by xquery-expression-constant.

AS identifier
Specifies that the value that is generated by xquery-variable-expression is passed to xquery-
expression-constant as an XQuery variable named identifier. The length of the name must not be
longer than 128 bytes. The leading dollar sign ($) that precedes variable names in the XQuery
language is not included in identifier. The name must be an XML 1.0 NCName that is not the same as
the identifier for another xquery-variable-expression in the same PASSING clause.

RETURNING SEQUENCE
Specifies that the XQuery expression returns a sequence.

BY REF
Specifies that the result of the XQuery expression is returned by reference. If this value contains
nodes, any expression that is using the return value of the XQuery expression will receive node
references directly, preserving all node properties including the original node identities and document
order.

EMPTY ON EMPTY
Specifies that an empty sequence that results from processing the XQuery expression is returned as
an empty sequence.

The result of the function is an XML value, and the result can be null. For example, if xquery-context-item-
expression is specified and if its value is null, the result of the function is the null value.

If the evaluation of the XQuery expression results in an error, the XMLQUERY function returns the XQuery
error.

Notes
Implicit casting of a non XML value to an XML value:

If the result of xquery-argument is not an XML type, the value is cast to XML as follows. The SQL data
type of the expression is mapped to a corresponding XML Schema data type according to the following
table:

Table 101. SQL data types and corresponding XML schema data types

SQL data type XML schema data type

CHAR, VARCHAR xs:string

GRAPHIC, VARGRAPHIC xs:string

SMALLINT xs:integer

Chapter 4. Built-in functions 661

Table 101. SQL data types and corresponding XML schema data types (continued)

SQL data type XML schema data type

INTEGER xs:integer

BIGINT xs:integer

DECIMAL xs:decimal

DOUBLE xs:double

FLOAT xs:double

Let V be the value of the expression. An atomic value of the corresponding XML schema data type is
constructed such that the result of cast (V as varchar) is a lexical representation of the constructed
atomic value. For example, an SQL VARCHAR value '123' is converted to an atomic value '123' of xs:string
type. An SQL integer '12' is converted to an atomic value '12' of xs:integer. An SQL decimal value '1.20' is
converted to an atomic value '1.2' of xs:decimal.

Examples
Example 1:

The following example returns an XML value from evaluation of the specified XQuery expression:

 SELECT XMLQUERY('//item[productName=$n]'
 PASSING PO.POrder,
 :hv AS "n") AS "Result"
 FROM PurchaseOrders PO;

Assume that the value of the host variable hv is 'Baby Monitor', the result is similar to the following
results:

Result

<item partNum="926-AA"><productName>Baby Monitor</productName><quantity>1
</quantity><USPrice>39.98</USPrice><shipDate>1999-05-21</shipDate></item>

XMLSERIALIZE scalar function
The XMLSERIALIZE function returns a serialized XML value of the specified data type that is generated
from the first argument.

XMLSERIALIZE (
CONTENT

XML-expression AS data-type

VERSION '1.0'
1

EXCLUDING XMLDECLARATION

INCLUDING XMLDECLARATION

)

Notes:
1 The same clause must not be specified more than one time.

662 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

data-type

CHARACTER

CHAR

LARGE OBJECT

CLOB

DBCLOB

BINARY LARGE OBJECT

BLOB

(1M)

(integer

K

M

G

)

The schema is SYSIBM.

CONTENT
Specifies that any XML value can be specified and the result of the serialization is based on this input
value.

XML-expression
An expression that returns an XML value that is not an attribute node. The atomic values in the input
sequence must be able to be cast to xs:string. XML-expression is the input to the serialization process.

AS data type
Specifies the data type of the result. The implicit or explicit length attribute for the specified result
data type must be sufficient to contain the serialized output.

The CCSID of a resulting character or graphic string is determined by the data type of the result:

• If the result is a CLOB, the CCSID for mixed Unicode data (1208).
• If the result is a DBCLOB, the CCSID for graphic Unicode data (1200).

VERSION '1.0'
Specifies the XML version of the serialized value. The only version that is supported is '1.0', which
must be specified as a string constant.

EXCLUDING XMLDECLARATION or INCLUDING XMLDECLARATION
Specifies whether an XML declaration is included in the result.
EXCLUDING XMLDECLARATION

Specifies that an XML declaration is not included in the result.

EXCLUDING XMLDECLARATION is the default.

INCLUDING XMLDECLARATION
Specifies that an XML declaration is included in the result. The XML declaration contains values
for XML serialization version 1.0 and an encoding specification of UTF-8. An XML sequence is
effectively converted to have a single document node by applying the XMLDOCUMENT function to
XML-expression prior to serializing the resulting XML nodes.

The data type and length attribute of the result are determined from the specified data-type. The result
can be null; if the XML-expression argument is null, the result is the null value.

Chapter 4. Built-in functions 663

Notes
Serializing a sequence:

The value of the input argument to XMLSERIALIZE is a sequence. Before a sequence is serialized, it
is normalized. The purpose of sequence normalization is to create a sequence that can be serialized
as a well-formed XML document or external general parsed entity, that also reflects the content of
the input sequence to the extent possible. If the input sequence is an XML empty string, the result of
serialization is an empty string. Otherwise, the result is constructed as follows:

• For each item in the sequence, if the item is atomic, the lexical representation of the item is
obtained by casting it to an xs:string

• Each subsequence of adjacent strings in the sequence is merged into a single string with the values
of the adjacent strings separated by a single space.

• For each item in the sequence, if the item is a string, a text node is created with a value that is equal
to the string.

• For each node in the sequence, if the node is a document node, it is replaced it by its children.
• Each node must not be an attribute node.
• Each subsequence of adjacent text nodes in the sequence are merged into a single text node that

with the values of the adjacent text nodes concatenated in order without a space between each
node. Any text nodes of zero length are dropped.

• A document node is created and the sequence of nodes that was generated is copied as the children
of the new document node.

Let S be any sequence, the normalization described in the preceding list is equivalent to
XMLDOCUMENT(S). Therefore, the following two expressions produce the same result:

• XMLSERIALIZE(S AS CLOB)
• XMLSERIALIZE(XMLDOCUMENT(S) AS CLOB)

Each instance of the following characters that appear in the content of a text node or in the value of an
attribute node is mapped as following during serialization:

Character in content of text node during serialization, the character is mapped to

'&' (X'26') '&'

'<'(X'3C') '<'

'>'(X'3E') '>'

carriage return (X'0D') ''

quote (X'22')1 '"'

Note: The quote character is only mapped if it is inside of an attribute value.

Syntax alternatives:
XML2CLOB(XML-expression) can be specified as an alternative to XMLSERIALIZE(XML-
expression AS CLOB(2G)). XML2CLOB is supported only for compatibility with previous releases
of Db2.

Examples
Example 1:

Serialize XML values into CLOB(100) values. The XMLELEMENT function generates the XML values
from the concatenation of the FIRSTNME and LASTNAME column values of the sample EMP table.

SELECT e.EMPNO as "ID",
 XMLSERIALIZE(
 XMLELEMENT(
 NAME "Emp",
 e.FIRSTNME || ' ' || e.LASTNAME)

664 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 AS CLOB(100))
 AS "Result"
 FROM EMP e
 WHERE LASTNAME LIKE 'P%';

The query returns results similar to these:

ID Result

000070 <Emp>EVA PULASKI</Emp>
000160 <Emp>ELIZABETH PIANKA</Emp>
000270 <Emp>MARIA PEREZ</Emp>
000290 <Emp>JOHN PARKER</Emp>

Example 2:

Serialize XML values into BLOB(1K) values. The XMLELEMENT function generates the XML values from
the concatenation of the FIRSTNME and LASTNAME column values of the sample EMP table.

SELECT e.EMPNO as "ID",
 XMLSERIALIZE(
 XMLELEMENT(
 NAME "Emp",
 e.FIRSTNME || ' ' || e.LASTNAME)
 AS BLOB(1K))
 AS "Result"
 FROM EMP e
 WHERE LASTNAME LIKE 'P%';

The query returns results similar to these:

ID Result
--
000070 3C456D703E4556412050554C41534B493C2F456D703E
000160 3C456D703E454C495A4142455448205049414E4B413C2F456D703E
000270 3C456D703E4D4152494120504552455A3C2F456D703E
000290 3C456D703E4A4F484E205041524B45523C2F456D703E

XMLTEXT scalar function
The XMLTEXT function returns an XML value with a single text node that contains the value of the
argument.

XMLTEXT (string-expression)

The schema is SYSIBM.

string-expression
An expression that returns a value of a built-in character or graphic string that is not bit data. Any
character in the resulting string must be a valid XML 1.0 character when it is converted to UTF-8.

If string-expression is an empty string, an empty text node is returned.

The result of the function is an XML value.

The result can be null; if the argument is null, the result is the null value.

Example 1: The following example returns an XML value with a single text node that contains the specified
value:

 SELECT XMLTEXT('The stock symbol for Johnson&Johnson is JNJ.') AS "Result"
 FROM SYSIBM.SYSDUMMY1;

The result looks similar to the following results:

Result

Chapter 4. Built-in functions 665

The stock symbol for Johnson&Johnson is JNJ.

Example 2: The XMLTEXT function enables the XMLAGG function to construct mixed content, as in the
following example:

 SELECT XMLELEMENT(NAME "para",
 XMLAGG(XMLCONCAT(XMLTEXT(plaintext),
 XMLELEMENT(NAME "emphasis",
 emphtext))
 ORDER BY seqno), '.') as "result"
 FROM T;

Suppose that the content of the table T is as the following example:

seqno plaintext emphtext
----- --- ----------------
1 This query shows how to construct mixed content
2 using XMLAGG and XMLTEXT. Without XMLTEXT
3 XMLAGG cannot group text nodes with other nodes, mixed content
 therefore, cannot generate

The result looks like the following result:

result
--
<para>This query shows how to construct <emphasis>mixed content</emphasis>
using XMLAGG and XMLTEXT. Without <emphasis>XMLTEXT</emphasis>, XMLAGG
cannot group text nodes with other nodes, therefore, cannot generate
<emphasis>mixed content</emphasis>.</para>

XMLXSROBJECTID scalar function
The XMLXSROBJECTID function returns the XSR object identifier of the XML schema that is used to
validate the XML document specified in the argument.

XMLXSROBJECTID( xml-value-expression)

The schema is SYSIBM.

xml-value-expression
An expression that results in a value with a data type of XML. The resulting XML value must be an XML
sequence with a single item that is an XML document or the null value.

The XSR object identifier is returned as a BIGINT value and provides the key to a single row in the
SYSIBM.XSROBJECTS table.

The result can be null; if the argument is null, the result is the null value.

If xml-value-expression does not specify a validated XML document, the function returns 0.

Notes
The XML schema that corresponds to an XSR object ID returned by the function might no longer exist,
because an XML schema can be dropped without affecting XML values that were validated using that XML
schema. Therefore, queries that use the XSR object ID to fetch further XML schema information from the
SYSIBM.XSROBJECTS table might return an empty result set.

Examples
Example 1:

Use the XMLXSROBJECTID function in conjunction with the DSN_XMLVALIDATE function to find all
XML documents that are not validated in a table and validate them:

666 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

UPDATE orders
 SET content = dsn_xmlvalidate(content, 'SYSXSR.PO1')
 WHERE XMLXSROBJECTID(content) = 0;

Example 2:
Use the XMLXSROBJECTID function to find the names and target namespaces of the XML schemas
that are used to validate the XML documents in a table:

SELECT DISTINCT s.XSROBJECTNAME, s.targetNamespace
 FROM orders o, XSROBJECTS s
 WHERE XMLXSROBJECTID(content) = s.XSROBJECTID;

XSLTRANSFORM scalar function
The XSLTRANSFORM function transforms an XML document into a different data format. The output can
be any form possible for the XSLT processor, including but not limited to XML, HTML, and plain text.

XSLTRANSFORM( xml-document , xsl-stylesheet , xsl-parameters)

The schema is SYSFUN.

xml-document
An expression that returns a well-formed XML document with a data type of CHAR, VARCHAR, or
CLOB(2 MB). The input expression can contain XMLSERIALIZE to serialize an XML data type into a
CLOB. The xml-document is transformed with the XSL style sheet that is specified in xsl-stylesheet.
The XML document must at minimum be single-rooted and well-formed.

xsl-stylesheet
An expression that returns a well-formed XML document with a data type of CHAR, VARCHAR,
or CLOB(256 KB). The input expression can contain XMLSERIALIZE to serialize an XML data type
into a CLOB. The document is an XSL style sheet that conforms to the W3C XSLT Version 1.0
Recommendation. This style sheet is applied to transform the value that is specified in xml-document.

xsl-parameters
An expression that returns a well-formed XML document or empty string with a data type of CHAR,
VARCHAR, or CLOB(64 KB). The input expression can contain XMLSERIALIZE to serialize an XML data
type into a CLOB. The xsl-parameters provides parameter values to the XSL style sheet specified in
xsl-stylesheet. The value of the parameter can be specified as an attribute, or as a text node. If both
are specified, the value in the attribute is used. The xsl-stylesheet document must have matching
param name attribute values. The syntax of the parameter document is as follows:

<params xmlns="http://www.ibm.com/XSLTransformParameters">
 <param name="..." value="..."/>
 <param name="...">enter value here</param>
...
</params>

Important: If xsl-parameters are not needed, you still must supply an empty string or the function
result is null.

The result of the function is of type CLOB(2 MB).

This user-defined function requires IBM SDK for z/OS, Java Technology Edition Version 6.

This user-defined function uses the XSLT support that is provided by the W3C XSL Transformations V1.0
Recommendation.

Tip: To create your own variation of XSLTRANSFORM, start with the CREATE FUNCTION shown in sample
member DSNTESR. Change the function name and size of the definition of the input parameters for your
environment.

Chapter 4. Built-in functions 667

Example 1: This example illustrates how to use XSLT as a formatting engine in a C program.

EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS CLOB(2M) xmldoc;
SQL TYPE IS CLOB(256K) stylesheet;
SQL TYPE IS CLOB(64K) xslparms;
SQL TYPE IS CLOB(2M) result;
EXEC SQL END DECLARE SECTION;

EXEC SQL
SET :xmldoc = CLOB('<?xml version="1.0"?><hi>Hello</hi>');

EXEC SQL SET :stylesheet = CLOB('<?xml version="1.0"?>
 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:output indent="yes"/>
 <xsl:param name="parm" select="'World'"/>
 <xsl:template match="hi">
 <out>
 <xsl:value-of select="."/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="$parm"/>
 <xsl:text>!!!</xsl:text>
 </out>
 </xsl:template>
 </xsl:stylesheet>');

EXEC SQL SET :xslparms = CLOB(
 '<params xmlns="http://www.ibm.com/XSLTransformParameters">
 <param name="parm">Silicon Valley</param>
 </params>');

EXEC SQL
 SELECT SYSFUN.XSLTRANSFORM(:xmldoc, :stylesheet, :xslparms)
 INTO :result FROM SYSIBM.SYSDUMMY1;

The XML document is transformed by the XSL style sheet. The result of the transformation is:

<?xml version="1.0" encoding="UTF-8"?>
<out>Hello, Silicon Valley!!!</out>

Related concepts
Sample SQL statements for installing Db2-supplied routines (Db2 Installation and Migration)
Related tasks
Additional steps for enabling the function for XSLTRANSFORM routines support (Db2 Installation and
Migration)
Defining the WLM environment and JCL startup procedure for the Java language XML schema repository
stored procedure (Db2 Programming for XML)
Related information
XSL Transformations (XSLT)

YEAR scalar function
The YEAR function returns the year part of a value that is a character or graphic string. The value must be
a valid string representation of a date or timestamp.

YEAR( expression)

The schema is SYSIBM.

The argument must be an expression that returns one of the following built-in data types: a date, a
timestamp, a character string, a graphic string, or a numeric data type.

• If expression is a character or graphic string, it must not be a CLOB or DBCLOB, and its value must be a
valid string representation of a date or timestamp with an actual length of not greater than 255 bytes.

668 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_samplesqlforinstdb2routines.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_enablexsltroutines.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_enablexsltroutines.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/xml/src/tpc/db2z_xsrsetupdefinewlmenvforjava.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/xml/src/tpc/db2z_xsrsetupdefinewlmenvforjava.html
http://www.w3.org/TR/xslt/

For the valid formats of string representations of dates and timestamps, see “String representations of
datetime values” on page 120.

• If expression is a number, it must be a date or timestamp duration. For the valid formats of date and
timestamp durations, see “Datetime operands” on page 169.

If expression is a timestamp with a time zone, or a valid string representation of a timestamp with a time
zone, the result is determined from the UTC representation of the datetime value.

The result of the function is a large integer.

The result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument specified:

If the argument is a date, a timestamp, or a string representation of either, the result is the year
part of the value, which is an integer in the range 1–9999.
If the argument is a date duration or a timestamp duration, the result is the year part of the value,
which is an integer between -9999 and 9999. A nonzero result has the same sign as the argument.
If the argument contains a time zone, the result is the year part of the value expressed in UTC.

Example 1: From the table DSN8C10.EMP, select all rows for employees who were born in 1941.

 SELECT *
 FROM DSN8C10.EMP
 WHERE YEAR(BIRTHDATE) = 1941;

Example 2: The following invocations of the YEAR function returns the same result:

SELECT YEAR('1993-08-10-20.00.00'),
 YEAR('1993-08-10-20.00.00-08:00'),
 YEAR('1993-08-10-20.00.00+09:00')
 FROM SYSIBM.SYSDUMMY1;

For each invocation of the YEAR function in this SELECT statement, the result is 1993.

When the input argument contains a time zone, the result is determined from the UTC representation of
the input value. The string representations of a timestamp with a time zone in the SELECT statement all
have the same UTC representation: '1993-08-10-20.00.00'.

Table functions
A table function can be used only in the FROM clause of a statement. Table functions return columns of
a table and resemble a table created using a CREATE TABLE statement. Table functions can be qualified
with a schema name.

ADMIN_TASK_LIST table function
The ADMIN_TASK_LIST function returns a table with one row for each of the tasks that are defined in the
administrative task scheduler task list.

Authorization
The user who calls this function must have MONITOR1 privilege.

ADMIN_TASK_LIST()

The schema is DSNADM.

The result of the function is a table with the format shown in the following table. All the columns are
nullable except TASK_NAME.

Chapter 4. Built-in functions 669

Table 102. Format of the resulting table for ADMIN_TASK_LIST

Column name Data type Contains

BEGIN_
TIMESTAMP

TIMESTAMP Contains the timestamp of when the task can first run. When
the task begins to run depends on what values this and
other columns contain:

• If BEGIN_TIMESTAMP contains a non-null value:

– If POINT_IN_TIME and TRIGGER_TASK_NAME contain
null values, the task begins to run at the timestamp in
BEGIN_TIMESTAMP

– If POINT_IN_TIME contains a non-null value, the task
begins to run at the next point in time that is defined at
or after the timestamp in BEGIN_TIMESTAMP

– If TRIGGER_TASK_NAME is a non-null value, the
task begins to run at the next time that the task
identified in TRIGGER_TASK_NAME completes or after
the timestamp in BEGIN_ TIMESTAMP

• If BEGIN_TIMESTAMP contains a null value:

– If POINT_IN_TIME and TRIGGER_TASK_NAME contain
null values, the task begins to run immediately

– If POINT_IN_TIME contains a non-null value, the task
begins to run at the next point in time that is defined

– If TRIGGER_TASK_NAME is a non-null value, the task
begins to run at the next time that the task identified in
TRIGGER_TASK_NAME completes

END_
TIMESTAMP

TIMESTAMP Contains the timestamp of when the task is last able to run.
If this column is NULL, there are no restrictions as to when
the task must not run.

MAX_
INVOCATIONS

INTEGER Contains the maximum number of times the task can run.
The maximum number applies to all types of schedules:
triggered by events, scheduled by time interval, or by point
in time. If this column is null, the task has no limit on the
number of times it can be run.

If both END_TIMESTAMP and MAX_INVOCATIONS contain
values, the value in END_TIMESTAMP takes precedence
over the value for MAX_INVOCATIONS. That is, if the value
in END_TIMESTAMP is reached, even though the number
of times the task has run has not reached the value for
MAX_INVOCATIONS, the task will not run again

INTERVAL INTEGER Contains an integer that indicates the duration between the
start of one instance of a task and the start of the next
instance of the same task. If the value of this column is
NULL, the task is not scheduled to run at a regular interval.

POINT_IN_
TIME

VARCHAR(400) Contains one or more points in time (in UNIX cron format)
for which the task is scheduled to run. If the value of this
column is NULL, the task is not scheduled to run at a specific
point in time.

The format contains the following pieces of information
separated by blanks: given hour, given minute, given day of
the week, given day of the month, given month of the year.

670 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 102. Format of the resulting table for ADMIN_TASK_LIST (continued)

Column name Data type Contains

TRIGGER_
TASK_NAME

VARCHAR(128) Contains the task name of the task that, when its execution
is complete, will trigger the running of the task that is
described in the row.

Task name DB2STOP is reserved for Db2 stop events and
task name DB2START is reserved for Db2 start events.
Those events are handled by the administrative task
scheduler that is associated with the Db2 subsystem that
is starting or stopping.

If the value of this column is NULL, the task that is described
in this row will not be triggered to run by another task.

TRIGGER_
TASK_COND

CHAR(2) Contains the type of comparison that is to be made to the
return code after the running of task that is indicated in
TRIGGER_TASK_NAME. The following values are possible:
GT

Greater than
GE

Greater than or equal to
EQ

Equal to
LT

Less than
LE

Less tan or equal to
NE

Not equal to

If this column contains NULL, the task is triggered to run
without consideration of the return code of the task that is
indicated in TRIGGER_TASK_NAME.

TRIGGER_
TASK_CODE

INTEGER Contains the return code from running the task indicated in
TRIGGER_TASK_NAME.

If the running of this task is triggered by a stored procedure,
TRIGGER_TASK_CODE contains the SQLCODE that must be
returned by the stored procedure in order for this task to
run.

If the running of this task is triggered by a JCL job,
TRIGGER_TASK_CODE contains the MAXRC that must be
returned by the job in order for this task to run.

“ADMIN_TASK_STATUS table function” on page 675
returns the SQLCODE or MAXRC value in the SQLCODE or
MAXRC column.

If TRIGGER_TASK_COND is NULL, this column will also be
NULL.

Chapter 4. Built-in functions 671

Table 102. Format of the resulting table for ADMIN_TASK_LIST (continued)

Column name Data type Contains

DB2_SSID VARCHAR(4) Contains the Db2 subsystem ID of the Db2 subsystem that
is associated with the administrative task scheduler that
should run this task.

The value in this column is used in a data sharing
environment where, for example different Db2 members
have different configurations and running the task relies on
a certain environment. A value in DB2_SSID will prevent an
administrative scheduler of other members to run this task,
so that the task can only be run as long as the administrative
task scheduler of the subsystem indicated in DB2_SSID is
running.

For a task that is being triggered by a Db2 start or Db2 stop
event as indicated in the TRIGGER_TASK_NAME column, a
value in DB2_SSID will allow the task to be run only when
the indicated subsystem is starting or stopping. If no value is
indicated in DB2_SSID, each subsystem that starts or stops
will trigger a the task to be run locally, provided that the
triggered task is run serially.

If this column is NULL, any administrative scheduler can run
this task.

PROCEDURE_
SCHEMA

VARCHAR(128) Contains the schema of the Db2 stored procedure that this
task will run. If the value of this column is null, Db2 uses a
default schema.

PROCEDURE_
NAME

VARCHAR(128) Contains the name of the Db2 stored procedure that this
task will run. If the value of this column is NULL, no stored
procedure will be called when this task is run.

PROCEDURE_
INPUT

VARCHAR(4096) Contains a statement that returns one row of data. The
returned value will be used as the input parameter of the
stored procedure that this task will run. If this column
contains the null value, no parameters are passed to the
stored procedure when this task is run.

JCL_LIBRARY VARCHAR(44) Contains the name of the data set that contains the JCL job
that is run when this task is run. If the value of this column is
the null value, no JCL job will be run when this task is run.

JCL_MEMBER VARCHAR(8) Contains the name of the library member that contains the
JCL job that is run when this task is run. If the value of this
column is the null value, the data set that is specified in
JCL_LIBRARY is sequential and contains the JCL job that is
run when this task is run.

672 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 102. Format of the resulting table for ADMIN_TASK_LIST (continued)

Column name Data type Contains

JOB_WAIT VARCHAR(8) Contains one of the following values, which indicates
whether the JCL job can be run synchronously. If the value
in the column is not null, this column contains one of the
following values:
NO

Runs asynchronously
YES

Runs synchronously
PURGE

Runs synchronously and then the job status in z/OS is
purged

TASK_NAME VARCHAR(128) Contains the unique name that is assigned to this task.

DESCRIPTION VARCHAR(128) Contains a description of the task if one exists.

USERID VARCHAR(128) Contains the authorization ID of the user under which the
task will be invoked. If this column is NULL, the task is
invoked by the default authorization ID that is associated
with the administrative task scheduler.

CREATOR VARCHAR(128) Contains the authorization ID that added the task to the
administrative task scheduler task list.

LAST_MODIFIED TIMESTAMP Timestamp of when the task was added or last modified.

Example 1: Retrieve information about all of the tasks that are defined in the administrative task
scheduler task list:

 SELECT *
 FROM TABLE (DSNADM.ADMIN_TASK_LIST()) AS T;

ADMIN_TASK_OUTPUT table function
For an execution of a stored procedure, the ADMIN_TASK_OUTPUT function returns the output parameter
values and result sets, if available. If the task that was executed is not a stored procedure or the
requested execution status is not available, the function returns an empty table.

Authorization
The user who calls this function must have MONITOR1 privilege.

ADMIN_TASK_OUTPUT(task-name ,num-invocations)

The schema is DSNADM.

Important: The ADMIN_TASK_OUTPUT function returns as many output parameter values and result sets
as possible. However, this information is not always available. The administrative task scheduler cannot
store output that exceeds 32,180 bytes in length. Therefore, some output parameters and result set
values might be null if the values are too long to be stored by the administrative task scheduler. Also, if
the result sets are too large to be stored, only some of the most recent rows of each result set might be
available (for example, the first rows missing).

Chapter 4. Built-in functions 673

task-name
Specifies the unique name of the task whose execution output you want returned. This is an input
parameter of type VARCHAR(128).

num-invocations
Specifies the execution number of the task whose output you want returned. This value
must be a valid value in the NUM_INVOCATIONS column of the returned table of
DSNADM.ADMIN_TASK_STATUS(NULL) for the specified task. This is an input parameter of type
INTEGER.

The result of the function is a table with the format shown in the following table. This function might
return an empty table for the output of a stored procedure for the following reasons:

• The stored procedure does not have output parameters or result sets.
• The output of the stored procedure was not stored at execution time, because the

SYSIBM.ADMIN_TASKS_HIST table was not available.
• The num-invocations parameter is not valid.
• The output for the task that is specified by the num-invocations parameter is no longer stored, because

the task is older than the value that is specified for the MAXHIST parameter of the administrative task
scheduler. (The MAXHIST parameter specifies the maximum number of execution statuses to keep for
each task.)

Table 103. Format of the resulting table for ADMIN_TASK_OUTPUT

Column name Data type Contains

RESULT_SET SMALLINT Contains the stored procedure result set number with a
value beginning at 1, or NULL if this value is for an output
parameter of the stored procedure.

ROW SMALLINT Contains the result set row number with a value beginning
at 1, or NULL if this value is for an output parameter of the
stored procedure.

COLUMN SMALLINT Contains the result set column number, or the index of
an output parameter of the stored procedure parameters,
with a value beginning at 1. Only the values of output
parameters are returned, and the results include the index
in all parameters of the stored procedure.

TYPE CHAR(8) Contains the type of the returned string. Possible types are:

• DATE
• TIME
• TIMESTMP
• CHAR
• VARCHAR
• FLOAT
• BIGINT
• INTEGER
• SMALLINT
• OTHER

The value OTHER includes all other data types that are not
supported in this stored procedure.

VALUE VARCHAR(32180) Contains the string representation of the output parameter
value or the result set column value. This column is null if
the TYPE column contains OTHER.

674 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Related tasks
Displaying the results of a stored procedure task (Db2 Administration Guide)

ADMIN_TASK_STATUS table function
The ADMIN_TASK_STATUS function returns a table with one row for each task that is defined in the
administrative task scheduler task list. Each row indicates the status of the task for the last time it was
run.

Optionally, if you specify the max-history parameter, the function returns a row of data for each execution
of a task (up to the max-history value). For tasks that have not been executed, this function returns a row
of data with a NULL status.

Authorization
The user who calls this function must have MONITOR1 privilege.

ADMIN_TASK_STATUS(

max-history

)

The schema is DSNADM.

max-history
Specifies the maximum number of execution statuses per task to be returned. The most recent
execution statuses are returned.

If the parameter is set to NULL, all available task execution statuses are returned. If the parameter is
set to 1, only the status for the last time the task was run is returned, which is the same result as not
specifying this option. This is an input parameter of type INTEGER.

The result of the function is a table with the format shown in the following table.

Table 104. Format of the resulting table for ADMIN_TASK_STATUS

Column name Data type Contains

TASK_NAME VARCHAR(128) Contains the name of the task that has run, is running, or
has been bypassed.

STATUS VARCHAR(10) Contains one of the following values that indicates task
status:
RUNNING

The task is currently running
COMPLETED

The task has finished running.

For asynchronous tasks (JCL jobs), this column contains
COMPLETED whenever the job is submitted to be run.
Otherwise, this column contains COMPLETED only after
the task has finished running.

NOTRUN
The task was not run at the scheduled invocation time.
The MSG column contains the error or warning message
that indicates why the task was not run.

UNKNOWN
The scheduler shut down while the task was running.
The scheduler is started again but cannot know the
execution status of this interrupted task.

Chapter 4. Built-in functions 675

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_displayingresultsofsp.html

Table 104. Format of the resulting table for ADMIN_TASK_STATUS (continued)

Column name Data type Contains

NUM_
INVOCATIONS

INTEGER Contains the number of times the administrative task
scheduler attempted to run the task, including the current
time if the task is currently running. The values in this
column does not indicate if the task was successfully run.

START_
TIMESTAMP

TIMESTAMP Contains the time when the task started running if
the STATUS column contains COMPLETED, RUNNING, or
UNKNOWN. Otherwise, this column contains the time that
the task should have started to run but could not.

END_
TIMESTAMP

TIMESTAMP Contains the time when the task finished running.

JOB_ID CHAR(8) Contains the job ID that is assigned to the JCL job submitted
by the administrative task scheduler. This column contains
NULL if the task is a stored procedure or if the STATUS
column does not contain COMPLETED.

MAXRC INTEGER Contains the highest return code from submitting a JCL
job. If the task is synchronous, the value in this column is
changed to the return code that is returned when the job
finishes running.

This column is set to NULL if the task is a stored procedure,
if the STATUS column does not contain COMPLETED, or if a
synchronous task is finished and has run with JES3 in a z/OS
1.7 or earlier system.

676 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 104. Format of the resulting table for ADMIN_TASK_STATUS (continued)

Column name Data type Contains

COMPLETION_
TYPE

INTEGER Contains one of the following values that indicates
the completion type of the JCL job submitted by the
administrative task scheduler:
0

No completion information
1

Job ended normally
2

Job ended by completion code
3

Job had a JCL error
4

Job was canceled
5

Job abended
6

Converter abended while processing the job
7

Job failed security checks
8

Job failed in end-of-memory

This column contains NULL if the task is a stored procedure,
if the STATUS column does not contain COMPLETED, or if the
JCL job is run with JES3 in a z/OS 1.7 or earlier system.

SYSTEM_
ABENDCD

INTEGER Contains the system abend code returned by a failed JCL job
that was submitted by the administrative task scheduler.

This column contains NULL if the task is a stored procedure,
if the STATUS column does not contain COMPLETED, or if the
JCL job is run with JES3 in a z/OS 1.7 or earlier system.

USER_ABENDCD INTEGER Contains the user abend code returned by a failed JCL job
that was submitted by the administrative task scheduler.

This column contains NULL if the task is a stored procedure,
if the STATUS column does not contain COMPLETED, or if the
JCL job is run with JES3 in a z/OS 1.7 or earlier system.

MSG VARCHAR(128) Contains the error or warning message from the last time
the task was run.

SQLCODE INTEGER Contains the SQLCODE set by Db2 when a stored procedure
was called by the administrative task scheduler. This column
contains NULL if the task is a JCL job or if the STATUS
column does not contain COMPLETED.

SQLSTATE CHAR(5) Contains the SQLSTATE set by Db2 when a stored procedure
was called by the administrative task scheduler. This column
contains NULL if the task is a JCL job or if the STATUS
column does not contain COMPLETED.

Chapter 4. Built-in functions 677

Table 104. Format of the resulting table for ADMIN_TASK_STATUS (continued)

Column name Data type Contains

SQLERRP VARCHAR(8) Contains the SQLERRP set by Db2 when a stored procedure
was called by the administrative task scheduler. This column
contains NULL if the task is a JCL job or if the STATUS
column does not contain COMPLETED.

SQLERRMC VARCHAR(70) Contains the SQLERRMC set by Db2 when a stored
procedure was called by the administrative task scheduler.
This column contains NULL if the task is a JCL job or if the
STATUS column does not contain COMPLETED.

DB2_SSID VARCHAR(4) Contains the Db2 subsystem ID that is associated with the
administrative task scheduler that ran the task or should
have run the task.

USERID VARCHAR(128) Contain the user ID that the task ran under.

Example 1: Retrieve status information about all of the tasks that have run in the administrative task
scheduler task list:

 SELECT *
 FROM TABLE (DSNADM.ADMIN_TASK_STATUS()) AS T;

Related tasks
Listing the last execution status of scheduled tasks (Db2 Administration Guide)
Listing multiple execution statuses of scheduled tasks (Db2 Administration Guide)

BLOCKING_THREADS table function
The BLOCKING_THREADS function returns a table that contains one row for each lock or claim that
threads hold against the databases that are specified in the input parameter.

Authorization
The set of privileges for each specified database must include one of the following privileges or
authorities:

• DISPLAYDB privilege
• DISPLAY privilege
• DBMAINT authority
• DBCTRL authority
• DBADM authority
• System DBADM authority
• SYSOPR authority
• SYSCTRL authority
• SYSADM authority

For implicitly created databases, the database privilege or authority can be held on the implicitly created
database or on DSNDB04.

Syntax

BLOCKING_THREADS( dbname)

678 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_listingtaskexecutionstatus.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_listingmultipletaskstatuses.html

The schema is SYSIBMADM.

dbname
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The expression must have an actual length that is no greater than 128 bytes. The value of
the expression must refer to a database for which information is to be displayed. Multiple databases
can be specified in the following forms:

Table 105. Forms of dbname and dbstring

Form Displays the information of...

dbname1:dbname2 All databases with names, in UNICODE order,
that are between dbname1 and dbname2
inclusive

dbname* All databases with names that begin with the
string dbname

*dbname All databases with names that end with the string
dbname

dbname All databases with names that contain the string
dbname

*dbstring1*dbstring2* All databases with names that contain the strings
dbstring1 and dbstring2

The result of the function is a table with the format shown in the following table. All of the columns are
nullable.

Table 106. Format of the resulting table for BLOCKING_THREADS

Column name Data type Contains...

ACQUIRED_TS TIMESTAMP (12) The time when the lock or claim
was acquired

AGE VARCHAR (128) The elapsed time between when
the lock or claim was acquired
and when the function was
invoked, with the following
abbreviated keywords:
D

Days
H

Hours
M

Minutes
S

Seconds. Microseconds are
represented by up to six
decimal digits.

CORRID VARCHAR (255) The correlation identifier of the
thread. If the STATE value
indicates a physical lock (P-lock),
CORRID has a null value or empty
string.

Chapter 4. Built-in functions 679

Table 106. Format of the resulting table for BLOCKING_THREADS (continued)

Column name Data type Contains...

CONNID VARCHAR (255) The connection identifier of the
thread. If the STATE value
indicates a P-lock, CONNID has a
null value or empty string.

USERID VARCHAR (255) The user ID of the thread. If the
STATE value indicates a P-lock,
USERID has a null value or empty
string.

LUWID VARCHAR (255) The logical-unit-of-work identifier
of the thread. If the STATE value
indicates a P-lock, LUWID has a
null value or empty string.

SSID CHAR (4) In data sharing, the Db2 data
sharing member where the
thread is running. Otherwise, this
column is unused.

TYPE CHAR (1) The type of blocker held by the
thread. TYPE can have one of the
following values:
L

Lock
C

Claim
I

Indicates that the row is for
informational purposes. The
INFO column contains the
information.

E
Indicates that an error
occurred. The INFO column
explains the error.

D
Indicates that the row is for
serviceability purposes. The
INFO column contains the
serviceability information.

680 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 106. Format of the resulting table for BLOCKING_THREADS (continued)

Column name Data type Contains...

SUBTYPE CHAR (2) The type of lock or claim that
blocking threads hold. Locks for
blocking threads can have one of
the following values:
00

Page lock
01

Database lock
02

Page set lock
03

Data set lock (partition)
05

Index compression lock
06

Lock-specific partition
07

Page set or data set open
08

Utility I/O damage
assessment

09
Page set piece locks

Continues in next row.

Chapter 4. Built-in functions 681

Table 106. Format of the resulting table for BLOCKING_THREADS (continued)

Column name Data type Contains...

SUBTYPE (cont.) 0A
Database exception table
(DBET) entry locks

0D
Buffer manager (BM)
SYSLGRNG recording lock
or group buffer pool (GBP)
conversion dependent lock

0E
Utility serialization lock

0F
Mass delete lock for table

10
Table lock for segmented
table space

12
Package lock

18
Row lock

1F
Distributed data facility (DDF)
communications database
(CDB) P-lock

22
Resource limit facility (RLF)
P-lock

27
DBET logical page list (LPL)
or group buffer pool recovery
pending (GRECP) locks

30
LOB lock

32
LPL recovery lock

36
Serialization lock for adding
partitions

39
Load database definition
(DBD) lock

3A
Compression dictionary build
lock

3B
Compression dictionary load
lock

41
Utility catalog access lock

682 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 106. Format of the resulting table for BLOCKING_THREADS (continued)

Column name Data type Contains...

SUBTYPE (cont.) Claims for blocking threads can
have one of the following values:
20

WR claim
40

RR claim
60

RR, WR claim
80

CS claim
A0

CS, WR claim

DURATION CHAR (2) The duration of the lock or
claim. Locks can have one of the
following values:
20

Manual
21

Manual+1
40

Commit
41

Commit+1
60

Allocation
80

Plan
81

Utility
FE

Interest

Claims can have one of the
following values:
CM

Commit
CH

Cursor hold
AL

Allocation

Chapter 4. Built-in functions 683

Table 106. Format of the resulting table for BLOCKING_THREADS (continued)

Column name Data type Contains...

STATE CHAR (2) The state in which the lock is
held. Locks can have one of the
following values:
01

Unprotected share
02

Intent shared
03

Intent exclusive
04

Shared
05

Update
06

Shared intent exclusive
07

Non-shared update
08

Exclusive
09

Intent exclusive P-lock
0A

Intent shared P-lock
0B

Shared intent exclusive P-
lock

DBID SMALLINT The database identifier

OBID SMALLINT The object identifier

DBNAME VARCHAR (24) The database name

OBJECT_QUALIFIER VARCHAR (128) The schema of a table or index

OBJECT NAME VARCHAR (128) The name of a table, index, or
table space

PAGENUM_OR_RID VARCHAR (10) Indicates one of the following
values in hexadecimal format:

• The page number if the lock is a
page lock

• The record ID if the lock is a
row lock

• The dataset number if the lock
is a dataset lock

• The partition number if the lock
is a partition lock

684 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 106. Format of the resulting table for BLOCKING_THREADS (continued)

Column name Data type Contains...

PACKAGE VARCHAR (512) The qualified package name
(COLLECTION_ID.NAME.CONTOK
EN) if the lock is a package lock

CATALOG_LEVEL VARCHAR (10) The catalog level. This column is
currently not used and reserved
for future use.

INFO VARCHAR (1024) Informational text if TYPE is I, D,
or E

The function returns an informational message (TYPE=I) for any specified databases that do not hold any
locks or claims.

Examples
Retrieve information about the threads that hold locks and claims against the Db2 catalog and directory
databases:

 SELECT *
 FROM TABLE (SYSIBMADM.BLOCKING_THREADS('DSNDB06,DSNDB01'));

Related tasks
Identify applications that are incompatible with online migration (Db2 Installation and Migration)
Related reference
-DISPLAY BLOCKERS command (Db2) (Db2 Commands)

MQREADALL table function
The MQREADALL function returns a table that contains the messages and message metadata from a
specified IBM MQ location without removing the messages from the queue.

MQREADALL(

receive-service

, service-policy ,
num-rows

1
)

Notes:
1 The comma is required before num-rows when any of the preceding arguments to the function are
specified.

The schema is DB2MQ.

The MQREADALL function returns a table containing the messages and message meta-data from the
IBM MQ location that is specified by receive-service, using the quality-of-service policy that is defined in
service-policy. Performing this operation does not remove the messages from the queue that is associated
with receive-service.

receive-service
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service point that is defined in the DB2MQ.MQSERVICE table. A service point is a
logical end-point from which a message is sent or received. A service point definition includes the

Chapter 4. Built-in functions 685

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_identifyincompatible.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_displayblockers.html

name of the IBM MQ queue manager and the name of the queue. See IBM MQ Application Messaging
Interface for more details.

If receive-service is not specified or is the null value, DB2.DEFAULT.POLICY is used.

service-policy
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service policy that is defined in the DB2MQ.MQPOLICY table. A service policy specifies
a set of quality-of-service options that are to be applied to this messaging operation. These options
include message priority and message persistence. See IBM MQ Application Messaging Interface for
more details.

If service-policy is not specified or is the null value, DB2.DEFAULT.POLICY is used.

num-rows
An expression that returns a value that is a SMALLINT or INTEGER data type whose value is a positive
integer or zero. The value of the expression specifies the maximum number of messages to return.

If num-rows is not specified or if the value of the expression is zero, all available messages are
returned.

The result of the function is a table with the format shown in the following table. All the columns are
nullable.

Table 107. Format of the resulting table for MQREADALL

Column name Data type Contains

MSG VARCHAR(4000) The contents of the IBM MQ message

CORRELID VARCHAR(24) The correlation ID that is used to relate messages

TOPIC VARCHAR(40) The topic that the message was published with, if available

QNAME VARCHAR(48) The name of the queue from which the message was
received

MSGID CHAR(24) The unique message identifier assigned by IBM MQ

MSGFORMAT VARCHAR(8) The format of the message, as defined by IBM MQ

Examples
Example 1

Read all the messages from the queue specified by the default service (Db2.DEFAULT.SERVICE), using
the default policy (Db2.DEFAULT.POLICY).

 SELECT * FROM TABLE (MQREADALL()) AS T;

The messages and all the metadata are returned as a table.

Example 2
Read all the messages from the beginning of the queue specified by the service MYSERVICE, using the
default policy (Db2.DEFAULT.POLICY).

 SELECT T.MSG, T.CORRELID
 FROM TABLE (MQREADALL (’MYSERVICE’)) AS T;

Only the MSG and CORRELID columns are returned.

686 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 3
Read all the messages from the queue specified by the default service (Db2.DEFAULT.SERVICE), using
the default policy (Db2.DEFAULT.POLICY). Only messages with a CORRELID of '1234' are returned.

 SELECT *
 FROM TABLE (MQREADALL(10)) AS T
 WHERE T.CORRELID = ’1234’;

All columns are returned.
Example 4

Retrieve the first 10 messages from the beginning of the queue specified by the default service
(Db2.DEFAULT.SERVICE), using the default policy (Db2.DEFAULT.POLICY).

 SELECT *
 FROM TABLE (MQREADALL(10)) AS T;

The first 10 messages and all the columns are returned as a table.

MQREADALLCLOB table function
The MQREADALLCLOB function returns a table that contains the messages and message metadata from a
specified IBM MQ location without removing the messages from the queue.

MQREADALLCLOB(

receive-service

, service-policy ,
num-rows

1
)

Notes:
1 The comma is required before num-rows when any of the preceding arguments to the function are
specified.

The schema is DB2MQ.

The MQREADALLCLOB function returns a table containing the messages and message meta-data from the
IBM MQ location that is specified by receive-service, using the quality-of-service policy that is defined in
service-policy. Performing this operation does not remove the messages from the queue that is associated
with receive-service.

receive-service
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service point that is defined in the DB2MQ.MQSERVICE table. A service point is a
logical end-point from which a message is sent or received. A service point definition includes the
name of the IBM MQ queue manager and the name of the queue. See IBM MQ Application Messaging
Interface for more details.

If receive-service is not specified or is the null value, DB2.DEFAULT.POLICY is used.

service-policy
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service policy that is defined in the DB2MQ.MQPOLICY table. A service policy specifies
a set of quality-of-service options that are to be applied to this messaging operation. These options
include message priority and message persistence. See IBM MQ Application Messaging Interface for
more details.

If service-policy is not specified or is the null value, DB2.DEFAULT.POLICY is used.

Chapter 4. Built-in functions 687

num-rows
An expression that returns a value that is a SMALLINT or INTEGER data type whose value is a positive
integer or zero. The value of the expression specifies the maximum number of messages to return.

If num-rows is not specified or if the value of the expression is zero, all available messages are
returned.

The result of the function is a table with the format shown in the following table. All the columns in the
table are nullable.

Table 108. Format of the resulting table for MQREADALLCLOB

Column name Data type Contains

MSG CLOB(1M) The contents of the IBM MQ message

CORRELID VARCHAR(24) The correlation ID that is used to relate messages

TOPIC VARCHAR(40) The topic that the message was published with, if available

QNAME VARCHAR(48) The name of the queue from which the message was received

MSGID CHAR(24) The unique message identifier assigned by IBM MQ

MSGFORMAT VARCHAR(8) The format of the message, as defined by IBM MQ

The CCSID of the result is the system CCSID that was in effect at the time that the IBM MQ function was
installed into Db2.

Examples
Example 1

Read all the messages from the queue specified by the default service (Db2.DEFAULT.SERVICE), using
the default policy (Db2.DEFAULT.POLICY).

 SELECT * FROM TABLE (MQREADALLCLOB()) AS T;

The messages and all the metadata are returned as a table.

Example 2
Read all the messages from the queue specified by the service MYSERVICE, using the default policy
(Db2.DEFAULT.POLICY).

 SELECT T.MSG, T.CORRELID
 FROM TABLE (MQREADALLCLOB('MYSERVICE')) AS T;

Only the MSG and CORRELID columns are returned as a table.

Example 3
Read all the messages from the queue specified by the service MYSERVICE, using the default policy
(Db2.DEFAULT.POLICY), with a correlation identifier of '1234'.

 SELECT * FROM TABLE (MQREADALLCLOB('MYSERVICE')) AS T
 WHERE T.CORRELID = '1234';

All columns are returned.

Example 4
Read the first 10 messages from the queue specified by the default service (Db2.DEFAULT.SERVICE),
using the default policy (Db2.DEFAULT.POLICY).

 SELECT * FROM TABLE (MQREADALLCLOB('10')) AS T;

All columns are returned.

688 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

MQRECEIVEALL table function
The MQRECEIVEALL function returns a table that contains the messages and message metadata from a
specified IBM MQ location and removes the messages from the queue.

MQRECEIVEALL(

receive-service

, service-policy

, correl-id

,
num-rows

1
)

Notes:
1 The comma is required before num-rows when any of the preceding arguments to the function are
specified.

The schema is DB2MQ.

The MQRECEIVEALL function returns a table containing the messages and message meta-data from the
IBM MQ location that is specified by receive-service, using the quality-of-service policy that is defined in
service-policy. Performing this operation removes the messages from the queue that is associated with
receive-service.

receive-service
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service point that is defined in the DB2MQ.MQSERVICE table. A service point is a
logical end-point from which a message is sent or received. A service point definition includes the
name of the IBM MQ queue manager and the name of the queue. See IBM MQ Application Messaging
Interface for more details.

If receive-service is not specified or is the null value, DB2.DEFAULT.POLICY is used.

service-policy
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service policy that is defined in the DB2MQ.MQPOLICY table. A service policy specifies
a set of quality-of-service options that are to be applied to this messaging operation. These options
include message priority and message persistence. See IBM MQ Application Messaging Interface for
more details.

If service-policy is not specified or is the null value, DB2.DEFAULT.POLICY is used.

correl-id
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The expression must have an actual length that is no greater than 24 bytes. The value of
the expression specifies the correlation identifier that is associated with this message. A correlation
identifier is often specified in request-and-reply scenarios to associate requests with replies. Only
those messages with a matching correlation identifier are returned.

A fixed length string with trailing blanks is considered a valid value. However, when the correl-id
is specified on another request such as MQSEND, the correl-id must be specified the same to be
recognized as a match. For example, specifying a value of 'test' for correl-id for this function does not
match a correl-id value of 'test ' (with trailing blanks) specified earlier on an MQSEND request.

Chapter 4. Built-in functions 689

If correl-id is not specified, is an empty string, or is the null value, a correlation identifier is not used,
and the message at the beginning of the queue is returned.

num-rows
An expression that returns a value that is a SMALLINT or INTEGER data type whose value is a positive
integer or zero. The value of the expression specifies the maximum number of messages to return.

If num-rows is not specified or if the value of the expression is zero, all available messages are
returned.

The result of the function is a table with the format shown in the following table. All of the columns are
nullable.

Table 109. Format of resulting table for MQRECEIVEALL

Column name Data type Contains

MSG VARCHAR(4000) The contents of the IBM MQ message

CORRELID VARCHAR(24) The correlation ID that is used to relate messages

TOPIC VARCHAR(40) The topic that the message was published with, if available

QNAME VARCHAR(48) The name of the queue from which the message was
received

MSGID CHAR(24) The unique message identifier assigned by IBM MQ

MSGFORMAT VARCHAR(8) The format of the message, as defined by IBM MQ

The CCSID of the result is the system CCSID that was in effect at the time that the IBM MQ function was
installed into Db2.

Examples
Example 1

Retrieve all the messages from the queue specified by the default service (Db2.DEFAULT.SERVICE),
using the default policy (Db2.DEFAULT.POLICY).

 SELECT * FROM TABLE (MQRECEIVEALL()) AS T;

The messages and all the metadata are returned as a table and the messages are removed from the
queue.

Example 2
Retrieve all the messages from the queue specified by the service MYSERVICE, using the default
policy (Db2.DEFAULT.POLICY).

 SELECT T.MSG, T.CORRELID
 FROM TABLE (MQRECEIVEALL('MYSERVICE')) AS T;

Only the MSG and CORRELID columns are returned. The messages are removed from the queue.
Example 3

Retrieve all the messages from the beginning of the queue specified by the service MYSERVICE, using
the policy MYPOLICY, with a correlation identifier of '1234'.

 SELECT T.MSG, T.CORRELID
 FROM TABLE (MQRECEIVEALL('MYSERVICE','MYPOLICY','1234')) AS T;

Only the MSG and CORRELID columns are returned. The messages are removed from the queue.

690 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 4

Retrieve the first 10 messages from the beginning of the queue specified by the default service
(Db2.DEFAULT.SERVICE), using the default policy (Db2.DEFAULT.POLICY).

 SELECT * FROM TABLE (MQRECEIVEALL(10)) AS T;

All columns are returned. The messages are removed from the queue.

MQRECEIVEALLCLOB table function
The MQRECEIVEALLCLOB function returns a table that contains the messages and message metadata
from a specified IBM MQ location and removes the messages from the queue.

MQRECEIVEALLCLOB(

receive-service

, service-policy

, correl-id

,
num-rows

1
)

Notes:
1 The comma is required before num-rows when any of the preceding arguments to the function are
specified.

The schema is DB2MQ.

The MQRECEIVEALLCLOB function returns a table containing the messages and message metadata from
the IBM MQ location that is specified by receive-service, using the quality-of-service policy that is defined
in service-policy. Performing this operation removes the messages from the queue that is associated with
receive-service.

receive-service
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service point that is defined in the DB2MQ.MQSERVICE table. A service point is a
logical end-point from which a message is sent or received. A service point definition includes the
name of the IBM MQ queue manager and the name of the queue. See IBM MQ Application Messaging
Interface for more details.

If receive-service is not specified or is the null value, DB2.DEFAULT.POLICY is used.

service-policy
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service policy that is defined in the DB2MQ.MQPOLICY table. A service policy specifies
a set of quality-of-service options that are to be applied to this messaging operation. These options
include message priority and message persistence. See IBM MQ Application Messaging Interface for
more details.

If service-policy is not specified or is the null value, DB2.DEFAULT.POLICY is used.

Chapter 4. Built-in functions 691

correl-id
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The expression must have an actual length that is no greater than 24 bytes. The value of
the expression specifies the correlation identifier that is associated with this message. A correlation
identifier is often specified in request-and-reply scenarios to associate requests with replies. Only
those messages with a matching correlation identifier are returned.

A fixed length string with trailing blanks is considered a valid value. However, when the correl-id
is specified on another request such as MQSEND, the correl-id must be specified the same to be
recognized as a match. For example, specifying a value of 'test' for correl-id for this function does not
match a correl-id value of 'test ' (with trailing blanks) specified earlier on an MQSEND request.

If correl-id is not specified, is an empty string, or is the null value, a correlation identifier is not used,
and the message at the beginning of the queue is returned.

num-rows
An expression that returns a value that is a SMALLINT or INTEGER data type whose value is a positive
integer or zero. The value of the expression specifies the maximum number of messages to return.

If num-rows is not specified or if the value of the expression is zero, all available messages are
returned.

The result of the function is a table with the format shown in the following table. All of the columns are
nullable.

Table 110. Format of resulting table for MQRECEIVEALLCLOB

Column name Data type Contains

MSG CLOB(1M) The contents of the IBM MQ message

CORRELID VARCHAR(24) The correlation ID that is used to relate messages

TOPIC VARCHAR(40) The topic that the message was published with, if available

QNAME VARCHAR(48) The name of the queue from which the message was received

MSGID CHAR(24) The unique message identifier assigned by IBM MQ

MSGFORMAT VARCHAR(8) The format of the message, as defined by IBM MQ

The CCSID of the result is the system CCSID that was in effect at the time that the IBM MQ function was
installed into Db2.

Examples
Example 1

Retrieve all the messages from the queue specified by the default service (Db2.DEFAULT.SERVICE),
using the default policy (Db2.DEFAULT.POLICY)

 SELECT * FROM TABLE (MQRECEIVEALLCLOB()) AS T;

The messages and all the metadata are returned as a table, and the messages are removed.
Example 2

Retrieve all the messages from the beginning of the queue specified by the service MYSERVICE, using
the policy (Db2.DEFAULT.POLICY)

 SELECT T.MSG, T.CORRELID
 FROM TABLE (MQRECEIVEALLCLOB('MYSERVICE')) AS T;

Only the MSG and CORRELID columns are returned as a table, and the messages removed from the
queue.

692 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 3
Retrieve all the messages from the queue specified by the service MYSERVICE, using the policy
"MYPOLICY", with a correlation identifier of '1234'

 SELECT *
 FROM TABLE (MQRECEIVEALLCLOB('MYSERVICE','MYPOLICY','1234')) AS T;

All columns are returned, and the messages removed from the queue.
Example 4

Retrieve the first 10 messages from the beginning of the queue specified by the default service
(Db2.DEFAULT.SERVICE), using the default policy (Db2.DEFAULT.POLICY)

 SELECT *
 FROM TABLE (MQRECEIVEALLCLOB(10)) AS T;

All columns are returned, and the messages removed from the queue.

XMLTABLE table function
The XMLTABLE function returns a result table from the evaluation of XQuery expressions, possibly by
using specified input arguments as XQuery variables. Each item in the result sequence of the row XQuery
expression represents one row of the result table.

XMLTABLE (

xmlnamespaces-declaration ,

row-xquery-expression-constant

PASSING
BY REF

,
1

row-xquery-argument

COLUMNS

,

xml-table-regular-column-definition

xml-table-ordinality-column-definition

2
)

Notes:
1 xquery-context-item-expression must not be specified more than one time.
2 The xml-table-ordinality-column-definition clause must not be specified more than one time.

row-xquery-argument

xquery-context-item-expression

xquery-variable-expression AS identifier

xml-table-regular-column-definition

column-name data-type

default-clause

PATH column-xquery-expression-constant
1

Chapter 4. Built-in functions 693

Notes:
1 Neither the default-clause or the PATH clause can be specified more than one time.

xml-table-ordinality-column-definition

column-name FOR ORDINALITY

The schema is SYSIBM.

The function name cannot be specified as a qualified name.

xmlnamespaces-declaration
Specifies one or more XML namespace declarations, using the XMLNAMESPACES function, that
become part of the static context of the row-xquery-expression-constant and the column-xquery-
expression-constant. The set of statically known namespaces for XQuery expressions which are
arguments of XMLTABLE is the combination of the pre-established set of statically known namespaces
and the namespace declarations specified in this clause. The XQuery prolog within an XQuery
expression can override these namespaces.

If xmlnamespaces-declaration is not specified, only the pre-established set of statically known
namespaces apply to the XQuery expressions.

row-xquery-expression-constant
Specifies an SQL character string constant that is interpreted as an XQuery expression using
supported XQuery language syntax. row-xquery-expression-constant cannot be an XQuery updating
expression. This expression determines the number of rows in the result table. The expression is
evaluated using the optional set of input XML values that is specified in row-xquery-argument, and
returns an output XQuery sequence where one row is generated for each item in the sequence. If the
sequence is empty, the result of XMLTABLE is an empty table. row-xquery-expression-constant must
not contain an empty string or a string of all blanks.

PASSING
Specifies input values and the manner in which these values are passed to row-xquery-expression-
constant.
BY REF

Specifies that any XML input arguments are, by default, passed by reference. When XML values are
passed by reference, the XQuery evaluation uses the input node trees, if any exist, directly from
the specified input expressions and preserves all properties, including the original node identities
and document order.

This clause has no impact on how non-XML values are passed. The non-XML values create a new
copy of the value during the cast to XML.

row-xquery-argument
Specifies an argument that is to be passed to the XQuery expression specified by row-xquery-
expression-constant. row-xquery-argument is an SQL expression that returns a value that is not
a ROWID, LOB, DATE, TIME, TIMESTAMP, BINARY, VARBINARY, REAL, DECFLOAT, or character
string with FOR BIT DATA attribute.

How row-xquery-argument is used in the XQuery expression depends on whether the argument is
specified as an xquery-context-item-expression or an xquery-variable-expression.

If the data type of row-xquery-argument is not XML, the result of the expression for the argument
is implicitly cast to XML. A null value is converted to an XML empty sequence if the argument is
xquery-variable-expression.

row-xquery-argument must not contain NEXT VALUE or PREVIOUS VALUE expressions or OLAP
specifications.

694 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

xquery-context-item-expression
An expression that returns a value that is XML, integer, decimal, or a character or graphic
string that is not a LOB. xquery-context-item-expression must not be a character string that is
bit data.

xquery-context-item-expression specifies the initial context item for the row-xquery-
expression. The value of the initial context item is the result of xquery-context-item-expression
cast to XML. xquery-context-item-expression must not be specified more than one time.

xquery-variable-expression
Specifies an SQL expression whose value is available to the XQuery expression specified by
row-xquery-expression-constant during execution. The expression must returns a value that is
XML, integer, decimal, or a character or graphic string that is not a LOB.

xquery-variable-expression specifies an argument that will be passed to row-xquery-
expression-constant as an XQuery variable. If xquery-variable-expression is a null value,
the XQuery variable is set to an XML empty sequence. The scope of the XQuery variables
that are created from the PASSING clause is the XQuery expression specified by row-xquery-
expression-constant.

AS identifier
Specifies that the value generated by xquery-variable-expression will be passed to row-xquery-
expression-constant as an XQuery variable. The variable name will be identifier. The leading
dollar sign ($) that precedes variable names in the XQuery language is not included in
identifier. The identifier must not be greater than 128 bytes in length. Two arguments within
the same PASSING clause cannot use the same identifier.

COLUMNS
Specifies the output columns of the result table including the column name, data type, and how the
column value is computed for each row. If this clause is not specified, a single unnamed column of
data type XML is returned, with the value based on the sequence item from evaluating the XQuery
expression in the row-xquery-expression-constant (equivalent to specifying PATH '.'). To reference the
result column, a column-name must be specified in the correlation-clause following the function.
xml-table-regular-column-definition

Specifies one output column of the result table including the column name, data type, and an
XQuery expression to extract the value from the sequence item for the row.
column-name

Specifies the name of the column in the result table. The name cannot be qualified and the
same name cannot be used for more than one column of the table.

data-type
Specifies the data type of the column. See CREATE TABLE for the syntax and a description of
types available. A data-type can be used in XMLTABLE if there is a supported XMLCAST from
the XML data type to the specified data-type.

default-clause
Specifies a default value for the column. See CREATE TABLE for the syntax and a description of
the default-clause. For XMLTABLE result columns, the default is applied when the processing
of the XQuery expression contained in column-xquery-expression-constant returns an empty
sequence. This default value will not be inherited by declared global temporary tables even
when the INCLUDING COLUMN DEFAULTS clause is specified in the definition of the declared
global temporary table.

PATH column-xquery-expression-constant
Specifies an SQL character string constant that is interpreted as an XQuery expression
using supported XQuery language syntax. The column-xquery-expression-constant specifies an
XQuery expression that determines the column value with respect to an item that is the result
of evaluating the XQuery expression in row-xquery-expression-constant. Given an item from
the result of processing the row-xquery-expression-constant as the externally provided context
item, the column-xquery-expression-constant is evaluated and returns an output sequence.
The column value is determined based on this output sequence as follows.

Chapter 4. Built-in functions 695

• If the output sequence contains zero items, the default-clause provides the value of the
column.

• If an empty sequence is returned and no default-clause was specified, a null value is
assigned to the column.

• If a non-empty sequence is returned, the value is cast to the data-type specified for the
column using the XMLCAST expression. An error could be returned from processing this
XMLCAST.

The value for column-xquery-expression-constant must not be an empty string or a string of
all blanks. If this clause is not specified, the default XQuery expression is simply the column-
name.

xml-table-ordinality-column-definition
Specifies the ordinality column of the result table.
column-name

Specifies the name of the column in the result table. The name cannot be qualified and the
same name cannot be used for more than one column of the table.

FOR ORDINALITY
Specifies that column-name is the ordinality column of the result table. The data type of
this column is BIGINT. The value of this column in the result table is the sequential number
of the item for the row in the resulting sequence from evaluating the XQuery expression in
row-xquery-expression-constant.

The result of the function is a table. The encoding scheme of the table is Unicode. If the evaluation of any
of the XQuery expressions results in an error, the XMLTABLE function returns the XQuery error.

Example: List as a table result the purchase order items for orders with a status of 'NEW':

 SELECT U."PO ID", U."Part #", U."Product Name",
 U."Quantity", U."Price", U."Order Date"
 FROM PURCHASEORDER P,
 XMLTABLE(XMLNAMESPACES('http://podemo.org' AS "pod"),
 '$po/PurchaseOrder/itemlist/item' PASSING P.PORDER as "po"
 COLUMNS "PO ID" INTEGER PATH '../../@POid',
 "Part #" CHAR(6) PATH 'product/@pid',
 "Product Name" CHAR(50) PATH 'product/pod:name',
 "Quantity" INTEGER PATH 'quantity',
 "Price" DECIMAL(9,2) PATH 'product/pod:price',
 "Order Date" TIMESTAMP PATH '../../dateTime'
) AS U
 WHERE P.STATUS = 'NEW'

Row functions
A row function can be used only in contexts that are specifically described for the function.

UNPACK row function
The UNPACK function returns a row of values that are derived from unpacking the input binary string. It is
used to unpack a string that was encoded according to the PACK function.

UNPACK (expression)

The schema is SYSIBM.

expression
An expression that returns the string value to be unpacked. The expression must be a binary string
that is not a BLOB and that is not null. The format of the binary string must match the one that is
produced by the PACK function.

696 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The UNPACK function can only be specified in the SELECT list and the SET clause of the UPDATE
statement.

The result of the function is a row of fields corresponding to the data elements that were encoded in the
input packed string. The result is not null.

Example 1: Assume that a user-defined function named myUDF returns a VARBINARY result. The body of
the function includes the following invocation of the PACK function to pack some data into a binary string:

 SET :udf_result = PACK(CCSID 1208, 'Alina', DATE('1977-08-01'),
 DOUBLE(0.5));

The following SELECT statement unpacks the result of the myUDF function and returns a row of individual
column values:

 SELECT UNPACK(myUDF(C1)).* AS(Name VARCHAR(40) CCSID UNICODE,
 DOB DATE,
 Score DOUBLE)
 FROM T1;

The use of ".*" indicates that the result of the UNPACK function should be flattened into a list of result
column values. When the UNPACK function is used in a select clause, an AS clause is specified to provide
the names and data types for the resulting values.

Example 2: Assume that a user-defined function UDF_SCORE returns a VARBINARY result. The PACK
function is invoked to return a binary string in which the column values of table T1 are encoded and
packed. The UNPACK function returns the individual data values for a row with column names ID, SCORE,
and CONF:

 SELECT T1.C1, T1.C2, T1.C3, T1.C4,
 UNPACK(UDF_SCORE(PACK(CCSID 1208, T1.C1, T1.C2, T1.C3))).*
 AS (ID INT, SCORE DOUBLE, CONF DOUBLE)
 FROM T1;

Example 3: Assume that a user-defined function named myUDF returns a VARBINARY result. The body of
the function includes the following invocation of the PACK function to pack some data into a binary string.
The character data that is packed includes EBCDIC and Unicode data. The CCSID DEFAULT clause causes
the data to be packed with its original encoding.

SET :udf_result = PACK(CCSID DEFAULT,
 CAST('Privet' AS VARCHAR(10) CCSID UNICODE),
 CAST(NULL AS TIME),CAST('Bridget' AS VARCHAR(20) CCSID EBCDIC));

The following SELECT statement unpacks the result of the myUDF function and returns a row of individual
column values. The CCSID clauses ensure that the data is unpacked in the same encoding scheme as it
was before it was packed.

SELECT UNPACK(myUDF(C1)).* AS(MSG VARCHAR(10) CCSID UNICODE,
 DOB DATE,
 NAME VARCHAR(20) CCSID EBCDIC)
 FROM T1;

Related reference
PACK scalar function
The PACK function returns a binary string value that contains a data type array and a packed
representation of each non-null expression argument.
select-clause
The SELECT clause specifies the columns of the final result table. The column values are produced by the
application of the select list to R. The select list is a list of names and expressions specified in the SELECT
clause, and R is the result of the previous operation of the subselect. For example, if SELECT, FROM, and
WHERE are the only clauses specified, then R is the result of that WHERE clause.
unpacked-row
An unpacked-row specifies a row that is the result of an invocation of the UNPACK built-in function.

Chapter 4. Built-in functions 697

698 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Chapter 5. Procedures that are supplied with Db2
A procedure is an application program that can be started through the SQL CALL statement. The
procedure is specified by a procedure name, which may be followed by arguments that are enclosed
within parentheses. This information contains syntax diagrams, semantic descriptions, rules, and
examples of the use of the system supplied procedures.

Important: Do not create additional versions of Db2-supplied procedures by specifying the VERSION
keyword. Only versions that are supplied with Db2 are supported. Additional versions of such routines
cause the installation and configuration of Db2-supplied routines to fail.

Related concepts
Routines in Db2 for z/OS: functions and procedures (Introduction to Db2 for z/OS)
Migration step 23: Configure Db2 for running stored procedures and user-defined functions (optional)
(Db2 Installation and Migration)
Common SQL API stored procedures (Db2 Administration Guide)
Related tasks
Migration step 24: Set up Db2-supplied routines (Db2 Installation and Migration)
Installing Db2-supplied routines during installation (Db2 Installation and Migration)
Implementing Db2 stored procedures (Db2 Administration Guide)
Related reference
CALL statement
The CALL statement invokes a stored procedure.
Installation information for procedures and functions that are supplied with Db2 (Db2 Installation and
Migration)

ADMIN_COMMAND_DB2 stored procedure
The SYSPROC.ADMIN_COMMAND_DB2 stored procedure executes one or more Db2 commands on a
connected Db2 subsystem, or on a Db2 data sharing group member. This stored procedure also returns
the command output messages.

GUPI

Environment
ADMIN_COMMAND_DB2 must run in a WLM-established stored procedure address space.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges on each package that the stored procedure uses:

• The EXECUTE privilege on the package for DSNADMCD
• Ownership of the package
• PACKADM authority for the package collection
• SYSADM authority

To execute the Db2 command, you must use a privilege set that includes the authorization to execute the
Db2 command. For more information, see "Privileges and authorization IDs for commands" in Commands
in Db2 (Db2 Commands).

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

© Copyright IBM Corp. 1982, 2024 699

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_routinesintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routinesmigr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routinesmigr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sproc/src/tpc/db2z_commonsqlapisp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_setupdb2routinesmigr.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_installdb2routinesinst.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_storedprocedureimplementation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_db2suppliedspsandudfs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_db2suppliedspsandudfs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_aboutcommands.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_aboutcommands.html

CALL SYSPROC.ADMIN_COMMAND_DB2 (db2-command , command-length ,

processing-type , db2-member

NULL

, commands-executed , IFI-return-code ,

IFI-reason-code , excess-bytes , group-IFI-reason-code , group-excess-bytes ,

return-code , message)

Option descriptions
db2-command

Specifies any Db2 command, such as -DISPLAY THREAD(*), or multiple Db2 commands. With multiple
Db2 commands, use a null value (CHAR string of '\0') to delimit the commands. The Db2 command is
executed using the authorization ID of the user who invoked the stored procedure.

If you specify processing-type, you must specify the command name in full, such as "-DISPLAY
THREAD". You cannot abbreviate Db2 commands, such as "-DIS THD".

This is an input parameter of type VARCHAR(32704) and cannot be null.

command-length
Specifies the length of the Db2 command or commands. When multiple Db2 commands are specified
in db2-command, command-length is the sum of all of those commands, including the '\0' command
delimiters.

This is an input parameter of type INTEGER and cannot be null.

processing-type
Identifies the action that you want ADMIN_COMMAND_DB2 to complete. You can request
ADMIN_COMMAND_DB2 to parse the output messages of a command and provide the formatted
result in a global temporary table, or you can request for a command to run synchronously.

If you specify processing-type, you must specify db2-command as a full command name, such as
"-DISPLAY THREAD". You cannot abbreviate Db2 commands, such as "-DIS THD".

To request output message parsing, specify one of the following values:

Note: If you specify any of the following values, ADMIN_COMMAND_DB2 returns the parsed output
message in a second result, as described in the Output section. Otherwise, if you specify any value
that does not appear in the list below, ADMIN_COMMAND_DB2 returns the complete unparsed
command output message, and only one result set is returned.

BP
Parse "-DISPLAY BUFFERPOOL" command output messages.

DB
Parse "-DISPLAY DATABASE" command output messages and return database information.

TS
Parse "-DISPLAY DATABASE(...) SPACENAM(...)" command output messages and return table
spaces information.

IX
Parse "-DISPLAY DATABASE(...) SPACENAM(...)" command output messages and return index
spaces information.

THD
Parse "-DISPLAY THREAD" command output messages.

If the -DISPLAY THREAD command includes the SCOPE(GROUP) option, ADMIN_COMMAND_DB2
returns parsed output in the second result set (in created temporary table
SYSIBM.DB2_THREAD_STATUS) only for the data sharing member that appears first in the output.

700 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

ADMIN_COMMAND_DB2 returns unparsed output in the first result set (in created temporary table
SYSIBM.DB2_CMD_OUTPUT) for the other data sharing members.

UT
Parse "-DISPLAY UTILITY" command output messages.

GRP
Parse "-DISPLAY GROUP" command output messages.

DDF
Parse "-DISPLAY DDF" command output messages.

LS
Parse "-DISPLAY DATABASE(...) SPACENAM(...)" command output messages and return
information for LOB table spaces.

XS
Parse "-DISPLAY DATABASE(...) SPACENAM(...)" command output messages and return
information for XML table spaces.

UN
Parse "-DISPLAY DATABASE(...) SPACENAM(...)" command output messages and return
information for table spaces when the type is unknown.

To request for a command to run synchronously, specify:

SYC
Issue the command synchronously.

Only the following commands can be processed synchronously. For all other commands, SYC is
ignored.

• -ALTER BUFFERPOOL
• -SET LOG
• -SET SYSPARM
• -STOP DATABASE

This is an input parameter of type VARCHAR(3).

db2-member
Specifies the name of a single data sharing group member on which an IFI request is to be executed

This is an input parameter of type VARCHAR(8).

commands-executed
Provides the number of commands that were executed

This is an output parameter of type INTEGER.

IFI-return-code
Provides the IFI return code

This is an output parameter of type INTEGER.

IFI-reason-code
Provides the IFI reason code

This is an output parameter of type INTEGER.

excess-bytes
Indicates the number of bytes that did not fit in the return area

This is an output parameter of type INTEGER.

group-IFI-reason-code
Provides the reason code for the situation in which an IFI call requests data from members of a data
sharing group, and not all the data is returned from group members.

This is an output parameter of type INTEGER.

Chapter 5. Procedures that are supplied with Db2 701

group-excess-bytes
Indicates the total length of data that was returned from other data sharing group members and did
not fit in the return area

This is an output parameter of type INTEGER.

return-code
Provides the return code from the stored procedure. Possible values are:
0

The stored procedure did not encounter an SQL error during processing. Check the IFI-return-code
value to determine whether the Db2 command issued using the instrumentation facility interface
(IFI) was successful or not.

12
The stored procedure encountered an SQL error during processing. The message output
parameter contains messages describing the SQL error.

This is an output parameter of type INTEGER.

message
Contains messages describing the SQL error encountered by the stored procedure. If no SQL error
occurred, then no message is returned.

The first messages in this area are generated by the stored procedure. Messages that are generated
by Db2 might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Example
The following C language sample shows how to invoke ADMIN_COMMAND_DB2:

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

 /******************** DB2 SQL Communication Area ********************/
 EXEC SQL INCLUDE SQLCA;

 int main(int argc, char *argv[]) /* Argument count and list */
 {
 /****************** DB2 Host Variables ****************************/
 EXEC SQL BEGIN DECLARE SECTION;

 /* SYSPROC.ADMIN_COMMAND_DB2 parameters */
 char command[32705]; /* DB2 command */
 short int ind_command; /* Indicator variable */
 long int lencommand; /* DB2 command length */
 short int ind_lencommand; /* Indicator variable */
 char parsetype[4]; /* Parse type required */
 short int ind_parsetype; /* Indicator variable */
 char mbrname[9]; /* DB2 data sharing group */
 /* member name */
 short int ind_mbrname; /* Indicator variable */
 long int excommands; /* Number of commands exec. */
 short int ind_excommands; /* Indicator variable */
 long int retifca; /* IFI return code */
 short int ind_retifca; /* Indicator variable */
 long int resifca; /* IFI reason code */
 short int ind_resifca; /* Indicator variable */
 long int xsbytes; /* Excessive bytes */
 short int ind_xsbytes; /* Indicator variable */
 long int gresifca; /* IFI group reason code */
 short int ind_gresifca; /* Indicator variable */
 long int gxsbytes; /* Group excessive bytes */
 short int ind_gxsbytes; /* Indicator variable */
 long int retcd; /* Return code */
 short int ind_retcd; /* Indicator variable */
 char errmsg[1332]; /* Error message */
 short int ind_errmsg; /* Indicator variable */

 /* Result Set Locators */
 volatile SQL TYPE IS RESULT_SET_LOCATOR * rs_loc1,

702 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 rs_loc2;

 /* First result set row */
 long int rownum; /* Sequence number of the */
 /* table row */
 char text[81]; /* Command output */

 /* Second result set row */
 long int ddfrownum; /* DDF table sequence */
 char ddfstat[7]; /* DDF status */
 char ddfloc[19]; /* DDF location */
 char ddflunm[18]; /* DDF luname */
 char ddfgenlu[18]; /* DDF generic lu */
 char ddfv4ipaddr[18]; /* DDF IPv4 address */
 char ddfv6ipaddr[40]; /* DDF IPv6 address */
 short int ind_ddfv6ipaddr; /* Indicator variable */
 long int ddftcpport; /* DDF tcpport */
 long int ddfresport; /* DDF resport */
 char ddfsqldom[46]; /* DDF sql domain */
 char ddfrsyncdom[46]; /* DDF resync domain */
 short int ind_ddfrsyncdom; /* Indicator variable */
 long int ddfsecport; /* DDF secure port */
 short int ind_ddfsecport; /* Indicator variable */
 char ddfipname[9]; /* DDF IPNAME */
 short int ind_ddfipname; /* Indicator variable */
 char ddfaliasname1[19]; /* DDF alias 1 name */
 short int ind_ddfaliasname1; /* Indicator variable */
 long int ddfaliasport1; /* DDF alias 1 TCP/IP port */
 short int ind_ddfaliasport1; /* Indicator variable */
 long int ddfaliassecport1; /* DDF alias 1 secure port */
 short int ind_ddfaliassecport1; /* Indicator variable */
 char ddfaliasname2[19]; /* DDF alias 2 name */
 short int ind_ddfaliasname2; /* Indicator variable */
 long int ddfaliasport2; /* DDF alias 2 TCP/IP port */
 short int ind_ddfaliasport2; /* Indicator variable */
 long int ddfaliassecport2; /* DDF alias 2 secure port */
 short int ind_ddfaliassecport2; /* Indicator variable */
 char ddfaliasname3[19]; /* DDF alias 3 name */
 short int ind_ddfaliasname3; /* Indicator variable */
 long int ddfaliasport3; /* DDF alias 3 TCP/IP port */
 short int ind_ddfaliasport3; /* Indicator variable */
 long int ddfaliassecport3; /* DDF alias 3 secure port */
 short int ind_ddfaliassecport3; /* Indicator variable */
 char ddfaliasname4[19]; /* DDF alias 4 name */
 short int ind_ddfaliasname4; /* Indicator variable */
 long int ddfaliasport4; /* DDF alias 4 TCP/IP port */
 short int ind_ddfaliasport4; /* Indicator variable */
 long int ddfaliassecport4; /* DDF alias 4 secure port */
 short int ind_ddfaliassecport4; /* Indicator variable */
 char ddfaliasname5[19]; /* DDF alias 5 name */
 short int ind_ddfaliasname5; /* Indicator variable */
 long int ddfaliasport5; /* DDF alias 5 TCP/IP port */
 short int ind_ddfaliasport5; /* Indicator variable */
 long int ddfaliassecport5; /* DDF alias 5 secure port */
 short int ind_ddfaliassecport5; /* Indicator variable */
 char ddfaliasname6[19]; /* DDF alias 6 name */
 short int ind_ddfaliasname6; /* Indicator variable */
 long int ddfaliasport6; /* DDF alias 6 TCP/IP port */
 short int ind_ddfaliasport6; /* Indicator variable */
 long int ddfaliassecport6; /* DDF alias 6 secure port */
 short int ind_ddfaliassecport6; /* Indicator variable */
 char ddfaliasname7[19]; /* DDF alias 7 name */
 short int ind_ddfaliasname7; /* Indicator variable */
 long int ddfaliasport7; /* DDF alias 7 TCP/IP port */
 short int ind_ddfaliasport7; /* Indicator variable */
 long int ddfaliassecport7; /* DDF alias 7 secure port */
 short int ind_ddfaliassecport7; /* Indicator variable */
 char ddfaliasname8[19]; /* DDF alias 8 name */
 short int ind_ddfaliasname8; /* Indicator variable */
 long int ddfaliasport8; /* DDF alias 8 TCP/IP port */
 short int ind_ddfaliasport8; /* Indicator variable */
 long int ddfaliassecport8; /* DDF alias 8 secure port */
 short int ind_ddfaliassecport8; /* Indicator variable */
 char ddfmbripv4addr[18]; /* DDF DSG member IPv4 addr */
 short int ind_ddfmbripv4addr; /* Indicator variable */
 char ddfmbripv6addr[40]; /* DDF DSG member IPv6 addr */
 short int ind_ddfmbripv6addr; /* Indicator variable */
 EXEC SQL END DECLARE SECTION;

 /**/
 /* Assign values to input parameters to execute the DB2 */
 /* command "-DISPLAY DDF" */

Chapter 5. Procedures that are supplied with Db2 703

 /* Set the indicator variables to 0 for non-null input parameters */
 /* Set the indicator variables to -1 for null input parameters */
 /**/
 strcpy(command, "-DISPLAY DDF");
 ind_command = 0;
 lencommand = strlen(command);
 ind_lencommand = 0;
 strcpy(parsetype, "DDF");
 ind_parsetype = 0;
 ind_mbrname = -1;

 /**/
 /* Call stored procedure SYSPROC.ADMIN_COMMAND_DB2 */
 /**/
 EXEC SQL CALL SYSPROC.ADMIN_COMMAND_DB2
 (:command :ind_command,
 :lencommand :ind_lencommand,
 :parsetype :ind_parsetype,
 :mbrname :ind_mbrname,
 :excommands :ind_excommands,
 :retifca :ind_retifca,
 :resifca :ind_resifca,
 :xsbytes :ind_xsbytes,
 :gresifca :ind_gresifca,
 :gxsbytes :ind_gxsbytes,
 :retcd :ind_retcd,
 :errmsg :ind_errmsg);

 /**/
 /* Retrieve result set(s) when the SQLCODE from the call is +466, */
 /* which indicates that result sets were returned */
 /**/
 if (SQLCODE == +466) /* Result sets were returned */
 {
 /* ESTABLISH A LINK BETWEEN EACH RESULT SET AND ITS LOCATOR */
 EXEC SQL ASSOCIATE LOCATORS (:rs_loc1, :rs_loc2)
 WITH PROCEDURE SYSPROC.ADMIN_COMMAND_DB2;

 /* ASSOCIATE A CURSOR WITH EACH RESULT SET */
 EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :rs_loc1;
 EXEC SQL ALLOCATE C2 CURSOR FOR RESULT SET :rs_loc2;

 /* PERFORM FETCHES USING C1 TO RETRIEVE ALL ROWS FROM THE */
 /* FIRST RESULT SET */
 EXEC SQL FETCH C1 INTO :rownum, :text;

 while(SQLCODE == 0)
 {
 EXEC SQL FETCH C1 INTO :rownum, :text;
 }

 EXEC SQL CLOSE C1;

 /* PERFORM FETCHES USING C2 TO RETRIEVE THE -DISPLAY DDF */
 /* PARSED OUTPUT FROM THE SECOND RESULT SET */
 EXEC SQL FETCH C2 INTO :ddfrownum, :ddfstat, :ddfloc,
 :ddflunm, :ddfgenlu,
 :ddfv4ipaddr,
 :ddfv6ipaddr:ind_ddfv6ipaddr,
 :ddftcpport, :ddfresport,
 :ddfsqldom,
 :ddfrsyncdom:ind_ddfrsyncdom,
 :ddfsecport:ind_ddfsecport,
 :ddfipname:ind_ddfipname,
 :ddfaliasname1:ind_ddfaliasname1,
 :ddfaliasport1:ind_ddfaliasport1,
 :ddfaliassecport1:ind_ddfaliassecport1,
 :ddfaliasname2:ind_ddfaliasname2,
 :ddfaliasport2:ind_ddfaliasport2,
 :ddfaliassecport2:ind_ddfaliassecport2,
 :ddfaliasname3:ind_ddfaliasname3,
 :ddfaliasport3:ind_ddfaliasport3,
 :ddfaliassecport3:ind_ddfaliassecport3,
 :ddfaliasname4:ind_ddfaliasname4,
 :ddfaliasport4:ind_ddfaliasport4,
 :ddfaliassecport4:ind_ddfaliassecport4,
 :ddfaliasname5:ind_ddfaliasname5,
 :ddfaliasport5:ind_ddfaliasport5,
 :ddfaliassecport5:ind_ddfaliassecport5,
 :ddfaliasname6:ind_ddfaliasname6,
 :ddfaliasport6:ind_ddfaliasport6,
 :ddfaliassecport6:ind_ddfaliassecport6,

704 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 :ddfaliasname7:ind_ddfaliasname7,
 :ddfaliasport7:ind_ddfaliasport7,
 :ddfaliassecport7:ind_ddfaliassecport7,
 :ddfaliasname8:ind_ddfaliasname8,
 :ddfaliasport8:ind_ddfaliasport8,
 :ddfaliassecport8:ind_ddfaliassecport8,
 :ddfmbripv4addr:ind_ddfmbripv4addr,
 :ddfmbripv6addr:ind_ddfmbripv6addr;

 EXEC SQL CLOSE C2;
 }

 return(retcd);
 }

Output
This stored procedure returns the following output parameters, which are described in “Option
descriptions” on page 700:

• commands-executed
• IFI-return-code
• IFI-reason-code
• excess-bytes
• group-IFI-reason-code
• group-excess-bytes
• return-code
• message

In addition to the preceding output, the stored procedure returns two result sets.

The first result set is returned in the created global temporary table SYSIBM.DB2_CMD_OUTPUT and
contains the Db2 command output messages that were not parsed.

The following table shows the format of the first result set:

Table 111. Result set row for first ADMIN_COMMAND_DB2 result set

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n

TEXT CHAR(80) Db2 command output message
line

The format of the second result set varies, depending on the Db2 command issued and the processing-
type value.

• Result set row for second ADMIN_COMMAND_DB2 result set (processing-type = "BP")
• Result set row for second ADMIN_COMMAND_DB2 result set (processing-type = "THD")
• Result set row for second ADMIN_COMMAND_DB2 result set (processing-type = "UT")
• Result set row for second ADMIN_COMMAND_DB2 result set (processing-type = "DB" or "TS" or "IX")
• Result set row for second ADMIN_COMMAND_DB2 result set (processing-type = "GRP")
• Result set row for second ADMIN_COMMAND_DB2 result set (processing-type = "DDF")

The following table shows the format of the result set returned in the created global temporary table
SYSIBM.BUFFERPOOL_STATUS when processing-type = "BP":

Chapter 5. Procedures that are supplied with Db2 705

Table 112. Result set row for second ADMIN_COMMAND_DB2 result set (processing-type = "BP")

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n

BPNAME CHAR(6) Buffer pool name

VPSIZE INTEGER Buffer pool size

VPSEQT INTEGER Sequential steal threshold for the
buffer pool

VPPSEQT INTEGER Parallel sequential threshold for
the buffer pool

VPXPSEQT INTEGER Assisting parallel sequential
threshold for the buffer pool

DWQT INTEGER Deferred write threshold for the
buffer pool

PCT_VDWQT INTEGER Vertical deferred write threshold
for the buffer pool (as a
percentage of virtual buffer pool
size)

ABS_VDWQT INTEGER Vertical deferred write threshold
for the buffer pool (as absolute
number of buffers)

PGSTEAL CHAR(4) Page-stealing algorithm that Db2
uses for the buffer pool

ID INTEGER Buffer pool internal identifier

USE_COUNT INTEGER The number of open table spaces
or index spaces that reference
this buffer pool

PGFIX CHAR(3) Specifies whether the buffer pool
should be fixed in real storage
when it is used

AUTOSIZE VARCHAR(3) Specifies whether automatic
buffer pool adjustment is on or off

FRAMESIZE VARCHAR(4) The frame size that the buffer
pool uses

ALLOC_FRAME4K INTEGER The number of buffers that are
allocated with a 4K frame size

ALLOC_FRAME1M INTEGER The number of buffers that are
allocated with a 1M frame size

VPSIZEMIN INTEGER The minimum buffer pool size

VPSIZEMAX INTEGER The maximum buffer pool size

The following table shows the format of the result set returned in the created global temporary table
SYSIBM.DB2_THREAD_STATUS when processing-type = "THD":

706 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 113. Result set row for second ADMIN_COMMAND_DB2 result set (processing-type = "THD")

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n

TYPE INTEGER Thread type:
0

Unknown
1

Active
2

Inactive
3

Indoubt
4

Postponed

NAME CHAR(8) Connection name used to
establish the thread

STATUS CHAR(11) Status of the conversation or
socket

ACTIVE CHAR(1) Indicates whether a thread is
active or not. An asterisk means
that the thread is active within
Db2.

REQ CHAR(5) Current number of Db2 requests
on the thread

ID CHAR(12) Recovery correlation ID
associated with the thread

AUTHID CHAR(8) Authorization ID associated with
the thread

PLAN CHAR(8) Plan name associated with the
thread

ASID CHAR(4) Address space identifier

TOKEN CHAR(6) Unique thread identifier

COORDINATOR CHAR(46) Name of the two-phase commit
coordinator

RESET CHAR(5) Indicates whether or not the
thread needs to be reset to purge
info from the indoubt thread
report

URID CHAR(20) Unit of recovery identifier

LUWID CHAR(35) Logical unit of work ID of the
thread

WORKSTATION VARCHAR(255) Client workstation name

USERID VARCHAR(128) Client user ID

Chapter 5. Procedures that are supplied with Db2 707

Table 113. Result set row for second ADMIN_COMMAND_DB2 result set (processing-type = "THD")
(continued)

Column name Data type Contents

APPLICATION VARCHAR(255) Client application name

ACCOUNTING VARCHAR(255) Client accounting information.

LOCATION VARCHAR(4050) Location name of the remote
system

DETAIL VARCHAR(4050) Additional thread information

The following table shows the format of the result set returned in the created global temporary table
SYSIBM.UTILITY_JOB_STATUS when processing-type = "UT":

Table 114. Result set row for second ADMIN_COMMAND_DB2 result set (processing-type = "UT")

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n

CSECT CHAR(8) Name of the command program
CSECT that issued the message

USER CHAR(8) User ID of the person running the
utility

MEMBER CHAR(8) Utility job is running on this
member

UTILID CHAR(16) Utility job identifier

STATEMENT INTEGER Utility statement number

UTILITY CHAR(20) Utility name

PHASE CHAR(20) Utility restart from the beginning
of this phase

COUNT INTEGER Number of pages or records
processed in a utility phase

STATUS CHAR(18) Utility status

DETAIL VARCHAR(4050) Additional utility information

NUM_OBJ INTEGER Total number of objects in the list
of objects the utility is processing

LAST_OBJ INTEGER Last object that started

The following table shows the format of the result set returned in the created global temporary table
SYSIBM.DB_STATUS when processing-type = "DB" or "TS" or "IX":

Table 115. Result set row for second ADMIN_COMMAND_DB2 result set (processing-type = "DB" or "TS" or
"IX")

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n

DBNAME CHAR(8) Name of the database

708 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 115. Result set row for second ADMIN_COMMAND_DB2 result set (processing-type = "DB" or "TS" or
"IX") (continued)

Column name Data type Contents

SPACENAM CHAR(8) Name of the table space or index

TYPE CHAR(2) Status type:
DB

Database
TS

Table space
IX

Index

PART SMALLINT Individual partition or range of
partition

STATUS CHAR(18) Status of the database, table
space or index

The following table shows the format of the result set returned in the created global temporary table
SYSIBM.DATA_SHARING_GROUP when processing-type = "GRP":

Table 116. Result set row for second ADMIN_COMMAND_DB2 result set (processing-type = "GRP")

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n

DB2_MEMBER CHAR(8) Name of the Db2 group member

ID INTEGER ID of the Db2 group member

SUBSYS CHAR(4) Subsystem name of the Db2
group member

CMDPREF CHAR(8) Command prefix for the Db2
group member

STATUS CHAR(8) Status of the Db2 group member

DB2_LVL CHAR(6) Db2 version, release and
modification level

SYSTEM_NAME CHAR(8) Name of the z/OS system where
the member is running, or was
last running in cases when the
member status is QUIESCED or
FAILED

IRLM_SUBSYS CHAR(4) Name of the IRLM subsystem
to which the Db2 member is
connected

IRLMPROC CHAR(8) Procedure name of the connected
IRLM

The following table shows the format of the result set returned in the created global temporary table
SYSIBM.DDF_CONFIG when processing-type = "DDF":

Chapter 5. Procedures that are supplied with Db2 709

Table 117. Result set row for second ADMIN_COMMAND_DB2 result set (processing-type = "DDF")

Column name Data type Contents

ROWNUM INTEGER
NOT NULL

Sequence number of the table
row, from 1 to n

STATUS CHAR(6)
NOT NULL

Operational status of DDF

LOCATION CHAR(18)
NOT NULL

Location name of DDF

LUNAME CHAR(17)
NOT NULL

Fully qualified LUNAME of DDF

GENERICLU CHAR(17)
NOT NULL

Fully qualified generic LUNAME of
DDF

IPV4ADDR CHAR(17)
NOT NULL

IPV4 address of DDF

IPV6ADDR CHAR(39) IPV6 address of DDF

TCPPORT INTEGER
NOT NULL

SQL listener port used by DDF

RESPORT INTEGER
NOT NULL

Resync listener port used by DDF

SQL_DOMAIN CHAR(45)
NOT NULL

Domain name associated with
the IP address in IPV4ADDR or
IPV6ADDR

RSYNC_DOMAIN CHAR(45) Domain name associated with a
specific member IP address

SECPORT INTEGER Secure SQL listener TCP/IP port
number

IPNAME CHAR(8) IPNAME used by DDF

ALIASNAME1 CHAR(18) An alias name value specified in
the BSDS DDF record.

ALIASPORT1 INTEGER TCP/IP port associated with
ALIASNAME1

ALIASSECPORT1 INTEGER Secure TCP/IP port associated
with ALIASNAME1

ALIASNAME2 CHAR(18) An alias name value specified in
the BSDS DDF record

ALIASPORT2 INTEGER TCP/IP port associated with
ALIASNAME2

710 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 117. Result set row for second ADMIN_COMMAND_DB2 result set (processing-type = "DDF")
(continued)

Column name Data type Contents

ALIASSECPORT2 INTEGER Secure TCP/IP port associated
with ALIASNAME2

ALIASNAME3 CHAR(18) An alias name value specified in
the BSDS DDF record

ALIASPORT3 INTEGER TCP/IP port associated with
ALIASNAME3

ALIASSECPORT3 INTEGER Secure TCP/IP port associated
with ALIASNAME3

ALIASNAME4 CHAR(18) An alias name value specified in
the BSDS DDF record

ALIASPORT4 INTEGER TCP/IP port associated with
ALIASNAME4

ALIASSECPORT4 INTEGER Secure TCP/IP port associated
with ALIASNAME4

ALIASNAME5 CHAR(18) An alias name value specified in
the BSDS DDF record

ALIASPORT5 INTEGER TCP/IP port associated with
ALIASNAME5

ALIASSECPORT5 INTEGER Secure TCP/IP port associated
with ALIASNAME5

ALIASNAME6 CHAR(18) An alias name value specified in
the BSDS DDF record

ALIASPORT6 INTEGER TCP/IP port associated with
ALIASNAME6

ALIASSECPORT6 INTEGER Secure TCP/IP port associated
with ALIASNAME6

ALIASNAME7 CHAR(18) An alias name value specified in
the BSDS DDF record

ALIASPORT7 INTEGER TCP/IP port associated with
ALIASNAME7

ALIASSECPORT7 INTEGER Secure TCP/IP port associated
with ALIASNAME7

ALIASNAME8 CHAR(18) An alias name value specified in
the BSDS DDF record

ALIASPORT8 INTEGER TCP/IP port associated with
ALIASNAME8

ALIASSECPORT8 INTEGER Secure TCP/IP port associated
with ALIASNAME8

MEMBER_IPV4ADDR CHAR(17) IPV4 address associated with the
specific member of a data sharing
group

Chapter 5. Procedures that are supplied with Db2 711

Table 117. Result set row for second ADMIN_COMMAND_DB2 result set (processing-type = "DDF")
(continued)

Column name Data type Contents

MEMBER_IPV6ADDR CHAR(39) IPV6 address associated with the
specific member of a data sharing
group

GUPI

ADMIN_COMMAND_DSN stored procedure
The SYSPROC.ADMIN_COMMAND_DSN stored procedure executes a BIND, REBIND, FREE, or DCLGEN
DSN subcommand and returns the output from the DSN subcommand execution.

Environment
GUPI

ADMIN_COMMAND_DSN runs in a WLM-established stored procedures address space. TCB=1 is also
required.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges:

• The EXECUTE privilege on the ADMIN_COMMAND_DSN stored procedure
• Ownership of the stored procedure
• SYSADM authority

To execute the DSN subcommand, you must use a privilege set that includes the authorization to execute
the DSN subcommand.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL SYSPROC.ADMIN_COMMAND_DSN (DSN-subcommand , message)

Option descriptions
DSN-subcommand

Specifies the DSN subcommand to be executed. If the DSN subcommand passed to the stored
procedure is not BIND, REBIND, FREE, or DCLGEN, an error message is returned. The DSN
subcommand is performed using the authorization ID of the user who invoked the stored procedure.

ADMIN_COMMAND_DSN does not support three-part names if a wildcard character is specified in the
package name.

This parameter is case sensitive. You must specify DSN-subcommand in uppercase characters.

This is an input parameter of type VARCHAR(32704) and cannot be null.

message
Contains messages if an error occurs during stored procedure execution.

712 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The stored procedure might not return a result set if message is not blank. Even if message is not
blank, the stored procedure might return a result set if the error described in message occurred
after the stored procedure executed at least one DSN subcommand, and the stored procedure can
successfully insert the DSN subcommand output message in the result set and open the result set
cursor.

A blank message does not mean that the DSN subcommand completed successfully. The calling
application must read the result set to determine if the DSN subcommand was successful or not.

This is an output parameter of type VARCHAR(1331).

Example

The following C language sample shows how to invoke ADMIN_COMMAND_DSN:

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

/******************** DB2 SQL Communication Area ********************/
 EXEC SQL INCLUDE SQLCA;

 int main(int argc, char *argv[]) /* Argument count and list */
 {
 /****************** DB2 Host Variables ****************************/
 EXEC SQL BEGIN DECLARE SECTION;

 /* SYSPROC.ADMIN_COMMAND_DSN parameters */

 char subcmd[32705]; /* BIND, REBIND, FREE, or */
 /* DCLGEN DSN subcommand */
 char errmsg[1332]; /* Error message */

 /* Result set locators */
 volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc1;

 /* Result set row */
 long int rownum; /* Sequence number of the */
 /* table row */
 char text[256]; /* DSN subcommand output row */
 EXEC SQL END DECLARE SECTION;

 /**/
 /* Set input parameter to execute a REBIND PLAN DSN subcommand */
 /**/
 strcpy(subcmd, "REBIND PLAN (DSNACCOB) FLAG(W)");

 /**/
 /* Call stored procedure SYSPROC.ADMIN_COMMAND_DSN */
 /**/
 EXEC SQL CALL SYSPROC.ADMIN_COMMAND_DSN (:subcmd, :errmsg);

 /**/
 /* Retrieve result set when the SQLCODE from the call is +446, */
 /* which indicates that result sets were returned */
 /**/
 if (SQLCODE == +466) /* Result sets were returned */
 {
 /* Establish a link between the result set and its locator */
 EXEC SQL ASSOCIATE LOCATORS (:rs_loc1)
 WITH PROCEDURE SYSPROC.ADMIN_COMMAND_DSN;

 /* Associate a cursor with the result set */
 EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :rs_loc1;

 /* Perform fetches using C1 to retrieve all rows from the */
 /* result set */
 EXEC SQL FETCH C1 INTO :rownum, :text;
 while(SQLCODE==0)
 {
 EXEC SQL FETCH C1 INTO :rownum, :text;
 }

 EXEC SQL CLOSE C1;
 }

Chapter 5. Procedures that are supplied with Db2 713

 return;
 }

Output
This stored procedure returns an error message, message, if an error occurs.

The stored procedure returns one result set that contains the DSN subcommand output messages.

The following table shows the format of the result set returned in the created global temporary table
SYSIBM.DSN_SUBCMD_OUTPUT:

Table 118. Result set row for ADMIN_COMMAND_DSN result set

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n

TEXT VARCHAR(255) DSN subcommand output
message line

GUPI

Related reference
DSN command (TSO) (Db2 Commands)
Related information
About Db2 and related commands (Db2 Commands)

ADMIN_COMMAND_MVS stored procedure
The SYSPROC.ADMIN_COMMAND_MVS stored procedure issues the QUERY COPYPOOL, LIST COPYPOOL,
Db2 START, Db2 STOP, DUMP, or DISPLAY WLM command.

Environment
GUPI

The load module for the ADMIN_COMMAND_MVS stored procedure, DSNADMCM, must reside in an
APF-authorized library. The ADMIN_COMMAND_MVS stored procedure runs in a WLM-established stored
procedures address space, and all of the libraries that are specified in the STEPLIB DD statement must be
APF-authorized.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges:

• The EXECUTE privilege on the stored procedure
• Ownership of the stored procedure
• SYSADM authority

ADMIN_COMMAND_MVS uses an extended MCS console to issue the requested command.

The caller of ADMIN_COMMAND_MVS must have READ access to the MVS.MCSOPER.* or
MVS.MCSOPER.xxxxxxxx (where xxxxxxxx is the name of the extended console) resource profile of
the RACF OPERCMDS class. By default, unless overwritten by CONSNAME which is specified in the
subparameters input parameter of ADMIN_COMMAND_MVS, the name of the extended MCS console
is DSNADMCM. If MVS.MCSOPER.xxxxxxxx exists, the ADMIN_COMMAND_MVS caller must have READ
access to this profile. Otherwise, the caller must have READ access to MVS.MCSOPER.*.

714 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_dsn.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_commanddescriptions.html

In the OPERPARM segment of the extended MCS console's user profile (defined in a security product,
such as RACF), specify the following console attributes:

• STORAGE= 512 or higher
• AUTH= ALL
• UD= NO
• HC= NO
• INTIDS= NO
• UNKNIDS= NO

You must also set the ROUTCODE, LEVEL, and MSCOPE console attributes. The attributes that you specify
depend on the type of command:
START DB2, STOP DB2, DISPLAY WLM, LIST COPYPOOL, or QUERY COPYPOOL commands

Specify:

• ROUTCODE=NONE
• LEVEL=NB
• MSCOPE=*

DUMP command
Specify:

• ROUTCODE=ALL
• LEVEL=NB ALL
• MSCOPE=*

STOP DB2 command when Db2 is already stopping
Specify:

• ROUTCODE=ALL
• LEVEL=NB ALL
• MSCOPE=*ALL

Important: Specify ROUTCODE=ALL and MSCOPE=*ALL only when you anticipate that Db2 is already
stopping when the STOP DB2 command is issued by ADMIN_COMMAND_MVS, and plan to increase
the STORAGE value in these cases.

If the OPERPARM segment of the extended MCS console's user profile is not defined, default values are
applied for all console attributes, except for the following attributes:

• STORAGE=512
• AUTH=ALL
• LEVEL=NB
• MSCOPE=*

For more information about controlling attributes for users of extended MCS consoles, see Defining
console attributes for extended MCS consoles (z/OS MVS Planning: Operations).

The extended MCS console must be authorized to execute the requested command.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

Chapter 5. Procedures that are supplied with Db2 715

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieag300/plracp.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieag300/plracp.htm

CALL ADMIN_COMMAND_MVS (type , command_prefix

NULL

,

remote_system

NULL

, jobname

NULL

, command ,

parameters

NULL

, subparameters

NULL

, wait_timeout

NULL

return-code , command_completion_code , message

NULL

)

Option descriptions
type

Specifies the type of command to be issued.

Valid values are:

• HSM
• DB2
• DUMP
• WLM

This parameter is an input parameter of type VARCHAR(24) and cannot be null.

command_prefix

Specifies the command prefix that identifies which Db2 subsystem to direct the command to.

This parameter is an input parameter of type VARCHAR(8).

You cannot specify null for this parameter if the type parameter is set to Db2.

remote_system

Specifies the z/OS system to which the Db2 command is to be routed.

This parameter is an input parameter of type VARCHAR(8).

You cannot specify null for this parameter if both of the following conditions apply:

• Db2 is the type parameter
• The Db2 command will be routed to a z/OS system that is different from the system where the

stored procedure is executing

jobname

Specifies the name of the batch job or started task to be modified.

This parameter is an input parameter of type VARCHAR(8).

You cannot specify null for this parameter if HSM is the type parameter.

command

Specifies the command to be executed.

Valid values depend on the value of the type parameter.

• When the type parameter is set to Db2, valid values are:

– START

716 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

– STOP
• When the type parameter is set to DUMP, the valid value is DUMP.
• When the type parameter is set to HSM, valid values are:

– QUERY COPYPOOL
– LIST COPYPOOL

• When the type parameter is set to WLM, the valid value is DISPLAY.

This parameter is an input parameter of type VARCHAR(126) and cannot be null.

parameters

Specifies the parameters of the command, or the program parameters that will be passed to the
started task.

Valid values depend on the value of the command parameter.

This parameter is an input parameter of type VARCHAR(124).

You cannot specify null for this parameter if the type parameter is set to HSM, DUMP, or WLM.

subparameters

Specifies the sub-parameters of the command. The following keyword-value pairs are supported:

CONSNAME=console-name
The name of the console that the stored procedure activates. If not specified, the default is
DSNADMCM. The specified console must not already be active.

IRLMPROC=procedure-name
The procedure name of the connected IRLM. The stored procedure performs the following actions
if IRLMPPROC is specified:

• If Db2 is already stopping when the stored procedure issues the STOP DB2 command, it starts
monitoring IRLM termination after the DSN9022I message is received.

• If Db2 is not stopped or is not already stopping when the stored procedure issues the STOP DB2
command, it starts monitoring IRLM termination after message DSN3100I is received.

Monitoring occurs within the specified wait-timeout period and ends when the IRLM address
space terminates or the wait timeout period expires. The stored procedure reports Db2 normal
termination only after it determines that IRLM address space is terminated.

The IRLM procedure name is 1–8 characters. The first character must be a letter A–Z, #, $, or @;
the remaining characters can be A through Z, 0–9, or #, $, or @.

This keyword-value pair can only be specified when the type parameter is Db2, the command
parameter is STOP, and the SSNM keyword is not specified.

SSNM=subsystem-name
The Db2 subsystem name. The stored procedure performs the following actions:

• If Db2 is already stopping when the stored procedure issues the STOP DB2 command, it starts
monitoring ssnmMSTR termination after the DSN9022I message is received.

• If Db2 is not stopped or is not already stopping when the stored procedure issues the STOP DB2
command, the keyword is ignored and no monitoring of ssnmMSTR termination occurs.

Monitoring occurs within the specified wait-timeout period and ends when the system services
address space (ssnmMSTR) terminates or the wait timeout period expires. The stored procedure
reports Db2 normal termination only after it determines that the ssnmMSTR address space is
terminated.

The subsystem name is 1–4 characters. The first character must be a letter A–Z, #, $, or @; the
remaining characters can be A through Z, 0–9, or #, $, or @.

This keyword-value pair can be specified only when the the type parameter is Db2, the command
parameter is STOP, and the IRLMPROC keyword is not specified.

Chapter 5. Procedures that are supplied with Db2 717

LIST_CP_KEYWORDS=DUMPVOLS

This keyword-value pair can be specified only when the type parameter is HSM and the command
parameter is LIST COPYPOOL.

QUERY_CP_BACKUP=number-of-versions
The number of copy pool backup versions. This key-value pair can be specified only when the
command parameter is set to QUERY COPYPOOL.

Alternatively, if no key-value pairs specified for subparameters, the following values are supported:

• DUMPVOLS, when the command parameter is LIST COPYPOOL.
• The number of copy pool backup versions, when command parameter is QUERY COPYPOOL.

This parameter is an input parameter of type VARCHAR(124).

You cannot specify null for this parameter if both of the following conditions apply:

• The type parameter is set to HSM
• The command parameter is set to QUERY COPYPOOL

wait_timeout

Specifies the amount of time (in seconds) that this procedure waits for the command to complete and
for the message to be routed to the console. If the console is already active, the wait time includes
the time that the procedure waits for the console to become available. If stopping Db2 and the IRLM
or ssnmMSTR address space termination is being monitored, the wait time includes the time the
procedure monitors the status of these address spaces.

For Db2 START and Db2 STOP, valid values are 1-900, and the default wait time is 180 seconds.
Otherwise, valid values are 1-120, and the default wait time is 5 seconds.

This parameter is an input parameter of type INTEGER.

return_code

Provides the return code from the stored procedure.

Possible values are:

0
The stored procedure did not encounter any errors during processing. However, this return
code does not indicate that the command executed successfully. The command_completion_code
output parameter indicates whether the command executed successfully or not.

4
The stored procedure issued the command but was unable to determine the command execution
status based on the command messages that were retrieved within the prescribed wait time. For
example, the wait time might have expired.

When return_code is 4, the command_completion_code parameter is set to 8 or 16.

All command messages that were retrieved within the prescribed wait time are returned in the
result set.

8
The stored procedure issued the command but was unable to determine the command execution
status because it was unable to retrieve all the command messages that were queued to the
extended MCS console. When return_code is 8, the command_completion_code parameter is set
to 8 or 16. All the command messages that were retrieved so far are returned in the result
set. For STOP DB2, the latest IRLM address space (irlmproc) or system services address space
(ssnmMSTR) status information (from the 'D A' output) is also returned in the result set if IRLM
address space (irlmproc)or system services address space (ssnmMSTR) termination monitoring
was performed successfully. For STOP DB2, the latest IRLM address space (irlmproc) or Db2
system services address space (ssnmMSTR) status information (from the 'D A' output) is also
returned in the result set if IRLM or MSTR termination monitoring was performed successfully.

718 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

12
The stored procedure encountered an error during processing. The message output parameter
contains messages that describe the error.

This parameter is an output parameter of type INTEGER.

command_completion_code

Indicates the completion status of the command.

Possible values are:

0

One of the following conditions applies:

• The command completed successfully.
• If the command parameter is QUERY COPYPOOL, there is no FlashCopy® process that is active in

the background.

For details about command_completion_code 0, see Table 119 on page 719.

4

One of the following conditions applies:

• The command was not processed. For example, Db2 was already stopped when STOP DB2 was
requested.

• If the command parameter is QUERY COPYPOOL, one or more FlashCopy processes are active in
the background.

For details about command_completion_code 4, see Table 120 on page 720.

8
The command started but the completion status is unknown. For details about
command_completion_code 8, see Table 121 on page 721.

12
The command completed abnormally. For details about command_completion_code 12, see Table
122 on page 723.

16
The command output does not satisfy the conditions that are listed for
command_completion_code 0, 4, 8, or 12.

This parameter is an output parameter of type INTEGER.

The following tables describe the messages that ADMIN_COMMAND_MVS looks for when assigning a
specific value to command_completion_code.

Table 119. Description of command_completion_code 0

Command
Command completion code
description Messages received

DISPLAY WLM DISPLAY WLM completed
successfully.

Message IWM029I was received.

DUMP DUMP completed successfully. Both of the following messages were received:

• IEA794I
• IEA911E or IEA611I

Chapter 5. Procedures that are supplied with Db2 719

Table 119. Description of command_completion_code 0 (continued)

Command
Command completion code
description Messages received

LIST COPYPOOL The list of copy pools that was
output by LIST COPYPOOL is
complete.

Both of the following messages were received:

• COPYPOOL=xx...xx, where xx...xx is the name of the
copy pool that is specified in the parameters input
parameter

• ARC0140I

QUERY
COPYPOOL

No FlashCopy processes are
active in the background.

Message ARC1821I was received. The number of copy
pool backup versions (as specified in the subparameters
input parameter) and the number of copy pool versions
that are not in active FlashCopy relationships is the same.

Message ARC1820I was not received.

START DB2 START DB2 completed
successfully.

Message DSN9022I cmd_prefix was received, which
indicates that Db2 START completed normally.

STOP DB2 STOP DB2 completed
successfully.

• DSN3100I cmd_prefix
• Message 'irlm_procname NOT FOUND' was found in the

'D A, irlm_procname' command output when the stored
procedure checked the IRLM address space status.

Table 120. Description of command_completion_code 4

Command
Command completion code
description Messages received

QUERY
COPYPOOL

One or more FlashCopy
processes are active in the
background.

One or more ARC1820I messages and zero or more
ARC1821I messages were received. The number of copy
pool backup versions (as specified in the subparameters
input parameter) and the number of copy pool versions
that are in active and not in active FlashCopy relationships
is the same.

START DB2 Db2 is already active when the
command was issued.

Message DSNY003I cmd_prefix was received.

STOP DB2 One of the following scenarios
applies:

• Db2 was already stopped
when the command was
issued.

• Db2 was in the process of
stopping when the command
was issued, and it stopped
successfully.

Db2 was already stopped:

• DSN3106I cmd_prefix

Db2 was in the process of stopping:

• DSNY004I cmd_prefixand DSN9022I cmd_prefix, where
DSN9022I cmd_prefix indicates that Db2 STOP
completed normally, and either message 'ssnmMSTR
NOT FOUND' was found in the 'D A, ssnmMSTR'
command output when the stored procedure checked
the ssnmMSTR address space status, or message
'irlm_procname NOT FOUND' was found in the 'D
A, irlm_procname' command output when the stored
procedure checked the IRLM address space status.

720 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 121. Description of command_completion_code 8

Command
Command completion code
description Messages received

Expected completion
messages not received

DUMP The dump was captured but not
written.

Message IEA794I was
received.

One of the following
messages was not received:

• IEA911E
• IEA611I

LIST
COPYPOOL

The listing from LIST COPYPOOL
is truncated.

Message COPYPOOL=xx...xxx
was received, where xx...xx
is the name of the copy
pool that is specified in the
parameters input parameter.

Message ARC0140I was not
received.

QUERY
COPYPOOL

One or more FlashCopy
processes are active or not active
in the background.

One or more ARC1820I or
ARC1821I messages was
received.

The total number of
ARC1820I and ARC1821I
messages is not equal
to the total number
of copy pool backup
versions that is specified
in the subparameters input
parameter.

START DB2 Db2 is in the process of starting,
but the completion status of
START DB2 is unknown.

Message DSNY024I
cmd_prefix was received.

One of the following
messages was not received:

• DSN9023I cmd_prefix
• DSNV086E cmd_prefix
• DSN3104I cmd_prefix
• DSN9022I cmd_prefix,

which indicates that Db2
START completed normally

• DSN3100I cmd_prefix

Chapter 5. Procedures that are supplied with Db2 721

Table 121. Description of command_completion_code 8 (continued)

Command
Command completion code
description Messages received

Expected completion
messages not received

STOP DB2 Db2 is in the process of stopping,
but the completion status of
STOP DB2 is unknown.

One of the following
messages was received:

• DSNY002I cmd_prefix
• DSNY004I cmd_prefix

DSNY002I cmd_prefix
received:

• None of the following
messages were received:

– DSN3100I cmd_prefix
– DSN3107I cmd_prefix
– DSN9023I cmd_prefix
– Or, message DSN3100I

cmd_prefix was
received but message
'irlm_procname NOT
FOUND' was not found in
the 'D A, irlm_procname'
command output when
the stored procedure
checked the IRLM
address soace status.

DSNY004I cmd_prefix
received:

• None of the following
messages were received:

– DSN9022I cmd_prefix,
which indicates that
Db2 STOP completed
normally

– DSN9023I cmd_prefix
• Or, message DSN9022I
cmd_prefix was received
but either message
'irlm_procname NOT
FOUND' was not found in
the 'D A, irlm_procname'
command output when
the stored procedure
checked the IRLM address
space status, or message
'ssnmMSTR NOT FOUND'
was not found in the 'D
A, ssnmMSTR' command
output when the stored
procedure checked the
ssnmMSTR address space
status.

722 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 122. Description of command_completion_code 12

Command
Command completion code
description Messages received

DISPLAY WLM DISPLAY WLM completed
abnormally.

One of the following messages was received:

• IWM002I
• IWM003I
• IWM030I

LIST COPYPOOL No output was generated from
LIST COPYPOOL.

Message ARC0140I was received, but message
COPYPOOL=xx...xxx was not received, where xx...xxx is
the name of the copy pool that is specified in the
parameters input parameter.

START DB2 START DB2 completed
abnormally.

One of the following messages was received:

• DSN9023I cmd_prefix
• DSNV086E cmd_prefix
• DSN3106I cmd_prefix
• DSN3107I cmd_prefix
• DSN3104I cmd_prefix
• DSN3100I cmd_prefix

STOP DB2 STOP DB2 completed abnormally. One of the following messages was received:

• DSN3107I cmd_prefix
• DSN9023I cmd_prefix

message

Contains messages that describe the error that was encountered by the stored procedure.

This parameter is an output parameter of type VARCHAR(1331).

Example
The following C language example shows how to invoke ADMIN_COMMAND_MVS.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
 /******************* DB2 SQL Communication Area *********************/
EXEC SQL INCLUDE SQLCA;
int main(int argc, char *argv[]) /* Argument count and list */
{
 /****************** DB2 Host Variables ****************************/
 EXEC SQL BEGIN DECLARE SECTION;
 /* SYSPROC.ADMIN_COMMAND_MVS parameters */
 EXEC SQL BEGIN DECLARE SECTION;
 /* SYSPROC.ADMIN_COMMAND_MVS parameters */
 char ptype[25]; /* Command type */
 char pcprefix[9]; /* DB2 subsystem command prefix */
 char prmtsys[9]; /* Remote system */
 char pjobnm[9]; /* Started task job name */
 char pcmd[127]; /* Command to be executed */
 char pparms[125]; /* Command parameters */
 char psubparms[125]; /* Command subparameters */
 long int pwait; /* Command completion wait time */
 long int prc; /* Return code */
 long int pccc; /* Command completion code */
 char pmsg[1332]; /* Error message */

 short int ind_ptype; /* Indicator variable */

Chapter 5. Procedures that are supplied with Db2 723

 short int ind_pcprefix; /* Indicator variable */
 short int ind_prmtsys; /* Indicator variable */
 short int ind_pjobnm; /* Indicator variable */
 short int ind_pcmd; /* Indicator variable */
 short int ind_pparms; /* Indicator variable */
 short int ind_psubparms; /* Indicator variable */
 short int ind_pwait; /* Indicator variable */
 short int ind_prc; /* Indicator variable */
 short int ind_pccc; /* Indicator variable */
 short int ind_pmsg; /* Indicator variable */

 /* Result set locators */
 volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc1;
 /* Result set row */
 long int rownum; /* Sequence number of the */
 /* table row */
 char text[2001]; /* Message */
 EXEC SQL END DECLARE SECTION;
 /**/
 /* Clear temporary table SYSIBM.MVS_CMD_OUTPUT */
 EXEC SQL DELETE FROM SYSIBM.MVS_CMD_OUTPUT;
 /**/
 /* Set procedure input parameters */
 /**/
 strcpy(ptype, "WLM");
 strcpy(pcmd, "DISPLAY");
 strcpy(pparms, "APPLENV=*");
 ind_ptype = 0;
 ind_pcprefix = -1;
 ind_prmtsys = -1;
 ind_pjobnm = -1;
 ind_pcmd = 0;
 ind_pparms = 0;
 ind_psubparms = -1;
 ind_pwait = -1;
 /**/
 /* Call stored procedure SYSPROC.ADMIN_COMMAND_MVS */
 /**/
 EXEC SQL CALL SYSPROC.ADMIN_COMMAND_MVS (
 :ptype:ind_ptype,
 :pcprefix:ind_pcprefix,
 :prmtsys:ind_prmtsys,
 :pjobnm:ind_pjobnm,
 :pcmd:ind_pcmd,
 :pparms:ind_pparms,
 :psubparms:ind_psubparms,
 :pwait:ind_pwait,
 :prc:ind_prc,
 :pccc:ind_pccc,
 :pmsg:ind_pmsg);
 /**/
 /* Retrieve result set when the SQLCODE from the call is +446, */
 /* which indicates that result sets were returned */
 /**/
 if (SQLCODE == +466) /* Result sets were returned */
 {
 /* Establish a link between the result set and its locator */
 EXEC SQL ASSOCIATE LOCATORS (:rs_loc1)
 WITH PROCEDURE SYSPROC.ADMIN_COMMAND_MVS;
 /* Associate a cursor with the result set */
 EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :rs_loc1;
 /* Perform fetches using C1 to retrieve all rows from the */
 /* result set */
 EXEC SQL FETCH C1 INTO :rownum, :text;
 while(SQLCODE==0)
 {
 EXEC SQL FETCH C1 INTO :rownum, :text;
 }
 }
 return;
}

Output
This stored procedure returns the following output parameters, which are described in “Option
descriptions” on page 716:

• return-code

724 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• command_completion_code
• message

In addition to the preceding output, the stored procedure returns one result set that contains the
command messages. For STOP DB2, the latest IRLM or Db2 ssnmMSTR address space status information
(from the 'D A' output) is also returned in the result set if IRLM or MSTR termination monitoring was
performed successfully.

For Db2 START, Db2 STOP, and DUMP commands, both solicited messages (which are command
responses) and unsolicited messages (which are other system messages) are retrieved and returned.
Otherwise, only solicited messages are returned.

The following table shows the format of the result set that is returned in the created global temporary
table SYSIBM.MVS_CMD_OUTPUT:

Table 123. Result set row for ADMIN_COMMAND_MVS result set

Column name Data type Contents

ROWNUM INTEGER

NOT NULL

Sequence number of the table row
(1...n)

TEXT VARCHAR(2000)

NOT NULL

A command message line

GUPI

ADMIN_COMMAND_UNIX stored procedure
The SYSPROC.ADMIN_COMMAND_UNIX stored procedure executes a z/OS UNIX System Services
command and returns the output.

Environment
GUPI

ADMIN_COMMAND_UNIX runs in a WLM-established stored procedure address space.

The load module for ADMIN_COMMAND_UNIX, DSNADMCU, must be program controlled if the
BPX.DAEMON.HFSCTL FACILITY class profile has not been set up. For information on how to define
DSNADMCU to program control, see installation job DSNTIJRA.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges on each package that the stored procedure uses:

• The EXECUTE privilege on the package for DSNADMCU
• Ownership of the package
• PACKADM authority for the package collection
• SYSADM authority

The user specified in the user-ID input parameter of the SQL CALL statement must have the appropriate
authority to execute the z/OS UNIX System Services command.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

Chapter 5. Procedures that are supplied with Db2 725

CALL SYSPROC.ADMIN_COMMAND_UNIX (user-ID

NULL

, password

NULL

,

unix-command , output-layout

OUTMODE=BLK

NULL

OUTMODE=LINE

DEFAULT_HOME_DIR=home_directory

, return-code ,

message)

Option descriptions
user-ID

Specifies the user ID under which the z/OS UNIX System Services command is issued.

If user-ID is NULL, password must also be NULL. If the user-ID and password values are NULL, the
login process uses the primary authorization ID of the process.

You can specify NULL for this parameter in the following circumstances:

• The authorization ID that is associated with the stored procedure address space has daemon
authority.

• The authorization ID that is associated with the stored procedure address space does not have
daemon authority but is authorized to the BPX.SRV.userid SURROGAT class profile, where userid is
the authorization ID of the stored procedure. For more information about how the RACF security
administrator can authorize the authorization ID that is associated with the stored procedure
address space to a SURROGAT class profile, see Defining servers to process users without
passwords or password phrases.

Daemon authority is given to any superuser that is permitted to the BPX.DAEMON FACILITY class
profile. If the BPX.DAEMON FACILITY class profile is not defined, all superusers have daemon
authority.

This is an input parameter of type VARCHAR(128).

password
Specifies the password associated with the input parameter user-ID.

The value of password is passed to the stored procedure as part of payload, and is not encrypted. It is
not stored in dynamic cache when parameter markers are used.

If password is NULL, user-ID must also be NULL. If the user-ID and password values are NULL, the
login process uses the primary authorization ID of the process.

You can specify NULL for this parameter in the following circumstances:

• The authorization ID that is associated with the stored procedure address space has daemon
authority.

• The authorization ID that is associated with the stored procedure address space does not have
daemon authority but is authorized to the BPX.SRV.userid SURROGAT class profile, where userid is
the authorization ID of the stored procedure.

This is an input parameter of type VARCHAR(100).

unix-command
Specifies the z/OS UNIX System Services command to be executed.

This is an input parameter of type VARCHAR(32704) and cannot be null.

726 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.bpxb200/srvdef2.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.bpxb200/srvdef2.htm

output-layout
Specifies how the output from the z/OS UNIX System Services command is returned and the default
home directory of the specified user-ID.

The output from the z/OS UNIX System Services command is a multi-line message. Possible values
are:

OUTMODE=LINE
Each line is returned as a row in the result set.

OUTMODE=BLK
The lines are blocked into 32677 blocks and each block is returned as a row in the result set.

You specify the default home directory for user-ID as follows:

DEFAULT_HOME_DIR=home_directory
If the home directory of the specified user-ID does not exist, or user-ID does not have a home
directory, the SYSPROC.ADMIN_COMMAND_UNIX stored procedure runs the command under the
default home directory that you specify.

The maximum length of home_directory is 1007.

If you need to specify both OUTMODE and DEFAULT_HOME_DIR, consider the following examples:

OUTMODE=LINE,DEFAULT_HOME_DIR=/tmp

DEFAULT_HOME_DIR=/tmp,OUTMODE=LINE

If a null or empty string is provided, the default option OUTMODE=BLK is used.

This is an input parameter of type VARCHAR(1024).

return-code
Provides the return code from the stored procedure. Possible values are:
0

The call completed successfully.
4

The stored procedure used the default home directory.
12

The call did not complete successfully. The message output parameter contains messages
describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If no error occurred,
then no message is returned.

The first messages in this area are generated by the stored procedure. Messages that are generated
by Db2 might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Example

The following C language sample shows how to invoke ADMIN_COMMAND_UNIX:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

 /******************** DB2 SQL Communication Area ********************/
 EXEC SQL INCLUDE SQLCA;

 int main(int argc, char *argv[]) /* Argument count and list */
 {

Chapter 5. Procedures that are supplied with Db2 727

 /****************** DB2 Host Variables ****************************/
 EXEC SQL BEGIN DECLARE SECTION;

 /* SYSPROC.ADMIN_COMMAND_UNIX parameters */
 char userid[129]; /* User ID */
 short int ind_userid; /* Indicator variable */
 char password[101]; /* Password */
 short int ind_password; /* Indicator variable */
 char command[32705]; /* USS command */
 short int ind_command; /* Indicator variable */
 char layout[1025]; /* Command output layout */
 short int ind_layout; /* Indicator variable */
 long int retcd; /* Return code */
 short int ind_retcd; /* Indicator variable */
 char errmsg[1332]; /* Error message */
 short int ind_errmsg; /* Indicator variable */

 /* Result set locators */
 volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc1;

 /* Result set row */
 long int rownum; /* Sequence number of the */
 /* table row */
 char text[32678]; /* A row in USS command output*/
 EXEC SQL END DECLARE SECTION;

 /**/
 /* Assign values to input parameters to execute a USS command */
 /* Set the indicator variables to 0 for non-null input parameters */
 /* Set the indicator variables to -1 for null input parameters */
 /**/
 strcpy(userid, "USRT001");
 ind_userid = 0;
 strcpy(password, "N1CETEST");
 ind_password = 0;
 strcpy(command, "ls");
 ind_command = 0;
 ind_layout = -1;

 /**/
 /* Call stored procedure SYSPROC.ADMIN_COMMAND_UNIX */
 /**/
 EXEC SQL CALL SYSPROC.ADMIN_COMMAND_UNIX
 (:userid :ind_userid,
 :password :ind_password,
 :command :ind_command,
 :layout :ind_layout,
 :retcd :ind_retcd,
 :errmsg :ind_errmsg);

 /**/
 /* Retrieve result set when the SQLCODE from the call is +446, */
 /* which indicates that result sets were returned */
 /**/
 if (SQLCODE == +466) /* Result sets were returned */
 {
 /* Establish a link between the result set and its locator */
 EXEC SQL ASSOCIATE LOCATORS (:rs_loc1)
 WITH PROCEDURE SYSPROC.ADMIN_COMMAND_UNIX;

 /* Associate a cursor with the result set */
 EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :rs_loc1;

 /* Perform fetches using C1 to retrieve all rows from the */
 /* result set */
 EXEC SQL FETCH C1 INTO :rownum, :text;
 while(SQLCODE==0)
 {
 EXEC SQL FETCH C1 INTO :rownum, :text;
 }

 EXEC SQL CLOSE C1;
 }

 return(retcd);
 }

728 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Output
This stored procedure returns the following output parameters, which are described in “Option
descriptions” on page 726:

• return-code
• message

In addition to the preceding output, the stored procedure returns one result set that contains the z/OS
UNIX System Services command output messages.

The following table shows the format of the result set returned in the created global temporary table
SYSIBM.USS_CMD_OUTPUT:

Table 124. Result set row for ADMIN_COMMAND_UNIX result set

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n

TEXT VARCHAR(32677) A block of text or a line from the
output messages of a z/OS UNIX
System Services command

GUPI

ADMIN_DS_BROWSE stored procedure
The SYSPROC.ADMIN_DS_BROWSE stored procedure returns either text or binary records from certain
data sets or their members. You can browse a physical sequential (PS) data set, a generation data set,
a partitioned data set (PDS) member, or a partitioned data set extended (PDSE) member. This stored
procedure supports only data sets with LRECL=80 and RECFM=FB.

Environment
GUPI

The load module for ADMIN_DS_BROWSE, DSNADMDB, must reside in an APF-authorized library.
ADMIN_DS_BROWSE runs in a WLM-established stored procedures address space, and all libraries in
this WLM procedure STEPLIB DD concatenation must be APF-authorized.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges on each package that the stored procedure uses:

• The EXECUTE privilege on the package for DSNADMDB
• Ownership of the package
• PACKADM authority for the package collection
• SYSADM authority

The ADMIN_DS_BROWSE caller also needs authorization from an external security system, such as RACF,
in order to browse or view an z/OS data set resource.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

Chapter 5. Procedures that are supplied with Db2 729

CALL SYSPROC.ADMIN_DS_BROWSE (data-type , data-set-name , member-name ,

dump-option , return-code , message)

Option descriptions
data-type

Specifies the type of data to be browsed and how the data set will be allocated. Possible values are:
1

Text data with exclusive access
2

Binary data with exclusive access
3

Text data with shared access. This value is valid only if browsing a library member.
4

Binary data with shared access. This value is valid only if browsing a library member.

This is an input parameter of type INTEGER and cannot be null.

data-set-name
Specifies the name of the data set, or of the library that contains the member to be browsed. Possible
values are:
PS data set name

If reading from a PS data set, the data-set-name contains the name of the PS data set.
PDS or PDSE name

If reading from a member that belongs to this PDS or PDSE, the data-set-name contains the name
of the PDS or PDSE.

GDS name
If reading from a generation data set, the data-set-name contains the name of the generation data
set, such as USERGDG.FILE.G0001V00.

This is an input parameter of type CHAR(44) and cannot be null.

member-name
Specifies the name of the PDS or PDSE member, if reading from a PDS or PDSE member. Otherwise, a
blank character.

This is an input parameter of type CHAR(8) and cannot be null.

dump-option
Specifies whether to use the Db2 standard dump facility to dump the information necessary for
problem diagnosis when an SQL error occurred or when a call to the IBM routine IEFDB476 to get
messages about an unsuccessful SVC 99 call failed.

Possible values are:

Y
Generate a dump.

N
Do not generate a dump.

This is an input parameter of type CHAR(1) and cannot be null.

return-code
Provides the return code from the stored procedure. Possible values are:
0

The call completed successfully.

730 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

12
The call did not complete successfully. The message output parameter contains messages
describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If no error occurred,
then no message is returned.

The first messages in this area are generated by the stored procedure. Messages that are generated
by Db2 or by z/OS might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Example

The following C language sample shows how to invoke ADMIN_DS_BROWSE:

#include <stdio.h>
#include <stdlib.h>
#include <string>

/******************** DB2 SQL Communication Area ********************/
 EXEC SQL INCLUDE SQLCA;

 int main(int argc, char *argv[]) /* Argument count and list */
 {
 /****************** DB2 Host Variables ****************************/
 EXEC SQL BEGIN DECLARE SECTION;

 /* SYSPROC.ADMIN_DS_BROWSE parameters */
 long int datatype; /* Data type */
 char dsname[45]; /* Data set name */
 char mbrname[9]; /* Library member name */
 char dumpopt[2]; /* Dump option */
 long int retcd; /* Return code */
 char errmsg[1332]; /* Error message */

 /* Result set locators */
 volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc1;

 /* Result set row */
 long int rownum; /* Sequence number of the */
 /* table row */
 char text_rec[81]; /* A data set record */
 EXEC SQL END DECLARE SECTION;

 /**/
 /* Assign values to input parameters to browse a library member */
 /**/
 datatype = 1;
 strcpy(dsname, "USER.DATASET.PDS");
 strcpy(mbrname, "MEMBER0A");
 strcpy(dumpopt, "N");

 /**/
 /* Call stored procedure SYSPROC.ADMIN_DS_BROWSE */
 /**/
 EXEC SQL CALL SYSPROC.ADMIN_DS_BROWSE
 (:datatype, :dsname, :mbrname, :dumpopt,
 :retcd, :errmsg);

 /**/
 /* Retrieve result set when the SQLCODE from the call is +446, */
 /* which indicates that result sets were returned */
 /**/
 if (SQLCODE == +466) /* Result sets were returned */
 {
 /* Establish a link between the result set and its locator */
 EXEC SQL ASSOCIATE LOCATORS (:rs_loc1)
 WITH PROCEDURE SYSPROC.ADMIN_DS_BROWSE;

 /* Associate a cursor with the result set */
 EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :rs_loc1;

 /* Perform fetches using C1 to retrieve all rows from the */

Chapter 5. Procedures that are supplied with Db2 731

 /* result set */
 EXEC SQL FETCH C1 INTO :rownum, :text_rec;
 while(SQLCODE==0)
 {
 EXEC SQL FETCH C1 INTO :rownum, :text_rec;
 }

 EXEC SQL CLOSE C1;
 }

 return(retcd);
 }

Output
This stored procedure returns the following output parameters, which are described in “Option
descriptions” on page 730:

• return-code
• message

In addition to the preceding output, the stored procedure returns one result set that contains the text or
binary records read.

The following table shows the format of the result set returned in the created global temporary table
SYSIBM.TEXT_REC_OUTPUT containing text records read:

Table 125. Result set row for ADMIN_DS_BROWSE result set (text records)

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n.

TEXT_REC VARCHAR(80) Record read (text format).

The following table shows the format of the result set returned in the created global temporary table
SYSIBM.BIN_REC_OUTPUT containing binary records read:

Table 126. Result set row for ADMIN_DS_BROWSE result set (binary records)

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n.

BINARY_REC VARCHAR(80) FOR BIT DATA Record read (binary format).

GUPI

ADMIN_DS_DELETE stored procedure
The SYSPROC.ADMIN_DS_DELETE stored procedure deletes certain data sets or their members. You can
delete a physical sequential (PS) data set, a partitioned data set (PDS), a partitioned data set extended
(PDSE), a generation data set (GDS), or a member of a PDS or PDSE.

Environment
GUPI

The load module for ADMIN_DS_DELETE, DSNADMDD, must reside in an APF-authorized library.
ADMIN_DS_DELETE runs in a WLM-established stored procedures address space, and all libraries in this
WLM procedure STEPLIB DD concatenation must be APF-authorized.

732 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges:

• The EXECUTE privilege on the ADMIN_DS_DELETE stored procedure
• Ownership of the stored procedure
• SYSADM authority

The ADMIN_DS_DELETE caller also needs authorization from an external security system, such as RACF,
in order to delete an z/OS data set resource.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL SYSPROC.ADMIN_DS_DELETE (data-set-type , data-set-name ,

parent-data-set-name , dump-option , return-code , message)

Option descriptions
data-set-type

Specifies the type of data set to delete. Possible values are:
1

Partitioned data set (PDS)
2

Partitioned data set extended (PDSE)
3

Member of a PDS or PDSE
4

Physical sequential data set (PS)
6

Generation data set (GDS)

This is an input parameter of type INTEGER and cannot be null.

data-set-name
Specifies the name of the data set, library member, or GDS absolute generation number to be deleted.
Possible values are:
PS, PDS, or PDSE name

If data-set-type is 1, 2, or 4, the data-set-name contains the name of the PS, PDS, or PDSE to be
deleted.

PDS or PDSE member name
If data-set-type is 3, the data-set-name contains the name of the PDS or PDSE member to be
deleted.

absolute generation number
If data-set-type is 6, the data-set-name contains the absolute generation number of the GDS to be
deleted, such as G0001V00.

This is an input parameter of type CHAR(44) and cannot be null.

parent-data-set-name
Specifies the name of the library that contains the member to be deleted, or of the GDG that contains
the GDS to be delete. Otherwise blank. Possible values are:

Chapter 5. Procedures that are supplied with Db2 733

blank
If data-set-type is 1, 2, or 4, the parent-data-set-name is left blank.

PDS or PDSE name
If data-set-type is 3, the parent-data-set-name contains the name of the PDS or PDSE whose
member is to be deleted.

GDG name
If data-set-type is 6, the parent-data-set-name contains the name of the GDG that the GDS to be
deleted belongs to.

This is an input parameter of type CHAR(44) and cannot be null.

dump-option
Specifies whether to use the Db2 standard dump facility to dump the information necessary for
problem diagnosis when a call to the IBM routine IEFDB476 to get messages about an unsuccessful
SVC 99 call failed.

Possible values are:

Y
Generate a dump.

N
Do not generate a dump.

This is an input parameter of type CHAR(1) and cannot be null.

return-code
Provides the return code from the stored procedure. Possible values are:
0

Data set, PDS member, PDSE member, or GDS was deleted successfully.
12

The call did not complete successfully. The message output parameter contains messages
describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If no error occurred,
then no message is returned.

The first messages in this area are generated by the stored procedure. Messages that are generated
by z/OS might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Example

The following C language sample shows how to invoke ADMIN_DS_DELETE:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/******************** DB2 SQL Communication Area ********************/
 EXEC SQL INCLUDE SQLCA;

 int main(int argc, char *argv[]) /* Argument count and list */
 {
 /****************** DB2 Host Variables ****************************/
 EXEC SQL BEGIN DECLARE SECTION;

 /* SYSPROC.ADMIN_DS_DELETE parameters */
 long int dstype; /* Data set type */
 char dsname[45]; /* Data set name , */
 /* member name, or */
 /* generation # (G0001V00) */
 char parentds[45]; /* PDS, PDSE, GDG or blank */
 char dumpopt[2]; /* Dump option */

734 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 long int retcd; /* Return code */
 char errmsg[1332]; /* Error message */
 EXEC SQL END DECLARE SECTION;

 /**/
 /* Assign values to input parameters to delete a data set */
 /**/
 dstype = 4;
 strcpy(dsname, "USER.DATASET.PDS");
 strcpy(parentds, " ");
 strcpy(dumpopt, "N");

 /**/
 /* Call stored procedure SYSPROC.ADMIN_DS_DELETE */
 /**/
 EXEC SQL CALL SYSPROC.ADMIN_DS_DELETE
 (:dstype, :dsname, :parentds, :dumpopt,
 :retcd, :errmsg);

 return(retcd);
 }

Output
This stored procedure returns the following output parameters, which are described in “Option
descriptions” on page 733:

• return-code
• message

GUPI

ADMIN_DS_LIST stored procedure
The SYSPROC.ADMIN_DS_LIST stored procedure returns a list of data set names, a generation data
group (GDG), a partitioned data set (PDS) member, a partitioned data set extended (PDSE) member, or
generation data sets of a GDG.

Environment
GUPI

The load module for ADMIN_DS_LIST, DSNADMDL, must reside in an APF-authorized library.
ADMIN_DS_LIST runs in a WLM-established stored procedures address space, and all libraries in this
WLM procedure STEPLIB DD concatenation must be APF-authorized.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges on each package that the stored procedure uses:

• The EXECUTE privilege on the package for DSNADMDL
• Ownership of the package
• PACKADM authority for the package collection
• SYSADM authority

The ADMIN_DS_ LIST caller also needs authorization from an external security system, such as RACF, in
order to perform the requested operation on an z/OS data set resource.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

Chapter 5. Procedures that are supplied with Db2 735

CALL SYSPROC.ADMIN_DS_LIST (data-set-name , list-members , list-generations ,

max-results , dump-option , return-code , message)

Option descriptions
data-set-name

Specifies the data set name. You can use masking characters, except for when you list members
of a PDS/PDSE (list-members = 'Y') or the generation data sets of a GDG (list-generations = 'Y'). For
example: USER.* or USER.A*CD. In addition, the specified data set name cannot start with a masking
character.

If no masking characters are used, only one data set will be listed.

This is an input parameter of type CHAR(44) and cannot be null.

list-members
Specifies whether to list PDS or PDSE members. Possible values are:
Y

List members. Only set to Y when data-set-name is a fully qualified PDS or PDSE.
N

Do not list members.

This is an input parameter of type CHAR(1) and cannot be null.

list-generations
Specifies whether to list generation data sets. Possible values are:
Y

List generation data sets. Only set to Y when data-set-name is a fully qualified GDG.
N

Do not list generation data sets.

This is an input parameter of type CHAR(1) and cannot be null.

max-results
Specifies the maximum number of result set rows. This option is applicable only when both list-
members and list-generations are 'N'.

This is an input parameter of type INTEGER and cannot be null.

dump-option
Specifies whether to use the Db2 standard dump facility to dump the information necessary for
problem diagnosis when any of the following errors occur:

• SQL error.
• A call to the IBM routine IEFDB476 to get messages about an unsuccessful SVC 99 call failed.
• Load Catalog Search Interface module error.

Possible values are:

Y
Generate a dump.

N
Do not generate a dump.

This is an input parameter of type CHAR(1) and cannot be null.

return-code
Provides the return code from the stored procedure. Possible values are:

736 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

0
The call completed successfully.

4
Processing completed, but some data sets received catalog management errors. Data set
information is returned for the data sets that did not receive catalog management errors. Error
information is returned for the data sets that received catalog management errors.

12
The call did not complete successfully. The message output parameter contains messages
describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If no error occurred,
then no message is returned.

The first messages in this area are generated by the stored procedure. Messages that are generated
by Db2 or by z/OS might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Example

The following C language sample shows how to invoke ADMIN_DS_LIST:

 #pragma csect(CODE,"SAMDLPGM")
 #pragma csect(STATIC,"PGMDLSAM")
 #pragma runopts(plist(os))

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

/******************** DB2 SQL Communication Area ********************/
 EXEC SQL INCLUDE SQLCA;

 int main(int argc, char *argv[]) /* Argument count and list */
 {
 /****************** DB2 Host Variables ****************************/
 EXEC SQL BEGIN DECLARE SECTION;

 /* SYSPROC.ADMIN_DS_LIST parameters */
 char dsname[45]; /* Data set name or filter */
 char listmbr[2]; /* List library members */
 char listgds[2]; /* List GDS */
 long int maxresult; /* Maximum result set rows */
 char dumpopt[2]; /* Dump option */
 long int retcd; /* Return code */
 char errmsg[1332]; /* Error message */

 /* Result set locators */
 volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc1;

 /* Result set row */
 char dsnamer[45]; /* Data set name, */
 /* library member name, or */
 /* absolute generation number */
 long int createyr; /* Create year */
 long int createday; /* Create day */
 long int type; /* Data set type */
 char volume[7]; /* Data set volume */
 long int primaryext; /* Size of first extent */
 long int secondext; /* Size of secondary extent */
 char measure[10]; /* Extent unit of measurement */
 long int extinuse; /* Current allocated extents */
 char dasduse[9]; /* DASD usage */
 char harba[7]; /* High allocated RBA */
 char hurba[7]; /* High used RBA */
 char encrypttype[3]; /* Encryption type */
 char encryptkeylabel[65]; /* Encryption key label */
 EXEC SQL END DECLARE SECTION;

 char * ptr;

Chapter 5. Procedures that are supplied with Db2 737

 int i = 0;
 /**/
 /* Assign values to input parameters to list all members of */
 /* a library */
 /**/
 strcpy(dsname, "USER.DATASET.PDS");
 strcpy(listmbr, "Y");
 strcpy(listgds, "N");
 maxresult = 1;
 strcpy(dumpopt, "N");

 /**/
 /* Call stored procedure SYSPROC.ADMIN_DS_LIST */
 /**/
 EXEC SQL CALL SYSPROC.ADMIN_DS_LIST
 (:dsname, :listmbr, :listgds, :maxresult,
 :dumpopt, :retcd, :errmsg);

 /**/
 /* Retrieve result set when the SQLCODE from the call is +446, */
 /* which indicates that result sets were returned */
 /**/
 if (SQLCODE == +466) /* Result sets were returned */
 {
 /* Establish a link between the result set and its locator */
 EXEC SQL ASSOCIATE LOCATORS (:rs_loc1)
 WITH PROCEDURE SYSPROC.ADMIN_DS_LIST;

 /* Associate a cursor with the result set */
 EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :rs_loc1;

 /* Perform fetches using C1 to retrieve all rows from the */
 /* result set */
 EXEC SQL FETCH C1 INTO :dsnamer, :createyr, :createday,
 :type, :volume, :primaryext,
 :secondext, :measure, :extinuse,
 :dasduse, :harba, :hurba;
 :encrypttype; :encryptkeylabel;

 while(SQLCODE==0)
 {
 EXEC SQL FETCH C1 INTO :dsnamer, :createyr, :createday,
 :type, :volume, :primaryext,
 :secondext, :measure, :extinuse,
 :dasduse, :harba, :hurba;
 :encrypttype; :encryptkeylabel;
 }

 EXEC SQL CLOSE C1;
 }

 return(retcd);
 }

Output
This stored procedure returns the following output parameters, which are described in “Option
descriptions” on page 736:

• return-code
• message

In addition to the preceding output, the stored procedure returns one result set that contains the list of
data sets, GDGs, PDS or PDSE members, or generation data sets that were requested.

The following table shows the format of the result set:

738 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 127. Result set row for ADMIN_DS_LIST result set

Column name Data type Contents

DSNAME VARCHAR(44) • Data set name, if list-members
is "N" and list-generations is
"′N".

• Member name, if list-members
is "Y".

• Absolute generation number (of
the form G0000V00) from a
generation data set name, if
list-generations is "Y".

CREATE_YEAR INTEGER The year that the data set
was created. Not applicable for
member and VSAM cluster.

CREATE_DAY INTEGER The day of the year that the data
set was created, as an integer
in the range of 1 to 366 where
1 represents January 1). Not
applicable for member and VSAM
cluster.

TYPE INTEGER Type of data set. Possible values
are:
0

Unknown type of data set
1

PDS data set
2

PDSE data set
3

Member of PDS or PDSE
4

Physical sequential data set
5

Generation data group
6

Generation data set
8

VSAM cluster
9

VSAM data component
10

VSAM index component

VOLUME CHAR(6) Volume where data set resides.
Not applicable for member and
VSAM cluster.

PRIMARY_EXTENT INTEGER Size of first extent. Not applicable
for member and VSAM cluster.

Chapter 5. Procedures that are supplied with Db2 739

Table 127. Result set row for ADMIN_DS_LIST result set (continued)

Column name Data type Contents

SECONDARY_EXTENT INTEGER Size of secondary extent. Not
applicable for member and VSAM
cluster.

MEASUREMENT_UNIT CHAR(9) Unit of measurement for first
extent and secondary extent.
Possible values are:

• BLOCKS
• BYTES
• CYLINDERS
• KB
• MB
• TRACKS

Not applicable for member and
VSAM cluster.

EXTENTS_IN_USE INTEGER Current allocated extents. Not
applicable for member and VSAM
cluster.

DASD_USAGE CHAR(8) FOR BIT DATA Disk usage. For VSAM data and
VSAM index only.

HARBA CHAR(6) FOR BIT DATA High allocated RBA. For VSAM
data and VSAM index only.

HURBA CHAR(6) FOR BIT DATA High used RBA. For VSAM data
and VSAM index only.

ERRMSG VARCHAR(256) An error message that explains
the first data set-related failure
that was encountered by the
stored procedure while gathering
the attributes of a data set.
Some possible error messages
are DSNA661I, DSNA662I, and
DSNA635I.

If an error did not occur while
gathering data set attributes, this
column is blank.

ENCRYPT_TYPE CHAR(2) FOR BIT DATA The encryption type.
x'0100'

The data set is encrypted.
x'FFFF'

The data set is not encrypted

ENCRYPT_KEY_LABEL VARCHAR(64) Encryption key label. If the data
set is not encrypted, 64 bytes of
hex 'FF' is returned.

740 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

When a data set spans more than one volume, one row is returned for each volume that contains a piece
of the data set. The VOLUME, EXTENTS_IN_USE, DASD_USAGE, HARBA, and HURBA columns reflect
information for the specified volume.

If a data set entry error is encountered, the ADMIN_DS_LIST stored procedure returns the data set
that caused the error in the result set, along with data sets that did not have errors. In the result set,
the attribute columns for the data set that caused the error are set to specific values, as shown in the
following table.

Table 128. Values of data set attributes when an error is encountered

Attribute Value

CREATE_YEAR 0

CREATE_DAY 0

TYPE 0

VOLUME blank

PRIMARY_EXTENT -1

SECONDARY_EXTENT -1

MEASUREMENT_UNIT blank

EXTENTS_IN_USE -1

DASD_USAGE -1
(x'FFFFFFFFFFFFFFFF')

HARBA -1
(x'FFFFFFFFFFFF')

HURBA -1
(x'FFFFFFFFFFFF')

ENCRYPT_TYPE -1
(x'FFFF')

ENCRYPT_KEY_LABEL -1
(x'FF..FF' with 64 FF pairs.)

GUPI

ADMIN_DS_RENAME stored procedure
The SYSPROC.ADMIN_DS_RENAME stored procedure renames a physical sequential (PS) data set, a
partitioned data set (PDS), a partitioned data set extended (PDSE), or a member of a PDS or PDSE.

Environment
GUPI

The load module for ADMIN_DS_RENAME, DSNADMDR, must reside in an APF-authorized library.
ADMIN_DS_RENAME runs in a WLM-established stored procedures address space, and all libraries in
this WLM procedure STEPLIB DD concatenation must be APF-authorized.

Chapter 5. Procedures that are supplied with Db2 741

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges:

• The EXECUTE privilege on the ADMIN_DS_RENAME stored procedure
• Ownership of the stored procedure
• SYSADM authority

The ADMIN_DS_RENAME caller also needs authorization from an external security system, such as RACF,
in order to rename an z/OS data set resource.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL SYSPROC.ADMIN_DS_RENAME (data-set-type , data-set-name ,

parent-data-set-name , new-data-set-name , dump-option , return-code , message

)

Option descriptions
data-set-type

Specifies the type of data set to rename. Possible values are:
1

Partitioned data set (PDS)
2

Partitioned data set extended (PDSE)
3

Member of a PDS or PDSE
4

Physical sequential data set (PS)

This is an input parameter of type INTEGER and cannot be null.

data-set-name
Specifies the data set or member to be renamed. Possible values are:
PS, PDS, or PDSE name

If data-set-type is 1, 2, or 4, the data-set-name contains the name of the PS, PDS, or PDSE to be
renamed.

PDS or PDSE member name
If data-set-type is 3, the data-set-name contains the name of the PDS or PDSE member to be
renamed.

This is an input parameter of type CHAR(44) and cannot be null.

parent-data-set-name
Specifies the name of the PDS or PDSE, if renaming a PDS or PDSE member. Otherwise, a blank
character. Possible values are:
blank

If data-set-type is 1, 2, or 4, the parent-data-set-name is left blank.
PDS or PDSE name

If data-set-type is 3, the parent-data-set-name contains the name of the PDS or PDSE whose
member is to be renamed.

742 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

This is an input parameter of type CHAR(44) and cannot be null.

new-data-set-name
Specifies the new data set or member name. Possible values are:
new data set name

If data-set-type is 1, 2, or 4, the new-data-set-name contains the new data set name.
new member name

If data-set-type is 3, the new-data-set-name contains the new member name.

This is an input parameter of type CHAR(44) and cannot be null.

dump-option
Specifies whether to use the Db2 standard dump facility to dump the information necessary for
problem diagnosis when any of the following errors occurred:

• A call to the IBM routine IEFDB476 to get messages about an unsuccessful SVC 99 call failed.
• Load IDCAMS program error.

Possible values are:

Y
Generate a dump.

N
Do not generate a dump.

This is an input parameter of type CHAR(1) and cannot be null.

return-code
Provides the return code from the stored procedure. Possible values are:
0

The data set, PDS member, or PDSE member was renamed successfully.
12

The call did not complete successfully. The message output parameter contains messages
describing the error.

This is an output parameter of type INTEGER.

message
Contains messages based on return-code and data-set-type combinations.

return-code data-set-type Content

0 1, 2, or 4 Contains IDCAMS messages.

0 3 No message is returned.

Not 0 not applicable Contains messages describing
the error encountered by the
stored procedure. The first
messages are generated by
the stored procedure and
messages that are generated by
z/OS might follow these first
messages. The first messages
can also be generated by z/OS.

This is an output parameter of type VARCHAR(1331).

Chapter 5. Procedures that are supplied with Db2 743

Example

The following C language sample shows how to invoke ADMIN_DS_RENAME:

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

 /******************** DB2 SQL Communication Area ********************/
 EXEC SQL INCLUDE SQLCA;

 int main(int argc, char *argv[]) /* Argument count and list */
 {
 /****************** DB2 Host Variables ****************************/
 EXEC SQL BEGIN DECLARE SECTION;

 /* SYSPROC.ADMIN_DS_RENAME parameters */
 long int dstype; /* Data set type */
 char dsname[45]; /* Data set or member name */
 char parentds[45]; /* Parent data set (PDS or */
 /* PDSE) name or blank */
 char newdsname[45]; /* New data set or member name*/
 char dumpopt[2]; /* Dump option */
 long int retcd; /* Return code */
 char errmsg[1332]; /* Error message */
 EXEC SQL END DECLARE SECTION;

 /**/
 /* Assign values to input parameters to rename a library member */
 /**/
 dstype = 3;
 strcpy(dsname, "MEMBER01");
 strcpy(parentds, "USER.DATASET.PDS");
 strcpy(newdsname, "MEMBER0A");
 strcpy(dumpopt, "N");

 /**/
 /* Call stored procedure SYSPROC.ADMIN_DS_RENAME */
 /**/
 EXEC SQL CALL SYSPROC.ADMIN_DS_RENAME
 (:dstype, :dsname, :parentds, :newdsname,
 :dumpopt, :retcd, :errmsg);

 return(retcd);
 }

Output
This stored procedure returns the following output parameters, which are described in “Option
descriptions” on page 742:

• return-code
• message

GUPI

ADMIN_DS_SEARCH stored procedure
The SYSPROC.ADMIN_DS_SEARCH stored procedure determines if certain data sets are cataloged, or if
a library member of a cataloged data set exists. You can search for a physical sequential (PS) data set,
a partitioned data set (PDS), a partitioned data set extended (PDSE), a generation data group (GDG), a
generation data set (GDS), or the library member of a cataloged PDS or PDSE.

Environment
GUPI

The load module for ADMIN_DS_SEARCH, DSNADMDE, must reside in an APF-authorized library.
ADMIN_DS_SEARCH runs in a WLM-established stored procedures address space, and all libraries in
this WLM procedure STEPLIB DD concatenation must be APF-authorized.

744 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges:

• The EXECUTE privilege on the ADMIN_DS_SEARCH stored procedure
• Ownership of the stored procedure
• SYSADM authority

The ADMIN_DS_SEARCH caller also needs authorization from an external security system, such as RACF,
in order to perform the requested operation on an z/OS data set resource.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL SYSPROC.ADMIN_DS_SEARCH (data-set-name , member-name , dump-option ,

data-set-exists , return-code , message)

Option descriptions
data-set-name

Specifies the name of a PS data set, PDS, PDSE, GDG or GDS.

This is an input parameter of type CHAR(44) and cannot be null.

member-name
Specifies the name of a PDS or PDSE member. Set this parameter to a blank character if you only want
to check the existence of the PDS or PDSE.

This is an input parameter of type CHAR(8) and cannot be null.

dump-option
Specifies whether to use the Db2 standard dump facility to dump the information necessary for
problem diagnosis when any of the following errors occurred:

• A call to the IBM routine IEFDB476 to get messages about an unsuccessful SVC 99 call failed.
• Load IDCAMS program error.

Possible values are:

Y
Generate a dump.

N
Do not generate a dump.

This is an input parameter of type CHAR(1) and cannot be null.

data-set-exists
Indicates whether a data set or library member exists or not. Possible values are:
-1

Call did not complete successfully. Unable to determine if data set or member exists.
0

Data set or member was found
1

Data set not found
2

PDS or PDSE member not found

Chapter 5. Procedures that are supplied with Db2 745

This is an output parameter of type INTEGER.

return-code
Provides the return code from the stored procedure. Possible values are:
0

The call completed successfully.
12

The call did not complete successfully. The message output parameter contains messages
describing the error.

This is an output parameter of type INTEGER.

message
Contains IDCAMS messages if return-code is 0. Otherwise, contains messages describing the error
encountered by the stored procedure. The first messages are generated by the stored procedure and
messages that are generated by z/OS might follow these first messages.

This is an output parameter of type VARCHAR(1331).

Example

The following C language sample shows how to invoke ADMIN_DS_SEARCH:

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

/******************** DB2 SQL Communication Area ********************/
 EXEC SQL INCLUDE SQLCA;

 int main(int argc, char *argv[]) /* Argument count and list */
 {
 /****************** DB2 Host Variables ****************************/
 EXEC SQL BEGIN DECLARE SECTION;

 /* SYSPROC.ADMIN_DS_SEARCH parameters */
 char dsname[45]; /* Data set name or GDG */
 char mbrname[9]; /* Library member name */
 char dumpopt[2]; /* Dump option */
 long int exist; /* Data set or library member */
 /* existence indicator */
 long int retcd; /* Return code */
 char errmsg[1332]; /* Error message */
 EXEC SQL END DECLARE SECTION;

 /**/
 /* Assign values to input parameters to determine whether a */
 /* library member exists or not */
 /**/
 strcpy(dsname, "USER.DATASET.PDS");
 strcpy(mbrname, "MEMBER0A");
 strcpy(dumpopt, "N");

 /**/
 /* Call stored procedure SYSPROC.ADMIN_DS_SEARCH */
 /**/
 EXEC SQL CALL SYSPROC.ADMIN_DS_SEARCH
 (:dsname, :mbrname, :dumpopt,
 :exist, :retcd, :errmsg);

 return(retcd);
 }

Output
This stored procedure returns the following output parameters, which are described in “Option
descriptions” on page 745:

• data-set-exists
• return-code

746 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• message

GUPI

ADMIN_DS_WRITE stored procedure
The SYSPROC.ADMIN_DS_WRITE stored procedure writes either text or binary records that are passed in
a global temporary table to data sets or their members. You can write to a physical sequential (PS) data
set, a partitioned data set (PDS) member, a partitioned data set extended (PDSE) member, or a generation
data set (GDS).

This stored procedure can either append or replace an existing PS data set, PDS or PDSE member, or GDS.
Also, this stored procedure can create a new PS data set, PDS or PDSE data set or member, or a new GDS
for an existing generation data group (GDG) as needed. This stored procedure supports only data sets
with LRECL=80 and RECFM=FB.

Environment
GUPI

The load module for ADMIN_DS_WRITE, DSNADMDW, must reside in an APF-authorized library.
ADMIN_DS_WRITE runs in a WLM-established stored procedures address space, and all libraries in this
WLM procedure STEPLIB DD concatenation must be APF-authorized.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges on each package that the stored procedure uses:

• The EXECUTE privilege on the package for DSNADMDW
• Ownership of the package
• PACKADM authority for the package collection
• SYSADM authority

The ADMIN_DS_WRITE caller also needs authorization from an external security system, such as RACF, in
order to write to an z/OS data set resource.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL SYSPROC.ADMIN_DS_WRITE (data-type , data-set-name , member-name ,

processing-option , dump-option , return-code , message)

Option descriptions
This stored procedure takes the following input options:

data-type
Specifies the type of data to be saved. Possible values are:
1

Text data
2

Binary data

This is an input parameter of type INTEGER and cannot be null.

Chapter 5. Procedures that are supplied with Db2 747

data-set-name
Specifies the name of the data set, GDG that contains the GDS, or library that contains the member, to
be written to. Possible values are:
PS data set name

Name of the PS data set, if writing to a PS data set.
GDG name

Name of the GDG, if writing to a GDS within this GDG.
PDS or PDSE name

Name of the PDS or PDSE, if writing to a member that belongs to this library.

This is an input parameter of type CHAR(44) and cannot be null.

member-name
Specifies the relative generation number of the GDS, if writing to a GDS, or the name of the PDS or
PDSE member, if writing to a PDS or PDSE member. Otherwise, a blank character. Possible values are:
GDS relative generation number

Relative generation number of a GDS, if writing to a GDS. For example: -1, 0, +1
PDS or PDSE member name

Name of the PDS or PDSE member, if writing to a library member.
blank

In all other cases, blank.

This is an input parameter of type CHAR(8) and cannot be null.

processing-option
Specifies the type of operation. Possible values are:
R

Replace
A

Append
NM

New member
ND

New PS, PDS, PDSE, or GDS data set

This is an input parameter of type CHAR(2) and cannot be null.

dump-option
Specifies whether to use the Db2 standard dump facility to dump the information necessary for
problem diagnosis when an SQL error has occurred or when a call to the IBM routine IEFDB476 to get
messages about an unsuccessful SVC 99 call failed.

Possible values are:

Y
Generate a dump.

N
Do not generate a dump.

This is an input parameter of type CHAR(1) and cannot be null.

return-code
Provides the return code from the stored procedure. Possible values are:
0

The call completed successfully.
12

The call did not complete successfully. The message output parameter contains messages
describing the error.

748 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If no error occurred,
then no message is returned.

The first messages in this area are generated by the stored procedure. Messages that are generated
by Db2 or by z/OS might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Additional input
In addition to the input parameters, the stored procedure reads records to be written to a file from a
created global temporary table. If the data to be written is text data, then the stored procedure reads
records from SYSIBM.TEXT_REC_INPUT. If the data is binary data, then the stored procedure reads
records from the created global temporary table SYSIBM.BIN_REC_INPUT.

The following table shows the format of the created global temporary table SYSIBM.TEXT_REC_INPUT
containing text records to be saved:

Table 129. Additional input for text data for the ADMIN_DS_WRITE stored procedure

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n.

TEXT_REC CHAR(80) Text record to be saved.

The following table shows the format of the created global temporary table SYSIBM.BIN_REC_INPUT
containing binary records to be saved:

Table 130. Additional input for binary data for the ADMIN_DS_WRITE stored procedure

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n.

BINARY_REC VARCHAR(80) FOR BIT DATA Binary record to be saved.

Example

The following C language sample shows how to invoke ADMIN_DS_WRITE:

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

 /******************** DB2 SQL Communication Area ********************/
 EXEC SQL INCLUDE SQLCA;

 int main(int argc, char *argv[]) /* Argument count and list */
 {
 /****************** DB2 Host Variables ****************************/
 EXEC SQL BEGIN DECLARE SECTION;

 /* SYSPROC.ADMIN_DS_WRITE parameters */
 long int datatype; /* Data type */
 char dsname[45]; /* Data set name or GDG */
 char mbrname[9]; /* Library member name, */
 /* generation # (-1, 0, +1), */
 /* or blank */
 char procopt[3]; /* Processing option */
 char dumpopt[2]; /* Dump option */
 long int retcd; /* Return code */
 char errmsg[1332]; /* Error message */

Chapter 5. Procedures that are supplied with Db2 749

 /* Temporary table SYSIBM.TEXT_REC_INPUT columns */
 long int rownum; /* Sequence number of the */
 /* table row */
 char textrec[81]; /* Text record */
 EXEC SQL END DECLARE SECTION;

 /**/
 /* Create the records to be saved */
 /**/
 char dsrecord[12][50] = {
 "//IEBCOPY JOB ,CLASS=K,MSGCLASS=H,MSGLEVEL=(1,1)",
 "//STEP010 EXEC PGM=IEBCOPY",
 "//SYSPRINT DD SYSOUT=*",
 "//SYSUT3 DD SPACE=(TRK,(1,1)),UNIT=SYSDA",
 "//SYSUT4 DD SPACE=(TRK,(1,1)),UNIT=SYSDA",
 "//*",
 "//DDI1 DD DSN=USER.DEV.LOADLIB1,DISP=SHR",
 "//DDO1 DD DSN=USER.DEV.LOADLIB2,DISP=SHR",
 "//SYSIN DD *",
 " COPY OUTDD=DDO1,INDD=DDI1",
 "/*",
 "//*"
 } ;
 int i = 0; /* Loop counter */

 /**/
 /* Assign the values to input parameters to create a new */
 /* partitioned data set and member */
 /**/
 datatype = 1;
 strcpy(dsname, "USER.DATASET.PDS");
 strcpy(mbrname, "MEMBER01");
 strcpy(procopt, "ND");
 strcpy(dumpopt, "N");

 /**/
 /* Clear temporary table SYSIBM.TEXT_REC_INPUT */
 /**/
 EXEC SQL DELETE FROM SYSIBM.TEXT_REC_INPUT;

 /**/
 /* Insert the records to be saved in the new library member */
 /* into the temporary table SYSIBM.TEXT_REC_INPUT */
 /**/
 for (i = 0; i < 12; i++)
 {
 rownum = i+1;
 strcpy(textrec, dsrecord[i]);
 EXEC SQL INSERT INTO SYSIBM.TEXT_REC_INPUT
 (ROWNUM, TEXT_REC)
 VALUES (:rownum, :textrec);
 };

 /**/
 /* Call stored procedure SYSPROC.ADMIN_DS_WRITE */
 /**/
 EXEC SQL CALL SYSPROC.ADMIN_DS_WRITE
 (:datatype, :dsname, :mbrname, :procopt,
 :dumpopt, :retcd, :errmsg);

 return(retcd);
 }

Output
This stored procedure returns the following output parameters, which are described in “Option
descriptions” on page 747:

• return-code
• message

GUPI

750 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

ADMIN_EXPLAIN_MAINT stored procedure
You can use the ADMIN_EXPLAIN_MAINT stored procedure to create EXPLAIN tables, upgrade the tables
to the format for the current Db2 version, and complete other administrative tasks.

GUPI

For more detailed information about administrative tasks that you can complete for EXPLAIN tables by
using the ADMIN_EXPLAIN_MAINT stored procedure, see the description of the action input parameter.

Important: The ADMIN_EXPLAIN_MAINT stored procedure does not convert EXPLAIN tables that are
encoded in EBCDIC to Unicode. However, it does upgrade the format of such tables to the format for the
current Db2 version. Starting in DB2 10, SQLCODE -878 is issued for EXPLAIN tables that are encoded in
CCSIDs other than Unicode.

Environment
The ADMIN_EXPLAIN_MAINT stored procedure must run in a WLM-established stored procedure address
space.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges on each package that the stored procedure uses:

• EXECUTE privilege on the stored procedure package
• Ownership of the package
• PACKADM authority for the package collection
• SYSADM authority

The stored procedure executes the SET CURRENT SQLID statement to change the value of CURRENT
SQLID to the value that is specified by the authid input parameter. The value of CURRENT SQLID is the
authorization ID for dynamic SQL statements.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

Chapter 5. Procedures that are supplied with Db2 751

CALL ADMIN_EXPLAIN_MAINT (mode

NULL

, action

NULL

,

manage-alias

NULL

, table-set

NULL

, authid , schema-name ,

schema-alias

NULL

, database-name

NULL

, stogroup-database

NULL

,

stogroup-index

NULL

, 4k-bufferpool

NULL

, 8k-bufferpool

NULL

,

16k-bufferpool

NULL

, 32k-bufferpool

NULL

, index-bufferpool

NULL

,

bp-4kb-lob

NULL

, bp-8kb-lob

NULL

, bp-16kb-lob

NULL

,

bp-32kb-lob

NULL

, return-code , message)

Option descriptions
mode

Specifies the processing mode. This input parameter accepts the following values:
RUN

Alter and create EXPLAIN tables for the specified SCHEMA.
PREVIEW

No changes are processed.
The data type of this input parameter is VARCHAR(8). If this option is not specified, the default value
is RUN.

action
Specifies the action that is completed for the EXPLAIN tables in the specified schema. This input
parameter accepts the following values:
STANDARDIZE

Upgrade all existing EXPLAIN tables to the format for the current Db2 version.
STANDARDIZE_AND_CREATE

Upgrade all existing EXPLAIN tables to the format for the current Db2 version, and create any
missing tables of those that are specified by the table-set input parameter.

CREATE
Create a new set of EXPLAIN tables in the specified schema. Only tables that are specified by the
table-set input parameter are created.

CREATE_ALIAS
Create a new set of aliases only. The new aliases are qualified by the value that is specified for the
schema-alias input parameter.

DROP
Drop all existing EXPLAIN tables and the associated table space.

DROP_AND_CREATE
Drop all existing EXPLAIN tables, and the associated table spaces, and create a replacement set
of the tables that are specified by the table-set input parameter.

752 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The data type of this input parameter is VARCHAR(30). If this option is not specified, the default value
is STANDARDIZE.

manage-alias
Specifies whether to create aliases for EXPLAIN tables. This input parameter accepts the following
values:
YES

The stored procedure creates aliases so that all EXPLAIN tables in the specified schema have
aliases that correspond to the existing PLAN_TABLE aliases.

NO
Aliases are not created.

The data type of this input parameter is VARCHAR(3). If this option is not specified, the default value
is NO.

table-set
Specifies the list of EXPLAIN tables to be created.

If the action value is CREATE, the tables that are specified must not already exist. This input
parameter accepts the following values:

'table-name-1, table-name-2, ..., table-name-n'
Specifies an explicit list of tables to create.

ALL
All EXPLAIN tables that are created by the DSNTESC and DSNTESH sample jobs.

ACCEL
The following tables only:

• PLAN_TABLE
• DSN_STATEMNT_TABLE
• DSN_STATEMENT_CACHE_TABLE
• DSN_QUERYINFO_TABLE

DIAGNOSTICS
The following tables only:

• PLAN_TABLE
• DSN_STATEMNT_TABLE
• DSN_DETCOST_TABLE
• DSN_PREDICAT_TABLE
• DSN_FILTER_TABLE
• DSN_COLDIST_TABLE
• DSN_KEYTGTDIST_TABLE
• DSN_QUERYINFO_TABLE

ALL_EXCEPT(table-name-1, table-name-2, ..., table-name-n)
All tables that are created by the DSNTESC and DSNTESH sample jobs except for the tables that
are specified in the list.

This value is applicable only if action is one of the following values:

• STANDARDIZE_AND_CREATE
• CREATE
• DROP_AND_CREATE

The data type of this input parameter is VARCHAR(1000). If this option is not specified, the following
EXPLAIN tables are created by default:

• PLAN_TABLE

Chapter 5. Procedures that are supplied with Db2 753

• DSN_STATEMNT_TABLE
• DSN_STATEMENT_CACHE_TABLE

authid
The CURRENT SQLID setting. If this option is not specified, the value of the CURRENT SQLID special
register is used. The data type of this required input parameter is VARCHAR(128).

schema-name
Specifies the schema name that qualifies the EXPLAIN tables. If this option is not specified, the value
of the CURRENT SCHEMA special register is used. The data type of this required input parameter is
VARCHAR(128).

schema-alias
Specifies the schema name that qualifies aliases that are created when the action value is
CREATE_ALIAS. The data type of this input parameter is VARCHAR(128). This input parameter is
required when the action value is CREATE_ALIAS.

database-name
Specifies the database that contains the new EXPLAIN tables. The stored procedure creates the
database if it does not exist. The data type of this input parameter is VARCHAR(8). If this option is
not specified, the stored procedure omits the database and table space names in the CREATE TABLE
statements for the EXPLAIN tables.

stogroup-database
Specifies the storage group for the database that contains the new EXPLAIN tables. The data type of
this input parameter is VARCHAR(128). If this option is not specified, the stored procedure omits the
STOGROUP keyword from the CREATE DATABASE statement, if the database does not already exist.

stogroup-index
Specifies the storage group for the indexes for the new EXPLAIN tables. The data type of this input
parameter is VARCHAR(128). If this option is not specified, the stored procedure omits the USING
STOGROUP keyword from the CREATE INDEX statement.

4k-bufferpool
Specifies the name of the 4-KB page buffer pool that is assigned to new table spaces. The data type
of this input parameter is VARCHAR(8). If this option is not specified, the stored procedure omits the
table space name in the CREATE TABLE statements for the EXPLAIN tables.

8k-bufferpool
Specifies the name of the 8 KB page buffer pool that is assigned to new table spaces. The data type
of this input parameter is VARCHAR(8). If this option is not specified, the stored procedure omits the
table space name in the CREATE TABLE statements for the EXPLAIN tables.

16k-bufferpool
Specifies the name of the 16 KB page buffer pool that is assigned to new table spaces. The data type
of this input parameter is VARCHAR(8). If this option is not specified, the stored procedure omits the
table space name in the CREATE TABLE statements for the EXPLAIN tables.

32k-bufferpool
Specifies the name of the 32 KB page buffer pool that is assigned to new table spaces. The data type
of this input parameter is VARCHAR(8). If this option is not specified, the stored procedure omits the
table space name in the CREATE TABLE statements for the EXPLAIN tables.

index-bufferpool
Specifies the name of the buffer pool for the indexes for the new EXPLAIN tables. The data type of
this input parameter is VARCHAR(8). If this option is not specified, the stored procedure omits the
BUFFERPOOL keyword from the CREATE INDEX statement.

bp-4kb-lob
Specifies the name of the 4-KB page buffer pool that is assigned to new LOB tables spaces for the new
auxiliary tables of the new EXPLAIN tables. The data type of this input parameter is VARCHAR(8). If
this option is not specified, the stored procedure omits the BUFFERPOOL keyword from the CREATE
LOB TABLESPACE statement.

754 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

bp-8kb-lob
Specifies the name of the 8-KB page buffer pool that is assigned to new LOB tables spaces for the new
auxiliary tables of the new EXPLAIN tables. The data type of this input parameter is VARCHAR(8). If
this option is not specified, the stored procedure omits the BUFFERPOOL keyword from the CREATE
LOB TABLESPACE statement.

bp-16kb-lob
Specifies the name of the 16-KB page buffer pool that is assigned to new LOB tables spaces for the
new auxiliary tables of the new EXPLAIN tables. The data type of this input parameter is VARCHAR(8).
If this option is not specified, the stored procedure omits the BUFFERPOOL keyword from the CREATE
LOB TABLESPACE statement.

bp-32kb-lob
Specifies the name of the 32-KB page buffer pool that is assigned to new LOB tables spaces for the
new auxiliary tables of the new EXPLAIN tables. The data type of this input parameter is VARCHAR(8).
If this option is not specified, the stored procedure omits the BUFFERPOOL keyword from the CREATE
LOB TABLESPACE statement.

return-code
An output parameter that contains the return code from the stored procedure. It contains one of the
following values:
0

The call completed successfully.
4

One or more existing EXPLAIN tables are not in Unicode. The table formats are updated to the
format for the current Db2 version. However, the tables are not converted to Unicode.

8
The format of one or more existing EXPLAIN tables that were included in the table-set input
parameter cannot be updated to the format for the current Db2 version because the existing
format does not match any known format, or the tables cannot be altered by an ALTER TABLE
statement.

12
The call did not complete successfully. The message output parameter contains messages that
describe the error.

message
An output parameter that contains messages that describe errors that the stored procedure
encountered.

The following C language sample shows how to invoke the ADMIN_EXPLAIN_MAINT stored procedure:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
 /******************* DB2 SQL Communication Area *******************/
EXEC SQL INCLUDE SQLCA;
int main(int argc, char *argv[]) /* Argument count and list */
{
 /****************** DB2 Host Variables ****************************/
 EXEC SQL BEGIN DECLARE SECTION;
 /* SYSPROC.ADMIN_EXPLAIN_MAINT parameters */
 char pmode[9]; /* Processing mode */
 char paction[31]; /* Action */
 char pmanagealias[4]; /* Manage alias */
 char ptableset[1001]; /* EXPLAIN tables to be created */
 char pauthid[129]; /* CURRENT SQLID setting */
 char pschema[129]; /* EXPLAIN tables qualifier */
 char pschemaalias[129]; /* EXPLAIN tables aliases qual */
 char pdatabase[9]; /* Database of EXPLAIN tables */
 char pstogroupdb[129]; /* Storage group of database */
 char pstogroupix[129]; /* Storage group of EXPLAIN */
 /* tables indexes */
 char p4Kbp[9]; /* 4 KB page buffer pool for */
 /* table space of EXPLAIN table */
 char p8Kbp[9]; /* 8 KB page buffer pool for */
 /* table space of EXPLAIN table */
 char p16Kbp[9]; /* 16 KB page buffer pool for */

Chapter 5. Procedures that are supplied with Db2 755

 /* table space of EXPLAIN table */
 char p32Kbp[9]; /* 32 KB page buffer pool for */
 /* table space of EXPLAIN table */
 char pixbp[9]; /* Buffer pool for indexes of */
 /* EXPLAIN tables */
 char p4Klobbp[9]; /* 4 KB page buffer pool for */
 /* LOB table space */
 char p8Klobbp[9]; /* 8 KB page buffer pool for */
 /* LOB table space */
 char p16Klobbp[9]; /* 16 KB page buffer pool for */
 /* LOB table space */
 char p32Klobbp[9]; /* 32 KB page buffer pool for */
 /* LOB table space */
 long int prc; /* Return code */
 char pmsg[1332]; /* Error message */

 short int ind_pmode; /* Indicator variable */
 short int ind_paction; /* Indicator variable */
 short int ind_pmanagealias; /* Indicator variable */
 short int ind_ptableset; /* Indicator variable */
 short int ind_pauthid; /* Indicator variable */
 short int ind_pschema; /* Indicator variable */
 short int ind_pschemaalias; /* Indicator variable */
 short int ind_pdatabase; /* Indicator variable */
 short int ind_pstogroupdb; /* Indicator variable */
 short int ind_pstogroupix; /* Indicator variable */
 short int ind_p4Kbp; /* Indicator variable */
 short int ind_p8Kbp; /* Indicator variable */
 short int ind_p16Kbp; /* Indicator variable */
 short int ind_p32Kbp; /* Indicator variable */
 short int ind_pixbp; /* Indicator variable */
 short int ind_p4Klobbp; /* Indicator variable */
 short int ind_p8Klobbp; /* Indicator variable */
 short int ind_p16Klobbp; /* Indicator variable */
 short int ind_p32Klobbp; /* Indicator variable */
 short int ind_prc; /* Indicator variable */
 short int ind_pmsg; /* Indicator variable */
 /* Result set locators */
 volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc1;
 volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc2;
 volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc3;
 /* SYSIBM.EXPLAIN_MAINT_SUMMARY result set row */
 long int db_created; /* Num databases created */
 long int ts_created; /* Num table spaces created */
 long int tb_created; /* Num EXPLAIN tables created */
 long int aux_created; /* Num aux tables created */
 long int ix_created; /* Num indexes created */
 long int alias_created; /* Num aliases created */
 long int tb_examined; /* Num EXPLAIN tables examined*/
 /* for old format */
 long int tb_altered; /* Num databases created */
 long int ts_dropped; /* Num table spaces dropped */
 long int tb_dropped; /* Num EXPLAIN tables dropped */
 long int tb_unexpected_format; /* Num EXPLAIN tables with */
 /* invalid format */
 long int tb_not_standardized; /* Num EXPLAIN tables not */
 /* upgraded to the current */
 /* DB2 release format */
 long int tb_not_unicode; /* Num EXPLAIN tables not */
 /* in UNICODE */
 /* SYSIBM.EXPLAIN_MAINT_SQL result set row */
 long int rownum2; /* Sequence number of the */
 /* table row */
 char sql[16000]; /* SQL statement */
 /* SYSIBM.EXPLAIN_MAINT_TB_NOT_UPGRADED result set row */
 long int rownum3; /* Sequence number of the */
 /* table row */
 char schemaname[129]; /* EXPLAIN table qualifier */
 char tbname[129]; /* EXPLAIN table name */
 char reason[1001]; /* Reason */
 EXEC SQL END DECLARE SECTION;

 int resultset3 = 0; /* Result set 3 not returned */
 /**/
 /* Clear result tables */
 /**/
 EXEC SQL DELETE FROM SYSIBM.EXPLAIN_MAINT_SUMMARY;
 EXEC SQL DELETE FROM SYSIBM.EXPLAIN_MAINT_SQL;
 EXEC SQL DELETE FROM SYSIBM.EXPLAIN_MAINT_TB_NOT_UPGRADED;
 /**/
 /* Set procedure input parameters */
 /**/

756 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 strcpy(paction, "STANDARDIZE_AND_CREATE");
 strcpy(ptableset,
 "DSN_PREDICATE_SELECTIVITY, DSN_STAT_FEEDBACK");
 strcpy(pauthid, "USER001");
 strcpy(pschema, "USER002");
 ind_pmode = -1;
 ind_paction = 0;
 ind_pmanagealias = -1;
 ind_ptableset = 0;
 ind_pauthid = 0;
 ind_pschema = 0;
 ind_pschemaalias = -1;
 ind_pdatabase = -1;
 ind_pstogroupdb = -1;
 ind_pstogroupix = -1;
 ind_p4Kbp = -1;
 ind_p8Kbp = -1;
 ind_p16Kbp = -1;
 ind_p32Kbp = -1;
 ind_pixbp = -1;
 ind_p4Klobbp = -1;
 ind_p8Klobbp = -1;
 ind_p16Klobbp = -1;
 ind_p32Klobbp = -1;
 ind_prc = -1;
 ind_pmsg = -1;
 /**/
 /* Call stored procedure SYSPROC.ADMIN_EXPLAIN_MAINT */
 /**/
 EXEC SQL CALL SYSPROC.ADMIN_EXPLAIN_MAINT (
 :pmode:ind_pmode,
 :paction:ind_paction,
 :pmanagealias:ind_pmanagealias,
 :ptableset:ind_ptableset,
 :pauthid:ind_pauthid,
 :pschema:ind_pschema,
 :pschemaalias:ind_pschemaalias,
 :pdatabase:ind_pdatabase,
 :pstogroupdb:ind_pstogroupdb,
 :pstogroupix:ind_pstogroupix,
 :p4Kbp:ind_p4Kbp,
 :p8Kbp:ind_p8Kbp,
 :p16Kbp:ind_p16Kbp,
 :p32Kbp:ind_p32Kbp,
 :pixbp:ind_pixbp,
 :p4Klobbp:ind_p4Klobbp,
 :p8Klobbp:ind_p8Klobbp,
 :p16Klobbp:ind_p16Klobbp,
 :p32Klobbp:ind_p32Klobbp,
 :prc:ind_prc,
 :pmsg:ind_pmsg);
 /**/
 /* Retrieve result sets when the SQLCODE from the call is +446, */
 /* which indicates that result sets were returned */
 /**/
 if (SQLCODE == +466) /* Result sets were returned */
 {
 /* Establish a link between a result set and its locator */
 EXEC SQL ASSOCIATE LOCATORS (:rs_loc1, :rs_loc2, :rs_loc3)
 WITH PROCEDURE SYSPROC.ADMIN_EXPLAIN_MAINT;
 /* Associate a cursor with each result set */
 EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :rs_loc1;
 EXEC SQL ALLOCATE C2 CURSOR FOR RESULT SET :rs_loc2;
 EXEC SQL ALLOCATE C3 CURSOR FOR RESULT SET :rs_loc3;
 if (SQLCODE == 0) /* Result set 3 is returned */
 resultset3 = 1;
 /* Perform fetch using C1 to retrieve the first result set */
 EXEC SQL FETCH C1 INTO :db_created, :ts_created,
 :tb_created, :aux_created,
 :ix_created, :alias_created,
 :tb_examined, :tb_altered,
 :ts_dropped, :tb_dropped,
 :tb_unexpected_format,
 :tb_not_standardized,
 :tb_not_unicode;
 /* Perform fetches using C2 to retrieve all rows from the */
 /* second result set */
 EXEC SQL FETCH C2 INTO :rownum2, :sql;
 while (SQLCODE == 0)
 {
 EXEC SQL FETCH C2 INTO :rownum2, :sql;
 }

Chapter 5. Procedures that are supplied with Db2 757

 /* Perform fetches using C3 to retrieve all rows from the */
 /* third result set */
 if (resultset3 == 1)
 {
 EXEC SQL FETCH C3 INTO :rownum3, :schemaname, :tbname,
 :reason;
 while (SQLCODE == 0)
 {
 EXEC SQL FETCH C3 INTO :rownum3, :schemaname, :tbname,
 :reason;
 }
 }
 }
 return;
}

Output
The ADMIN_EXPLAIN_MAINT stored procedure creates as many as three result sets that are returned in
the following global temporary tables:

SYSIBM.EXPLAIN_MAINT_SUMMARY
The summary of the actions completed by the stored procedure if the value of the mode
input parameter is RUN. If the value of the mode input parameter is PREVIEW, this result set
summarizes the actions, but the actions are not completed. The values of the various type_CREATED,
type_ALTERED, type_DROPPED columns summarize the numbers of corresponding statements for
each action in the SQL column of SYSIBM.EXPLAIN_MAINT_SQL result set.

Table 131. Format of the SYSIBM.EXPLAIN_MAINT_SUMMARY result set

Column name Data Type Description

DB_CREATED INTEGER NOT NULL The number of databases that
are created.

TS_CREATED INTEGER NOT NULL The number of tables paces that
are created.

TB_CREATED INTEGER NOT NULL The number of EXPLAIN tables
that are created.

AUX_CREATED INTEGER NOT NULL The number of auxiliary tables
that are created.

IX_CREATED INTEGER NOT NULL The number of indexes that are
created.

ALIAS_CREATED INTEGER NOT NULL The number of aliases that are
created.

TB_EXAMINED INTEGER NOT NULL The number of EXPLAIN tables
that were examined for formats
older than the format for the
current Db2 version.

TB_ALTERED INTEGER NOT NULL The number of tables that are
altered to use the format for the
current Db2 version.

TS_DROPPED INTEGER NOT NULL The number of table spaces that
were dropped.

TB_DROPPED INTEGER NOT NULL The number of EXPLAIN tables
that are dropped.

758 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 131. Format of the SYSIBM.EXPLAIN_MAINT_SUMMARY result set (continued)

Column name Data Type Description

TB_UNEXPCECTED_
FORMAT

INTEGER NOT NULL The number of EXPLAIN tables
that do not match any known
valid format.

TB_NOT_STANDARDIZED INTEGER NOT NULL The number of EXPLAIN tables
that cannot be converted to
the format for the current Db2
version.

TB_NOT_UNICODE INTEGER NOT NULL The number of existing
EXPLAIN tables that are
encoded in a CCSID other
than Unicode. Such tables are
upgraded to the format for
the current Db2 version, but
the CCSID is not changed to
Unicode.

SYSIBM.EXPLAIN_MAINT_SQL
A list of the SQL statements that the stored procedure issues if the value of the mode input parameter
is RUN. If the value of the mode input parameter is PREVIEW, this result set summarizes the actions,
but the statements are not issued.

Table 132. Format of the SYSIBM.EXPLAIN_MAINT_SQL result set

Column name Data Type Description

ROWNUM INTEGER NOT NULL The sequence number of the
table row, 1 - n.

SQL VARCHAR(16000) NOT NULL The text of an SQL statement
that is issued by the stored
procedure to create, alter,
or drop EXPLAIN tables and
related objects.

Table space names: Table spaces that the ADMIN_EXPLAIN_MAINT stored procedure creates for
EXPLAIN tables and related auxiliary tables have names that are based on a four-letter abbreviation
of the name of the associated table, followed by a four-digit number that ensures the uniqueness
name. The four-letter abbreviations do not follow a consistent pattern in relation to the various table
names. For example, PLANnnnn is used for PLAN_TABLE, STMTnnnn is for DSN_STATEMNT_TABLE,
and SFEDnnnn is used for DSN_STAT_FEEDBACK table.

You can find the names of the table spaces that the stored procedure creates in the
SYSIBM.EXPLAIN_MAINT_SQL result set.

SYSIBM.EXPLAIN_MAINT_TB_NOT_UPGRADED
This result set is returned only when the value of the action input parameter is STANDARDIZE or
STANDARDIZE_AND_CREATE and at least one of the following conditions is true. The result set
contains one row for each of the following occurrences:

• The table is created with a CSSID other than Unicode. Such tables might be upgraded to the format
for the current Db2 version. However, the CCSID is not changed to Unicode.

• The format of the EXPLAIN table does not match any known format. Such tables are not upgraded.
• ALTER TABLE statements cannot complete changes that are required to upgrade a table to the

format for the current Db2 version. Such tables are not upgraded.

Chapter 5. Procedures that are supplied with Db2 759

Table 133. Format of the SYSIBM.EXPLAIN_TMAIN_TB_NOT_UPGRADED result set

Column name Data Type Description

ROWNUM INTEGER NOT NULL The sequence number of the
table row, 1 - n.

SCHEMA VARCHAR(128) NOT NULL The schema of an EXPLAIN
table that cannot be converted
to the format for the current
version of Db2.

TBNAME VARCHAR(128) NOT NULL The name of an EXPLAIN table
that cannot be converted to the
format for the current version of
Db2.

REASON VARCHAR(1000) NOT NULL A description of the reason why
the table cannot be converted
to the format for the current
version of Db2.

GUPI

Related concepts
Interpreting data access by using EXPLAIN (Db2 Performance)
Related tasks
Creating EXPLAIN tables (Db2 Performance)
Migration step 25: Convert EXPLAIN tables to the current format (Db2 Installation and Migration)
Related reference
EXPLAIN tables (Db2 Performance)
EXPLAIN statement

ADMIN_INFO_HOST stored procedure
The SYSPROC.ADMIN_INFO_HOST stored procedure returns the hostname of a connected Db2
subsystem or the hostname of every member of a data sharing group.

Environment
GUPI

ADMIN_INFO_HOST runs in a WLM-established stored procedures address space.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges on each package that the stored procedure uses:

• The EXECUTE privilege on the package for DSNADMIH
• Ownership of the package
• PACKADM authority for the package collection
• SYSADM authority

The ADMIN_INFO_HOST stored procedure internally calls the ADMIN_COMMAND_DB2 stored procedure
to execute the following Db2 commands:

• -DISPLAY DDF
• -DISPLAY GROUP

760 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_interpretdataaccess.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_createexplaintables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_migrateexplaintables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_explaintables.html

The owner of the package or plan that contains the CALL ADMIN_INFO_HOST statement must also have
the authorization required to execute the stored procedure ADMIN_COMMAND_DB2 and the specified
Db2 commands. To determine the privilege or authority required to issue a Db2 command, see About Db2
and related commands (Db2 Commands).

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL SYSPROC.ADMIN_INFO_HOST (processing-option , db2-member

NULL

,

return-code , message)

Option descriptions
processing-option

Specifies processing option. Possible values are:
1

Return the hostname of the connected Db2 subsystem or the hostname of a specified Db2 data
sharing group member.

For a data sharing group member, you must specify db2-member.

2
Return the hostname of every Db2 member of the same data sharing group.

This is an input parameter of type INTEGER and cannot be null.

DB2-member
Specifies the Db2 data sharing group member name.

This parameter must be null if processing-option is 2.

This is an input parameter of type CHAR(8).

return-code
Provides the return code from the stored procedure. Possible values are:
0

The call completed successfully.
4

Unable to list the hostname of the connected Db2 subsystem or of every Db2 member of the same
data sharing group due to one of the following reasons:

• The IPADDR field returned when the -DISPLAY DDF command is executed on the connected Db2
subsystem or Db2 member contains the value -NONE

• One of the Db2 members is down

12
The call did not complete successfully. The message output parameter contains messages
describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If no error occurred,
then no message is returned.

The first messages in this area are generated by the stored procedure. Messages that are generated
by Db2 might follow the first messages.

Chapter 5. Procedures that are supplied with Db2 761

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_commanddescriptions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_commanddescriptions.html

This is an output parameter of type VARCHAR(1331).

Example

The following C language sample shows how to invoke ADMIN_INFO_HOST:

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

 /******************** DB2 SQL Communication Area ********************/
 EXEC SQL INCLUDE SQLCA;

 int main(int argc, char *argv[]) /* Argument count and list */
 {
 /****************** DB2 Host Variables ****************************/
 EXEC SQL BEGIN DECLARE SECTION;

 /* SYSPROC.ADMIN_INFO_HOST parameters */
 long int procopt; /* Processing option */
 short int ind_procopt; /* Indicator variable */
 char db2mbr[9]; /* Data sharing group member */
 /* name */
 short int ind_db2mbr; /* Indicator variable */
 long int retcd; /* Return code */
 short int ind_retcd; /* Indicator variable */
 char errmsg[1332]; /* Error message */
 short int ind_errmsg; /* Indicator variable */

 /* Result set locators */
 volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc1;

 /* Result set row */
 long int rownum; /* Sequence number of the */
 /* table row */
 char db2member[9]; /* DB2 data sharing group */
 /* member name */
 char hostname[256]; /* Host name of the connected */
 /* DB2 subsystem or DB2 */
 /* member name */
 EXEC SQL END DECLARE SECTION;

 /**/
 /* Assign values to input parameters to find the hostname of */
 /* the connected DB2 subsystem */
 /* Set the indicator variables to 0 for non-null input parameters */
 /* Set the indicator variables to -1 for null input parameters */
 /**/
 procopt = 1;
 ind_procopt = 0;
 ind_db2mbr = -1;

 /**/
 /* Call stored procedure SYSPROC.ADMIN_INFO_HOST */
 /**/
 EXEC SQL CALL SYSPROC.ADMIN_INFO_HOST
 (:procopt :ind_procopt,
 :db2mbr :ind_db2mbr,
 :retcd :ind_retcd,
 :errmsg :ind_errmsg);

 /**/
 /* Retrieve result set when the SQLCODE from the call is +446, */
 /* which indicates that result sets were returned */
 /**/
 if (SQLCODE == +466) /* Result sets were returned */
 {
 /* Establish a link between the result set and its locator */
 EXEC SQL ASSOCIATE LOCATORS (:rs_loc1)
 WITH PROCEDURE SYSPROC.ADMIN_INFO_HOST;

 /* Associate a cursor with the result set */
 EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :rs_loc1;

 /* Use C1 to fetch the only row from the result set */
 EXEC SQL FETCH C1 INTO :rownum, :db2mbr, :hostname;

 EXEC SQL CLOSE C1;
 }

762 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 return(retcd);
 }

Output
This stored procedure returns the following output parameters, which are described in “Option
descriptions” on page 761:

• return-code
• message

In addition to the preceding output, the stored procedure returns one result set that contains the
hostnames.

The following table shows the format of the result set returned in the created global temporary table
SYSIBM.SYSTEM_HOSTNAME:

Table 134. Result set row for ADMIN_INFO_HOST result set

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n.

DB2_MEMBER CHAR(8) Db2 data sharing group member
name.

HOSTNAME VARCHAR(255) Host name of the connected
Db2 subsystem if the processing-
option input parameter is 1 and
the db2-member input parameter
is null. Otherwise, the hostname
of the Db2 member specified in
the DB2_MEMBER column.

GUPI

Related reference
-DISPLAY DDF command (Db2) (Db2 Commands)
-DISPLAY GROUP command (Db2) (Db2 Commands)

ADMIN_INFO_IFCID stored procedure
The ADMIN_INFO_IFCID stored procedure returns Db2 instrumentation facility interface (IFI)
information.

Environment
ADMIN_INFO_IFCID must run in a WLM-established stored procedure address space.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges on each package that the stored procedure uses:

• The EXECUTE privilege on the package for DSNADMIF
• Ownership of the package
• PACKADM authority for the package collection
• SYSADM authority

Chapter 5. Procedures that are supplied with Db2 763

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_displayddf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_displaygroup.html

The user who calls this stored procedure must have MONITOR1 privilege.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL SYSPROC.ADMIN_INFO_IFCID (ifcid, Db2-member , return-code , message ,

)

Option descriptions
ifcid

Specifies the Db2 instrumentation facility component ID (IFCID). Valid values are: 1, 2, 225.

This is an input parameter of type INTEGER and cannot be null.

db2-member
Specifies the name of the single data sharing group member that executes the IFI request.

This is an input parameter of type VARCHAR(8) and must be null.

return-code
Provides the return code from the stored procedure. Possible values are:
0

The call completed successfully.
12

The call did not complete successfully. The MSG output parameter contains messages that
describe the error that is encountered by the stored procedure.

This is an output parameter of type INTEGER.

message
Contains messages that describe the error that was encountered by the stored procedure. If an error
did not occur, a message is not returned.

This is an output parameter of type VARCHAR(1331).

Output
This stored procedure returns the following output parameters, which are described in “Option
descriptions” on page 764:

• return-code
• message

In addition to the preceding output, the stored procedure returns one result set that contains the IFI
record associated with the IFCID specified. The following table shows the format of the result set that is
returned in the created global temporary table SYSIBM.IFIREC:

Table 135.

Column name Data type Contents

ROWNUM INTEGER NOT NULL Sequence number of the table
row, from 1 to n

764 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 135. (continued)

Column name Data type Contents

IFIREC VARCHAR(32000) FOR BIT DATA
NOT NULL

VARCHAR(32000) FOR BIT DATA
NOT NULL.

If an IFCID record exceeds
32,000 characters it is split
up and inserted into this table
with the sequence starting at 1,
and then incremented with every
insert.

Example

The following example program calls the ADMIN_INFO_IFCID stored procedure.

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

 /******************** DB2 SQL Communication Area ********************/
 EXEC SQL INCLUDE SQLCA;

 int main(int argc, char *argv[]) /* Argument count and list */
 {
 /****************** DB2 Host Variables ****************************/
 EXEC SQL BEGIN DECLARE SECTION;

 /* SYSPROC.ADMIN_INFO_IFCID parameters */
 long int ifcid; /* IFCID */
 short int ind_ifcid; /* Indicator variable */
 char db2_member[9]; /* Data sharing group member */
 short int ind_db2_member; /* Indicator variable */
 long int retcd; /* Return code */
 short int ind_retcd; /* Indicator variable */
 char errmsg[1332]; /* Error message */
 short int ind_errmsg; /* Indicator variable */
 /* Result set locators */
 volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc1;
 /* Result set row */
 long int rownum; /* Sequence number of the */
 /* table row (1,...,n) */
 struct {
 short len;
 char text[32001];
 } ifirec; /* IFI record
*/

 EXEC SQL END DECLARE SECTION;

 /**/
 /* Initializatation */
 /**/
 ifcid = 1;
 retcd = 0;
 errmsg[0] = '\0';
 ind_ifcid = 0;
 ind_db2_member = -1;
 ind_retcd = -1;
 ind_errmsg = -1;
 rownum = 0;
 ifirec.len = 0;
 ifirec.text[0] = '\0';
 /**/
 /* Call stored procedure SYSPROC.ADMIN_INFO_IFCID */
 /**/
 EXEC SQL CALL SYSPROC.ADMIN_INFO_IFCID
 (:ifcid :ind_ifcid,
 :db2_member :ind_db2_member,
 :retcd :ind_retcd,
 :errmsg :ind_errmsg);
 /**/
 /* Retrieve result set when the SQLCODE from the call is +446, */

Chapter 5. Procedures that are supplied with Db2 765

 /* which indicates that result sets were returned */
 /**/
 if (SQLCODE == +466) /* Result sets were returned */
 {
 /* Establish a link between the result set and its locator */
 EXEC SQL ASSOCIATE LOCATORS (:rs_loc1)
 WITH PROCEDURE SYSPROC.ADMIN_INFO_IFCID;
 /* Associate a cursor with the result set */
 EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :rs_loc1;
 /* Perform fetches using C1 to retrieve all rows from the */
 /* result set */
 EXEC SQL FETCH C1
 INTO :rownum, :ifirec;
 while(SQLCODE==0)
 {
 EXEC SQL FETCH C1
 INTO :rownum, :ifirec;
 }
 EXEC SQL CLOSE C1;
 }
 return(retcd);
 }

Related concepts
Programming for the instrumentation facility interface (IFI) (Db2 Performance)
Related reference
Instrumentation facility interface (IFI) records (Db2 Performance)

ADMIN_INFO_SMS stored procedure
The ADMIN_INFO_SMS stored procedure returns space information about copy pools and their storage
groups and volumes.

Environment
GUPI

The load module for this stored procedure, DSNADMIV, must reside in an APF-authorized library.
ADMIN_INFO_SMS runs in a WLM-established stored procedures address space. All libraries in this WLM
procedure STEPLIB DD concatenation must be APF-authorized.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges on each package that the stored procedure uses:

• The EXECUTE privilege on the package for DSNADMIV
• Ownership of the package
• PACKADM authority for the package collection
• SYSADM authority

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL SYSPROC.ADMIN_INFO_SMS (return-code , message)

Option descriptions
return-code

Provides the return code from the stored procedure. The following values are possible:

766 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_program4ifi.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_interpretifirecords.html

0
The stored procedure completed successfully.

4
The stored procedure could not return the volume space statistics for all of the requested objects.
The message output parameter contains messages that describe the warnings.

This return code is issued when one or more objects that are returned in the result set contains
one of the following messages in the ERRMSG column:

• OBJECT NOT FOUND: Indicates that the copy pool, storage group, or volume that is specified in
the input table is not found, as reported by the SMS construct access services.

• NO VOLUMES ASSOCIATED WITH STORAGE GROUP: Indicates that the storage group that is
specified in the input table does not have any volumes, as reported by the SMS construct access
services.

• NO STORAGE GROUPS ASSOCIATED WITH COPY POOL: Indicates that the copy pool that is
specified in the input table does not have any storage groups, as reported by the SMS construct
access services.

• DSNA661I DSNADMIV THE MACRO LSPACE FAILED WITH RETURN CODE=nn

12
The call did not complete successfully. The message output parameter contains messages that
describe a parameter error, an SQL error, or an internal error that was encountered by the stored
procedure.

This is an output parameter of type INTEGER.

message
Contains messages that describe a parameter error, an SQL error, or an internal error that was
encountered by the stored procedure. If an error did not occur, a message is not returned.

This is an output parameter of type VARCHAR(1331).

Input
This stored procedure reads from the created global temporary table SYSIBM.SMS_OBJECTS to
determine which objects' space statistics to return.

The following table shows the format of the SYSIBM.SMS_OBJECTS input table.

Table 136. Input row for the ADMIN_INFO_SMS stored procedure

Column name Data type Contents

OBJECTID INTEGER
NOT NULL

A unique positive identifier
for the object that a set of
volume space statistics is
associated with.

OBJECTTYPE CHAR(1)
NOT NULL

Valid values are:

• 'C': Copy pool
• 'S': Storage group
• 'V': Volume

Chapter 5. Procedures that are supplied with Db2 767

Table 136. Input row for the ADMIN_INFO_SMS stored procedure (continued)

Column name Data type Contents

OBJECTNAME VARCHAR(30)
NOT NULL

Valid values are:

• Copy pool name, if OBJECTTYPE is 'C'. Returns
all of the volumes that are associated with each
storage group in this copy pool, along with the
corresponding volume space statistics.

• Storage group name, if OBJECTTYPE is'S'.
Returns all of the volumes that are associated
with this storage group, along with the
corresponding volume space statistics.

• Volume name, if OBJECTTYPE is 'V'. Returns the
volume space statistics for this volume.

Output
This stored procedure returns the following output parameters, which are described in “Option
descriptions” on page 766:

• return-code
• message

In addition to the preceding output, the stored procedure returns one result set that contains the volume
space statistics.

The following table shows the format of the result set that is returned in the created global temporary
table SYSIBM.SMS_INFO. The result set rows are returned in ascending order by ROWNUM and
OBJECTID.

Table 137. Result set row for ADMIN_INFO_SMS result set

Column name Data type Contents

ROWNUM INTEGER
NOT NULL

Sequence number of the table row, from 1 to
n.

OBJECTID INTEGER
NOT NULL

A unique positive identifier for the
object that a set of volume space
statistics is associated with
This ID is used to reference the
object in the input table
SYSIBM.SMS_OBJECTS.

COPYPOOL VARCHAR(30) A copy pool. This value is NULL if a storage
group or volume is specified. For example,
if the corresponding OBJECTTYPE in the
SYSIBM.SMS_OBJECTS table is 'S' or 'V'.

STORAGEGROUP VARCHAR(30) A copy pool storage group. This value is
NULL if no storage groups are associated
with the specified copy pool, or if a volume is
specified. For example, if the corresponding
OBJECTTYPE in the SYSIBM.SMS_OBJECTS
table is ‘V'.

768 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 137. Result set row for ADMIN_INFO_SMS result set (continued)

Column name Data type Contents

VOLUME VARCHAR(6) A volume in a copy pool storage group. This
value is NULL in the following cases:

• If no volumes are associated with the
specified storage group

• If no volumes are associated with a
storage group that is associated with the
specified copy pool

• If no storage groups are associated with
the specified copy pool

TOTALCAPACITY INTEGER
NOT NULL

Total capacity of a volume, in megabytes.
The value is -1 if the VOLUME column is
NULL.

FREESPACE INTEGER
NOT NULL

The total amount of free space in a volume,
in megabytes. The value is -1 if the VOLUME
column is NULL.

For a Db2 volume, this is the amount
of space in the copy pool that has not
been allocated by Db2 yet. Therefore, disk
space that has been allocated by Db2, but
is currently not used (like data records
that were deleted) would not fall into this
category.

LARGESTFREEEXT INTEGER
NOT NULL

Largest free extent in a volume, in
megabytes. The value is -1 if the VOLUME
column is NULL.

ERRMSG VARCHAR(256) Possible values are:

• NULL
• OBJECT NOT FOUND: Indicates that the

copy pool, storage group, or volume that
is specified in the input table is not found,
as reported by the SMS construct access
services.

• NO VOLUMES ASSOCIATED WITH
STORAGE GROUP: Indicates that the
storage group that is specified in the
input table does not have any volumes,
as reported by the SMS construct access
services.

• NO STORAGE GROUPS ASSOCIATED WITH
COPY POOL: Indicates that the copy pool
that is specified in the input table does not
have any storage groups, as reported by
the SMS construct access services.

• DSNA661I DSNADMIV THE MACRO
LSPACE FAILED WITH RETURN CODE=nn

GUPI

Chapter 5. Procedures that are supplied with Db2 769

ADMIN_INFO_SSID stored procedure
The SYSPROC.ADMIN_INFO_SSID stored procedure returns the name of the connected Db2 subsystem.

GUPI

Environment
ADMIN_INFO_SSID must run in a WLM-established stored procedure address space.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges:

• The EXECUTE privilege on the ADMIN_INFO_SSID stored procedure
• Ownership of the stored procedure
• SYSADM authority

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL SYSPROC.ADMIN_INFO_SSID (subsystem-ID , return-code , message

)

Option descriptions
subsystem-ID

Identifies the subsystem ID of the connected Db2 subsystem.

This is an output parameter of type VARCHAR(4).

return-code
Provides the return code from the stored procedure. Possible values are:
0

The call completed successfully.
12

The call did not complete successfully. The message output parameter contains messages
describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If no error occurred, no
message is returned.

This is an output parameter of type VARCHAR(1331).

Example
The following C language sample shows how to invoke ADMIN_INFO_SSID:

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

 /******************** DB2 SQL Communication Area ********************/
 EXEC SQL INCLUDE SQLCA;

770 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 int main(int argc, char *argv[]) /* Argument count and list */
 {
 /****************** DB2 Host Variables ****************************/
 EXEC SQL BEGIN DECLARE SECTION;

 /* SYSPROC.ADMIN_INFO_SSID PARAMETERS */
 char ssid[5]; /* DB2 subsystem identifier */
 long int retcd; /* Return code */
 char errmsg[1332]; /* Error message */
 EXEC SQL END DECLARE SECTION;

 /**/
 /* Call stored procedure SYSPROC.ADMIN_INFO_SSID */
 /**/
 EXEC SQL CALL SYSPROC.ADMIN_INFO_SSID
 (:ssid, :retcd, :errmsg);

 return(retcd);
 }

Output
The output of this stored procedure includes the following output parameters, which are described in
“Option descriptions” on page 770:

• subsystem-ID
• return-code
• message

GUPI

ADMIN_INFO_SQL stored procedure
The ADMIN_INFO_SQL stored procedure captures statistics about a Db2 subsystem, its objects, and
applications and returns the results in a data set or as a result set. The result, often called "service
SQL", is a standard diagnostic documentation format that helps IBM Support re-create and troubleshoot
problems, such as a poorly performing SQL query.

The output from ADMIN_INFO_SQL is intended primarily for the use of IBM Support. The format and
content of the output might change at any time.

For information about submitting the service SQL data to IBM Support, see Contacting IBM Support about
Db2 problems (Troubleshooting problems in Db2).

Environment
ADMIN_INFO_SQL must run in a WLM-established stored procedures address space, where NUMTCB is a
value in the range 40–60.

If you collect information by using PLAN_TABLE, ensure that the DSN_VIEWREF_TABLE table exists
before you capture EXPLAIN information. Especially if the query contains a view, the availability of
DSN_VIEWREF_TABLE helps to narrow the view so that it is specific to the query, rather than collecting all
of the view dependencies. DSN_VIEWREF_TABLE must have the same qualifier as the PLAN_TABLE. This
qualifier is the table-creator value, which is the first input parameter.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges:

• The EXECUTE privilege on the ADMIN_INFO_SQL stored procedure
• Ownership of the stored procedure

Chapter 5. Procedures that are supplied with Db2 771

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_contactsupportaboutdb2.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_contactsupportaboutdb2.html

• SYSADM authority

Optionally, you need authority to create data sets, or access existing data sets, if the information is
collected into a data set.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL SYSPROC.ADMIN_INFO_SQL (table-creator , table-name , catalog-creator ,

plan-info , collect-ddl , collect-stats , collect-column-stats , edit-ddl ,

edit-version-mode , partition-rotation , output-method , output-info , pmr-info ,

return-code , message)

Option descriptions
table-creator

Specifies the explicit qualifier for the object, the list of tables, or the plan table (PLAN_TABLE).

This is an input parameter of type VARCHAR(128) and cannot be null.

table-name
Specifies the name of a single user object, a list of objects, or the plan table (PLAN_TABLE).

Valid options are an object name, LIST_TABLE-table, or PLAN_TABLE. The table portion of the
LIST_TABLE-table option is the name of a Db2 table that contains two columns, CREATOR and TABLE.
These two columns drive the program to collect information. The PLAN_TABLE option uses the
CREATOR and TNAME columns of the PLAN_TABLE to collect information. This option depends on the
plan_info parameter to qualify tables as input. The reference point to the plan table must point to a
base table only.

When you specify PLAN_TABLE, ensure that the DSN_VIEWREF_TABLE table exists before you
execute EXPLAIN. The availability of DSN_VIEWREF_TABLE minimizes the size of the DDL information.
DSN_VIEWREF_TABLE must have the same qualifier as the plan table. This qualifier is the table-
creator value, which is the first input parameter.

The input for a single user object or a list of objects must be one of the following types of objects:

• Base table
• View
• Alias
• Clone table
• Created temporary table
• History table
• Materialized query table
• Implicitly created table for an XML column

The input parameter table-creator must be the qualifier for these tables.

This is an input parameter of type VARCHAR(128).

catalog-creator
Specifies the catalog to use for collection. The default catalog is SYSIBM. To use the default catalog,
you can specify DEFAULT or SYSIBM.

This is an input parameter of type VARCHAR(128) and cannot be null.

772 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

plan-info
If the table that is specified by table-name is PLAN_TABLE, plan-info is a value of the following form,
or NONE:

program-begin-queryno-end-queryno

The meanings of these variables are:

program
A value from the PROGNAME column of the PLAN_TABLE, or a pattern that specifies a set
of PROGNAME values in the PLAN_TABLE. Any pattern that is valid in a LIKE predicate can
be specified. program represents programs or packages for which ADMIN_INFO_SQL collects
PLAN_TABLE information.

begin-queryno
A value from the QUERYNO column of the PLAN_TABLE. The value represents the lowest
statement number for which ADMIN_INFO_SQL collects PLAN_TABLE information.

end-queryno
A value from the QUERYNO column of the PLAN_TABLE. The value represents the highest
statement number for which ADMIN_INFO_SQL collects PLAN_TABLE information.

If table-name does not specify PLAN_TABLE, the plan-info value must be NONE.

This is an input parameter of type VARCHAR(150) and cannot be null.

collect-ddl
Specifies whether to collect DDL information. Valid values are Y, N, 0 (zero), 1, 2, 3, or 4.

This is an input parameter of type CHAR(1) and cannot be null.

When the input table is not PLAN_TABLE, possible values are:

N
Do not return the data definition language statements that created the objects.

Y
Return the data definition language statements that created:

• The input objects
• Foreign keys that reference the input objects
• Views on the input objects

0
Return the data definition language statements that created:

• The input objects. Statements that create views on the input objects or foreign keys that
reference the input objects are not collected.

1
Return the data definition language statements that created:

• The input objects
• Views on the input objects

2
Return the data definition language statements that created:

• The input objects
• Foreign keys that reference the input objects

3
Return the data definition language statements that created:

• The input objects
• Foreign keys that reference the input objects

Chapter 5. Procedures that are supplied with Db2 773

• Views on the input objects
• Other objects that depend on the input objects, such as materialized query tables

This option can result in a large amount of data. Do no specify this option for problem analysis
except at the direction of IBM Support.

4
Return the same data definition language statements that are returned when option Y is specified.

When the input table is PLAN_TABLE, possible values are:

N
Do not return the data definition language statements that created the objects.

Y
Return the data definition language statements that created:

• The objects that are identified by plan-info
• Foreign keys that reference the objects that are identified by plan-info
• If DSN_VIEWREF_TABLE exists and is populated, views or materialized query tables that are

used to process the queries that are identified by plan-info.
• If DSN_VIEWREF_TABLE does not exist, views on objects that are identified by plan-info.

0
Return the data definition language statements that created:

• The objects that are identified by plan-info only. Statements that create views on the objects or
foreign keys that reference the objects that are identified by plan-info are not collected.

1
Return the data definition language statements that created:

• The objects that are identified by plan-info
• If DSN_VIEWREF_TABLE exists and is populated, views or materialized query tables that are

used to process the queries that are identified by plan-info.
• If DSN_VIEWREF_TABLE does not exist, views on objects that are identified by plan-info.

2
Return the data definition language statements that created:

• Foreign keys that reference the objects that are identified by plan-info

3
Return the data definition language statements that created:

• The objects that are identified by plan-info
• Foreign keys that reference the objects that are identified by plan-info
• Views on objects that are identified by plan-info
• Other objects that depend on the objects that are identified by plan-info, such as materialized

query tables

This option can result in a large amount of data. Do no specify this option for problem analysis by
IBM Support unless they direct you to do so.

4
Return the data definition language statements that created:

• The objects that are identified by plan-info
• Foreign keys that reference the objects that are identified by plan-info
• Views on objects that are identified by plan-info

This option does not use information from DSN_VIEWREF_TABLE.

774 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

collect-stats
Specifies whether to collect statistics information. Valid values are Y for yes, or N for no.

This is an input parameter of type CHAR(1) and cannot be null.

collect-column-stats
Specifies whether to collect column-level statistics information. Valid values are Y for yes, or N for no.

To collect column statistics, the collect-stats parameter must be set to Y.

This is an input parameter of type CHAR(1) and cannot be null.

edit-ddl
Specifies whether to edit the DDL output. Valid values are Y for yes, or N for no.

If edited, the DDL output contains changes, such as the STOGROUP set to SYSDEFLT, PRIQTY and
SECQTY set to minimum values, and FOREIGNKEY definitions commented out. Sometimes IBM
Support needs DDL output that is not edited. However, if the data to populate the DDL-defined tables
will not be sent with the problem report, specify Y for this parameter.

This is an input parameter of type CHAR(1) and cannot be null.

edit-version-mode
Specifies that the output format for a different version and mode of Db2 for z/OS than is currently
running when collecting information. In most cases, specify NONE, so that the output is not converted
to another format. Otherwise, you must specify the version number and the mode.

Valid values for mode are C for conversion mode and N for new-function mode. For example, if you
want to generate the output in the format used by Db2 11 new-function mode, specify 11-N.

This is an input parameter of type CHAR(4) and cannot be null.

partition-rotation
Specifies whether you want to verify the number of partition rotations that are required to balance the
table. Valid values are Y for yes, or N for no.

This is an input parameter of type CHAR(1) and cannot be null.

output-method
Specifies the data set attributes that you want the output to include.

This is an input parameter of type CHAR(1) and cannot be null.

Possible values for output-method are:

Q
Returns dynamically created data sets with size parameters.

N
Returns the result data sets in an already existing data set in the WLM environment.

D
Returns dynamically created data sets on a volume that you specify.

R
Returns a result set in a predetermined format.

Output data sets and result sets contain the following information:

DDL
The creation statements for databases, table spaces, tables, and indexes.

SQL
INSERT statements for PLAN_TABLE, DSN_PROFILE_TABLE, DSN_PROFILE_ATTRIBUTES, and
SYSACCELERATORS if the tables exist.

STATS
Statistical information related to the tables.

COLST
Statistical information related to the columns.

Chapter 5. Procedures that are supplied with Db2 775

EXPL
The output begins with a first-pass analysis report, which contains the following information, if it is
available:

• A report on missing EXPLAIN tables
• A report on statistics that are recommended but were not collected
• Results of a preliminary analysis of the EXPLAIN data

The following information is also returned:

• Visual output of the following tables, if they exist: PLAN_TABLE, DSN_PREDICAT_TABLE,
DSN_DETCOST_TABLE, DSN_PROFILE_TABLE, DSN_PROFILE_ATTRIBUTES, and
SYSACCELERATORS

• Information about the objects, messages, and input parameters.

The output also contains the following reports which describe object structures in relation the
query:

• A table report contains information about the table space, table, and index key columns,
organized by table space. It includes information about multi-column and index key cardinality.

• An index report that maps index details to predicates.

PARM
Subsystem parameter, service, module, and relational data system (RDS) MEPL information.

output-info
Specifies the output information. The values that you specify depend on the value of the output-
method parameter.

This is an input parameter of type VARCHAR(1024) and cannot be null.

Based on the value of output-method, you must format the input for output-info as follows:

output-method = Q
This output method has the following format:

qualifier-primary(value or DEFLT)-secondary(value or DEFLT)

You specify a 29-character qualifier, including periods. You also can specify a primary and
secondary track value. The default value is 200 for primary and 200 for secondary.

The result data set is created on temporary storage as a data set with one of the following types:

• .DDL
• .SQL
• .STATS
• .COLST
• .EXPL
• .PARM

The file might be deleted in a short period of time, depending on the configuration of your z/OS
system. Because the data set is created as a new one, existing data sets with the same name are
deleted.

If pmr-info specifies a support case ID, the data set names are created with the following format,
with the case ID numbers split into two parts:

Tnnnnn.Snnnn.Ddddddd.Ttttttt.VXX.file-type

For example, for support case TS123456789, the ADMIN_INFO_SQL stored procedure generates
data sets with names in the following format: T12345.S6789.D190801.T170318.VXX.type

776 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If pmr-info specifies a PMR number, the DEFAULT value creates a data set name with the following
format:

PMxxxxx.Dxxxxxx.Txxxxxx.VXX.file-type

For example, for PMR 12345, the ADMIN_INFO_SQL stored procedure generates data sets with
the following name format: PM12345.D091007.T170318.VXX.type

output-method = N
For established data sets in the WLM environment, you must specify the DD name in the following
format:

DDL_DDname-SQL_DDname-Stats_DDname-Colst_DDname-Expl_DDname-
Parm_DDname

The WLM administrator must create these data sets with DD names in the WLM startup procedure
and supply those names to the person calling the stored procedure. These data sets can be
generational. You must create the data sets as new ones rather than appending existing data sets.
The ADMIN_INFO_SQL stored procedure opens the data set at initialization and closes the file
when complete.

output-method = D
You specify the volume where you want the data sets created and the names and sizes of the data
sets. This output method has the following format but in one continuous line with no spaces:

DDL;DSname(DEFAULT);volser;alcunit(TRK or CYL);primary;secondary-
SQL;DSname(DEFAULT);volser;alcunit(TRK or CYL);primary;secondary-
STATS;DSname(DEFAULT);volser;alcunit(TRK or CYL);primary;secondary-
COLST;DSnameDEFAULT);volser;alcunit(TRK or CYL);primary;secondary-
EXPL;DSname(DEFAULT);volser;alcunit(TRK or CYL);primary;secondary-
PARM;DSname(DEFAULT);volser;alcunit(TRK or CYL);primary;secondary

The DEFAULT value creates the data set name with the same format and types as for output
method Q. The data set name must contain the type identifier (for example, .DDL, .SQL, .STATS,
etc.). As a result, the data sets can be listed in any order.

These data sets are created with the option disp=(NEW,CATLG,KEEP). Therefore, if a data set
with the same name already exists, the ADMIN_INFO_SQL stored procedure generates an error.

output-method = R
You must specify NONE. This output method returns a result set in the following format:

EXEC SQL CREATE GLOBAL TEMPORARY TABLE SYSIBM.SERVICE_SQL_OUTPUT
 (TID INTEGER NOT NULL, SEQNO INTEGER NOT NULL,
 TEXT VARCHAR(4096) NOT NULL);

Where TEXT is the information in the result set, such as DDL statements, statistical information,
and service and module information. SEQNO is the sequence number in the table, and TID is the
table number. For example:

Table 138. Table numbers for result set information

Table number (TID) Result set information

1 DDL

2 SQL

3 STATS

4 COLST

5 EXPL

6 PARM

Chapter 5. Procedures that are supplied with Db2 777

The following table shows the format of the result set that is returned in the created global
temporary table SYSIBM.SERVICE_SQL_OUTPUT:

Table 139. Result set row for ADMIN_INFO_SQL result set

Column name Data type Contents

TID INTEGER
NOT NULL

The table number.

SEQNO INTEGER
NOT NULL

The sequence number in the table.

TEXT VARCHAR(4096) The information in the result
set, such as DDL statements,
statistical information, and service
and module information.

The following DECLARE statement shows the data that is returned for the result set and the order
that the data is returned in:

EXEC SQL DECLARE DATA_CSR CURSOR WITH RETURN WITH HOLD FOR
 SELECT TID, SEQNO, TEXT FROM SYSIBM.SERVICE_SQL_OUTPUT
 ORDER BY TID, SEQNO;

pmr-info
Specifies one of the following values:

• The support case ID in TSnnnnnnnnn format, where nnnnnnnnn is a 9-digit number.
• The PMR number, branch code and country code in xxxxx.yyy.zzz format, where xxxxx is the

PMR number, yyy is the branch code, and zzz is the country code.

This is an input parameter of type VARCHAR(13) and cannot be null.

return-code
Provides the return code from the stored procedure. Possible values are:
0

The call completed successfully.
4

Warning. The message output parameter contains messages describing the warning.
12

The call did not complete successfully. The message output parameter contains messages
describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error or warning encountered by the stored procedure. If no error
occurred, the message states "DSNADMSS completed successfully."

The first messages in this area are generated by the stored procedure. Messages that are generated
by Db2 might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Examples

You can invoke the call for the ADMIN_INFO_SQL stored procedure from a Db2 command line processor,
if you have access to a z/OS server. You also can call this stored procedure by using Java JDBC
applications and by using the C language.

778 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

In addition, you can use DSNADMSB, an IBM-supplied program, to call the ADMIN_INFO_SQL stored
procedure. The result set is returned in a data set or as part of the job stream.

Example 1: The following example calls the ADMIN_INFO_SQL stored procedure to collect information
from the PLAN_TABLE for program APROGRAM and query numbers between 1 and 12345.

CALL SYSPROC.ADMIN_INFO_SQL('sysadm','PLAN_TABLE','DEFAULT',
'APROGRAM-1-12345','Y','Y','N','Y','NONE','N','D','DDL;DEFAULT;EDSDMP;
TRK;200;200-SQL;DEFAULT;EDSDMP;TRK;200;200-STATS;DEFAULT;EDSDMP;TRK;200;200
-COLST;DEFAULT;EDSDMP;TRK;200;200-EXPL;DEFAULT;EDSDMP;TRK;200;200
-PARM;DEFAULT;EDSDMP;TRK;200;200','TS123456789',?,?);

The output is created in data sets on volume EDSDMP with 200 primary tracks and 200 secondary tracks.
These data sets have the following naming convention:

• T12345.S6789.D190801.T170318.VXX.COLST
• T12345.S6789.D190801.T170318.VXX.DDL
• T12345.S6789.D190801.T170318.VXX.EXPL
• T12345.S6789.D190801.T170318.VXX.PARM
• T12345.S6789.D190801.T170318.VXX.SQL
• T12345.S6789.D190801.T170318.VXX.STATS

Example 2: The following example of the ADMIN_INFO_SQL stored procedure uses the list table TL1 to
collect data from all of the base tables whose names are specified by rows in TL1. The following SQL
statements show how to create and populate the list table:

DROP TABLE TL1;
DROP DATABASE DL1;
COMMIT;
CREATE DATABASE DL1;
CREATE TABLESPACE TSL1 IN DL1;
CREATE TABLE TL1 (CREATOR VARCHAR(128), TABLE VARCHAR(128)) IN DL1.TSL1;
COMMIT;
INSERT INTO TL1 VALUES ('SYSADM','T1');
INSERT INTO TL1 VALUES ('SYSADM','T2');
INSERT INTO TL1 VALUES ('SYSADM','T3');
COMMIT;

The following CALL statement for the ADMIN_INFO_SQL stored procedure returns a single result set in
the job stream. The list table name must be preceded by 'LIST_TABLE-".

CALL SYSPROC.ADMIN_INFO_SQL('SYSADM','LIST_TABLE-TL1','DEFAULT','NONE','Y','Y',
'N','Y','NONE','N','R','NONE','TS123456789',?,?);

Even though the column name is TABLE in the list table, the input for a list of objects can be any of the
following types of objects:

• Base table
• View
• Alias
• Clone table
• Created temporary table
• History table
• Materialized query table
• Implicitly created table for an XML column

Example 3: You also can call this stored procedure by using Java JDBC applications or by using the
C language. The following examples call the ADMIN_INFO_SQL stored procedure to collect information
from the PLAN_TABLE for program APROGRAM and query numbers in the range 1–12345, and return a
result set.

Chapter 5. Procedures that are supplied with Db2 779

Java JDBC code snippet example:

try
 {
 cstmt = conn.prepareCall("CALL SYSPROC.ADMIN_INFO_SQL(?,?,?,?,?,?,?,?,
 ?,?,?,?,?,?,?)");
 // Create a CallableStatement object
 cstmt.setString (1, "sysadm");
 cstmt.setString (2, "PLAN_TABLE");
 cstmt.setString (3, "DEFAULT");
 cstmt.setString (4, "APROGRAM-1-12345");
 cstmt.setString (5, "Y");
 cstmt.setString (6, "Y");
 cstmt.setString (7, "Y");
 cstmt.setString (8, "N");
 cstmt.setString (9, "NONE");
 cstmt.setString (10, "N");
 cstmt.setString (11, "R");
 cstmt.setString (12, "NONE");
 cstmt.setString (13, "TS123456789");
 // Set input parameters (DB2 command)
 cstmt.registerOutParameter (14, Types.INTEGER);
 cstmt.registerOutParameter (15, Types.VARCHAR);
 // Register output parameters

 boolean resultsAvailable = cstmt.execute();
 rc = cstmt.getInt(14); // Get the output parameter values
 errbuff = cstmt.getString(15);

 while (resultsAvailable)
 {
 ResultSet rs = cstmt.getResultSet();
 while (rs.next())
 {
 String s = rs.getString(3);
 System.out.println(s);
 }

 rs.close();
 resultsAvailable = cstmt.getMoreResults();
 }

C language code snippet example:

EXEC SQL CALL SYSPROC.ADMIN_INFO_SQL ('sysadm','PLAN_TABLE'
 ,'DEFAULT', 'APROGRAM-1-12345','Y','Y','N','Y','9-N','N','R',
 'NONE','TS123456789',:out1,:out2);
 printf("%d CALL SQLCODE\n", SQLCODE);
 printf("%d CALL RC\n", out1);
 printf("%s CALL DETAILS\n", out2);

 if(SQLCODE==+466)
 {
 EXEC SQL ASSOCIATE LOCATORS (:loc1) WITH
 PROCEDURE SYSPROC.ADMIN_INFO_SQL;
 printf("%d ASSOC SQLCODE\n", SQLCODE);

 EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :loc1;
 printf("%d ALLOC SQLCODE\n", SQLCODE);

 while(SQLCODE==0)
 {
 DATA.LNG = 0;
 SEQNO = 0;
 TID = 0;

 ind1 = -1;
 ind2 = -1;
 ind3 = -1;

 EXEC SQL FETCH C1 INTO :TID :ind1, :SEQNO :ind2, :DATA :ind3;
 memcpy(output, DATA.THEDATA, DATA.LNG);
 output??(DATA.LNG??) = '\0';
 printf("%s\n", output);
 }
 }
 printf("%d FETCH SQLCODE\n", SQLCODE);

780 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Output
This stored procedure returns the following output parameters, which are described in “Option
descriptions” on page 772:

• return-code
• message

In addition, this stored procedure returns output in data sets or a result set. You must ensure that enough
space is available for the output. The ADMIN_INFO_SQL stored procedure might generate large amounts
of data. Two to three megabytes of space is the average, but larger workloads might generate up to 20
megabytes of data. To conserve space, set the collect-column-stats option to N.

Related tasks
Collecting service SQL documentation (Troubleshooting problems in Db2)
Debugging ADMIN_INFO_SQL (Db2 Administration Guide)
Related reference
DSNTEJ6I (Db2 Programming samples)
DSNADMSB (Db2 Utilities)
Related information
Introducing SYSPROC.ADMIN_INFO_SQL (IBM developerWorks)

ADMIN_INFO_SYSLOG stored procedure
The ADMIN_INFO_SYSLOG stored procedure returns system log entries. You can specify filters, such as
search string, system name, begin date and time, end date and time, and maximum number of entries, to
limit the number of system log entries that are returned.

Environment
GUPI

ADMIN_INFO_SYSLOG runs in a WLM-established stored procedures address space, where TCB=1 is
required.

Authorization
To use ADMIN_INFO_SYSLOG, you need to be licensed to use the SDSF utility. The ADMIN_INFO_SYSLOG
stored procedure uses the SDSF ISFEXEC host command to issue the SDSF command MAS, and the SDSF
ISFLOG host command to access the SYSLOG. These commands are issued under the security context of
the user who is calling ADMIN_INFO_SYSLOG. SDSF determines the user command authority in the same
way that it does when the user issues the SDSF commands MAS and LOG in an interactive mode. For more
information about granting access to SDSF commands, see z/OS SDSF Operation and Customization.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL SYSPROC.ADMIN_INFO_SYSLOG (search-filter , system-name , start-date ,

start-time , end-date , end-time , max-entries , message)

Chapter 5. Procedures that are supplied with Db2 781

https://www.ibm.com/docs/en/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_collectservicesql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_debugadmininfosql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/appdevsamp/src/tpc/db2z_samp_dsntej6i.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_dsnadmsb.html
https://www.ibm.com/developerworks/data/library/techarticle/dm-1012capturequery/index.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.isfa500/abstract.htm

Option descriptions
search-filter

Specifies a logical expression that is used to filter the SYSLOG records. If this parameter is set to NULL
or is empty, filtering is not done.

A logical expression is composed of one or more operands, separated by operators. For example:

operand operator operand operator operand ... operator operand

where:

• operator is one of the following logical operators:

– AND
– and
– OR
– or

• operand is a string of characters, or a string of characters enclosed in quotation marks.

The operand is used unchanged to search and locate a system log record. Therefore, characters such
as '*', '%', and '?' are not handled as masking characters.

If an operand is enclosed in quotations marks and you want to include quotation marks in the
operand, use two sets of quotation marks. If an operand includes one or more blanks or the logical
operators (AND, and, OR, or), enclose the string of characters in quotations marks.

For a multi-line message, each operand in the search-filter parameter is checked against each line
of the multi-line message. A match is found if the operand is in at least one line of the multi-line
message. If the operand is split over several lines, a match is not found. If the whole message
satisfies the search-filter, the whole message is returned.

JES3 DLOG does not have a column that indicates whether a line is a continuation of a previous
line. For a multi-line message, the filter is applied separately on each line in the message, and only
matching lines (not the whole message) are returned.

This is an input parameter of type VARCHAR(1300).

system-name
Specifies the system in the sysplex where the system log entries will be processed or searched.
Specify NULL if you are retrieving SYSLOG records for the z/OS subsystem where the stored procedure
is running. Specify "*" (an asterisk) if you want all of the systems in a sysplex to be processed. The
following restrictions apply:

• If the stored procedure is running in a JES2 system, specifying "*" causes the stored procedure to
process only the logical SYSLOG of every active JES2 system in the sysplex.

• If the stored procedure is running in a JES3 system, specifying "*" causes the stored procedure to
process the logical SYSLOG of every active JES3 system in the sysplex. All DLOG entries in the global
SYSLOG that are within the specified time interval, which can contain messages from every JES2
and JES3 system in the sysplex, will also be returned.

This is an input parameter of type VARCHAR(8).

start-date
Specifies the starting date for system log records to be processed. If this parameter is set to NULL, the
default is the current date.

This is an input parameter of type DATE.

start-time
Specifies the starting time for system log records to be processed. If this parameter is set to NULL, the
default time is 00:00:00.

This is an input parameter of type TIME.

782 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

end-date
Specifies the ending date for system log records to be processed. If this parameter is set to NULL, the
default is the current date.

This is an input parameter of type DATE.

end-time
Specifies the ending time for system log records to be processed. If this parameter is set to NULL, the
default time is 23:59:59.

This is an input parameter of type TIME.

Together, start-date, start-time, end-date, and end-time define the date and time range for the SYSLOG
records. The starting date and time must be less than the ending date and time. SDSF positions the
SYSLOG as close as possible to the requested record. However, due to the precision that is used for
timestamps and the time that the record is actually written to SYSLOG, the time parameters might
be several lines away from the record that you want. SYSLOG records from before a specified time
interval might be returned, while SYSLOG records that are closer to a specified ending date and time
might not be returned.

max-entries
Specifies a limit for the number of SYSLOG records to be processed for each system. If this parameter
is set to NULL, the default is 500. Valid values are 1 to 99999999 and -1 to -99999999.

If max-entries is a positive number, the stored procedure processes only the oldest max-entries
records for a specified time interval. If the limit for records occurs in the middle of a message, the
message will be truncated if returned by the stored procedure.

If max-entries is a negative number, the stored procedure processes only the most current max-
entries records for the specified time interval. If the limit for records occurs in the middle of a
message, the message will be truncated if returned by the stored procedure.

Note: If you specified the search-filter parameter, the value specified for max-entries is not the
maximum number of result set rows to be returned for a system. The number of rows that are
returned in a result set for a system is always less than or equal to max-entries.

This is an input parameter of type INTEGER.

message
Contains messages that describe errors that occurred during stored procedure processing. The first
messages are generated by the stored procedure. Messages that are generated by ISFEXEC or ISFLOG
might follow the stored procedure messages.

If the stored procedure completed successfully, no message is returned.

This is an output parameter of type VARCHAR(1331).

Output
This stored procedure returns the following output parameters, which are described in “Option
descriptions” on page 782:

• message

In addition to the preceding output, the stored procedure returns one result set that contains the system
log records that you requested.

The following table shows the format of the result set that is returned in the created global temporary
table SYSIBM.SYSLOG:

Chapter 5. Procedures that are supplied with Db2 783

Table 140. Result set row for ADMIN_INFO_SYSLOG result set

Column name Data type Contents

ROWNUM INTEGER
NOT NULL

Sequence number of the table
row, from 1 to n.

TEXT VARCHAR(130)
NOT NULL

A system log entry. For multi-line
messages, a row is returned for
each line in the message.

The result set rows are returned in ascending order by ROWNUM. The system log records that are
returned are grouped by system. Within each system, the system log records are returned in the same
order as they appear in the SDSF system log.

GUPI

ADMIN_INFO_SYSPARM stored procedure
The SYSPROC.ADMIN_INFO_SYSPARM stored procedure returns the system parameters, application
defaults module, and IRLM parameters of a connected Db2 subsystem, or member of its data sharing
group.

Environment
GUPI

ADMIN_INFO_SYSPARM runs in a WLM-established stored procedures address space, where NUMTCB=1
is required.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges on each package that the stored procedure uses:

• The EXECUTE privilege on the package for DSNADMIZ
• Ownership of the package
• PACKADM authority for the package collection
• SYSADM authority

The user who calls this stored procedure must have MONITOR1 privilege.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL SYSPROC.ADMIN_INFO_SYSPARM (db2-member

NULL

, return-code ,

message)

Option descriptions
db2-member

Specifies the name of the Db2 data sharing group member that you want to get the system
parameters, DSNHDECP or a user-specified application defaults module, and IRLM parameters from.

784 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Specify NULL for this parameter if you are retrieving the system parameters, DSNHDECP values, and
IRLM parameters from the connected Db2 subsystem.

This is an input parameter of type VARCHAR(8).

return-code
Provides the return code from the stored procedure. The following values are possible:
0

The call completed successfully.
12

The call did not complete successfully. The message output parameter contains messages that
describe the IFI error or SQL error that is encountered by the stored procedure.

This is an output parameter of type INTEGER.

message
Contains messages that describe the IFI error or SQL error that was encountered by the stored
procedure. If an error did not occur, a message is not returned.

This is an output parameter of type VARCHAR(1331).

Example

The following C language sample shows how to invoke ADMIN_INFO_SYSPARM:

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

 /******************** DB2 SQL Communication Area ********************/
 EXEC SQL INCLUDE SQLCA;

 int main(int argc, char *argv[]) /* Argument count and list */
 {
 /****************** DB2 Host Variables ****************************/
 EXEC SQL BEGIN DECLARE SECTION;

 /* SYSPROC.ADMIN_INFO_SYSPARM parameters */
 char db2_member[9]; /* Data sharing group member */
 short int ind_db2_member; /* Indicator variable */
 long int retcd; /* Return code */
 short int ind_retcd; /* Indicator variable */
 char errmsg[1332]; /* Error message */
 short int ind_errmsg; /* Indicator variable */
 /* Result set locators */
 volatile SQL TYPE IS RESULT_SET_LOCATOR VARYING *rs_loc1;
 /* Result set row */
 long int rownum; /* Sequence number of the */
 /* table row (1,...,n) */
 char macro[9]; /* Macro that contains the */
 /* system parameter, or */
 /* DSNHDECP parameter, or the */
 /* name of the IRLM procedure */
 /* that z/OS invokes if IRLM */
 /* is automatically started */
 /* by DB2 */
 char parameter[41]; /* Name of the system */
 /* parameter, DSNHDECP */
 /* parameter, or IRLM */
 /* parameter */
 char install_panel[9]; /* Name of the installation */
 /* panel where the parameter */
 /* value can be changed when */
 /* installing or migrating DB2*/
 short int ind_install_panel; /* Indicator variable */
 char install_field[41]; /* Name of the parameter on */
 /* the installation panel */
 short int ind_install_field; /* Indicator variable */
 char install_location[13]; /* Location of the parameter */
 /* on the installation panel */
 short int ind_install_location; /* Indicator variable */
 char value[2049]; /* Value of the parameter */
 char additional_info[201]; /* Reserved for future use */
 short int ind_additional_info; /* Indicator variable */

Chapter 5. Procedures that are supplied with Db2 785

 EXEC SQL END DECLARE SECTION;
 /**/
 /* Set the db2_member indicator variable to -1 to get the DB2 */
 /* subsystem parameters, DSNHDECP values, and IRLM parameters of */
 /* the connected DB2 subsystem. */
 /**/
 ind_db2_member = -1;
 /**/
 /* Call stored procedure SYSPROC.ADMIN_INFO_SYSPARM */
 /**/
 EXEC SQL CALL SYSPROC.ADMIN_INFO_SYSPARM
 (:db2_member :ind_db2_member,
 :retcd :ind_retcd,
 :errmsg :ind_errmsg);
 /**/
 /* Retrieve result set when the SQLCODE from the call is +446, */
 /* which indicates that result sets were returned */
 /**/
 if (SQLCODE == +466) /* Result sets were returned */
 {
 /* Establish a link between the result set and its locator */
 EXEC SQL ASSOCIATE LOCATORS (:*rs_loc1)
 WITH PROCEDURE SYSPROC.ADMIN_INFO_SYSPARM;
 /* Associate a cursor with the result set */
 EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :*rs_loc1;
 /* Perform fetches using C1 to retrieve all rows from the */
 /* result set */
 EXEC SQL FETCH C1
 INTO :rownum, :macro, :parameter,
 :install_panel :ind_install_panel,
 :install_field :ind_install_field,
 :install_location :ind_install_location,
 :value,
 :additional_info :ind_additional_info;
 while(SQLCODE==0)
 {
 EXEC SQL FETCH C1
 INTO :rownum, :macro, :parameter,
 :install_panel :ind_install_panel,
 :install_field :ind_install_field,
 :install_location :ind_install_location,
 :value,
 :additional_info :ind_additional_info;
 }

 EXEC SQL CLOSE C1;
 }
 return(retcd);
 }

Output
This stored procedure returns the following output parameters, which are described in “Option
descriptions” on page 784:

• return-code
• message

In addition to the preceding output, the stored procedure returns one result set that contains the
parameter settings.

The following table shows the format of the result set that is returned in the created global temporary
table SYSIBM.DB2_SYSPARM:

Table 141. Result set row for ADMIN_INFO_SYSPARM result set

Column name Data type Contents

ROWNUM INTEGER
NOT NULL

Sequence number of the table
row, from 1 to n.

786 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 141. Result set row for ADMIN_INFO_SYSPARM result set (continued)

Column name Data type Contents

MACRO VARCHAR(8)
NOT NULL

Macro that contains the
system parameter, the dsnhdecp
parameter, or the name of
the IRLM procedure that z/OS
invokes if IRLM is started
automatically by Db2.

PARAMETER VARCHAR(40)
NOT NULL

Name of the system parameter,
dsnhdecp parameter, or IRLM
parameter.

INSTALL_PANEL VARCHAR(8) Name of the installation panel
where the parameter value can
be changed when installing or
migrating Db2.

INSTALL_FIELD VARCHAR(40) Name of the parameter on the
installation panel.

INSTALL_LOCATION VARCHAR(12) Location of the parameter on the
installation panel.

VALUE VARCHAR(2048)
NOT NULL

The value of the parameter.“1” on
page 787

ADDITIONAL_INFO VARCHAR(200) Specifies whether a parameter
can be updated online. If
the value is null, the stored
procedure could not retrieve the
information for the parameter.

1. See “Parameter values that are returned in bit format” on page 787 for information on how to
interpret entries in the VALUE column that are in bit format.

Parameter values that are returned in bit format
For certain subsystem parameters, the content of the VALUE column in the returned result set is a bit
string.

For subsystem parameters AUDITST, MON, and SMFACCT, the 32 bits of the string correspond to the 32
trace classes. The bit string has the following values:

• If the subsystem parameter value is NO, all bits are 0.
• If the subsystem parameter value is YES, the first bit is 1, and all other bits are 0.
• If the subsystem parameter value is *, all bits are 1.
• Otherwise, the bits that are 1 correspond to the trace classes that are on. For example, if the AUDITST

subsystem parameter specification is AUDITST=(1,3,5), the first, third and fifth bits of the bit string are
1, and all other bits are 0:

10101000000000000000000000000000

For subsystem parameters ROUTCDE and ARCWRTC, the 16 bits of the string correspond to the 16 route
codes. The bit string has the following values:

Chapter 5. Procedures that are supplied with Db2 787

• The bits that are 1 correspond to the route codes that are on. For example, if the ROUTCDE subsystem
parameter specification is ROUTCDE=(1,3), the first and third bits of the bit string are 1, and all other
bits are 0:

1010000000000000

For subsystem parameter SMFSTAT, the 32 bits of the string correspond to the 32 trace classes. The bit
string has the following values:

• If the subsystem parameter value is NO, all bits are 0.
• If the subsystem parameter value is YES, the first, third, fourth, fifth, and sixth bits are 1, and all other

bits are 0.
• If the subsystem parameter value is *, all bits are 1.
• Otherwise, the bits that are 1 correspond to the trace classes that are on. For example, if the SMFSTAT

subsystem parameter specification is SMFSTAT=(1,3,5), the first, third and fifth bits of the bit string are
1, and all other bits are 0:

10101000000000000000000000000000

For subsystem parameter TRACSTR, the 32 bits of the string correspond to the 32 trace classes. The bit
string has the following values:

• If the subsystem parameter value is NO, all bits are 0.
• If the subsystem parameter value is YES, the first, second, and third bits are 1, and all other bits are 0.
• If the subsystem parameter value is *, all bits are 1.
• Otherwise, the bits that are 1 correspond to the trace classes that are on. For example, if the TRACSTR

subsystem parameter specification is TRACSTR=(1,3,5), the first, third and fifth bits of the bit string are
1, and all other bits are 0:

10101000000000000000000000000000

GUPI

ADMIN_JOB_CANCEL stored procedure
The SYSPROC.ADMIN_JOB_CANCEL stored procedure purges or cancels a job.

Environment
GUPI

The load module for ADMIN_JOB_CANCEL, DSNADMJP, must reside in an APF-authorized library.
ADMIN_JOB_CANCEL runs in a WLM-established stored procedure address space, and all libraries in
this WLM procedure STEPLIB DD concatenation must be APF-authorized.

The load module for ADMIN_JOB_CANCEL, DSNADMJP, must be program controlled if the
BPX.DAEMON.HFSCTL FACILITY class profile has not been set up. For information on how to define
DSNADMJP to program control, see installation job DSNTIJRA.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges:

• The EXECUTE privilege on the ADMIN_JOB_CANCEL stored procedure
• Ownership of the stored procedure
• SYSADM authority

788 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The user specified in the user-ID input parameter of the SQL CALL statement also needs authorization
from an external security system, such as RACF, in order to perform the requested operation.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL SYSPROC.ADMIN_JOB_CANCEL (user-ID

NULL

, password

NULL

,

processing-option , job-ID , return-code , message)

Option descriptions
user-ID

Specifies the user ID under which the job is canceled or purged.

If user-ID is NULL, password must also be NULL. If the user-ID and password values are NULL, the
login process uses the primary authorization ID of the process.

You can specify NULL for this parameter in the following circumstances:

• The authorization ID that is associated with the stored procedure address space has daemon
authority.

• The authorization ID that is associated with the stored procedure address space does not have
daemon authority but is authorized to the BPX.SRV.userid SURROGAT class profile, where userid is
the authorization ID of the stored procedure. For more information about how the RACF security
administrator can authorize the authorization ID that is associated with the stored procedure
address space to a SURROGAT class profile, see Defining servers to process users without
passwords or password phrases.

Daemon authority is given to any superuser that is permitted to the BPX.DAEMON FACILITY class
profile. If the BPX.DAEMON FACILITY class profile is not defined, all superusers have daemon
authority.

This is an input parameter of type VARCHAR(128).

password
Specifies the password associated with the input parameter user-ID.

The value of password is passed to the stored procedure as part of payload, and is not encrypted. It is
not stored in dynamic cache when parameter markers are used.

If password is NULL, user-ID must also be NULL. If the user-ID and password values are NULL, the
login process uses the primary authorization ID of the process.

You can specify NULL for this parameter in the following circumstances:

• The authorization ID that is associated with the stored procedure address space has daemon
authority.

• The authorization ID that is associated with the stored procedure address space does not have
daemon authority but is authorized to the BPX.SRV.userid SURROGAT class profile, where userid is
the authorization ID of the stored procedure.

This is an input parameter of type VARCHAR(100).

processing-option
Identifies the type of command to invoke. Possible values are:
1

Cancel a job.

Chapter 5. Procedures that are supplied with Db2 789

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.bpxb200/srvdef2.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.bpxb200/srvdef2.htm

2
Purge a job.

This is an input parameter of type INTEGER and cannot be null.

job-ID
Specifies the job ID of the job to be canceled or purged. Acceptable formats are:

• Jnnnnnnn
• JOBnnnnn

where n is a digit in the range 0–9. For example: JOB01035

Both Jnnnnnnn and JOBnnnnn must be exactly 8 characters in length.

This is an input parameter of type CHAR(8) and cannot be null.

return-code
Provides the return code from the stored procedure. Possible values are:
0

The call completed successfully.
12

The call did not complete successfully. The message output parameter contains messages
describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If no error occurred,
then no message is returned.

The first messages in this area are generated by the stored procedure. Messages that are generated
by z/OS might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Example

The following C language sample shows how to invoke ADMIN_JOB_CANCEL:

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

 /******************** DB2 SQL Communication Area ********************/
 EXEC SQL INCLUDE SQLCA;

 int main(int argc, char *argv[]) /* Argument count and list */
 {
 /****************** DB2 Host Variables ****************************/
 EXEC SQL BEGIN DECLARE SECTION;

 /* SYSPROC.ADMIN_JOB_CANCEL parameters */
 char userid[129]; /* User ID */
 short int ind_userid; /* Indicator variable */
 char password[101]; /* Password */
 short int ind_password; /* Indicator variable */
 long int procopt; /* Processing option */
 short int ind_procopt; /* Indicator variable */
 char jobid[9]; /* Job ID */
 short int ind_jobid; /* Indicator variable */
 long int retcd; /* Return code */
 short int ind_retcd; /* Indicator variable */
 char errmsg[1332]; /* Error message */
 short int ind_errmsg; /* Indicator variable */
 EXEC SQL END DECLARE SECTION;

 /**/
 /* Assign values to input parameters to purge a job */
 /* Set the indicator variables to 0 for non-null input parameters */
 /**/
 strcpy(userid, "USRT001");

790 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 ind_userid = 0;
 strcpy(password, "N1CETEST");
 ind_password = 0;
 procopt = 2;
 ind_procopt = 0;
 strcpy(jobid, "JOB00105");
 ind_jobid = 0;

 /**/
 /* Call stored procedure SYSPROC.ADMIN_JOB_CANCEL */
 /**/
 EXEC SQL CALL SYSPROC.ADMIN_JOB_CANCEL
 (:userid :ind_userid,
 :password :ind_password,
 :procopt :ind_procopt,
 :jobid :ind_jobid,
 :retcd :ind_retcd,
 :errmsg :ind_errmsg);

 return(retcd);
 }

Output
This stored procedure returns the following output parameters, which are described in “Option
descriptions” on page 789:

• return-code
• message

GUPI

ADMIN_JOB_FETCH stored procedure
The SYSPROC.ADMIN_JOB_FETCH stored procedure retrieves SYSOUT from JES spool and returns the
SYSOUT.

Environment
GUPI

The load module for ADMIN_JOB_FETCH, DSNADMJF, must reside in an APF-authorized library.
ADMIN_JOB_FETCH runs in a WLM-established stored procedure address space, and all libraries in this
WLM procedure STEPLIB DD concatenation must be APF-authorized.

The load module for ADMIN_JOB_FETCH, DSNADMJF, must be program controlled if the
BPX.DAEMON.HFSCTL FACILITY class profile has not been set up. For information on how to define
DSNADMJF to program control, see installation job DSNTIJRA.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges on each package that the stored procedure uses:

• The EXECUTE privilege on the package for DSNADMJF
• Ownership of the package
• PACKADM authority for the package collection
• SYSADM authority

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

Chapter 5. Procedures that are supplied with Db2 791

CALL SYSPROC.ADMIN_JOB_FETCH (user-ID

NULL

, password

NULL

,

job-ID , return-code , message)

Option descriptions
user-ID

Specifies the user ID under which SYSOUT is retrieved.

If user-ID is NULL, password must also be NULL. If the user-ID and password values are NULL, the
login process uses the primary authorization ID of the process.

You can specify NULL for this parameter in the following circumstances:

• The authorization ID that is associated with the stored procedure address space has daemon
authority.

• The authorization ID that is associated with the stored procedure address space does not have
daemon authority but is authorized to the BPX.SRV.userid SURROGAT class profile, where 'userid' is
the authorization ID of the stored procedure. For more information about how the RACF security
administrator can authorize the authorization ID that is associated with the stored procedure
address space to a SURROGAT class profile, see Defining servers to process users without
passwords or password phrases.

Daemon authority is given to any superuser that is permitted to the BPX.DAEMON FACILITY class
profile. If the BPX.DAEMON FACILITY class profile is not defined, all superusers have daemon
authority.

This is an input parameter of type VARCHAR(128).

password
Specifies the password associated with the input parameter user-ID.

The value of password is passed to the stored procedure as part of payload, and is not encrypted. It is
not stored in dynamic cache when parameter markers are used.

If password is NULL, user-ID must also be NULL. If the user-ID and password values are NULL, the
login process uses the primary authorization ID of the process.

You can specify NULL for this parameter in the following circumstances:

• The authorization ID that is associated with the stored procedure address space has daemon
authority.

• The authorization ID that is associated with the stored procedure address space does not have
daemon authority but is authorized to the BPX.SRV.userid SURROGAT class profile, where userid is
the authorization ID of the stored procedure.

This is an input parameter of type VARCHAR(100).

job-ID
Specifies the JES2 or JES3 job ID whose SYSOUT data sets are to be retrieved.

This is an input parameter of type CHAR(8) and cannot be null.

return-code
Provides the return code from the stored procedure. Possible values are:
0

The call completed successfully.

792 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.bpxb200/srvdef2.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.bpxb200/srvdef2.htm

12
The call did not complete successfully. The message output parameter contains messages
describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If no error occurred,
then no message is returned.

The first messages in this area are generated by the stored procedure. Messages that are generated
by Db2 might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Example

The following C language sample shows how to invoke ADMIN_JOB_FETCH:

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

/******************** DB2 SQL Communication Area ********************/
 EXEC SQL INCLUDE SQLCA;

 int main(int argc, char *argv[]) /* Argument count and list */
 {
 /****************** DB2 Host Variables ****************************/
 EXEC SQL BEGIN DECLARE SECTION;

 /* SYSPROC.ADMIN_JOB_FETCH parameters */
 char userid[129]; /* User ID */
 short int ind_userid; /* Indicator variable */
 char password[101]; /* Password */
 short int ind_password; /* Indicator variable */
 char jobid[9]; /* Job ID */
 short int ind_jobid; /* Indicator variable */
 long int retcd; /* Return code */
 short int ind_retcd; /* Indicator variable */
 char errmsg[1332]; /* Error message */
 short int ind_errmsg; /* Indicator variable */

 /* Result set locators */
 volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc1;

 /* Result set row */
 long int rownum; /* Sequence number of the */
 /* table row */
 char text[4097]; /* A row in SYSOUT data set */
 EXEC SQL END DECLARE SECTION;

 /**/
 /* Assign values to input parameters to fetch the SYSOUT of a job */
 /* Set the indicator variables to 0 for non-null input parameters */
 /**/
 strcpy(userid, "USRT001");
 ind_userid = 0;
 strcpy(password, "N1CETEST");
 ind_password = 0;
 strcpy(jobid, "JOB00100");
 ind_jobid = 0;

 /**/
 /* Call stored procedure SYSPROC.ADMIN_JOB_FETCH */
 /**/
 EXEC SQL CALL SYSPROC.ADMIN_JOB_FETCH
 (:userid :ind_userid,
 :password :ind_password,
 :jobid :ind_jobid,
 :retcd :ind_retcd,
 :errmsg :ind_errmsg);

 /**/
 /* Retrieve result set when the SQLCODE from the call is +446, */
 /* which indicates that result sets were returned */
 /**/

Chapter 5. Procedures that are supplied with Db2 793

 if (SQLCODE == +466) /* Result sets were returned */
 {
 /* Establish a link between the result set and its locator */
 EXEC SQL ASSOCIATE LOCATORS (:rs_loc1)
 WITH PROCEDURE SYSPROC.ADMIN_JOB_FETCH;

 /* Associate a cursor with the result set */
 EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :rs_loc1;

 /* Perform fetches using C1 to retrieve all rows from the */
 /* result set */
 EXEC SQL FETCH C1 INTO :rownum, :text;
 while(SQLCODE==0)
 {
 EXEC SQL FETCH C1 INTO :rownum, :text;
 }

 EXEC SQL CLOSE C1;
 }

 return(retcd);
 }

Output
This stored procedure returns the following output parameters, which are described in “Option
descriptions” on page 792:

• return-code
• message

In addition to the preceding output, the stored procedure returns one result set that contains the data
from the JES-managed SYSOUT data set that belong to the job ID specified in the input parameter job-ID.

The following table shows the format of the result set returned in the created global temporary table
SYSIBM.JES_SYSOUT:

Table 142. Result set row for ADMIN_JOB_FETCH result set

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row

TEXT VARCHAR(4096) A record in the SYSOUT data set

GUPI

ADMIN_JOB_QUERY stored procedure
The SYSPROC.ADMIN_JOB_QUERY stored procedure displays the status and completion information
about a job.

Environment
GUPI

The load module for ADMIN_JOB_QUERY, DSNADMJQ, must reside in an APF-authorized library.
ADMIN_JOB_QUERY runs in a WLM-established stored procedure address space, and all libraries in this
WLM procedure STEPLIB DD concatenation must be APF-authorized.

The load module for ADMIN_JOB_QUERY, DSNADMJQ, must be program controlled if the
BPX.DAEMON.HFSCTL FACILITY class profile has not been set up. For information on how to define
DSNADMJQ to program control, see installation job DSNTIJRA.

794 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges:

• The EXECUTE privilege on the ADMIN_JOB_QUERY stored procedure
• Ownership of the stored procedure
• SYSADM authority

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL SYSPROC.ADMIN_JOB_QUERY (user-ID

NULL

, password

NULL

,

job-ID , status , max-RC , completion-type , system-abend-code ,

user-abend-code , return-code , message)

Option descriptions
user-ID

Specifies the user ID under which the job is queried.

If user-ID is NULL, password must also be NULL. If the user-ID and password values are NULL, the
login process uses the primary authorization ID of the process.

You can specify NULL for this parameter in the following circumstances:

• The authorization ID that is associated with the stored procedure address space has daemon
authority.

• The authorization ID that is associated with the stored procedure address space does not have
daemon authority but is authorized to the BPX.SRV.userid SURROGAT class profile, where userid is
the authorization ID of the stored procedure. For more information about how the RACF security
administrator can authorize the authorization ID that is associated with the stored procedure
address space to a SURROGAT class profile, see Defining servers to process users without
passwords or password phrases.

Daemon authority is given to any superuser that is permitted to the BPX.DAEMON FACILITY class
profile. If the BPX.DAEMON FACILITY class profile is not defined, all superusers have daemon
authority.

This is an input parameter of type VARCHAR(128).

password
Specifies the password associated with the input parameter user-ID.

The value of password is passed to the stored procedure as part of payload, and is not encrypted. It is
not stored in dynamic cache when parameter markers are used.

If password is NULL, user-ID must also be NULL. If the user-ID and password values are NULL, the
login process uses the primary authorization ID of the process.

You can specify NULL for this parameter in the following circumstances:

• The authorization ID that is associated with the stored procedure address space has daemon
authority.

Chapter 5. Procedures that are supplied with Db2 795

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.bpxb200/srvdef2.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.bpxb200/srvdef2.htm

• The authorization ID that is associated with the stored procedure address space does not have
daemon authority but is authorized to the BPX.SRV.userid SURROGAT class profile, where userid is
the authorization ID of the stored procedure.

This is an input parameter of type VARCHAR(100).

job-ID
Specifies the job ID of the job being queried. Acceptable formats are:

• Jnnnnnnn
• JOBnnnnn

where n is a digit in the range 0–9. For example: JOB01035

Both Jnnnnnnn and JOBnnnnn must be exactly 8 characters in length.

This is an input parameter of type CHAR(8) and cannot be null.

status
Identifies the current status of the job. Possible values are:
1

Job received, but not yet run (INPUT).
2

Job running (ACTIVE).
3

Job finished and has output to be printed or retrieved (OUTPUT).
4

Job not found.
5

Job in an unknown phase.

This is an output parameter of type INTEGER.

max-RC
Provides the job completion code.

This is an output parameter of type INTEGER.

completion-type
Identifies the job's completion type. Possible values are:
0

No completion information is available.
1

Job ended normally.
2

Job ended by completion code.
3

Job had a JCL error.
4

Job was canceled.
5

Job terminated abnormally.
6

Converter terminated abnormally while processing the job.
7

Job failed security checks.
8

Job failed in end-of-memory .

796 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The completion-type information is the last six bits in the field STTRMXRC of the IAZSSST mapping
macro. This information is returned via SSI 80. For additional information, see the discussion of the
SSST macro in z/OS MVS Data Areas.

This is an output parameter of type INTEGER.

system-abend-code
Returns the system abend code if an abnormal termination occurs.

This is an output parameter of type INTEGER.

user-abend-code
Returns the user abend code if an abnormal termination occurs.

This is an output parameter of type INTEGER.

return-code
Provides the return code from the stored procedure. Possible values are:
0

The call completed successfully.
4

The job was not found, or the job status is unknown.
12

The call did not complete successfully. The message output parameter contains messages
describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If no error occurred,
then no message is returned.

This is an output parameter of type VARCHAR(1331).

Example

The following C language sample shows how to invoke ADMIN_JOB_QUERY:

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

 /******************** DB2 SQL Communication Area ********************/
 EXEC SQL INCLUDE SQLCA;

 int main(int argc, char *argv[]) /* Argument count and list */
 {
 /****************** DB2 Host Variables ****************************/
 EXEC SQL BEGIN DECLARE SECTION;

 /* SYSPROC.ADMIN_JOB_QUERY parameters */
 char userid[129]; /* User ID */
 short int ind_userid; /* Indicator variable */
 char password[101]; /* Password */
 short int ind_password; /* Indicator variable */
 char jobid[9]; /* Job ID */
 short int ind_jobid; /* Indicator variable */
 long int stat; /* Job status */
 short int ind_stat; /* Indicator variable */
 long int maxrc; /* Job maxcc */
 short int ind_maxrc; /* Indicator variable */
 long int comptype; /* Job completion type */
 short int ind_comptype; /* Indicator variable */
 long int sabndcd; /* System abend code */
 short int ind_sabndcd; /* Indicator variable */
 long int uabndcd; /* User abend code */
 short int ind_uabndcd; /* Indicator variable */
 long int retcd; /* Return code */
 short int ind_retcd; /* Indicator variable */
 char errmsg[1332]; /* Error message */
 short int ind_errmsg; /* Indicator variable */

Chapter 5. Procedures that are supplied with Db2 797

 EXEC SQL END DECLARE SECTION;

 /**/
 /* Assign values to input parameters to query the status and */
 /* completion code of a job */
 /* Set the indicator variables to 0 for non-null input parameters */
 /**/
 strcpy(userid, "USRT001");
 ind_userid = 0;
 strcpy(password, "N1CETEST");
 ind_password = 0;
 strcpy(jobid, "JOB00111");
 ind_jobid = 0;

 /**/
 /* Call stored procedure SYSPROC.ADMIN_JOB_QUERY */
 /**/
 EXEC SQL CALL SYSPROC.ADMIN_JOB_QUERY
 (:userid :ind_userid,
 :password :ind_password,
 :jobid :ind_jobid,
 :stat :ind_stat,
 :maxrc :ind_maxrc,
 :comptype :ind_comptype,
 :sabndcd :ind_sabndcd,
 :uabndcd :ind_uabndcd,
 :retcd :ind_retcd,
 :errmsg :ind_errmsg);

 return(retcd);
 }

Output
This stored procedure returns the following output parameters, which are described in “Option
descriptions” on page 795:

• status
• max-RC
• completion-type
• system-abend-code
• user-abend-code
• return-code
• message

GUPI

ADMIN_JOB_SUBMIT stored procedure
The SYSPROC.ADMIN_JOB_SUBMIT stored procedure submits a job to a JES2 or JES3 system.

Environment
GUPI

ADMIN_JOB_SUBMIT runs in a WLM-established stored procedure address space.

The load module for ADMIN_JOB_SUBMIT, DSNADMJS, must be program controlled if the
BPX.DAEMON.HFSCTL FACILITY class profile has not been set up. For information on how to define
DSNADMJS to program control, see installation job DSNTIJRA.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges on each package that the stored procedure uses:

798 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• The EXECUTE privilege on the package for DSNADMJS
• Ownership of the package
• PACKADM authority for the package collection
• SYSADM authority

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL SYSPROC.ADMIN_JOB_SUBMIT (user-ID

NULL

, password

NULL

,

job-ID , return-code , message)

Option descriptions
user-ID

Specifies the user ID under which the job is submitted.

If user-ID is NULL, password must also be NULL. If the user-ID and password values are NULL, the
login process uses the primary authorization ID of the process.

You can specify NULL for this parameter in the following circumstances:

• The authorization ID that is associated with the stored procedure address space has daemon
authority.

• The authorization ID that is associated with the stored procedure address space does not have
daemon authority but is authorized to the BPX.SRV.userid SURROGAT class profile, where userid is
the authorization ID of the stored procedure. For more information about how the RACF security
administrator can authorize the authorization ID that is associated with the stored procedure
address space to a SURROGAT class profile, see Defining servers to process users without
passwords or password phrases.

Daemon authority is given to any superuser that is permitted to the BPX.DAEMON FACILITY class
profile. If the BPX.DAEMON FACILITY class profile is not defined, all superusers have daemon
authority.

This is an input parameter of type VARCHAR(128).

password
Specifies the password associated with the input parameter user-ID.

The value of password is passed to the stored procedure as part of payload and is not encrypted. It is
not stored in dynamic cache when parameter markers are used.

If password is NULL, user-ID must also be NULL. If the user-ID and password values are NULL, the
login process uses the primary authorization ID of the process.

You can specify NULL for this parameter in the following circumstances:

• The authorization ID that is associated with the stored procedure address space has daemon
authority.

• The authorization ID that is associated with the stored procedure address space does not have
daemon authority but is authorized to the BPX.SRV.userid SURROGAT class profile, where userid is
the authorization ID of the stored procedure.

This is an input parameter of type VARCHAR(100).

job-ID
Identifies the JES2 or JES3 job ID of the submitted job.

Chapter 5. Procedures that are supplied with Db2 799

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.bpxb200/srvdef2.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.bpxb200/srvdef2.htm

This is an output parameter of type CHAR(8).

return-code
Provides the return code from the stored procedure. Possible values are:
0

The call completed successfully.
12

The call did not complete successfully. The message output parameter contains messages
describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If no error occurred,
then no message is returned.

The first messages in this area are generated by the stored procedure. Messages that are generated
by Db2 might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Additional input
In addition to the input parameters, the stored procedure submits the job's JCL from the created global
temporary table SYSIBM.JOB_JCL for execution.

The following table shows the format of the created global temporary table SYSIBM.JOB_JCL:

Table 143. Additional input for the ADMIN_JOB_SUBMIT stored procedure

Column name Data type Contents

ROWNUM INTEGER Sequence number of the table
row, from 1 to n

STMT VARCHAR(80) A JCL statement

Example

The following C language sample shows how to invoke ADMIN_JOB_SUBMIT:

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

/******************** DB2 SQL Communication Area ********************/
 EXEC SQL INCLUDE SQLCA;

 int main(int argc, char *argv[]) /* Argument count and list */
 {
 /****************** DB2 Host Variables ****************************/
 EXEC SQL BEGIN DECLARE SECTION;

 /* SYSPROC.ADMIN_JOB_SUBMIT parameters */
 char userid[129]; /* User ID */
 short int ind_userid; /* Indicator variable */
 char password[101]; /* Password */
 short int ind_password; /* Indicator variable */
 char jobid[9]; /* Job ID */
 short int ind_jobid; /* Indicator variable */
 long int retcd; /* Return code */
 short int ind_retcd; /* Indicator variable */
 char errmsg[1332]; /* Error message */
 short int ind_errmsg; /* Indicator variable */

 /* Temporary table SYSIBM.JOB_JCL columns */
 long int rownum; /* Sequence number of the */
 /* table row */
 char stmt[81]; /* JCL statement */
 EXEC SQL END DECLARE SECTION;

800 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 /**/
 /* Create the JCL job to be submitted for execution */
 /**/
 char jclstmt[12][50] = {
 "//IEBCOPY JOB ,CLASS=K,MSGCLASS=H,MSGLEVEL=(1,1)",
 "//STEP010 EXEC PGM=IEBCOPY",
 "//SYSPRINT DD SYSOUT=*",
 "//SYSUT3 DD SPACE=(TRK,(1,1)),UNIT=SYSDA",
 "//SYSUT4 DD SPACE=(TRK,(1,1)),UNIT=SYSDA",
 "//*",
 "//DDI1 DD DSN=USER.DEV.LOADLIB1,DISP=SHR",
 "//DDO1 DD DSN=USER.DEV.LOADLIB2,DISP=SHR",
 "//SYSIN DD *",
 " COPY OUTDD=DDO1,INDD=DDI1",
 "/*",
 "//*"
 } ;
 int i = 0; /* loop counter */

 /**/
 /* Assign values to input parameters */
 /* Set the indicator variables to 0 for non-null input parameters */
 /**/
 strcpy(userid, "USRT001");
 ind_userid = 0;
 strcpy(password, "N1CETEST");
 ind_password = 0;

 /**/
 /* Clear temporary table SYSIBM.JOB_JCL */
 /**/
 EXEC SQL DELETE FROM SYSIBM.JOB_JCL;

 /**/
 /* Insert the JCL job into the temporary table SYSIBM.JOB_JCL */
 /**/
 for (i = 0; i < 12; i++)
 {
 rownum = i+1;
 strcpy(stmt, jclstmt[i]);
 EXEC SQL INSERT INTO SYSIBM.JOB_JCL
 (ROWNUM, STMT)
 VALUES (:rownum, :stmt);
 };

 /**/
 /* Call stored procedure SYSPROC.ADMIN_JOB_SUBMIT */
 /**/
 EXEC SQL CALL SYSPROC.ADMIN_JOB_SUBMIT
 (:userid :ind_userid,
 :password :ind_password,
 :jobid :ind_jobid,
 :retcd :ind_retcd,
 :errmsg :ind_errmsg);

 return(retcd);
 }

Output
This stored procedure returns the following output parameters, which are described in “Option
descriptions” on page 799:

• job-ID
• return-code
• message

GUPI

Chapter 5. Procedures that are supplied with Db2 801

ADMIN_TASK_ADD stored procedure
The SYSPROC.ADMIN_TASK_ADD stored procedure adds a task to the task list of the administrative task
scheduler.

GUPI

Environment
ADMIN_TASK_ADD runs in a WLM-established stored procedure address space and uses the Resource
Recovery Services attachment facility to connect to Db2.

Authorization
Anyone who can execute this Db2 stored procedure is allowed to add a task.

The user who calls this stored procedure must have MONITOR1 privilege.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL SYSPROC.ADMIN_TASK_ADD (user-ID , password

NULL , NULL

,

begin-timestamp

NULL

, end-timestamp

NULL

, max-invocations

NULL

,

interval , NULL , NULL , NULL , NULL ,

NULL , point-in-time , NULL , NULL , NULL ,

NULL , NULL , trigger-task-name , trigger-task-cond , trigger-task-code ,

NULL , NULL ,

db2-ssid

NULL

,

procedure-schema

NULL

, procedure-name , procedure-input

NULL

, NULL , NULL , NULL ,

NULL , NULL , NULL , JCL-library , JCL-member

NULL

, job-wait ,

task-name

NULL

, description

NULL

, return-code , message)

Option descriptions
user-ID

Specifies the user ID under which the task execution is performed.

If this parameter is set to NULL, task execution is performed with the default authorization ID
associated with the administrative task scheduler instead.

This is an input parameter of type VARCHAR(128).

password
Specifies the password associated with the input parameter user-ID.

802 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The value of password is passed to the stored procedure as part of payload, and is not encrypted. It is
not stored in dynamic cache when parameter markers are used.

Recommendation: Have the application that invokes this stored procedure pass an encrypted single-
use password called a passticket.

This is an input parameter of type VARCHAR(24). This parameter is NULL only when user-ID is set to
NULL, and must be NULL when user-ID is NULL.

begin-timestamp
Specifies when a task can first begin execution. When task execution begins depends on how this and
other parameters are set:
Non-null value for begin-timestamp

At begin-timestamp
The task execution begins at begin-timestamp if point-in-time and trigger-task-name are NULL.

Next point in time defined at or after begin-timestamp
The task execution begins at the next point in time defined at or after begin-timestamp if
point-in-time is non-null.

When trigger-task-name completes at or after begin-timestamp
The task execution begins the next time that trigger-task-name completes at or after begin-
timestamp.

Null value for begin-timestamp
Immediately

The task execution begins immediately if point-in-time and trigger-task-name are NULL.
Next point in time defined

The task execution begins at the next point in time defined if point-in-time is non-null.
When trigger-task-name completes

The task execution begins the next time that trigger-task-name completes.

The value of this parameter cannot be in the past, and it cannot be later than end-timestamp.

This is an input parameter of type TIMESTAMP.

end-timestamp
Specifies when a task can last begin execution. If this parameter is set to NULL, then the task can
continue to execute as scheduled indefinitely.

The value of this parameter cannot be in the past, and it cannot be earlier than begin-timestamp.

This is an input parameter of type TIMESTAMP.

max-invocations
Specifies the maximum number of executions allowed for a task. This value applies to all schedules:
triggered by events, recurring by time interval, and recurring by points in time. If this parameter is set
to NULL, then there is no limit to the number of times this task can execute.

For tasks that execute only one time, max-invocations must be set to 1 and interval, point-in-time and
trigger-task-name must be NULL.

If both end-timestamp and max-invocations are specified, the first limit reached takes precedence.
That is, if end-timestamp is reached, even though the number of task executions so far has not
reached max-invocations, the task will not be executed again. If max-invocations have occurred, the
task will not be executed again even if end-timestamp is not reached.

This is an input parameter of type INTEGER.

interval
Defines a duration in minutes between two executions of a repetitive regular task. The first execution
occurs at begin-timestamp. If this parameter is set to NULL, the task is not regularly executed. If this
parameter contains a non-null value, the parameters point-in-time and trigger-task-name must be set
to NULL.

Chapter 5. Procedures that are supplied with Db2 803

This is an input parameter of type INTEGER.

point-in-time
Defines one or more points in time when a task is executed. If this parameter is set to NULL, the task
is not scheduled at fixed points in time. If this parameter contains a non-null value, the parameters
interval and trigger-task-name must be set to NULL.

The point-in-time string uses the UNIX cron format. The format contains the following pieces of
information separated by blanks: given minute or minutes, given hour or hours, given day or days of
the month, given month or months of the year, and given day or days of the week. For each part, you
can specify one or several values, ranges, and so forth.

This is an input parameter of type VARCHAR(400).

trigger-task-name
Specifies the name of the task which, when its execution is complete, will trigger the execution of this
task.

Task names of DB2START and DB2STOP are reserved for Db2 stop and start events respectively.
Those events are handled by the scheduler associated with the Db2 subsystem that is starting or
stopping.

If this parameter is set to NULL, the execution of this task will not be triggered by another task. If this
parameter contains a non-null value, the parameters interval and point-in-time must be set to NULL.

This is an input parameter of type VARCHAR(128).

trigger-task-cond
Specifies the type of comparison to be made to the return code after the execution of task trigger-
task-name. Possible values are:
GT

Greater than
GE

Greater than or equal to
EQ

Equal to
LT

Less than
LE

Less than or equal to
NE

Not equal to

If this parameter is set to NULL, the task execution is triggered without considering the return code
of task trigger-task-name. This parameter must be set to NULL if trigger-task-name is set to NULL or is
either DB2START or DB2STOP.

This is an input parameter of type CHAR(2).

trigger-task-code
Specifies the return code from executing trigger-task-name.

If the execution of this task is triggered by a stored procedure, trigger-task-code contains the
SQLCODE that must be returned by the triggering stored procedure in order for this task to execute.

If the execution of this task is triggered by a JCL job, trigger-task-code contains the MAXRC that must
be returned by the triggering job in order for this task to execute.

To find out what the MAXRC or SQLCODE of a task is after execution, invoke the user-defined function
DSNADM. ADMIN_TASK_STATUS returns these information in the columns MAXRC and SQLCODE.

The following restrictions apply to the value of trigger-task-code:

804 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• If trigger-task-cond is null, then trigger-task-code must also be null.
• If trigger-task-cond is non-null, then trigger-task-code must also be non-null.

If trigger-task-cond and trigger-task-code are not null, they are used to test the return code from
executing trigger-task-name to determine whether to execute this task or not.

For example, if trigger-task-cond is set to "GE" and trigger-task-code is set to "8", then this task will
execute if and only if the previous execution of trigger-task-name returned a MAXRC (for a JCL job) or
an SQLCODE (for a stored procedure) greater than or equal to 8.

This is an input parameter of type INTEGER.

db2-ssid
Specifies the Db2 subsystem ID whose associated scheduler should execute the task.

This parameter is used in a data sharing environment where, for example different Db2 members have
different configurations and executing the task relies on a certain environment. However, specifying a
value in db2-ssid will prevent schedulers of other members to execute the task, so that the task can
only be executed as long as the scheduler of db2-ssid is running.

For a task being triggered by a Db2 start or Db2 stop event in trigger-task-name, specifying a value in
db2-ssid will let the task be executed only when the named subsystem is starting and stopping. If no
value is given, each member that starts or stops will trigger a local execution of the task, provided that
the executions are serialized.

If this parameter is set to NULL, any scheduler can execute the task.

This is an input parameter of type VARCHAR(4).

procedure-schema
Specifies the schema of the Db2 stored procedure this task will execute. If this parameter is set to
NULL, Db2 uses a default schema. This parameter must be set to NULL if procedure-name is set to
NULL.

This is an input parameter of type VARCHAR(128).

procedure-name
Specifies the name of the Db2 stored procedure this task will execute. If this parameter is set to NULL,
no stored procedure will be called. In this case, a JCL job must be specified.

This is an input parameter of type VARCHAR(128).

procedure-input
Specifies the input parameters of the Db2 stored procedure this task will execute. This parameter
must contain a Db2 SELECT statement that returns one row of data. The returned values will be
passed as parameter to the stored procedure.

If this parameter is set to NULL, no parameters are passed to the stored procedure. This parameter
must be set to NULL when procedure-name is set to NULL.

This is an input parameter of type VARCHAR(4096).

JCL-library
Specifies the name of the data set where the JCL job to be executed is saved.

If this parameter is set to NULL, no JCL job will be executed. In this case, a stored procedure must be
specified.

This is an input parameter of type VARCHAR(44).

JCL-member
Specifies the name of the library member where JCL job to be executed is saved.

If this parameter is set to NULL, the data set specified in JCL-library must be sequential and contain
the JCL job to be executed. This parameter must be set to NULL if JCL-library is set to NULL.

This is an input parameter of type VARCHAR(8).

Chapter 5. Procedures that are supplied with Db2 805

job-wait
Specifies whether the job can be executed synchronously or not. This parameter can only be set to
NULL if JCL-library is set to NULL. Otherwise, it must be one of the following values:
NO

Specifies asynchronous execution. The sub-thread does not wait until the job completes execution
and returns immediately after the job submission. The task execution status is set to the
submission status, the result of the job execution itself is unavailable.

YES
Specifies synchronous execution. The sub-thread simulates a synchronous execution of the JCL
job. It waits until the job execution completes, gets the job status from the JES reader, and fills in
the last execution status of the task.

PURGE
Specifies that the job status in z/OS is purged. The sub-thread purges the job output from the JES
reader after execution. Execution is the same as when job-wait is YES.

This is an input parameter of type VARCHAR(8).

task-name
Specifies a unique name assigned to the task.

A unique task name is returned when the task is created with a NULL task-name value. This name is of
the format "TASK_ID_xxxx" where xxxx is 0001 for the first task named, 0002 for the second task, and
so forth.

The following task names are reserved and cannot be given as the value of task-name:

• Names starting with "TASK_ID_"
• DB2START
• DB2STOP

This is an input-output parameter of type VARCHAR(128).

description
Specifies a description assigned to the task.

This is an input parameter of type VARCHAR(128).

return-code
Provides the return code from the stored procedure. Possible values are:
0

The call completed successfully.
12

The call did not complete successfully. The message output parameter contains messages
describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. The first messages in
this area, if any, are generated by the stored procedure. Messages that are generated by Db2 might
follow the first messages.

This is an output parameter of type VARCHAR(1331).

Example
The following Java sample shows how to invoke ADMIN_TASK_ADD:

import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.Statement;
import java.sql.Timestamp;

806 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

import java.sql.Types;

Connection con = DriverManager.getConnection
 ("jdbc:db2://myserver:myport/mydatabase", "myuser", "mypassword");
CallableStatement callStmt = con.prepareCall
 ("CALL SYSPROC.ADMIN_TASK_ADD("
 + "?, ?)");
// provide the authid
callStmt.setString(1, "myexecuser");
// provide the password
callStmt.setString(2, "myexecpwd");
// set the start time to now
callStmt.setNull(3, Types.TIMESTAMP);
// no end time
callStmt.setNull(4, Types.TIMESTAMP);
// set the max invocation
callStmt.setInt(5, 1);
// This is a non recurrent task
callStmt.setNull(6, Types.INTEGER);
callStmt.setNull(7, Types.VARCHAR);
callStmt.setNull(8, Types.VARCHAR);
callStmt.setNull(9, Types.CHAR);
callStmt.setNull(10, Types.INTEGER);
callStmt.setNull(11, Types.VARCHAR);
// provide the stored procedure schema
callStmt.setString(12, "MYSCHEMA");
// provide the name of the stored procedure to be executed
callStmt.setString(13, "MYPROC");
// provide the stored procedure input parameter
callStmt.setString(14, "SELECT 1 FROM SYSIBM.SYSDUMMY1");
// This is not a JCL job
callStmt.setNull(15, Types.VARCHAR);
callStmt.setNull(16, Types.VARCHAR);
callStmt.setNull(17, Types.VARCHAR);
// add a new task with task name mytask
callStmt.setString(18, "mytask");
callStmt.registerOutParameter(18, Types.VARCHAR);
// provide the task description
callStmt.setString(19, "MY DESCRIPTION");
// register output parameters for error management
callStmt.registerOutParameter(20, Types.INTEGER);
callStmt.registerOutParameter(21, Types.VARCHAR);
// execute the statement
callStmt.execute();
// manage the return code
if (callStmt.getInt(20) == 0)
{
 System.out.print("\nSuccessfully added task " + callStmt.getString(18));
}
else
{
 System.out.print("\nError code and message are: "
 + callStmt.getInt(20) + "/" + callStmt.getString(21));
}

Output
The output of this stored procedure is the task name, task-name and the following output parameters,
which are described in “Option descriptions” on page 802:

• return-code
• message

GUPI

Related concepts
Scheduled execution of a JCL job (Db2 Administration Guide)
Related tasks
Adding a task (Db2 Administration Guide)

Chapter 5. Procedures that are supplied with Db2 807

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_scheduledjcljob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_schedulingtasks.html

ADMIN_TASK_CANCEL stored procedure
The ADMIN_TASK_CANCEL stored procedure attempts to stop the execution of a task that is currently
running.

For a task that is running, the stored procedure cancels the Db2 thread or the JES job that the task runs
in, and issues a return code of 0 (zero). If the task is not running or if cancellation of the task cannot be
initiated, the stored procedure issues a return code of 12.

Not all tasks can be canceled as requested. Only the administrative task scheduler that currently executes
the task can cancel a JCL task or a stored procedure task. Call the ADMIN_TASK_CANCEL stored
procedure on the Db2 subsystem that is specified in the DB2_SSID column of the task status.

GUPI

Environment
ADMIN_TASK_CANCEL runs in a WLM-established stored procedure address space and uses the Resource
Recovery Services attachment facility to connect to Db2.

Authorization
To call this stored procedure, you must have MONITOR1 privilege.

Anyone with SYSOPR, SYSCTRL, or SYSADM authority can call this stored procedure on any task. Anyone
who has EXECUTE authority on this stored procedure can call it on tasks that they added. If you try to
cancel the execution of a task that was added by a different user, an error is returned in the output.

The task is canceled under the authorization context of the user that currently calls the
ADMIN_TASK_CANCEL stored procedure, as defined in CURRENT SQLID. To cancel a stored procedure
task, you must have authority to call the Db2 command CANCEL THREAD. To cancel a JCL task, you must
have UPDATE authority in RACF on the resource MVS.CANCEL.JOB.jobname.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL ADMIN_TASK_CANCEL (task-name , return-code , message)

Option descriptions
task-name

Specifies the unique name of the task whose execution you want to cancel. This is an input parameter
of type VARCHAR(128).

return-code
Provides the return code from the stored procedure. Possible values are:
0

The call completed successfully.
12

The call did not complete successfully. The message output parameter contains messages
describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. The first messages in
this area, if any, are generated by the stored procedure. Messages that are generated by Db2 might
follow the stored procedure messages.

This is an output parameter of type VARCHAR(1331).

808 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Output
This stored procedure has the following output parameters, which are described in “Option descriptions”
on page 808:

• return-code
• message

GUPI

Related tasks
Stopping the execution of a task (Db2 Administration Guide)

ADMIN_TASK_REMOVE stored procedure
The SYSPROC.ADMIN_TASK_REMOVE stored procedure removes a task from the task list of the
administrative task scheduler.

If the task is running, the task continues to execute until completion and is not removed from the task list.
If other tasks depend on the execution of the task that is to be removed, the task is not removed from the
task list of the administrative task scheduler.

GUPI

Environment
See the recommended environment in installation job DSNTIJRA.

Authorization
Users with SYSOPR, SYSCTRL, or SYSADM authority can remove any task. Other users who have EXECUTE
authority on this stored procedure can remove tasks that they added. Attempting to remove a task that
was added by a different user returns an error in the output.

The user who calls this stored procedure must have MONITOR1 privilege.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL SYSPROC.ADMIN_TASK_REMOVE (task-name , return-code , message)

Option descriptions
task-name

Specifies the name of the task to be removed from the task list of the administrative task scheduler.

This is an input parameter of type VARCHAR(128) and cannot be null.

return-code
Provides the return code from the stored procedure. Possible values are:
0

The call completed successfully.
12

The call did not complete successfully. The message output parameter contains messages
describing the error.

This is an output parameter of type INTEGER.

Chapter 5. Procedures that are supplied with Db2 809

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_cancelingscheduledtasks.html

message
Contains messages describing the error encountered by the stored procedure. The first messages in
this area, if any, are generated by the stored procedure. Messages that are generated by Db2 might
follow the stored procedure messages.

This is an output parameter of type VARCHAR(1331).

Example
The following Java sample shows how to invoke ADMIN_TASK_REMOVE:

import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.Statement;
import java.sql.Timestamp;
import java.sql.Types;

Connection con =
 DriverManager.getConnection("jdbc:db2://myserver:myport/mydatabase",
 "myuser", "mypassword");
CallableStatement callStmt =
 con.prepareCall("CALL SYSPROC.ADMIN_TASK_REMOVE(?, ?, ?)");
// provide the id of the task to be removed
callStmt.setString(1, "mytask");
// register output parameters for error management
callStmt.registerOutParameter(2, Types.INTEGER);
callStmt.registerOutParameter(3, Types.VARCHAR);
// execute the statement callStmt.execute();
// manage the return code
if (callStmt.getInt(2) == 0)
 {
 System.out.print("\nSuccessfully removed task "
 + callStmt.getString(1));
 }
else
 {
 System.out.print("\nError code and message are: "
 + callStmt.getInt(2) + "/"
 + callStmt.getString(3));
 }

Output
The output of this stored procedure includes the following output parameters, which are described in
“Option descriptions” on page 809:

• return-code
• message

GUPI

Related tasks
Removing a scheduled task (Db2 Administration Guide)
Establishing subsystem security: DSNTIJRA (optional) (Db2 Installation and Migration)
Related reference
ADMIN_TASK_LIST table function
The ADMIN_TASK_LIST function returns a table with one row for each of the tasks that are defined in the
administrative task scheduler task list.
ADMIN_TASK_STATUS table function

810 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_removescheduledtask.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_establdb2securitymigrds.html

The ADMIN_TASK_STATUS function returns a table with one row for each task that is defined in the
administrative task scheduler task list. Each row indicates the status of the task for the last time it was
run.

ADMIN_TASK_UPDATE stored procedure
The ADMIN_TASK_UPDATE stored procedure updates the schedule of a task that is in the task list for the
administrative task scheduler. If the task that you want to update is running, the changes go into effect
after the current execution finishes.

You must specify all of the parameters for the task that you want to modify the schedule for, even if
those parameters have not changed since you created the task by using the ADMIN_TASK_ADD stored
procedure.

GUPI

Environment
ADMIN_TASK_UPDATE runs in a WLM-established stored procedure address space and uses the Resource
Recovery Services attachment facility to connect to Db2.

Authorization
To call this stored procedure, you must have MONITOR1 privilege.

Anyone with SYSOPR, SYSCTRL, or SYSADM authority can update any task. Anyone who has EXECUTE
authority on this stored procedure can update tasks that they added. If you try to update a task that was
added by a different user, an error is returned in the output.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL ADMIN_TASK_UPDATE (task-name , description , begin_timestamp

, end_timestamp , max_invocations , interval , point-in-time ,

trigger-task-name , trigger-task-cond , trigger-task-code , db2-ssid ,

return-code , message)

Option descriptions
task-name

Specifies the unique name of the task that is to be updated in the task list of the administrative task
scheduler. This is an input parameter of type VARCHAR(128).

description
Specifies a description that is assigned to the task. This is an input parameter of type VARCHAR(128).

begin-timestamp
An input parameter of type TIMESTAMP that specifies the earliest time a task can begin execution.
The value of this argument cannot be in the past, and it cannot be later than end_timestamp.

When the execution of a task begins depends on how this parameter and other parameters are
defined:

Non-null value for begin-timestamp
At begin-timestamp

The task execution begins at begin-timestamp if point-in-time and trigger-task-name are NULL.

Chapter 5. Procedures that are supplied with Db2 811

Interval in minutes after the last execution of this task
The task execution begins at begin-timestamp.

Next point in time defined at or after begin-timestamp
The task execution begins at the next point in time that is defined at or after begin-timestamp
if point-in-time is non-null.

When trigger-task-name completes after begin-timestamp
The task execution begins the next time that trigger-task-name completes or after begin-
timestamp.

Null value for begin-timestamp
Immediately

The task execution begins immediately if point-in-time and trigger-task-name are NULL.
Interval in minutes after the last execution of this task

The task execution begins at begin-timestamp.
Next point in time defined

The task execution begins at the next point in time that is defined if point-in-time is non-null.
When trigger-task-name completes

The task execution begins the next time that trigger-task-name completes.
end-timestamp

An input parameter of type TIMESTAMP that specifies the latest time that a task can begin execution.
The value of this argument cannot be in the past, and it cannot be earlier than begin_timestamp. If the
argument is NULL, the task can continue to execute as scheduled indefinitely.

An executing task will not be interrupted at its end_timestamp value.

max-invocations
Specifies the maximum number of executions that are allowed for the modified task. This value
applies to all scheduled executions, whether they be triggered by events, recurring by time interval, or
recurring by points in time. This value includes the previous executions of the modified task.

If max-invocations is smaller than, or equal to the number of times that the task has already been
executed, the task will not be executed again. To modify the task to run again, you must specify max-
invocations as NULL, or as a value that is greater than the current number of times that the task has
already been executed. In addition, if max-invocations, interval, point-in-time, and trigger-task-name
are NULL, the task executes only one more time.

If this parameter is set to NULL, there is no limit to the number of times this task can execute. If both
end-timestamp and max-invocations are specified, the first limit that is reached takes precedence. For
example, if the value for end-timestamp is reached, the task will not be executed again, even if the
number of task executions has not reached the value of max-invocations. Likewise, if the value for
max-invocations is reached, the task will not be executed again, even if the value for end-timestamp is
not reached.

This is an input parameter of type INTEGER.

interval
Defines a time duration between two executions of a repetitive regular task. The first execution occurs
at begin-timestamp.

If this parameter is set to NULL, the task is not regularly executed. If this parameter contains a
non-null value, you must set the point-in-time and trigger-task-name parameters to NULL.

This is an input parameter of type INTEGER.

point-in-time
Specifies one or more points in time when a task is executed. If this parameter is set to NULL, the task
is not scheduled at fixed points in time. If this parameter contains a non-null value, the parameters
interval and trigger-task-name must be set to NULL.

The point-in-time string uses the UNIX cron format. This format contains the following pieces of
information separated by blank spaces:

812 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• Given minute or minutes
• Given hour or hours
• Given day or days of the month
• Given month or months of the year
• Given day or days of the week

For each part, you can specify one or several values and ranges.

This is an input parameter of type VARCHAR(400).

trigger-task-name
Specifies the name of the task that, upon completion, will trigger the execution of this task. The task
names DB2START and DB2STOP are reserved for Db2 startup and shutdown events. Those events are
handled by the scheduler that is associated with the Db2 subsystem that is starting or stopping.

If this parameter is set to NULL, the execution of this task will not be triggered by another task. If this
parameter contains a non-null value, the parameters interval and point-in-time must be NULL.

This is an input parameter of type VARCHAR(128).

trigger-task-cond
Specifies the type of comparison to be made to the return code after the execution of task trigger-
task-name. Possible values are:
GT

Greater than
GE

Greater than or equal to
EQ

Equal to
LT

Less than
LE

Less than or equal to
NE

Not equal to

If this parameter is set to NULL, the task execution is triggered without considering the return code
of task trigger-task-name. This parameter must be set to NULL if trigger-task-name is set to NULL or is
either DB2START or DB2STOP.

This is an input parameter of type CHAR(2).

trigger-task-code
Specifies the return code from executing the task trigger-task-name.

If the execution of this task is triggered by a stored procedure, trigger-task-code contains the
SQLCODE that must be returned by the triggering stored procedure in order for this task to execute.

If the execution of this task is triggered by a JCL job, trigger-task-code contains the MAXRC that must
be returned by the triggering job in order for this task to execute.

To find out what the MAXRC or SQLCODE of a task is after execution, invoking the user-defined
function DSNADM. ADMIN_TASK_STATUS returns this information in the columns MAXRC and
SQLCODE.

The following restrictions apply to the value of trigger-task-code:

• If trigger-task-cond is NULL, then trigger-task-code must also be NULL.
• If trigger-task-cond is non-null, then trigger-task-code must also be non-null.

Chapter 5. Procedures that are supplied with Db2 813

If trigger-task-cond and trigger-task-code are not set to NULL, they are used to test the return code
from executing trigger-task-name to determine whether to execute this task. For example, if trigger-
task-cond is set to "GE", and trigger-task-code is set to "8", then this task will execute only if the
previous execution of trigger-task-name returned a MAXRC (for a JCL job) or an SQLCODE (for a stored
procedure) that is greater than or equal to 8.

This is an input parameter of type INTEGER.

db2-ssid
Specifies the Db2 subsystem ID whose associated scheduler should execute the task.

This parameter is used in a data sharing environment, where different Db2 members have different
configurations and executing the task relies on a certain environment. However, specifying a value in
db2-ssid will prevent the administrative task schedulers of other members from executing the task.
Therefore, the task can be executed only if the administrative task scheduler of db2-ssid is running.

For a task that is being triggered by a Db2 start or Db2 stop event in trigger-task-name, specifying a
value in db2-ssid causes the task to be executed only when the named Db2 subsystem is starting or
stopping. If no value is given, each member that starts or stops will trigger a local execution of the
task, if the executions are serialized.

If this parameter is set to NULL, any administrative task scheduler can execute the task.

This is an input parameter of type VARCHAR(4).

return-code
Provides the return code from the stored procedure. Possible values are:
0

The call completed successfully.
12

The call did not complete successfully. The message output parameter contains messages
describing the error.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. The first messages in
this area, if any, are generated by the stored procedure. Messages that are generated by Db2 might
follow the stored procedure messages.

This is an output parameter of type VARCHAR(1331).

Output
This stored procedure has the following output parameters, which are described in “Option descriptions”
on page 811:

• return-code
• message

GUPI

Related tasks
Updating the schedule for a task (Db2 Administration Guide)

ADMIN_UPDATE_SYSPARM stored procedure
The SYSPROC.ADMIN_UPDATE_SYSPARM stored procedure changes the value of one or more subsystem
parameters which are located in one of these macros: DSN6SPRM, DSN6ARVP, DSN6LOGP, DSN6SYSP,
DSN6FAC, and DSN6GRP.

GUPI

814 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_updatingtaskschedule.html

ADMIN_UPDATE_SYSPARM builds a subsystem parameters load module and, if requested by the user,
loads it into storage by issuing the Db2 command SET SYSPARM with the LOAD option. If all of the
parameters that are modified cannot be updated online, SET SYSPARM LOAD is not run.

Environment
ADMIN_UPDATE_SYSPARM must run in a WLM-established stored procedure address space. At least one
library in this WLM procedure STEPLIB DD concatenation must not be APF-authorized. TCB=1 is also
required. By default, the SQL procedure processor (DSNTPSMP) and ADMIN_UPDATE_SYSPARM share the
WLM environment.

Authorization
To issue the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges:

• The EXECUTE privilege on the ADMIN_UPDATE_SYSPARM stored procedure
• Ownership of the stored procedure
• SYSADM authority

The ADMIN_UPDATE_SYSPARM stored procedure internally calls the following stored procedures:

• ADMIN_COMMAND_DB2, to issue the Db2 DISPLAY GROUP and SET SYSPARM commands
• ADMIN_INFO_SYSPARM, to obtain the current subsystem parameters settings

The owner of the package or plan that contains the CALL ADMIN_UPDATE_SYSPARM statement must also
have the following authority and privilege:

• Authorization to run these stored procedures and issue the specified Db2 commands
• MONITOR1 privilege

The ADMIN_UPDATE_SYSPARM caller also needs authorization from an external security system, such as
RACF, to complete the following tasks:

• Browse the data set that is pointed to by the ZPMDFLTS DD statement in the WLM startup procedure
• Update the library where the sample JCL that assembles and link-edits the new subsystem parameters

load module will be saved
• Update the load module library where the new subsystem parameters load module will be saved

Syntax
The following syntax diagram shows the SQL CALL statement for running this stored procedure:

CALL SYSPROC.ADMIN_UPDATE_SYSPARM (db2_member

NULL

,

parameter_module

NULL

, module_library

NULL

, source_library

NULL

,

load

NULL

, return-code)

Chapter 5. Procedures that are supplied with Db2 815

Option descriptions
db2_member

Specifies the name of a single data sharing group member on which the SET SYSPARM command with
the LOAD option is to be run.

If this parameter is null, the SET SYSPARM command is run on the connected Db2 subsystem.

This is an input parameter of type VARCHAR(8).

In a data-sharing environment, some additional requirements apply. For example, if
ADMIN_UPDATE_SYSPARM is run on member A to update a subsystem parameter setting on member
B, the WLM environment for ADMIN_UPDATE_SYSPARM needs to be able to access the following
resources:

• The library that is used to store the new subsystem parameters load module for member B
• The library that is used to store the sample JCL that assembles and link-edits the new subsystem

parameters load module for member B.

parameter_module
Specifies the name of the subsystem parameters load module that has the new values assembled and
linked into it.

If this parameter is null, the default is the last named subsystem parameters load module that was
loaded into storage.

This is an input parameter of type VARCHAR(8).

module_library
Specifies the name of the library where the stored procedure saves the new subsystem parameters
load module. If the load parameter is set to 'Y', this module library is also used to load the subsystem
parameters load module.

If this parameter is null, the default is the SDSNEXIT_NAME library that is specified in the data set
that is pointed to by the ZPMDFLTS DD statement in the WLM startup procedure.

This is an input parameter of type VARCHAR(44).

source_library
Specifies the name of the library where the stored procedure saves a sample JCL that assembles
and link-edits the new subsystem parameters load module offline. This JCL contains the updated
subsystem parameters.

This parameter must specify a partitioned data set (PDS) or a partitioned data set extended (PDSE)
with record format (RECFM) F or FB and record length (LRECL) 80.

If this parameter is null, the default is the SRCLIB_NAME library that is specified in the data set that is
pointed to by the ZPMDFLTS DD statement in the WLM startup procedure.

The name of the library member where the sample JCL is saved is the same as the library
member name of the new subsystem parameters load module. This JCL is not used by
ADMIN_UPDATE_SYSPARM to assemble and link-edit the subsystem parameters load module. This
JCL is generated and saved so that it can be referenced for any subsequent subsystem parameter
modification by the Db2 system programmer.

This is an input parameter of type VARCHAR(44).

load
Specifies whether to issue SET SYSPARM with the LOAD option to load the new subsystem parameters
load module into storage. Possible values are:
Y

Issue SET SYSPARM with the LOAD option.
N

Do not issue SET SYSPARM with the LOAD option.

816 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If this parameter is null, the default is 'N'.

If at least one modified subsystem parameter cannot be changed online or if SET SYSPARM
synchronous support is not available (PM40501 is not installed), SET SYSPARM with the LOAD option
is not issued even if load is set to 'Y'. Instead, a value of 4 is returned in the output parameter
return-code.

This is an input parameter of type CHAR(1).

return-code
Provides the return code from the stored procedure. Possible values are:
0

The call completed successfully.

Message DSNA658I is written to the JES SYSLOG, but not to the JES job log of ssnmMSTR.

The following information is returned in the result table of the stored procedure:

• Message DSNA658I
• Assembler listing
• Link-edit listing
• SET SYSPARM command with LOAD option messages (if applicable)

4

• The stored procedure modified the value of at least one Db2 subsystem parameter. However,
the stored procedure did not complete a required or requested action after the subsystem
parameter values were changed:

– The SET SYSPARM command with the LOAD option was not issued because of one of the
following reasons:

- At least one modified subsystem parameter cannot be changed online.
- Synchronous processing of the SET SYSPARM command is not supported.

– The stored procedure encountered an error while it was writing a DSNA658I message to the
JES SYSLOG.

For more information, see message DSNA666I.
• The cleanup processing that occurs when the stored procedure completes successfully did not

complete successfully because of one of the following reasons:

– The backup of the library member that the stored procedure replaced with the new JCL that
assembles and link-edits the new subsystem parameters load module was not deleted.

– The backup of the library member that the stored procedure replaced with the new
subsystem parameters load module was not deleted.

For more information, see message DSNA658I.

Message DSNA658I is written to the JES SYSLOG (if applicable), but not to the JES job log of
ssnmMSTR.

The following information is returned in the result table of the stored procedure:

• Message DSNA658I
• Message DSNA666I or DSNA658I (depending on which reason caused return_code to be set to

4)
• Assembler listing
• Link-edit listing
• SET SYSPARM command with LOAD option messages (if applicable)

Chapter 5. Procedures that are supplied with Db2 817

12

The call did not complete successfully.

Message DSNA669I is returned in the result set.

Objects that were replaced by the stored procedure are restored. For more information, see
“Backup copies” on page 819.

If the new subsystem parameters load module was loaded into storage, the stored procedure will
reload the subsystem parameters load module that was loaded previously.

995

The call did not complete successfully because of a REXX programming violation.

Message DSNA669I is displayed in the WLM job log.

996

The call did not complete successfully because of one of the following global temporary table
failures:

• The created global temporary table SYSIBM.UPDSYSPARM_MSG does not exist.
• The user does not have authority to use the created global temporary table

SYSIBM.UPDSYSPARM_MSG.

Message DSNA669I is displayed in the WLM job.

997

The call did not complete successfully because of one of the following DSNREXX failures:

• The DSNREXX package was not found.
• Db2 cannot access a DSNREXX environment. Db2 REXX Language Support is not available.

Message DSNA669I is displayed in the WLM job log.

998
There was an error that occurred while the result set was being returned.

The result set is written to the WLM job log. However, the assembler listing and the link-edit listing
are not written to the WLM job log unless the call did not complete successfully because the
assembly failed or the link-edit failed. If the assembly failed, the assembler listing is written to the
WLM job log. If the link-edit failed, the link-edit listing is written to the WLM job log.

This is an output parameter of type INTEGER.

ADMIN_UPDATE_SYSPARM input row
In addition to the input parameters, the stored procedure reads from the created global temporary table
SYSIBM.SYSPARM_SETTINGS to retrieve the subsystem parameters to be modified. The following table
shows the format of the created global temporary table SYSIBM.SYSPARM_SETTINGS:

Table 144. Format of the input subsystem parameters table

Column name Data type Contents

ROWNUM INTEGER

NOT NULL

A unique positive identifier for each row.

When you insert multiple rows, increment ROWNUM by 1,
starting at 0 for every insert.

818 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 144. Format of the input subsystem parameters table (continued)

Column name Data type Contents

MACRO VARCHAR(8)

NOT NULL

Macro that contains the Db2 subsystem parameter to be
modified.

Valid values are: DSN6SPRM, DSN6ARVP, DSN6LOGP,
DSN6SYSP, DSN6FAC, and DSN6GRP.

PARAMETER VARCHAR(40)

NOT NULL

Name of the Db2 subsystem parameter to be modified.

NEW_VALUE VARCHAR(2048)

NOT NULL

New value of the Db2 subsystem parameter to be
modified. This parameter is not validated by the stored
procedure.

Backup copies
In the subsystem parameters load module library, if a member exists with the same name as the name of
the new subsystem parameters load module, the stored procedure creates a backup copy of this member
before it is replaced with the new subsystem parameters load module. Similarly, in the JCL source library,
if a member exists with the same name as the name of the sample JCL that assembles and link-edits
the new subsystem parameters load module, the stored procedure creates a backup copy of this member
before it is replaced with the sample JCL. The backup copy is created in the same library where the
member it replaced resides, and its name has the following format: ssnmhhmm, where:
ssnm

The ssid of the Db2 subsystem where the subsystem parameter changes are implemented.
hh

The hour the stored procedure started execution (00-23).
mm

The minute the stored procedure started execution (00-59).

When the stored procedure completes successfully, the backup copies are deleted.

When the stored procedure does not complete successfully, the stored procedure restores the replaced
members to their state before the stored procedure was run by using their respective backup copies. If
the stored procedure is unable to restore a member from the backup, the user must complete this task.

If a member exists with the same name as the backup copy the stored procedure is creating, the stored
procedure terminates processing.

Example
The following C language example shows how to invoke ADMIN_UPDATE_SYSPARM.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/******************* DB2 SQL Communication Area ********************/
EXEC SQL INCLUDE SQLCA;
int main(int argc, char *argv[]) /* Argument count and list */
{
 /****************** DB2 Host Variables ****************************/
EXEC SQL BEGIN DECLARE SECTION;
/* SYSPROC.ADMIN_UPDATE_SYSPARM parameters */
char pmember[9]; /* Data sharing group member */
char pmodname[9]; /* Subsystem parameters load */
 /* module */
char pmodlib[45]; /* Subsystem parameters load */
 /* module library */
char psrclib[45]; /* Sample JCL library */
char pload[2]; /* Perform -SET SYSPARM with */

Chapter 5. Procedures that are supplied with Db2 819

 /* LOAD option */
long int pretcd; /* Return code */
short int ind_pmember; /* Indicator variable */
short int ind_pmodname; /* Indicator variable */
short int ind_pmodlib; /* Indicator variable */
short int ind_psrclib; /* Indicator variable */
short int ind_pload; /* Indicator variable */
short int ind_pretcd; /* Indicator variable */
/* Temporary table SYSIBM.SYSPARM_SETTINGS columns */
long int zrownum; /* Sequence number of the */
 /* table row */
char zmacro[9]; /* Macro containing the */
 /* subsystem parameter to be */
 /* modified */
char zparam[41]; /* Name of the subsystem */
 /* parameter to be modified */
char znew_value[2049]; /* New value of the subsystem */
 /* parameter to be modified */
/* Result set locators */
volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc1;
/* Result set row */
long int rownum; /* Sequence number of the */
 /* table row */
char type[13]; /* Type of information found */
 /* in corresponding TEXT col */
char text[1332]; /* Message or listing */
EXEC SQL END DECLARE SECTION;
/***/
/* Clear temporary table SYSIBM.SYSPARM_SETTINGS */
/***/
EXEC SQL DELETE FROM SYSIBM.SYSPARM_SETTINGS;
/***/
/* Clear temporary table SYSIBM.UPDSYSPARM_MSG */
/***/
EXEC SQL DELETE FROM SYSIBM.UPDSYSPARM_MSG;
/***/
/* Insert the subsystem parameters to be modified into the */
/* created global temporary table SYSIBM.SYSPARM_SETTINGS */
/***/
zrownum = 1;
strcpy(zmacro, "DSN6FAC");
strcpy(zparam, "IDTHTOIN");
strcpy(znew_value, "600");
EXEC SQL INSERT INTO SYSIBM.SYSPARM_SETTINGS
 (ROWNUM, MACRO, PARAMETER, NEW_VALUE)
 VALUES (:zrownum, :zmacro, :zparam, :znew_value);
/***/
/* Set procedure input parameters */
/***/
ind_pmember = -1;
ind_pmodname = -1;
ind_pmodlib = -1;
ind_psrclib = -1;
ind_pload = -1;
ind_pretcd = -1;

/***/
/* Call stored procedure SYSPROC.ADMIN_UPDATE_SYSPARM */
/***/
EXEC SQL CALL SYSPROC.ADMIN_UPDATE_SYSPARM (
 :pmember :ind_pmember,
 :pmodname :ind_pmodname,
 :pmodlib :ind_pmodlib,
 :psrclib :ind_psrclib,
 :pload :ind_pload,
 :pretcd :ind_pretcd);
/***/
/* Retrieve result set when the SQLCODE from the call is +446, */
/* which indicates that result sets were returned */
/***/
 if (SQLCODE == +466) /* Result sets were returned */
 {
 /* Establish a link between the result set and its locator */
 EXEC SQL ASSOCIATE LOCATORS (:rs_loc1)
 WITH PROCEDURE SYSPROC.ADMIN_UPDATE_SYSPARM;
 /* Associate a cursor with the result set */
 EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :rs_loc1;
 /* Perform fetches using C1 to retrieve all rows from the */
 /* result set */
 EXEC SQL FETCH C1 INTO :rownum, :type, :text;
 while(SQLCODE==0)
 {

820 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 EXEC SQL FETCH C1 INTO :rownum, :type, :text;
 }

 EXEC SQL CLOSE C1;
 }
 return;
}

Output
This stored procedure returns the return-code output parameter, which is described in “Option
descriptions” on page 816.

In addition to the preceding output, the stored procedure returns one result set that contains successful,
warning, or error messages that are generated by the stored procedure. The stored procedure also returns
(if applicable) the assembler and link-edit listings, IEBCOPY listing, and output from the SET SYSPARM
with LOAD option command.

The following table shows the format of the result set that is returned in the created global temporary
table SYSIBM.UPDSYSPARM_MSG:

Table 145. Result set row for the ADMIN_UPDATE_SYSPARM result set

Column
name Data type Contents

ROWNUM INTEGER

NOT NULL

Sequence number of the table row, from 1 to n.

TYPE VARCHAR(12)

NOT NULL

Type of information that is found in the corresponding TEXT column.
Possible values are:

• DSNADMUZ - TEXT is a message that is internally generated by the
stored procedure, such as DSNA658I, DSNA666I, DSNA669I, or
DSNA685I.

• ASSEMBLE - TEXT is a line from the assembler listing.
• LINK - TEXT is a line from the link-edit listing.
• LOAD - TEXT is a line from the message that is returned by SET

SYSPARM with the LOAD option command when this command was
issued to load the new subsystem parameters load module into
storage.

• IEBCOPY1 - TEXT is a line from the IEBCOPY listing which was
generated when IEBCOPY was issued to back up the subsystem
parameters load module that was being replaced.

• IEBCOPY2 - TEXT is a line from the IEBCOPY listing which was
generated when IEBCOPY was issued to restore the subsystem
parameters load module which the stored procedure replaced with
the new subsystem parameters load module.

• LOAD2 - TEXT is a line from the message that is returned by SET
SYSPARM with the LOAD option command when this command was
issued during restore processing to load the current subsystem
parameters load module into storage.

Chapter 5. Procedures that are supplied with Db2 821

Table 145. Result set row for the ADMIN_UPDATE_SYSPARM result set (continued)

Column
name Data type Contents

TEXT VARCHAR(1331)

NOT NULL

• A successful, warning, or error message that is generated by the
stored procedure. If the message is longer than 1331 characters,
the message continues in the next result set row.

• Assembler listing
• Link-edit listing
• Output from SET SYSPARM with the LOAD option command
• IEBCOPY listing

GUPI

ADMIN_UTL_EXECUTE stored procedure
ADMIN_UTL_EXECUTE is a stored procedure that solves alerts stored in the SYSIBM.SYSAUTOALERTS
catalog table within the maintenance windows defined by the SYSIBM.SYSAUTOTIMEWINDOWS catalog
table. It is required for the use of autonomic statistics.

GUPI The ADMIN_UTL_EXECUTE stored procedure performs the following tasks:

• Determines the order for resolving alerts.
• Within the maintenance windows that are defined in the SYSIBM.SYSAUTOTIMEWINDOWS catalog

table, calls the ADMIN_UTL_SCHEDULE stored procedure to resolve alerts by executing the RUNSTATS
utility. For each alert, the options for RUNSTATS are provided in the SYSIBM.SYSAUTOALERTS table.

• Updates the status and output of resolved alerts in the SYSIBM.SYSAUTOALERTS table.
• If the administrative task scheduler is used, reschedules its own execution for the next maintenance

window when unsolved alerts remain.

Environment
The ADMIN_UTL_EXECUTE stored procedure runs in a WLM-established stored procedure address
space and uses the Resource Recovery Services attachment facility to connect to Db2 The
ADMIN_UTL_EXECUTE stored procedures calls ADMIN_UTL_SCHEDULE stored procedures to execute
a RUNSTATS operations. The ADMIN_UTL_EXECUTE stored procedure is required and must be installed
and executable.

It calls the DSNADM.ADMIN_TASK_LIST and the SYSPROC.ADMIN_TASK_UPDATE routines.

Authorization required
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have DBADM or higher authority.

Syntax

CALL SYSPROC.ADMIN_UTL_EXECUTE (execute-options , history-entry-id ,

return-code , message)

822 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Option descriptions
The ADMIN_UTL_EXECUTE stored procedure has the following options:

execute-options
A string representation of the configuration parameters for the ADMIN_UTL_EXECUTE stored
procedure, consisting of "NAME=VALUE" pairs separated by commas. Optional parameters include:
STAND-ALONE

NO
The ADMIN_UTL_EXECUTE stored procedure interacts with the administrative task scheduler
to its own next execution. NO is the default value.

YES
The ADMIN_UTL_EXECUTE stored procedure does not interact with the administrative task
scheduler.

execute-options is an input parameter of type VARCHAR(30000).

history-entry-id
Provides a unique identifier that can be used to read the execution log written in the
SYSIBM.SYSAUTORUNS_HIST table when the SYSPROC.ADMIN_UTL_EXECUTE stored procedure
executes. This is an output parameter of type BIGINT.

return-code
Provides the return code from the stored procedure. Possible values are:
0

The call completed successfully.
4

The call completed successfully. The message output parameter contains a warning message.
12

The call did not complete successfully. The message output parameter contains messages
describing the error.

The return-code parameter is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure.

The message parameter is an output parameter of type VARCHAR(1331)

Example
The following example shows a Java call to the ADMIN_UTL_EXECUTE stored procedure:

long taskid = 7;
CallableStatement callStmt =
con.prepareCall("CALL SYSPROC.ADMIN_UTL_EXECUTE(?, ?, ?, ?)");
callStmt.setString(1, "");
callStmt.registerOutParameter(2,Types.BIGINT);
callStmt.registerOutParameter(3,Types.INTEGER);
callStmt.registerOutParameter(4,Types.LONGVARCHAR);
callStmt.execute();
if (callStmt.getInt(3) > 0)
{
 System.err.println("Error: " + callStmt.getString(4));
}

External input
The ADMIN_UTL_EXECUTE stored procedure reads additional input from the SYSIBM.SYSAUTOALERTS
and SYSIBM.SYSAUTOTIMEWINDOWS catalog tables.

Chapter 5. Procedures that are supplied with Db2 823

Output
The ADMIN_UTL_EXECUTE stored procedure returns the following output parameters:

• history-entry-id
• return-code
• message

The ADMIN_UTL_EXECUTE stored procedure also updates the following catalog tables:

• In the SYSIBM.SYSAUTOALERTS catalog table, the following columns are updated for each alert that is
solved:

– STARTTS
– ENDTS
– STATUS
– RETURN_CODE
– MESSAGE
– OUTPUT

• In the SYSIBM.SYSAUTORUNS_HIST stored procedure, one row of data is added to log the activity.

GUPI

Related tasks
Automating statistics maintenance (Db2 Performance)
Specifying time windows for collecting autonomic statistics (Db2 Performance)
Related reference
SYSAUTOALERTS catalog table
The SYSAUTOALERTS table contains one row for each recommendation from autonomic procedures. The
schema is SYSIBM.

ADMIN_UTL_MONITOR stored procedure
SYSPROC.ADMIN_UTL_MONITOR is an autonomic stored procedure that provides functions that enable
analysis of database statistics. These functions include alerts for out-of-date, missing, or conflicting
statistics, summary reports and detailed table-level reports that describe generated RUNSTATS
statements. It is required for the use of autonomic statistics.

GUPI The ADMIN_UTL_MONITOR stored procedure enables for the analysis of database statistics, by
providing the following functions:

• Issuing RUNSTATS alerts for out-of-date statistics. Counters in the SYSIBM.SYSTABLESPACESTATS
table are used to identify out of date statistics. Cloned table spaces, work file table spaces, and
directory table spaces are excluded from AUTOSTATS processing.

• Issuing RUNSTATS alerts for missing and conflicting database statistics, including statistics for columns,
column groups, and indexes.

• Generating a summary report for the number of tables analyzed and the number of RUNSTATS alerts
that were generated.

• Generating detailed table-level reports for RUNSTATS commands, including explanations.
• Scheduling execution of the ADMIN_UTL_EXECUTE stored procedure in the administrative task

scheduler to resolve alerts.

Environment
The ADMIN_UTL_MONITOR stored procedure runs in a WLM-established address space and uses the
Resource Recovery Services attachment facility to connect to Db2. The ADMIN_UTL_MONITOR stored
procedure is required and must be installed and executable.

824 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_automatestatistics.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_specifytimeautostats.html

If the stand-alone option is set to NO, the ADMIN_UTL_MONITOR stored procedure must be defined as
a trusted context in RACF and must run in a specific trusted WLM environment to get a RACF PassTicket
for the user that called the stored procedure. The ADMIN_UTL_MONITOR stored procedure calls the
following interface routines:

• SYSPROC.ADMIN_TASK_ADD
• SYSPROC.ADMIN_TASK_REMOVE
• SYSPROC.ADMIN_TASK_UPDATE
• DSNADM.ADMIN_TASK_LIST
• DSNADM.ADMIN_TASK_STATUS

Authorization required
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have DBADM or higher authority.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking the ADMIN_UTL_MONITOR
stored procedure:

CALL ADMIN_UTL_MONITOR (monitor-options , history-entry-id ,

return-code , message)

Option descriptions
The ADMIN_UTIL_MONITOR stored procedure has the following options:

monitor-options
A string representation of the configuration parameters for the ADMIN_UTIL_MONITOR stored
procedure, consisting of "NAME = VALUE" pairs separated by commas. Values, including blanks, equal
sign, and comma must be surrounded by single or double quotation marks. For example:

• restrict-ts='partition=1' is valid.
• restrict-ts="partition=1" is valid.
• restrict-ts=partition=1 is not valid.

Any value that contains single or double quotation marks must be surrounded by the opposite kind
of quotation marks. For example: restrict-ts="DBNAME='DSNDB06'" is valid because the single
quotation marks used in the value are surrounded by double quotation marks.

The following optional parameters are available:

• The following parameters specify general monitoring options:
restrict-ts

Indicates which table spaces require checking. Allowed values are strings that contain valid
contents for a WHERE clause on the SYSIBM.SYSTABLESPACESTATS catalog table. For example:

DBNAME LIKE 'MYDB%'

If no restriction is specified, all table spaces are checked.
stand-alone

Whether alerts trigger the ADMIN_UTL_EXECUTE stored procedure:
NO

Alerts are written and the ADMIN_UTL_EXECUTE stored procedure is called to resolve the
alerts. NO is the default value.

Chapter 5. Procedures that are supplied with Db2 825

YES
Alerts are written but no call is issued to the ADMIN_UTL_EXECUTE stored procedure.

statistics-scope
Specifies the scope of the statistics for the ADMIN_UTL_MONITOR stored procedure to check:
BASIC

Out-of-date statistics are checked, such as whether RUNSTATS has been run since the last
LOAD or REORG operation or whether the number and percentage of changes in a table
space are greater that a defined threshold. BASIC is the default value.

PROFILE
Out-of-date statistics and the completeness of statistics are checked, including whether all
statistics in the table profile have been collected.

PROFILE-CONSISTENCY
Out-of-date statistics, the completeness of statistics, and the consistency of statistics are
checked.

• The following optional parameters specify a threshold and settings for the use of table-sampling by
RUNSTATS.
sampling-rate

Indicates the percentage of rows that RUNSTATS samples when collecting statistics on non-
indexed columns. You can specify any value from 1 through 100. When sampling-rate is not
specified, AUTO is used. When a sampling-rate is not specified, the TABLESAMPLE SYSTEM
AUTO option is used for RUNSTATS alerts on single-table table spaces and the SAMPLE 25
option is used for RUNSTATS alerts on multi-table table spaces.

sampling-threshold
Indicates a threshold for the absolute number of rows in a table. When the threshold is
exceeded, a sampling option is recorded in the RUNSTATS alert, and that option is used later
when RUNSTATS executes to resolve the alert. You can specify a positive integer. A value of
500,000 is used when sampling-threshold is not specified. The specified sampling-rate is used
for all tables when you specify sampling-threshold=0.

• The following optional parameters specify thresholds for out-of-date statistics. A RUNSTATS alert
might be written when a threshold is exceeded.

Table 146. Parameters for out-of-date statistics

Option Description Allowed values
Default
value

num-
changes

Absolute number of inserted, updated, or
deleted rows in a table space. A RUNSTATS
alert is written when the thresholds for
both num-changes and pct-changes are
exceeded.

Positive integers, in the
range 0 to 2,147,483,647

0

num-mass-
deletes

Absolute number of massive delete
operations. A RUNSTATS alert is written
when the num-mass deletes threshold is
exceeded.

Positive integers, in the
range 0 to 2,147,483,647

0

pct-
changes

Percentage of inserted, updated, or
deleted rows in a table space. A RUNSTATS
alert is written when the thresholds for
both num-changes and pct-changes are
exceeded.

A real number float value
greater than 0.0 and less
than or equal to 100.0

20.0

• The following parameters specify thresholds for inconsistent statistics. The thresholds apply only
when the value of profile-consistency is specified for statistics-scope. A RUNSTATS alert
is written when a threshold is exceeded. Each threshold is a percentage difference when related
statistics are compared, as described in the following table.

826 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 147. Parameters for statistics consistency thresholds

Option Description Allowed values
Default
value

colgroup-card-
greater-than-superset-
colgroup-card

The cardinality of a column
group is greater than the
cardinality of its superset
column group.

A real number
between 0.0 and
100.0 inclusive

0.1

different-colgroup-
card-from-coldist-and-
index

The cardinalities of an index
column group and a table
column group that contain the
same columns do not match.

A real number
between 0.0 and
100.0 inclusive

0.1

different-colgroup-
card-from-indexes

The cardinalities of two index
column groups that contain the
same columns (independent of
order) do not match.

A real number
between 0.0 and
100.0 inclusive

0.1

different-single-col-
colgroup-card-from-
coldist-and-index

An index first key cardinality
differs from the corresponding
column cardinality

A real number
between 0.0 and
100.0 inclusive

0.1

different-single-col-
colgroup-card-from-
indexes

An index first key cardinality
differs from another index first
key cardinality on the same
column.

A real number
between 0.0 and
100.0 inclusive

0.1

drf-greater-than-
tabcard

The data repetition factor of an
index on a table is greater than
the cardinality of this table.

A real number
between 0.0 and
100.0 inclusive

0.1

drf-less-than-npages The data repetition factor of an
index on a table is smaller than
the number of pages.

A real number
between 0.0 and
100.0 inclusive

0.1

frequency-out-of-range A column group frequency of a
table is greater than 1 or smaller
than 0.

A real number
between 0.0 and
100.0 inclusive

0.1

index-fullkeycard-
less-than-any-key-card

The full key cardinality of
an index is smaller than the
cardinality of any column that is
involved with the index.

A real number
between 0.0 and
100.0 inclusive

0.1

index-fullkeycard-
less-than-firstkeycard

The full key cardinality of an
index is smaller than the first
key cardinality of the same index

A real number
between 0.0 and
100.0 inclusive

0

maximum-frequency-
less-than-reciprocal-
of-colgroup-card

The maximal frequency of a
column group is smaller than 1
divided by the cardinality of the
column group.

A real number
between 0.0 and
100.0 inclusive

0.1

number-of-frequency-
records-greater-than-
colgroup-card

The number of frequency
records of a column group is
greater than the cardinality of a
column group.

A real number
between 0.0 and
100.0 inclusive

0.1

Chapter 5. Procedures that are supplied with Db2 827

Table 147. Parameters for statistics consistency thresholds (continued)

Option Description Allowed values
Default
value

product-of-colcard-
less-than-colgroup-
card

The product of the cardinalities
of the columns of a column
group is smaller than the
cardinality of the column group.

A real number
between 0.0 and
100.0 inclusive

0

quantile-card-greater-
than-colcard

The cardinality of a quantile in
a column group, on a single
column, is greater than the
cardinality of the column.

A real number
between 0.0 and
100.0 inclusive

0.1

quantile-card-greater-
than-colgroup-card

The cardinality of a quantile in
a column of a table is greater
than the cardinality of the same
column.

A real number
between 0.0 and
100.0 inclusive

0.1

quantile-frequency-
out-of-range

The cardinality of a column
group quantile is smaller than 0
or greater than 1.

A real number
between 0.0 and
100.0 inclusive

0

single-col-index-
fullkeycard-not-equal-
firstkeycard

The full key cardinality of an
index, on a single column, is
different from the first key
cardinality.

A real number
between 0.0 and
100.0 inclusive

0.1

sum-of-frequency-
greater-than-one

The sum of all frequencies of
a column group of a table is
greater than one.

A real number
between 0.0 and
100.0 inclusive

0.1

sum-of-histogram-
frequency-greater-
than-one

The sum of all histogram
frequencies of a column group is
greater than one.

A real number
between 0.0 and
100.0 inclusive

0

sum-of-histogram-
greater-than-colcard

The sum of histogram
cardinalities of a column of
column group is greater than 1.

A real number
between 0.0 and
100.0 inclusive

0.1

sum-of-histogram-
greater-than-colgroup-
card

The sum of histogram
cardinalities of a column group
is greater than the cardinality of
the same column group.

A real number
between 0.0 and
100.0 inclusive

0.1

tabcard-less-than-
colcard

A table cardinality is smaller
than the cardinality of a column
in the same table

A real number
between 0.0 and
100.0 inclusive

0.1

tabcard-less-than-
colgroup-card

A table cardinality is smaller
than the cardinality of a column
group for this same table.

A real number
between 0.0 and
100.0 inclusive

0.1

tabcard-less-than-
index-keycard

The cardinality of a table is
smaller than the cardinality of
an index for this table.

A real number
between 0.0 and
100.0 inclusive

0.1

tabcard-not-equal-
unique-index-
fullkeycard

The cardinality of a table is
different from the cardinality of
a unique index on that table.

A real number
between 0.0 and
100.0 inclusive

0.1

monitor-options is an input parameter of type VARCHAR(30000).

828 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

history-entry-id
Returns a unique identifier that can be used to read the execution log in the
SYSIBM.SYSAUTORUNS_HIST table and the alerts in the SYSIBM.SYSAUTOALERTS table when the
SYSPROC.ADMIN_UTL_MONITOR stored procedure executes. This is an output parameter of type
BIGINT.

return-code
Provides the return code from the stored procedure. Possible values are:
0

The call completed successfully.
4

The call completed successfully. The message output parameter contains a warning message.
12

The call did not complete successfully. The message output parameter contains messages
describing the error.

The return-code parameter is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure.

The message parameter is an output parameter of type VARCHAR(1331)

Example
The following example shows a Java call to the ADMIN_UTL_MONITOR stored procedure:

CallableStatement callStmt =
con.prepareCall("CALL SYSPROC.ADMIN_UTL_MONITOR(?, ?, ?, ?)");
callStmt.setString(1, "");
callStmt.registerOutParameter(2,Types.INTEGER);
callStmt.registerOutParameter(3,Types.INTEGER);
callStmt.registerOutParameter(4,Types.LONGVARCHAR);
callStmt.execute();
if (callStmt.getInt(3) > 0)
{
System.err.println("Error: " + callStmt.getString(4));
}

External input
The ADMIN_UTL_MONITOR stored procedure reads additional input from the following catalog tables:

• SYSIBM.SYSTABLESPACESTATS
• SYSIBM.SYSTABLESPACE
• SYSIBM.SYSTABLES
• SYSIBM.SYSCOLUMNS
• SYSIBM.SYSCOLDIST
• SYSIBM.SYSINDEXES
• SYSIBM.SYSKEYS
• SYSIBM.SYSTABLES_PROFILES

Output
The ADMIN_UTL_MONITOR stored procedure returns the following output parameters:

• history-entry-id
• return-code
• message

Chapter 5. Procedures that are supplied with Db2 829

The ADMIN_UTL_MONITOR stored procedure also inserts rows of data into the following catalog tables:

• In the SYSIBM.SYSAUTOALERTS catalog table, a row of data is inserted for each RUNSTATS alert issued,
with values for following columns:

– HISTORY_ENTRY_ID
– ACTION
– TARGET_QUALIFIER
– TARGET_OBJECT
– TARGET_PARTITION
– OPTIONS
– DURATION
– STATUS

• In the SYSIBM.SYSTABLES_PROFILES catalog table, a row of data is inserted for each monitored table
that doesn't have a profile yet, with values in the following columns:

– SCHEMA
– TBNAME
– PROFILE_TYPE
– PROFILE_MODE
– PROFILE_TEXT
– PROFILE_UPDATE
– PROFILE_USED

• In the SYSIBM.SYSAUTORUNS_HIST stored procedure, one row of data is added to log the activity. GUPI

Related concepts
Statistics profiles (Db2 Performance)
Related tasks
Automating statistics maintenance (Db2 Performance)

ADMIN_UTL_MODIFY stored procedure
ADMIN_UTL_MODIFY is an autonomic stored procedure that maintains the SYSIBM.SYSAUTORUNS_HIST
and SYSIBM.SYSAUTOALERTS catalog tables.

GUPI The ADMIN_UTL_MODIFY stored procedure removes all entries in the
SYSIBM.SYSAUTORUNS_HIST table that are older than a configurable threshold and removes all entries
in the SYSIBM.SYSAUTOALERTS table that are older than the configured threshold and are in COMPLETE
state.

Environment
The ADMIN_UTL_MODIFY stored procedure runs in a WLM-established address space and uses the
Resource Recovery Services attachment facility to connect to Db2. The ADMIN_UTL_MODIFY stored
procedure is required and must be installed and executable.

Authorization required
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have DBADM or higher authority.

830 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_runstatsprofiles.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_automatestatistics.html

Syntax

CALL ADMIN_UTL_MODIFY (modify-options , history-entry-id ,

return-code , message)

Option descriptions
The ADMIN_UTL_MODIFY stored procedure has the following options:

modify-options
A string representation of the configuration parameters for the ADMIN_UTIL_MODIFY stored
procedure, consisting of "NAME = VALUE" pairs separated by commas. Optional parameters include:
HISTORY-DAYS

Number of days after that entries in the SYSIBM.SYSAUTORUNS_HIST table and completed alerts
in SYSIBM.SYSAUTOALERTS table are deleted. The value be a positive number of days.

modify-options is an input parameter of type VARCHAR(30000)

history-entry-id
Returns a unique identifier that can be used to read the execution log in the
SYSIBM.SYSAUTORUNS_HIST table when the SYSPROC.ADMIN_UTL_MODIFY stored procedure
executes. This is an output parameter of type BIGINT.

return-code
Provides the return code from the stored procedure. Possible values are:
0

The call completed successfully.
4

The call completed successfully. The message output parameter contains a warning message.
12

The call did not complete successfully. The message output parameter contains messages
describing the error.

The return-code parameter is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure.

The message parameter is an output parameter of type VARCHAR(1331)

Example
The following example shows a Java call to the ADMIN_UTL_MODIFY stored procedure:

String options = "history-days=90";
CallableStatement callStmt =
con.prepareCall("CALL SYSPROC.ADMIN_UTL_MODIFY(?, ?, ?, ?)");
callStmt.setString(1, options);
callStmt.registerOutParameter(2,Types.INTEGER);
callStmt.registerOutParameter(3,Types.INTEGER);
callStmt.registerOutParameter(4,Types.LONGVARCHAR);
callStmt.execute();
if (callStmt.getInt(3) > 0)
{
 System.err.println("Error: " + callStmt.getString(4));
}

External input
The AUTO_UTL_MODIFY stored procedure reads additional input from the SYSIBM.SYSAUTORUNS_HIST
and SYSIBM.SYSAUTOALERTS catalog tables.

Chapter 5. Procedures that are supplied with Db2 831

Output
The ADMIN_UTL_MONITOR stored procedure returns the following output parameters:

• history-entry-id
• return-code
• message

The ADMIN_UTL_MODIFY stored procedure also deletes rows from the SYSIBM.SYSAUTORUNS_HIST
and SYSIBM.SYSAUTOALERTS tables and inserts a single row in to the SYSIBM.SYSAUTORUNS_HIST
table to log its activity. GUPI

Related tasks
Automating statistics maintenance (Db2 Performance)
Scheduling log and alert history cleanup for autonomic statistics (Db2 Performance)

ADMIN_UTL_SCHEDULE stored procedure
The SYSPROC.ADMIN_UTL_SCHEDULE stored procedure executes utilities in parallel.

Environment
GUPI

ADMIN_UTL_SCHEDULE runs in a WLM-established stored procedures address space.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges on each package that the stored procedure uses:

• The EXECUTE privilege on the package for DSNADMUM
• Ownership of the package
• PACKADM authority for the package collection
• SYSADM authority

The ADMIN_UTL_SCHEDULE stored procedure internally calls the following stored procedures:

• ADMIN_COMMAND_DB2, to execute the Db2 DISPLAY UTILITY command
• ADMIN_INFO_SSID, to obtain the subsystem ID of the connected Db2 subsystem
• ADMIN_UTL_SORT, to sort objects into parallel execution units
• DSNUTILU, to run the requested utilities

The owner of the package or plan that contains the CALL ADMIN_UTL_SCHEDULE statement must also
have the authorization required to execute these stored procedures and run the requested utilities. To
determine the privilege or authority required to call DSNUTILU, see “DSNUTILU stored procedure” on
page 906.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

832 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_automatestatistics.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_cleanautoalerthistory.html

CALL SYSPROC.ADMIN_UTL_SCHEDULE (max-parallel , optimize-workload

NULL

, stop-condition

NULL

, utility-ID-stem , shutdown-duration

NULL

,

number-of-objects , utilities-run , highest-return-code , parallel-tasks ,

return-code , message)

Option descriptions
max-parallel

Specifies the maximum number of parallel threads that may be started. The actual number may be
lower than the requested number based on the optimizing sort result. Possible values are 1 to 99.

This is an input parameter of type SMALLINT and cannot be null.

optimize-workload
Specifies whether the parallel utility executions should be sorted to achieve shortest overall execution
time. Possible values are:
NO or null

The workload is not to be sorted.
YES

The workload is to be sorted.

This is an input parameter of type VARCHAR(8). The default value is NO.

stop-condition
Specifies the utility execution condition after which ADMIN_UTL_SCHEDULE will not continue starting
new utility executions in parallel, but will wait until all currently running utilities have completed and
will then return to the caller. Possible values are:
AUTHORIZ or null

No new utility executions will be started after one of the currently running utilities has
encountered a return code from DSNUTILU of 12 or higher.

WARNING
No new utility executions will be started after one of the currently running utilities has
encountered a return code from DSNUTILU of 4 or higher.

ERROR
No new utility executions will be started after one of the currently running utilities has
encountered a return code from DSNUTILU of 8 or higher.

This is an input parameter of type VARCHAR(8). The default value is AUTHORIZ.

utility-ID-stem
Specifies the first part of the utility ID of a utility execution in a parallel thread. The complete utility ID
is dynamically created in the form utility-ID-stem followed by TT followed by NNNNNN, where:
TT

The zero-padded number of the subtask executing the utility
NNNNNN

A consecutive number of utilities executed in a subtask.

For example, utilityidstem02000005 is the fifth utility execution that has been processed by the
second subtask.

This is an input parameter of type VARCHAR(8) and cannot be null.

Chapter 5. Procedures that are supplied with Db2 833

shutdown-duration
Specifies the elapsed time in seconds that ADMIN_UTL_SCHEDULE will allow utility executions before
a shutdown is initiated. When a shutdown is initiated, current utility executions can run to completion,
and no new utility will be started. Possible values are:
null

A shutdown will not be performed.
1 to 999999999999999

A shutdown will be performed after this many seconds.

This is an input parameter of type FLOAT(8). The default value is null.

number-of-objects
As an input parameter, this specifies the number of utility executions and their sorting objects that
were passed in the SYSIBM.UTILITY_OBJECTS table. Possible values are 1 to 999999.

As an output parameter, this specifies the number of objects that were passed in
SYSIBM.UTILITY_OBJECTS table that are found in the Db2 catalog.

This is an input and output parameter of type INTEGER and cannot be null.

utilities-run
Indicates the number of actual utility executions.

This is an output parameter of type INTEGER.

highest-return-code
Indicates the highest return code from DSNUTILU for all utility executions.

This is an output parameter of type INTEGER.

parallel-tasks
Indicates the actual number of parallel tasks that were started to execute the utility in parallel.

This is an output parameter of type SMALLINT.

return-code
Provides the return code from the stored procedure. Possible values are:
0

All parallel utility executions ran successfully.
4

The statistics for one or more sorting objects have not been gathered in the catalog.
12

An ADMIN_UTL_SCHEDULE error occurred or all the objects passed in the
SYSIBM.UTILITY_OBJECTS table are not found in the Db2 catalog. The message parameter
contains details.

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If no error occurred,
then no message is returned.

The first messages in this area are generated by the stored procedure. Messages that are generated
by Db2 might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Additional input
In addition to the input parameters, the stored procedure reads from the created global temporary tables
SYSIBM.UTILITY_OBJECTS and SYSIBM.UTILITY_STMT.

The stored procedure reads objects for utility execution from SYSIBM.UTILITY_OBJECTS. The following
table shows the format of the created global temporary table SYSIBM.UTILITY_OBJECTS:

834 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 148. Format of the input objects

Column name Data type Contents

OBJECTID INTEGER A unique positive identifier for
the object the utility execution
is associated with. When you
insert multiple rows, increment
OBJECTID by 1, starting at 0 for
every insert.

STMTID INTEGER A statement row in
SYSIBM.UTILITY_STMT

TYPE VARCHAR(10) Object type:

• TABLESPACE
• INDEXSPACE
• TABLE
• INDEX
• STOGROUP

QUALIFIER VARCHAR(128) Qualifier (database or creator) of
the object in NAME, empty or null
for STOGROUP. If the qualifier
is not provided and the type
of the object is TABLESPACE or
INDEXSPACE, then the default
database is DSNDB04. If the
object is of the type TABLE or
INDEX, the schema is the current
SQL authorization ID.

NAME VARCHAR(128) Unqualified name of the object.
NAME cannot be null. If the
object no longer exists, it will
be ignored and the corresponding
utility will not be executed.

PART SMALLINT Partition number of the object for
which the utility will be invoked.
Null or 0 if the object is not
partitioned.

RESTART VARCHAR(8) Restart parameter of DSNUTILU

Chapter 5. Procedures that are supplied with Db2 835

Table 148. Format of the input objects (continued)

Column name Data type Contents

UTILITY_NAME VARCHAR(20) Utility name. UTILITY_NAME
cannot be null.

Recommendation: Sort objects
for the same utility.

Possible values are:

• CHECK DATA
• CHECK INDEX
• CHECK LOB
• COPY
• COPYTOCOPY
• DIAGNOSE
• LOAD
• MERGECOPY
• MODIFY RECOVERY
• MODIFY STATISTICS
• QUIESCE
• REBUILD INDEX
• RECOVER
• REORG INDEX
• REORG LOB
• REORG TABLESPACE
• REPAIR
• REPORT RECOVERY
• REPORT TABLESPACESET
• RUNSTATS INDEX
• RUNSTATS TABLESPACE
• STOSPACE
• UNLOAD

The stored procedure reads the corresponding utility statements from SYSIBM.UTILITY_STMT. The
following table shows the format of the created global temporary table SYSIBM.UTILITY_STMT:

Table 149. Format of the utility statements

Column name Data type Contents

STMTID INTEGER A unique positive identifier for a
single utility execution statement

836 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 149. Format of the utility statements (continued)

Column name Data type Contents

STMTSEQ INTEGER If a utility statement exceeds
4000 characters, it can be
split up and inserted into
SYSIBM.UTILITY_STMT with the
sequence starting at 0, and
then being incremented with
every insert. During the actual
execution, the statement pieces
are concatenated without any
separation characters or blanks in
between.

UTSTMT VARCHAR(4000) A utility statement or part
of a utility statement. A
placeholder &OBJECT. can be
used to be replaced by
the object name passed in
SYSIBM.UTILITY_OBJECTS. A
placeholder &THDINDEX. can be
used to be replaced by the
current thread index (01-99)
of the utility being executed.
You can use this when running
REORG with SHRLEVEL CHANGE
in parallel, so that you can specify
a different mapping table for each
thread of the utility execution.

Example

The following C language sample shows how to invoke ADMIN_UTL_SCHEDULE:

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

 /******************** DB2 SQL Communication Area ********************/
 EXEC SQL INCLUDE SQLCA;

 int main(int argc, char *argv[]) /* Argument count and list */
 {
 /****************** DB2 Host Variables ****************************/
 EXEC SQL BEGIN DECLARE SECTION;

 /* SYSPROC.ADMIN_UTL_SCHEDULE parameters */
 short int maxparallel; /* Max parallel */
 short int ind_maxparallel; /* Indicator variable */
 char optimizeworkload[9]; /* Optimize workload */
 short int ind_optimizeworkload; /* Indicator variable */
 char stoponcond[9]; /* Stop on condition */
 short int ind_stoponcond; /* Indicator variable */
 char utilityidstem[9]; /* Utility ID stem */
 short int ind_utilityidstem; /* Indicator variable */
 float shutdownduration; /* Shutdown duration */
 short int ind_shutdownduration; /* Indicator variable */
 long int numberofobjects; /* Number of objects */
 short int ind_numberofobjects; /* Indicator variable */
 long int utilitiesexec; /* Utilities executed */
 short int ind_utilitiesexec; /* Indicator variable */
 long int highestretcd; /* DSNUTILU highest ret code */
 short int ind_highestretcd; /* Indicator variable */
 long int paralleltasks; /* Parallel tasks */
 short int ind_paralleltasks; /* Indicator variable */
 long int retcd; /* Return code */

Chapter 5. Procedures that are supplied with Db2 837

 short int ind_retcd; /* Indicator variable */
 char errmsg[1332]; /* Error message */
 short int ind_errmsg; /* Indicator variable */

 /* Temporary table SYSIBM.UTILITY_OBJECTS columns */
 long int objectid; /* Object id */
 long int stmtid; /* Statement ID */
 char type[11]; /* Object type (e.g. "INDEX") */
 char qualifier[129]; /* Object qualifier */
 short int ind_qualifier; /* Object qualifier ind. var. */
 char name[129]; /* Object name (qual. or unq.)*/
 short int part; /* Optional partition */
 short int ind_part; /* Partition indicator var */
 char restart[9]; /* DSNUTILU restart parm */
 char utname[21]; /* Utility name */

 /* Temporary table SYSIBM.UTILITY_STMT columns */
 long int stmtid2; /* Statement ID */
 long int stmtseq; /* Utility stmt sequence */
 char utstmt[4001]; /* Utility statement */

 /* Result set locators */
 volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc1;
 volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc2;

 /* First result set row */
 long int objectid1; /* Object id */
 long int textseq; /* Object utility output seq */
 char text[255]; /* Object utility output */

 /* Second result set row */
 long int objectid2; /* Object id */
 long int utilretcd; /* DSNUTILU return code */
 EXEC SQL END DECLARE SECTION;

 /**/
 /* Set up the objects to be sorted */
 /**/
 long int objid_array[4] = {1, 2, 3, 4};
 long int stmtid_array[4] = {1, 1, 1, 1};
 char type_array[4][11] = {"TABLESPACE", "TABLESPACE",
 "TABLESPACE", "TABLESPACE"};
 char qual_array[4][129] = {"QUAL01", "QUAL01",
 "QUAL01", "QUAL01"};
 char name_array[4][129] = {"TBSP01", "TBSP02",
 "TBSP03", "TBSP04"};
 short int part_array[4] = {0, 0, 0, 0};
 char restart_array[4][9] = {"NO", "NO",
 "NO", "NO"};
 char utname_array[4][21]= {"RUNSTATS TABLESPACE",
 "RUNSTATS TABLESPACE",
 "RUNSTATS TABLESPACE",
 "RUNSTATS TABLESPACE"};

 int i = 0; /* Loop counter */

 /**/
 /* Set up utility statement */
 /**/
 stmtid2 = 1;
 stmtseq = 1;
 strcpy(utstmt,
 "RUNSTATS TABLESPACE &OBJECT. TABLE(ALL) SAMPLE 25 INDEX(ALL)");

 /**/
 /* Assign values to input parameters */
 /* Set the indicator variables to 0 for non-null input parameters */
 /* Set the indicator variables to -1 for null input parameters */
 /**/
 maxparallel = 2;
 ind_maxparallel = 0;
 strcpy(optimizeworkload, "YES");
 ind_optimizeworkload = 0;
 strcpy(stoponcond, "AUTHORIZ");
 ind_stoponcond = 0;
 strcpy(utilityidstem, "DSNADMUM");
 ind_utilityidstem = 0;
 numberofobjects = 4;
 ind_numberofobjects = 0;
 ind_shutdownduration = -1;

 /**/

838 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 /* Clear temporary table SYSIBM.UTILITY_OBJECTS */
 /**/
 EXEC SQL DELETE FROM SYSIBM.UTILITY_OBJECTS;

 /**/
 /* Insert the objects into the temporary table */
 /* SYSIBM.UTILITY_OBJECTS */
 /**/
 for (i = 0; i < 4; i++)
 {
 objectid = objid_array[i];
 stmtid = stmtid_array[i];
 strcpy(type, type_array[i]);
 strcpy(qualifier, qual_array[i]);
 strcpy(name, name_array[i]);
 part = part_array[i];
 strcpy(restart, restart_array[i]);
 strcpy(utname, utname_array[i]);
 EXEC SQL INSERT INTO SYSIBM.UTILITY_OBJECTS
 (OBJECTID, STMTID, TYPE,
 QUALIFIER, NAME, PART,
 RESTART, UTILITY_NAME)
 VALUES (:objectid, :stmtid, :type,
 :qualifier, :name, :part,
 :restart, :utname);
 };

 /**/
 /* Clear temporary table SYSIBM.UTILITY_STMT */
 /**/
 EXEC SQL DELETE FROM SYSIBM.UTILITY_STMT;

 /**/
 /* Insert the utility statement into the temporary table */
 /* SYSIBM.UTILITY_STMT */
 /**/
 EXEC SQL INSERT INTO SYSIBM.UTILITY_STMT
 (STMTID, STMTSEQ, UTSTMT)
 VALUES (:stmtid2, :stmtseq, :utstmt);

 /**/
 /* Call stored procedure SYSPROC.ADMIN_UTL_SCHEDULE */
 /**/
 EXEC SQL CALL SYSPROC.ADMIN_UTL_SCHEDULE
 (:maxparallel :ind_maxparallel,
 :optimizeworkload :ind_optimizeworkload,
 :stoponcond :ind_stoponcond,
 :utilityidstem :ind_utilityidstem,
 :shutdownduration :ind_shutdownduration,
 :numberofobjects :ind_numberofobjects,
 :utilitiesexec :ind_utilitiesexec,
 :highestretcd :ind_highestretcd,
 :paralleltasks :ind_paralleltasks,
 :retcd :ind_retcd,
 :errmsg :ind_errmsg);

 /**/
 /* Retrieve result set when the SQLCODE from the call is +446, */
 /* which indicates that result sets were returned */
 /**/
 if (SQLCODE == +466) /* Result sets were returned */
 {
 /* Establish a link between the result set and its locator */
 EXEC SQL ASSOCIATE LOCATORS (:rs_loc1, :rs_loc2)
 WITH PROCEDURE SYSPROC.ADMIN_UTL_SCHEDULE;

 /* Associate a cursor with the first result set */
 EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :rs_loc1;

 /* Associate a cursor with the second result set */
 EXEC SQL ALLOCATE C2 CURSOR FOR RESULT SET :rs_loc2;

 /* Perform fetches using C1 to retrieve all rows from the */
 /* first result set */
 EXEC SQL FETCH C1 INTO :objectid1, :textseq, :text;
 while(SQLCODE==0)
 {
 EXEC SQL FETCH C1 INTO :objectid1, :textseq, :text;
 }

 EXEC SQL CLOSE C1;

Chapter 5. Procedures that are supplied with Db2 839

 /* Perform fetches using C2 to retrieve all rows from the */
 /* second result set */
 EXEC SQL FETCH C2 INTO :objectid2, :utilretcd;
 while(SQLCODE==0)
 {
 EXEC SQL FETCH C2 INTO :objectid2, :utilretcd;
 }

 EXEC SQL CLOSE C2;
 }

 return(retcd);
 }

Output
This stored procedure returns the following output parameters, which are described in “Option
descriptions” on page 833:

• number-of-objects
• utilities-run
• highest-return-code
• parallel-tasks
• return-code
• message

In addition to the preceding output, the stored procedure returns two results sets.

The first result set is returned in the created global temporary table SYSIBM.UTILITY_SYSPRINT and
contains the output from the individual utility executions. The following table shows the format of the
created global temporary table SYSIBM.UTILITY_SYSPRINT:

Table 150. Result set row for first ADMIN_UTL_SCHEDULE result set

Column name Data type Contents

OBJECTID INTEGER A unique positive identifier for
the object the utility execution is
associated with

TEXTSEQ INTEGER Sequence number of utility
execution output statements
for the object whose unique
identifier is specified in the
OBJECTID column

TEXT VARCHAR(254) A utility execution output
statement

The second result set is returned in the created global temporary table SYSIBM.UTILITY_RETCODE and
contains the return code for each of the individual DSNUTILU executions. The following table shows the
format of the output created global temporary table SYSIBM.UTILITY_RETCODE:

Table 151. Result set row for second ADMIN_UTL_SCHEDULE result set

Column name Data type Contents

OBJECTID INTEGER A unique positive identifier for
the object the utility execution is
associated with

RETCODE INTEGER Return code from DSNUTILU for
this utility execution

840 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

GUPI

Related reference
DSNUTILU stored procedure
Use the DSNUTILU stored procedure to run Db2 utilities from a Db2 application program.

ADMIN_UTL_SORT stored procedure
The SYSPROC.ADMIN_UTL_SORT stored procedure sorts objects for parallel utility execution using JCL or
the ADMIN_UTL_SCHEDULE stored procedure.

Environment
GUPI

ADMIN_UTL_SORT runs in a WLM-established stored procedures address space.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges on each package that the stored procedure uses:

• The EXECUTE privilege on the package for DSNADMUS
• Ownership of the package
• PACKADM authority for the package collection
• SYSADM authority

The owner of the package or plan that contains the CALL statement must also have SELECT authority on
the following catalog tables:

• SYSIBM.SYSTABLEPART
• SYSIBM.SYSINDEXPART
• SYSIBM.SYSINDEXES
• SYSIBM.SYSTABLES

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL SYSPROC.ADMIN_UTL_SORT (max-parallel , max-per-job

NULL

,

optimize-workload

NULL

, batch-execution

NULL

, number-of-objects ,

parallel-units , max-objects , max-sequences , return-code , message)

Option descriptions
max-parallel

Specifies the maximum number of parallel units. The actual number may be lower than the requested
number based on the optimizing sort result. Possible values are: 1 to 99.

This is an input parameter of type SMALLINT and cannot be null.

Chapter 5. Procedures that are supplied with Db2 841

max-per-job
Specifies the maximum number of steps per job for batch execution. Possible values are:
1 to 255

Steps per job for batch execution
null

Online execution

This is an input parameter of type SMALLINT. This parameter cannot be null if batch-execution is YES.

optimize-workload
Specifies whether the parallel units should be sorted to achieve shortest overall execution time.
Possible values are:
NO or null

The workload is not to be sorted.
YES

The workload is to be sorted.

This is an input parameter of type VARCHAR(8). The default value is NO.

batch-execution
Indicates whether the objects should be sorted for online or batch (JCL) execution.
NO or null

The workload is for online execution.
YES

The workload is for batch execution.

This is an input parameter of type VARCHAR(8). The default value is NO.

number-of-objects
As an input parameter, this specifies the number of objects that were passed in
SYSIBM.UTILITY_SORT_OBJ. Possible values are: 1 to 999999.

As an output parameter, this specifies the number of objects that were passed in
SYSIBM.UTILITY_SORT_OBJ table that are found in the Db2 catalog.

This is an input and output parameter of type INTEGER and cannot be null.

parallel-units
Indicates the number of recommended parallel units.

This is an output parameter of type SMALLINT.

max-objects
Indicates the maximum number of objects in any parallel unit.

This is an output parameter of type INTEGER.

max-sequences
Indicates the number of jobs in any parallel unit.

This is an output parameter of type INTEGER.

return-code
Provides the return code from the stored procedure. Possible values are:
0

Sort ran successfully.
4

The statistics for one or more sorting objects have not been gathered in the catalog or the object
no longer exists.

12
An ADMIN_UTL_SORT error occurred. The message parameter will contain details.

842 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

This is an output parameter of type INTEGER.

message
Contains messages describing the error encountered by the stored procedure. If no error occurred,
then no message is returned.

The first messages in this area are generated by the stored procedure. Messages that are generated
by Db2 might follow the first messages.

This is an output parameter of type VARCHAR(1331).

Additional input
In addition to the input parameters, this stored procedure reads the objects for sorting and the
corresponding utility names from the created global temporary table SYSIBM.UTILITY_SORT_OBJ.

The following table shows the format of the created global temporary table SYSIBM.UTILITY_SORT_OBJ:

Table 152. Input for the ADMIN_UTL_SORT stored procedure

Column name Data type Contents

OBJECTID INTEGER A unique positive identifier for
the object the utility execution
is associated with. When you
insert multiple rows, increment
OBJECTID by 1, starting at 0 for
every insert.

TYPE VARCHAR(10) Object type:

• TABLESPACE
• INDEXSPACE
• TABLE
• INDEX
• STOGROUP

QUALIFIER VARCHAR(128) Qualifier (database or creator) of
the object in NAME, empty or null
for STOGROUP. If the qualifier
is not provided and the type
of the object is TABLESPACE or
INDEXSPACE, then the default
database is DSNDB04. If the
object is of the type TABLE
or INDEX, the schema is the
current SQL authorization ID. If
the object no longer exists, it will
be ignored.

NAME VARCHAR(128) Unqualified name of the object.

NAME cannot be null.

PART SMALLINT Partition number of the object for
which the utility will be invoked.
Null or 0 if the object is not
partitioned.

Chapter 5. Procedures that are supplied with Db2 843

Table 152. Input for the ADMIN_UTL_SORT stored procedure (continued)

Column name Data type Contents

UTILITY_NAME VARCHAR(20) Utility name. UTILITY_NAME
cannot be null.

Recommendation: Sort objects
for the same utility.

Possible values are:

• CHECK DATA
• CHECK INDEX
• CHECK LOB
• COPY
• COPYTOCOPY
• DIAGNOSE
• LOAD
• MERGECOPY
• MODIFY RECOVERY
• MODIFY STATISTICS
• QUIESCE
• REBUILD INDEX
• RECOVER
• REORG INDEX
• REORG LOB
• REORG TABLESPACE
• REPAIR
• REPORT RECOVERY
• REPORT TABLESPACESET
• RUNSTATS INDEX
• RUNSTATS TABLESPACE
• STOSPACE
• UNLOAD

Example

The following C language sample shows how to invoke ADMIN_UTL_SORT:

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

/******************** DB2 SQL Communication Area ********************/
 EXEC SQL INCLUDE SQLCA;

 int main(int argc, char *argv[]) /* Argument count and list */
 {
 /****************** DB2 Host Variables ****************************/
 EXEC SQL BEGIN DECLARE SECTION;

 /* SYSPROC.ADMIN_UTL_SORT parameters */
 short int maxparallel; /* Max parallel */
 short int ind_maxparallel; /* Indicator variable */
 short int maxperjob; /* Max per job */
 short int ind_maxperjob; /* Indicator variable */

844 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 char optimizeworkload[9]; /* Optimize workload */
 short int ind_optimizeworkload; /* Indicator variable */
 char batchexecution[9]; /* Batch execution */
 short int ind_batchexecution; /* Indicator variable */
 long int numberofobjects; /* Number of objects */
 short int ind_numberofobjects; /* Indicator variable */
 short int parallelunits; /* Parallel units */
 short int ind_parallelunits; /* Indicator variable */
 long int maxobjects; /* Maximum objects per */
 /* parallel unit */
 short int ind_maxobjects; /* Indicator variable */
 long int maxseqs; /* Maximum jobs per unit */
 short int ind_maxseqs; /* Indicator variable */
 long int retcd; /* Return code */
 short int ind_retcd; /* Indicator variable */
 char errmsg[1332]; /* Error message */
 short int ind_errmsg; /* Indicator variable */

 /* Temporary table SYSIBM.UTILITY_SORT_OBJ columns */
 long int objectid; /* Object id */
 char type[11]; /* Object type (e.g. "INDEX") */
 char qualifier[129]; /* Object qualifier */
 short int ind_qualifier; /* Object qualifier ind. var. */
 char name[129]; /* Object name (qual. or unq.)*/
 short int part; /* Optional partition */
 short int ind_part; /* Partition indicator var */
 char utname[21]; /* Utility name */

 /* Result set locators */
 volatile SQL TYPE IS RESULT_SET_LOCATOR *rs_loc1;

 /* Result set row */
 long int resobjectid; /* Object id */
 short int unit; /* Execution unit value */
 long int unitseq; /* Job seq within exec unit */
 long int unitseqpos; /* Pos within exec unit or */
 /* step within job */
 char exclusive[2]; /* Exclusive execution flag */
 EXEC SQL END DECLARE SECTION;

 /**/
 /* Set up the objects to be sorted */
 /**/
 long int objid_array[4] = {0, 1, 2, 3};
 char type_array[4][11] = {"TABLESPACE", "TABLESPACE",
 "TABLESPACE", "TABLESPACE"};
 char qual_array[4][129] = {"QUAL01", "QUAL01",
 "QUAL01", "QUAL01"};
 char name_array[4][129] = {"TBSP01", "TBSP02",
 "TBSP03", "TBSP04"};
 short int part_array[4] = {0, 0, 0, 0};
 char utname_array[4][21]= {"RUNSTATS TABLESPACE",
 "RUNSTATS TABLESPACE",
 "RUNSTATS TABLESPACE",
 "RUNSTATS TABLESPACE"};

 int i = 0; /* Loop counter */

 /**/
 /* Assign values to input parameters */
 /* Set the indicator variables to 0 for non-null input parameters */
 /* Set the indicator variables to -1 for null input parameters */
 /**/
 maxparallel = 2;
 ind_maxparallel = 0;
 ind_maxperjob = -1;
 strcpy(optimizeworkload, "YES");
 ind_optimizeworkload = 0;
 strcpy(batchexecution, "NO");
 ind_batchexecution = 0;
 numberofobjects = 4;
 ind_numberofobjects = 0;

 /**/
 /* Clear temporary table SYSIBM.UTILITY_SORT_OBJ */
 /**/
 EXEC SQL DELETE FROM SYSIBM.UTILITY_SORT_OBJ;

 /**/
 /* Insert the objects into the temporary table */
 /* SYSIBM.UTILITY_SORT_OBJ */
 /**/

Chapter 5. Procedures that are supplied with Db2 845

 for (i = 0; i < 4; i++)
 {
 objectid = objid_array[i];
 strcpy(type, type_array[i]);
 strcpy(qualifier, qual_array[i]);
 strcpy(name, name_array[i]);
 part = part_array[i];
 strcpy(utname, utname_array[i]);
 EXEC SQL INSERT INTO SYSIBM.UTILITY_SORT_OBJ
 (OBJECTID, TYPE, QUALIFIER, NAME, PART,
 UTILITY_NAME)
 VALUES (:objectid, :type, :qualifier, :name, :part,
 :utname);
 };

 /**/
 /* Call stored procedure SYSPROC.ADMIN_UTL_SORT */
 /**/
 EXEC SQL CALL SYSPROC.ADMIN_UTL_SORT
 (:maxparallel :ind_maxparallel,
 :maxperjob :ind_maxperjob,
 :optimizeworkload :ind_optimizeworkload,
 :batchexecution :ind_batchexecution,
 :numberofobjects :ind_numberofobjects,
 :parallelunits :ind_parallelunits,
 :maxobjects :ind_maxobjects,
 :maxseqs :ind_maxseqs,
 :retcd :ind_retcd,
 :errmsg :ind_errmsg);

 /**/
 /* Retrieve result set when the SQLCODE from the call is +446, */
 /* which indicates that result sets were returned */
 /**/
 if (SQLCODE == +466) /* Result sets were returned */
 {
 /* Establish a link between the result set and its locator */
 EXEC SQL ASSOCIATE LOCATORS (:rs_loc1)
 WITH PROCEDURE SYSPROC.ADMIN_UTL_SORT;

 /* Associate a cursor with the result set */
 EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :rs_loc1;

 /* Perform fetches using C1 to retrieve all rows from the */
 /* result set */
 EXEC SQL FETCH C1 INTO :resobjectid, :unit,
 :unitseq, :unitseqpos, :exclusive;
 while(SQLCODE==0)
 {
 EXEC SQL FETCH C1 INTO :resobjectid, :unit,
 :unitseq, :unitseqpos, :exclusive;
 }

 EXEC SQL CLOSE C1;
 }

 return(retcd);
 }

Output
This stored procedure returns the following output parameters, which are described in “Option
descriptions” on page 841:

• number-of-objects
• parallel-units
• max-objects
• max-sequences
• return-code
• message

In addition to the preceding output, the stored procedure returns one result set that contains the objects
sorted into parallel execution units.

846 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The following table shows the format of the result set returned in the created global temporary table
SYSIBM.UTILITY_SORT_OUT:

Table 153. Result set row for ADMIN_UTL_SORT result set

Column name Data type Contents

OBJECTID INTEGER A unique positive identifier for the
object

UNIT SMALLINT Number of parallel execution unit

UNIT_SEQ INTEGER Job sequence within parallel
execution unit

UNIT_SEQ_POS INTEGER Step within job

EXCLUSIVE CHAR(1) Requires execution with nothing
running in parallel

GUPI

CREATE_WRAPPED stored procedure
The CREATE_WRAPPED procedure encodes a readable data definition statement into an obfuscated data
definition statement and then deploys the object in the database. The procedural logic and embedded
SQL statements in an obfuscated data definition statement are scrambled in such a way that any
intellectual property in the logic cannot be easily extracted.

CALL CREATE_WRAPPED (object-definition-string)

The schema is SYSIBMADM.

object-defintion-string
A string of any built-in character type that contains any of the following data definition statements:

• CREATE FUNCTION (compiled SQL scalar)
• CREATE FUNCTION (inlined SQL scalar)
• CREATE FUNCTION (SQL table)
• CREATE PROCEDURE (SQL - native)
• CREATE TRIGGER (basic)
• CREATE TRIGGER (advanced)

object-defintion-string must not be bit data, and it cannot contain the VERSION keyword.

The procedure encodes the input into an obfuscated data definition statement string and then
dynamically executes that data definition statement. The encoded statement consists of the following
parts:

• The original statement up to and including the routine signature or trigger name.
• The WRAPPED keyword.
• The product identifier of the database manager that invoked the function.

The product identifier (PRDID) value is an 8-byte character value in pppvvrrm format, where: ppp is a
3-letter product code; vv is the version;rr is the release; and m is the modification level. In Db2 12 for
z/OS, the modification level indicates a range of function levels:

DSN12015 for V12R1M500 or higher.
DSN12010 for V12R1M100.

For more information, see Product identifier (PRDID) values in Db2 for z/OS (Db2 Administration Guide).

Chapter 5. Procedures that are supplied with Db2 847

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_prdidvalues.html

• The encoded remainder of the data definition statement, in the form of a string of letters (a-z and A-Z),
digits (0-9), underscores, and colons. It is converted to Unicode UTF-8 before it is encoded. An error is
issued if object-definition-string cannot be converted or if the intermediate string exceeds the maximum
length for SQL statements. A warning occurs if a character is converted to the substitution character.

The encoded data definition statement can be up to one-third longer than the plain text form of the
statement. If the result exceeds the maximum length for SQL statements, an error is issued.

Examples
Example 1

The following procedure call produces an obfuscated version of a function that computes a yearly
salary from an hourly wage given a 40 hour work week.

CALL CREATE_WRAPPED('CREATE FUNCTION salary(wage DECFLOAT)
RETURNS DECFLOAT
RETURN wage * 40 * 52');
SELECT TEXT FROM SYSIBM.SYSROUTINES
WHERE NAME ='SALARY' AND SCHEMA = CURRENT SCHEMA;

The result is similar to the following form:

CREATE FUNCTION salary(wage DECFLOAT) WRAPPED DSN12015
ablGWmdiWmtyTmduTmJqTmtaUmtCUmZqUmdiXodK3idaWmdaWmdaWmZG1mIaG
icaGy31TyStm_qGbe3sDxdxjtC8ymVGLpMXnuL8lkmNuRhhZ6qYJ2YYdXGaa

Example 2
The following procedure call produces an obfuscated version of a trigger that sets a complex default
value

CALL CREATE_WRAPPED('CREATE OR REPLACE TRIGGER trig1
BEFORE INSERT ON emp
REFERENCING NEW AS n FOR EACH ROW
WHEN (n.bonus IS NULL)
SET n.bonus = n.salary * .04')
SELECT STATEMENT FROM SYSIBM.SYSTRIGGERS
WHERE NAME='TRIG1' AND SCHEMA= CURRENT SCHEMA;

The result is similar to the following form:

CREATE TRIGGER trig1 WRAPPED DSN12015
ablGWmdiWmtyTmduTmJqTmtaUmtGUnteUmZKWmtqWidaWmdaWmdaXmdyWncaGica
GK6ot_81NzyodncdrRIJFp_tBjpJeIwg_dTKNHcdtHPSaNCpmqBKH2pMwExkRTJW
Zr:dJd0_gSbehW:4Xx1UGPGnDxvmJfa5ZAGOr_1sfFiyaPrkOXzt5UMTmsASfyJR
ksbPfM2dlATbq:0RW

Related tasks
Obfuscating source code of SQL procedures, SQL functions, and triggers (Db2 Administration Guide)
Related reference
WRAP scalar function
The WRAP built-in function encodes a readable data definition statement into an obfuscated data
definition statement. The procedural logic and embedded SQL statements in an obfuscated data definition
statement are scrambled in such a way that any intellectual property in the logic cannot be easily
extracted.

DSNACCOX stored procedure
The Db2 real-time statistics stored procedure (DSNACCOX) is a sample stored procedure that makes
recommendations to help you maintain your Db2 databases.

The DSNACCOX stored procedure replaced the DSNACCOR stored procedure, which is not supported in
Db2 12. DSNACCOX provides the following improvements over DSNACCOR:

848 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_obfuscateroutinetrigger.html

• Improved recommendations
• New fields
• New formulas
• The option to choose the formula for making recommendations

You can call the DSNACCOX stored procedure to accomplish the following actions:

• Get recommendations for when to reorganize, image copy, or update statistics for table spaces or index
spaces

• Identify when a data set has exceeded a specified threshold for the number of extents that it occupies.
• Identify whether objects are in restricted states

DSNACCOX uses data from catalog tables, including real-time statistics tables, to make its
recommendations. DSNACCOX provides its recommendations in a result set.

DSNACCOX uses the set of criteria that are shown in “DSNACCOX formulas for recommending actions” on
page 862 to evaluate table spaces and index spaces. By default, DSNACCOX evaluates all table spaces
and index spaces in the subsystem that have entries in the real-time statistics tables. However, you can
override this default through input parameters.

About DSNACCOX recommendations
• You can improve the quality of DSNACCOX recommendations, especially for frequently changed objects,

by externalizing in-memory statistics to the real-time statistics tables immediately before calling the
stored procedure. For more information, see:

Updating real-time statistics immediately (Db2 Performance)
When Db2 externalizes real-time statistics (Db2 Performance)
-ACCESS DATABASE command (Db2) (Db2 Commands)

• DSNACCOX makes recommendations based on general formulas that require input from the user about
the maintenance policies for a subsystem. These recommendations might not be accurate for every
installation.

• If the real-time statistics tables contain information for only a small percentage of your Db2 subsystem,
the recommendations that DSNACCOX makes might not be accurate for the entire subsystem.

• Before you perform any action that DSNACCOX recommends, ensure that the object for which
DSNACCOX makes the recommendation is available, and that the recommended action can be
performed on that object. For example, REORG might be recommended for an object, but the object
might be stopped.

Environment
DSNACCOX must run in a WLM-established stored procedure address space.The DSNWLM_GENERAL core
WLM environment is a suitable environment for this stored procedure.

DSNACCOX is installed and configured by installation job DSNTIJRT, which binds the package for
DSNACCOX with isolation UR to avoid lock contention.

Authorization required
To execute the CALL DSNACCOX statement, the owner of the package or plan that contains the CALL
statement must have one or more of the following privileges on each package that the stored procedure
uses:

• The EXECUTE privilege on the package for DSNACCOX
• Ownership of the package
• PACKADM authority for the package collection
• SYSADM authority

Chapter 5. Procedures that are supplied with Db2 849

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_rtsupdateimmediate.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_whendb2externalizerts.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_accessdatabase.html

The owner of the package or plan that contains the CALL statement must also have:

• SELECT authority on catalog tables
• The DISPLAY privilege

Syntax diagram

The following syntax diagram shows the CALL statement for invoking DSNACCOX. Because the linkage
convention for DSNACCOX is GENERAL WITH NULLS, if you pass parameters in host variables, you need to
include a null indicator with every host variable. Null indicators for input host variables must be initialized
before you execute the CALL statement.

For more information, see:

Indicator variables, arrays, and structures (Db2 Application programming and SQL)
Linkage conventions for external stored procedures (Db2 Application programming and SQL)

850 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_indicatorvariablearray.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_linkageconventionssp.html

CALL DSNACCOX (QueryType

NULL

, ObjectType

NULL

,

ICType

NULL

, CatlgSchema

NULL

, LocalSchema

NULL

,

ChkLvl

NULL

, Criteria

NULL

, SpecialParm

NULL

,

CRUpdatedPagesPct

NULL

-1

, CRUpdatedPagesAbs

NULL

,

CRChangesPct

NULL

-1

, CRDaySncLastCopy

NULL

-1

,

ICRUpdatedPagesPct

NULL

-1

, ICRUpdatedPagesAbs

NULL

,

ICRChangesPct

NULL

-1

, CRIndexSize

NULL

-1

, RRTInsertsPct

NULL

-1

,

RRTInsertsAbs

NULL

, RRTDeletesPct

NULL

-1

, RRTDeletesAbs

NULL

,

RRTUnclustInsPct

NULL

-1

, RRTDisorgLOBPct

NULL

-1

,

RRTDataSpaceRat

NULL

-1

, RRTMassDelLimit

NULL

-1

,

RRTIndRefLimit

NULL

-1

, RRIInsertsPct

NULL

-1

, RRIInsertsAbs

NULL

-1

,

RRIDeletesPct

NULL

-1

, RRIDeletesAbs

NULL

, RRIAppendInsertPct

NULL

-1

,

RRIPseudoDeletePct

NULL

-1

, RRIMassDelLimit

NULL

-1

,

RRILeafLimit

NULL

-1

, RRINumLevelsLimit

NULL

-1

,

SRTInsDelUpdPct

NULL

-1

, SRTInsDelUpdAbs

NULL

,

SRTMassDelLimit

NULL

-1

, SRIInsDelUpdPct

NULL

-1

,

SRIInsDelUpdAbs

NULL

, SRIMassDelLimit

NULL

-1

, ExtentLimit

NULL

-1

,

LastStatement , ReturnCode , ErrorMsg , IFCARetCode , IFCAResCode ,

ExcessBytes)

SpecialParm

Chapter 5. Procedures that are supplied with Db2 851

' '

RRIEmptyLimit

-1

' '

RRTHashOvrFlwRatio

-1

Option descriptions

In the following option descriptions, the default value for an input parameter is the value that DSNACCOX
uses if you specify a null value.

QueryType
Specifies the types of actions that DSNACCOX recommends. This field contains one or more of the
following values. Each value is enclosed in single quotation marks and separated from other values by
a space.
ALL

Makes recommendations for all of the following actions.
COPY

Makes a recommendation on whether run an image copy.
RUNSTATS

Makes a recommendation on whether to run RUNSTATS.
REORG

Makes a recommendation on whether to run REORG. Choosing this value causes DSNACCOX to
process the EXTENTS value also.

EXTENTS
Indicates when data sets have exceeded a user-specified extents limit.

RESTRICT
Indicates which objects are in a restricted state.

DSNACCOX recommends REORG on the table space when one of the following conditions is true,
and REORG (or ALL) is also specified for the value of QUERYTYPE:

• The table space is in REORG-pending status.
• The table space is in advisory REORG-pending status as the result of an ALTER TABLE

statement.

DSNACCOX recommends REORG on the index when on the following conditions is true and REORG
(or ALL) is also specified for the value of QUERYTYPE:

• The index is in REORG-pending status.
• The index is in advisory REORG-pending as the result of an ALTER TABLE statement.

DSNACCOX recommends FULL COPY on the table space when on the following conditions is true
and COPY (or ALL) is also specified for the value of QUERYTYPE:

• The table space is in COPY-pending status.
• The table space is in informational COPY-pending status.

DSNACCOX recommends FULL COPY on the index when on the following conditions is true and
COPY (or ALL) is also specified for the value of QUERYTYPE: and SYSINDEX.COPY='Y':

• The index is in COPY-pending status.
• The index is in informational COPY-pending status.

QueryType is an input parameter of type VARCHAR(40). The default value is ALL.

ObjectType
Specifies the types of objects for which DSNACCOX recommends actions:

852 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

ALL
Table spaces and index spaces.

TS
Table spaces only.

IX
Index spaces only.

ObjectType is an input parameter of type VARCHAR(3). The default value is ALL.

ICType
Specifies the types of image copies for which DSNACCOX is to make recommendations:
F

Full image copy.
I

Incremental image copy. This value is valid for table spaces only.
B

Full image copy or incremental image copy.

ICType is an input parameter of type VARCHAR(1). The default is B.

CatlgSchema
Specifies the qualifier for Db2 catalog table names. CatlgSchema is an input parameter of type
VARCHAR(128). The default value is SYSIBM.

LocalSchema
Specifies the qualifier for the names of local tables that DSNACCOX references. LocalSchema is an
input parameter of type VARCHAR(128). The default value is DSNACC.

ChkLvl
Specifies the types of checking that DSNACCOX performs, and indicates whether to include objects
that fail those checks in the DSNACCOX recommendations result set. This value is the sum of any
combination of the following values:
0

DSNACCOX performs none of the following actions.
1

Exclude rows from the DSNACCOX recommendations result set for RUNSTATS on:

• Index spaces that are related to tables that are defined as VOLATILE.
• Table spaces for which all of the tables are defined as VOLATILE.

2
Choosing this value causes DSNACCOX to override the default SSDMultiplier value when it
makes a REORG recommendation for a table space or table space partition. SSDMultiplier is
the value by which RRTUnclustInsPct is multiplied when table space data sets are on solid state
drives (DRIVETYPE='SSD' in catalog table SYSIBM.SYSTABLESPACESTATS). The default value of
SSDMultiplier is 2. If ChkLvl is set to 2, SSDMultiplier is 5. See Figure 27 on page 864 for details
on how SSDMultiplier is used.

4
Check whether rows that are in the DSNACCOX recommendations result set refer to objects
that are in the exception table. For recommendations result set rows that have corresponding
exception table rows, copy the contents of the QUERYTYPE column of the exception table to the
INEXCEPTTABLE column of the recommendations result set.

8
Check for objects that have restricted states. The value of the QueryType option must be ALL or
contain RESTRICTED when this value is specified. The OBJECTSTATUS column of the result set
indicates the restricted state of the object. A row is added to the result set for each object that has
a restricted state.

Chapter 5. Procedures that are supplied with Db2 853

16
Reserved for future use.

32
Exclude rows from the DSNACCOX recommendations result set for index spaces for which the
related table spaces have been recommended for REORG or RUNSTATS.

64
For index spaces that are listed in the DSNACCOX recommendations result set, check whether
the related table spaces are listed in the exception table. For recommendations result set rows
that have corresponding exception table rows, copy the contents of the QUERYTYPE column of
the exception table to the INEXCEPTTABLE column of the recommendations result set. Selecting
CHKLVL64 also activates CHKLVLs 32 and 4.

ChkLvl is an input parameter of type INTEGER. The default is 5 (values 1+4).

Criteria
Narrows the set of objects for which DSNACCOX makes recommendations. This value is the search
condition of an SQL WHERE clause.Criteria is an input parameter of type VARCHAR(4096). The default
is that DSNACCOX makes recommendations for all table spaces and index spaces in the subsystem.
The search condition can use any column in the result set and wildcards are allowed.

DSNACCOX can optimize the retrieval of recommendations if the criteria references only the following
columns in the real-time statistics tables:

• DBNAME
• NAME
• PARTITION
• DBID
• PSID

SpecialParm
SpecialParm is an input of type CHAR(160), broken into 4 byte sections to accommodate new options.
An empty 4 bytes of EBCDIC blanks indicates that the default is used for the option. An EBCDIC
character string of '-1', indicates that this option is not used.
RRIEmptyLimit

Is the ratio of pseudo-empty pages to the total number of leaf pages. Specifies a criterion for
recommending that the REORG utility is to be run on an index space. If the following value
is greater than RRIEmptyLimit, DSNACCOX recommends running REORG: The number of pseudo-
empty leaf pages that were created since the last CREATE, REORG, REBUILD INDEX, or LOAD
REPLACE, divided by the total number of leaf pages in the index space or partition, expressed as a
percentage.

RRIEmptyLimit is an input parameter of type CHAR(4). The default value is ' 5'. A plus sign (+)
preceding the value indicates that the DSNACCOX stored procedure returns the value in the result
set. A negative value turns off this criterion.

The ratio of pseudo-empty pages to the total number of leaf pages is returned in column
RRIEMPTYLIMIT of the result set.

RRTHashOvrFlwRatio
The ratio of hash access overflow index entries to the total number of rows. Specifies a criterion
for recommending that the REORG utility is to be run on a table space. If the following condition is
true, DSNACCOX recommends running REORG: The hash access overflow index is being used for
access, and the ratio of hash access overflow index entries divided by the total number of rows
(expressed as a percentage) is greater than RRTHashOvrFlwRatio.

RRTHashOvrFlwRatio is an input parameter of type CHAR(4). The default value is ' 15'. A plus sign
(+) preceding or after the value or by itself indicates that the DSNACCOX stored procedure returns
the calculated ratio value in the result set. The value of the ObjectType parameter must be ALL, or
contain both TS and IX, for this criterion to be used. A negative value turns off this criterion.

854 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The ratio of Hash Access overflow index entries to the total number of rows is returned in the
RRTHASHOVRFLWRAT column of the result set.

CRUpdatedPagesPct
Is the ratio of the total number of distinct updated pages to the total number of preformatted pages.
Specifies, when combined with CRUpdatedPagesAbs, a criterion for recommending a full image copy
on a table space or index space. If both of the following conditions are true for a table space,
DSNACCOX recommends an image copy:

• The total number of distinct updated pages, divided by the total number of preformatted pages
(expressed as a percentage) is greater than CRUpdatedPagesPct.

• The total number of distinct updates pages is greater than CRUpdatedPagesABS.

If all of the following conditions are true for an index space, DSNACCOX recommends an image copy:

• The total number of distinct updated pages, divided by the total number of preformatted pages
(expressed as a percentage) is greater than CRUpdatedPagesPct.

• The total number of distinct updates pages is greater than CRUpdatedPagesABS.
• The number of active pages in the index space or partition is greater than CRIndexSize.

CRUpdatedPagesPct is an input parameter of type DOUBLE. The default is 20.0. A negative value
turns off both this criterion and CRUpdatedPagesABS.

CRUpdatedPagesABS
Is the total number of distinct updated pages. Specifies, when combined with CRUpdatedPagesPct, a
criterion for recommending a full image copy on a table space or index space. If both of the following
conditions are true for a table space, DSNACCOX recommends an image copy:

• The total number of distinct updated pages, divided by the total number of preformatted pages
(expressed as a percentage) is greater than CRUpdatedPagesPct.

• The total number of distinct updated pages is greater than CRUpdatedPagesAbs.

If all of the following conditions are true for an index space, DSNACCOX recommends an image copy:

• The total number of distinct updated pages, divided by the total number of preformatted pages
(expressed as a percentage) is greater than CRUpdatedPagesPct.

• The total number of distinct updates pages is greater than CRUpdatedPagesAbs.
• The number of active pages in the index space or partition is greater than CRIndexSize.

CRUpdatedPagesAbs is an input parameter of type INTEGER. The default value is 0.

CRChangesPct
Is the ratio of the total number of insert, update, and delete operations to the total number of rows.
Specifies a criterion for recommending a full image copy on a table space or index space. If the
following condition is true for a table space, DSNACCOX recommends an image copy:

The total number of insert, update, and delete operations since the last image copy, divided by the
total number of rows or LOBs in a table space or partition (expressed as a percentage) is greater
than CRChangesPct.

If both of the following conditions are true for an index table space, DSNACCOX recommends an
image copy:

• The total number of insert and delete operations since the last image copy, divided by the total
number of entries in the index space or partition (expressed as a percentage) is greater than
CRChangesPct.

• The number of active pages in the index space or partition is greater than CRIndexSize.

CRChangesPct is an input parameter of type DOUBLE. The default is 10.0. A negative value turns off
this criterion.

Chapter 5. Procedures that are supplied with Db2 855

CRDaySncLastCopy
Is the number of days since the last image copy. Specifies a criterion for recommending a full image
copy on a table space or index space. If the number of days since the last image copy is greater than
this value, DSNACCOX recommends an image copy.

CRDaySncLastCopy is an input parameter of type INTEGER. The default is 7. A negative value turns off
this criterion.

ICRUpdatedPagesPct
Is the ratio of the total number of distinct updated pages to the total number of preformatted pages.
Specifies a criterion for recommending an incremental image copy on a table space. If both of the
following conditions are true, DSNACCOX recommends an incremental image copy:

• The number of distinct pages that were updated since the last image copy, divided by the total
number of active pages in the table space or partition (expressed as a percentage) is greater than
ICRUpdatedPagesPct..

• The number of distinct pages that were updated since last image copy is greater than
ICRUpdatedPagesAbs.

ICRUpdatedPagesPct is an input parameter of type DOUBLE. The default value is 1.0. A negative value
turns off this criterion and ICRUpdatedPagesAbs.

ICRUpdatedPagesAbs
Is the total number of distinct updated pages. Specifies, when combined with ICRUpdatedPagesPct,
a criterion for recommending an incremental image copy on a table space. If both of the following
conditions are true, DSNACCOX recommends an incremental image copy:

• The number of distinct pages that were updated since the last image copy, divided by the total
number of active pages in the table space or partition (expressed as a percentage) is greater than
ICRUpdatedPagesPct.

• The number of distinct pages that were updated since last image copy is greater than
ICRUpdatedPagesAbs.

ICRUpdatedPagesAbs is an input parameter of type INTEGER. The default is 0.

ICRChangesPct
Is the ratio of the total number of insert, update, or delete operations to the total number of rows.
Specifies a criterion for recommending an incremental image copy on a table space. If the following
condition is true, DSNACCOX recommends an incremental image copy:

The ratio of the number of insert, update, or delete operations since the last image copy, to the
total number of rows or LOBs in a table space or partition (expressed as a percentage) is greater
than ICRChangesPct.

ICRChangesPct is an input parameter of type DOUBLE. The default is 1.0. A negative value turns off
this criterion.

CRIndexSize
Is the minimum index size. Specifies the minimum index size before checking the CRUpdatedPagesPct
or CRChangesPct criteria for recommending a full image copy on an index space.

CRIndexSize is an input parameter of type INTEGER. The default is 50. A negative value turns of this
criterion and ICRChangesPct.

RRTInsertsPct
Is the ratio of total number of insert operations to the total number of rows. Specifies, when combined
with RRTInsertsAbs, a criterion for recommending that the REORG utility is to be run on a table space.
If both of the following condition are true, DSNACCOX recommends running REORG:

• The sum of insert, update, and delete operations since the last REORG, divided by the total
number of rows or LOBs in the table space or partition (expressed as a percentage) is greater
than RRTInsertsPct

• The sum of insert operations since the last REORG is greater than RRTInsertsAbs.

856 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

RRTInsertsPct is an input parameter of type DOUBLE. The default value is -1. A negative value turns
off this criterion and RRTInsertsAbs.

RRTInsertsAbs
Is the total number of insert operations. Specifies, when combined with RRTInsertsPct, a criterion for
recommending that the REORG utility is to be run on a table space. If both of the following condition
are true, DSNACCOX recommends running REORG:

• The sum of insert operations since the last REORG, divided by the total number of rows or in the
table space or partition (expressed as a percentage) is greater than RRTInsertsPct

• The sum of insert operations since the last REORG is greater than RRTInsertsAbs.

RRTInsertsAbs is an input parameter of type INTEGER. The default value is 0.

RRTDeletesPct
Is the ratio of the total number of delete operations to the total number of rows. Specifies, when
combined with RRTDeletesAbs, a criterion for recommending that the REORG utility is to be run on a
table space. If both of the following condition are true, DSNACCOX recommends running REORG:

• The sum of delete operations since the last REORG, divided by the total number of rows or in the
table space or partition (expressed as a percentage) is greater than RRTDeletesPct

• The sum of delete operations since the last REORG is greater than RRTDeletesAbs.

RRTDeletesPct is an input parameter of type DOUBLE. The default value is 25.0. A negative value
turns off this criterion and RRTDeletesAbs.

RRTDeletesAbs
Is the total number of delete operations. Specifies, when combined with RRTDeletesPct, a criterion for
recommending that the REORG utility is to be run on a table space. If both of the following condition
are true, DSNACCOX recommends running REORG:

• The sum of delete operations since the last REORG, divided by the total number of rows or in the
table space or partition (expressed as a percentage) is greater than RRTDeletesPct

• The sum of delete operations since the last REORG is greater than RRTDeletesAbs.

RRTDeletesAbs is an input parameter of type INTEGER. The default value is 0.

RRTUnclustInsPct
Is the ratio of the total number of unclustered insert operations to the total number of rows. Specifies
a criterion for recommending that the REORG utility is to be run on a table space. If the following
condition is true, DSNACCOX recommends running REORG:

The number of unclustered insert operations, divided by the total number of rows or LOBs in the
table space or partition (expressed as a percentage) is greater than RRTUnclustInsPct.

RRTUnclustInsPct is an input parameter of type DOUBLE. A negative value will turn off this criterion.

For solid-state drives (SSD), the value that you specify is multiplied by 2 unless you specify CHKLVL 2.
If you specify CHKLVL 2, the value that you specify is multiplied by 5.

For hard disk drives (HDD), the default value is 10.0. For SSDs, the default value is 20.0 unless you
specify CHKLVL 2; in this case, the default is 50.0

RRTDisorgLOBPct
Is the ratio of the number of imperfectly chunked LOBs to the total number of rows. Specifies a
criterion for recommending that the REORG utility is to be run on a table space. If the following
condition is true, DSNACCOX recommends running REORG:

The number of imperfectly chunked LOBs, divided by the total number of rows or LOBs in the table
space or partition (expressed as a percentage) is greater than RRTDisorgLOBPct.

RRTDisorgLOBPct is an input parameter of type DOUBLE. The default is 50.0. A negative value will
turn off this criterion.

Chapter 5. Procedures that are supplied with Db2 857

RRTDataSpaceRat
Is the ratio of the space allocated to the actual space used. Specifies a criterion for recommending
that the REORG utility is to be run on table space for space reclamation. If the following condition is
true, DSNACCOX recommends running REORG:

The object is not using hash organization.
The SPACE allocated is greater than RRTDataSpaceRat multiplied by the actual space used.
(SPACE > RRTDataSpaceRat × (DATASIZE/1024))

RRTDataSpaceRat is an input parameter of type DOUBLE. The default value is -1. A negative value
turns off this criterion.

RRTMassDelLimit
Is the sum of the number of mass deletes. Specifies a criterion for recommending that the REORG
utility is to be run on a table space. If one of the following values is greater than RRTMassDelLimit,
DSNACCOX recommends running REORG:

• The sum of mass deletes from a segmented or LOB table space since the last REORG or LOAD
REPLACE

• The number of dropped tables from a nonsegmented table space since the last REORG or LOAD
REPLACE

RRTMassDelLimit is an input parameter of type INTEGER. The default is 0.

RRTIndRefLimit
Is the ratio of the total number of overflow records that were created to the total number of rows.
Specifies a criterion for recommending that the REORG utility is to be run on a table space. If the
following value is greater than RRTIndRefLimit, DSNACCOX recommends running REORG:

The total number of overflow records that were created since the last REORG or LOAD REPLACE,
divided by the total number of rows or LOBs in the table space or partition (expressed as a
percentage)

RRTIndRefLimit is an input parameter of type DOUBLE. The default is 5.0 in data sharing environment
and 10.0 in a non-data sharing environment.

RRIInsertsPct
Is the ratio of the total number of index entries that were inserted to the total number of index entries.
Specifies a criterion for recommending that the REORG utility is to be run on an index space. If the
both of the following conditions are true, DSNACCOX recommends running REORG:

• The sum of the number of index entries that were inserted since the last REORG, divided by the total
number of index entries in the index space or partition (expressed as a percentage) is greater than
RRIInsertsPct.

• The sum of the number of index entries that were inserted since the last REORG is greater than
RRIInsertsAbs.

RRIInsertsPct is an input parameter of type DOUBLE. The default is -1. A negative value turns off this
criterion and RRIInsertsAbs.

RRIInsertsAbs
Is the sum of the number of index entries that were inserted. Specifies a criterion for recommending
that the REORG utility is to be run on an index space. If both of the following conditions are true,
DSNACCOX recommends running REORG:

• The sum of the number of index entries that were inserted since the last REORG, divided by the total
number of index entries in the index space or partition (expressed as a percentage) is greater than
RRIInsertsPct.

• The sum of the number of index entries that were inserted since the last REORG is greater than
RRIInsertsAbs.

RRIInsertsAbs is an input parameter of type INTEGER. The default is 0.

858 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

RRIDeletesPct
Is the ratio of the sum of the number of index entries that were deleted to the total number of index
entries. Specifies a criterion for recommending that the REORG utility is to be run on an index space. If
the following value is greater than RRIDeletesPct, DSNACCOX recommends running REORG:

• The sum of the number of index entries that were deleted since the last REORG, divided by the total
number of index entries in the index space or partition (expressed as a percentage) is greater than
RRIDeletesPct.

• The sum of the number of index entries that were deleted since the last REORG is greater than
RRIDeletesAbs.

RRIDeletesPct is an input parameter of type DOUBLE. The default is 30.0. A negative value turns off
this criterion and RRIDeletesAbs.

RRIDeletesAbs
Is the sum of the number of index entries that were deleted. Specifies a criterion for recommending
that the REORG utility is to be run on an index space. If the following value is greater than
RRIDeletesPct, DSNACCOX recommends running REORG:

• The sum of the number of index entries that were deleted since the last REORG, divided by the total
number of index entries in the index space or partition (expressed as a percentage) is greater than
RRIDeletesPct.

• The sum of the number of index entries that were deleted since the last REORG is greater than
RRIDeletesAbs.

RRIDeletesAbs is an input parameter of type INTEGER. The default is 0.

RRIAppendInsertPct
Is the ratio of the number of index entries that were inserted with a key value greater than the
maximum key value in the index space or partition to the number of index entries. Specifies a criterion
for recommending that the REORG utility is to be run on an index space. If the following value is
greater than RRIAppendInsertPct, DSNACCOX recommends running REORG:

The number of index entries that were inserted since the last REORG, REBUILD INDEX, or LOAD
REPLACE with a key value greater than the maximum key value in the index space or partition,
divided by the number of index entries in the index space or partition (expressed as a percentage)

RRIAppendInsertPct is an input parameter of type DOUBLE. The default is 20.0. A negative value
turns off this criterion.

RRIPseudoDeletePct
Is the ratio of the number of index entries that were pseudo-deleted to the number of index entries.
Specifies a criterion for recommending that the REORG utility is to be run on an index space. If the
following value is greater than RRIPseudoDeletePct, DSNACCOX recommends running REORG:

The number of index entries that were pseudo-deleted since the last REORG, REBUILD INDEX, or
LOAD REPLACE, divided by the number of index entries in the index space or partition (expressed
as a percentage)

RRIPseudoDeletePct is an input parameter of type DOUBLE. The default is 5.0. A negative value turns
off this criterion.

RRIMassDelLimit
Is the sum of the number of mass deletes of index entries. Specifies a criterion for recommending that
the REORG utility is to be run on an index space. If the number of mass deletes from an index space
or partition since the last REORG, REBUILD, or LOAD REPLACE is greater than this value, DSNACCOX
recommends running REORG.

RRIMassDelLimit is an input parameter of type INTEGER. The default is 0. A negative value turns off
this criterion.

RRILeafLimit
Is the ratio of the number of index page splits in which the higher part of the split page was far
from the location of the original page to the total number of active pages. Specifies a criterion for

Chapter 5. Procedures that are supplied with Db2 859

recommending that the REORG utility is to be run on an index space. If the following value is greater
than RRILeafLimit, DSNACCOX recommends running REORG:

The number of index page splits that occurred since the last REORG, REBUILD INDEX, or LOAD
REPLACE in which the higher part of the split page was far from the location of the original
page, divided by the total number of active pages in the index space or partition (expressed as a
percentage)

RRILeafLimit is an input parameter of type DOUBLE. The default is 10.0. A negative value turns off
this criterion.

RRINumLevelsLimit
Is the number of levels in the index tree that were added or removed. Specifies a criterion for
recommending that the REORG utility is to be run on an index space. If the following value is greater
than RRINumLevelsLimit, DSNACCOX recommends running REORG:

The number of levels in the index tree that were added or removed since the last REORG, REBUILD
INDEX, or LOAD REPLACE

RRINumLevelsLimit is an input parameter of type INTEGER. The default is 0. A negative value turns off
this criterion.

SRTInsDelUpdPct
Is the ratio of the total number of insert, update, or delete operations to the total number of rows.
Specifies, when combined with SRTInsDelUpdAbs, a criterion for recommending that the RUNSTATS
utility is to be run on a table space. If both of the following conditions are true, DSNACCOX
recommends running RUNSTATS:

• The number of insert, update, or delete operations since the last RUNSTATS on a table space or
partition, divided by the total number of rows or LOBs in table space or partition (expressed as a
percentage) is greater than SRTInsDelUpdPct.

• The sum of the number of inserted and deleted index entries since the last RUNSTATS on an index
space or partition is greater than SRTInsDelUpdAbs.

SRTInsDelUpdPct is an input parameter of type DOUBLE. The default is 20.0. A negative value turns
off this criterion.

SRTInsDelUpdAbs
Is the number of insert, update, and delete operations. Specifies, when combined with
SRTInsDelUpdPct, a criterion for recommending that the RUNSTATS utility is to be run on a table
space. If both of the following conditions are true, DSNACCOX recommends running RUNSTATS:

• The number of insert, update, and delete operations since the last RUNSTATS on a table space or
partition, divided by the total number of rows or LOBs in table space or partition (expressed as a
percentage) is greater than SRTInsDelUpdPct.

• The sum of the number of inserted and deleted index entries since the last RUNSTATS on an index
space or partition is greater than SRTInsDelUpdAbs.

SRTInsDelUpdAbs is an input parameter of type INTEGER. The default is 0.

SRTMassDelLimit
Is the sum of the number of mass deletes. Specifies a criterion for recommending that the RUNSTATS
utility is to be run on a table space. If the following condition is true, DSNACCOX recommends running
RUNSTATS:

• The number of mass deletes from a table space or partition since the last REORG or LOAD REPLACE
is greater than SRTMassDelLimit.

SRTMassDelLimit is an input parameter of type INTEGER. The default is 0.0. A negative value turns off
this criterion.

SRIInsDelPct
Is the ratio of the total number of inserted and deleted index entries to the total number of
index entries. Specifies, when combined with SRIInsDelAbs, a criterion for recommending that the

860 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

RUNSTATS utility is to be run on an index space. If both of the following conditions are true,
DSNACCOX recommends running RUNSTATS:

• The number of inserted and deleted index entries since the last RUNSTATS on an index space or
partition, divided by the total number of index entries in the index space or partition (expressed as a
percentage) is greater than SRIInsDelPct

• The sum of the number of inserted and deleted index entries since the last RUNSTATS on an index
space or partition is greater than SRIInsDelAbs

SRIInsDelPct is an input parameter of type DOUBLE. The default is 20.0. A negative value turns off
this criterion.

SRIInsDelAbs
Is the total number of inserted and deleted index entries. Specifies, when combined with
SRIInsDelPct, a criterion for recommending that the RUNSTATS utility is to be run on an index space. If
the following condition is true, DSNACCOX recommends running RUNSTATS:

• The number of inserted and deleted index entries since the last RUNSTATS on an index space or
partition, divided by the total number of index entries in the index space or partition (expressed as a
percentage) is greater than SRIInsDelPct

• The sum of the number of inserted and deleted index entries since the last RUNSTATS on an index
space or partition is greater than SRIInsDelAbs,

SRIInsDelAbs is an input parameter of type INTEGER. The default is 0.

SRIMassDelLimit
Is the sum of the number of mass deletes. Specifies a criterion for recommending that the RUNSTATS
utility is to be run on an index space. If the number of mass deletes from an index space or partition
since the last REORG, REBUILD INDEX, or LOAD REPLACE is greater than this value, DSNACCOX
recommends running RUNSTATS.

SRIMassDelLimit is an input parameter of type INTEGER. The default value is 0. A negative value turns
off this criterion.

ExtentLimit
Is the number of physical extents. Specifies a criterion for recommending that the REORG utility is to
be run on a table space or index space. Also specifies that DSNACCOX is to warn the user that the
table space or index space has used too many extents. DSNACCOX recommends running REORG, and
altering data set allocations if the following condition is true:

• The number of physical extents in the index space, table space, or partition is greater than
ExtentLimit.

ExtentLimit is an input parameter of type INTEGER. The default value is 254. A negative value turns off
this criterion.

LastStatement
When DSNACCOX returns a severe error (return code 12), this field contains the SQL statement
that was executing when the error occurred. LastStatement is an output parameter of type
VARCHAR(8012).

ReturnCode
The return code from DSNACCOX execution. Possible values are:
0

DSNACCOX executed successfully.
4

DSNACCOX completed with a warning. For more information about the problem, check the output
parameters, such as the ErrorMsg, IFCAResCode, and IFCARetCode parameters.

8
DSNACCOX terminated with errors. The ErrorMsg parameter contains a message that describes
the error.

Chapter 5. Procedures that are supplied with Db2 861

12
DSNACCOX terminated with severe errors. The ErrorMsg parameter contains a message that
describes the error. The LastStatement parameter contains the SQL statement that was executing
when the error occurred.

14
DSNACCOX terminated because the real-time statistics table were not yet migrated to the catalog.

15
DSNACCOX terminated because it encountered a problem with one of the declared temporary
tables that it defines and uses.

16
DSNACCOX terminated because it could not define a declared temporary table.

NULL
DSNACCOX terminated but could not set a return code.

ReturnCode is an output parameter of type INTEGER.

ErrorMsg
Contains information about DSNACCOX execution when DSNACCOX terminates with a non-zero value
for ReturnCode.

IFCARetCode
Contains the return code from an IFI COMMAND call. DSNACCOX issues commands through the IFI
interface to determine the status of objects. IFCARetCode is an output parameter of type INTEGER.

IFCAResCode
Contains the reason code from an IFI COMMAND call. IFCAResCode is an output parameter of type
INTEGER.

XsBytes
Contains the number of bytes of information that did not fit in the IFI return area after an IFI
COMMAND call. XsBytes is an output parameter of type INTEGER.

DSNACCOX formulas for recommending actions
The following formulas specify the criteria that DSNACCOX uses for its recommendations and warnings.
The variables in italics are DSNACCOX input parameters. The capitalized variables are columns of the
SYSIBM.SYSTABLESPACESTATS or SYSIBM.SYSINDEXSPACESTATS catalog tables.

The following figure shows the formula that DSNACCOX uses to recommend a full image copy on a table
space.

(((QueryType='COPY' OR QueryType='ALL') AND
 (ObjectType='TS' OR ObjectType='ALL') AND
 (Object is not in Persistent Read Only (PRO) status) AND
(ICType='F' OR ICType='B')) AND
 (COPYLASTTIME IS NULL OR
 REORGLASTTIME>COPYLASTTIME OR
 LOADRLASTTIME>COPYLASTTIME OR
 (CURRENT DATE-COPYLASTTIME)>CRDaySncLastCopy OR
 (((COPYUPDATEDPAGES×100)/NACTIVE>CRUpdatedPagesPct AND
 (COPYUPDATEDPAGES>CRupdatedPagesAbs)) OR
 (COPYCHANGES×100)/TOTALROWS>CRChangesPct) OR
 ((QueryType='RESTRICT' OR QueryType='ALL') AND
 (ObjectType='TS' OR ObjectType='ALL') AND
The table space is in COPY-pending status or informational COPY-pending status))

Figure 24. DSNACCOX formula for recommending a full image copy on a table space

The following figure shows the formula that DSNACCOX uses to recommend a full image copy on an index
space.

862 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

(((QueryType='COPY' OR QueryType='ALL') AND
 (ObjectType='IX' OR ObjectType='ALL') AND

 (SYSINDEXES.COPY = 'Y')) AND
 (COPYLASTTIME IS NULL OR
 REORGLASTTIME>COPYLASTTIME OR
 LOADRLASTTIME>COPYLASTTIME OR
 REBUILDLASTTIME>COPYLASTTIME OR
 (CURRENT DATE-COPYLASTTIME)>CRDaySncLastCopy OR
 (NACTIVE>CRIndexSize AND
 (((COPYUPDATEDPAGES×100)/NACTIVE>CRUpdatedPagesPct) AND
 (COPYUPDATEDPAGES>CRUpdatedPagesAbs)) OR
 (COPYCHANGES×100)/TOTALENTRIES>CRChangesPct)) OR
 ((QueryType='RESTRICT' OR QueryType='ALL' OR QueryType='COPY') AND
(ObjectType='IX' OR ObjectType='ALL') AND
The index space is in COPY-pending status or informational COPY-pending status))

Figure 25. DSNACCOX formula for recommending a full image copy on an index space

The following figure shows the formula that DSNACCOX uses to recommend an incremental image copy
on a table space.

((QueryType='COPY' OR QueryType='ALL') AND
 (ObjectType='TS' OR ObjectType='ALL') AND
 (Object is not in Persistent Read Only (PRO) status) AND
(ICType='F' OR ICType='B')) AND
(ICType='I') AND
 COPYLASTTIME IS NOT NULL) AND
(LOADRLASTTIME>COPYLASTTIME OR
 REORGLASTTIME>COPYLASTTIME OR
 ((COPYUPDATEDPAGES×100)/NACTIVE>ICRUpdatedPagesPct) AND
 (COPYUPDATEDPAGES>ICRUpdatedPagesAbs)) OR
 (COPYCHANGES×100)/TOTALROWS>ICRChangesPct)

Figure 26. DSNACCOX formula for recommending an incremental image copy on a table space

The following figure shows the formula that DSNACCOX uses to recommend a REORG on a table space.

Chapter 5. Procedures that are supplied with Db2 863

(((QueryType='REORG' OR QueryType='ALL') AND
 (ObjectType='TS' OR ObjectType='ALL')) AND
 (Object is not in Persistent Read Only (PRO) status) AND
(REORGLASTTIME IS NULL OR
 (NACTIVE IS NULL OR NACTIVE > 5) AND
 ((((REORGINSERTS×100)/TOTALROWS>RRTInsertsPct)“1” on page 864 AND
 REORGINSERTS>RRTInsertsAbs) OR
 (((REORGDELETES×100)/TOTALROWS>RRTDeletesPct) AND
 REORGDELETES>RRTDeletesAbs) OR
 ((REORGCLUSTERSENS > 0 OR
 (REORGCLUSTERSENS IS NULL)) AND
 (DRIVETYPE = 'SSD' AND
 (REORGUNCLUSTINS×100)/TOTALROWS >
 (RRTUnclustInsPct * SSDMultiplier“5” on page 864))) OR
 (DRIVETYPE = 'HDD' AND
 (REORGUNCLUSTINS×100)/TOTALROWS>
 RRTUnclustInsPct))) OR
 (REORGDISORGLOB×100)/TOTALROWS>RRTDisorgLOBPct OR
 (Not HASH organized and
 (SPACE > RRTDataSpaceRat × (DATASIZE/1024))) OR
 ((REORGNEARINDREF+REORGFARINDREF)×100)/TOTALROWS>
 RRTIndRefLimit OR
 REORGMASSDELETE>RRTMassDelLimit OR
 EXTENTS>ExtentLimit“4” on page 864)))) OR
 ((QueryType='REORG' OR QueryType='ALL') AND
 ObjectType='ALL'“2” on page 864 AND
 overflow index for hash access is used“3” on page 864 AND
 (overflow index TOTALENTRY ×100) / TOTALROWS > RRTHashOvrFlwRatio)) OR
 ((QueryType='RESTRICT' OR QueryType='ALL' OR QueryType='REORG') AND
 (ObjectType='TS' OR ObjectType='ALL') AND
 The table space is in advisory or informational reorg pending status)

Notes:

1. If RRTInsertsPct defaults to -1, DSNACCOX does no checking for RRTInsertsPct or RRTInsertsAbs. If
you want to use this criterion, you need to pass the RRTInsetsPct parameter to DSNACCOX.

2. Both IX and TS must be selected, thus ObjectType=ALL must be specified to use this criterion. If
only TS or IX is specified, and the value of the special parameter contains a plus sign (+) to indicate
that the RRTHASHOVRFLWRAT column is to be included in the result set, an error message is issued.
Otherwise, this criterion does not apply when only TS or IX is specified.

3. The overflow index is used when SYSINDEXES.HASH = 'Y' AND
SYSINDEXSPACESTATS.REORGINDEXACCESS > 0.

4. If the table space is a LOB table space, and CHKLVL=1, the formula does not include OR
EXTENTS>ExtentLimit.

5. SSDMultiplier is the value by which RRTUnclustInsPct is multiplied when table space data sets are
on solid state drives (DRIVETYPE='SSD' in catalog table SYSIBM.SYSTABLESPACESTATS). The default
value of SSDMultiplier is 2. If ChkLvl is set to 2, SSDMultiplier is 5.

Figure 27. DSNACCOX formula for recommending a REORG on a table space

The following figure shows the formula that DSNACCOX uses to recommend a REORG on an index space.

864 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

(((QueryType='REORG' OR QueryType='ALL') AND
 (ObjectType='IX' OR ObjectType='ALL') AND
 (REORGLASTTIME IS NULL AND REBUILDLASTTIME IS NULL) OR
 (NACTIVE IS NULL OR NACTIVE > 5) AND
 ((((REORGINSERTS×100)/TOTALENTRIES>RRIInsertsPct) AND
 REORGINSERTS>RRIInsertsAbs)“1” on page 865 OR
 (((REORGDELETES×100)/TOTALENTRIES>RRIDeletesPct) AND
 REORGDELETES>RRIDeletesAbs) OR
 (REORGAPPENDINSERT×100)/TOTALENTRIES>RRIAppendInsertPct OR
 (REORGPSEUDODELETES×100)/TOTALENTRIES>RRIPseudoDeletePct“2” on page 865 OR
 REORGMASSDELETE>RRIMassDelLimit OR
 (REORGLEAFFAR×100)/NACTIVE>RRILeafLimit OR
 REORGNUMLEVELS>RRINumLevelsLimit OR (NPAGES>5 AND
(NPAGES*100)/NLEAF>RRIEmptyLimit) OR
 EXTENTS>ExtentLimit)) OR
 ((QueryType='RESTRICT' OR QueryType='ALL' OR QueryType='REORG') AND
 (ObjectType='IX' OR ObjectType='ALL') AND
 An index is in advisory-REBUILD-pending stats (ARBDP)))

Notes:

1. If RRIInsertsPct defaults to -1, DSNACCOX does no checking for RRIInsertsPct or RRIInsertsAbs. If you
want to use this criterion, you need to pass the RRIInsertsPct parameter to DSNACCOX.

2. If RRIPseudoDeletePct is -1, DSNACCOX does no checking for this criterion.

Figure 28. DSNACCOX formula for recommending a REORG on an index space

The following figure shows the formula that DSNACCOX uses to recommend RUNSTATS on a table space.

((QueryType='RUNSTATS' OR QueryType='ALL') AND
 (ObjectType='TS' OR ObjectType='ALL') AND
 Table Space is not cloned) AND
 (STATSLASTTIME IS NULL OR
 STATSLASTTIME<LOADRLASTTIME OR
 STATSLASTTIME<REORGLASTTIME OR
 STATSLASTTIME< latest PROFILE_UPDATE for the table space“1” on page 865 OR
 (((STATSINSERTS+STATSDELETES+STATSUPDATES)×100)/TOTALROWS>SRTInsDelUpdPct AND
 (STATSINSERTS+STATSDELETES+STATSUPDATES)>SRTInsDelUpdAbs) OR
 STATSMASSDELETE>SRTMassDeleteLimit)))

Figure 29. DSNACCOX formula for recommending RUNSTATS on a table space

Notes:

1. PROFILE_UPDATE is a table-level timestamp column in the SYSIBM.SYSTABLES_PROFILES catalog
table. It is updated by RUNSTATS SET or UPDATE. The PROFILE_UPDATE value is not returned as a
column in the DSNACCOX result set.

The following figure shows the formula that DSNACCOX uses to recommend RUNSTATS on an index
space.

((QueryType='RUNSTATS' OR QueryType='ALL') AND
 (ObjectType='IX' OR ObjectType='ALL')
 Table Space for the index is not cloned) AND
 (STATSLASTTIME IS NULL OR
 STATSLASTTIME<LOADRLASTTIME OR
 STATSLASTTIME<REORGLASTTIME OR
 (((STATSINSERTS+STATSDELETES)×100)/TOTALENTRIES>SRIInsDelPct AND
 (STATSINSERTS+STATSDELETES)>SRIInsDelAbs) OR
 STATSMASSDELETE>SRIInsDelAbs)))

Figure 30. DSNACCOX formula for recommending RUNSTATS on an index space

Chapter 5. Procedures that are supplied with Db2 865

Using an exception table
An exception table is an optional, user-created Db2 table that you can use to place information in
the INEXCEPTTABLE column of the recommendations result set. You can put any information in the
INEXCEPTTABLE column, but the most common use of this column is to filter the recommendations result
set. Each row in the exception table represents an object for which you want to provide information for the
recommendations result set.

To create the exception table, issue a CREATE TABLE statement similar to the following one. You can
include other columns in the exception table, but you must include at least the columns that are shown. It
is best to create a primary key on the exception table to prevent the duplication of rows in the exception
table.

CREATE TABLE DSNACC.EXCEPT_TBL
(DBNAME CHAR(8) NOT NULL,
NAME CHAR(8) NOT NULL,
QUERYTYPE CHAR(40),
PRIMARY KEY (DBNAME,NAME))
CCSID EBCDIC;

The exception table columns have the following meanings:

DBNAME
The database name for an object in the exception table.

NAME
The table space name or index space name for an object in the exception table.

QUERYTYPE
The information that you want to place in the INEXCEPTTABLE column of the recommendations result
set.

If you put a null value in this column, DSNACCOX puts the value YES in the INEXCEPTTABLE column of
the recommendations result set row for the object that matches the DBNAME and NAME values.

If you plan to put many rows in the exception table, create a nonunique index on DBNAME, NAME, and
QUERYTYPE.

After you create the exception table, insert a row for each object for which you want to include
information in the INEXCEPTTABLE column. For example, suppose that you want the INEXCEPTTABLE
column to contain the string 'IRRELEVANT' for table space STAFF in database DSNDB04. You also want
the INEXCEPTTABLE column to contain 'CURRENT' for table space DSN8S12D in database DSN8D12A.
Execute these INSERT statements:

INSERT INTO DSNACC.EXCEPT_TBL VALUES('DSNDB04 ', 'STAFF ', 'IRRELEVANT');
INSERT INTO DSNACC.EXCEPT_TBL VALUES('DSN8D12A', 'DSN8S12D', 'CURRENT');

To use the contents of INEXCEPTTABLE for filtering, include a condition that involves the INEXCEPTTABLE
column in the search condition that you specify in your Criteria input parameter. For example, Suppose
that you want to include all rows for database DSNDB04 in the recommendations result set, except for
those rows that contain the string 'IRRELEVANT' in the INEXCEPTTABLE column. You might include the
following search condition in your Criteria input parameter:

DBNAME='DSNDB04' AND INEXCEPTTABLE<>'IRRELEVANT'

Example of calling DSNACCOX

The following figure is a COBOL example that shows variable declarations and an SQL CALL for obtaining
recommendations for objects in databases DSN8D12A and DSN8D12L. This example also outlines the
steps that you need to perform to retrieve the two result sets that DSNACCOX returns. These result sets
are described in “DSNACCOX output” on page 870

 WORKING-STORAGE SECTION.

* DSNACCOX PARAMETERS *

866 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 01 QUERYTYPE.
 49 QUERYTYPE-LN PICTURE S9(4) COMP VALUE 40.
 49 QUERYTYPE-DTA PICTURE X(40) VALUE 'ALL'.
 01 OBJECTTYPE.
 49 OBJECTTYPE-LN PICTURE S9(4) COMP VALUE 3.
 49 OBJECTTYPE-DTA PICTURE X(3) VALUE 'ALL'.
 01 ICTYPE.
 49 ICTYPE-LN PICTURE S9(4) COMP VALUE 1.
 49 ICTYPE-DTA PICTURE X(1) VALUE 'B'.
 01 CATLGSCHEMA.
 49 CATLGSCHEMA-LN PICTURE S9(4) COMP VALUE 128.
 49 CATLGSCHEMA-DTA PICTURE X(128) VALUE 'SYSIBM'.
 01 LOCALSCHEMA.
 49 LOCALSCHEMA-LN PICTURE S9(4) COMP VALUE 128.
 49 LOCALSCHEMA-DTA PICTURE X(128) VALUE 'DSNACC'.
 01 CHKLVL PICTURE S9(9) COMP VALUE +3.
 01 CRITERIA.
 49 CRITERIA-LN PICTURE S9(4) COMP VALUE 4096.
 49 CRITERIA-DTA PICTURE X(4096) VALUE SPACES.
 01 SPECIALPARM.
 49 SPECIALPARM-LN PICTURE S9(4) COMP VALUE 80.
 49 SPECIALPARM-DTA PICTURE X(80) VALUE SPACES.
 01 CRUPDATEDPAGESPCT USAGE COMP-2 VALUE +0.
 01 CRUPDATEDPAGESABS PICTURE S9(9) COMP VALUE +0.
 01 CRCHANGESPCT USAGE COMP-2 VALUE +0.
 01 CRDAYSNCLASTCOPY PICTURE S9(9) COMP VALUE +0.
 01 ICRUPDATEDPAGESPCT USAGE COMP-2 VALUE +0.
 01 ICRUPDATEDPAGESABS PICTURE S9(9) COMP VALUE +0.
 01 ICRCHANGESPCT PICTURE S9(9) COMP VALUE +0.
 01 CRINDEXSIZE PICTURE S9(9) COMP VALUE +0.
 01 RRTINSERTSPCT USAGE COMP-2 VALUE +0.
 01 RRTINSERTSABS PICTURE S9(9) COMP VALUE +0.
 01 RRTDELETESPCT USAGE COMP-2 VALUE +0.
 01 RRTDELETESABS PICTURE S9(9) COMP VALUE +0.
 01 RRTUNCLUSTINSPCT USAGE COMP-2 VALUE +0.
 01 RRTDISORGLOBPCT USAGE COMP-2 VALUE +0.
 01 RRTDATASPACERAT PICTURE S9(9) COMP VALUE +0.
 01 RRTMASSDELLIMIT PICTURE S9(9) COMP VALUE +0.
 01 RRTINDREFLIMIT PICTURE S9(9) COMP VALUE +0.
 01 RRIINSERTSPCT USAGE COMP-2 VALUE +0.
 01 RRIINSERTSABS PICTURE S9(9) COMP VALUE +0.
 01 RRIDELETESPCT USAGE COMP-2 VALUE +0.
 01 RRIDELETESABS PICTURE S9(9) COMP VALUE +0.
 01 RRIAPPENDINSERTPCT USAGE COMP-2 VALUE +0.
 01 RRIPSEUDODELETEPCT USAGE COMP-2 VALUE +0.
 01 RRIMASSDELLIMIT PICTURE S9(9) COMP VALUE +0.
 01 RRILEAFLIMIT PICTURE S9(9) COMP VALUE +0.
 01 RRINUMLEVELSLIMIT PICTURE S9(9) COMP VALUE +0.
 01 SRTINSDELUPDPCT PICTURE S9(9) COMP VALUE +0.
 01 SRTINSDELUPDABS PICTURE S9(9) COMP VALUE +0.
 01 SRTMASSDELLIMIT PICTURE S9(9) COMP VALUE +0.
 01 SRIINSDELPCT USAGE COMP-2 VALUE +0.
 01 SRIINSDELABS PICTURE S9(9) COMP VALUE +0.
 01 SRIMASSDELLIMIT PICTURE S9(9) COMP VALUE +0.
 01 EXTENTLIMIT PICTURE S9(9) COMP VALUE +0.
 01 LASTSTATEMENT.
 49 LASTSTATEMENT-LN PICTURE S9(4) COMP VALUE 8012.
 49 LASTSTATEMENT-DTA PICTURE X(8012) VALUE SPACES.
 01 RETURNCODE PICTURE S9(9) COMP VALUE +0.
 01 ERRORMSG.
 49 ERRORMSG-LN PICTURE S9(4) COMP VALUE 1331.
 49 ERRORMSG-DTA PICTURE X(1331) VALUE SPACES.
 01 IFCARETCODE PICTURE S9(9) COMP VALUE +0.
 01 IFCARESCODE PICTURE S9(9) COMP VALUE +0.
 01 XSBYTES PICTURE S9(9) COMP VALUE +0.

* INDICATOR VARIABLES. *
* INITIALIZE ALL NON-ESSENTIAL INPUT *
* VARIABLES TO -1, TO INDICATE THAT THE *
* INPUT VALUE IS NULL. *

 01 QUERYTYPE-IND PICTURE S9(4) COMP-4 VALUE +0.
 01 OBJECTTYPE-IND PICTURE S9(4) COMP-4 VALUE +0.
 01 ICTYPE-IND PICTURE S9(4) COMP-4 VALUE +0.
 01 CATLGSCHEMA-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 LOCALSCHEMA-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 CHKLVL-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 CRITERIA-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 SPECIALPARM-IND PICTURE S9(4) COMP-4 VALUE -1.

Chapter 5. Procedures that are supplied with Db2 867

 01 CRUPDATEDPAGESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 CRUPDATEDPAGESABS-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 CRCHANGESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 CRDAYSNCLASTCOPY-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 ICRUPDATEDPAGESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 ICRUPDATEDPAGESABS-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 ICRCHANGESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 CRINDEXSIZE-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 RRTINSERTSPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 RRTINSERTSABS-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 RRTDELETESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 RRTDELETESABS-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 RRTUNCLUSTINSPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 RRTDISORGLOBPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 RRTDATASPACERAT-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 RRTMASSDELLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 RRTINDREFLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 RRIINSERTSPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 RRIINSERTSABS-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 RRIDELETESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 RRIDELETESABS-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 RRIAPPENDINSERTPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 RRIPSEUDODELETEPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 RRIMASSDELLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 RRILEAFLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 RRINUMLEVELSLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 SRTINSDELUPDPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 SRTINSDELUPDABS-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 SRTMASSDELLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 SRIINSDELPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 SRIINSDELABS-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 SRIMASSDELLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 EXTENTLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
 01 LASTSTATEMENT-IND PICTURE S9(4) COMP-4 VALUE +0.
 01 RETURNCODE-IND PICTURE S9(4) COMP-4 VALUE +0.
 01 ERRORMSG-IND PICTURE S9(4) COMP-4 VALUE +0.
 01 IFCARETCODE-IND PICTURE S9(4) COMP-4 VALUE +0.
 01 IFCARESCODE-IND PICTURE S9(4) COMP-4 VALUE +0.
 01 XSBYTES-IND PICTURE S9(4) COMP-4 VALUE +0

PROCEDURE DIVISION.

* SET VALUES FOR DSNACCOX INPUT PARAMETERS: *
* - USE THE CHKLVL PARAMETER TO CAUSE DSNACCOX TO CHECK *
* FOR RELATED TABLE SPACES WHEN PROCESSING INDEX *
* SPACES, AND DELETE RECOMMENDATION FOR INDEXSPACES *
* WHEN AN ACTION (SUCH AS REORG) ON THE TABLE SPACE *
* WILL ALSO CAUSE THE ACTION TO BE DONE ON THE INDEX *
* SPACE. (CHKLVL=64) *
* - USE THE CRITERIA PARAMETER TO CAUSE DSNACCOX TO *
* MAKE RECOMMENDATIONS ONLY FOR OBJECTS IN DATABASES *
* DSN8D91A AND DSN8D91L. *
* - FOR THE FOLLOWING PARAMETERS, SET THESE VALUES, *
* WHICH ARE LOWER THAN THE DEFAULTS: *
* CRUPDATEDPAGESPCT 4 *
* CRCHANGESPCT 2 *
* RRTINSDELUPDPCT 2 *
* RRTUNCLUSTINSPCT 5 *
* RRTDISORGLOBPCT 5 *
* RRIAPPENDINSERTPCT 5 *
* SRTINSDELUPDPCT 5 *
* SRIINSDELPCT 5 *
* EXTENTLIMIT 3 *
* - EXCLUDE CHECKING FOR THESE CRITERIA BY SET THE *
* FOLLOWING VALUES TO A NEGATIVE VALUE. *
* RRTMASSDELLIMIT -1 *
* RRIMASSDELLIMIT -1 *

 MOVE 64 TO CHKLVL.
 MOVE SPACES TO CRITERIA-DTA.
 MOVE 'DBNAME = ''DSN8D91A'' OR DBNAME = ''DSN8D91L'''
 TO CRITERIA-DTA.
 MOVE 46 TO CRITERIA-LN.
 MOVE 4 TO CRUPDATEDPAGESPCT.
 MOVE 2 TO CRCHANGESPCT.
 MOVE 2 TO RRTINSERTSPCT.
 MOVE 5 TO RRTUNCLUSTINSPCT.
 MOVE 5 TO RRTDISORGLOBPCT.
 MOVE 5 TO RRIAPPENDINSERTPCT.
 MOVE 5 TO SRTINSDELUPDPCT.
 MOVE 5 TO SRIINSDELPCT

868 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 MOVE 3 TO EXTENTLIMIT.
 MOVE -1 TO RRTMASSDELLIMIT.
 MOVE -1 TO RRIMASSDELLIMIT.

* INITIALIZE OUTPUT PARAMETERS *

 MOVE SPACES TO LASTSTATEMENT-DTA.
 MOVE 1 TO LASTSTATEMENT-LN.
 MOVE 0 TO RETURNCODE-O2.
 MOVE SPACES TO ERRORMSG-DTA.
 MOVE 1 TO ERRORMSG-LN.
 MOVE 0 TO IFCARETCODE.
 MOVE 0 TO IFCARESCODE.
 MOVE 0 TO XSBYTES.

* SET THE INDICATOR VARIABLES TO 0 FOR NON-NULL INPUT *
* PARAMETERS (PARAMETERS FOR WHICH YOU DO NOT WANT *
* DSNACCOX TO USE DEFAULT VALUES) AND FOR OUTPUT *
* PARAMETERS. *

 MOVE 0 TO CHKLVL-IND.
 MOVE 0 TO CRITERIA-IND.
 MOVE 0 TO CRUPDATEDPAGESPCT-IND.
 MOVE 0 TO CRCHANGESPCT-IND.
 MOVE 0 TO RRTINSERTSPCT-IND.
 MOVE 0 TO RRTUNCLUSTINSPCT-IND.
 MOVE 0 TO RRTDISORGLOBPCT-IND.
 MOVE 0 TO RRIAPPENDINSERTPCT-IND.
 MOVE 0 TO SRTINSDELUPDPCT-IND.
 MOVE 0 TO SRIINSDELPCT-IND.
 MOVE 0 TO EXTENTLIMIT-IND.
 MOVE 0 TO LASTSTATEMENT-IND.
 MOVE 0 TO RETURNCODE-IND.
 MOVE 0 TO ERRORMSG-IND.
 MOVE 0 TO IFCARETCODE-IND.
 MOVE 0 TO IFCARESCODE-IND.
 MOVE 0 TO XSBYTES-IND.
 MOVE 0 TO RRTMASSDELLIMIT-IND.
 MOVE 0 TO RRIMASSDELLIMIT-IND.

* CALL DSNACCOX *

 EXEC SQL
 CALL SYSPROC.DSNACCOX
 (:QUERYTYPE :QUERYTYPE-IND,
 :OBJECTTYPE :OBJECTTYPE-IND,
 :ICTYPE :ICTYPE-IND,
 :CATLGSCHEMA :CATLGSCHEMA-IND,
 :LOCALSCHEMA :LOCALSCHEMA-IND,
 :CHKLVL :CHKLVL-IND,
 :CRITERIA :CRITERIA-IND,
 :SPECIALPARM :SPECIALPARM-IND,
 :CRUPDATEDPAGESPCT :CRUPDATEDPAGESPCT-IND,
 :CRUPDATEDPAGESABS :CRUPDATEDPAGESABS-IND,
 :CRCHANGESPCT :CRCHANGESPCT-IND,
 :CRDAYSNCLASTCOPY :CRDAYSNCLASTCOPY-IND,
 :ICRUPDATEDPAGESPCT :ICRUPDATEDPAGESPCT-IND,
 :ICRUPDATEDPAGESABS :ICRUPDATEDPAGESABS-IND,
 :ICRCHANGESPCT :ICRCHANGESPCT-IND,
 :CRINDEXSIZE :CRINDEXSIZE-IND,
 :RRTINSERTSPCT :RRTINSERTSPCT-IND,
 :RRTINSERTSABS :RRTINSERSTSABS-IND,
 :RRTDELETESPCT :RRTDELETESPCT-IND,
 :RRTDELETESABS :RRTDELETESABS-IND,
 :RRTUNCLUSTINSPCT :RRTUNCLUSTINSPCT-IND,
 :RRTDISORGLOBPCT :RRTDISORGLOBPCT-IND,
 :RRTDATASPACERAT :RRTDATASPACERAT-IND,
 :RRTMASSDELLIMIT :RRTMASSDELLIMIT-IND,
 :RRTINDREFLIMIT :RRTINDREFLIMIT-IND,
 :RRIINSERTSPCT :RRIINSERTSPCT-IND,
 :RRIINSERTSABS :RRIINSERTSABS-IND,
 :RRIDELETESPCT :RRIDELETESPCT-IND,
 :RRIDELETESABS :RRIDELETESABS-IND,
 :RRIAPPENDINSERTPCT :RRIAPPENDINSERTPCT-IND,
 :RRIPSEUDODELETEPCT :RRIPSEUDODELETEPCT-IND,
 :RRIMASSDELLIMIT :RRIMASSDELLIMIT-IND,
 :RRILEAFLIMIT :RRILEAFLIMIT-IND,
 :RRINUMLEVELSLIMIT :RRINUMLEVELSLIMIT-IND,
 :SRTINSDELUPDPCT :SRTINSDELUPDPCT-IND,
 :SRTINSDELUPDABS :SRTINSDELUPDABS-IND,

Chapter 5. Procedures that are supplied with Db2 869

 :SRTMASSDELLIMIT :SRTMASSDELLIMIT-IND,
 :SRIINSDELPCT :SRIINSDELPCT-IND,
 :SRIINSDELABS :SRIINSDELABS-IND,
 :SRIMASSDELLIMIT :SRIMASSDELLIMIT-IND,
 :EXTENTLIMIT :EXTENTLIMIT-IND,
 :LASTSTATEMENT :LASTSTATEMENT-IND,
 :RETURNCODE :RETURNCODE-IND,
 :ERRORMSG :ERRORMSG-IND,e
 :IFCARETCODE :IFCARETCODE-IND,
 :IFCARESCODE :IFCARESCODE-IND,
 :XSBYTES :XSBYTES-IND)
 END-EXEC.

* ASSUME THAT THE SQL CALL RETURNED +466, WHICH MEANS THAT *
* RESULT SETS WERE RETURNED. RETRIEVE RESULT SETS. *

* LINK EACH RESULT SET TO A LOCATOR VARIABLE
 EXEC SQL ASSOCIATE LOCATORS (:LOC1, :LOC2)
 WITH PROCEDURE SYSPROC.DSNACCOX
 END-EXEC.
* LINK A CURSOR TO EACH RESULT SET
 EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :LOC1
 END-EXEC.
 EXEC SQL ALLOCATE C2 CURSOR FOR RESULT SET :LOC2
 END-EXEC.
* PERFORM FETCHES USING C1 TO RETRIEVE ALL ROWS FROM FIRST RESULT SET
* PERFORM FETCHES USING C2 TO RETRIEVE ALL ROWS FROM SECOND RESULT SET

DSNACCOX output

If DSNACCOX executes successfully, in addition to the output parameters described in “Option
descriptions” on page 852, DSNACCOX returns two result sets.

The first result set contains the results from IFI COMMAND calls that DSNACCOX makes. The following
table shows the format of the first result set.

Table 154. Result set row for first DSNACCOX result set

Column name Data type Contents

RS_SEQUENCE INTEGER Sequence number of the output line

RS_DATA CHAR(80) A line of command output

The second result set contains rows for table spaces, index spaces, or partitions, if both of the following
conditions are true for the object:

• If the Criteria input parameter contains a search condition, and the search condition is true for the table
space, index space, or partition.

• DSNACCOX recommends at least one action for the table space, index space, or partition.

The second result set contains one row for each nonpartitioned table space or nonpartitioning index
space. For partitioned table spaces or partitioning indexes, the result set contains one row for each
partition.

The following table shows the columns of a result set row.

Table 155. Result set row for second DSNACCOX result set

Column name Data type“1” on page 879 Description

DBNAME VARCHAR(24) NOT NULL Name of the database that contains the object.

NAME VARCHAR(128) NOT NULL Table space name, index name, or index space
name. Index space name is used if the row is
added as a result of checking a restricted state
and the index name is not available at the time.

870 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 155. Result set row for second DSNACCOX result set (continued)

Column name Data type“1” on page 879 Description

PARTITION INTEGER NOT NULL Data set number or partition number.

INSTANCE SMALLINT NOT NULL Indicates whether the object is associated with a
data set instance.

CLONE CHAR(1) 'Y' or 'N', 'Y' indicates a cloned object.

OBJECTTYPE CHAR(2) NOT NULL Db2 object type:

• 'TS' for a table space
• 'IX' for an index space
• 'LS' for an LOB table space
• 'XS' for an XML table space
• 'DB' for a database

INDEXSPACE VARCHAR(24) Index space name.

CREATOR VARCHAR(128) Index creator name.

OBJECTSTATUS CHAR(40) Status of the object:

• ORPHANED, if the object is an index space with
no corresponding table space, or if the object
does not exist

• If the object is in a restricted state, one of the
following values:

– TS=restricted-state, if OBJECTTYPE is TS
– IX=restricted-state, if OBJECTTYPE is IX
– LS=restricted-state, if OBJECTTYPE is LS
– LX=restricted-state, if OBJECTTYPE is XS

restricted-state is one of the status codes that
appear in the output of the DISPLAY DATABASE
command. For more information, see:

DSNT362I (Db2 Messages)
-DISPLAY DATABASE command (Db2) (Db2
Commands)

• A, if the object is in an advisory state.
• L, if the object is a logical partition, but not in

an advisory state.
• AL, if the object is a logical partition and in an

advisory state.

Chapter 5. Procedures that are supplied with Db2 871

https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsnt362i.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_displaydatabase.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_displaydatabase.html

Table 155. Result set row for second DSNACCOX result set (continued)

Column name Data type“1” on page 879 Description

IMAGECOPY CHAR(4) COPY recommendation:

• If the object is a table space, one of the
following values:
FULL

Full image copy is recommended
INC

Incremental image copy is recommended
NO

Image copy is not recommended.
• If the object is an index, whether image copy is

recommended: YES or NO

RUNSTATS CHAR(3) RUNSTATS recommendation: YES, NO, or Y**.

Y** indicates that the table space contains
volatile and non-volatile tables.

EXTENTS CHAR(3) Indicates whether the data sets for the object
have exceeded ExtentLimit: YES or NO.

REORG CHAR(3) REORG recommendation: YES or NO.

INEXCEPTTABLE CHAR(40) A string that contains one of the following values:

• Text that you specify in the QUERYTYPE
column of the exception table.

• YES, if you put a row in the exception table for
the object that this result set row represents,
but you specify NULL in the QUERYTYPE
column.

• NO, if the exception table exists but does not
have a row for the object that this result set
row represents.

• Null, if the exception table does not exist, or
if the ChkLvl input parameter does not include
the value 4.

ASSOCIATEDTS VARCHAR(128) If OBJECTTYPE is IX this value is the name of
the table space that is associated with the index
space. Otherwise null.

COPYLASTTIME TIMESTAMP Timestamp of the last full or incremental image
copy on the object. Null if COPY was never run, or
if the last COPY execution is unknown.

LOADRLASTTIME TIMESTAMP Timestamp of the last LOAD REPLACE on the
object. Null if LOAD REPLACE was never run, or
if the last LOAD REPLACE execution is unknown.

REBUILDLASTTIME TIMESTAMP Timestamp of the last REBUILD INDEX on the
object. Null if REBUILD INDEX was never run, or
if the last REBUILD INDEX execution is unknown.

872 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 155. Result set row for second DSNACCOX result set (continued)

Column name Data type“1” on page 879 Description

CRUPDPGSPCT DOUBLE If IMAGECOPY contains a value other than
NO, the ratio of distinct updated pages to pre-
formatted pages, expressed as a percentage.
Otherwise null.

If the ratio of distinct updated pages to
pre-formatted pages, does not exceed the
CRUpdatedPagesPct or ICRUpdatedPagesPct (for
tables spaces only, when incremental copy is
recommended), this value is null.

CRUPDPGSABS INTEGER If IMAGECOPY contains a value other than
NO, the ratio of distinct updated pages to pre-
formatted pages. Otherwise null.

If the ratio of distinct updated pages
to pre-formatted pages, does not exceed
the value specified forCRUpdatedPagesAbs or
ICRUpdatedPagesAbs (for tables spaces only,
when incremental copy is recommended), this
value is null.

CRCPYCHGPCT DOUBLE If the object is a table space and the value of
IMAGECOPY is any value other than NO, the ratio
of the total number insert, update, and delete
operations since the last image copy to the total
number of rows or LOBs in the table space or
partition, expressed as a percentage.

If the object is an index and IMAGECOPY is YES,
the ratio of the total number of insert and delete
operations since the last image copy to the total
number of entries in the index space or partition,
expressed as a percentage. Otherwise null.

If the ratio of the total number insert, update,
and delete operations since the last image copy
to the total number of rows or LOBs in the table
space or partition does not exceed the value
specified forCRChangesPct or ICRChangesPct
(incremental copy is recommended), this value
is null.

CRDAYSCELSTCPY INTEGER If IMAGECOPY is YES, the number of days since
the last image copy. Otherwise null.

If the number of days since the last image
copy does not exceed the value specified for
CrDaySncLastCopy, this value is null.

CRINDEXSIZE INTEGER If IMAGECOPY is YES, the number of active
pages in the index space or partition. Otherwise
null.

If the number of active pages in the index space
or partition does not exceed the value specified
for CRIndexSize, this value is null.

Chapter 5. Procedures that are supplied with Db2 873

Table 155. Result set row for second DSNACCOX result set (continued)

Column name Data type“1” on page 879 Description

REORGLASTTIME TIMESTAMP Timestamp of the last REORG on the object. Null
if REORG was never run, or if the last REORG
execution was terminated.

RRTINSERTSPCT DOUBLE If REORG is YES, the ratio of the sum of insert
operations since the last REORG to the total
number of rows or LOBs in the table space or
partition, expressed as a percentage. Otherwise
null.

If the ratio of the sum of insert operations since
the last REORG to the total number of rows or
LOBs in the table space or partition does not
exceed the value specified for RRTInsertsPct, this
value is null.

RRTINSERTSABS INTEGER If REORG is YES, the sum of insert operations
since the last REORG to the total number of rows
in the table space or partition. Otherwise null.

If the sum of insert operations since the last
REORG to the total number of rows in the table
space or partition does not exceed the value
specified for RRTInsertsAbs, this value is null.

RRTDELETESPCT DOUBLE If REORG is YES, the ratio of the sum of delete
operations since the last REORG to the total
number of rows in the table space or partition,
expressed as a percentage. Otherwise null.

If the ratio of the sum of delete operations since
the last REORG to the total number of rows in
the table space or partition does not exceed the
value specified for RRTDeletesPct, this value is
null.

RRTDELETESABS INTEGER If REORG is YES, the total number of delete
operations since the last REORG on a table space
or partition. Otherwise null.

If the total number of delete operations since the
last REORG does not exceed the value specified
for RRTDeletesAbs, this value is null.

RRTUNCINSPCT DOUBLE If REORG is YES, the ratio of the number of
unclustered insert operations to the total number
of rows or LOBs in the table space or partition,
expressed as a percentage. Otherwise null.

If the ratio of the number of unclustered insert
operations to the total number of rows or
LOBs does not exceed the value specified for
RRTUnclustInsPct, this value is null.

874 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 155. Result set row for second DSNACCOX result set (continued)

Column name Data type“1” on page 879 Description

RRTDISORGLOBPCT DOUBLE If REORG is YES, the ratio of the number of
imperfectly chunked LOBs to the total number
of rows or LOBs in the table space or partition,
expressed as a percentage. Otherwise null.

If the ratio of the number of imperfectly chunked
LOBs to the total number of rows or LOBs in
the table space or partition does not exceed the
value of RRTDisorgLOBPct, this value is null

RRTDATSPRAT DOUBLE If REORG is YES, the ratio of the number of
SPACE allocated and the space used, exceed
the value specified by the RRTDataSpaceRat
threshold. Otherwise null.

RRTMASSDELETE INTEGER If REORG is YES, and the table space is a
segmented table space or LOB table space, the
number of mass deletes since the last REORG or
LOAD REPLACE. If REORG is YES, and the table
space is nonsegmented, the number of dropped
tables since the last REORG or LOAD REPLACE.
Otherwise null.

If the number of dropped tables since the last
REORG or LOAD REPLACE does not exceed the
value specified for RRTMassDelLimit, this value is
null.

RRTINDREF DOUBLE If REORG is YES, the ratio of the total number of
overflow records that were created since the last
REORG or LOAD REPLACE to the total number
of rows or LOBs in the table space or partition,
expressed as a percentage. Otherwise null.

If the ratio of the total number of overflow
records that were created since the last REORG
or LOAD REPLACE to the total number of rows
or LOBs does not exceed the value specified for
RRTIndRef, this value is null.

RRIINSERTSPCT DOUBLE If REORG is YES, the ratio of the total number
of insert operations since the last REORG to
the total number of index entries in the index
space or partition, expressed as a percentage.
Otherwise null.

If the ratio of the total number of insert
operations since the last REORG to the total
number of index entries does not exceed the
value specified for RRIInsertsPct, this value is
null.

Chapter 5. Procedures that are supplied with Db2 875

Table 155. Result set row for second DSNACCOX result set (continued)

Column name Data type“1” on page 879 Description

RRIINSERTSABS INTEGER If REORG is YES, the total number of insert
operations since the last REORG. Otherwise null.

If the total number of insert operations since the
last REORG does not exceed the value specified
for RRTInsertsAbs, this value is null.

RRIDELETESPCT DOUBLE If REORG is YES, the ratio of the total number
of delete operations since the last REORG to
the total number of index entries in the index
space or partition, expressed as a percentage.
Otherwise null.

If the ratio of the total number of delete
operations since the last REORG to the total
number of index entries does not exceed the
value specified for RRIDeletesPct, this value is
null.

RRIDELETABS INTEGER If REORG is YES, the total number of delete
operations since the last REORG. Otherwise null.

If the total number of delete operations since the
last REORG does not exceed the value specified
for RRTDeletesAbs, this value is null.

RRIAPPINSPCT DOUBLE If REORG is YES, the ratio of the number of index
entries that were inserted since the last REORG,
REBUILD INDEX, or LOAD REPLACE that had a
key value greater than the maximum key value
in the index space or partition, to the number
of index entries in the index space or partition,
expressed as a percentage. Otherwise null.

If the ratio of the number of index entries that
were inserted, which had a key value greater
than the maximum key value, to the number of
index entries does not exceed the value specified
for RRIAppendInsertPct, this value is null.

RRIPSDDELPCT DOUBLE If REORG is YES, the ratio of the number of
index entries that were pseudo-deleted (the RID
entry was marked as deleted) since the last
REORG, REBUILD INDEX, or LOAD REPLACE to
the number of index entries in the index space or
partition, expressed as a percentage. Otherwise
null.

If the ratio of the number of index entries
that were pseudo-deleted since the last REORG,
REBUILD INDEX, or LOAD REPLACE to the
number of index entries does not exceed the
value specified for RRIPseudoDeletePct, this
value is null.

876 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 155. Result set row for second DSNACCOX result set (continued)

Column name Data type“1” on page 879 Description

RRIMASSDELETE INTEGER If REORG is YES, the number of mass deletes
from the index space or partition since the last
REORG, REBUILD, or LOAD REPLACE. Otherwise
null.

If the number of mass deletes from the
index space or partition since the last REORG,
REBUILD, or LOAD REPLACE does not exceed the
value specified for RRIMassDelLimit, this value is
null.

RRILEAF DOUBLE If REORG is YES, the ratio of the number of index
page splits that occurred since the last REORG,
REBUILD INDEX, or LOAD REPLACE in which the
higher part of the split page was far from the
location of the original page, to the total number
of active pages in the index space or partition,
expressed as a percentage. Otherwise null.

If the ratio of the number of index page splits
that occurred since the last REORG, REBUILD
INDEX, or LOAD REPLACE to the total number of
active pages does not exceed the value specified
for RRILeafLimit, this value is null.

RRINUMLEVELS INTEGER If REORG is YES, the number of levels in the
index tree that were added or removed since the
last REORG, REBUILD INDEX, or LOAD REPLACE.
Otherwise null.

If the number of levels in the index tree that
were added or removed does not exceed the
value specified for RRINumLevelsLimit, this value
is null.

STATSLASTTIME TIMESTAMP Timestamp of the last RUNSTATS on the object.
Null if RUNSTATS was never run, or if the last
RUNSTATS execution was unknown.

SRTINSDELUPDPCT DOUBLE If RUNSTATS is YES, the ratio of the total number
of insert, update, and delete operations since the
last RUNSTATS on a table space or partition, to
the total number of rows or LOBs in the table
space or partition, expressed as a percentage.
Otherwise null.

If the ratio of the total number of insert, update,
and delete operations since the last RUNSTATS
to the total number of rows or LOBs does not
exceed the value specified for SRTInsDelUpdPct,
this value is null.

Chapter 5. Procedures that are supplied with Db2 877

Table 155. Result set row for second DSNACCOX result set (continued)

Column name Data type“1” on page 879 Description

SRTINSDELUPDABS INTEGER If RUNSTATS is YES, the total number of
insert, update, and delete operations since the
last RUNSTATS on a table space or partition.
Otherwise null.

If the total number of insert, update, and delete
operations since the last RUNSTATS does not
exceed the value specified for SRTInsDelUpdAbs,
this value is null.

SRTMASSDELETE INTEGER If RUNSTATS is YES, the number of mass deletes
from the table space or partition since the last
REORG or LOAD REPLACE. Otherwise null.

If the number of mass deletes from the table
space or partition since the last REORG or LOAD
REPLACE does not exceed the value specified for
SRTMassDelLimit, this value is null.

SRIINSDELPCT DOUBLE If RUNSTATS is YES, the ratio of the total number
of insert and delete operations since the last
RUNSTATS on the index space or partition, to
the total number of index entries in the index
space or partition, expressed as a percentage.
Otherwise null.

If the ratio of the total number of insert and
delete operations since the last RUNSTATS, to
the total number of index entries does not
exceed the value specified for SRIInsDelPct, this
value is null.

SRIINSDELABS INTEGER If RUNSTATS is YES, the number insert and
delete operations since the last RUNSTATS on
the index space or partition. Otherwise null.

If the total number of insert, update, and delete
operations since the last RUNSTATS does not
exceed the value specified for , this value is null.

SRIMASSDELETE INTEGER If RUNSTATS is YES, the number of mass deletes
from the index space or partition since the last
REORG, REBUILD INDEX, or LOAD REPLACE.
Otherwise, this value is null.

If the number of mass deletes does not exceed
the value specified for SRIMassDelete, this value
is null.

TOTALEXTENTS SMALLINT If EXTENTS is YES, the number of physical
extents in the table space, index space, or
partition. Otherwise, this value is null.

If the number of physical extents does not
exceed the value specified for ExtentLimit, this
value is null.

878 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 155. Result set row for second DSNACCOX result set (continued)

Column name Data type“1” on page 879 Description

RRIEMPTYLIMIT DOUBLE This column is returned when the function level
is function level 500 or higher. Otherwise, this
column is returned only when the value of
RRIEmptyLimit contains a plus (+) sign.

If ObjectType is IX and REORG is YES, the ratio
of the total number of leaf pages since the last
REORG to the total number of pseudo-empty
pages in the index space or partition, expressed
as a percentage. Otherwise null.

If the ratio of the total number leaf pages
since the last REORG to the total number of
pseudo-empty pages does not exceed the value
specified for the RRIEmptyLimit input parameter,
this value is null.

RRTHASHOVRFLWRAT DOUBLE This column is returned when the function level
is function level 500 or higher. Otherwise, this
column is returned only when the value of
RRIEmptyLimit contains a plus (+) sign.

If REORG is YES, the ratio of Hash Access
overflow index entries to the total number of
rows, expressed as a percentage. Otherwise null.

If the ratio of Hash Access overflow index entries
to the total number of rows does not exceed the
value specified for RRTHashOvrFlwRatio or meet
the criteria requirement, this value is null.

RRTPBGSPACEPCT DOUBLE Reserved for future use.

1. Columns that are not marked as NOT NULL can contain null values.

Related tasks
Maintaining data organization and statistics (Db2 Performance)
Setting up your system for real-time statistics (Db2 Performance)
Implementing Db2 stored procedures (Stored procedures provided by Db2)
Related reference
REORG TABLESPACE (Db2 Utilities)
REORG INDEX (Db2 Utilities)
RUNSTATS (Db2 Utilities)
CREATE DATABASE statement
The CREATE DATABASE statement defines a Db2 database at the current server.
CREATE TABLESPACE statement
The CREATE TABLESPACE statement defines a table space at the current server. The type of table space
depends on the keywords specified.
SYSTABLESPACESTATS catalog table
The SYSTABLESPACESTATS table contains real time statistics for table spaces. The schema is SYSIBM.
SYSINDEXSPACESTATS catalog table

Chapter 5. Procedures that are supplied with Db2 879

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_maintainstatsdataorg.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_setup4realtimestatistics.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sproc/src/tpc/db2z_implementstoredprocedure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_reorgindex.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_runstats.html

The SYSINDEXSPACESTATS table contains real time statistics for index spaces. The schema is SYSIBM.
SYSTABLES_PROFILES catalog table
The SYSTABLES_PROFILES table contains one row for each profile that is associated with a table in
SYSIBM.SYSTABLES. The schema is SYSIBM.

DSNACICS stored procedure
The CICS transaction invocation stored procedure (DSNACICS) invokes CICS server programs.

GUPI DSNACICS gives workstation applications a way to invoke CICS server programs while using TCP/IP
as their communication protocol. The workstation applications use TCP/IP and Db2 Connect to connect to
a Db2 for z/OS subsystem, and then call DSNACICS to invoke the CICS server programs.

The DSNACICS input parameters require knowledge of various CICS resource definitions with which the
workstation programmer might not be familiar. For this reason, DSNACICS invokes the DSNACICX user
exit routine. The system programmer can write a version of DSNACICX that checks and overrides the
parameters that the DSNACICS caller passes. If no user version of DSNACICX is provided, DSNACICS
invokes the default version of DSNACICX, which does not modify any parameters.

Environment
DSNACICS runs in a WLM-established stored procedure address space and uses the Resource Recovery
Services attachment facility to connect to Db2.

If you use CICS Transaction Server for OS/390® Version 1 Release 3 or later, you can register your CICS
system as a resource manager with recoverable resource management services (RRMS). When you do
that, changes to Db2 databases that are made by the program that calls DSNACICS and the CICS server
program that DSNACICS invokes are in the same two-phase commit scope. This means that when the
calling program performs an SQL COMMIT or ROLLBACK, Db2 and RRS inform CICS about the COMMIT or
ROLLBACK.

If the CICS server program that DSNACICS invokes accesses Db2 resources, the server program runs
under a separate unit of work from the original unit of work that calls the stored procedure. This means
that the CICS server program might deadlock with locks that the client program acquires.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges:

• The EXECUTE privilege on stored procedure DSNACICS
• Ownership of the stored procedure
• SYSADM authority

The CICS server program that DSNACICS calls runs under the same user ID as DSNACICS. That user ID
depends on the SECURITY parameter that you specify when you define DSNACICS.

The DSNACICS caller also needs authorization from an external security system, such as RACF, to use
CICS resources.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure.

Because the linkage convention for DSNACICS is GENERAL WITH NULLS, if you pass parameters in host
variables, you need to include a null indicator with every host variable. Null indicators for input host
variables must be initialized before you execute the CALL statement.

880 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

CALL DSNACICS (parm-level

NULL

, pgm-name

NULL

,

CICS-applid

NULL

, CICS-level

NULL

, connect-type

NULL

,

netname

NULL

, mirror-trans

NULL

, COMMAREA

NULL

,

COMMAREA-total-len

NULL

, sync-opts

NULL

, return-code , msg-area)

Option descriptions
parm-level

Specifies the level of the parameter list that is supplied to the stored procedure. This is an input
parameter of type INTEGER. The value must be 1.

pgm-name
Specifies the name of the CICS program that DSNACICS invokes. This is the name of the program that
the CICS mirror transaction calls, not the CICS transaction name.

This is an input parameter of type CHAR(8).

CICS-applid
Specifies the applid of the CICS system to which DSNACICS connects.

This is an input parameter of type CHAR(8).

CICS-level
Specifies the level of the target CICS subsystem:
1

The CICS subsystem is CICS for MVS/ESA Version 4 Release 1, CICS Transaction Server for
OS/390 Version 1 Release 1, or CICS Transaction Server for OS/390 Version 1 Release 2.

2
The CICS subsystem is CICS Transaction Server for OS/390 Version 1 Release 3 or later.

This is an input parameter of type INTEGER.

connect-type
Specifies whether the CICS connection is generic or specific. Possible values are GENERIC or
SPECIFIC.

This is an input parameter of type CHAR(8).

netname
If the value of connection-type is SPECIFIC, specifies the name of the specific connection that is to be
used. This value is ignored if the value of connection-type is GENERIC.

This is an input parameter of type CHAR(8).

mirror-trans
Specifies the name of the CICS mirror transaction to invoke. This mirror transaction calls the CICS
server program that is specified in the pgm-name parameter. mirror-trans must be defined to the CICS
server region, and the CICS resource definition for mirror-trans must specify DFHMIRS as the program
that is associated with the transaction.

If this parameter contains blanks, DSNACICS passes a mirror transaction parameter value of null
to the CICS EXCI interface. This allows an installation to override the transaction name in various

Chapter 5. Procedures that are supplied with Db2 881

CICS user-replaceable modules. If a CICS user exit routine does not specify a value for the mirror
transaction name, CICS invokes CICS-supplied default mirror transaction CSMI.

This is an input parameter of type CHAR(4).

COMMAREA
Specifies the communication area (COMMAREA) that is used to pass data between the DSNACICS
caller and the CICS server program that DSNACICS calls.

This is an input/output parameter of type VARCHAR(32704). In the length field of this parameter,
specify the number of bytes that DSNACICS sends to the CICS server program.

commarea-total-len
Specifies the total length of the COMMAREA that the server program needs.

This is an input parameter of type INTEGER. This length must be greater than or equal to the
value that you specify in the length field of the COMMAREA parameter and less than or equal to
32704. When the CICS server program completes, DSNACICS passes the server program's entire
COMMAREA, which is commarea-total-len bytes in length, to the stored procedure caller.

sync-opts
Specifies whether the calling program controls resource recovery, using two-phase commit protocols
that are supported by RRS. Possible values are:
1

The client program controls commit processing. The CICS server region does not perform a
syncpoint when the server program returns control to CICS. Also, the server program cannot take
any explicit syncpoints. Doing so causes the server program to abnormally terminate.

2
The target CICS server region takes a syncpoint on successful completion of the server program. If
this value is specified, the server program can take explicit syncpoints.

When CICS has been set up to be an RRS resource manager, the client application can control commit
processing using SQL COMMIT requests. Db2 for z/OS ensures that CICS is notified to commit any
resources that the CICS server program modifies during two-phase commit processing.

When CICS has not been set up to be an RRS resource manager, CICS forces syncpoint processing
of all CICS resources at completion of the CICS server program. This commit processing is not
coordinated with the commit processing of the client program.

This option is ignored when CICS-level is 1. This is an input parameter of type INTEGER.

return-code
Return code from the stored procedure. Possible values are:
0

The call completed successfully.
12

The request to run the CICS server program failed. The msg-area parameter contains messages
that describe the error.

This is an output parameter of type INTEGER.

msg-area
Contains messages if an error occurs during stored procedure execution. The first messages in this
area are generated by the stored procedure. Messages that are generated by CICS or the DSNACICX
user exit routine might follow the first messages. The messages appear as a series of concatenated,
viewable text strings.

This is an output parameter of type VARCHAR(500).

User exit routine
DSNACICS always calls user exit routine DSNACICX. You can use DSNACICX to change the values of
DSNACICS input parameters before you pass those parameters to CICS. If you do not supply your own

882 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

version of DSNACICX, DSNACICS calls the default DSNACICX, which modifies no values and does an
immediate return to DSNACICS. The source code for the default version of DSNACICX is in member
DSNASCIX in data set prefix.SDSNSAMP. The source code for a sample version of DSNACICX that is
written in COBOL is in member DSNASCIO in data set prefix.SDSNSAMP.

Example
The following PL/I example shows the variable declarations and SQL CALL statement for invoking the
CICS transaction that is associated with program CICSPGM1.

/***********************/
/* DSNACICS PARAMETERS */
/***********************/
DECLARE PARM_LEVEL BIN FIXED(31);
DECLARE PGM_NAME CHAR(8);
DECLARE CICS_APPLID CHAR(8);
DECLARE CICS_LEVEL BIN FIXED(31);
DECLARE CONNECT_TYPE CHAR(8);
DECLARE NETNAME CHAR(8);
DECLARE MIRROR_TRANS CHAR(4);
DECLARE COMMAREA_TOTAL_LEN BIN FIXED(31);
DECLARE SYNC_OPTS BIN FIXED(31);
DECLARE RET_CODE BIN FIXED(31);
DECLARE MSG_AREA CHAR(500) VARYING;

DECLARE1 COMMAREA BASED(P1),
 3 COMMAREA_LEN BIN FIXED(15),
 3COMMAREA_INPUT CHAR(30),
 3 COMMAREA_OUTPUT CHAR(100);

/***/
/* INDICATOR VARIABLES FOR DSNACICS PARAMETERS */
/***/
DECLARE 1 IND_VARS,
 3 IND_PARM_LEVEL BIN FIXED(15),
 3 IND_PGM_NAME BIN FIXED(15),
 3 IND_CICS_APPLID BIN FIXED(15),
 3 IND_CICS_LEVEL BIN FIXED(15),
 3 IND_CONNECT_TYPE BINFIXED(15),
 3 IND_NETNAME BIN FIXED(15),
 3 IND_MIRROR_TRANSBIN FIXED(15),
 3 IND_COMMAREA BIN FIXED(15),
 3 IND_COMMAREA_TOTAL_LEN BIN FIXED(15),
 3 IND_SYNC_OPTS BIN FIXED(15),
 3 IND_RETCODE BIN FIXED(15),
 3 IND_MSG_AREA BIN FIXED(15);

/**************************/
/* LOCAL COPY OF COMMAREA */
/**************************/
DECLARE P1 POINTER;
DECLARE COMMAREA_STG CHAR(130) VARYING;

/**/
/* ASSIGN VALUES TO INPUT PARAMETERS PARM_LEVEL, PGM_NAME, */
/* MIRROR_TRANS, COMMAREA, COMMAREA_TOTAL_LEN, AND SYNC_OPTS. */
/* SET THE OTHER INPUT PARAMETERS TO NULL. THE DSNACICX */
/* USER EXIT MUST ASSIGN VALUES FOR THOSE PARAMETERS. */
/**/
PARM_LEVEL = 1;
IND_PARM_LEVEL = 0;

PGM_NAME = 'CICSPGM1';
IND_PGM_NAME = 0 ;

MIRROR_TRANS = 'MIRT';
IND_MIRROR_TRANS = 0;

P1 = ADDR(COMMAREA_STG);
COMMAREA_INPUT = 'THIS IS THE INPUT FOR CICSPGM1';
COMMAREA_OUTPUT = ' ';
COMMAREA_LEN = LENGTH(COMMAREA_INPUT);
IND_COMMAREA = 0;

COMMAREA_TOTAL_LEN = COMMAREA_LEN + LENGTH(COMMAREA_OUTPUT);
IND_COMMAREA_TOTAL_LEN = 0;

Chapter 5. Procedures that are supplied with Db2 883

SYNC_OPTS= 1;
IND_SYNC_OPTS = 0;

IND_CICS_APPLID= -1;
IND_CICS_LEVEL = -1;
IND_CONNECT_TYPE = -1;
IND_NETNAME = -1;
/***/
/* INITIALIZE
OUTPUT PARAMETERS TO NULL. */
/***/
IND_RETCODE = -1;
IND_MSG_AREA= -1;
/***/
/* CALL DSNACICS TO INVOKE CICSPGM1. */
/***/
EXEC SQL
 CALL SYSPROC.DSNACICS(:PARM_LEVEL :IND_PARM_LEVEL,
 :PGM_NAME :IND_PGM_NAME,
 :CICS_APPLID :IND_CICS_APPLID,
 :CICS_LEVEL :IND_CICS_LEVEL,
 :CONNECT_TYPE :IND_CONNECT_TYPE,
 :NETNAME :IND_NETNAME,
 :MIRROR_TRANS :IND_MIRROR_TRANS,
 :COMMAREA_STG :IND_COMMAREA,
 :COMMAREA_TOTAL_LEN :IND_COMMAREA_TOTAL_LEN,
 :SYNC_OPTS :IND_SYNC_OPTS,
 :RET_CODE :IND_RETCODE,
 :MSG_AREA :IND_MSG_AREA);

Output
DSNACICS places the return code from DSNACICS execution in the return-code parameter. If the value
of the return code is non-zero, DSNACICS puts its own error messages and any error messages that are
generated by CICS and the DSNACICX user exit routine in the msg-area parameter.

The COMMAREA parameter contains the COMMAREA for the CICS server program that DSNACICS calls.
The COMMAREA parameter has a VARCHAR type. Therefore, if the server program puts data other than
character data in the COMMAREA, that data can become corrupted by code page translation as it is
passed to the caller. To avoid code page translation, you can change the COMMAREA parameter in the
CREATE PROCEDURE statement for DSNACICS to VARCHAR(32704) FOR BIT DATA. However, if you do so,
the client program might need to do code page translation on any character data in the COMMAREA to
make it readable.

Restrictions
Because DSNACICS uses the distributed program link (DPL) function to invoke CICS server programs,
server programs that you invoke through DSNACICS can contain only the CICS API commands that the
DPL function supports.

Debugging
If you receive errors when you call DSNACICS, ask your system administrator to add a DSNDUMP DD
statement in the startup procedure for the address space in which DSNACICS runs. The DSNDUMP DD
statement causes Db2 to generate an SVC dump whenever DSNACICS issues an error message. GUPI

Related information
Db2 for z/OS Stored Procedures: Through the CALL and Beyond (IBM Redbooks)
CICSPlex SM API commands (CICS Transaction Server for z/OS)

884 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

http://www.redbooks.ibm.com/abstracts/sg247604.html
https://www.ibm.com/docs/en/cics-ts/5.6?topic=commands-cicsplex-sm-api

DSNAIMS stored procedure
DSNAIMS is a stored procedure that allows Db2 applications to invoke IMS transactions and commands
easily, without maintaining their own connections to IMS.

GUPI DSNAIMS uses the IMS Open Transaction Manager Access (OTMA) API to connect to IMS and to
execute the transactions.

Environment
DSNAIMS runs in a WLM-established stored procedures address space. DSNAIMS requires Db2 with
RRSAF enabled and IMS version 7 or later with OTMA Callable Interface enabled.

To use a two-phase commit process, you must have IMS Version 8 with UQ70789 or later.

Authorization
To set up and run DSNAIMS, you must be authorized to perform the following steps:

1. Use the job DSNTIJIM to issue the CREATE PROCEDURE statement for DSNAIMS and to grant the
execution of DSNAIMS to PUBLIC. DSNTIJIM is provided in the SDSNSAMP data set. You need to
customize DSNTIJIM to fit the parameters of your system.

2. Ensure that the OTMA Callable Interface is initialized.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL SYSPROC.DSNAIMS (dsnaims-function , dsnaims-2pc

NULL

,

xcf-group-name , xcf-ims-name , racf-userid , racf-groupid

NULL

,

ims-lterm

NULL

, ims-modname

NULL

, ims-tran-name

NULL

,

ims-data-in

NULL

, ims-data-out

NULL

, otma-tpipe-name

NULL

,

otma-dru-name

NULL

, user-data-in

NULL

, user-data-out ,

status-message , return-code)

Option descriptions
dsnaims-function

A string that indicates whether the transaction is send-only, receive-only, or send-and-receive.
Possible values are:
SENDRECV

Sends and receives IMS data. SENDRECV invokes an IMS transaction or command and returns
the result to the caller. The transaction can be an IMS full function or a fast path transaction.
SENDRECV does not support multiple iterations of a conversational transaction

Chapter 5. Procedures that are supplied with Db2 885

SEND
Sends IMS data. SEND invokes an IMS transaction or command but does not receive IMS data. If
result data exists, it can be retrieved with the RECEIVE function. A send-only transaction cannot
be an IMS fast path transaction or a conversational transaction.

RECEIVE
Receives IMS data. The data can be the result of a transaction or a command that is initiated
by the SEND function, or it can be an unsolicited output message from an IMS application. The
RECEIVE function does not initiate an IMS transaction or command.

dsnaims-2pc
Specifies whether to use a two-phase commit process to perform the transaction syncpoint service.
Possible values are Y or N. For N, commits and rollbacks that are issued by the IMS transaction do not
affect commit and rollback processing in the Db2 application that invokes DSNAIMS. Furthermore,
IMS resources are not affected by commits and rollbacks that are issued by the calling Db2
application. If you specify Y, you must also specify SENDRECV. To use a two-phase commit process,
you must set the IMS control region parameter (RRS) to Y.

This parameter is optional. The default is N.

xcf-group-name
Specifies the XCF group name that the IMS OTMA joins. You can obtain this name by viewing the
GRNAME parameter in IMS PROCLIB member DFSPBxxx or by using the IMS command /DISPLAY
OTMA.

xcf-ims-name
Specifies the XCF member name that IMS uses for the XCF group. If IMS is not using the XRF or RSR
feature, you can obtain the XCF member name from the OTMANM parameter in IMS PROCLIB member
DFSPBxxx. If IMS is using the XRF or RSR feature, you can obtain the XCF member name from the
USERVAR parameter in IMS PROCLIB member DFSPBxxx.

racf-userid
Specifies the RACF user ID that is used for IMS to perform the transaction or command authorization
checking. This parameter is required if DSNAIMS is running APF-authorized. If DSNAIMS is running
unauthorized, this parameter is ignored, and the EXTERNAL SECURITY setting for the DSNAIMS
stored procedure definition determines the user ID that is used by IMS.

racf-groupid
Specifies the RACF group ID that is used for IMS to perform the transaction or command authorization
checking. This field is used for stored procedures that are APF-authorized. It is ignored for other
stored procedures.

ims-lterm
Specifies an IMS LTERM name that is used to override the LTERM name in the I/O program
communication block of the IMS application program.

This field is used as an input and an output field:

• For SENDRECV, the value is sent to IMS on input and can be updated by IMS on output.
• For SEND, the parameter is IN only.
• For RECEIVE, the parameter is OUT only.

An empty or NULL value tells IMS to ignore the parameter.

ims-modname
Specifies the formatting map name that is used by the server to map output data streams, such
as 3270 streams. Although this invocation does not have IMS MFS support, the input MODNAME
can be used as the map name to define the output data stream. This name is an 8-byte message
output descriptor name that is placed in the I/O program communication block. When the message
is inserted, IMS places this name in the message prefix with the map name in the program
communication block of the IMS application program.

886 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

For SENDRECV, the value is sent to IMS on input, and can be updated on output. For SEND, the
parameter is IN only. For RECEIVE it is OUT only. IMS ignores the parameter when it is an empty or
NULL value.

ims-tran-name
Specifies the name of an IMS transaction or command that is sent to IMS. If the IMS command is
longer than eight characters, specify the first eight characters (including the "/" of the command).
Specify the remaining characters of the command in the ims-tran-name parameter. If you use an
empty or NULL value, you must specify the full transaction name or command in the ims-data-in
parameter.

ims-data-in
Specifies the data that is sent to IMS. This parameter is required in each of the following cases:

• Input data is required for IMS.
• No transaction name or command is passed in ims-tran-name.
• The command is longer than eight characters.

This parameter is ignored for RECEIVE functions.
ims-data-out

Data that is returned after successful completion of the transaction. This parameter is required for
SENDRECV and RECEIVE functions. The parameter is ignored for SEND functions.

The length of ims-data-out is 32000 bytes. If the data that is returned from IMS is greater than the
length of ims-data-out, the data is truncated.

otma-tpipe-name
Specifies an 8-byte user-defined communication session name that IMS uses for the input and
output data for the transaction or the command in a SEND or a RECEIVE function. If the
otma_tpipe_name parameter is used for a SEND function to generate an IMS output message, the
same otma_pipe_name must be used to retrieve output data for the subsequent RECEIVE function.

otma-dru-name
Specifies the name of an IMS user-defined exit routine, OTMA destination resolution user exit routine,
if it is used. This IMS exit routine can format part of the output prefix and can determine the
output destination for an IMS ALT_PCB output. If an empty or null value is passed, IMS ignores this
parameter.

user-data-in
This optional parameter contains any data that is to be included in the IMS message prefix, so that the
data can be accessed by IMS OTMA user exit routines (DFSYIOE0 and DFSYDRU0) and so that it can
be tracked by IMS log records. IMS applications that run in dependent regions do not access this data.
The specified user data is not included in the output message prefix. You can use this parameter to
store input and output correlator tokens or other information. This parameter is ignored for RECEIEVE
functions.

user-data-out
On output, this field contains the user-data-in in the IMS output prefix. IMS user exit routines
(DFSYIOE0 and DFSYDRU0) can also create user-data-out for SENDRECV and RECEIVE functions.
The parameter is not updated for SEND functions.

The length of user-data-out is 1022 bytes. If the data that is returned from IMS is greater than the
length of user-data-out, the data is truncated.

status-message
Indicates any error message that is returned from the transaction or command, OTMA, RRS, or
DSNAIMS.

return-code
Indicates the return code that is returned for the transaction or command, OTMA, RRS, or DSNAIMS.

Chapter 5. Procedures that are supplied with Db2 887

Examples
The following examples show how to call DSNAIMS.

Example 1: Sample parameters for executing an IMS command:

CALL SYSPROC.DSNAIMS("SENDRECV", "N", "IMS7GRP", "IMS7TMEM",
 "IMSCLNM", "", "", "", "", "",
 "/LOG Hello World.", ims_data_out, "", "", "",
 user_out, error_message, rc)

Example 2: Sample parameters for executing an IMS IVTNO transaction:

CALL SYSPROC.DSNAIMS("SENDRECV", "N", "IMS7GRP", "IMS7TMEM",
 "IMSCLNM", "", "", "", "", "",
 "IVTNO DISPLAY LAST1 "", ims_data_out
 "", "", "", user_out, error_message, rc)

Example 3: Sample parameters for a send-only IMS transaction:

CALL SYSPROC.DSNAIMS("SEND", "N", "IMS7GRP", "IMS7TMEM",
 "IMSCLNM", "", "", "", "", "",
 "IVTNO DISPLAY LAST1 "", ims_data_out,
 "DSNAPIPE", "", "", user_out, error_message, rc)

Example 4: Sample parameters for a receive-only IMS transaction:

CALL SYSPROC.DSNAIMS("RECEIVE", "N", "IMS7GRP", "IMS7TMEM",
 "IMSCLNM", "", "", "", "", "",
 "IVTNO DISPLAY LAST1 "", ims_data_out,
 "DSNAPIPE", "", "", user_out, error_message, rc)

Connecting to multiple IMS subsystems with DSNAIMS
By default, DSNAIMS connects to only one IMS subsystem at a time. The first request to DSNAIMS
determines to which IMS subsystem the stored procedure connects. DSNAIMS attempts to reconnect to
IMS only in the following cases:

• IMS is restarted and the saved connection is no longer valid.
• WLM loads another DSNAIMS task.

To connect to multiple IMS subsystems simultaneously, perform the following steps:

1. Make a copy of the Db2-supplied job DSNTIJIM and customize it to your environment, as follows:

• Specify a separate WLM application environment name for each copy of the DSNTIJIM job that
connects to a separate IMS subsystem.

• Change the procedure name from SYSPROC.DSNAIMS to another name, such as DSNAIMSB.

Do not change the EXTERNAL NAME option. Leave it as DSNAIMS.
2. Run the new job to create a second instance of the stored procedure.
3. To ensure that you connect to the intended IMS target, consistently use the XFC group and member

names that you associate with each stored procedure instance. For example:

CALL SYSPROC.DSNAIMS("SENDRECV", "N", "IMS7GRP", "IMS7TMEM", ...)
CALL SYSPROC.DSNAIMSB("SENDRECV", "N", "IMS8GRP", "IMS8TMEM", ...)

GUPI

Related concepts
OTMA C/I initialization
Related information
Db2 for z/OS Stored Procedures: Through the CALL and Beyond (IBM Redbooks)

888 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/ims/15.2.0?topic=interface-otma-ci-initialization
http://www.redbooks.ibm.com/abstracts/sg247604.html

DSNAIMS2 stored procedure
DSNAIMS2 is a stored procedure that allows Db2 applications to invoke IMS transactions and commands
easily, without maintaining their own connections to IMS. DSNAIMS2 includes multi-segment input
support for IMS transactions.

GUPI DSNAIMS2 uses the IMS Open Transaction Manager Access (OTMA) API to connect to IMS and
execute the transactions.

When you define the DSNAIMS2 stored procedure to your Db2 subsystem, you can use the name
DSNAIMS in your application if you prefer. Customize DSNTIJI2 to define the stored procedure to your
Db2 subsystem as DSNAIMS; however, the EXTERNAL NAME option must still be DSNAIMS2.

Environment
DSNAIMS2 runs in a WLM-established stored procedures address space. DSNAIMS2 requires Db2 with
RRSAF enabled and IMS version 7 or later with OTMA Callable Interface enabled.

To use a two-phase commit process, you must have IMS Version 8 with UQ70789 or later.

Authorization
To set up and run DSNAIMS2, you must be authorized the perform the following steps:

1. Use the job DSNTIJI2 to issue the CREATE PROCEDURE statement for DSNAIMS2 and to grant the
execution of DSNAIMS2 to PUBLIC. DSNTIJI2 is provided in the SDSNSAMP data set. You need to
customize DSNTIJI2 to fit the parameters of your system.

2. Ensure that OTMA C/I is initialized.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL SYSPROC.DSNAIMS2 (dsnaims-function , dsnaims-2pc

NULL

,

xcf-group-name , xcf-ims-name , racf-userid , racf-groupid

NULL

,

ims-lterm

NULL

, ims-modname

NULL

, ims-tran-name

NULL

,

ims-data-in

NULL

, ims-data-out

NULL

, otma-tpipe-name

NULL

,

otma-dru-name

NULL

, user-data-in

NULL

, user-data-out ,

status-message , otma-data-inseg

NULL

, return-code)

Chapter 5. Procedures that are supplied with Db2 889

Option descriptions
dsnaims-function

A string that indicates whether the transaction is send-only, receive-only, or send-and-receive.
Possible values are:
SENDRECV

Sends and receives IMS data. SENDRECV invokes an IMS transaction or command and returns the
result to the caller. The transaction can be an IMS full function or a fast path. SENDRECV does not
support multiple iterations of a conversational transaction

SEND
Sends IMS data. SEND invokes an IMS transaction or command, but does not receive IMS data. If
result data exists, it can be retrieved with the RECEIVE function. A send-only transaction cannot
be an IMS fast path transaction or a conversations transaction.

RECEIVE
Receives IMS data. The data can be the result of a transaction or command initiated by the SEND
function or an unsolicited output message from an IMS application. The RECEIVE function does
not initiate an IMS transaction or command.

dsnaims-2pc
Specifies whether to use a two-phase commit process to perform the transaction syncpoint service.
Possible values are Y or N. For N, commits and rollbacks that are issued by the IMS transaction
do not affect commit and rollback processing in the Db2 application that invokes DSNAIMS2.
Furthermore, IMS resources are not affected by commits and rollbacks that are issued by the calling
Db2 application. If you specify Y, you must also specify SENDRECV. To use a two-phase commit
process, you must set the IMS control region parameter (RRS) to Y.

This parameter is optional. The default is N.

xcf-group-name
Specifies the XCF group name that the IMS OTMA joins. You can obtain this name by viewing the
GRNAME parameter in IMS PROCLIB member DFSPBxxx or by using the IMS command /DISPLAY
OTMA.

xcf-ims-name
Specifies the XCF member name that IMS uses for the XCF group. If IMS is not using the XRF or RSR
feature, you can obtain the XCF member name from the OTMANM parameter in IMS PROCLIB member
DFSPBxxx. If IMS is using the XRF or RSR feature, you can obtain the XCF member name from the
USERVAR parameter in IMS PROCLIB member DFSPBxxx.

racf-userid
Specifies the RACF user ID that is used for IMS to perform the transaction or command authorization
checking. This parameter is required if DSNAIMS2 is running APF-authorized. If DSNAIMS2 is running
unauthorized, this parameter is ignored and the EXTERNAL SECURITY setting for the DSNAIMS2
stored procedure definition determines the user ID that is used by IMS.

racf-groupid
Specifies the RACF group ID that is used for IMS to perform the transaction or command authorization
checking. This field is used for stored procedures that are APF-authorized. It is ignored for other
stored procedures.

ims-lterm
Specifies an IMS LTERM name that is used to override the LTERM name in the I/O program
communication block of the IMS application program.

This field is used as an input and an output field:

• For SENDRECV, the value is sent to IMS on input and can be updated by IMS on output.
• For SEND, the parameter is IN only.
• For RECEIVE, the parameter is OUT only.

An empty or NULL value tells IMS to ignore the parameter.

890 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

ims-modname
Specifies the formatting map name that is used by the server to map output data streams, such
as 3270 streams. Although this invocation does not have IMS MFS support, the input MODNAME
can be used as the map name to define the output data stream. This name is an 8-byte message
output descriptor name that is placed in the I/O program communication block. When the message
is inserted, IMS places this name in the message prefix with the map name in the program
communication block of the IMS application program.

For SENDRECV, the value is sent to IMS on input, and can be updated on output. For SEND, the
parameter is IN only. For RECEIVE it is OUT only. IMS ignores the parameter when it is an empty or
NULL value.

ims-tran-name
Specifies the name of an IMS transaction or command that is sent to IMS. If the IMS command is
longer than eight characters, specify the first eight characters (including the "/" of the command).
Specify the remaining characters of the command in the ims-tran-name parameter. If you use an
empty or NULL value, you must specify the full transaction name or command in the ims-data-in
parameter.

ims-data-in
Specifies the data that is sent to IMS. This parameter is required in each of the following cases:

• Input data is required for IMS
• No transaction name or command is passed in ims-tran-name
• The command is longer than eight characters

This parameter is ignored when for RECEIVE functions.
ims-data-out

Data returned after successful completion of the transaction. This parameter is required for
SENDRECV and RECEIVE functions. The parameter is ignored for SEND functions.

The length of ims-data-out is 32,000 bytes. If the data that is returned from IMS is greater than the
length of ims-data-out, the data will be truncated.

otma-tpipe-name
Specifies an 8-byte user-defined communication session name that IMS uses for the input and
output data for the transaction or the command in a SEND or a RECEIVE function. If the
otma_tpipe_name parameter is used for a SEND function to generate an IMS output message, the
same otma_pipe_name must be used to retrieve output data for the subsequent RECEIVE function.

otma-dru-name
Specifies the name of an IMS user-defined exit routine, OTMA destination resolution user exit routine,
if it is used. This IMS exit routine can format part of the output prefix and can determine the
output destination for an IMS ALT_PCB output. If an empty or null value is passed, IMS ignores this
parameter.

user-data-in
This optional parameter contains any data that is to be included in the IMS message prefix, so that
the data can be accessed by IMS OTMA user exit routines (DFSYIOE0 and DFSYDRU0) and can be
tracked by IMS log records. IMS applications that run in dependent regions do not access this data.
The specified user data is not included in the output message prefix. You can use this parameter to
store input and output correlator tokens or other information. This parameter is ignored for RECEIEVE
functions.

user-data-out
On output, this field contains the user-data-in in the IMS output prefix. IMS user exit routines
(DFSYIOE0 and DFSYDRU0) can also create user-data-out for SENDRECV and RECEIVE functions.
The parameter is not updated for SEND functions.

The length of user-data-out is 1,022 bytes. If the data that is returned from IMS is greater than the
length of user-data-out, the data will be truncated.

Chapter 5. Procedures that are supplied with Db2 891

status-message
Indicates any error message that is returned from the transaction or command, OTMA, RRS, or
DSNAIMS2.

otma-data-inseg
Specifies the number of segments followed by the lengths of the segments to be sent to IMS. All
values should be separated by semicolons. This field is required to send multi-segment input to IMS.
For single-segment transactions and commands, set the field to NULL, "0" or "0;".

return-code
Indicates the return code that is returned for the transaction or command, OTMA, RRS, or DSNAIMS2.

Examples
The following examples show how to call DSNAIMS2.

Example 1: Sample parameters for executing a multi-segment IMS transaction:

CALL SYSPROC.DSNAIMS2("SEND","N","IMS7GRP","IMS7TMEM",
 "IMSCLNM","","","","","",
 "PART 1ST SEGMENT FROM CI 2ND SEGMENT FROM CI ",
 ims_data_out,"","","",user_out, error_message,
 "2;25;20",rc)

Example 2: Sample parameters for executing a single-segment IMS IVTNO transaction:

CALL SYSPROC.DSNAIMS2("SEND","N","IMS7GRP","IMS7TMEM",
 "IMSCLNM","","","","","IVTNO",
 "DISPLAY LAST1",ims_data_out,"","","",
 user_out, error_message,NULL,rc)

Connecting to multiple IMS subsystems with DSNAIMS2
By default DSNAIMS2 connects to only one IMS subsystem at a time. The first request to DSNAIMS2
determines to which IMS subsystem the stored procedure connects. DSNAIMS2 attempts to reconnect to
IMS only in the following cases:

• IMS is restarted and the saved connection is no longer valid
• WLM loads another DSNAIMS2 task

To connect to multiple IMS subsystems simultaneously, perform the following steps:

1. Make a copy of the Db2-supplied job DSNTIJI2 and customize it to your environment.
2. Change the procedure name from SYSPROC.DSNAIMS2 to another name, such as DSNAIMS2B.
3. Do not change the EXTERNAL NAME option. Leave it as DSNAIMS2.
4. Change the name of the stored procedure in the grant statement in job DSNTIJI2.
5. Run the new job to create a second instance of the stored procedure.
6. To ensure that you connect to the intended IMS target, consistently use the XFC group and member

names that you associate with each stored procedure instance. For example:

CALL SYSPROC.DSNAIMS2("SENDRECV", "N", "IMS7GRP", "IMS7TMEM", ...)
CALL SYSPROC.DSNAIMS2B("SENDRECV", "N", "IMS8GRP", "IMS8TMEM", ...)

GUPI

Related concepts
OTMA C/I initialization
Related information
Db2 for z/OS Stored Procedures: Through the CALL and Beyond (IBM Redbooks)

892 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/ims/15.2.0?topic=interface-otma-ci-initialization
http://www.redbooks.ibm.com/abstracts/sg247604.html

DSNLEUSR stored procedure
The DSNLEUSR stored procedure is a sample stored procedure. Use this stored procedure to
store encrypted values in the translated authorization ID (NEWAUTHID) and password fields of the
SYSIBM.USERNAMES table.

GUPI You provide all the values for a SYSIBM.USERNAMES row as input to DSNLEUSR. DSNLEUSR
encrypts the translated authorization ID and password values using 256-bit Advanced Encryption
Standard (AES) encryption before it inserts the row into SYSIBM.USERNAMES.

Environment
DSNLEUSR has the following requirements:

• DSNLEUSR runs in a WLM-established stored procedure address space.
• z/OS Integrated Cryptographic Service Facility (ICSF) must be installed, configured, and active. The

services that ICSF calls that are used by this stored procedure are CSNBCKM and CSNBENC.

Authorization
To execute the CALL DSNLEUSR statement, the owner of the package or plan that contains the CALL
statement must have one or more of the following privileges:

• The EXECUTE privilege on the package for DSNLEUSR
• Ownership of the package
• PACKADM authority for the package collection
• SYSADM authority

The owner of the package or plan that contains the CALL statement must also have INSERT authority on
SYSIBM.USERNAMES.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL DSNLEUSR (Type, AuthID

NULL

, LinkName

NULL

,

NewAuthID

NULL

, Password

NULL

, ReturnCode , MsgArea)

Option descriptions
Type

Specifies the value that is to be inserted into the TYPE column of SYSIBM.USERNAMES.

This is an input parameter of type CHAR(1).

AuthID
Specifies the value that is to be inserted into the AUTHID column of SYSIBM.USERNAMES.

This is an input parameter of type VARCHAR(128). If you specify a null value, DSNLEUSR does not
insert a value for AuthID .

LinkName
Specifies the value that is to be inserted into the LINKNAME column of SYSIBM.USERNAMES.

Chapter 5. Procedures that are supplied with Db2 893

This is an input parameter of type CHAR(8). Although the LINKNAME field of SYSIBM.USERNAMES is
VARCHAR(24), this value is restricted to a maximum of 8 bytes.

If you specify a null value, DSNLEUSR does not insert a value for LinkName .

NewAuthID
Specifies the value that is to be inserted into the NEWAUTHID column of SYSIBM.USERNAMES.

This is an input parameter of type VARCHAR(54). The NEWAUTHID field is type VARCHAR(54) to allow
for expansion during encryption.

If you specify a null value, DSNLEUSR does not insert a value for NewAuthID.

Password
Specifies the value that is to be inserted into the PASSWORD column of SYSIBM.USERNAMES.

If the input value to Password represents a password, the password value is restricted to 100 or fewer
bytes. This applies even if the PASSWORD column of SYSIBM.USERNAMES is VARCHAR(255).

If you specify a null value, DSNLEUSR does not insert a value for Password.

ReturnCode
The return code from DSNLEUSR execution. Possible values are:
0

DSNLEUSR executed successfully.
8

The request to encrypt the translated authorization ID or password failed. MsgArea contains the
following fields:

• An unformatted SQLCA that describes the error.
• A string that contains a DSNL045I message with the ICSF return code, the ICSF reason code,

and the ICSF function that failed. The string immediately follows the SQLCA field and does not
begin with a length field.

12
The insert operation for the SYSIBM.USERNAMES row failed. MsgArea contains an SQLCA that
describes the error.

16
DSNLEUSR terminated because the Db2 subsystem is not in new-function mode. MsgArea
contains an SQLCA that describes the error.

This is an output parameter of type INTEGER.

MsgArea
Contains information about DSNLEUSR execution. The information that is returned is described in the
ReturnCode description.

This is an output parameter of type VARCHAR(500).

Example
The following COBOL example shows variable declarations and an SQL CALL for inserting a row into
SYSIBM.USERNAMES with an encrypted translated authorization ID and an encrypted password.

 WORKING-STORAGE SECTION.
⋮

* DSNLEUSR PARAMETERS *

 01 TYPE1 PICTURE X(1).
 01 AUTHID.
 49 AUTHID-LN PICTURE S9(4) COMP.
 49 AUTHID-DTA PICTURE X(128).
 01 LINKNAME PICTURE X(8).
 01 NEWAUTHID.
 49 NEWAUTHID-LN PICTURE S9(4) COMP.

894 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 49 NEWAUTHID-DTA PICTURE X(54).
 01 PASSWORD1.
 49 PASSWORD1-LN PICTURE S9(4) COMP.
 49 PASSWORD1-DTA PICTURE X(100).
 01 RETURNCODE PICTURE S9(9) COMP VALUE +0.
 01 MSGAREA.
 49 MSGAREA-LN PICTURE S9(4) COMP VALUE 500.
 49 MSGAREA-DTA PICTURE X(500) VALUE SPACES.

* INDICATOR VARIABLES. *

 01 TYPE-IND PICTURE S9(4) COMP-4.
 01 AUTHID-IND PICTURE S9(4) COMP-4.
 01 LINKNAME-IND PICTURE S9(4) COMP-4.
 01 NEWAUTHID-IND PICTURE S9(4) COMP-4.
 01 PASSWORD-IND PICTURE S9(4) COMP-4.
 01 RETURNCODE-IND PICTURE S9(4) COMP-4.
 01 MSGAREA-IND PICTURE S9(4) COMP-4.
 PROCEDURE DIVISION.
?

* SET VALUES FOR DSNLEUSR INPUT PARAMETERS. *
* THE SET OF INPUT VALUES REPRESENTS A ROW THAT *
* DSNLEUSR INSERTS INTO SYSIBM.USERNAMES WITH *
* ENCRYPTED NEWAUTHID AND PASSWORD VALUES. *

 MOVE 'O' TO TYPE1.
 MOVE 0 TO AUTHID-LN.
 MOVE SPACES TO AUTHID-DTA.
 MOVE 'SYEC1B ' TO LINKNAME.
 MOVE 4 TO NEWAUTHID-LN.
 MOVE 'MYID' TO NEWAUTHID-DTA.
 MOVE 6 TO PASSWORD1-LN.
 MOVE 'MYPASS' TO PASSWORD1-DTA.

* CALL DSNLEUSR *

 EXEC SQL
 CALL SYSPROC.DSNLEUSR
 (:TYPE1 :TYPE-IND,
 :AUTHID :AUTHID-IND,
 :LINKNAME :LINKNAME-IND,
 :NEWAUTHID :NEWAUTHID-IND,
 :PASSWORD1 :PASSWORD-IND,
 :RETURNCODE :RETURNCODE-IND,
 :MSGAREA :MSGAREA-IND)
 END-EXEC.

Output
If DSNLEUSR executes successfully, it inserts a row into SYSIBM.USERNAMES with encrypted values
for the NEWAUTHID and PASSWORD columns and returns 0 for the ReturnCode parameter value. If
DSNLEUSR does not execute successfully, it returns a non-zero value for the ReturnCode value and
additional diagnostic information for the MsgArea parameter value. GUPI

Related concepts
SQL communication area (SQLCA)
An SQLCA is a structure or collection of variables that is updated after each SQL statement executes. An
application program that contains executable SQL statements must provide exactly one SQLCA, with a
few exceptions.
Related reference
z/OS Cryptographic Services Integrated Cryptographic Service Facility System Programmer's Guide

DSNUTILS stored procedure (deprecated)
The DSNUTILS stored procedure enables you use the SQL CALL statement to execute Db2 utilities from a
Db2 application program that specifies EBCDIC input.

Important: The DSNUTILS stored procedure is deprecated and replaced by DSNUTILU or DSNUTILV. It is
best to convert existing callers of SYSIBM.SYSUTILS to use the SYSIBM.SYSUTILU or SYSIBM.SYSUTILV
stored procedures instead.

Chapter 5. Procedures that are supplied with Db2 895

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.csfb200/abstract.htm

When called, DSNUTILS performs the following actions:

• Dynamically allocates the specified data sets
• Creates the utility input (SYSIN) stream
• Invokes Db2 utilities (program DSNUTILB)
• Deletes all the rows that are currently in the created temporary table (SYSIBM.SYSPRINT)
• Captures the utility output stream (SYSPRINT) into a created temporary table (SYSIBM.SYSPRINT)
• Declares a cursor to select from SYSPRINT:

DECLARE SYSPRINT CURSOR WITH RETURN FOR
 SELECT SEQNO, TEXT FROM SYSPRINT
 ORDER BY SEQNO;

• Opens the SYSPRINT cursor and returns.

The calling program then fetches from the returned result set to obtain the captured utility output.

Environment for DSNUTILS
DSNUTILS must run in a WLM environment. The DSNWLM_UTILS environment is created for Db2 utilities
stored procedures only. Stored procedures require special data set allocations.

The WLM core environment DSNWLM_UTILS. DSNWLM_UTILS is intended for the following Db2 utilities
stored procedures only:

• DSNUTILV
• DSNUTILU
• DSNUTILS (deprecated)

If you plan to run other applications in this environment other than DSNUTILS or DSNUTILU, add the
procedure and add the DCB information for SYSIN. For example:

//SYSIN DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND),
// DCB=(RECFM=V,LRECL=32708)

Table 156. DSNWLM_UTILS environment

Property Description

NUMTCB 1

APF authorized Yes

Special DDs These DDs are required:

• SYSIN Allocates a work file for temporarily storing utility input statements.
• SYSPRINT Allocates a work file for temporarily storing utility output

messages.
• RNPRIN01 Allocates a data set for messages from the sort program. Required

only if you plan to invoke RUNSTATS and collect distribution statistics.
• UTPRINT Allocates a data set for messages from the sort program.
• DSSPRINT Allocates a data set for messages when making concurrent copies.

Example:

//UTPRINT DD SYSOUT=*
//RNPRIN01 DD SYSOUT=*
//DSSPRINT DD SYSOUT=*
//SYSIN DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSPRINT DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

896 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 156. DSNWLM_UTILS environment (continued)

Property Description

Other considerations The STEPLIB needs to include DSN=prefix.SDSNEXIT or other library where the
authorization exit modules (DSN3@ATH and DSN3@SGN) reside.

Installation job DSNTIJMV creates an address space proc called DSNWLMU for DSNWLM_UTILS. When
the installation CLIST is customized, the name and library name of this proc are changed according to the
Db2 subsystem name you specified on panel DSNTIPM in the field SUBSYSTEM NAME. For example, if you
specified a subsystem name of VA1A then this proc will be named VA1AWLMU.

Authorization required for DSNUTILS

To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges on each package that the stored procedure uses:

• The EXECUTE privilege on the package for DSNUTILS
• Ownership of the package
• PACKADM authority for the package collection
• SYSADM authority

Then, to execute the utility, you must use a privilege set that includes the authorization to run the
specified utility.

If you use RACF to protect JES resources, you must define a RACF group that is authorized to access
those resources and add that RACF group name to the profile of the user ID that calls DSNUTILS.

Control statement for DSNUTILS

DSNUTILS dynamically allocates the specified data sets. Any utility that requires a sort must include the
SORTDEVT keyword in the utility control statement, and optionally, the SORTNUM keyword.

If the DSNUTILS stored procedure invokes a new utility, refer to Table 157 on page 897 for information
about the default data dispositions that are specified for dynamically allocated data sets. This table lists
the DD name that is used to identify the data set and the default dispositions for the data set by utility.

Table 157. Data dispositions for dynamically allocated data sets

DD name
CHECK
DATA

CHECK
INDEX or
CHECK LOB COPY

COPY-
TOCOPY LOAD

MERGE-
COPY

REBUILD
INDEX

REORG
INDEX

REORG
TABLE-
SPACE UNLOAD

SYSREC ignored ignored ignored ignored OLD KEEP
KEEP

ignored ignored ignored NEW
CATLG
CATLG

NEW CATLG
CATLG

SYSDISC ignored ignored ignored ignored NEW CATLG
CATLG

ignored ignored ignored NEW
CATLG
CATLG

ignored

SYSPUNCH ignored ignored ignored ignored ignored ignored ignored ignored NEW
CATLG
CATLG

NEW CATLG
CATLG

SYSCOPY ignored ignored NEW CATLG
CATLG

ignored NEW CATLG
CATLG

NEW CATLG
CATLG

ignored ignored NEW
CATLG
CATLG

ignored

SYSCOPY2 ignored ignored NEW CATLG
CATLG

NEW CATLG
CATLG

NEW CATLG
CATLG

NEW CATLG
CATLG

ignored ignored NEW
CATLG
CATLG

ignored

Chapter 5. Procedures that are supplied with Db2 897

Table 157. Data dispositions for dynamically allocated data sets (continued)

DD name
CHECK
DATA

CHECK
INDEX or
CHECK LOB COPY

COPY-
TOCOPY LOAD

MERGE-
COPY

REBUILD
INDEX

REORG
INDEX

REORG
TABLE-
SPACE UNLOAD

SYSRCPY1 ignored ignored NEW CATLG
CATLG

NEW CATLG
CATLG

NEW CATLG
CATLG

NEW CATLG
CATLG

ignored ignored NEW
CATLG
CATLG

ignored

SYSRCPY2 ignored ignored NEW CATLG
CATLG

NEW CATLG
CATLG

NEW CATLG
CATLG

NEW CATLG
CATLG

ignored ignored NEW
CATLG
CATLG

ignored

SYSUT1 NEW
DELETE
CATLG

NEW
DELETE
CATLG

ignored ignored NEW
DELETE
CATLG

ignored NEW
DELETE
CATLG

NEW
CATLG
CATLG

NEW
DELETE
CATLG

ignored

SORTOUT NEW
DELETE
CATLG

ignored ignored ignored NEW
DELETE
CATLG

ignored ignored ignored NEW
DELETE
CATLG

ignored

SYSMAP ignored ignored ignored ignored NEW CATLG
CATLG

ignored ignored ignored ignored ignored

SYSERR NEW CATLG
CATLG

ignored ignored ignored NEW CATLG
CATLG

ignored ignored ignored ignored ignored

FILTER ignored ignored NEW
DELETE
CATLG

ignored ignored ignored ignored ignored ignored ignored

If the DSNUTILS stored procedure restarts a current utility, refer to Table 158 on page 898 for
information about the default data dispositions that are specified for dynamically-allocated data sets
on RESTART. This table lists the DD name that is used to identify the data set and the default dispositions
for the data set by utility.

Table 158. Data dispositions for dynamically allocated data sets on RESTART

DD name
CHECK
DATA

CHECK
INDEX or
CHECK
LOB COPY

COPY-
TOCOPY LOAD

MERGE-
COPY

REBUILD
INDEX

REORG
INDEX

REORG
TABLE-
SPACE UNLOAD

SYSREC ignored ignored ignored ignored OLD KEEP
KEEP

ignored ignored ignored MOD
CATLG
CATLG

MOD CATLG CATLG

SYSDISC ignored ignored ignored ignored MOD
CATLG
CATLG

ignored ignored ignored MOD
CATLG
CATLG

ignored

SYSPUNCH ignored ignored ignored ignored ignored ignored ignored ignored MOD
CATLG
CATLG

MOD CATLG CATLG

SYSCOPY ignored ignored MOD
CATLG
CATLG

ignored MOD
CATLG
CATLG

MOD
CATLG
CATLG

ignored ignored MOD
CATLG
CATLG

ignored

SYSCOPY2 ignored ignored MOD
CATLG
CATLG

MOD
CATLG
CATLG

MOD
CATLG
CATLG

MOD
CATLG
CATLG

ignored ignored MOD
CATLG
CATLG

ignored

SYSRCPY1 ignored ignored MOD
CATLG
CATLG

MOD
CATLG
CATLG

MOD
CATLG
CATLG

MOD
CATLG
CATLG

ignored ignored MOD
CATLG
CATLG

ignored

SYSRCPY2 ignored ignored MOD
CATLG
CATLG

MOD
CATLG
CATLG

MOD
CATLG
CATLG

MOD
CATLG
CATLG

ignored ignored MOD
CATLG
CATLG

ignored

SYSUT1 MOD
DELETE
CATLG

MOD
DELETE
CATLG

ignored ignored MOD
DELETE
CATLG

ignored MOD
DELETE
CATLG

MOD
CATLG
CATLG

MOD
DELETE
CATLG

ignored

SORTOUT MOD
DELETE
CATLG

ignored ignored ignored MOD
DELETE
CATLG

ignored ignored ignored MOD
DELETE
CATLG

ignored

898 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 158. Data dispositions for dynamically allocated data sets on RESTART (continued)

DD name
CHECK
DATA

CHECK
INDEX or
CHECK
LOB COPY

COPY-
TOCOPY LOAD

MERGE-
COPY

REBUILD
INDEX

REORG
INDEX

REORG
TABLE-
SPACE UNLOAD

SYSMAP ignored ignored ignored ignored MOD
CATLG
CATLG

ignored ignored ignored ignored ignored

SYSERR MOD
CATLG
CATLG

ignored ignored ignored MOD
CATLG
CATLG

ignored ignored ignored ignored ignored

FILTER ignored ignored MOD
DELETE
CATLG

ignored ignored ignored ignored ignored ignored ignored

DSNUTILS stored procedure syntax diagram

The following syntax diagram shows the SQL CALL statement for invoking utilities as a stored procedure.
Because the linkage convention for DSNUTILS is GENERAL, you cannot pass null values for input
parameters. For character parameters that you are not using, specify an empty string ('').

CALL DSNUTILS (utility-id , restart , utstmt , retcode , utility-name

, recdsn , recdevt , recspace , discdsn , discdevt , discspace , pnchdsn , pnchdevt , pnchspace

, copydsn1 , copydevt1 , copyspace1 , copydsn2 , copydevt2 , copyspace2

, rcpydsn1 , rcpydevt1 , rcpyspace1 , rcpydsn2 , rcpydevt2 , rcpyspace2

, workdsn1 , workdevt1 , workspace1 , workdsn2 , workdevt2 , workspace2

, mapdsn , mapdevt , mapspace , errdsn , errdevt , errspace , filtrdsn , filtrdevt , filtrspace)

DSNUTILS option descriptions

utility-id
Specifies a unique identifier for this utility within Db2.

This is an input parameter of type VARCHAR(16) in EBCDIC.

restart
Specifies whether Db2 is to restart a current utility, and, if so, at what point the utility is to be
restarted.

restart is an input parameter of type VARCHAR(8) in Unicode UTF-8, which must be translatable to
allowable EBCDIC characters. Specify one of the following values for this parameter:

NO or null
Indicates that the utility job is new, not a restart. No other utility with the same utility identifier
(UID) can exist.

The default is null.

CURRENT
Restarts the utility at the last commit point.

PHASE
Restarts the utility at the beginning of the currently stopped phase. Use the DISPLAY UTILITY to
determine the currently stopped phase.

Chapter 5. Procedures that are supplied with Db2 899

PREVIEW
Executes in PREVIEW mode the utility control statements that follow. While in PREVIEW mode,
Db2 parses all utility control statements for syntax errors, but normal utility execution does
not take place. If the syntax is valid, Db2 expands all LISTDEF lists and TEMPLATE data set
name expressions that appear in SYSIN and prints the results to the SYSPRINT data set. Db2
evaluates and expands all LISTDEF definitions into an actual list of table spaces or index spaces.
Db2 also evaluates TEMPLATE data set name expressions into actual data set names through
variable substitution. Db2 also expands lists from the SYSLISTD DD and TEMPLATE data set name
expressions from the SYSTEMPL DD that is referenced by a utility invocation.

Absence of the PREVIEW keyword turns off preview processing with one exception. The absence
of this keyword does not override the PREVIEW JCL parameter which, if specified, remains in
effect for the entire job step.

This option is identical to the PREVIEW JCL parameter.

utstmt
Specifies the utility control statements.

This is an input parameter of type VARCHAR(32704) in EBCDIC.

retcode
Specifies the utility highest return code.

This is an output parameter of type INTEGER.

utility-name
Specifies the utility that you want to invoke.

This is an input parameter of type VARCHAR(20) in EBCDIC.

Because DSNUTILS allows only a single utility here, dynamic support of data set allocation is limited.
Specify only a single utility that requires data set allocation in the utstmt parameter.

Select the utility name from the following list:

ANY“1” on page 901

CHECK DATA
CHECK INDEX
CHECK LOB
COPY
COPYTOCOPY
DIAGNOSE
LOAD
MERGECOPY
MODIFY RECOVERY
MODIFY STATISTICS
QUIESCE
REBUILD INDEX
RECOVER
REORG INDEX
REORG LOB
REORG TABLESPACE
REPAIR
REPORT RECOVERY
REPORT TABLESPACESET
RUNSTATS INDEX
RUNSTATS TABLESPACE
STOSPACE
UNLOAD

900 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

1. Use ANY to indicate that TEMPLATE dynamic allocation is to be used. This value suppresses the
dynamic allocation that is normally performed by DSNUTILS.

Recommendation: Invoke DSNUTILS with a utility-name of ANY and omit all of the xxxdsn, xxxdevt,
and xxxspace parameters. Use TEMPLATE statements to allocate the data sets.

When you use TEMPLATE, utilities attempt to close and deallocate data sets when the utilities
complete. However, under some circumstances, utilities cannot deallocate data sets. Under those
circumstances, take one of the following sets of actions:

• If you want to terminate a utility after a failure:

1. Use the TERM UTIL command to terminate the failing utility.
2. Refresh the WLM environment in one of the following ways:

– Submit the VARY command:

VARY WLM,APPLENV=xxx,REFRESH

– Call the WLM_REFRESH stored procedure.

When you terminate the utility, Db2 deletes the data sets that are needed by the utility.
• If you want to restart a utility after a failure:

1. Specify DISP (NEW,CATLG,CATLG) in your template for data sets that are needed by the utility.
2. When the utility fails, refresh the WLM environment, but do not terminate the utility.

You need to delete the allocated data sets manually after the utility completes.

recdsn
Specifies the cataloged data set name that is required by LOAD for input, or by REORG TABLESPACE
as the unload data set. recdsn is required for LOAD. It is also required for REORG TABLESPACE unless
you also specified NOSYSREC or SHRLEVEL CHANGE. If you specify recdsn, the data set is allocated to
the SYSREC DD name.

This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specified the INDDN parameter for LOAD, the specified ddname value must be SYSREC.

If you specify the UNLDDN parameter for REORG TABLESPACE, the specified ddname value must be
SYSREC.

recdevt
Specifies a unit address, a generic device type, or a user-assigned group name for a device on which
the recdsn data set resides.

This is an input parameter of type CHAR(8) in EBCDIC.

recspace
Specifies the number of cylinders to use as the primary space allocation for the recdsn data set. The
secondary space allocation is 10% of the primary space allocation.

This is an input parameter of type SMALLINT.

discdsn
Specifies the cataloged data set name that is used by LOAD as a discard data set to hold records not
loaded, and by REORG TABLESPACE as a discard data set to hold records that are not reloaded. If you
specify discdsn, the data set is allocated to the SYSDISC DD name.

This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the DISCARDDN parameter for LOAD or REORG TABLESPACE, the specified ddname
value must be SYSDISC.

discdevt
Specifies a unit address, a generic device type, or a user-assigned group name for a device on which
the discdsn data set resides.

Chapter 5. Procedures that are supplied with Db2 901

This is an input parameter of type CHAR(8) in EBCDIC.

discspace
Specifies the number of cylinders to use as the primary space allocation for the discdsn data set. The
secondary space allocation is 10% of the primary space allocation.

This is an input parameter of type SMALLINT.

pnchdsn
Specifies the cataloged data set name that REORG TABLESPACE UNLOAD EXTERNAL or REORG
TABLESPACE DISCARD uses to hold the generated LOAD utility control statements. If you specify a
value for pnchdsn, the data set is allocated to the SYSPUNCH DD name.

This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the PUNCHDDN parameter for REORG TABLESPACE, the specified ddname value must
be SYSPUNCH.

pnchdevt
Specifies a unit address, a generic device type, or a user-assigned group name for a device on which
the pnchdsn data set resides.

This is an input parameter of type CHAR(8) in EBCDIC.

pnchspace
Specifies the number of cylinders to use as the primary space allocation for the pnchdsn data set. The
secondary space allocation is 10% of the primary space allocation.

This is an input parameter of type SMALLINT.

copydsn1
Specifies the name of the required target (output) data set, which is needed when you specify the
COPY, COPYTOCOPY, or MERGECOPY utilities. It is optional for LOAD and REORG TABLESPACE. If you
specify copydsn1, the data set is allocated to the SYSCOPY DD name.

This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the COPYDDN parameter for COPY, COPYTOCOPY, MERGECOPY, LOAD, or REORG
TABLESPACE, the specified ddname1 value must be SYSCOPY.

copydevt1
Specifies a unit address, a generic device type, or a user-assigned group name for a device on which
the copydsn1 data set resides.

This is an input parameter of type CHAR(8) in EBCDIC.

copyspace1
Specifies the number of cylinders to use as the primary space allocation for the copydsn1 data set.
The secondary space allocation is 10% of the primary space allocation.

This is an input parameter of type SMALLINT.

copydsn2
Specifies the name of the cataloged data set that is used as a target (output) data set for the backup
copy. It is optional for COPY, COPYTOCOPY, MERGECOPY, LOAD, and REORG TABLESPACE. If you
specify copydsn2, the data set is allocated to the SYSCOPY2 DD name.

This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the COPYDDN parameter for COPY, COPYTOCOPY, MERGECOPY, LOAD, or REORG
TABLESPACE, the specified ddname2 value must be SYSCOPY2.

copydevt2
Specifies a unit address, a generic device type, or a user-assigned group name for a device on which
the copydsn2 data set resides.

This is an input parameter of type CHAR(8) in EBCDIC.

902 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

copyspace2
Specifies the number of cylinders to use as the primary space allocation for the copydsn2 data set.
The secondary space allocation is 10% of the primary space allocation.

This is an input parameter of type SMALLINT.

rcpydsn1
Specifies the name of the cataloged data set that is required as a target (output) data set for the
remote site primary copy. It is optional for COPY, COPYTOCOPY, LOAD, and REORG TABLESPACE. If
you specifyrcpydsn1, the data set is allocated to the SYSRCPY1 DD name.

This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specified the RECOVERYDDN parameter for COPY, COPYTOCOPY, MERGECOPY, LOAD, or
REORG TABLESPACE, the specified ddname1 value must be SYSRCPY1.

rcpydevt1
Specifies a unit address, a generic device type, or a user-assigned group name for a device on which
the rcpydsn1 data set resides.

This is an input parameter of type CHAR(8) in EBCDIC.

rcpyspace1
Specifies the number of cylinders to use as the primary space allocation for the rcpydsn1 data set. The
secondary space allocation is 10% of the primary space allocation.

This is an input parameter of type SMALLINT.

rcpydsn2
Specifies the name of the cataloged data set that is required as a target (output) data set for the
remote site backup copy. It is optional for COPY, COPYTOCOPY, LOAD, and REORG TABLESPACE. If
you specify rcpydsn2, the data set is allocated to the SYSRCPY2 DD name.

This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the RECOVERYDDN parameter for COPY, COPYTOCOPY, MERGECOPY, LOAD, or REORG
TABLESPACE, the specified ddname2 value must be SYSRCPY2.

rcpydevt2
Specifies a unit address, a generic device type, or a user-assigned group name for a device on which
the rcpydsn2 data set resides.

This is an input parameter of type CHAR(8) in EBCDIC.

rcpyspace2
Specifies the number of cylinders to use as the primary space allocation for the rcpydsn2 data set. The
secondary space allocation is 10% of the primary space allocation

This is an input parameter of type SMALLINT.

workdsn1
Specifies the name of the cataloged data set that is required as a work data set for sort input and
output. It is required for CHECK DATA, CHECK INDEX and REORG INDEX. It is also required for LOAD
and REORG TABLESPACE unless you also specify the SORTKEYS keyword. It is optional for REBUILD
INDEX. If you specify workdsn1, the data set is allocated to the SYSUT1 DD name.

This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the WORKDDN parameter for CHECK DATA, CHECK INDEX, LOAD, REORG INDEX,
REORG TABLESPACE, or REBUILD INDEX, the specified ddname value must be SYSUT1.

workdevt1
Specifies a unit address, a generic device type, or a user-assigned group name for a device on which
the workdsn1 data set resides.

This is an input parameter of type CHAR(8) in EBCDIC.

Chapter 5. Procedures that are supplied with Db2 903

workspace1
Specifies the number of cylinders to use as the primary space allocation for the workdsn1 data set.
The secondary space allocation is 10% of the primary space allocation.

This is an input parameter of type SMALLINT.

workdsn2
Specifies the name of the cataloged data set that is required as a work data set for sort input and
output. It is required for CHECK DATA. It is also required if you use REORG INDEX to reorganize
non-unique type 1 indexes. It is required for LOAD or REORG TABLESPACE unless you also specify the
SORTKEYS keyword. If you specify workdsn2, the data set is allocated to the SORTOUT DD name.

This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the WORKDDN parameter for CHECK DATA, LOAD, REORG INDEX, or REORG
TABLESPACE, the specified ddname value must be SORTOUT.

workdevt2
Specifies a unit address, a generic device type, or a user-assigned group name for a device on which
the workdsn2 data set resides.

This is an input parameter of type CHAR(8) in EBCDIC.

workspace2
Specifies the number of cylinders to use as the primary space allocation for the workdsn2 data set.
The secondary space allocation is 10% of the primary space allocation.

This is an input parameter of type SMALLINT.

mapdsn
Specifies the name of the cataloged data set that is required as a work data set for error processing
during LOAD with ENFORCE CONSTRAINTS. It is optional for LOAD. If you specify mapdsn, the data
set is allocated to the SYSMAP DD name.

This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the MAPDDN parameter for LOAD, the specified ddname value must be SYSMAP.

mapdevt
Specifies a unit address, a generic device type, or a user-assigned group name for a device on which
the mapdsn data set resides.

This is an input parameter of type CHAR(8).

mapspace
Specifies the number of cylinders to use as the primary space allocation for the mapdsn data set. The
secondary space allocation is 10% of the primary space allocation.

This is an input parameter of type SMALLINT.

errdsn
Specifies the name of the cataloged data set that is required as a work data set for error processing. It
is required for CHECK DATA, and it is optional for LOAD. If you specify errdsn, the data set is allocated
to the SYSERR DD name.

This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the ERRDDN parameter for CHECK DATA or LOAD, the specified ddname value must be
SYSERR.

errdevt
Specifies a unit address, a generic device type, or a user-assigned group name for a device on which
the errdsn data set resides.

This is an input parameter of type CHAR(8) in EBCDIC.

904 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

errspace
Specifies the number of cylinders to use as the primary space allocation for the errdsn data set. The
secondary space allocation is 10% of the primary space allocation.

This is an input parameter of type SMALLINT.

filtrdsn
Specifies the name of the cataloged data set that is required as a work data set for error processing.
It is optional for COPY CONCURRENT. If you specify filtrdsn, the data set is allocated to the FILTER DD
name.

This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the FILTERDDN parameter for COPY, the specified ddname value must be FILTER.

filtrdevt
Specifies a unit address, a generic device type, or a user-assigned group name for a device on which
the filtrdsn data set resides.

This is an input parameter of type CHAR(8) in EBCDIC.

filtrspace
Specifies the number of cylinders to use as the primary space allocation for the filtrdsn data set. The
secondary space allocation is 10% of the primary space allocation.

This is an input parameter of type SMALLINT.

Modifying the WLM-established address space for DSNUTILS
Add DSSPRINT, SYSIN, and SYSPRINT to the JCL procedure for starting the WLM-established address
space in which DSNUTILS runs.

Requirement: You must allocate SYSIN and SYSPRINT in the procedure to temporarily store utility
input statements and utility output messages. If you plan to invoke RUNSTATS and collect distribution
statistics, you also need to allocate RNPRIN01.

Use JCL similar to the following sample PROC:

//***
//* JCL FOR RUNNING THE WLM-ESTABLISHED STORED PROCEDURES
//* ADDRESS SPACE
//* RGN -- THE MVS REGION SIZE FOR THE ADDRESS SPACE.
//* DB2SSN -- THE DB2 SUBSYSTEM NAME.
//* APPLENV -- THE MVS WLM APPLICATION ENVIRONMENT
//* SUPPORTED BY THIS JCL PROCEDURE.
//*
//* IMPORTANT: You must use the value 1 in this EXEC card:
//* IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,
//* PARM='&DB2SSN,1,&APPLENV'
//*
//***
//DSNWLM PROC RGN=0K,APPLENV=WLMENV1,DB2SSN=DSN
//IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,
// PARM='&DB2SSN,1,&APPLENV'
//STEPLIB DD DISP=SHR,DSN=CEE.V!R!M!.SCEERUN
// DD DISP=SHR,DSN=DSN!!0.SDSNLOAD
//UTPRINT DD SYSOUT=*
//RNPRIN01 DD SYSOUT=*
//DSSPRINT DD SYSOUT=*
//SYSIN DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSPRINT DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

Sample program for calling DSNUTILS

Three example programs calling DSNUTILS are shipped in SDSNSAMP.

• DSNTEJ6U: A DSNUTILS caller that uses PL/I. Job DSNTEJ6U compiles, link-edits, binds, and runs
sample PL/I program DSN8EPU, which invokes the DSNUTILS stored procedure to execute an utility.

Chapter 5. Procedures that are supplied with Db2 905

• DSNTEJ6V: A DSNUTILS caller that uses C++. Job DSNTEJ6V compiles, link-edits, binds, and runs
sample C++ program DSN8EE1, which invokes the DSNUTILS stored procedure to execute an utility.

• DSNTEJ80: A DSNUTILS caller that uses C and ODBC. You can use this sample to compile, pre-link,
link-edit, and execute the sample application DSN8OIVP, which you can use to verify that your Db2
ODBC installation is correct.

DSNUTILS output

Db2 creates the result set according to the DECLARE statement that is shown under Example of declaring
a cursor to select from SYSPRINT.

Output from a successful execution of the DSNTEJ6U sample job or an equivalent job lists the specified
parameters followed by the messages that are generated by the Db2 DIAGNOSE DISPLAY MEPL utility.

If DSNUTILB abends, the abend codes are returned as DSNUTILS return codes.

Related reference
Db2 Sort for z/OS
Related information
DFSORT Application Programming Guide

DSNUTILU stored procedure
Use the DSNUTILU stored procedure to run Db2 utilities from a Db2 application program.

Tip: Alternatively, you can use the DSNUTILV stored procedure, which also supports statements that
are larger than 32 KB. DSNUTILV can run utility statements as large as 2 GB. For more information see
“DSNUTILV stored procedure” on page 910.

When called, DSNUTILU performs the following actions:

• Translates the values that are specified for the utility-id and restart parameters to EBCDIC
• Creates the utility input stream (SYSIN) for utility control statements that are encoded in Unicode
• Invokes Db2 utilities by using DSNUTILB
• Deletes all the rows that are currently in the created temporary table (SYSIBM.SYSPRINT)
• Captures the utility output stream (SYSPRINT) into a created temporary table (SYSIBM.SYSPRINT)
• Declares a cursor to select from SYSPRINT:

DECLARE SYSPRINT CURSOR WITH RETURN FOR
 SELECT SEQNO, TEXT FROM SYSPRINT
 ORDER BY SEQNO;

• Opens the SYSPRINT cursor

The calling program then fetches rows from the returned result set to obtain the captured utility output.

The character set of the resulting utility SYPRINT output that is placed in the SYSIBM.SYSPRINT
table is determined by the BIND PACKAGE statement for the DSNUTILU stored procedure. If the bind
option ENCODING(EBCDIC) is specified, the SYSPRINT contents are in EBCDIC. If the bind option
ENCODING(UNICODE) is specified, the SYSPRINT contents are in Unicode. The default installation job,
DSNTIJRT, contains ENCODING(EBCDIC).

Environment for DSNUTILU
DSNUTILU must run in a WLM environment.

The WLM core environment DSNWLM_UTILS. DSNWLM_UTILS is intended for the following Db2 utilities
stored procedures only:

• DSNUTILV

906 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/support/knowledgecenter/SSLJYE
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.icea100/abstract.htm

• DSNUTILU
• DSNUTILS (deprecated)

If you plan to run other applications in this environment, add the procedure and add the DCB information
for SYSIN, as shown in the following example:

//SYSIN DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND),
// DCB=(RECFM=V,LRECL=32708)

For more information, see Core WLM environments for Db2-supplied routines (Db2 Installation and
Migration).

The WLM-established address space for DSNUTILU
The JCL procedure for starting the WLM-established address space in which DSNUTILU runs requires
DD statements for DSSPRINT, SYSIN, and SYSPRINT. The SYSIN and SYSPRINT DD statements must
allocate workfiles that DSNUTILU can use to temporarily store utility input statements and utility output
messages. If you plan to run RUNSTATS and collect distribution statistics, you also need to allocate a DD
statement for RNPRIN01.

Db2 provides an address space procedure for DSNWLM_UTILS, which is the core WLM environment for
DSNUTILU. That address space procedure is called DSNWLMU. For detailed information about DSNWLMU,
see Core WLM environments for Db2-supplied routines (Db2 Installation and Migration).

Authorization required for DSNUTILU
To call the DSNUTILU stored procedure, the owner of the package or plan that contains the CALL
statement must have one or more of the following privileges on each package that the stored procedure
uses:

• The EXECUTE privilege on the package for DSNUTILU
• Ownership of the package
• PACKADM authority for the package collection
• SYSADM authority

Then, to execute the utility, you must use a privilege set that includes the authorization to run the
specified utility.

If you use RACF to protect JES resources, you must define a RACF group that is authorized to access
those resources and add that RACF group name to the profile of the user ID that calls DSNUTILU.

Utility control statements that are passed to DSNUTILU

Input data sets for the utility control statements can begin with the following Unicode characters:

• A Unicode UTF-8 blank (X'20')
• A Unicode UTF-8 dash (X'2D')
• Uppercase Unicode UTF-8 "A" through "Z" (X'41' through X'5A')

Any utility that requires a sort must include the SORTDEVT keyword in the utility control statement. Use of
the SORTNUM keyword is optional.

Also, DSNUTILU does not dynamically allocate data sets. Use the TEMPLATE utility control statement to
dynamically allocate data sets.

For more information, see:

Utility control statements (Db2 Utilities)
DFSORT Application Programming Guide
Db2 Sort for z/OS

Chapter 5. Procedures that are supplied with Db2 907

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_corewlmenvironments.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_corewlmenvironments.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_corewlmenvironments.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utilitycontrolstatements.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.icea100/abstract.htm
https://www.ibm.com/support/knowledgecenter/SSLJYE

DSNUTILU stored procedure syntax diagram

The following syntax diagram shows the SQL CALL statement for invoking utilities as a stored procedure.

CALL DSNUTILU (utility-id , restart , utstmt , retcode)

DSNUTILU option descriptions

utility-id
Specifies a unique identifier for this utility within Db2.

utility-id is an input parameter of type VARCHAR(16) in Unicode UTF-8, which must be translatable to
the following allowable EBCDIC characters:

• A–Z (uppercase and lowercase)
• 0–9
• #, $, @, ¢, !, ‸, or period (.)

restart
Specifies whether Db2 is to restart a current utility, and, if so, at what point the utility is to be
restarted.

restart is an input parameter of type VARCHAR(8) in Unicode UTF-8, which must be translatable to
allowable EBCDIC characters. Specify one of the following values for this parameter:

NO or null
Indicates that the utility job is new and is not a restarted job. No other utility with the same utility
identifier (UID) can exist.

The default is null.

CURRENT
Restarts the utility at the last commit point.

PHASE
Restarts the utility at the beginning of the currently stopped phase. Use the DISPLAY UTILITY
command to determine the currently stopped phase.

PREVIEW
Executes the utility control statements that follow in preview mode.

In preview mode, Db2 parses all utility control statements for syntax errors, but normal utility
execution does not occur. If the syntax is valid, Db2 expands all LISTDEF lists and TEMPLATE data
set name expressions that are included in SYSIN and prints the results to the SYSPRINT data set.
Db2 evaluates and expands all LISTDEF statements into a list of table spaces or index spaces.
Db2 also evaluates TEMPLATE data set name expressions into data set names through variable
substitution. Db2 also expands lists and data set name expressions from any LISTDEF libraries
and TEMPLATE libraries that are referenced by a utility invocation.

If the PREVIEW keyword is omitted, preview processing is turned off with one exception. The
absence of this keyword does not override the PREVIEW JCL parameter, which, if specified,
remains in effect for the entire job step.

This option is identical to the PREVIEW JCL parameter.

For more information, see:

Restarting an online utility (Db2 Utilities)
-DISPLAY UTILITY command (Db2) (Db2 Commands)
Executing statements in preview mode (Db2 Utilities)

908 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_restartonlineutl.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_displayutility.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_executepreviewmode.html

utstmt
Specifies the utility control statements.

utstmt is an input parameter of type VARCHAR(32704) in Unicode UTF-8. If the utility statement
is not in Unicode UTF-8, Db2 converts it to UTF-8. Therefore, if you pass a utility control
statement in another format, consider the Possible consequences of character conversion (Db2
Internationalization Guide).

retcode
Specifies the utility highest return code.

retcode is an output parameter of type INTEGER.

Terminating or restarting a utility with DSNUTILU
If you do not want to restart a utility after a failure, take the following actions:

1. Use the TERM UTIL command to terminate the failing utility.

When you terminate the utility, Db2 deletes the data sets that are needed by the utility.
2. Refresh the WLM environment in one of the following ways:

• Submit the VARY command:

VARY WLM,APPLENV=xxx,REFRESH

• Call the WLM_REFRESH stored procedure.

If you want to restart a utility after a failure, take the following actions:

1. When you run the utility, use a TEMPLATE utility control statement, and specify DISP
(NEW,CATLG,CATLG) in your template for data sets that are needed by the utility.

2. When the utility fails, refresh the WLM environment, but do not terminate the utility.
3. After the utility completes, delete the allocated data sets manually.

For more information, see “WLM_REFRESH stored procedure” on page 997.

Sample program for calling DSNUTILU

The following sample program calls DSNUTILU and is included in SDSNSAMP:

Job DSNTEJ6R compiles, link-edits, binds, and runs sample C-language caller program DSN8ED8,
which invokes the DSNUTILU stored procedure to execute a utility. DSN8ED8 can pass either a utility
statement or the name of a data set that contains the utility statement.

For more information, see Job DSNTEJ6R (Db2 Installation and Migration).

DSNUTILU output

Db2 creates the result set according to the DECLARE statement shown in Example of declaring a cursor to
select from SYSPRINT

Output from a successful execution of the DSNTEJ6R sample job or an equivalent job lists the specified
parameters, followed by the messages that are generated by the Db2 DIAGNOSE DISPLAY MEPL utility.

For more information, see DIAGNOSE (Db2 Utilities).

Chapter 5. Procedures that are supplied with Db2 909

https://www.ibm.com/docs/en/SSEPEK_12.0.0/char/src/tpc/db2z_consequencecharconv.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/char/src/tpc/db2z_consequencecharconv.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntej6r.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_diagnose.html

DSNUTILV stored procedure
Use the DSNUTILV stored procedure to run Db2 utilities from a Db2 application program. DSNUTILV can
run utility statements as large as 2 GB.

When called, DSNUTILV performs the following actions:

• Translates the values that are specified for the utility-id and restart parameters to EBCDIC
• Creates the utility input stream (SYSIN) for utility control statements that are encoded in Unicode
• Invokes Db2 utilities by using DSNUTILB
• Deletes all the rows that are currently in the created temporary table (SYSIBM.SYSPRINT)
• Captures the utility output stream (SYSPRINT) into a created temporary table (SYSIBM.SYSPRINT)
• Declares a cursor to select from SYSPRINT:

DECLARE SYSPRINT CURSOR WITH RETURN FOR
 SELECT SEQNO, TEXT FROM SYSPRINT
 ORDER BY SEQNO;

• Opens the SYSPRINT cursor

The calling program then fetches rows from the returned result set to obtain the captured utility output.

The character set of the resulting utility SYPRINT output that is placed in the SYSIBM.SYSPRINT
table is determined by the BIND PACKAGE statement for the DSNUTILV stored procedure. If the bind
option ENCODING(EBCDIC) is specified, the SYSPRINT contents are in EBCDIC. If the bind option
ENCODING(UNICODE) is specified, the SYSPRINT contents are in Unicode. The default installation job,
DSNTIJRT, contains ENCODING(EBCDIC).

Environment for DSNUTILV
DSNUTILV must run in a WLM environment. The WLM core environment DSNWLM_UTILS. DSNWLM_UTILS
is intended for the following Db2 utilities stored procedures only:

• DSNUTILV
• DSNUTILU
• DSNUTILS (deprecated)

If you plan to run other applications in this environment, add the procedure and add the DCB information
for SYSIN, as shown in the following example:

//SYSIN DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND),
// DCB=(RECFM=V,LRECL=32708)

For more information, see Core WLM environments for Db2-supplied routines (Db2 Installation and
Migration).

The WLM-established address space for DSNUTILV
The JCL procedure for starting the WLM-established address space in which DSNUTILV runs requires DD
statements for DSSPRINT, SYSIN, and SYSPRINT. The SYSIN and SYSPRINT DD statements must allocate
workfiles that DSNUTILV can use to temporarily store utility input statements and utility output messages.
If you plan to run RUNSTATS and collect distribution statistics, you also need to allocate a DD statement
for RNPRIN01.

Db2 provides an address space procedure for DSNWLM_UTILS, which is the core WLM environment for
DSNUTILV. That address space procedure is called DSNWLMU. For detailed information about DSNWLMU,
see Core WLM environments for Db2-supplied routines (Db2 Installation and Migration).

910 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_corewlmenvironments.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_corewlmenvironments.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_corewlmenvironments.html

Authorization required for DSNUTILV
To call the DSNUTILV stored procedure, the owner of the package or plan that contains the CALL
statement must have one or more of the following privileges on each package that the stored procedure
uses:

• The EXECUTE privilege on the package for DSNUTILV
• Ownership of the package
• PACKADM authority for the package collection
• DATAACCESS authority
• SYSADM authority

Then, to execute the utility, you must use a privilege set that includes the authorization to run the
specified utility.

If you use RACF to protect JES resources, you must define a RACF group that is authorized to access
those resources and add that RACF group name to the profile of the user ID that calls DSNUTILV.

Utility control statements that are passed to DSNUTILV

Input data sets for the utility control statements can begin with the following Unicode characters:

• A Unicode UTF-8 blank (X'20')
• A Unicode UTF-8 dash (X'2D')
• Uppercase Unicode UTF-8 "A" through "Z" (X'41' through X'5A')

Any utility that requires a sort must include the SORTDEVT keyword in the utility control statement. Use of
the SORTNUM keyword is optional.

Also, DSNUTILV does not dynamically allocate data sets. Use the TEMPLATE utility control statement to
dynamically allocate data sets.

For more information, see:

Utility control statements (Db2 Utilities)
DFSORT Application Programming Guide
Db2 Sort for z/OS

DSNUTILV stored procedure syntax diagram

The following syntax diagram shows the SQL CALL statement for invoking utilities as a stored procedure.

CALL DSNUTILV (utility-id , restart , utstmt , retcode)

DSNUTILV option descriptions

utility-id
Specifies a unique identifier for this utility within Db2.

utility-id is an input parameter of type VARCHAR(16) in Unicode UTF-8, which must be translatable to
the following allowable EBCDIC characters:

• A–Z (uppercase and lowercase)
• 0–9
• #, $, @, ¢, !, ‸, or period (.)

Chapter 5. Procedures that are supplied with Db2 911

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utilitycontrolstatements.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.icea100/abstract.htm
https://www.ibm.com/support/knowledgecenter/SSLJYE

restart
Specifies whether Db2 is to restart a current utility, and, if so, at what point the utility is to be
restarted.

restart is an input parameter of type VARCHAR(8) in Unicode UTF-8, which must be translatable to
allowable EBCDIC characters. Specify one of the following values for this parameter:

NO or null
Indicates that the utility job is new and is not a restarted job. No other utility with the same utility
identifier (UID) can exist.

The default is null.

CURRENT
Restarts the utility at the last commit point.

PHASE
Restarts the utility at the beginning of the currently stopped phase. Use the DISPLAY UTILITY
command to determine the currently stopped phase.

PREVIEW
Executes the utility control statements that follow in preview mode.

In preview mode, Db2 parses all utility control statements for syntax errors, but normal utility
execution does not occur. If the syntax is valid, Db2 expands all LISTDEF lists and TEMPLATE data
set name expressions that are included in SYSIN and prints the results to the SYSPRINT data set.
Db2 evaluates and expands all LISTDEF statements into a list of table spaces or index spaces.
Db2 also evaluates TEMPLATE data set name expressions into data set names through variable
substitution. Db2 also expands lists and data set name expressions from any LISTDEF libraries
and TEMPLATE libraries that are referenced by a utility invocation.

If the PREVIEW keyword is omitted, preview processing is turned off with one exception. The
absence of this keyword does not override the PREVIEW JCL parameter, which, if specified,
remains in effect for the entire job step.

This option is identical to the PREVIEW JCL parameter.

For more information, see:

Restarting an online utility (Db2 Utilities)
-DISPLAY UTILITY command (Db2) (Db2 Commands)
Executing statements in preview mode (Db2 Utilities)

utstmt
Specifies the utility control statements.

utstmt is an input parameter of type CLOB(2G) in Unicode UTF-8. If the utility statement is not in
Unicode UTF-8, Db2 converts it to UTF-8. Therefore, if you pass a utility control statement in another
format, consider the Possible consequences of character conversion (Db2 Internationalization Guide).

You can specify a CLOB file reference variable for this parameter. However, the referenced data set
must be in variable record format. For example, suppose that you want DSNUTILV to use LOAD utility
statements that were generated by the UNLOAD utility. You can pass these statements to DSNUTILV
by using a file reference variable. However, you must first convert the data set that contains these
statements to variable record format. (By default, UNLOAD creates these data sets in fixed record
format.) Then, make any other necessary changes, such as adding templates for the LOAD data sets.

Restriction: Any keywords, names, or constants in the utility control statement cannot be larger than
32,704 bytes.

Because conversion between UNICODE and EBCDIC is not always exact, some constants (such table
names, index names, column names, and constant values) can be incorrectly converted. In such
cases, use hexadecimal constants. For example, use X'31' instead of the UNICODE value of character
'1'.

For more information, see:

912 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_restartonlineutl.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_displayutility.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_executepreviewmode.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/char/src/tpc/db2z_consequencecharconv.html

TEMPLATE (Db2 Utilities)
LOAD statements that are generated by UNLOAD (Db2 Utilities)

retcode
Specifies the utility highest return code.

retcode is an output parameter of type INTEGER.

Terminating or restarting a utility with DSNUTILV
If you do not want to restart a utility after a failure, take the following actions:

1. Use the TERM UTIL command to terminate the failing utility.

When you terminate the utility, Db2 deletes the data sets that are needed by the utility.
2. Refresh the WLM environment in one of the following ways:

• Submit the VARY command:

VARY WLM,APPLENV=xxx,REFRESH

• Call the WLM_REFRESH stored procedure.

If you want to restart a utility after a failure, take the following actions:

1. When you run the utility, use a TEMPLATE utility control statement, and specify DISP
(NEW,CATLG,CATLG) in your template for data sets that are needed by the utility.

2. When the utility fails, refresh the WLM environment, but do not terminate the utility.
3. After the utility completes, delete the allocated data sets manually.

For more information, see “WLM_REFRESH stored procedure” on page 997.

Sample program for calling DSNUTILV

The following sample program calls DSNUTILV and is included in SDSNSAMP:

Job DSNTEJ6X compiles, link-edits, binds, and runs sample C-language caller program DSN8EDA,
which invokes the DSNUTILV stored procedure to execute a utility. DSN8EDA can pass either a utility
statement or the name of a data set that contains the utility statement.

For more information, see Job DSNTEJ6R (Db2 Installation and Migration).

DSNUTILV output

Db2 creates the result set according to the DECLARE statement shown in Example of declaring a cursor to
select from SYSPRINT

Output from a successful execution of the DSNTEJ6R sample job or an equivalent job lists the specified
parameters, followed by the messages that are generated by the Db2 DIAGNOSE DISPLAY MEPL utility.

For more information, see DIAGNOSE (Db2 Utilities).

DSN_WLM_APPLENV stored procedure
This procedure provides a convenient way to define, install, and activate a new WLM application
environment for Db2. You can also use it to remove WLM application environments.

Environment
DSN_WLM_APPLENV runs in a WLM-established stored procedures address space.

Chapter 5. Procedures that are supplied with Db2 913

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_template.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_generateloadstatements.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntej6r.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_diagnose.html

Authorization
To execute the CALL DSN_WLM_APPLENV statement, the owner of the package or plan that contains
the CALL statement must have one or more of the following privileges on each package that the stored
procedure uses:

• The EXECUTE privilege on the DSN_WLM_APPLENV stored procedure
• Ownership of the stored procedure
• SYSADM authority

If the RACF facility class is active and a profile has been defined for the MVSADMIN.WLM.POLICY facility
class, then the caller of the stored procedure needs the following access:

• ACCESS(READ) for action WLMINFO:

PERMIT MVSADMIN.WLM.POLICY CLASS(FACILITY) ID(user) ACCESS(READ)

• ACCESS(UPDATE) for action ADD, ADD_ACTIVATE, ACTIVATE:

PERMIT MVSADMIN.WLM.POLICY CLASS(FACILITY) ID(user) ACCESS(UPDATE)

Syntax

CALL DSN_WLM_APPLENV (action , policyid , wlmoptions ,

return-code , message)

Procedure parameters
ACTION

An input parameter of type VARCHAR(20) that identifies the type of action to be performed. This is a
required parameter and supports the following values:
ACTIVATE

The stored procedure activates a WLM service policy.
ADD

The stored procedure installs a new WLM application environment to an existing WLM service
definition without activating a service policy. The new WLM application environment becomes
available only on the next activation of a WLM policy.

ADD_ACTIVATE
The stored procedure installs a new WLM application environment to an existing WLM service
definition and automatically activates a WLM service policy to enable the new WLM application
environment.

REMOVE
The stored procedure installs a WLM application environment from an existing WLM service
definition, and installs the modified service definition without activating it.

REMOVE_ACTIVATE
The stored procedure removes a WLM application environment from an existing WLM service
definition, installs the modified service definition, and activate it.

REMOVE_IF_EXISTS
The same as REMOVE, except that if the WLM application environment to be removed does not
exist, the return code is 4 (warning), instead of 8 (error).

REMIFEXISTS_ACTIVATE
The same as REMOVE_ACTIVATE, except that if the WLM application environment to be removed
does not exist, the return code is 4 (warning), instead of 8 (error).

914 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

WLMINFO
The stored procedure queries the existing WLM service definition and returns basic information.
Examples of the information returned include:

• The service definition name
• The timestamp in the local time the service definition was installed
• The user ID of the service administrator that installed the service definition
• The name of the system on which the service definition was installed from
• The number of application environment currently defined

If the any action other than ACTIVATE or WLMINFO is specified, the WLMOPTIONS input parameter is
also required.

POLICYID
An input parameter of type VARCHAR(8) that identifies the WLM service policy to be activated. It can
be 1-8 characters long or the word ACTIVE. If the policy specified is ACTIVE, the active service policy
is used. This parameter is required if any of the following actions is specified:

• ACTIVATE
• ADD_ACTIVATE
• REMOVE_ACTIVATE
• REMIFEXISTS_ACTIVATE

Otherwise, it is ignored and can be set to NULL or an empty string.

WLMOPTIONS
An input parameter of type VARCHAR(4000).

This parameter with the WLMNAME parameter is required if any of the following actions is specified,
and other WLM parameters are not valid:

• ADD
• ADD_ACTIVATE
• REMOVE
• REMOVE_ACTIVATE
• REMOVE_I
• REMIFEXISTS_ACTIVATE

The following WLM options are supported. Separate multiple options by one or more spaces.

WLMNAME(name)
WLMNAME is the defined name for an application environment. It can be 1-32 characters long. It
cannot begin with the letters SYS. This is a required option.

DESCRIPTION(description)
DESCRIPTION is a 32-character area describing the application environment. This option is not
required and can be set to an empty value. For example,

DESCRIPTION()

PROCNAME(procedure-name)
PROCNAME defines the JCL procedure that WLM uses to start server address spaces for the
application environment. It can be 1-8 characters long. This is a required option.

STARTPARM(start-up-parameters)
STARTPARM contains the parameters that WLM uses to start the JCL procedure. The parameters
can be up to 115 characters. If the parameters include the subsystem name, the symbol
&IWMSSNM can be used to cause WLM to substitute the subsystem name instead of typing the
subsystem name directly. This option is useful because multiple instances of the subsystem with
different names can use the application environment. For example:

Chapter 5. Procedures that are supplied with Db2 915

STARTPARM(DB2SSN=&IWMSSNM,APPLENV=WLMENV1,NUMTCB=1)

This option is not required and can be set to an empty value.
WLMOPT(WLM_MANAGED|SINGLE_SERVER)

WLMOPT tells WLM to limit the number of server address spaces. For example, if a server
address space requires exclusive use of a resource, only a single address space can exist. For
Db2 routines, you can set a limit of 1 address space per system if required by the routine. Note
that if there are multiple Db2 subsystems on a given system, WLM creates 1 server for each Db2
subsystem that calls the routines. A limit of 1 address space per sysplex does not apply to Db2
routines.

This option is not required and can be set to an empty value. The default is WLM_MANAGED.

Examples
Example: Returning the basic information of the WLM service definition

CALL SYSPROC.DSN_WLM_APPLENV('WLMINFO', NULL, NULL, ?, ?)

Here is an example of the output:

RETURN_CODE: 0
MESSAGE: DSNT051I DSNTWLMS ACTIVE WLM SERVICE DEFINITION
 SERVICE DEFINITION NAME WLMSAMPL
 INSTALLED ON 2010-01-25-07.11.57.764052
 INSTALLED BY SYSADM
 INSTALLED FROM LABEC130
 NUMBER OF APPL ENVIRONMENT 12
DSNT023I DSNTWLMS DISPLAY WLM INFORMATION SUCCESSFUL

Example: Identifying the action and WLM options

CALL SYSPROC.DSN_WLM_APPLENV('ADD_ACTIVATE',
 'ACTIVE',
 'WLMNAME(DSNWLM_SAMPLE)
 DESCRIPTION(DB2 SAMPLE WLM ENVIRONMENT)
 PROCNAME(DSNWLMS)
 STARTPARM(DB2SSN=&IWMSSNM,APPLENV=''DSNWLM_SAMPLE'')
 WLMOPT(WLM_MANAGED)', ?, ?)

Here is an example of the output:

RETURN_CODE: 0
MESSAGE: DSNT023I DSNTWLMS ADD WLM APPLICATION ENVIRONMENT DSNWLM_SAMPLE SUCCESSFUL

 APPLICATION ENVIRONMENT NAME : DSNWLM_SAMPLE
 DESCRIPTION : DB2 SAMPLE WLM ENVIRONMENT
 SUBSYSTEM TYPE : DB2
 PROCEDURE NAME : DSNWLMS
 START PARAMETERS : DB2SSN=&IWMSSNM,APPLENV='DSNWLM_SAMPLE'

STARTING OF SERVER ADDRESS SPACES FOR A SUBSYSTEM INSTANCE:
 (x) MANAGED BY WLM
 () LIMITED TO A SINGLE ADDRESS SPACE PER SYSTEM
 () LIMITED TO A SINGLE ADDRESS SPACE PER SYSPLEX

 DSNT023I DSNTWLMS ACTIVATE WLM POLICY WLMPOLY1 SUCCESSFUL

DSN8.CREATE_DGTT stored procedure
The DSN8.CREATE_DGTT sample procedure creates a declared temporary table named
SESSION.DBMS_BUFFER.

SESSION.DBMS_BUFFER is used by the sample trace procedures.

Environment
The CREATE_DGTT stored procedure must be called from within a native SQL routine.

916 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges:

• The EXECUTE privilege on the DSN8.CREATE_DGTT stored procedure
• Ownership of the stored procedure
• SYSADM authority

Syntax

CALL DSN8.CREATE_DGTT

Notes
Creation of this procedure:

Sample job DSNTEJTR creates this procedure.

Examples

Example: Create the SESSION.DBMS_BUFFER declared temporary table.

CALL DSN8.CREATE_DGTT;

DSN8.DISABLE stored procedure
The DISABLE sample procedure disables the message buffer into which trace messages for native SQL
routines are written.

Environment
The DISABLE stored procedure must be called from within a native SQL routine.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges:

• The EXECUTE privilege on the DSN8.DISABLE stored procedure
• Ownership of the stored procedure
• SYSADM authority

Syntax

CALL DSN8.DISABLE

Notes
Creation of this procedure:

Sample job DSNTEJTR creates this procedure.

Chapter 5. Procedures that are supplied with Db2 917

Examples

Example: Disable the message buffer for the current debug session.

CALL DSN8.DISABLE;

DSN8.ENABLE stored procedure
The ENABLE sample procedure enables the message buffer into which trace messages for native SQL
routines are written.

Environment
The ENABLE stored procedure must be called from within a native SQL routine.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges:

• The EXECUTE privilege on the DSN8.ENABLE stored procedure
• Ownership of the stored procedure
• SYSADM authority

Syntax

CALL DSN8.ENABLE (buffer-size)

Option descriptions
buffer-size

This value is not used by DSN8.ENABLE.

This is an input argument of type INTEGER.

Notes
Creation of this procedure:

Sample job DSNTEJTR creates this procedure.

Examples

Example: Enable the message buffer for the current debug session.

CALL DSN8.ENABLE(17000);

Example: Enable the message buffer for the current debug session, without specifying the buffer-size
parameter.

CALL DSN8.ENABLE(CAST(NULL AS INTEGER));

918 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

DSN8.GET_LINE stored procedure
The GET_LINE sample procedure returns a single line from the message buffer, up to, but not including
the end-of-line character sequence.

Environment
The GET_LINE stored procedure must be called from within a native SQL routine.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges:

• The EXECUTE privilege on the DSN8.GET_LINE stored procedure
• Ownership of the stored procedure
• SYSADM authority

Syntax

CALL DSN8.GET_LINE (line , status)

Option descriptions
line

A line from the message buffer. The CCSID of the result is 1200.

This is an output argument of type VARGRAPHIC(16334).

status
Indicates whether a line was returned from the message buffer. Possible values are:
0

A line was returned.
1

There was no line available to returned.

This is an output argument of type INTEGER.

Notes
Creation of this procedure:

Sample job DSNTEJTR creates this procedure.
Putting end-of-line character sequences in the message buffer:

You can put end-of-line character sequences in the message buffer in one of the following ways:

• Use the PUT_LINE procedure to put each line in the message buffer with an end-of-line character
sequence.

• After a series of calls to the PUT procedure, call the NEW_LINE procedure.

Examples

Example: Retrieve a line from the message buffer into SQL variable LINE. Retrieve the status of the
request into SQL variable STATUS.

CALL DSN8.GET_LINE(LINE,STATUS);

Chapter 5. Procedures that are supplied with Db2 919

DSN8.GET_LINES stored procedure
The GET_LINES sample procedure returns one or more lines from the message buffer, and stores the text
in an array.

Each line of text in the message buffer, up to, but not including the end-of-line character, is stored in an
element of the target array.

Environment
The GET_LINES stored procedure must be called from within a native SQL routine.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges:

• The EXECUTE privilege on the DSN8.GET_LINES stored procedure
• Ownership of the stored procedure
• SYSADM authority

Syntax

CALL DSN8.GET_LINES (lines , numlines)

Option descriptions
lines

Lines of text from the message buffer. The CCSID of the result is 1200.

This is an output argument of user-defined type DSN8.GRPHICARR. DSN8.GRPHICARR is defined as:

VARGRAPHIC(16334) ARRAY[2147483647]

numlines
When numlines is used as an input argument, it specifies the number of lines to retrieve from the
message buffer.

When numlines is used as an output argument, it specifies the number of lines that were retrieved
from the message buffer. When the output value of numlines is less than the input value of numlines,
the number of lines remaining in the message buffer is less than the requested number of lines.

If the input value of numlines is 0 or NULL, NULL is returned for lines, and 0 is returned for numlines.

This is an input and output argument of type INTEGER.

Notes
Creation of this procedure:

Sample job DSNTEJTR creates this procedure.

Examples

Example: Retrieve five lines from the message buffer into SQL variable LINES. Use SQL variable
NUMLINES to specify that you want five lines, and to determine the number of lines that you receive.

CALL DSN8.GET_LINES(LINES,NUMLINES);

920 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

DSN8.NEW_LINE stored procedure
The NEW_LINE sample procedure writes an end-of-line character sequence to the message buffer.

Each line of text in the message buffer, up to, but not including the end-of-line character, is stored in an
element of the target array.

Environment
The NEW_LINE stored procedure must be called from within a native SQL routine.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges:

• The EXECUTE privilege on the DSN8.NEW_LINE stored procedure
• Ownership of the stored procedure
• SYSADM authority

Syntax

CALL DSN8.NEW_LINE

Notes
Creation of this procedure:

Sample job DSNTEJTR creates this procedure.

Examples

Example: Write an end-of-line character sequence to the message buffer.

CALL DSN8.NEW_LINE;

DSN8.PUT stored procedure
The PUT sample procedure writes a line to the message buffer, without an end-of-line character sequence
at the end.

Environment
The PUT stored procedure must be called from within a native SQL routine.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges:

• The EXECUTE privilege on the DSN8.PUT stored procedure
• Ownership of the stored procedure
• SYSADM authority

Chapter 5. Procedures that are supplied with Db2 921

Syntax

CALL DSN8.PUT (item)

Option descriptions
item

Specifies the line to write to the message buffer. If item is an empty string or NULL, the message
buffer is unmodified.

This is an output argument of type VARGRAPHIC(16334).

Notes
Creation of this procedure:

Sample job DSNTEJTR creates this procedure.
Adding an end-of-line character sequence to the end of the message buffer:

When you use the DSN8.PUT procedure to write a string to the message buffer, you can use the
NEW_LINE procedure to add the end-of-line character sequence to the end of the message buffer.

Examples

Example: Write the string 'Hello' to the message buffer, without an end-of-line character sequence at the
end.

CALL DSN8.PUT('Hello');

Related reference
DSN8.NEW_LINE stored procedure
The NEW_LINE sample procedure writes an end-of-line character sequence to the message buffer.

DSN8.PUT_LINE stored procedure
The PUT_LINE sample procedure writes a line, including the end-of-line character sequence, to the
message buffer.

Environment
The PUT_LINE stored procedure must be called from within a native SQL routine.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges:

• The EXECUTE privilege on the DSN8.PUT_LINE stored procedure
• Ownership of the stored procedure
• SYSADM authority

Syntax

CALL DSN8.PUT_LINE (item)

922 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Option descriptions
item

Specifies the line to write to the message buffer. If item is an empty string or NULL, a null character is
put in the message buffer.

This is an output argument of type VARGRAPHIC(16334).

Notes
Creation of this procedure:

Sample job DSNTEJTR creates this procedure.

Examples

Example: Write the string 'Hello' to the message buffer, with an end-of-line sequence at the end.

CALL DSN8.PUT_LINE('Hello');

Objects that are used by the sample trace stored procedures
The sample trace stored procedures use a global variable, an user-defined array type, and a declared
temporary table.

Sample job DSNTEJTR creates those objects.

Global variable DSN8.DBMS_ENABLE
The DSN8.DBMS_ENABLE global variable is used to test if the trace is enabled.

Example: Test whether the trace is enabled before attempting to write to the trace buffer.

IF DSN8.DBMS_ENABLE = 'Y' THEN CALL DSN8.PUT_LINE (LINE);
END IF;

Array type DSN8.GRPHICARR
The user-defined array type DSN8.GRPHICARR is used for the first parameter to the DSN8.GET_LINES
procedure. An array variable that is declared with the DSN8.GRPHICARR type is used to hold lines that are
retrieved from the message buffer.

DSN8.GRPHICARR is defined as:

VARGRAPHIC(16334) ARRAY[2147483647]

Example: Declare SQL variable LINES to hold lines that are retrieved from the message buffer.

DECLARE LINES DSN8.GRPHICARR;

Declared temporary table SESSION.DBMS_BUFFER
The SESSION.DBMS_BUFFER declared temporary table contains the message buffer.

GET_CONFIG stored procedure
The GET_CONFIG stored procedure retrieves data server configuration information.

GUPI

This data server configuration information includes:

Chapter 5. Procedures that are supplied with Db2 923

• Data sharing group information
• Db2 subsystem status information
• Db2 subsystem parameters, DSNHDECP or a user-specified application defaults module, and the IRLM

parameters that are found in IFCID 106 section 5
• Db2 distributed access information
• Active log data set information
• The time of the last restart of Db2
• Resource limit facility information
• Connected Db2 subsystems information

The GET_CONFIG stored procedure supports SBCS CCSID only. That is, all data (input and output) must
exist in Unicode CCSID 367.

Support for Katakana CCSID 290 is limited. Any user-specific information specified in the xml_input
document (such as the string input for DB2 Data Sharing Group Members) must contain only valid
EBCDIC CCSID 37 characters, and these EBCDIC characters must exist in Unicode CCSID 367. Likewise,
any requested information that is converted to Unicode CCSID 367 and written to the xml_output
document, must also contain only valid EBCDIC CCSID 37 characters, and these EBCDIC characters must
exist in Unicode CCSID 367.

Environment
The GET_CONFIG stored procedure runs in a WLM-established stored procedures address space.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges or authorities:

• The EXECUTE privilege on the GET_CONFIG stored procedure
• Ownership of the stored procedure
• One of the following authorities:

– SYSTEM DBADM
– SYSOPR
– SYSCTRL
– SYSADM

Syntax

CALL GET_CONFIG (major_version

NULL

, minor_version

NULL

,

requested_locale

NULL

, xml_input

NULL

, xml_filter

NULL

,

xml_output , xml_message)

The schema is SYSPROC.

924 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Option descriptions
major_version

An input and output parameter of type INTEGER that indicates the major document version. On input,
this parameter indicates the major document version that you support for the XML documents that are
passed as parameters in the stored procedure (xml_input, xml_output, and xml_message). The stored
procedure processes all XML documents in the specified version, or returns an error (-20457) if the
version is invalid.

On output, this parameter specifies the highest major document version that is supported by the
procedure. To determine the highest supported document version, specify NULL for this input
parameter and all other required parameters. Currently, the highest major document version that
is supported is 2. Major document version 1 is also supported.

If the XML document in the xml_input parameter specifies the Document Type Major Version
key, the value for that key must be equal to the value provided in the major_version parameter, or an
error (+20458) is raised.

This parameter is used in conjunction with the minor_version parameter. Therefore, you must specify
both parameters together. For example, you must specify both as either NULL, or non-NULL.

minor_version
An input and output parameter of type INTEGER that indicates the minor document version. On input,
this parameter specifies the minor document version that you support for the XML documents that
are passed as parameters for this stored procedure (xml_input, xml_output, and xml_message). The
stored procedure processes all XML documents in the specified version, or returns an error (-20457) if
the version is invalid.

On output, this parameter indicates the highest minor document version that is supported for the
highest supported major version. To determine the highest supported document version, specify NULL
for this input parameter and all other required parameters. Currently, the highest and only minor
document version that is supported is 0 (zero).

If the XML document in the xml_input parameter specifies the Document Type Minor Version
key, the value for that key must be equal to the value provided in the minor_version parameter, or an
error (+20458) is raised.

This parameter is used in conjunction with the major_version parameter. Therefore, you must specify
both parameters together. For example, you must specify both as either NULL, or non-NULL.

requested_locale
An input parameter of type VARCHAR(33) that specifies a locale. If the specified language is
supported on the server, translated content is returned in the xml_output and xml_message
parameters. Otherwise, content is returned in the default language. Only the language and possibly
the territory information is used from the locale. The locale is not used to format numbers or influence
the document encoding. For example, key names are not translated. The only translated portion of
XML output and XML message documents are Display Name, Display Unit, and Hint. The value
might be globalized where applicable. You should always compare the requested language to the
language that is used in the XML output document (see the Document Locale entry in the XML
output document).

Currently, the supported values for requested_locale are en_US and NULL. If you specify a null value,
the result is the same as specifying en_US.

xml_input
An input parameter of type BLOB(2G) that specifies an XML input document of type Data Server
Configuration Input in UTF-8 that contains input values for the stored procedure.

To pass an XML input document to the stored procedure, you must specify the major_version
parameter as 2 and the minor_version parameter as 0 (zero).

For a non-data sharing system, a sample of a Version 2.0 XML input document is as follows:

 <plist version="1.0">
 <?xml version="1.0" encoding="UTF-8" ?>

Chapter 5. Procedures that are supplied with Db2 925

 <dict>
 <key>Document Type Name</key>
 <string>Data Server Configuration Input</string>
 <key>Document Type Major Version</key>
 <integer>2</integer>
 <key>Document Type Minor Version</key>
 <integer>0</integer>
 <key>Document Locale</key>
 <string>en_US</string>
 <key>Complete</key><false/>
 <key>Optional Parameters</key>
 <dict>
 <key>Include</key>
 <dict>
 <key>Value</key>
 <array>
 <string>DB2 Subsystem Status Information</string>
 <string>DB2 Subsystem Parameters</string>
 <string>DB2 Distributed Access Information</string>
 <string>Active Log Data Set Information</string>
 <string>Time of Last DB2 Restart</string>
 <string>Resource Limit Facility Information</string>
 <string>Connected DB2 Subsystem</string>
 </array>
 </dict>
 </dict>
 </dict>
 </plist>

For a data sharing system, a sample of a Version 2.0 XML input document is as follows:

 <plist version="1.0">
 <?xml version="1.0" encoding="UTF-8" ?>
 <dict>
 <key>Document Type Name</key>
 <string>Data Server Configuration Input</string>
 <key>Document Type Major Version</key>
 <integer>2</integer>
 <key>Document Type Minor Version</key>
 <integer>0</integer>
 <key>Document Locale</key>
 <string>en_US</string>
 <key>Complete</key><false/>
 <key>Optional Parameters</key>
 <dict>
 <key>Include</key>
 <dict>
 <key>Value</key>
 <array>
 <string>Common Data Sharing Group Information</string>
 <string>DB2 Subsystem Status Information</string>
 <string>DB2 Subsystem Parameters</string>
 <string>DB2 Distributed Access Information</string>
 <string>Active Log Data Set Information</string>
 <string>Time of Last DB2 Restart</string>
 <string>Resource Limit Facility Information</string>
 <string>Connected DB2 Subsystem</string>
 </array>
 </dict>
 <key>DB2 Data Sharing Group Members</key>
 <dict>
 <key>Value</key>
 <array>
 <string>DB2A</string>
 <string>DB2B</string>
 </array>
 </dict>
 </dict>
 </dict>
 </plist>

When passing an XML input document to the stored procedure, you must specify the Document Type
Name key. In a non-data sharing system, you must specify the Include parameter. In a data sharing
system, you must specify at least one of the following parameters:

• Include
• DB2 Data Sharing Group Members

926 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If no XML input document is passed to the stored procedure, and you specified the major_version
parameter as 2 and the minor_version parameter as 0 (zero), the stored procedure returns the
following parameters for a non-data sharing system in a Version 2.0 XML output document by default:

• DB2 Subsystem Status Information
• DB2 Subsystem Parameters
• DB2 Distributed Access Information
• Active Log Data Set Information
• Time of Last DB2 Restart
• Resource Limit Facility Information
• Connected DB2 Subsystem

For a data sharing system, the same information is returned for each member of a data sharing group,
plus the Common Data Sharing Group Information parameter.

If you passed a Version 2.0 XML input document to the stored procedure, the stored procedure
returns the information in a Version 2.0 XML output document. The information returned is dependent
on what you specified in the Include array and in the DB2 Data Sharing Group Members array
(if applicable). For a non-data sharing system, the items that are specified in the Include array are
returned. For a data sharing system, the following information is returned:

• The items that are specified in the Include array for each Db2 member that is specified in the
DB2 Data Sharing Group Members array, if both the Include parameter and the DB2 Data
Sharing Group Members parameter are specified.

• The items that are specified in the Include array for every Db2 member in the data sharing group,
if only the Include parameter is specified.

• The Common Data Sharing Group Information and the following items for each member that
is specified in the DB2 Data Sharing Group Members array, if only the DB2 Data Sharing
Group Members parameter is specified:

– DB2 Subsystem Status Information
– DB2 Subsystem Parameters
– DB2 Distributed Access Information
– Active Log Data Set Information
– Time of Last DB2 Restart
– Resource Limit Facility Information
– Connected DB2 Subsystem

Note: If the Common Data Sharing Group Information item is specified in the Include array,
this information is returned only once for the data sharing group. This information is not returned
repeatedly for every Db2 member that is processed.

Complete mode: For an example of a Version 2.0 XML input document that is returned by the
xml_output parameter when the stored procedure is running in Complete mode in a non-data sharing
system, see “Example 4” on page 935 in the Examples section. For an example of a Version 2.0 XML
input document that is returned by the xml_output parameter when the stored procedure is running in
Complete mode in a data sharing system with two Db2 members, DB2A and DB2B, see “Example 5”
on page 936.

xml_filter
An input parameter of type BLOB(4K) in UTF-8 that specifies a valid XPath query string. Use a filter
when you want to retrieve a single value from an XML output document. For more information, see
XPath expressions for filtering output (Db2 Administration Guide).

The following example selects the value for the Data Server Product Version from the XML output
document:

Chapter 5. Procedures that are supplied with Db2 927

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sproc/src/tpc/db2z_xpathfiltering.html

/plist/dict/key[.='Data Server Product Version']/following-sibling::string[1]

If the key is not followed by the specified sibling, an error is returned.

xml_output
An output parameter of type BLOB(2G) that returns a complete XML output document of type Data
Server Configuration Output in UTF-8. If a filter is specified, this parameter returns a string value. If
the stored procedure is unable to return a complete output document (for example, if a processing
error occurs that results in an SQL warning or error), this parameter is set to NULL.

The xml_output parameter can return either a Version 1.0 or Version 2.0 XML output document
depending on the major_version and minor_version parameters that you specify. For information about
the content of a Version 2.0 XML output document, see the option description for the xml_input
parameter.

For a sample Version 1.0 XML output document, see “Example 1” on page 928 in the Examples
section.

For a sample Version 2.0 XML output document in a non-data sharing system, see “Example 6” on
page 936.

For a sample Version 2.0 XML output document in a data sharing system, see “Example 7” on page
938.

xml_message
An output parameter of type BLOB(64K) that returns a complete XML output document of type Data
Server Message in UTF-8 that provides detailed information about an SQL warning condition. This
document is returned when a call to the stored procedure results in an SQL warning, and the warning
message indicates that additional information is returned in the XML message output document. If the
warning message does not indicate that additional information is returned, then this parameter is set
to NULL.

The xml_message parameter can return either a Version 1.0 or Version 2.0 XML message document
depending on the major_version and minor_version parameters that you specify.

For an example of an XML message document, see “Example 2” on page 933.

If the GET_CONFIG stored procedure is processing more than one Db2 member in a data sharing
system and an error is encountered when processing one of the Db2 members, the stored procedure
specifies the name of the Db2 member that is causing the error as the value of the DB2 Object key in
the XML message document. The value of the Short Message Text key applies to the Db2 member
that is specified.

The following example shows a fragment of a Version 2.0 XML message document with the DB2
Object key specified:

<key>Short Message Text</key>
 <dict>
 <key>Display Name</key>
 <string>Short Message Text</string>
 <key>Value</key>
 <string>DSNA6xxI DSNADMGC</string>
 <key>DB2 Object</key>
 <string>DB2B</string>
 <key>Hint</key>
 <string />
 </dict>

Examples
Example 1

The following example shows a fragment of a Version 1.0 XML output document for the GET_CONFIG
stored procedure for a data sharing member. For a non-data sharing member, the following entries
in the DB2 Distributed Access Information item are not included: Resynchronization
Domain, Alias List, Member IPv4 Address, Member IPv6 Address, and Location Server
List.

928 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The two major sections that the XML output document always contains are Common Data Sharing
Group Information and DB2 Subsystem Specific Information. In this example, the ellipsis
(. . .) represent a dictionary entry that is comprised of Display Name, Value, and Hint, such as:

<dict>
 <key>Display Name</key>
 <string>DDF Status</string>
 <key>Value</key>
 <string>STARTD</string>
 <key>Hint</key>
 <string />
</dict>

<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>
 <key>Document Type Name</key>
 <string>Data Server Configuration Output</string>
 <key>Document Type Major Version</key>
 <integer>1</integer>
 <key>Document Type Minor Version</key>
 <integer>0</integer>
 <key>Data Server Product Name</key>
 <string>DSN</string>
 <key>Data Server Product Version</key>
 <string>12.1.5</string>
 <key>Data Server Major Version</key>
 <integer>12</integer>
 <key>Data Server Minor Version</key>
 <integer>1</integer>
 <key>Data Server Platform</key>
 <string>z/OS</string>
 <key>Document Locale</key>
 <string>en_US</string>

 <key>Common Data Sharing Group Information</key>
 <dict>
 <key>Display Name</key>
 <string>Common Data Sharing Group Information</string>
 <key>Data Sharing Group Name</key>
 ...
 <key>Data Sharing Group Catalog Level</key>
 ...
 <key>Data Sharing Group Current Function Level</key>
 ...
 <key>Data Sharing Group Highest Activated Function Level</key>
 ...
 <key>Data Sharing Group Highest Possible Function Level</key>
 ...
 <key>Data Sharing Group Protocol Level</key>
 ...
 <key>Data Sharing Group Attach Name</key>
 ...
 <key>Data Sharing Group Encryption Key Label</key>
 ...
 <key>Migration Readiness Status</key>
 ...
 <key>Migration Readiness Reason</key>
 ...
 <key>SCA Structure Size</key>
 ...
 <key>SCA Status</key>
 ...
 <key>SCA in Use</key>
 ...
 <key>LOCK1 Structure Size</key>
 ...
 <key>Number of Lock Entries</key>
 ...
 <key>Number of List Entries</key>
 ...
 <key>List Entries in Use</key>
 ...
 <key>Hint</key><string></string>
 </dict>

 <key>DB2 Subsystem Specific Information</key>
 <dict>
 <key>Display Name</key>

Chapter 5. Procedures that are supplied with Db2 929

 <string>DB2 Subsystem Specific Information</string>
 <key>V91A</key>
 <dict>
 <key>Display Name</key>
 <string>V91A</string>
 <key>DB2 Subsystem Status Information</key>
 <dict>
 <key>Display Name</key>
 <string>DB2 Subsystem Status Information</string>
 <key>DB2 Member Identifier</key>
 ...
 <key>DB2 Member Name</key>
 ...
 <key>DB2 Command Prefix</key>
 ...
 <key>DB2 Status</key>
 ...
 <key>DB2 System Level</key>
 ...
 <key>System Name</key>
 ...
 <key>IRLM Subsystem Name</key>
 ...
 <key>IRLM Procedure Name</key>
 ...
 <key>Code Level</key>
 ...
 <key>SPE Apar</key>
 ...
 <key>Migration Eligible</key>
 ...
 <key>Hint</key>
 </dict>

 <key>DB2 Subsystem Parameters</key>
 <dict>
 <key>Display Name</key>
 <string>DB2 Subsystem Parameters</string>
 <key>DSNHDECP</key>
 <dict>
 <key>Display Name</key>
 <string>DSNHDECP</string>
 <key>AGCCSID</key>
 <dict>
 <key>Display Name</key>
 <string>AGCCSID</string>
 <key>Installation Panel Name</key>
 ...
 <key>Installation Panel Field Name</key>
 ...
 <key>Location on Installation Panel</key>
 ...
 <key>Subsystem Parameter Value</key>
 ...
 <key>Online Update</key>
 ...
 <key>Hint</key><string></string>
 </dict>

 --- This is only a fragment of the
 DSNHDECP parameters that are returned
 by the GET_CONFIG stored procedure. ---

 <key>Hint</key><string></string>
 </dict>

 --- This is only a fragment of the
 DB2 subsystem parameters that are returned
 by the GET_CONFIG stored procedure. ---

 <key>Hint</key><string></string>
 </dict>

 <key>DB2 Distributed Access Information</key>
 <dict>
 <key>Display Name</key>
 <string>DB2 Distributed Access Information</string>
 <key>DDF Status</key>
 ...
 <key>Location Name</key>
 ...
 <key>LU Name</key>

930 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 ...
 <key>Generic LU Name</key>
 ...
 <key>TCP/IP Port</key>
 ...
 <key>Secure Port</key>
 ...
 <key>Resynchronization Port</key>
 ...
 <key>IP Name</key>
 ...
 <key>IPv4 Address</key>
 ...
 <key>IPv6 Address</key>
 ...
 <key>SQL Domain</key>
 ...
 <key>Resynchronization Domain</key>
 ...
 <key>Alias List</key>
 <dict>
 <key>Display Name</key>
 <string>Alias List</string>
 <key>1</key>
 <dict>
 <key>Display Name</key>
 <string>1</string>
 <key>Name</key>
 ...
 <key>Port</key>
 ...
 <key>Secure Port</key>
 ...
 <key>Hint</key><string />
 </dict>
 <key>2</key>
 <dict>
 <key>Display Name</key>
 <string>2</string>
 <key>Name</key>
 ...
 <key>Port</key>
 ...
 <key>Secure Port</key>
 ...
 <key>Hint</key><string />
 </dict>
 <key>Hint</key><string />
 </dict>
 <key>Member IPv4 Address</key>
 ...
 <key>Member IPv6 Address</key>
 ...
 <key>DT - DDF Thread Value</key>
 ...
 <key>CONDBAT - Maximum Inbound Connections</key>
 ...
 <key>MDBAT - Maximum Concurrent Active DBATs</key>
 ...
 <key>ADBAT - Active DBATs</key>
 ...
 <key>QUEDBAT - Times that ADBAT Reached MDBAT Limit</key>
 ...
 <key>INADBAT - Inactive DBATs (Type 1)</key>
 ...
 <key>CONQUED - Queued Connections</key>
 ...
 <key>DSCDBAT - Pooled DBATs</key>
 ...
 <key>INACONN - Inactive Connections (Type 2)</key>
 ...
 <key>Location Server List</key>
 <dict>
 <key>Display Name</key>
 <string>Location Server List</string>
 <key>1</key>
 <dict>
 <key>Display Name</key>
 <string>1</string>
 <key>Weight</key>
 ...
 <key>IPv4 Address</key>

Chapter 5. Procedures that are supplied with Db2 931

 ...
 <key>IPv6 Address</key>
 ...
 <key>Hint</key><string />
 </dict>
 <key>2</key>
 <dict>
 <key>Display Name</key>
 <string>2</string>
 <key>Weight</key>
 ...
 <key>IPv4 Address</key>
 ...
 <key>IPv6 Address</key>
 ...
 <key>Hint</key><string />
 </dict>
 <key>Hint</key><string></string>
 </dict>
 <key>Hint</key><string></string>
 </dict>

 <key>Active Log Data Set Information</key>
 <dict>
 <key>Display Name</key>
 <string>Active Log Data Set Information</string>
 <key>Active Log Copy 01</key>
 <dict>
 <key>Display Name</key>
 <string>Active Log Copy 01</string>
 <key>Data Set Name</key>
 ...
 <key>Data Set Volumes</key>
 <dict>
 <key>Display Name</key>
 <string>Data Set Volumes</string>
 <key>Value</key>
 <array>
 <string>CATLGJ</string>
 </array>
 <key>Hint</key><string></string>
 </dict>
 <key>Key Label</key>
 ...
 <key>Hint</key><string></string>
 </dict>
 <key>Active Log Copy 02</key>
 <dict>
 --- The format of this dictionary entry is
 the same as that of Active Log Copy 01. ---
 </dict>
 <key>Hint</key><string></string>
 </dict>

 <key>Time of Last DB2 Restart</key>
 ...

 <key>Resource Limit Facility Information</key>
 <dict>
 <key>Display Name</key>
 <string>Resource Limit Facility Information</string>
 <key>RLF Table Names</key>
 <dict>
 <key>Display Name</key>
 <string>RLF Table Names</string>
 <key>Value</key>
 <array>
 <string>SYSADM.DSNRLST01</string>
 </array>
 <key>Hint</key><string></string>
 </dict>
 <key>Hint</key><string></string>
 </dict>

 <key>Connected DB2 Subsystem</key>
 ...
 <key>Hint</key><string></string>
 </dict>
 <key>Hint</key><string></string>
 </dict>
 <key>Hint</key><string></string>

932 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

</dict>
</plist>

Example 2
The following example shows a sample XML message document for the GET_CONFIG stored
procedure. Similar to an XML output document, the details about an SQL warning condition are
encapsulated in a dictionary entry, which is comprised of Display Name, Value, and Hint.

 <?xml version="1.0" encoding="UTF-8" ?>
 <plist version="1.0">
 <dict>
 <key>Document Type Name</key><string>Data Server Message</string>
 <key>Document Type Major Version</key><integer>1</integer>
 <key>Document Type Minor Version</key><integer>0</integer>
 <key>Data Server Product Name</key><string>DSN</string>
 <key>Data Server Product Version</key><string>12.1.5</string>
 <key>Data Server Major Version</key><integer>12</integer>
 <key>Data Server Minor Version</key><integer>1</integer>
 <key>Data Server Platform</key><string>z/OS</string>
 <key>Document Locale</key><string>en_US</string>
 <key>Short Message Text</key>
 <dict>
 <key>Display Name</key><string>Short Message Text</string>
 <key>Value</key>
 <string>DSNA630I DSNADMGC A PARAMETER FORMAT OR CONTENT ERROR WAS FOUND.
 The XML input document must be empty or NULL.</string>
 <key>Hint</key><string />
 </dict>
 </dict>
 </plist>

Example 3
This example shows a simple and static Java program that calls the GET_CONFIG stored procedure
with an XPath that queries the value of the data server's IP address. The XPath is statically created
as a string object by the program, and then converted to a BLOB to serve as input for the xml_filter
parameter. After the stored procedure is called, the xml_output parameter contains only a single string
and no XML document. This output is materialized as a file called xml_output.xml that is in the
same directory where the GetConfDriver class resides.

//***
// Licensed Materials - Property of IBM
// 5635-DB2
// (C) COPYRIGHT 1982, 2006 IBM Corp. All Rights Reserved.
//
// STATUS = Version 9
//***
// Source file name: GetConfDriver.java
//
// Sample: How to call SYSPROC.GET_CONFIG with a valid XPath to extract the
// IP Address.
//
//The user runs the program by issuing:
//java GetConfDriver <alias or //server/database> <userid> <password>
//
//The arguments are:
//<alias> - DB2 subsystem alias for type 2 or //server/database for type 4
// connectivity
//<userid> - user ID to connect as
//<password> - password to connect with
//***
import java.io.*;
import java.sql.*;
public class GetConfDriver
{

 public static void main (String[] args)
 {
 Connection con = null;
 CallableStatement cstmt = null;
 String driver = "com.ibm.db2.jcc.DB2Driver";
 String url = "jdbc:db2:";
 String userid = null;
 String password = null;

 // Parse arguments
 if (args.length != 3)

Chapter 5. Procedures that are supplied with Db2 933

 {
 System.err.println("Usage: GetConfDriver <alias or //server/database>
<userid> <password>");
 System.err.println("where <alias or //server/database> is DB2
subsystem alias or //server/database for type 4 connectivity");
 System.err.println(" <userid> is user ID to connect as");
 System.err.println(" <password> is password to connect with");
 return;
 }
 url += args[0];
 userid = args[1];
 password = args[2];

 try {

 byte[] xml_input;
 String str_xmlfilter = new String(
 "/plist/dict/key[.='DB2 Subsystem Specific Information']/following-
sibling::dict[1]" +
 "/key[.='V91A']/following-sibling::dict[1]" +
 "/key[.='DB2 Distributed Access Information']/following-sibling::dict[1]" +
 "/key[.='IP Address']/following-sibling::dict[1]" +
 "/key[.='Value']/following-sibling::string[1]");

 /* Convert XML_FILTER to byte array to pass as BLOB */
 byte[] xml_filter = str_xmlfilter.getBytes("UTF-8");

 // Load the DB2 Universal JDBC Driver
 Class.forName(driver);

 // Connect to database
 con = DriverManager.getConnection(url, userid, password);
 con.setAutoCommit(false);

 cstmt = con.prepareCall("CALL SYSPROC.GET_CONFIG(?,?,?,?,?,?,?)");

 // Major / Minor Version / Requested Locale
 cstmt.setInt(1, 1);
 cstmt.setInt(2, 0);
 cstmt.setString(3, "en_US");
 // No Input document
 cstmt.setObject(4, null, Types.BLOB);
 cstmt.setObject(5, xml_filter, Types.BLOB);

 // Output Parms
 cstmt.registerOutParameter(1, Types.INTEGER);
 cstmt.registerOutParameter(2, Types.INTEGER);
 cstmt.registerOutParameter(6, Types.BLOB);
 cstmt.registerOutParameter(7, Types.BLOB);

 cstmt.execute();
 con.commit();

 SQLWarning ctstmt_warning = cstmt.getWarnings();
 if (ctstmt_warning != null) {
 System.out.println("SQL Warning: " + ctstmt_warning.getMessage());
 }
 else {
 System.out.println("SQL Warning: None\r\n");
 }

 System.out.println("Major Version returned " + cstmt.getInt(1));
 System.out.println("Minor Version returned " + cstmt.getInt(2));

 /* get output BLOBs */
 Blob b_out = cstmt.getBlob(6);

 if(b_out != null)
 {
 int out_length = (int)b_out.length();
 byte[] bxml_output = new byte[out_length];

 /* open an inputstream on BLOB data */
 InputStream instr_out = b_out.getBinaryStream();

 /* copy from inputstream into byte array */
 int out_len = instr_out.read(bxml_output, 0, out_length);

 /* write byte array into FileOutputStream */
 FileOutputStream fxml_out = new FileOutputStream("xml_output.xml");

934 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 /* write byte array content into FileOutputStream */
 fxml_out.write(bxml_output, 0, out_length);

 //Close streams
 instr_out.close();
 fxml_out.close();
 }

 Blob b_msg = cstmt.getBlob(7);
 if(b_msg != null)
 {
 int msg_length = (int)b_msg.length();
 byte[] bxml_message = new byte[msg_length];

 /* open an inputstream on BLOB data */
 InputStream instr_msg = b_msg.getBinaryStream();

 /* copy from inputstream into byte array */
 int msg_len = instr_msg.read(bxml_message, 0, msg_length);

 /* write byte array content into FileOutputStream */
 FileOutputStream fxml_msg = new FileOutputStream(new File
("xml_message.xml"));
 fxml_msg.write(bxml_message, 0, msg_length);

 //Close streams
 instr_msg.close();
 fxml_msg.close();
 }
 }
 catch (SQLException sqle) {
 System.out.println("Error during CALL "
 + " SQLSTATE = " + sqle.getSQLState()
 + " SQLCODE = " + sqle.getErrorCode()
 + " : " + sqle.getMessage());
 }
 catch (Exception e) {
 System.out.println("Internal Error " + e.toString());
 }
 finally
 {
 if(cstmt != null)
 try { cstmt.close(); } catch (SQLException sqle)
{ sqle.printStackTrace(); }
 if(con != null)
 try { con.close(); } catch (SQLException sqle)
{ sqle.printStackTrace(); }
 }
 }
}

Example 4
The following example shows a Version 2.0 XML input document that is returned by the xml_output
parameter when the stored procedure is running in Complete mode in a non-data sharing system:

 <plist version="1.0">
 <?xml version="1.0" encoding="UTF-8" ?>
 <dict>
 <key>Document Type Name</key>
 <string>Data Server Configuration Input</string>
 <key>Document Type Major Version</key>
 <integer>2</integer>
 <key>Document Type Minor Version</key>
 <integer>0</integer>
 <key>Document Locale</key>
 <string>en_US</string>
 <key>Optional Parameters</key>
 <dict>
 <key>Display Name</key>
 <string>Optional Parameters</string>
 <key>Include</key>
 <dict>
 <key>Display Name</key>
 <string>Include</string>
 <key>Value</key>
 <array>
 <string>DB2 Subsystem Status Information</string>
 <string>DB2 Subsystem Parameters</string>
 <string>DB2 Distributed Access Information</string>
 <string>Active Log Data Set Information</string>

Chapter 5. Procedures that are supplied with Db2 935

 <string>Time of Last DB2 Restart</string>
 <string>Resource Limit Facility Information</string>
 <string>Connected DB2 Subsystem</string>
 </array>
 <key>Hint</key><string />
 </dict>
 <key>Hint</key><string />
 </dict>
 </dict>
 </plist>

Example 5
The following example shows a Version 2.0 XML input document that is returned by the xml_output
parameter when the stored procedure is running in Complete mode in a data sharing system with two
Db2 members, DB2A and DB2B:

 <plist version="1.0">
 <?xml version="1.0" encoding="UTF-8" ?>
 <dict>
 <key>Document Type Name</key>
 <string>Data Server Configuration Input</string>
 <key>Document Type Major Version</key>
 <integer>2</integer>
 <key>Document Type Minor Version</key>
 <integer>0</integer>
 <key>Document Locale</key>
 <string>en_US</string>
 <key>Optional Parameters</key>
 <dict>
 <key>Display Name</key>
 <string>Optional Parameters</string>
 <key>Include</key>
 <dict>
 <key>Display Name</key>
 <string>Include</string>
 <key>Value</key>
 <array>
 <string>Common Data Sharing Group Information</string>
 <string>DB2 Subsystem Status Information</string>
 <string>DB2 Subsystem Parameters</string>
 <string>DB2 Distributed Access Information</string>
 <string>Active Log Data Set Information</string>
 <string>Time of Last DB2 Restart</string>
 <string>Resource Limit Facility Information</string>
 <string>Connected DB2 Subsystem</string>
 </array>
 <key>Hint</key><string />
 </dict>
 <key>DB2 Data Sharing Group Members</key>
 <dict>
 <key>Display Name</key>
 <string>DB2 Data Sharing Group Members</string>
 <key>Value</key>
 <array>
 <string>DB2A</string>
 <string>DB2B</string>
 </array>
 <key>Hint</key><string />
 </dict>
 <key>Hint</key><string />
 </dict>
 </dict>
 </plist>

Example 6
This example shows a fragment of a Version 2.0 XML output document for the GET_CONFIG stored
procedure in a non-data sharing system. An XML input document is not passed to the stored
procedure. The ellipsis (. . .) represent a dictionary entry that is comprised of Display Name, Value,
and Hint, as in the following example, or an entry that is the same as the corresponding entry in a
Version 1.0 XML output document:

<dict>
 <key>Display Name</key>
 <string>DDF Status</string>
 <key>Value</key>
 <string>STARTD</string>

936 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 <key>Hint</key>
 <string />
</dict>

 <?xml version="1.0" encoding="UTF-8" ?>
 <plist version="1.0">
 <dict>
 <key>Document Type Name</key>
 <string>Data Server Configuration Output</string>
 <key>Document Type Major Version</key>
 <integer>2</integer>
 <key>Document Type Minor Version</key>
 <integer>0</integer>
 <key>Data Server Product Name</key>
 <string>DSN</string>
 <key>Data Server Product Version</key>
 <string>12.1.5</string>
 <key>Data Server Major Version</key>
 <integer>12</integer>
 <key>Data Server Minor Version</key>
 <integer>1</integer>
 <key>Data Server Platform</key>
 <string>z/OS</string>
 <key>Document Locale</key>
 <string>en_US</string>
 <key>DB2 Subsystem Specific Information</key>
 <dict>
 <key>Display Name</key>
 <string>DB2 Subsystem Specific Information</string>
 <key>DB2A</key>
 <dict>
 <key>Display Name</key>
 <string>DB2A</string>
 <key>DB2 Subsystem Status Information</key>
 <dict>
 <key>Display Name</key>
 <string>DB2 Subsystem Status Information</string>
 <key>DB2 Member Identifier</key>
 ...
 <key>DB2 Member Name</key>
 ...
 <key>DB2 Command Prefix</key>
 ...
 <key>DB2 Status</key>
 ...
 <key>DB2 System Level</key>
 ...
 <key>System Name</key>
 ...
 <key>IRLM Subsystem Name</key>
 ...
 <key>IRLM Procedure Name</key>
 ...
 <key>Code Level</key>
 ...
 <key>SPE Apar</key>
 ...
 <key>Migration Eligible</key>
 ...
 <key>Migration Readiness Status</key>
 ...
 <key>Migration Readiness Reason</key>
 ...
 <key>Hint</key>
 ...
 </dict>
 <key>DB2 Subsystem Parameters</key>
 <dict>...</dict>
 <key>DB2 Distributed Access Information</key>
 <dict>
 <key>Display Name</key>
 <string>DB2 Distributed Access Information</string>
 <key>DDF Status</key> ...
 <key>Location Name</key> ...
 <key>LU Name</key> ...
 <key>Generic LU Name</key> ...
 <key>TCP/IP Port</key> ...
 <key>Secure Port</key> ...
 <key>Resynchronization Port</key> ...
 <key>IP Name</key> ...
 <key>IPv4 Address</key> ...

Chapter 5. Procedures that are supplied with Db2 937

 <key>IPv6 Address</key> ...
 <key>SQL Domain</key> ...
 <key>DT - DDF Thread Value</key> ...
 <key>CONDBAT - Maximum Inbound Connections</key> ...
 <key>MDBAT - Maximum Concurrent Active DBATs</key> ...
 <key>ADBAT - Active DBATs</key> ...
 <key>QUEDBAT - Times that ADBAT Reached MDBAT Limit</key> ...
 <key>INADBAT - Inactive DBATs (Type 1)</key> ...
 <key>CONQUED - Queued Connections</key> ...
 <key>DSCDBAT - Pooled DBATs</key> ...
 <key>INACONN - Inactive Connections (Type 2)</key> ...
 <key>Hint</key><string></string>
 </dict>
 <key>Active Log Data Set Information</key>
 <dict>...</dict>
 <key>Time of Last DB2 Restart</key>
 <dict>...</dict>
 <key>Resource Limit Facility Information</key>
 <dict>
 <key>Display Name</key>
 <string>Resource Limit Facility Information</string>
 <key>RLF Status</key>
 <dict>
 <key>Display Name</key>
 <string>RLF Status</string>
 <key>Value</key><string>Active</string>
 <key>Hint</key><string />
 </dict>
 <key>RLF Table Names</key>
 <dict>
 <key>Display Name</key>
 <string>RLF Table Names</string>
 <key>Value</key>
 <array>
 <string>SYSADM.DSNRLST01</string>
 </array>
 <key>Hint</key><string />
 </dict>
 <key>Hint</key><string />
 </dict>
 <key>Connected DB2 Subsystem</key>
 <dict>...</dict>
 <key>Hint</key><string />
 </dict>
 <key>Hint</key><string />
 </dict>
 </dict>
 </plist>

Example 7
This example shows a fragment of a Version 2.0 XML output document for the GET_CONFIG stored
procedure in a data sharing system with two Db2 members, DB2A and DB2B. An XML input document
is not passed to the stored procedure. The ellipsis (. . .) represent a dictionary entry that is comprised
of Display Name, Value, and Hint, as in the following example, or an entry that is the same as the
corresponding entry in a Version 1.0 XML output document:

<dict>
 <key>Display Name</key>
 <string>DDF Status</string>
 <key>Value</key>
 <string>STARTD</string>
 <key>Hint</key>
 <string />
</dict>

 <?xml version="1.0" encoding="UTF-8" ?>
 <plist version="1.0">
 <dict>
 <key>Document Type Name</key>
 <string>Data Server Configuration Output</string>
 <key>Document Type Major Version</key>
 <integer>2</integer>
 <key>Document Type Minor Version</key>
 <integer>0</integer>
 <key>Data Server Product Name</key>
 <string>DSN</string>
 <key>Data Server Product Version</key>
 <string>12.1.5</string>

938 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 <key>Data Server Major Version</key>
 <integer>12</integer>
 <key>Data Server Minor Version</key>
 <integer>1</integer>
 <key>Data Server Platform</key>
 <string>z/OS</string>
 <key>Document Locale</key>
 <string>en_US</string>
 <key>Common Data Sharing Group Information</key>
 <dict>
 <key>Display Name</key>
 <string>Common Data Sharing Group Information</string>
 <key>Data Sharing Group Name</key>
 <dict>...</dict>
 <key>Data Sharing Group Catalog Level</key>
 <dict>...</dict>
 <key>Data Sharing Group Current Function Level</key>
 <dict>...</dict>
 <key>Data Sharing Group Highest Activated Function Level</key>
 <dict>...</dict>
 <key>Data Sharing Group Highest Possible Function Level</
key>
 <dict>...</dict>
 <key>Data Sharing Group Protocol Level</key>
 <dict>...</dict>
 <key>Data Sharing Group Attach Name</key>
 <dict>...</dict>
 <key>Data Sharing Group Encryption Key Label</key>
 <dict>...</dict>
 <key>Migration Readiness Status</key>
 <dict>...</dict>
 <key>Migration Readiness Reason</key>
 <dict>...</dict>
 <key>SCA Structure Size</key>
 <dict>...</dict>
 <key>SCA Status</key>
 <dict>...</dict>
 <key>SCA in Use</key>
 <dict>...</dict>
 <key>LOCK1 Structure Size</key>
 <dict>...</dict>
 <key>Number of Lock Entries</key>
 <dict>...</dict>
 <key>Number of List Entries</key>
 <dict>...</dict>
 <key>List Entries in Use</key>
 <dict>...</dict>
 <key>Hint</key><string />
 </dict>
 <key>DB2 Subsystem Specific Information</key>
 <dict>
 <key>Display Name</key>
 <string>DB2 Subsystem Specific Information</string>
 <key>DB2A</key>
 <dict>
 <key>Display Name</key>
 <string>DB2A</string>
 <key>DB2 Subsystem Status Information</key>
 <key>Display Name</key>
 <string>DB2 Subsystem Status Information</string>
 <key>DB2 Member Identifier</key>
 ...
 <key>DB2 Member Name</key>
 ...
 <key>DB2 Command Prefix</key>
 ...
 <key>DB2 Status</key>
 ...
 <key>DB2 System Level</key>
 ...
 <key>System Name</key>
 ...
 <key>IRLM Subsystem Name</key>
 ...
 <key>IRLM Procedure Name</key>
 ...
 <key>Code Level</key>
 ...
 <key>SPE Apar</key>
 ...
 <key>Migration Eligible</key>
 ...

Chapter 5. Procedures that are supplied with Db2 939

 <key>Hint</key>
 ...
 <key>DB2 Subsystem Parameters</key>
 <dict>...</dict>
 <key>DB2 Distributed Access Information</key>
 <dict>
 <key>Display Name</key>
 <string>DB2 Distributed Access Information</string>
 <key>DDF Status</key> ...
 <key>Location Name</key> ...
 <key>LU Name</key> ...
 <key>Generic LU Name</key> ...
 <key>TCP/IP Port</key> ...
 <key>Secure Port</key> ...
 <key>Resynchronization Port</key> ...
 <key>IP Name</key> ...
 <key>IPv4 Address</key> ...
 <key>IPv6 Address</key> ...
 <key>SQL Domain</key> ...
 <key>Resynchronization Domain</key> ...
 <key>Alias List</key>
 <dict>
 <key>Display Name</key>
 <string>Alias List</string>
 <key>1</key>
 <dict>
 <key>Display Name</key>
 <string>1</string>
 <key>Name</key> ...
 <key>Port</key> ...
 <key>Secure Port</key> ...
 <key>Hint</key><string />
 </dict>
 <key>2</key>
 <dict>
 <key>Display Name</key>
 <string>2</string>
 <key>Name</key> ...
 <key>Port</key> ...
 <key>Secure Port</key> ...
 <key>Hint</key><string />
 </dict>
 <key>Hint</key><string />
 </dict>
 <key>Member IPv4 Address</key> ...
 <key>Member IPv6 Address</key> ...
 <key>DT - DDF Thread Value</key> ...
 <key>CONDBAT - Maximum Inbound Connections</key> ...
 <key>MDBAT - Maximum Concurrent Active DBATs</key> ...
 <key>ADBAT - Active DBATs</key> ...
 <key>QUEDBAT - Times that ADBAT Reached MDBAT Limit</key> ...
 <key>INADBAT - Inactive DBATs (Type 1)</key> ...
 <key>CONQUED - Queued Connections</key> ...
 <key>DSCDBAT - Pooled DBATs</key> ...
 <key>INACONN - Inactive Connections (Type 2)</key> ...
 <key>Location Server List</key>
 <dict>
 <key>Display Name</key>
 <string>Location Server List</string>
 <key>1</key>
 <dict>
 <key>Display Name</key>
 <string>1</string>
 <key>Weight</key> ...
 <key>IPv4 Address</key> ...
 <key>IPv6 Address</key> ...
 <key>Hint</key><string />
 </dict>
 <key>2</key>
 <dict>
 <key>Display Name</key>
 <string>1</string>
 <key>Weight</key> ...
 <key>IPv4 Address</key> ...
 <key>IPv6 Address</key> ...
 <key>Hint</key><string />
 </dict>
 <key>Hint</key><string />
 </dict>
 <key>Hint</key><string></string>
 </dict>
 <key>Active Log Data Set Information</key>

940 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 <dict>...</dict>
 <key>Time of Last DB2 Restart</key>
 <dict>...</dict>
 <key>Resource Limit Facility Information</key>
 <dict>
 <key>Display Name</key>
 <string>Resource Limit Facility Information</string>
 <key>RLF Status</key>
 <dict>
 <key>Display Name</key>
 <string>RLF Status</string>
 <key>Value</key><string>Active</string>
 <key>Hint</key><string />
 </dict>
 <key>RLF Table Names</key>
 <dict>
 <key>Display Name</key>
 <string>RLF Table Names</string>
 <key>Value</key>
 <array>
 <string>SYSADM.DSNRLST01</string>
 </array>
 <key>Hint</key><string />
 </dict>
 <key>Hint</key><string />
 </dict>
 <key>Connected DB2 Subsystem</key>
 <dict>...</dict>
 <key>Hint</key><string />
 </dict>
 <key>DB2B</key>
 <dict>
 --- This dictionary entry describes the second DB2
 member: DB2B. Its format is the same as that
 of member DB2A. ---
 </dict>
 <key>Hint</key><string />
 </dict>
 </dict>
 </plist>

<key>Data Sharing Group Level</key>
<dict>
<key>Display Name</key>
 <string>Data Sharing Group Level</string><key>Value</key>
 <string>V12R1M500</string>
 <key>Hint</key><string/>
</dict>
<key>Data Sharing Group Current Function Level</key>
<dict>
 <key>Display Name</key>
 <string>Data Sharing Group Current Function Level</string>
 <key>Value</key><string>V12R1M100</string>
 <key>Hint</key><string/>
</dict>
<key>Data Sharing Group Highest Activated Function Level</key>
<dict>
 <key>Display Name</key>
 <string>Data Sharing Group Highest Activated Function Level</string>
 <key>Value</key><string>V12R1M100</string>
 <key>Hint</key><string/>
</dict>
<key>Data Sharing Group Highest Possible Function Level</key>
<dict>
 <key>Display Name</key>
 <string>Data Sharing Group Highest Possible Function Level</string>
 <key>Value</key><string>V12R1M100</string>
 <key>Hint</key><string/>
</dict>

GUPI

Related concepts
Common SQL API stored procedures (Db2 Administration Guide)

Chapter 5. Procedures that are supplied with Db2 941

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sproc/src/tpc/db2z_commonsqlapisp.html

GET_MESSAGE stored procedure
The GET_MESSAGE stored procedure returns the short message text for an SQLCODE.

GUPI

The GET_MESSAGE stored procedure supports SBCS CCSID only. That is, all data (input and output) must
exist in Unicode CCSID 367.

Support for Katakana CCSID 290 is limited. Any user-specific information specified in the xml_input
document (such as the string input for SQLCODE and Message Tokens) must contain only valid EBCDIC
CCSID 37 characters, and these EBCDIC characters must exist in Unicode CCSID 367. Likewise, any
requested information that is converted to Unicode CCSID 367 and written to the xml_output document,
must also contain only valid EBCDIC CCSID 37 characters, and these EBCDIC characters must exist in
Unicode CCSID 367.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have EXECUTE privilege on the GET_MESSAGE stored procedure.

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL GET_MESSAGE (major_version

NULL

, minor_version

NULL

,

requested_locale

NULL

, xml_input

NULL

, xml_filter

NULL

,

xml_output , xml_message)

The schema is SYSPROC.

Option descriptions
major_version

An input and output parameter of type INTEGER that indicates the major document version. On input,
this parameter indicates the major document version that you support for the XML documents that are
passed as parameters in the stored procedure (xml_input, xml_output, and xml_message). The stored
procedure processes all XML documents in the specified version, or returns an error (-20457) if the
version is invalid.

On output, this parameter specifies the highest major document version that is supported by the
stored procedure. To determine the highest supported document version, specify NULL for this input
parameter and all other required parameters. Currently, the highest and only major document version
that is supported is 1.

If the XML document in the xml_input parameter specifies the Document Type Major Version
key, the value for that key must be equal to the value provided in the major_version parameter, or an
error (+20458) is raised.

This parameter is used in conjunction with the minor_version parameter. Therefore, you must specify
both parameters together. For example, you must specify both as either NULL, or non-NULL.

minor_version
An input and output parameter of type INTEGER that indicates the minor document version. On input,
this parameter specifies the minor document version that you support for the XML documents that

942 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

are passed as parameters for this stored procedure (xml_input, xml_output, and xml_message). The
stored procedure processes all XML documents in the specified version, or returns an error (-20457) if
the version is invalid.

On output, this parameter indicates the highest minor document version that is supported for the
highest supported major version. To determine the highest supported document version, specify NULL
for this input parameter and all other required parameters. Currently, the highest and only minor
document version that is supported is 0 (zero).

If the XML document in the xml_input parameter specifies the Document Type Minor Version
key, the value for that key must be equal to the value provided in the minor_version parameter, or an
error (+20458) is raised.

This parameter is used in conjunction with the major_version parameter. Therefore, you must specify
both parameters together. For example, you must specify both as either NULL, or non-NULL.

requested_locale
An input parameter of type VARCHAR(33) that specifies a locale. If the specified language is
supported on the server, translated content is returned in the xml_output and xml_message
parameters. Otherwise, content is returned in the default language. Only the language and possibly
the territory information is used from the locale. The locale is not used to format numbers or influence
the document encoding. For example, key names are not translated. The only translated portion of
the XML output and XML message documents are Display Name, Display Unit, and Hint. The
value might be globalized where applicable. You should always compare the requested language to
the language that is used in the XML output document (see the Document Locale entry in the XML
output document).

Currently, the supported values for requested_locale are en_US and NULL. If you specify a null value,
the result is the same as specifying en_US.

xml_input
An input parameter of type BLOB(2G) that specifies an XML input document of type Data Server
Message Input in UTF-8 that contains input values for the stored procedure.

For this stored procedure, the general structure of an XML input document is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>
 <key>Document Type Name</key><string>Data Server Message Input</string>
 <key>Document Type Major Version</key><integer>1</integer>
 <key>Document Type Minor Version</key><integer>0</integer>
 <key>Document Locale</key><string>en_US</string>
 <key>Complete</key><false/>
 <key>Required Parameters</key>
 <dict>
 <key>SQLCODE</key>
 <dict>
 <key>Value</key><integer>sqlcode</integer>
 </dict>
 </dict>
 <key>Optional Parameters</key>
 <dict>
 <key>Message Tokens</key>
 <dict>
 <key>Value</key>
 <array>
 <string>token1 in SQLCA</string>
 <string>token2 in SQLCA</string>
 </array>
 </dict>
 </dict>
</dict>
</plist>

For an example of an XML input document that will not run in Complete mode, see “Example 2” on
page 945.

Chapter 5. Procedures that are supplied with Db2 943

Complete mode: For an example of an XML input document that is returned by the xml_output
parameter when the stored procedure is running in Complete mode, see “Example 1” on page 944 in
the Examples section.

xml_filter
An input parameter of type BLOB(4K) in UTF-8 that specifies a valid XPath query string. Use a filter
when you want to retrieve a single value from an XML output document. For more information, see
XPath expressions for filtering output (Db2 Administration Guide).

The following example selects the value for the short message text from the XML output document:

/plist/dict/key[.='Short Message Text']/following-sibling::dict[1]/key
[.='Value']/following-sibling::string[1]

If the key is not followed by the specified sibling, an error is returned.

xml_output
An output parameter of type BLOB(2G) that returns a complete XML output document of type Data
Server Message Output in UTF-8. If a filter is specified, this parameter returns a string value. If the
stored procedure is unable to return a complete output document (for example, if a processing error
occurs that results in an SQL warning or error), this parameter is set to NULL.

For an example of an XML output document, see “Example 3” on page 945.

xml_message
An output parameter of type BLOB(64K) that returns a complete XML output document of type Data
Server Message in UTF-8 that provides detailed information about an SQL warning condition. This
document is returned when a call to the procedure results in an SQL warning, and the warning
message indicates that additional information is returned in the XML message output document. If the
warning message does not indicate that additional information is returned, then this parameter is set
to NULL.

For an example of an XML message document, see “Example 4” on page 946.

Example
Example 1

The following example shows an XML input document that is returned by the xml_output parameter
when the stored procedure is running in Complete mode.

 <?xml version="1.0" encoding="UTF-8" ?>
 <plist version="1.0">
 <dict>
 <key>Document Type Name</key>
 <string>Data Server Message Input</string>
 <key>Document Type Major Version</key>
 <integer>1</integer>
 <key>Document Type Minor Version</key>
 <integer>0</integer>
 <key>Document Locale</key>
 <string>en_US</string>
 <key>Required Parameters</key>
 <dict>
 <key>Display Name</key>
 <string>Required Parameters</string>
 <key>SQLCODE</key>
 <dict>
 <key>Display Name</key>
 <string>SQLCODE</string>
 <key>Value</key>
 <integer />
 <key>Hint</key>
 <string />
 </dict>
 <key>Hint</key>
 <string />
 </dict>
 <key>Optional Parameters</key>
 <dict>
 <key>Display Name</key>
 <string>Optional Parameters</string>

944 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sproc/src/tpc/db2z_xpathfiltering.html

 <key>Message Tokens</key>
 <dict>
 <key>Display Name</key>
 <string>Message Tokens</string>
 <key>Value</key>
 <array>
 <string />
 </array>
 <key>Hint</key>
 <string />
 </dict>
 <key>Hint</key>
 <string />
 </dict>
 </dict>
 </plist>

Example 2
The following example shows a complete sample of an XML input document for the GET_MESSAGE
stored procedure.

<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>
 <key>Document Type Name</key>
 <string>Data Server Message Input</string>
 <key>Document Type Major Version</key><integer>1</integer>
 <key>Document Type Minor Version</key><integer>0</integer>
 <key>Document Locale</key><string>en_US</string>
 <key>Required Parameters</key>
 <dict>
 <key>SQLCODE</key>
 <dict>
 <key>Value</key><integer>-104</integer>
 </dict>
 </dict>
 <key>Optional Parameters</key>
 <dict>
 <key>Message Tokens</key>
 <dict>
 <key>Value</key>
 <array>
 <string>X</string>
 <string>(. LIKE AS</string>
 </array>
 </dict>
 </dict>
</dict>
</plist>

Example 3
The following example shows a complete sample of an XML output document for the GET_MESSAGE
stored procedure. The short message text for an SQLCODE will be encapsulated in a dictionary entry,
which is comprised of Display Name, Value, and Hint.

<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>
 <key>Document Type Name</key>
 <string>Data Server Message Output</string>
 <key>Document Type Major Version</key><integer>1</integer>
 <key>Document Type Minor Version</key><integer>0</integer>
 <key>Data Server Product Name</key><string>DSN</string>
 <key>Data Server Product Version</key><string>9.1.5</string>
 <key>Data Server Major Version</key><integer>9</integer>
 <key>Data Server Minor Version</key><integer>1</integer>
 <key>Data Server Platform</key><string>z/OS</string>
 <key>Document Locale</key><string>en_US</string>

 <key>Short Message Text</key>
 <dict>
 <key>Display Name</key><string>Short Message Text</string>
 <key>Hint</key><string />
 </dict>

</dict>
</plist>

Chapter 5. Procedures that are supplied with Db2 945

Example 4
The following example shows a sample XML message document for the GET_MESSAGE stored
procedure. Similar to an XML output document, the details about an SQL warning condition will be
encapsulated in a dictionary entry, which is comprised of Display Name, Value, and Hint.

 <?xml version="1.0" encoding="UTF-8" ?>
 <plist version="1.0">
 <dict>
 <key>Document Type Name</key><string>Data Server Message</string>
 <key>Document Type Major Version</key><integer>1</integer>
 <key>Document Type Minor Version</key><integer>0</integer>
 <key>Data Server Product Name</key><string>DSN</string>
 <key>Data Server Product Version</key><string>9.1.5</string>
 <key>Data Server Major Version</key><integer>9</integer>
 <key>Data Server Minor Version</key><integer>1</integer>
 <key>Data Server Platform</key><string>z/OS</string>
 <key>Document Locale</key><string>en_US</string>
 <key>Short Message Text</key>
 <dict>
 <key>Display Name</key><string>Short Message Text</string>
 <key>Value</key>
 <string>DSNA630I DSNADMGM A PARAMETER FORMAT OR CONTENT ERROR WAS FOUND.
 The value for key 'Document Type Minor Version' is '2'. It does
 not match the value '0', which was specified for parameter 2 of
 the stored procedure. Both values must be equal.</string>
 <key>Hint</key><string />
 </dict>
 </dict>
 </plist>

Example 5
This example shows a simple and static Java program that calls the GET_MESSAGE stored procedure
with an XML input document and an XPath that queries the short message text of an SQLCODE.

The XML input document is initially saved as a file called xml_input.xml that is in the same
directory where the GetMessageDriver class resides. This sample program uses the following
xml_input.xml file:

 <?xml version="1.0" encoding="UTF-8" ?>
 <plist version="1.0">
 <dict>
 <key>Document Type Name</key>
 <string>Data Server Message Input</string>
 <key>Document Type Major Version</key>
 <integer>1</integer>
 <key>Document Type Minor Version</key>
 <integer>0</integer>
 <key>Document Locale</key>
 <string>en_US</string>
 <key>Complete</key>
 <false />
 <key>Required Parameters</key>
 <dict>
 <key>SQLCODE</key>
 <dict>
 <key>Value</key>
 <integer>-204</integer>
 </dict>
 </dict>
 <key>Optional Parameters</key>
 <dict>
 <key>Message Tokens</key>
 <dict>
 <key>Value</key>
 <array>
 <string>SYSIBM.DDF_CONFIG</string>
 </array>
 </dict>
 </dict>
 </dict>
 </plist>

The XPath is statically created as a string object by the program and then converted to a BLOB
to serve as input for the xml_filter parameter. After the stored procedure is called, the xml_output

946 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

parameter contains only a single string and no XML document. This output is materialized as a file
called xml_output.xml that is in the same directory where the GetMessageDriver class resides.

Sample invocation of the GET_MESSAGE stored procedure with a valid XML input document and a valid
XPath:

//***
// Licensed Materials - Property of IBM
// 5635-DB2
// (C) COPYRIGHT 1982, 2006 IBM Corp. All Rights Reserved.
//
// STATUS = Version 9
//***
// Source file name: GetSystemDriver.java
//
// Sample: How to call SYSPROC.GET_SYSTEM_INFO with a valid XML input document
// and a valid XPath to extract the operating system name and release.
//
// The user runs the program by issuing:
// java GetSystemDriver <alias or //server/database> <userid> <password>
//
// The arguments are:
// <alias> - DB2 subsystem alias for type 2 or //server/database for type 4
// connectivity
// <userid> - user ID to connect as
// <password> - password to connect with
//***
import java.io.*;
import java.sql.*;

public class GetSystemDriver
{

 public static void main (String[] args)
 {
 Connection con = null;
 CallableStatement cstmt = null;
 String driver = "com.ibm.db2.jcc.DB2Driver";
 String url = "jdbc:db2:";
 String userid = null;
 String password = null;

 // Parse arguments
 if (args.length != 3)
 {
 System.err.println("Usage: GetSystemDriver <alias or //server/database>
<userid> <password>");
 System.err.println("where <alias or //server/database> is DB2 subsystem
alias or //server/database for type 4 connectivity");
 System.err.println(" <userid> is user ID to connect as");
 System.err.println(" <password> is password to connect with");
 return;
 }
 url += args[0];
 userid = args[1];
 password = args[2];

 try {

 String str_xmlfilter = new String(
 "/plist/dict/key[.='Operating System Information']/following-sibling::
dict[1]" +
 "/key[.='Name and Release']/following-sibling::dict[1]" +
 "/key[.='Value']/following-sibling::string[1]");

 // Convert XML_FILTER to byte array to pass as BLOB
 byte[] xml_filter = str_xmlfilter.getBytes("UTF-8");

 // Read XML_INPUT from file
 File fptr = new File("xml_input.xml");

 int file_length = (int)fptr.length();
 byte[] xml_input = new byte[file_length];

 FileInputStream instream = new FileInputStream(fptr);
 int tot_bytes = instream.read(xml_input,0, xml_input.length);
 if (tot_bytes == -1) {
 System.out.println("Error during file read");
 return;
 }

Chapter 5. Procedures that are supplied with Db2 947

 instream.close();

 // Load the DB2 Universal JDBC Driver
 Class.forName(driver);

 // Connect to database
 con = DriverManager.getConnection(url, userid, password);
 con.setAutoCommit(false);

 cstmt = con.prepareCall("CALL SYSPROC.GET_SYSTEM_INFO(?,?,?,?,?,?,?)");

 // Major / Minor Version / Requested Locale
 cstmt.setInt(1, 1);
 cstmt.setInt(2, 1);
 cstmt.setString(3, "en_US");

 // Input documents
 cstmt.setObject(4, xml_input, Types.BLOB);
 cstmt.setObject(5, xml_filter, Types.BLOB);

 // Output Parms
 cstmt.registerOutParameter(1, Types.INTEGER);
 cstmt.registerOutParameter(2, Types.INTEGER);
 cstmt.registerOutParameter(6, Types.BLOB);
 cstmt.registerOutParameter(7, Types.BLOB);

 cstmt.execute();
 con.commit();

 SQLWarning ctstmt_warning = cstmt.getWarnings();
 if (ctstmt_warning != null) {
 System.out.println("SQL Warning: " + ctstmt_warning.getMessage());
 }
 else {
 System.out.println("SQL Warning: None\r\n");
 }

 System.out.println("Major Version returned " + cstmt.getInt(1));
 System.out.println("Minor Version returned " + cstmt.getInt(2));

 // Get output BLOBs
 Blob b_out = cstmt.getBlob(6);

 if(b_out != null)
 {
 int out_length = (int)b_out.length();
 byte[] bxml_output = new byte[out_length];

 // Open an inputstream on BLOB data
 InputStream instr_out = b_out.getBinaryStream();

 // Copy from inputstream into byte array
 int out_len = instr_out.read(bxml_output, 0, out_length);

 // Write byte array content into FileOutputStream
 FileOutputStream fxml_out = new FileOutputStream("xml_output.xml");
 fxml_out.write(bxml_output, 0, out_length);

 //Close streams
 instr_out.close();
 fxml_out.close();
 }

 Blob b_msg = cstmt.getBlob(7);

 if(b_msg != null)
 {
 int msg_length = (int)b_msg.length();
 byte[] bxml_message = new byte[msg_length];

 // Open an inputstream on BLOB data
 InputStream instr_msg = b_msg.getBinaryStream();

 // Copy from inputstream into byte array
 int msg_len = instr_msg.read(bxml_message, 0, msg_length);

 // Write byte array content into FileOutputStream
 FileOutputStream fxml_msg = new FileOutputStream(new File
("xml_message.xml"));
 fxml_msg.write(bxml_message, 0, msg_length);

 //Close streams

948 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 instr_msg.close();
 fxml_msg.close();
 }
 }

 catch (SQLException sqle) {
 System.out.println("Error during CALL "
 + " SQLSTATE = " + sqle.getSQLState()
 + " SQLCODE = " + sqle.getErrorCode()
 + " : " + sqle.getMessage());
 }

 catch (Exception e) {
 System.out.println("Internal Error " + e.toString());
 }

 finally
 {
 if(cstmt != null)
 try { cstmt.close(); } catch (SQLException sqle)
{ sqle.printStackTrace(); }
 if(con != null)
 try { con.close(); } catch (SQLException sqle)
{ sqle.printStackTrace(); }
 }
 }
}

GUPI

Related concepts
Common SQL API stored procedures (Db2 Administration Guide)

GET_SYSTEM_INFO stored procedure
The GET_SYSTEM_INFO stored procedure returns system information about the data server.

GUPI

This system information includes:

• Operating system information
• Product information
• Db2 MEPL
• SYSMOD APPLY status
• Workload Manager (WLM) classification rules that apply to Db2 Workload for subsystem types Db2 and

DDF

The GET_SYSTEM_INFO stored procedure supports SBCS CCSID only. That is, all data (input and output)
must exist in Unicode CCSID 367.

Support for Katakana CCSID 290 is limited. Any user-specific information specified in the xml_input
document (such as the string input for SMPCSI Data Set and SYSMOD) must contain only valid EBCDIC
CCSID 37 characters, and these EBCDIC characters must exist in Unicode CCSID 367. Likewise, any
requested information that is converted to Unicode CCSID 367 and written to the xml_output document,
must also contain only valid EBCDIC CCSID 37 characters, and these EBCDIC characters must exist in
Unicode CCSID 367.

Environment
The load module for the GET_SYSTEM_INFO stored procedure, DSNADMGS, must reside in an
APF-authorized library. The GET_SYSTEM_INFO stored procedure runs in a WLM-established stored
procedures address space, and all of the libraries that are specified in the STEPLIB DD statement must be
APF-authorized. TCB=1 is also required.

Chapter 5. Procedures that are supplied with Db2 949

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sproc/src/tpc/db2z_commonsqlapisp.html

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have EXECUTE privilege on the GET_SYSTEM_INFO stored procedure.

In addition, because the GET_SYSTEM_INFO stored procedure queries the SMPCSI data set for the
status of the SYSMODs, the authorization ID that is associated with the stored procedure address space
where the GET_SYSTEM_INFO stored procedure is running must have at least RACF read authority to the
SMPCSI data set.

Syntax

CALL GET_SYSTEM_INFO (major_version

NULL

, minor_version

NULL

,

requested_locale

NULL

, xml_input

NULL

, xml_filter

NULL

,

xml_output , xml_message)

The schema is SYSPROC.

Option descriptions
major_version

An input and output parameter of type INTEGER that indicates the major document version. On
input, this parameter indicates the major document version that you support for the XML documents
passed as parameters in the stored procedure (xml_input, xml_output, and xml_message). The stored
procedure processes all XML documents in the specified version, or returns an error (-20457) if the
version is invalid.

On output, this parameter specifies the highest major document version that is supported by the
stored procedure. To determine the highest supported document version, specify NULL for this input
parameter and all other required parameters. Currently, the highest and the only major document
version that is supported is 1.

If the XML document in the xml_input parameter specifies a Document Type Major Version key,
the value for that key must be equal to the value that is provided in the major_version parameter, or an
error (+20458) is raised.

This parameter is used in conjunction with the minor_version parameter. Therefore, you must specify
both parameters together. For example, you must specify both as either NULL, or non-NULL.

minor_version
An input and output parameter of type INTEGER that indicates the minor document version. On
input, this parameter specifies the minor document version that you support for the XML documents
passed as parameters for this stored procedure (xml_input, xml_output, and xml_message). The
stored procedure processes all XML documents in the specified version, or returns an error (-20457) if
the version is invalid.

On output, this parameter indicates the highest minor document version that is supported for the
highest supported major version. To determine the highest supported document version, specify NULL
for this input parameter and all other required parameters. The highest minor document version that
is supported is 1. Minor document version 0 (zero) is also supported.

If the XML document in the xml_input parameter specifies a Document Type Minor Version key,
the value for that key must be equal to the value that is provided in the minor_version parameter, or an
error (+20458) is raised.

950 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

This parameter is used in conjunction with the major_version parameter. Therefore, you must specify
both parameters together. For example, you must specify both as either NULL, or non-NULL.

requested_locale
An input parameter of type VARCHAR(33) that specifies a locale. If the specified language is
supported on the server, translated content is returned in the xml_output and xml_message
parameters. Otherwise, content is returned in the default language. Only the language and possibly
the territory information is used from the locale. The locale is not used to format numbers or influence
the document encoding. For example, key names are not translated. The only translated portion of
the XML output and XML message documents are Display Name, Display Unit, and Hint. The
value might be globalized where applicable. You should always compare the requested language to
the language that is used in the XML output document (see the Document Locale entry in the XML
output document).

Currently, the supported values for requested_locale are en_US and NULL. If you specify a null value,
the result is the same as specifying en_US.

xml_input
An input parameter of type BLOB(2G) that specifies an XML input document of type Data Server
System Input in UTF-8 that contains input values for the stored procedure.

This XML input document is optional. If the XML input document is not passed to the stored
procedure, the stored procedure returns the following information by default:

• Operating system information
• Product information
• Db2 MEPL
• Workload Manager (WLM) classification rules for Db2 Workload

This stored procedure supports two types of XML input documents, Version 1.0 or Version 1.1.

For Version 1.0, the general structure of an XML input document is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>
 <key>Document Type Name</key><string>Data Server System Input</string>
 <key>Document Type Major Version</key><integer>1</integer>
 <key>Document Type Minor Version</key><integer>0</integer>
 <key>Document Locale</key><string>en_US</string>
 <key>Complete</key><false/>
 <key>Optional Parameters</key>
 <dict>
 <key>SMPCSI Data Set</key>
 <dict>
 <key>Value</key><string>SMPCSI data set name</string>
 </dict>
 <key>SYSMOD</key>
 <dict>
 <key>Value</key>
 <array>
 <string>SYSMOD number</string>
 <string>SYSMOD number</string>
 </array>
 </dict>
 </dict>
</dict>
</plist>

For Version 1.1, the general structure of an XML input document is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>
 <key>Document Type Name</key><string>Data Server System Input</string>
 <key>Document Type Major Version</key><integer>1</integer>
 <key>Document Type Minor Version</key><integer>1</integer>
 <key>Document Locale</key><string>en_US</string>
 <key>Complete</key><false/>
 <key>Optional Parameters</key>

Chapter 5. Procedures that are supplied with Db2 951

 <dict>
 <key>Include</key>
 <dict>
 <key>Value</key>
 <array>
 <string>Operating System Information</string>
 <string>Product Information</string>
 <string>DB2 MEPL</string>
 <string>Workload Manager (WLM) Classification Rules for
 DB2 Workload</string>
 </array>
 </dict>
 <key>SMPCSI Data Set</key>
 <dict>
 <key>Value</key><string>SMPCSI data set name</string>
 </dict>
 <key>SYSMOD</key>
 <dict>
 <key>Value</key>
 <array>
 <string>SYSMOD number</string>
 <string>SYSMOD number</string>
 </array>
 </dict>
 </dict>
</dict>
</plist>

Version 1.0: When a Version 1.0 XML input document is passed to the stored procedure, the stored
procedure returns the following information in a Version 1.0 XML output document:

• Operating system information
• Product information
• Db2 MEPL
• SYSMOD status (APPLY status for the SYSMODs that are listed in the XML input document)
• Workload Manager (WLM) classification rules for Db2 Workload

To use Version 1.0 of the XML input document you must specify the major_version parameter as 1 and
the minor_version parameter as 0 (zero). You must also specify the Document Type Name key, the
SMPCSI data set, and the list of SYSMODs.

For an example of a Version 1.0 XML input document for the GET_SYSTEM_INFO stored procedure,
see “Example 3” on page 955.

Version 1.1: A Version 1.1 XML input document supports the Include parameter, in addition to
the SMPCSI Data Set and SYSMOD parameters that are supported by a Version 1.0 XML input
document.

You can use the Version 1.1 XML input document in the following ways:

• To specify which items to include in the XML output document by specifying these items in the
Include array

• To specify the SMPCSI data set and list of SYSMODs so that the stored procedure returns their
APPLY status

To use Version 1.1 of the XML input document, you must specify the major_version parameter as 1
and the minor_version parameter as 1. You must also specify the Document Type Name key, and at
least one of the following parameters:

• Include
• SMPCSI Data Set and SYSMOD

If you pass a Version 1.1 XML input document to the stored procedure and specify the Include,
SMPCSI Data Set, and SYSMOD parameters, the stored procedure will return the items that you
specified in the Include array, and the SYSMOD status of the SYSMODs that you specified in the
SYSMOD array.

952 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If you pass a Version 1.1 XML input document to the stored procedure and specify the Include
parameter only, the stored procedure will return only the items that you specified in the Include
array.

If you pass a Version 1.1 XML input document to the stored procedure and specify only the SMPCSI
Data Set and SYSMOD parameters, the stored procedure returns the following information in a
Version 1.1 XML output document:

• Operating system information
• Product information
• Db2 MEPL
• SYSMOD status (APPLY status for the SYSMODs that are listed in the XML input document)
• Workload Manager (WLM) classification rules for Db2 Workload

For an example of a complete Version 1.1 XML input document for the GET_SYSTEM_INFO stored
procedure, see “Example 4” on page 955.

Complete mode: For examples of Version 1.0 and Version 1.1 XML input documents that are returned
by the xml_output parameter when the stored procedure is running in Complete mode, see “Example
1” on page 954 and “Example 2” on page 954.

xml_filter
An input parameter of type BLOB(4K) in UTF-8 that specifies a valid XPath query string. Use a filter
when you want to retrieve a single value from an XML output document. For more information, see
XPath expressions for filtering output (Db2 Administration Guide).

The following example selects the value for the Data Server Product Version from the XML output
document:

/plist/dict/key[.='Data Server Product Version']/following-sibling::string[1]

If the key is not followed by the specified sibling, an error is returned.

xml_output
An output parameter of type BLOB(2G) that returns a complete XML output document of type Data
Server System Output in UTF-8. If a filter is specified, this parameter returns a string value. If the
stored procedure is unable to return a complete output document (for example, if a processing error
occurs that results in an SQL warning or error), this parameter is set to NULL.

The xml_output parameter can return either a Version 1.0 or Version 1.1 XML output document
depending on the major_version and minor_version parameters that you specify. For more information
about the content differences between the Version 1.0 and Version 1.1 XML output documents, see
the option description for the xml_input parameter.

A complete XML output document provides the following system information:

• Operating system information
• Product information
• Db2 MEPL
• The APPLY status of SYSMODs
• Workload Manager (WLM) classification rules for Db2 Workload for subsystem types Db2 and DDF

For an example of an XML output document, see “Example 5” on page 956.

xml_message
An output parameter of type BLOB(64K) that returns a complete XML output document of type Data
Server Message in UTF-8 that provides detailed information about a SQL warning condition. This
document is returned when a call to the stored procedure results in a SQL warning, and the warning
message indicates that additional information is returned in the XML message output document. If the
warning message does not indicate that additional information is returned, then this parameter is set
to NULL.

Chapter 5. Procedures that are supplied with Db2 953

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sproc/src/tpc/db2z_xpathfiltering.html

The xml_message parameter can return either a Version 1.0 or Version 1.1 XML message document,
depending on the major_version and minor_version parameters that you specify. The format of a
Version 1.0 or Version 1.1. XML message document is similar. For an example of an XML message
document, see “Example 6” on page 958.

Examples
Example 1

The following example shows a Version 1.0 XML input document that is returned by the xml_output
parameter when the stored procedure is running in Complete mode.

 <?xml version="1.0" encoding="UTF-8" ?>
 <plist version="1.0">
 <dict>
 <key>Document Type Name</key><string>Data Server System Input</string>
 <key>Document Type Major Version</key><integer>1</integer>
 <key>Document Type Minor Version</key><integer>0</integer>
 <key>Document Locale</key><string>en_US</string>
 <key>Optional Parameters</key>
 <dict>
 <key>Display Name</key><string>Optional Parameters</string>
 <key>SMPCSI Data Set</key>
 <dict>
 <key>Display Name</key><string>SMPCSI Data Set</string>
 <key>Value</key><string />
 <key>Hint</key><string />
 </dict>
 <key>SYSMOD</key>
 <dict>
 <key>Display Name</key><string>SYSMOD</string>
 <key>Value</key>
 <array>
 <string />
 </array>
 <key>Hint</key><string />
 </dict>
 <key>Hint</key><string />
 </dict>
 </dict>
 </plist>

Example 2
The following example shows a Version 1.1 XML input document that is returned by the xml_output
parameter when the stored procedure is running in Complete mode.

 <?xml version="1.0" encoding="UTF-8" ?>
 <plist version="1.0">
 <dict>
 <key>Document Type Name</key><string>Data Server System Input</string>
 <key>Document Type Major Version</key><integer>1</integer>
 <key>Document Type Minor Version</key><integer>1</integer>
 <key>Document Locale</key><string>en_US</string>
 <key>Optional Parameters</key>
 <dict>
 <key>Display Name</key><string>Optional Parameters</string>
 <key>Include</key>
 <dict>
 <key>Display Name</key><string>Include</string>
 <key>Value</key>
 <array>
 <string>Operating System Information</string>
 <string>Product Information</string>
 <string>DB2 MEPL</string>
 <string>Workload Manager (WLM) Classification Rules for
 DB2 Workload</string>
 </array>
 <key>Hint</key><string />
 </dict>
 <key>SMPCSI Data Set</key>
 <dict>
 <key>Display Name</key><string>SMPCSI Data Set</string>
 <key>Value</key><string />
 <key>Hint</key><string />
 </dict>
 <key>SYSMOD</key>
 <dict>

954 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 <key>Display Name</key><string>SYSMOD</string>
 <key>Value</key>
 <array>
 <string />
 </array>
 <key>Hint</key><string />
 </dict>
 <key>Hint</key><string />
 </dict>
 </dict>
 </plist>

Example 3
The following example shows a complete sample of a Version 1.0 XML input document for the
GET_SYSTEM_INFO stored procedure.

<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>
 <key>Document Type Name</key>
 <string>Data Server System Input</string>
 <key>Document Type Major Version</key><integer>1</integer>
 <key>Document Type Minor Version</key><integer>0</integer>
 <key>Document Locale</key><string>en_US</string>
 <key>Optional Parameters</key>
 <dict>
 <key>SMPCSI Data Set</key>
 <dict>
 <key>Value</key><string>IXM180.GLOBAL.CSI</string>
 </dict>
 <key>SYSMOD</key>
 <dict>
 <key>Value</key>
 <array>
 <string>UK20028</string>
 <string>UK20030</string>
 </array>
 </dict>
 </dict>
</dict>
</plist>

You must specify the SMPCSI data set and one or more SYSMODs. SYSMOD status information will be
returned for only the SYSMODs that are listed in the Optional Parameters section, provided that
the SMPCSI data set that you specify is valid.

Example 4
The following example shows a complete sample of a Version 1.1 XML input document for the
GET_SYSTEM_INFO stored procedure.

<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>
 <key>Document Type Name</key><string>Data Server System Input</string>
 <key>Document Type Major Version</key><integer>1</integer>
 <key>Document Type Minor Version</key><integer>1</integer>
 <key>Document Locale</key><string>en_US</string>
 <key>Optional Parameters</key>
 <dict>
 <key>Include</key>
 <dict>
 <key>Value</key>
 <array>
 <string>Operating System Information</string>
 <string>Product Information</string>
 <string>DB2 MEPL</string>
 <string>Workload Manager (WLM) Classification Rules for
 DB2 Workload</string>
 </array>
 </dict>
 <key>SMPCSI Data Set</key>
 <dict>
 <key>Value</key><string>IXM180.GLOBAL.CSI</string>
 </dict>
 <key>SYSMOD</key>
 <dict>
 <key>Value</key>

Chapter 5. Procedures that are supplied with Db2 955

 <array>
 <string>UK24596</string>
 <string>UK24709</string>
 </array>
 </dict>
 </dict>
</dict>
</plist>

Example 5
The following example shows a fragment of an XML output document for the GET_SYSTEM_INFO
stored procedure. In this example, the ellipsis (. . .) represent a dictionary entry that is comprised of
Display Name, Value, and Hint, such as:

<dict>
 <key>Display Name</key>
 <string>Name</string>
 <key>Value</key>
 <string>JES2</string>
 <key>Hint</key>
 <string />
</dict>

<?xml version="1.0" encoding="UTF-8" ?>
<plist version="1.0">
<dict>
 <key>Document Type Name</key>
 <string>Data Server System Output</string>
 <key>Document Type Major Version</key>
 <integer>1</integer>
 <key>Document Type Minor Version</key>
 <integer>1</integer>
 <key>Data Server Product Name</key>
 <string>DSN</string>
 <key>Data Server Product Version</key>
 <string>9.1.5</string>
 <key>Data Server Major Version</key>
 <integer>9</integer>
 <key>Data Server Minor Version</key>
 <integer>1</integer>
 <key>Data Server Platform</key>
 <string>z/OS</string>
 <key>Document Locale</key>
 <string>en_US</string>
 <key>Operating System Information</key>
 <dict>
 <key>Display Name</key><string>Operating System Information</string>
 <key>Name and Release</key>
 ...
 <key>CPU</key>
 <dict>
 <key>Display Name</key><string>CPU</string>
 <key>Model</key>
 ...
 <key>Number of Online CPUs</key>
 ...
 <key>Online CPUs</key>
 <dict>
 <key>Display Name</key><string>Online CPUs</string>
 <key>CPU ID 01</key>
 <dict>
 <key>Display Name</key><string>CPU ID 01</string>
 <key>Serial Number</key>
 ...
 <key>Hint</key><string />
 </dict>
 <key>Hint</key><string />
 </dict>
 <key>Hint</key><string />
 </dict>
 <key>Real Storage Size</key>
 <dict>
 <key>Display Name</key><string>Real Storage Size</string>
 <key>Value</key><integer>256</integer>
 <key>Display Unit</key><string>MB</string>
 <key>Hint</key><string />
 </dict>
 <key>Sysplex Name</key>

956 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 <dict>
 <key>Display Name</key>
 <string>Sysplex Name</string>
 <key>Value</key>
 <string>XESDEV</string>
 <key>Hint</key>
 <string />
 </dict>
 </dict>

 <key>Product Information</key>
 <dict>
 <key>Display Name</key><string>Product Information</string>
 <key>Primary Job Entry Subsystem</key>
 <dict>
 <key>Display Name</key><string>Primary Job Entry Subsystem</string>
 <key>Name</key>
 ...
 <key>Release</key>
 ...
 <key>Node Name</key>
 ...
 <key>Held Output Class</key>
 ...
 <key>Hint</key><string />
 </dict>
 <key>Security Software</key>
 <dict>
 <key>Display Name</key><string>Security Software</string>
 <key>Name</key>
 ...
 <key>FMID</key>
 ...
 <key>Hint</key><string />
 </dict>
 <key>DFSMS Release</key>
 ...
 <key>TSO Release</key>
 ...
 <key>VTAM Release</key>
 ...
 <key>Hint</key><string />
 </dict>

 <key>DB2 MEPL</key>
 <dict>
 <key>Display Name</key><string>DB2 MEPL</string>
 <key>DSNUTILB</key>
 <dict>
 <key>Display Name</key><string>DSNUTILB</string>
 <key>DSNAA</key>
 <dict>
 <key>Display Name</key><string>DSNAA</string>
 <key>PTF Level</key>
 ...
 <key>PTF Apply Date</key>
 ...
 <key>Hint</key><string />
 </dict>

 --- This is only a fragment of the utility modules that
 are returned by the GET_SYSTEM_INFO stored procedure. ---

 <key>Hint</key><string></string>
 </dict>

 --- This is only a fragment of the
 DB2 MEPL information that is returned by
 the GET_SYSTEM_INFO stored procedure. ---

 </dict>

 <key>SYSMOD Status</key>
 <dict>
 <key>Display Name</key><string>SYSMOD Status</string>
 <key>AA15195</key>
 <dict>
 <key>Display Name</key><string>AA15195</string>
 <key>Apply</key>
 ...
 <key>Apply Date</key>
 ...

Chapter 5. Procedures that are supplied with Db2 957

 <key>Hint</key><string />
 </dict>

 --- This is only a fragment of the SYSMOD
 status information that is returned by
 the GET_SYSTEM_INFO stored procedure. ---

 </dict>

 <key>Workload Manager (WLM) Classification Rules for DB2 Workload</key>
 <dict>
 <key>Display Name</key>
 <string>Workload Manager (WLM) Classification Rules for DB2 Workload</string>
 <key>DB2</key>
 <dict>
 <key>Display Name</key><string>DB2</string>
 <key>Hint</key><string />
 </dict>
 <key>DDF</key>
 <dict>
 <key>Display Name</key><string>DDF</string>
 <key>1.1.1</key>
 <dict>
 <key>Display Name</key><string>1.1.1</string>
 <key>Nesting Level</key>
 ...
 <key>Qualifier Type</key>
 ...
 <key>Qualifier Type Full Name</key>
 ...
 <key>Qualifier Name</key>
 ...
 <key>Start Position</key>
 ...
 <key>Service Class</key>
 ...
 <key>Report Class</key>
 ...
 <key>Hint</key><string />
 </dict>
 <key>2.1.1</key>
 <dict>
 --- This dictionary entry describes the second classification
 rule, and its format is the same as that of 1.1.1 above,
 which describes the first classification rule. ---
 </dict>
 <key>Hint</key><string />
 </dict>
 <key>Hint</key><string />
 </dict>
</dict>
</plist>

Example 6
The following example shows a sample XML message document for the GET_SYSTEM_INFO stored
procedure. Similar to an XML output document, the details about an SQL warning condition will be
encapsulated in a dictionary entry, which is comprised of Display Name, Value, and Hint.

<?xml version="1.0" encoding="UTF-8" ?>
 <plist version="1.0">
 <dict>
 <key>Document Type Name</key><string>Data Server Message</string>
 <key>Document Type Major Version</key><integer>1</integer>
 <key>Document Type Minor Version</key><integer>1</integer>
 <key>Data Server Product Name</key><string>DSN</string>
 <key>Data Server Product Version</key><string>9.1.5</string>
 <key>Data Server Major Version</key><integer>9</integer>
 <key>Data Server Minor Version</key><integer>1</integer>
 <key>Data Server Platform</key><string>z/OS</string>
 <key>Document Locale</key><string>en_US</string>
 <key>Short Message Text</key>
 <dict>
 <key>Display Name</key><string>Short Message Text</string>
 <key>Value</key>
 <string>DSNA647I DSNADMGS INVOCATION OF GIMAPI FAILED. Error processing
 command: QUERY . RC=12 CC=50504. GIM54701W ALLOCATION FAILED FOR
 SMPCSI - IKJ56228I DATA SET IXM180.GLOBAL.CSI NOT IN CATALOG OR
 CATALOG CAN NOT BE ACCESSED. GIM44232I GIMMPVIA - DYNAMIC
 ALLOCATION FAILED FOR THE GLOBAL ZONE, DATA SET IXM180.GLOBAL.CSI.

958 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 GIM50504S ** OPEN PROCESSING FAILED FOR THE GLOBAL ZONE.</string>
 <key>Hint</key><string />
 </dict>
 </dict>
 </plist>

Example 7
This example shows a simple and static Java program that calls the GET_SYSTEM_INFO stored
procedure with an XML input document and an XPath that queries the value of the operating system
name and release.

The XML input document is initially saved as a file called xml_input.xml that is in the same
directory where the GetSystemDriver class resides. This sample program uses the following
xml_input.xml file:

<?xml version="1.0" encoding="UTF-8" ?>
<plist version="1.0">
 <dict>
 <key>Document Type Name</key>
 <string>Data Server System Input</string>
 <key>Document Type Major Version</key>
 <integer>1</integer>
 <key>Document Type Minor Version</key>
 <integer>1</integer>
 <key>Document Locale</key>
 <string>en_US</string>
 <key>Optional Parameters</key>
 <dict>
 <key>Include</key>
 <dict>
 <key>Value</key>
 <array>
 <string>Operating System Information</string>
 </array>
 </dict>
 </dict>
 </dict>
</plist>

The XPath is statically created as a string object by the program and then converted to a BLOB
to serve as input for the xml_filter parameter. After the stored procedure is called, the xml_output
parameter contains only a single string and no XML document. This output is materialized as a file
called xml_output.xml that is in the same directory where the GetSystemDriver class resides.

Sample invocation of the GET_SYSTEM_INFO stored procedure with a valid XML input document and a
valid XPath:

//***
// Licensed Materials - Property of IBM
// 5635-DB2
// (C) COPYRIGHT 1982, 2006 IBM Corp. All Rights Reserved.
//
// STATUS = Version 9
//***
// Source file name: GetSystemDriver.java
//
// Sample: How to call SYSPROC.GET_SYSTEM_INFO with a valid XML input document
// and a valid XPath to extract the operating system name and release.
//
// The user runs the program by issuing:
// java GetSystemDriver <alias or //server/database> <userid> <password>
//
// The arguments are:
// <alias> - DB2 subsystem alias for type 2 or //server/database for type 4
// connectivity
// <userid> - user ID to connect as
// <password> - password to connect with
//***
import java.io.*;
import java.sql.*;

public class GetSystemDriver
{

 public static void main (String[] args)
 {

Chapter 5. Procedures that are supplied with Db2 959

 Connection con = null;
 CallableStatement cstmt = null;
 String driver = "com.ibm.db2.jcc.DB2Driver";
 String url = "jdbc:db2:";
 String userid = null;
 String password = null;

 // Parse arguments
 if (args.length != 3)
 {
 System.err.println("Usage: GetSystemDriver <alias or //server/database>
<userid> <password>");
 System.err.println("where <alias or //server/database> is DB2 subsystem
alias or //server/database for type 4 connectivity");
 System.err.println(" <userid> is user ID to connect as");
 System.err.println(" <password> is password to connect with");
 return;
 }
 url += args[0];
 userid = args[1];
 password = args[2];

 try {

 String str_xmlfilter = new String(
 "/plist/dict/key[.='Operating System Information']/following-sibling::
dict[1]" +
 "/key[.='Name and Release']/following-sibling::dict[1]" +
 "/key[.='Value']/following-sibling::string[1]");

 // Convert XML_FILTER to byte array to pass as BLOB
 byte[] xml_filter = str_xmlfilter.getBytes("UTF-8");

 // Read XML_INPUT from file
 File fptr = new File("xml_input.xml");

 int file_length = (int)fptr.length();
 byte[] xml_input = new byte[file_length];

 FileInputStream instream = new FileInputStream(fptr);
 int tot_bytes = instream.read(xml_input,0, xml_input.length);
 if (tot_bytes == -1) {
 System.out.println("Error during file read");
 return;
 }
 instream.close();

 // Load the DB2 Universal JDBC Driver
 Class.forName(driver);

 // Connect to database
 con = DriverManager.getConnection(url, userid, password);
 con.setAutoCommit(false);

 cstmt = con.prepareCall("CALL SYSPROC.GET_SYSTEM_INFO(?,?,?,?,?,?,?)");

 // Major / Minor Version / Requested Locale
 cstmt.setInt(1, 1);
 cstmt.setInt(2, 1);
 cstmt.setString(3, "en_US");

 // Input documents
 cstmt.setObject(4, xml_input, Types.BLOB);
 cstmt.setObject(5, xml_filter, Types.BLOB);

 // Output Parms
 cstmt.registerOutParameter(1, Types.INTEGER);
 cstmt.registerOutParameter(2, Types.INTEGER);
 cstmt.registerOutParameter(6, Types.BLOB);
 cstmt.registerOutParameter(7, Types.BLOB);

 cstmt.execute();
 con.commit();

 SQLWarning ctstmt_warning = cstmt.getWarnings();
 if (ctstmt_warning != null) {
 System.out.println("SQL Warning: " + ctstmt_warning.getMessage());
 }
 else {
 System.out.println("SQL Warning: None\r\n");
 }

960 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 System.out.println("Major Version returned " + cstmt.getInt(1));
 System.out.println("Minor Version returned " + cstmt.getInt(2));

 // Get output BLOBs
 Blob b_out = cstmt.getBlob(6);

 if(b_out != null)
 {
 int out_length = (int)b_out.length();
 byte[] bxml_output = new byte[out_length];

 // Open an inputstream on BLOB data
 InputStream instr_out = b_out.getBinaryStream();

 // Copy from inputstream into byte array
 int out_len = instr_out.read(bxml_output, 0, out_length);

 // Write byte array content into FileOutputStream
 FileOutputStream fxml_out = new FileOutputStream("xml_output.xml");
 fxml_out.write(bxml_output, 0, out_length);

 //Close streams
 instr_out.close();
 fxml_out.close();
 }

 Blob b_msg = cstmt.getBlob(7);

 if(b_msg != null)
 {
 int msg_length = (int)b_msg.length();
 byte[] bxml_message = new byte[msg_length];

 // Open an inputstream on BLOB data
 InputStream instr_msg = b_msg.getBinaryStream();

 // Copy from inputstream into byte array
 int msg_len = instr_msg.read(bxml_message, 0, msg_length);

 // Write byte array content into FileOutputStream
 FileOutputStream fxml_msg = new FileOutputStream(new File("xml_message.
xml"));
 fxml_msg.write(bxml_message, 0, msg_length);

 //Close streams
 instr_msg.close();
 fxml_msg.close();
 }
 }

 catch (SQLException sqle) {
 System.out.println("Error during CALL "
 + " SQLSTATE = " + sqle.getSQLState()
 + " SQLCODE = " + sqle.getErrorCode()
 + " : " + sqle.getMessage());
 }

 catch (Exception e) {
 System.out.println("Internal Error " + e.toString());
 }

 finally
 {
 if(cstmt != null)
 try { cstmt.close(); } catch (SQLException sqle)
{ sqle.printStackTrace(); }
 if(con != null)
 try { con.close(); } catch (SQLException sqle)
{ sqle.printStackTrace(); }
 }
 }
}

GUPI

Related concepts
Common SQL API stored procedures (Db2 Administration Guide)

Chapter 5. Procedures that are supplied with Db2 961

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sproc/src/tpc/db2z_commonsqlapisp.html

SET_MAINT_MODE_RECORD_NO_TEMPORALHISTORY stored
procedure

The SYSPROC.SET_MAINT_MODE_RECORD_NO_TEMPORALHISTORY stored procedure indicates that Db2
is to disable recording of temporal history for a system-period temporal table and allow an application to
specify values for row-begin, row-end, and transaction-start-ID columns on subsequent operations.
Db2 continues to generate new values for row-begin, row-end, and transaction-start-ID columns that are
not explicitly specified as the target of an assignment clause for a data change statement.

This procedure is not intended for general use. It is intended to be used by products that enable Db2
replication.

Note: FL 503 The SYSPROC.SET_MAINT_MODE_RECORD_NO_TEMPORALHISTORY stored procedure is
deprecated at V12R1M503. The procedure will continue to work if you run with APPLCOMPAT set to
V12R1M502 or lower, as long as V12R1M502 is supported. The functionality provided by the procedure
has been subsumed by the new SYSIBMADM.REPLICATION_OVERRIDE built-in global variable.

Environment
SET_MAINT_MODE_RECORD_NO_TEMPORALHISTORY must run in a WLM-established stored procedure
address space.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges:

• The EXECUTE privilege on the SET_MAINT_MODE_RECORD_NO_TEMPORALHISTORY stored procedure
• Ownership of the stored procedure
• SYSADM authority

Syntax
The following syntax diagram shows the SQL CALL statement for invoking this stored procedure:

CALL SYSPROC.SET_MAINT_MODE_RECORD_NO_TEMPORALHISTORY ()

Description
The procedure has no parameters.

The result of the procedure is that recording of temporal history for a system-period temporal table is
disabled, and an application is allowed to specify values for row-begin, row-end, and transaction-start-ID
columns.

SET_PLAN_HINT stored procedure
The SET_PLAN_HINT stored procedure validates, deploys, modifies, or deletes catalog tables rows that
influence access path selection for SQL statements.

 The actions that are taken when you call the SET_PLAN_HINT stored procedure depend on a
mode value and the type of hint that you specify. You can specify the following modes: CREATE, DELETE,
MODIFY or VALIDATE.

962 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m503.html

Environment
The SET_PLAN_HINT stored procedure runs in a WLM-established stored procedures address space.

The following staging tables, and related objects, which are created by job DSNTIJRT, must exist for use
by the SET_PLAN_HINT stored procedure:

• DSN8BQRY.PLAN_TABLE
• DSN8BQRY.DSN_USER_QUERY_TABLE
• DSN8BQRY.DSN_PREDICAT_TABLE
• DSN8BQRY.DSN_PREDICATE_SELECTIVITY

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have EXECUTE privilege on the SET_PLAN_HINT stored procedure.

Syntax

CALL SET_PLAN_HINT (major_version

NULL

, minor_version

NULL

,

requested_locale

NULL

, xml_input

NULL

, xml_filter

NULL

,

xml_output , xml_message)

The schema is SYSPROC.

Option descriptions
major_version

An input and output parameter of type INTEGER that indicates the major document version. On input,
this parameter indicates the major document version that you support for the XML documents that are
passed as parameters in the stored procedure (xml_input, xml_output, and xml_message). The stored
procedure processes all XML documents in the specified version, or returns an error (-20457) if the
version is invalid.

On output, this parameter specifies the highest major document version that is supported by the
procedure. To determine the highest supported document version, specify NULL for this input
parameter and all other required parameters. The only supported value is 1.

If the XML document in the xml_input parameter specifies the Document Type Major Version
key, the value for that key must be equal to the value provided in the major_version parameter, or an
error (+20458) is raised.

This parameter is used in conjunction with the minor_version parameter. Therefore, you must specify
both parameters together. For example, you must specify both as either NULL, or non-NULL.

minor_version
An input and output parameter of type INTEGER that indicates the minor document version. On input,
this parameter specifies the minor document version that you support for the XML documents that
are passed as parameters for this stored procedure (xml_input, xml_output, and xml_message). The
stored procedure processes all XML documents in the specified version, or returns an error (-20457) if
the version is invalid.

On output, this parameter indicates the highest minor document version that is supported for the
highest supported major version. To determine the highest supported document version, specify NULL

Chapter 5. Procedures that are supplied with Db2 963

for this input parameter and all other required parameters. The only minor document version that is
supported is 0 (zero).

If the XML document in the xml_input parameter specifies the Document Type Minor Version
key, the value for that key must be equal to the value provided in the minor_version parameter, or an
error (+20458) is raised.

This parameter is used in conjunction with the major_version parameter. Therefore, you must specify
both parameters together. For example, you must specify both as either NULL, or non-NULL.

requested_locale
An input parameter of type VARCHAR(33) that specifies a locale. If the specified language is
supported on the server, translated content is returned in the xml_output and xml_message
parameters. Otherwise, content is returned in the default language. Only the language and possibly
the territory information is used from the locale. The locale is not used to format numbers or influence
the document encoding. For example, key names are not translated. The only translated portion of
XML output and XML message documents are Display Name, Display Unit, and Hint. The value
might be globalized where applicable. You should always compare the requested language to the
language that is used in the XML output document (see the Document Locale entry in the XML
output document).

Currently, the supported values for requested_locale are en_US and NULL. If you specify a null value,
the result is the same as specifying en_US.

xml_input
An input parameter of type BLOB(2G) that specifies an XML input document of type Data Server
Hint Management Input in UTF-8 that represents the hint customization. The SET_PLAN_HINT stored
procedure does not support Complete mode.

The input document has the following format.

<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>
 <key>Document Type Name</key><string>Data Server Hint Management Input</string>
 <key>Document Type Major Version</key><integer>1</integer>
 <key>Document Type Minor Version</key><integer>0</integer>
 <key>HINT_CUSTOMIZATION</key>
 <dict>
 hint-customization
 </dict>
</dict>
</plist>

In the preceding example, hint-customization is an XML fragment that describes the customized hint
to be generated, validated, or deleted. The following example shows the overview of the format of the
hint customization dictionary:

<key>HINT_CUSTOMIZATION</key>
<dict>
 <key>DeploymentParameters</key>
 <dict>
 </dict>
 <key>StatementList</key>
 <array>
 <dict>
 <key>DeploymentParameters</key>
 <dict>
 </dict>
 <key>SQLStatement</key>
 <dict>
 </dict>
 <key>ExistingAccessPlanIdentifier</key>
 <dict>
 </dict>
 <key>StatementLevelRules</key>
 <dict>
 </dict>
 <key>PlanLevelRules</key>
 <dict>
 <key>TableAccessRules</key>

964 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 <array></array>
 <key>JoinSequenceRules</key>
 <array></array>
 </dict>
 <key>PredicateSelectivityInstances</key>
 <array>
 </array>
 <key>ExistingPredicateSelectivityIdentifier</key>
 <dict>
 </dict>
 </dict>
 </array>
</dict>

hint-customization is a dictionary that contains the following keys:
DeploymentParameters

The type of hint, the action for the stored procedure, and the deployment parameters for the hint.

Deployment parameters can also be specified at the statement level, within the “StatementList”
on page 977 array. Statement-level deployment parameters override the global deployment
parameters for a particular statement.

The DeploymentParameters dictionary can contain the following keys:

MODE

The MODE value is required. It specifies the hint processing mode and controls the actions
taken by the SET_PLAN_HINT stored procedure:

CREATE
Generates a hint in the deployment table. The following table describes the specific
actions and required input parameters for different types of hints:

Chapter 5. Procedures that are supplied with Db2 965

Table 159. Actions by hint type for the SET_PLAN_HINT stored procedure in CREATE mode

Hint type Action Required Input Parameters

PLAN_TABLE
access path
hints

1. A check is completed to ensure that the
deployment PLAN_TABLE does not contain an
existing hint that has matching values for the
following parameters that are specified in the
DeploymentParameters dictionary:

• QUERYNO
• APPLNAME
• PROGNAME
• COLLID
• VERSION
• OPTHINT
• BIND_TIME

2. An existing access path is copied from
the source PLAN_TABLE to the deployment
PLAN_TABLE, and the information
specified in the DeploymentParameters,
TableAccessRules, and JoinSequenceRules
dictionaries are applied to the copied plan.

• The existing access path is identified
by the parameters specified in the
ExistingAccessPathIdentifier dictionary.

• The source PLAN_TABLE is schema-
name.PLAN_TABLE, where schema-name is
the PLAN_SCHEMA value that is specified in
the ExistingAccessPlanIdentifier dictionary.

• The deployment PLAN_TABLE is
the schema-name.PLAN_TABLE, where
schema-name is the PLAN_SCHEMA
value that is specified in the
DeploymentParameters dictionary.

• DeploymentParameters

– QUERYNO
– APPLNAME
– PROGNAME
– COLLID
– VERSION
– OPTHINT
– PLAN_SCHEMA (schema of the

deployment PLAN_TABLE)
• ExistingAccessPlanIdentifier

– QUERYNO
– APPLNAME
– PROGNAME
– COLLID
– VERSION
– OPTHINT
– PLAN_SCHEMA (schema of the source

PLAN_TABLE)

966 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 159. Actions by hint type for the SET_PLAN_HINT stored procedure in CREATE mode (continued)

Hint type Action Required Input Parameters

Statement-
level access
paths

1. The staging table
DSN8BQRY.DSN_USERQUERY_TABLE is
populated with the information that is
specified in the DeploymentParameters and
SQLStatement dictionaries.

2. The following command is issued to check
that the new hint does not already exist:

BIND QUERY
EXPLAININPUTSCHEMA('DSN8BQRY')
LOOKUP(YES)

3. If a hint of the same scope does not already
exist, an existing access path is copied from
the source PLAN_TABLE to the staging table
DSN8BQRY.PLAN_TABLE, the information
specified in the DeploymentParameters,
TableAccessRules, and JoinSequenceRules
dictionaries are applied to the copied plan,
and the following command is issued:

BIND QUERY
EXPLAININPUTSCHEMA('DSN8BQRY')

• The existing access path is identified by
the information that is specified in the
ExistingAccessPlanIdentifier dictionary

• The source PLAN_TABLE is schema-
name.PLAN_TABLE, where schema-name is
the PLAN_SCHEMA value that is specified in
the ExistingAccessPlanIdentifier.

• DeploymentParameters

– If HINT_SCOPE=1 (package-level
access paths):

- PROGNAME
- COLLID
- VERSION

– HINT_TYPE ('INSTANCE-LEVEL')
• ExistingAccessPlanIdentifier

– QUERYNO
– APPLNAME
– PROGNAME
– COLLID
– VERSION
– PLAN_SCHEMA (schema of the source

PLAN_TABLE)
• SQLStatement

– SQLText

Chapter 5. Procedures that are supplied with Db2 967

Table 159. Actions by hint type for the SET_PLAN_HINT stored procedure in CREATE mode (continued)

Hint type Action Required Input Parameters

Statement-
level
optimization
parameters “1”
on page 976

1. The staging table
DSN8BQRY.DSN_USERQUERY_TABLE is
populated with the information specified in
the DeploymentParameters, SQLStatement,
and StatementLevelRules dictionaries.

2. The following command is issued to check
that the new hint does not already exist:

BIND QUERY EXPLAININPUTSCHEMA
('DSN8BQRY') LOOKUP(YES)

3. If a hint of the same scope does not already
exist, the following command is issued:

BIND QUERY
EXPLAININPUTSCHEMA('DSN8BQRY')

• DeploymentParameters

– If HINT_SCOPE=1 (package-level
access paths):

- PROGNAME
- COLLID
- VERSION

– HINT_TYPE ('INSTANCE-LEVEL')
– INSTANCE_LEVEL_HINT_TYPE

('OPTIMIZATION-PARAMETERS')
• StatementLevelRules (any one of the

following values)

– REOPT
– STARJOIN
– MAX_PAR_DEGREE
– DEGREE
– SJTABLES

• SQLStatement

– SQLText

968 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 159. Actions by hint type for the SET_PLAN_HINT stored procedure in CREATE mode (continued)

Hint type Action Required Input Parameters

Statement-
level predicate
selectivity
overrides

1. The staging table
DSN8BQRY.DSN_USERQUERY_TABLE is
populated with the information that is
specified in the DeploymentParameters and
SQLStatement dictionaries.

2. The following command is issued to check
whether the hint already exists:

BIND QUERY
EXPLAININPUTSCHEMA('DSN8BQRY')
LOOKUP(YES)

3. If an existing hint of the same scope is
found and predicate selectivity override for
the query is not in effect, or an existing hint of
the same scope is not found:

a. If optimization parameters are in
effect for the query, the staging table
DSN8BQRY.DSN_USERQUERY_TABLE is
further updated with the optimization
parameters to ensure that the existing
optimization parameters are not lost
when the BIND QUERY is performed
subsequently.

b. The staging table
DSN8BQRY.DSN_PREDICAT_TABLE is
populated with the original predicate
information from the source
DSN_PREDICAT_TABLE.

• The source DSN_PREDICAT_TABLE
is schema-name.DSN_PREDICAT_TABLE,
where schema-name is the
PLAN_SCHEMA value that is specified in
the ExistingPredicateSelectivityIdentifier
dictionary

• The original predicates of the query are
identified by the parameters specified in
the ExistingPredicateSelectivityIdentifier
dictionary.

If the existing hint is an optimization
parameter override, the values that define
it are inserted in the staging table
DSN8BQRY.DSN_USERQUERY_TABLE.

If the existing hint is not compatible with the
new selectivity override, processing ends.

Steps continue in the next row.

• DeploymentParameters

– HINT_TYPE ('INSTANCE-LEVEL')
– INSTANCE_LEVEL_HINT_TYPE

('SELECTIVITY-OVERRIDE')
– If HINT_SCOPE=1 (package-level):

- PROGNAME
- COLLID
- VERSION

• SQLStatement

– SQLText
• ExistingPredicateSelectivityIdentifier

– QUERYNO
– PLAN_SCHEMA
– EXPLAIN_TIME

• PredicateSelectivityInstances

– QBLOCKNO
– Predicates:

- PREDNO
- SelectivityInstances

• INSTANCE
• SELECTIVITY
• WEIGHT

Chapter 5. Procedures that are supplied with Db2 969

Table 159. Actions by hint type for the SET_PLAN_HINT stored procedure in CREATE mode (continued)

Hint type Action Required Input Parameters

Statement-
level predicate
selectivity
overrides
(continues)

4. The staging table
DSN8BQRY.DSN_PREDICATE_SELECTIVITY
is populated with predicate selectivity
overrides that are specified in the
DeploymentParameters dictionary and
PredicateSelectivityInstances array. The
value of the ASSUMPTION column is set to
'OVERRIDE'.
5. The following command is issued:

BIND QUERY
EXPLAININPUTSCHEMA('DSN8BQRY')

DELETE
Deletes an existing hint from the deployment table. The following table describes the
specific actions and required input parameters for different types of hints:

Table 160. Actions by hint type for the SET_PLAN_HINT stored procedure in DELETE mode

Hint type Action Required Input Parameters

PLAN_TABLE access
path hints

The specified access path hint is deleted from
the deployment PLAN_TABLE.

• The access path hint to be deleted is
identified by the parameters specified in the
DeploymentParameters dictionary.

• The deployment PLAN_TABLE is schema-
name.PLAN_TABLE, where schema-name is
the PLAN_SCHEMA value that is specified in
the DeploymentParameters dictionary.

• DeploymentParameters

– QUERYNO
– APPLNAME
– PROGNAME
– COLLID
– VERSION
– OPTHINT
– PLAN_SCHEMA (schema of the

deployment PLAN_TABLE)

Statement-level
access paths

The FREE QUERY command is issued for
the QUERYID value that is specified in the
DeploymentParameters dictionary.

• DeploymentParameters

– QUERYID
– HINT_TYPE ('INSTANCE-LEVEL')

Statement-level
optimization
parameters “1” on
page 976

The FREE QUERY command is issued for
the QUERYID value that is specified in the
DeploymentParameters dictionary.

• DeploymentParameters

– QUERYID
– HINT_TYPE ('INSTANCE-LEVEL')

970 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 160. Actions by hint type for the SET_PLAN_HINT stored procedure in DELETE mode (continued)

Hint type Action Required Input Parameters

Statement-level
predicate selectivity
overrides

If optimization parameters are not in effect
for the hint to be deleted, a FREE QUERY
command is issued for the QUERYID value
that is specified in the DeploymentParameters
dictionary.

Otherwise:

1. The staging table
DSN8BQRY.DSN_USERQUERY_TABLE is
populated with the optimization parameters
to ensure that we do not lose the existing
optimization parameters when FREE QUERY
is performed subsequently.

2. The FREE QUERY command is issued for
the QUERYID value that is specified in the
DeploymentParameters dictionary.

3. The following command is issued to restore
the optimization parameters:

BIND QUERY
EXPLAININPUTSCHEMA('DSN8BQRY')

• DeploymentParameters

– HINT_TYPE ('INSTANCE-LEVEL')
– INSTANT_LEVEL_HINT_TYPE

('SELECTIVITY-OVERRIDE')
– QUERYID

MODIFY
Modifies an existing hint in the deployment table. The following table describes the
specific actions and required input parameters for different types of hints:

Table 161. Actions by hint type for the SET_PLAN_HINT stored procedure in MODIFY mode

Hint type Action Required Input Parameters

PLAN_TABLE
access path
hints

The information specified in the
TableAccessRules and JoinSequenceRules
dictionaries are applied to an existing access
path in the deployment PLAN_TABLE.

• The existing access path is identified
by the parameters specified in the
DeploymentParameters dictionary

• The deployment PLAN_TABLE is schema-
name.PLAN_TABLE, where schema-name is
the PLAN_SCHEMA value that is specified in
the DeploymentParameters dictionary

• DeploymentParameters

– QUERYNO
– APPLNAME
– PROGNAME
– COLLID
– VERSION
– OPTHINT
– PLAN_SCHEMA (schema of the

deployment PLAN_TABLE)

Chapter 5. Procedures that are supplied with Db2 971

Table 161. Actions by hint type for the SET_PLAN_HINT stored procedure in MODIFY mode (continued)

Hint type Action Required Input Parameters

Statement-
level access
paths

1. The following staging tables are populated
based on an existing hint in the query
catalog tables, and on the information that
is specified in the DeploymentParameters,
SQLStatement, TableAccessRules, and
JoinSequenceRules dictionaries:

• DSN8BQRY.PLAN_TABLE
• DSN8BQRY.DSN_USERQUERY_TABLE

The existing hint in the query catalog tables
is identified by the QUERYID value that
is specified in the DeploymentParameters
dictionary.

2. The following command is issued:

BIND QUERY
EXPLAININPUTSCHEMA('DSN8BQRY')

• DeploymentParameters

– QUERYID
– If HINT_SCOPE=1 (package-level access

path):

- PROGNAME
- COLLID
- VERSION

– HINT_TYPE ('INSTANCE-LEVEL')
• SQLStatement

– SQLText

Statement-
level
optimization
parameters
“1” on page
976

1. The staging table
DSN8BQRY.DSN_USERQUERY_TABLE is
populated based on an existing hint in the
query catalog tables and on the information
specified in the DeploymentParameters,
SQLStatement, and StatementLevelRules
dictionaries.

The existing hint in the query catalog tables
is identified by the QUERYID value that
is specified in the DeploymentParameters
dictionary.

2. The following command is issued:

BIND QUERY
EXPLAININPUTSCHEMA('DSN8BQRY')

• DeploymentParameters

– QUERYID
– If HINT_SCOPE=1 (package-level access

path hints):

- PROGNAME
- COLLID
- VERSION

– HINT_TYPE ('INSTANCE-LEVEL')
– INSTANCE_LEVEL_HINT_TYPE

('OPTIMIZATION-PARAMETERS')
• StatementLevelRules (any one of the

following values)

– REOPT
– STARJOIN
– MAX_PAR_DEGREE
– DEGREE
– SJTABLES

• SQLStatement

– SQLText

972 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 161. Actions by hint type for the SET_PLAN_HINT stored procedure in MODIFY mode (continued)

Hint type Action Required Input Parameters

Statement-
level
predicate
selectivity
overrides

1. The following staging tables are populated
based on an existing hint in the query
catalog tables:

• DSN8QRY.DSN_USERQUERY_TABLE
• DSN8BQRY.DSN_PREDICAT_TABLE
• DSN8QRY.DSN_PREDICATE_SELECTIVITY

The existing hint in the catalog tables
is identified by the QUERYID value that
is specified in the DeploymentParameters
dictionary.

2. If optimization parameters are in
effect for the query, the staging
table DSN8BQRY.DSN_USERQUERY_TABLE
is further updated with the optimization
parameters.

3. The input tables are modified again based
on the values that are is specified in the
PredicateSelectivityInstances array:

• If SELECTIVITY_ACTION is 'UPDATE' rows
are added or modified as necessary.

• If SELECTIVITY_ACTION is 'DELETE' rows
are deleted as necessary.

4. The following command is issued:

BIND QUERY
EXPLAININPUTSCHEMA('DSN8BQRY')

• DeploymentParameters

– HINT_TYPE ('INSTANCE -LEVEL')
– INSTANCE_LEVEL_HINT_TYPE

('SELECTIVITY-OVERRIDE')
– QUERYID

• PredicateSelectivityInstances

– QBLOCKNO
– Predicates:

- PREDNO
- SelectivityInstances:

• INSTANCE
• SELECTIVITY (if

SELECTIVITY_ACTION='UPDATE')
• WEIGHT (if

SELECTIVITY_ACTION='UPDATE')
• SELECTIVITY_ACTION (optional, must

be 'UPDATE' or 'DELETE' if specified.)

VALIDATE
Generates a hint and captures EXPLAIN information to validate the hint. The following
table shows the actions taken and the required input parameters when VALIDATE mode is
used.

Chapter 5. Procedures that are supplied with Db2 973

Table 162. Actions by hint type for the SET_PLAN_HINT stored procedure in VALIDATE mode

Hint type Action Required Input Parameters

• PLAN_TABLE access
path hints

• Statement-level
access paths

• Statement-level
optimization
parameters

1. A check is completed to ensure that no
existing rows the deployment PLAN_TABLE
table match the following values that are
specified in the DeploymentParameters and
ExistingAccessPlanIdentifier dictionaries:

• QUERYNO
• APPLNAME
• PROGNAME
• COLLID
• VERSION
• OPTHINT
• BIND_TIME

2. If the matching rows do not already
exist, the access path identified
by the information specified in the
ExistingAccessPlanIdentifier dictionary is
copied from the source PLAN_TABLE to the
deployment PLAN_TABLE. The information
specified in the DeploymentParameters,
TableAccessRules and JoinSequenceRules
dictionaries are applied to the copied plan.

• The source PLAN_TABLE is schema-
name.PLAN_TABLE, where schema-
name is the PLAN_SCHEMA
value that is specified in the
ExistingAccessPlanIdentifier dictionary.

• The deployment PLAN_TABLE is
the schema-name.PLAN_TABLE, where
schema-name is the value of the CURRENT
SQLID special register for the process.

3. EXPLAIN information is captured for the
resulting access path. The copied access
path and the EXPLAIN output are kept or
deleted based on the SQLCODE value that is
returned for the EXPLAIN operation:
SQLCODE +000

The new PLAN_TABLE rows are deleted.
SQLCODE +394

The new PLAN_TABLE rows are kept.
SQLCODE +395

If the value of the HINT_USED column is
blank for all rows, the new PLAN_TABLE
rows are deleted.

• ExistingAccessPlanIdentifier

– QUERYNO
– APPLNAME
– PROGNAME
– COLLID
– VERSION
– PLAN_SCHEMA (the schema of

the source PLAN_TABLE)
• DeploymentParameters

– OPTHINT

974 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 162. Actions by hint type for the SET_PLAN_HINT stored procedure in VALIDATE mode (continued)

Hint type Action Required Input Parameters

Statement-level
predicate selectivity
overrides

1. DSN8QRY.DSN_USER_QUERY_TABLE is
populated with the information that is
specified in the DeploymentParameters
dictionary, and a check is completed to
determine whether incompatible catalog
table rows already exist.

2. If incompatible catalog table rows
are not found, the following input
tables are populated with values
from the DeploymentParameters and
PredicateSelectivityInstances dictionaries,
and the SYSIBM.SYSQUERYPREDICATE
catalog table:

• DSN8QRY.DSN_USER_QUERY_TABLE
• DSN8QRY.DSN_PREDICATE_SELECTIVITY
• DSN8QRY.DSN_PREDICAT_TABLE

If compatible rows that have the same
scope are found, the values of these rows
are also copied to the input tables.

3. The following BIND QUERY command is
issued to create temporary rows in the
catalog tables.“1” on page 975

BIND QUERY
 EXPLAININPUTSCHEMA('DSN8BQRY')

4. EXPLAIN information is captured for the
resulting access path. The copied access
path and the EXPLAIN output are kept or
deleted based on the SQLCODE value that is
returned for the EXPLAIN operation.

If the SQLCODE +000 is returned by
the explain operation, the value of
the PLAN_TABLE.HINT_USED column is
checked. If the value is 'SYSQUERYSEL n',
the EXPLAIN records are kept.

The generated EXPLAIN records are
identified by the QUERYNO and
EXPLAIN_TIME values that are specified by
in the ExistingPredicateSelectivityIdentifier
dictionary.

5. A FREE QUERY command is issued to
remove the selectivity overrides from the
catalog tables.

• DeploymentParameters:

– HINT_TYPE ('INSTANCE_LEVEL')
– INSTANCE_LEVEL_HINT_TYPE

('SELECTIVITY-OVERRIDE')
– If HINT_SCOPE=1 (package-

level):

- PROGNAME
- COLLID
- VERSION

• SQLStatement:

– SQLText
• PredicateSelectivityInstances:

– QBLOCKNO
– Predicates:

- PREDNO
- SelectivityInstances:

• INSTANCE
• SELECTIVITY (required only

if SELECTIVITY_ACTION is
'UPDATE')

• WEIGHT (required only
if SELECTIVITY_ACTION is
'UPDATE')

• ExistingPredicateSelectivityIdentifi
er

– QUERYNO
– EXPLAIN_TIME
– PLAN_SCHEMA

Notes:

1. In VALIDATE processing for static statements and dynamic statements that are bound
with the DYNAMICRULES(BIND) option, the COLLID, PROGNAME, and VERSION values
for the package that contains the SET_PLAN_HINT stored procedure are used for the
BIND QUERY operation. Therefore, the SQL processing options of DSNADM.DSNADMHS

Chapter 5. Procedures that are supplied with Db2 975

are used. Differences between the SQL processing options of the specified package
and DSNADMHS might cause the BIND QUERY command to fail. When that happens,
the validate operation fails. Option differences that might cause such failures include
decimal point representation and others. For more information, see:

“Options affecting SQL” on page 320
“Decimal point representation” on page 323

Notes:

1. If the SET_PLAN_HINT stored procedure is called to create, modify, or
delete statement-level optimization parameters (HINT_TYPE=INSTANCE-LEVEL and
INSTANCE_LEVEL_HINT_TYPE=OPTIMIZATION-PARAMETERS), any existing predicate
selectivity overrides for the same statement are removed.

HINT_TYPE
The type of access path hint:
TRADITIONAL

PLAN_TABLE access path hints. This value is used by default.
INSTANCE-LEVEL

Statement-level hints, including:

• Access paths.
• Optimization parameters.
• Predicate selectivity overrides.

HINT_SCOPE
The scope of the statement-level hint:
SYSTEM-LEVEL

The hint applies at the system level. This value is used by default.
PACKAGE-LEVEL

The hint applies at the package level.
INSTANCE_LEVEL_HINT_TYPE

The action specified by statement-level rows:
ACCESS-PATH

Statement-level access paths. This value is used by default.
OPTIMIZATION-PARAMETERS

Statement-level optimization parameters.
SELECTIVITY-OVERRIDE

Statement-level predicate selectivity overrides.
Keys that correspond to the following PLAN_TABLE columns:

• OPTHINT
• PROGNAME“1” on page 975

• APPLNAME
• VERSION“1” on page 975

• COLLID“1” on page 975

• QUERYNO
• BIND_TIME
• QUERYID

For the meanings and accepted values for these keys, see: PLAN_TABLE (Db2 Performance).

PLAN_SCHEMA
The schema of the deployment PLAN_TABLE.

976 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_plantable.html

The following example shows the format of the DeploymentParameters dictionary for a
PLAN_TABLE access path hint:

<key>DeploymentParameters</key>
<dict>
 <key>MODE</key>
 <string>CREATE</string>
 <key>HINT_TYPE</key>
 <string>TRADITIONAL</string>
 <key>HINT_SCOPE</key>
 <string>PACKAGE-LEVEL</string>
 <key>APPLNAME</key>
 <string></string>
 <key>PROGNAME</key>
 <string>DSNTIAD</string>
 <key>COLLID</key>
 <string>DSNTIAB1</string>
 <key>VERSION</key>
 <string>*</string>
 <key>QUERYNO</key>
 <string>200</string>
 <key>PLAN_SCHEMA</key>
 <string>ADMF002</string>
 <key>OPTHINT</key>
 <string>HINT001</string>
</dict>

The following example shows the format of the DeploymentParameters dictionary for a
statement-level predicate selectivity override:

<key>DeploymentParameters</key>
<dict>
 <key>MODE</key>
 <string>CREATE</string>
 <key>HINT_TYPE</key>
 <string>INSTANCE-LEVEL</string>
 <key>INSTANCE_LEVEL_HINT_TYPE</key>
 <string>SELECTIVITY-OVERRIDE</string>
 <key>HINT_SCOPE</key>
 <string>PACKAGE-LEVEL</string>
 <key>PROGNAME</key>
 <string>DSNTIAD</string>
 <key>COLLID</key>
 <string>DSNTIAB1</string>
 <key>VERSION</key>
 <string></string>
 </dict>

StatementList
A list of SQL statements and the hint definition that is associated with each. Only one SQL
statement is supported. Additional SQL statements are ignored. The following example shows the
format of the StatementList array:

<key>StatementList</key>
<array>
 <dict>
 <key>DeploymentParameters</key>
 <dict>
 </dict>
 <key>SQLStatement</key>
 <dict>
 </dict>
 <key>ExistingAccessPlanIdentifier</key>
 <dict>
 </dict>
 <key>StatementLevelRules</key>
 <dict>
 </dict>
 <key>PlanLevelRules</key>
 <dict>
 <key>TableAccessRules</key>
 <array></array>
 <key>JoinSequenceRules</key>
 <array></array>
 </dict>
 <key>PredicateSelectivityInstances</key>

Chapter 5. Procedures that are supplied with Db2 977

 <array>
 </array>
 <key>ExistingPredicateSelectivityIdentifier</key>
 <dict>
 </dict>
 </dict>
</array>

DeploymentParameters
Deployment parameters can be specified globally, or specified at the statement
level. Statement-level deployment parameters override the global parameters for a
particular statement. For a description of the DeploymentParameter dictionary, see
“DeploymentParameters” on page 965.

SQLStatement
The statement text and the default schema for resolving unqualified table names in the
statement.

The SQLStatement dictionary can contain the following keys:

SQLText
The text of the SQL statement.

SCHEMA
The default schema for resolving unqualified table names in the statement.

The following example shows the format of the SQLStatement dictionary:

<key>SQLStatement</key>
<dict>
 <key>SCHEMA</key>
 <string>USER001</string>
 <key>SQLText</key>
 <string>
 SELECT s_name,
 count(*) as numwait
 FROM supplier,
 lineitem l1,
 order,
 nation
 WHERE s_suppkey = l1.l_suppkey
 AND o_orderkey = l1.l_orderkey
 AND o_orderstatus = 'F'
 AND l1.l_receiptdate > l1.l_commitdate
 AND EXISTS(
 SELECT *
 FROM lineitem l2
 WHERE l2.l_orderkey = l1.l_orderkey
 AND l2.l_suppkey <> l1.l_suppkey
)
 AND NOT EXISTS (
 SELECT *
 FROM lineitem l3
 WHERE l3.l_orderkey = l1.l_orderkey
 AND l3.l_suppkey <> l1.l_suppkey
 AND l3.l_receiptdate > l3.l_commitdate
)
 AND s_nationkey = n_nationkey
 AND n_name = 'USA'
 GROUP BY s_name
 ORDER BY numwait desc,s_name
 </string>
</dict>

ExistingAccessPlanIdentifier
A list of parameters that identify an access path in a PLAN_TABLE.
ExistingAccessPlanIdentifier applies only for hints that specify access paths.

The ExistingAccessPlanIdentifier dictionary can contain the following keys:

Keys that correspond to the following PLAN_TABLE columns

• OPTHINT
• PROGNAME

978 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• APPLNAME
• VERSION
• COLLID
• QUERYNO
• BIND_TIME

For the meanings and accepted values for these keys, see: PLAN_TABLE (Db2
Performance).

PLAN_SCHEMA
The schema of the PLAN_TABLE that contains the original access path.

The following example shows the format of the ExistingAccessPlanIdentifier dictionary:

<key>ExistingAccessPlanIdentifier</key>
<dict>
 <key>APPLNAME</key>
 <string></string>
 <key>PROGNAME</key>
 <string>DSNADMXX</string>
 <key>COLLID</key>
 <string>DSNADM</string>
 <key>VERSION</key>
 <string>*</string>
 <key>QUERYNO</key>
 <string>200</string>
 <key>PLAN_SCHEMA</key>
 <string>ADMF002</string>
 <key>OPTHINT</key>
 <string>HINT001</string>
 <key>BIND_TIME</key>
 <string>2012-11-05-07.10.41.700000</string>
</dict>

StatementLevelRules
A list of parameters that identify optimization parameter hint properties. StatementLevelRules
applies only to hints for optimization parameters.

The StatementLevelRules dictionary can contain the following keys:

Keys that correspond to the following DSN_USERQUERY_TABLE columns:

• REOPT
• STARJOIN
• MAX_PAR_DEGREE
• DEGREE (for the DEF_CURR_DEGREE column)
• SJTABLES

For meanings and accepted values for these keys, see the column descriptions in
DSN_USERQUERY_TABLE (Db2 Performance).

The following example shows the format of the StatementLevelRules dictionary:

<key>StatementLevelRules</key>
<dict>
 <key>REOPT</key>
 <dict>
 <key>VALUE</key>
 <string>1</string>
 </dict>
 <key>STARJOIN</key>
 <dict>
 <key>VALUE</key>
 <string>N</string>
 </dict>
 <key>MAX_PAR_DEGREE</key>
 <dict>
 <key>VALUE</key>
 <string>2</string>
 </dict>

Chapter 5. Procedures that are supplied with Db2 979

https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_plantable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_plantable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_dsnuserquerytable.html

 <key>DEGREE</key>
 <dict>
 <key>VALUE</key>
 <string>ONE</string>
 </dict>
 <key>SJTABLES</key>
 <dict>
 <key>VALUE</key>
 <string>2</string>
 </dict>
</dict>

PlanLevelRules
A list of parameters that describe the customized access path that is specified by the hint,
including separate arrays for table access and join sequence information. PlanLevelRules
applies only to hints that specify access paths. The following example shows the format of this
PlanLevelRules dictionary:

<key>PlanLevelRules</key>
<dict>
 <key>TableAccessRules</key>
 <array></array>
 <key>JoinSequenceRules</key>
 <array></array>
</dict>

TableAccessRules
A list of rules that are related to table access and that describe data access methods, such
as table space scans and index scans, for example.

Each table access rule is represented by a TableReferenceIdentifier and its corresponding
Settings.

TableReferenceIdentifier
A list of properties that identify the table reference. The properties correspond to
PLAN_TABLE columns:

• QBLOCKNO
• TABNO
• TABLE_CREATOR (for the CREATOR column)
• TABLE_NAME (for the TNAME column)
• CORRELATION_NAME

For the meanings and accepted values for these properties, see: PLAN_TABLE (Db2
Performance).

Settings
A list of access properties. The properties correspond to PLAN_TABLE columns:

• ACCESS_TYPE (for the ACCESSTYPE column)
• ACCESS_CREATOR (for the ACCESCREATOR column)
• ACCESS_NAME (for the ACCESSNAME column)
• PREFETCH
• PAGE_RANGE
• SORTN_JOIN
• SORTC_JOIN
• PARALLELISM_MODE
• ACCESS_DEGREE
• JOIN_DEGREE
• ACCESS_PGROUP_ID
• JOIN_PGROUP_ID

980 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_plantable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_plantable.html

• PRIMARY_ACCESSTYPE
• METHOD

For the meanings and accepted values for these properties, see: PLAN_TABLE (Db2
Performance).

The following example shows the format of this TableAccessRules array:

<key>TableAccessRules</key>
<array>
 <dict>
 <key>TableReferenceIdentifier</key>
 <array>
 <dict>
 <key>NAME</key>
 <string>QBLOCKNO</string>
 <key>VALUE</key>
 <string>1</string>
 </dict> ...
 </array>
 <key>Settings</key>
 <array>
 <dict>
 <key>NAME</key>
 <string>ACCESS_TYPE</string>
 <key>VALUE</key>
 <string>IXSCAN</string>
 </dict>
 </array>
 </dict>
</array>

JoinSequenceRules
A list of join sequence customization rules. Each join sequence rule is represented by the
Settings and Roots (root nodes) for the join sequence. The join sequence rules correspond
to the join sequence and join methods, such as merge join and hybrid join, for example.
Settings

A property for the join sequence rule that correspond to the PLAN_TABLE column of
the same name: QBLOCKNO

Roots
A list of root nodes in the join sequence, where each root node is identified by the node
type. Depending on the node type, a TABLE_REFERENCE_NODE holds the properties
to identify the table reference, while an OPERATOR_NODE holds the properties of the
operator.
TYPE

The node type:

• TABLE_REFERENCE_NODE
• OPERATOR NODE

TableReferenceIdentifier
A list of properties to identify the table reference if node type is
TABLE_REFERENCE_NODE. These properties correspond to PLAN_TABLE
columns:

• QBLOCKNO
• TABNO
• TABLE_CREATOR (for the CREATOR column)
• TABLE_NAME (for the TNAME column)
• CORRELATION_NAME

For the meanings and accepted values for these properties, see: PLAN_TABLE (Db2
Performance).

Chapter 5. Procedures that are supplied with Db2 981

https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_plantable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_plantable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_plantable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_plantable.html

Settings
A list of properties of this operator if node type is OPERATOR_NODE. These
properties correspond to PLAN_TABLE columns:

• JOIN_METHOD (for the METHOD column)
• SORTN_JOIN
• SORTC_JOIN
• JOIN_DEGREE
• JOIN_PGROUP_ID

For the meanings and accepted values for these properties, see: PLAN_TABLE (Db2
Performance).

Left
A description of a left-side child node. The data structure is similar to the root
node.

Right
A description of a right-side child node. The data structure is similar to the root
node.

The following example shows the format of this JoinSequence array:

<key>JoinSequenceRules</key>
<array>
 <dict>
 <key>Settings</key>
 <array>
 <dict>
 <key>NAME</key>
 <string>QBLOCKNO</string>
 <key>VALUE</key>
 <string>1</string>
 </dict>
 </array>
 <key>Roots</key>
 <array>
 <dict>
 <key>TYPE</key>
 <string>OPERATOR_NODE</string>
 <key>Settings</key>
 <array>
 <dict>
 <key>NAME</key>
 <string>JOIN_METHOD</string>
 <key>VALUE</key>
 <string>NLJOIN</string>
 </dict>
 </array>
 <key>Left</key>
 <dict>
 <key>TYPE</key>
 <string>OPERATOR_NODE</string>
 <key>Settings</key>
 <array>
 <dict>
 <key>NAME</key>
 <string>JOIN_METHOD</string>
 <key>VALUE</key>
 <string>SMJOIN</string>
 </dict>
 </array>
 <key>Left</key>
 <dict>
 <key>TYPE</key>
 <string>OPERATOR_NODE</string>
 <key>Settings</key>
 <array>
 <dict>
 <key>NAME</key>
 <string>JOIN_METHOD</string>
 <key>VALUE</key>
 <string>NLJOIN</string>
 </dict>

982 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_plantable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_plantable.html

 </array>
 <key>Left</key>
 <dict>
 <key>TYPE</key>
 <string>TABLE_REFERENCE_NODE</string>
 <key>TableReferenceIdentifier</key>
 <array>
 <dict>
 <key>NAME</key>
 <string>TABLE_NAME</string>
 <key>VALUE</key>
 <string>NATION</string>
 </dict>
 </array>
 </dict>
 <key>Right</key>
 <dict>
 <key>TYPE</key>
 <string>TABLE_REFERENCE_NODE</string>
 <key>TableReferenceIdentifier</key>
 <array>
 <dict>
 <key>NAME</key>
 <string>TABLE_NAME</string>
 <key>VALUE</key>
 <string>SUPPLIER</string>
 </dict>
 </array>
 </dict>
 </dict>
 <key>Right</key>
 <dict>
 <key>TYPE</key>
 <string>TABLE_REFERENCE_NODE</string>
 <key>TableReferenceIdentifier</key>
 <array>
 <dict>
 <key>NAME</key>
 <string>TABLE_NAME</string>
 <key>VALUE</key>
 <string>LINEITEM</string>
 </dict>
 </array>
 </dict>
 </dict>
 <key>Right</key>
 <dict>
 <key>TYPE</key>
 <string>TABLE_REFERENCE_NODE</string>
 <key>TableReferenceIdentifier</key>
 <array>
 <dict>
 <key>NAME</key>
 <string>TABLE_NAME</string>
 <key>VALUE</key>
 <string>ORDER</string>
 </dict>
 </array>
 </dict>
 </dict>
 </array>
 </dict>
</array>

PredicateSelectivityInstances
A list of predicates and their selectivity instances. PredicateSelectivityInstances applies only
to hints that specify selectivity overrides.
QBLOCKNO

The identifier of the query block that contains the predicate.
Predicates

SELECTIVITY_ACTION
The processing mode for the selectivity instance. One of the following values:

• UPDATE (valid when MODE is CREATE, MODIFY, or VALIDATE.) This is the default
value.

Chapter 5. Procedures that are supplied with Db2 983

• DELETE (valid when MODE is MODIFY, or VALIDATE for an existing hint.)

INSTANCE
The identifier of the selectivity instance. A positive integer greater than or equal to 1.

SELECTIVITY
Percentage of rows in the table that satisfy the predicate as a value 0–1. This value is
mandatory when SELECTIVITY_ACTION='UPDATE'.

WEIGHT
Percentage of executions in which the selectivity instance applies, as a value 0–1. This
value is mandatory when SELECTIVITY_ACTION='UPDATE'.

The following example shows the format of the PredicateSelectivityInstances array:

<key>PredicateSelectivityInstances</key>
<array>
 <dict>
 <key>QBLOCKNO</key><string>1</string>
 <key>Predicates</key>
 <array>
 <dict>
 <key>PREDNO</key><string>2</string>
 <key>SelectivityInstances</key>
 <array>
 <dict>
 <key>SELECTIVITY_ACTION</key><string>UPDATE</string>
 <key>INSTANCE</key><string>1</string>
 <key>SELECTIVITY</key><string>0.1111</string>
 <key>WEIGHT</key><string>0.11111</string>
 </dict>
 <dict>
 <key>INSTANCE</key><string>2</string>
 <key>SELECTIVITY</key><string>0.1222</string>
 <key>WEIGHT</key><string>0.12222</string>
 </dict>
 </array>
 </dict>
 <dict>
 <key>PREDNO</key><string>3</string>
 <key>SelectivityInstances</key>
 <array>
 <dict>
 <key>INSTANCE</key><string>3</string>
 <key>SELECTIVITY</key><string>0.1333</string>
 <key>WEIGHT</key><string>0.13333</string>
 </dict>
 <dict>
 <key>INSTANCE</key><string>4</string>
 <key>SELECTIVITY</key><string>0.1444</string>
 <key>WEIGHT</key><string>0.14444</string>
 </dict>
 </array>
 </dict>
 </array>
 </dict>
 </array>

ExistingPredicateSelectivityIdentifier
Identifies the EXPLAIN tables rows that are copied to input tables for the BIND
QUERY operation. ExistingPredicateSelectivityIdentifier applies only to hints that override
selectivities.
PLAN_SCHEMA

The schema of the following EXPLAIN tables: PLAN_TABLE, DSN_PREDICAT_TABLE, and
DSN_PREDICATE_SELECTIVITY tables.

EXPLAIN_TIME
The time that the row was inserted by EXPLAIN.

QUERYNO
The identifier of the statement.

984 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The following example shows the format of the ExistingPredicateSelectivityIdentifier
dictionary:

<key>ExistingPredicateSelectivityIdentifier</key>
 <dict>
 <key>QUERYNO</key><string>100</string>
 <key>EXPLAIN_TIME</key><string>2013-03-20-14.29.55.660000</string>
 <key>PLAN_SCHEMA</key><string>ADMF001</string>
 </dict>

xml_filter
An input parameter of type BLOB(4K). Specifies a valid XPath query string to retrieve a single value
from an XML output document.

xml_output
An output parameter of type BLOB(2G)

When the mode is VALIDATE for hints other than selectivity overrides,xml_output has the following
format:

<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>
 <key>Document Type Name</key><string>Data Server Hint Management Output</string>
 <key>Document Type Major Version</key><integer>1</integer>
 <key>Document Type Minor Version</key><integer>0</integer>
 <key>Data Server Product Name</key><string>DSN</string>
 <key>Data Server Product Version</key><string>10.1.5</string>
 <key>Data Server Major Version</key><integer>10</integer>
 <key>Data Server Minor Version</key><integer>1</integer>
 <key>Data Server Platform</key><string>z/OS</string>
 <key>Document Locale</key><string>en_US</string>
 <key>Hint Validation</key>
 <dict>
 <key>Display Name</key><string>Hint Validation</string>
 <key>EXPLAIN SQLCODE</key>
 <dict>
 <key>Display Name</key><string>EXPLAIN SQLCODE</string>
 <key>Value</key><string>394</string>
 <key>Hint</key><string/>
 </dict>
 <key>Additional EXPLAIN Information</key>
 <dict>
 <key>Display Name</key><string>Additional EXPLAIN Information</string>
 <key>Value</key>
 <string>DSNT404I SQLCODE = 394, WARNING: USER SPECIFIED OPTIMIZATION HINTS USED
 DURING ACCESS PATH SELECTION DSNT418I SQLSTATE = 01629 SQLSTATE RETURN CODE
 DSNT415I SQLERRP = DSNXOPCO SQL PROCEDURE DETECTING ERROR DSNT416I SQLERRD =
 20 0 25 1264473616 0 0 SQL DIAGNOSTIC INFORMATION DSNT416I SQLERRD = X'00000014'
 X'00000000' X'00000019' X'4B5E5610' X'00000000' X'00000000' SQL DIAGNOSTIC
 INFORMATION</string>
 <key>Hint</key><string/>
 </dict>
 <key>Hint</key><string></string>
 </dict>
</dict>
</plist>

When the mode is CREATE, MODIFY, or DELETE for PLAN_TABLE access path hints, xml_output has
the following format:

<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>
 <key>Document Type Name</key><string>Data Server Hint Management Output</string>
 <key>Document Type Major Version</key><integer>1</integer>
 <key>Document Type Minor Version</key><integer>0</integer>
 <key>Data Server Product Name</key><string>DSN</string>
 <key>Data Server Product Version</key><string>10.1.5</string>
 <key>Data Server Major Version</key><integer>10</integer>
 <key>Data Server Minor Version</key><integer>1</integer>
 <key>Data Server Platform</key><string>z/OS</string>
 <key>Document Locale</key><string>en_US</string>
 <key>Hint Deployment</key>
 <dict>
 <key>Display Name</key><string>Hint Deployment</string>

Chapter 5. Procedures that are supplied with Db2 985

 <key>SQLCODE</key>
 <dict>
 <key>Display Name</key><string>SQLCODE</string>
 <key>Value</key><string>0</string>
 <key>Hint</key><string/>
 </dict>
 <key>Hint</key><string></string>
 </dict>
</dict>
</plist>

When the mode is CREATE or MODIFY for statement-level hints, xml_output has the following format:

<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>
 <key>Document Type Name</key><string>Data Server Hint Management Output</string>
 <key>Document Type Major Version</key><integer>1</integer>
 <key>Document Type Minor Version</key><integer>0</integer>
 <key>Data Server Product Name</key><string>DSN</string>
 <key>Data Server Product Version</key><string>10.1.5</string>
 <key>Data Server Major Version</key><integer>10</integer>
 <key>Data Server Minor Version</key><integer>1</integer>
 <key>Data Server Platform</key><string>z/OS</string>
 <key>Document Locale</key><string>en_US</string>
 <key>Hint Deployment</key>
 <dict>
 <key>Display Name</key><string>Hint Deployment</string>
 <key>BIND QUERY Message</key>
 <dict>
 <key>Display Name</key><string>BIND QUERY Message</string>
 <key>Value</key>
 <string>DSNT280I @ BIND QUERY FOR QUERYNO = 8888 SUCCESSFUL DSNT289I @ BIND QUERY
 COMMAND INVOKED BY THE DSNE PROCESSOR. UNDER THIS ENVIRONMENT, THE COMMAND
 CAN ONLY PROCESS THE FIRST APPLICABLE QUERY. ALL OTHER QUERIES ARE NOT PROCESSED.
 </string>
 <key>Hint</key><string/>
 </dict>
 <key>QUERYID</key>
 <dict>
 <key>Display Name</key><string>QUERYID</string>
 <key>Value</key>
 <string>999</string>
 <key>Hint</key><string/>
 </dict>
 <key>Hint</key><string></string>
 </dict>
</dict>
</plist>

When the mode is DELETE for statement-level hints, xml_output has the following format. The format
is different for statement-level selectivity overrides when preexisting optimization parameters are
specified.

<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>
 <key>Document Type Name</key><string>Data Server Hint Management Output</string>
 <key>Document Type Major Version</key><integer>1</integer>
 <key>Document Type Minor Version</key><integer>0</integer>
 <key>Data Server Product Name</key><string>DSN</string>
 <key>Data Server Product Version</key><string>10.1.5</string>
 <key>Data Server Major Version</key><integer>10</integer>
 <key>Data Server Minor Version</key><integer>1</integer>
 <key>Data Server Platform</key><string>z/OS</string>
 <key>Document Locale</key><string>en_US</string>
 <key>Hint Deployment</key>
 <dict>
 <key>Display Name</key><string>Hint Deployment</string>
 <key>FREE QUERY Message</key>
 <dict>
 <key>Display Name</key><string>FREE QUERY Message</string>
 <key>Value</key>
 <string>DSNT280I @ FREE QUERY FOR QUERYID = 6 SUCCESSFUL DSNT290I @ FREE QUERY
 COMMAND COMPLETED</string>
 <key>Hint</key><string/>
 </dict>
 <key>Hint</key><string/>
 </dict>

986 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

</dict>
</plist>

When the mode is DELETE for statement-level predicate selectivity overrides and preexisting
optimization parameters are specified, xml_output has the following format:

<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>
 <key>Document Type Name</key><string>Data Server Hint Management Output</string>
 <key>Document Type Major Version</key><integer>1</integer>
 <key>Document Type Minor Version</key><integer>0</integer>
 <key>Data Server Product Name</key><string>DSN</string>
 <key>Data Server Product Version</key><string>11.1.5</string>
 <key>Data Server Major Version</key><integer>11</integer>
 <key>Data Server Minor Version</key><integer>1</integer>
 <key>Data Server Platform</key><string>z/OS</string>
 <key>Document Locale</key><string>en_US</string>
 <key>Hint Deployment</key>
 <dict>
 <key>Display Name</key><string>Hint Deployment</string>
 <key>FREE QUERY Message</key>
 <dict>
 <key>Display Name</key><string>FREE QUERY Message</string>
 <key>Value</key>
 <string>DSNT280I @ FREE QUERY FOR QUERYID = n SUCCESSFUL DSNT290I @ FREE QUERY
 COMMAND COMPLETED</string>
 <key>Hint</key><string/>
 </dict>
 <key>BIND QUERY</key>
 <dict>
 <key>Display Name</key><string>BIND QUERY</string>
 <key>Message</key>
 <dict>
 <key>Display Name</key><string>Message</string>
 <key>Value</key>
 <string>DSNT280I @ BIND QUERY FOR QUERYNO = n SUCCESSFUL DSNT289I @ BIND QUERY
 COMMAND INVOKED BY THE DSNE PROCESSOR. UNDER THIS ENVIRONMENT, THE COMMAND
 CAN ONLY PROCESS THE FIRST APPLICABLE QUERY. ALL OTHER QUERIES ARE NOT PROCESSED.
 </string>
 <key>Hint</key><string/>
 </dict>
 <key>QUERYID</key>
 <dict>
 <key>Display Name</key><string>QUERYID</string>
 <key>Value</key><string>n</string>
 <key>Hint</key><string/>
 </dict>
 <key>Hint</key><string/>
 </dict>
 <key>Hint</key><string/>
 </dict>
</dict>
</plist>

xml_message
An output parameter of type BLOB(2G). The output is an XML document with the following format:

<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>
 <key>Document Type Name</key>
 <string>Data Server Message</string>
 <key>Document Type Major Version</key><integer>1</integer>
 <key>Document Type Minor Version</key><integer>0</integer>
 <key>Data Server Product Name</key><string>DSN</string>
 <key>Data Server Product Version</key><string>10.1.5</string>
 <key>Data Server Major Version</key><integer>10</integer>
 <key>Data Server Minor Version</key><integer>1</integer>
 <key>Data Server Platform</key><string>z/OS</string>
 <key>Document Locale</key><string>en_US</string>
 <key>Short Message Text</key>
 <dict>
 <key>Display Name</key><string>Short Message Text</string>
 <key>Value</key>
 <string>DSNA618I DSNADMHS SQL ERROR DURING SQL STATEMENT
 CALL, PROCEDURE=SYSPROC.ADMIN_COMMAND_DSN DSNT408I SQLCODE
 = -471, ERROR: INVOCATION OF FUNCTION OR PROCEDURE
 SYSPROC.ADMIN_COMMAND_DSN FAILED DUE TO REASON 00E79001

Chapter 5. Procedures that are supplied with Db2 987

 DSNT418I SQLSTATE = 55023 SQLSTATE RETURN CODE DSNT415I
 SQLERRP = DSNX9GPL SQL PROCEDURE DETECTING ERROR DSNT416I
 SQLERRD = -30 0 0 -1 0 0 SQL DIAGNOSTIC INFORMATION DSNT416I
 SQLERRD = X'FFFFFFE2' X'00000000' X'00000000' X'FFFFFFFF'
 X'00000000' X'00000000' SQL DIAGNOSTIC INFORMATION</string>
 <key>Hint</key><string></string>
 </dict>
</dict>
</plist>

Related concepts
Common SQL API stored procedures (Db2 Administration Guide)
Related tasks
Influencing access path selection (Db2 Performance)
Creating input EXPLAIN tables under a separate schema (Db2 Performance)
Related reference
Tables for influencing access path selection (Db2 Performance)
BIND QUERY subcommand (DSN) (Db2 Commands)
FREE QUERY subcommand (DSN) (Db2 Commands)

SQLJ.ALTER_JAVA_PATH stored procedure
SQLJ.ALTER_JAVA_PATH modifies the class resolution path of an installed JAR.

SQLJ.ALTER_JAVA_PATH specifies the class resolution path that the JVM uses when a JAR file that is
part of a Java stored procedure references a class that is neither contained in that JAR file, found in the
CLASSPATH, nor system-supplied.

SQLJ.ALTER_JAVA_PATH authorization
Privilege set: If the CALL statement is embedded in an application program, the privilege set consists of
the privileges that are held by the owner of the plan or package. If the statement is dynamically prepared,
the privilege set consists of the privileges that are held by the authorization IDs of the process.

For calling SQLJ.ALTER_JAVA_PATH, the privilege set must include at least one of the following items:

• EXECUTE privilege on SQLJ.ALTER_JAVA_PATH
• Ownership of SQLJ.ALTER_JAVA_PATH
• SYSADM authority

The privilege set must also include the authority to alter a JAR, which consists of at least one of the
following items:

• Ownership of the JAR
• ALTERIN privilege on the schema of the JAR

The authorization ID that matches the schema name implicitly has the ALTERIN privilege on the
schema.

• SYSADM or SYSCTRL authority

For referring to JAR jar2 in the Java path, the privilege set must include at least one of the following
items:

• Ownership of jar2
• USAGE privilege on jar2
• SYSADM authority

988 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sproc/src/tpc/db2z_commonsqlapisp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_influenceaccesspaths.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_createexplaininputtablesschema.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_bindquerytables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_bindquery.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_freequery.html

SQLJ.ALTER_JAVA_PATH syntax
CALL SQLJ.ALTER_JAVA_PATH (JAR-name1 , ' path '

' blanks '

''

)

path:

path-element

path-element:

(*

Java-package-name . *

Java-package-name .

class-name

, JAR-name2)

Java-package-name:

Java-identifier

. Java-identifier

class-name:

Java-identifier

SQLJ.ALTER_JAVA_PATH parameters
JAR-name1

A VARCHAR(257) input parameter that contains the Db2 name of the JAR whose path is to be altered,
in the form schema.JAR-id or JAR-id. JAR-name1 is the name that you use when you refer to the JAR
in SQL statements. If you omit schema, Db2 uses the SQL authorization ID that is in the CURRENT
SCHEMA special register.

path
A VARCHAR(2048) input parameter that specifies the class resolution path that the JVM uses when
JAR-name1 references a class that is neither contained in JAR-name1, found in the CLASSPATH, nor
system-supplied.

During execution of the Java routine, when Db2 encounters an unresolved class reference, Db2
compares each path element in the path to the class reference. If a path element matches the class
reference, Db2 searches for the class in the JAR that is specified by the path element.

*
Indicates that any class reference can be searched for in the JAR that is identified by
JAR-name2. If an error prevents the class from being found, the search terminates, and a
java.lang.ClassNotFoundException is thrown to report that error. If the class is not found
in the JAR, the search continues with the next path element.

Java-package-name.*
Indicates that class references for classes that are in the package named Java-package-name
are searched for in the JAR that is identified by JAR-name2. If an error prevents a class
from being found, the search terminates, and a java.lang.ClassNotFoundException is

Chapter 5. Procedures that are supplied with Db2 989

thrown to report that error. If a class is not found in the JAR, the search terminates, and a
java.lang.NoClassDefFoundError is thrown.

If the class reference is to a class in a different package, the search continues with the next path
element.

Java-package-name.class-name or class-name
Indicates that class references for classes whose fully qualified name matches Java-package-
name.class-name or class-name are searched for in the JAR that is identified by JAR-name2. Class
references for classes that are in packages within the package named Java-package-name are not
searched for in the JAR that is identified by JAR-name2. If an error prevents a class from being found,
the search terminates, and a java.lang.ClassNotFoundException is thrown to report that error.
If a class is not found in the JAR, the search terminates and a java.lang.NoClassDefFoundError
is thrown.

If the class reference is to a different class, the search continues with the next path element.

JAR-name2
Specifies the Db2 name of the JAR that is to be searched. The form of JAR-name2 is schema.JAR-id
or JAR-id. If schema is omitted, the JAR name is implicitly qualified with the schema name in the
CURRENT SCHEMA special register. JAR JAR-name2 must exist at the current server. JAR-name2
must not be the same as JAR-name1.

SQLJ.ALTER_JAVA_PATH usage notes
Stored procedures that reference classes in multiple JAR files: A stored procedure that is packaged as a
JAR file might reference classes that are in other JAR files, and the referenced JAR files might reference
classes in still other JAR files. You need to specify class resolution paths for all dependencies among
JAR files that the stored procedure uses. For any JAR files that the stored procedure uses that cannot
be found in the CLASSPATH, and are not system-supplied, you need to use SQLJ.ALTER_JAVA_PATH to
define the class resolution path. For example, suppose that stored procedure SP, which is packaged in
JAR file JARSP, references classes in JAR files JAR1 and JAR2. Classes in JAR file JAR1 reference classes
that are in JAR file JAR2. None of the JAR files are in the CLASSPATH or are system-supplied. You need to
call SQLJ.ALTER_JAVA_PATH twice, to define the following class resolution paths:

• From JARSP to JAR1 and JAR2
• From JAR1 to JAR2

SQLJ.ALTER_JAVA_PATH example
Suppose that the JAR file that is named DB2INST3.BUILDPLAN references classes that are in a previously
installed JAR that is named DB2INST3.BUILDPLAN2. Those classes are in Java package buildPlan2. The
following Java program calls SQLJ.ALTER_JAVA_PATH to add the classes in the buildPlan2 package to the
resolution path for DB2INST3.BUILDPLAN.

import java.sql.*; // JDBC classes
import java.io.IOException;
import java.io.File;
import java.io.FileInputStream;
class SimpleInstallJar
{
 public static void main (String argv[])
 {
 String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021";
 String jarname = "DB2INST3.BUILDPLAN";
 String resolutionPath =
 "(buildPlan2.*,DB2INST3.BUILDPLAN2)";
 try
 {
 Class.forName ("com.ibm.db2.jcc.DB2Driver").newInstance ();
 Connection con =
 DriverManager.getConnection(url, "MYID", "MYPW");
 CallableStatement stmt;
 String sql = "Call SQLJ.ALTER_JAVA_PATH(?, ?)";
 stmt = con.prepareCall(sql);
 stmt.setString(1, jarname);

990 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 stmt.setString(2, resolutionPath);
 boolean isrs = stmt.execute();
 stmt.close();
 System.out.println("Alteration of JAR resolution path succeeded");
 con.commit();
 con.close();
 }
 catch (Exception e)
 {
 System.out.println("Alteration of JAR resolution path failed");
 e.printStackTrace ();
 }
 }
}

Related concepts
Definition of a JAR file for a Java routine to Db2 (Db2 Application Programming for Java)

SQLJ.DB2_INSTALL_JAR stored procedure
SQLJ.DB2_INSTALL_JAR creates a new definition of a JAR file in the local Db2 catalog or in a remote Db2
catalog.

To install a JAR file at a remote location, you need to execute a CONNECT statement to connect to that
location before you call SQLJ.DB2_INSTALL_JAR.

SQLJ.DB2_INSTALL_JAR authorization
Privilege set: If the CALL statement is embedded in an application program, the privilege set consists of
the privileges that are held by the authorization ID of the owner of the plan or package. If the statement is
dynamically prepared, the privilege set consists of the privileges that are held by the authorization IDs of
the process.

For calling SQLJ.DB2_INSTALL_JAR, the privilege set must include at least one of the following items:

• EXECUTE privilege on SQLJ.DB2_INSTALL_JAR
• Ownership of SQLJ.DB2_INSTALL_JAR
• SYSADM authority

The privilege set must also include the authority to install a JAR, which consists of at least one of the
following items:

• CREATEIN privilege on the schema of the JAR

The authorization ID that matches the schema name implicitly has the CREATEIN privilege on the
schema.

• SYSADM or SYSCTRL authority

SQLJ.DB2_INSTALL_JAR syntax
CALL SQLJ.DB2_INSTALL_JAR (Jar-locator , JAR-name , deploy)

SQLJ.DB2_INSTALL_JAR parameters
JAR-locator

A BLOB locator input parameter that points to the JAR file that is to be installed in the Db2 catalog.
JAR-name

A VARCHAR(257) input parameter that contains the Db2 name of the JAR, in the form schema.JAR-id
or JAR-id. JAR-name is the name that you use when you refer to the JAR in SQL statements. If you
omit schema, Db2 uses the SQL authorization ID that is in the CURRENT SCHEMA special register. The
owner of the JAR is the authorization ID in the CURRENT SQLID special register.

Chapter 5. Procedures that are supplied with Db2 991

https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_javadefinejar.html

deploy
An INTEGER input parameter that indicates whether additional actions are to be performed after the
JAR file is installed. Additional actions are not supported, so this value is 0.

SQLJ.DB2_INSTALL_JAR example
Suppose that you want to install the JAR file that is in path /u/db2inst3/apps/BUILDPLAN/BUILDPLAN.jar.
You want to refer to the JAR file as DB2INST3.BUILDPLAN in SQL statements. The following Java program
installs that JAR file.

import java.sql.*; // JDBC classes
import java.io.IOException;
import java.io.File;
import java.io.FileInputStream;
class SimpleInstallJar
{
 public static void main (String argv[])
 {
 String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021";
 String jarname = "DB2INST3.BUILDPLAN";
 String jarfile =
 "/u/db2inst3/apps/BUILDPLAN/BUILDPLAN.jar";
 try
 {
 Class.forName ("com.ibm.db2.jcc.DB2Driver").newInstance ();
 Connection con =
 DriverManager.getConnection(url, "MYID", "MYPW");
 File aFile = new File(jarfile);
 FileInputStream inputStream = new FileInputStream(aFile);
 CallableStatement stmt;
 String sql = "Call SQLJ.DB2_INSTALL_JAR(?, ?, ?)";
 stmt = con.prepareCall(sql);
 stmt.setBinaryStream(1, inputStream, (int)aFile.length());
 stmt.setString(2, jarname);
 stmt.setInt(3, 0);
 boolean isrs = stmt.execute();
 stmt.close();
 System.out.println("Installation of JAR succeeded");
 con.commit();
 con.close();
 }
 catch (Exception e)
 {
 System.out.println("Installation of JAR failed");
 e.printStackTrace ();
 }
 }
}

Related concepts
Definition of a JAR file for a Java routine to Db2 (Db2 Application Programming for Java)

SQLJ.DB2_REPLACE_JAR stored procedure
SQLJ.DB2_REPLACE_JAR replaces an existing JAR file in the local Db2 catalog or in a remote Db2 catalog.

To replace a JAR file at a remote location, you need to execute a CONNECT statement to connect to that
location before you call SQLJ.DB2_REPLACE_JAR.

SQLJ.DB2_REPLACE_JAR authorization
Privilege set: If the CALL statement is embedded in an application program, the privilege set consists of
the privileges that are held by the owner of the plan or package. If the statement is dynamically prepared,
the privilege set consists of the privileges that are held by the authorization IDs of the process.

For calling SQLJ.DB2_REPLACE_JAR, the privilege set must include at least one of the following items:

• EXECUTE privilege on SQLJ.DB2_REPLACE_JAR
• Ownership of SQLJ.DB2_REPLACE_JAR

992 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_javadefinejar.html

• SYSADM authority

The privilege set must also include the authority to replace a JAR, which consists of at least one of the
following items:

• Ownership of the JAR
• ALTERIN privilege on the schema of the JAR

The authorization ID that matches the schema name implicitly has the ALTERIN privilege on the
schema.

• SYSADM or SYSCTRL authority

SQLJ.DB2_REPLACE_JAR syntax
CALL SQLJ.DB2_REPLACE_JAR (JAR-locator , JAR-name)

SQLJ.DB2_REPLACE_JAR parameters
JAR-locator

A BLOB locator input parameter that points to the JAR file that is to be replaced in the Db2 catalog.
JAR-name

A VARCHAR(257) input parameter that contains the Db2 name of the JAR, in the form schema.JAR-id
or JAR-id. JAR-name is the name that you use when you refer to the JAR in SQL statements. If you
omit schema, Db2 uses the SQL authorization ID that is in the CURRENT SCHEMA special register.

SQLJ.DB2_REPLACE_JAR example
Suppose that you want to replace a previously installed JAR file that is named DB2INST3.BUILDPLAN
with the JAR file that is in path /u/db2inst3/apps/BUILDPLAN2/BUILDPLAN.jar. The following Java
program replaces the JAR file.

import java.sql.*; // JDBC classes
import java.io.IOException;
import java.io.File;
import java.io.FileInputStream;
class SimpleInstallJar
{
 public static void main (String argv[])
 {
 String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021";
 String jarname = "DB2INST3.BUILDPLAN";
 String jarfile =
 "/u/db2inst3/apps/BUILDPLAN2/BUILDPLAN.jar";
 try
 {
 Class.forName ("com.ibm.db2.jcc.DB2Driver").newInstance ();
 Connection con =
 DriverManager.getConnection(url, "MYID", "MYPW");
 File aFile = new File(jarfile);
 FileInputStream inputStream = new FileInputStream(aFile);
 CallableStatement stmt;
 String sql = "Call SQLJ.DB2_REPLACE_JAR(?, ?)";
 stmt = con.prepareCall(sql);
 stmt.setBinaryStream(1, inputStream, (int)aFile.length());
 stmt.setString(2, jarname);
 boolean isrs = stmt.execute();
 stmt.close();
 System.out.println("Replacement of JAR succeeded");
 con.commit();
 con.close();
 }
 catch (Exception e)
 {
 System.out.println("Replacement of JAR failed");
 e.printStackTrace ();
 }
 }
}

Chapter 5. Procedures that are supplied with Db2 993

Related concepts
Definition of a JAR file for a Java routine to Db2 (Db2 Application Programming for Java)

SQLJ.INSTALL_JAR stored procedure
SQLJ.INSTALL_JAR creates a new definition of a JAR file in the local Db2 catalog.

SQLJ.INSTALL_JAR authorization
Privilege set: If the CALL statement is embedded in an application program, the privilege set consists of
the privileges that are held by the authorization ID of the owner of the plan or package. If the statement is
dynamically prepared, the privilege set consists of the privileges that are held by the authorization IDs of
the process.

For calling SQLJ.INSTALL_JAR, the privilege set must include at least one of the following items:

• EXECUTE privilege on SQLJ.INSTALL_JAR
• Ownership of SQLJ.INSTALL_JAR
• SYSADM authority

The privilege set must also include the authority to install a JAR, which consists of at least one of the
following items:

• CREATEIN privilege on the schema of the JAR

The authorization ID that matches the schema name implicitly has the CREATEIN privilege on the
schema.

• SYSADM or SYSCTRL authority

SQLJ.INSTALL_JAR syntax
CALL SQLJ.INSTALL_JAR (url, JAR-name , deploy)

SQLJ.INSTALL_JAR parameters
url

A VARCHAR(1024) input parameter that identifies the z/OS UNIX System Services full path name for
the JAR file that is to be installed in the Db2 catalog. The format is file://path-name or file:/
path-name.

JAR-name
A VARCHAR(257) input parameter that contains the Db2 name of the JAR, in the form schema.JAR-id
or JAR-id. JAR-name is the name that you use when you refer to the JAR in SQL statements. If you
omit schema, Db2 uses the SQL authorization ID that is in the CURRENT SCHEMA special register. The
owner of the JAR is the authorization ID in the CURRENT SQLID special register.

deploy
An INTEGER input parameter that indicates whether additional actions are to be performed after the
JAR file is installed. Additional actions are not supported, so this value is 0.

SQLJ.INSTALL_JAR example
Suppose that you want to install the JAR file that is in path /u/db2inst3/apps/BUILDPLAN/BUILDPLAN.jar.
You want to refer to the JAR file as DB2INST3.BUILDPLAN in SQL statements. Use a CALL statement
similar to this one.

CALL SQLJ.INSTALL_JAR('file:/u/db2inst3/apps/BUILDPLAN/BUILDPLAN.jar',
 'DB2INST3.BUILDPLAN',0)

994 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_javadefinejar.html

Related concepts
Definition of a JAR file for a Java routine to Db2 (Db2 Application Programming for Java)

SQLJ.REMOVE_JAR stored procedure
SQLJ.REMOVE_JAR deletes a JAR file from the local Db2 catalog or from a remote Db2 catalog.

To delete a JAR file at a remote location, you need to execute a CONNECT statement to connect to that
location before you call SQLJ.REMOVE_JAR.

The JAR cannot be referenced in the EXTERNAL NAME clause of an existing routine, or in the path of an
installed JAR.

SQLJ.REMOVE_JAR authorization
Privilege set: If the CALL statement is embedded in an application program, the privilege set consists of
the privileges that are held by the authorization ID of the owner of the plan or package. If the statement is
dynamically prepared, the privilege set consists of the privileges that are held by the authorization IDs of
the process.

For calling SQLJ.REMOVE_JAR, the privilege set must include at least one of the following items:

• EXECUTE privilege on SQLJ.REMOVE_JAR
• Ownership of SQLJ.REMOVE_JAR
• SYSADM authority

The privilege set must also include the authority to remove a JAR, which consists of at least one of the
following items:

• Ownership of the JAR
• DROPIN privilege on the schema of the JAR

The authorization ID that matches the schema name implicitly has the DROPIN privilege on the schema.
• SYSADM or SYSCTRL authority

SQLJ.REMOVE_JAR syntax
CALL SQLJ.REMOVE_JAR (JAR-name , undeploy)

SQLJ.REMOVE_JAR parameters
JAR-name

A VARCHAR(257) input parameter that contains the Db2 name of the JAR that is to be removed from
the catalog, in the form schema.JAR-id or JAR-id. JAR-name is the name that you use when you refer
to the JAR in SQL statements. If you omit schema, Db2 uses the SQL authorization ID that is in the
CURRENT SCHEMA special register.

undeploy
An INTEGER input parameter that indicates whether additional actions should be performed before
the JAR file is removed. Additional actions are not supported, so this value is 0.

SQLJ.REMOVE_JAR example
Suppose that you want to remove a previously installed JAR file that is named DB2INST3.BUILDPLAN.
Use a CALL statement similar to this one.

CALL SQLJ.REMOVE_JAR('DB2INST3.BUILDPLAN',0)

Related concepts
Definition of a JAR file for a Java routine to Db2 (Db2 Application Programming for Java)

Chapter 5. Procedures that are supplied with Db2 995

https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_javadefinejar.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_javadefinejar.html

SQLJ.REPLACE_JAR stored procedure
SQLJ.REPLACE_JAR replaces an existing JAR file in the local Db2 catalog.

SQLJ.REPLACE_JAR authorization
Privilege set: If the CALL statement is embedded in an application program, the privilege set consists of
the privileges that are held by the authorization ID of the owner of the plan or package. If the statement is
dynamically prepared, the privilege set consists of the privileges that are held by the authorization IDs of
the process.

For calling SQLJ.REPLACE_JAR, the privilege set must include at least one of the following items:

• EXECUTE privilege on SQLJ.REPLACE_JAR
• Ownership of SQLJ.REPLACE_JAR
• SYSADM authority

The privilege set must also include the authority to replace a JAR, which consists of at least one of the
following items:

• Ownership of the JAR
• ALTERIN privilege on the schema of the JAR

The authorization ID that matches the schema name implicitly has the ALTERIN privilege on the
schema.

• SYSADM or SYSCTRL authority

SQLJ.REPLACE_JAR syntax
CALL SQLJ.REPLACE_JAR (url, JAR-name)

SQLJ.REPLACE_JAR parameters
url

A VARCHAR(1024) input parameter that identifies the z/OS UNIX System Services full path name for
the JAR file that replaces the existing JAR file in the Db2 catalog. The format is file://path-name or
file:/path-name.

JAR-name
A VARCHAR(257) input parameter that contains the Db2 name of the JAR, in the form schema.JAR-id
or JAR-id. JAR-name is the name that you use when you refer to the JAR in SQL statements. If you
omit schema, Db2 uses the SQL authorization ID that is in the CURRENT SCHEMA special register.

SQLJ.REPLACE_JAR example
Suppose that you want to replace a previously installed JAR file that is named DB2INST3.BUILDPLAN
with the JAR file that is in path /u/db2inst3/apps/BUILDPLAN2/BUILDPLAN.jar. Use a CALL statement
similar to this one.

CALL SQLJ.REPLACE_JAR('file:/u/db2inst3/apps/BUILDPLAN2/BUILDPLAN.jar',
 'DB2INST3.BUILDPLAN')

Related concepts
Definition of a JAR file for a Java routine to Db2 (Db2 Application Programming for Java)

996 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_javadefinejar.html

WLM_REFRESH stored procedure
The WLM_REFRESH stored procedure refreshes a WLM environment. This stored procedure can recycle
the environment in which it runs and in any other WLM environment.

Environment for WLM_REFRESH
The load module for WLM_REFRESH, DSNTWR, must reside in an APF-authorized library.

DSNTWR runs module DSNTWRE as a subtask. DSNTWRE retrieves a copy of the Db2 environment
information block (EIB) for the Db2 subsystem. The DSNTWRE module has no APF-authorization
requirement, but it must reside in an APF-authorized library to be available to DSNTWR.

Recommendation: Use WLM environment DSNWLM_GENERAL for running WLM_REFRESH. Installation
job DSNTIJMV creates an address space procedure called DSNWLMG for this environment.

Authorization required for WLM_REFRESH
To execute the CALL statement, the SQL authorization ID of the process must have READ
access or higher to the z/OS Security Server System Authorization Facility (SAF) resource profile
ssid.WLM_REFRESH.WLM-environment-name in resource class DSNR. This is a different resource profile
from the ssid.WLMENV.WLM-environment-name resource profile, which Db2 uses to determine whether a
stored procedure or user-defined function is authorized to run in the specified WLM environment.

WLM_REFRESH uses an extended MCS console to monitor the operating system response to a WLM
environment refresh request. The privilege to create an extended MCS console is controlled by the
resource profile MVS.MCSOPER.* in the OPERCMDS class. If the MVS.MCSOPER.* profile exists, or if the
specific profile MVS.MCSOPER.DSNTWR exists, the task ID that is associated with the WLM environment
in which WLM_REFRESH runs must have READ access to it.

If the MVS.VARY.* profile exists, or if the specific profile MVS.VARY.WLM exists, the task ID that is
associated with the WLM environment in which WLM_REFRESH runs must have CONTROL access to it.

WLM_REFRESH syntax diagram

The WLM_REFRESH stored procedure refreshes a WLM environment. WLM_REFRESH can recycle the
environment in which it runs, as well as any other WLM environment.

The following syntax diagram shows the SQL CALL statement for invoking WLM_REFRESH. The linkage
convention for WLM_REFRESH is GENERAL WITH NULLS.

CALL WLM_REFRESH (WLM-environment , ssid

NULL

' ␠␠ '

, status-message ,

return-code)

WLM_REFRESH option descriptions

WLM-environment
Specifies the name of the WLM environment that you want to refresh. This is an input parameter of
type VARCHAR(32).

ssid
Specifies the subsystem ID of the Db2 subsystem with which the WLM environment is associated. If
this parameter is NULL or blank, Db2 uses one of the following values for this parameter:

Chapter 5. Procedures that are supplied with Db2 997

• In a non-data sharing environment, Db2 uses the subsystem ID of the subsystem on which
WLM_REFRESH runs.

• In a data sharing environment, Db2 uses the group attach name for the data sharing group in which
WLM_REFRESH runs.

This is an input parameter of type VARCHAR(4).

status-message
Contains an informational message about the execution of the WLM refresh. This is an output
parameter of type VARCHAR(120).

return-code
Contains the return code from the WLM_REFRESH call, which is one of the following values:
0

WLM_REFRESH executed successfully.
4

One of the following conditions exists:

• The SAF resource profile ssid.WLM_REFRESH.wlm-environment is not defined in resource class
DSNR.

• The SQL authorization ID of the process (CURRENT SQLID) is not defined to SAF.
• The wait time to obtain a response from z/OS was exceeded.

8
The SQL authorization ID of the process (CURRENT SQLID) is not authorized to refresh the WLM
environment.

990
DSNTWR received an unexpected SQLCODE while determining the current SQLID.

993
One of the following conditions exists:

• The WLM-environment parameter value is null, blank, or contains invalid characters.
• The ssid value contains invalid characters.

994
The extended MCS console was not activated within the number of seconds indicated by message
DSNT5461.

995
DSNTWR is not running as an authorized program.

996
DSNTWR could not activate an extended MCS console. See message DSNT533I for more
information.

997
DSNTWR made an unsuccessful request for a message from its extended MCS console. See
message DSNT533I for more information.

998
The extended MCS console for DSNTWR posted an alert. See message DSNT534I for more
information.

999
The operating system denied an authorized WLM_REFRESH request. See message DSNT545I for
more information.

return-code is an output parameter of type INTEGER.

Example of WLM_REFRESH invocation

998 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Suppose that you want to refresh WLM environment WLMENV1, which is associated with
a Db2 subsystem with ID DSN. Assume that you already have READ access to the
DSN.WLM_REFRESH.WLMENV1 SAF profile. The CALL statement for WLM_REFRESH looks like this:

strcpy(WLMENV,"WLMENV1");
strcpy(SSID,"DSN");
EXEC SQL CALL SYSPROC.WLM_REFRESH(:WLMENV, :SSID, :MSGTEXT, :RC);

For a complete example of setting up access to an SAF profile and calling WLM_REFRESH, see job
DSNTEJ6W, which is in data set prefix.SDSNSAMP.

Related information
Controlling extended MCS consoles using RACF (z/OS MVS Planning: Operations)

WLM_SET_CLIENT_INFO stored procedure
This procedure allows the caller to set client information that is associated with the current connection at
the Db2 for z/OS server.

The following Db2 for z/OS client special registers can be changed:

• CURRENT CLIENT_ACCTNG
• CURRENT CLIENT_USERID
• CURRENT CLIENT_WRKSTNNAME
• CURRENT CLIENT_APPLNAME

The existing behavior of the CLIENT_ACCTNG register is unchanged. It gets its value from the accounting
token for DSN requesters, and from the accounting string for SQL and other requesters.

Setting the CLIENT_ACCTNG special register updates the suffix portion of the accounting string. The
accounting suffix information is limited to 255 bytes for distributed clients

This procedure is not under transaction control and client information changes made by the procedure are
independent of committing or rolling back units of work.

Environment
WLM_SET_CLIENT_INFO runs in a WLM-established stored procedures address space.

Authorization
To execute the CALL statement, the owner of the package or plan that contains the CALL statement must
have one or more of the following privileges on each package that the stored procedure uses:

• The EXECUTE privilege on the package for DSNADMSI
• Ownership of the package
• PACKADM authority for the package collection
• SYSADM authority

Syntax
WLM_SET_CLIENT_INFO (client_userid

NULL

, client_wrkstnname

NULL

,

client_applname

NULL

, client_acctstr

NULL

)

The schema is SYSPROC.

Chapter 5. Procedures that are supplied with Db2 999

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieag300/exrac.htm

Procedure parameters
client_userid

An input parameter of type VARCHAR(255) that specifies the user ID for the client. If NULL is
specified, the value remains unchanged. If an empty string (") is specified, the user ID for the client is
reset to the default value.

If the value specified exceeds 128 bytes, it is truncated to 128 bytes.

client_wrkstnname
An input parameter of type VARCHAR(255) that specifies the workstation name for the client. If NULL
is specified, the value remains unchanged. If an empty string (") is specified, the workstation name for
the client is reset to the default value.

client_applname
An input parameter of type VARCHAR(255) that specifies the application name for the client. If NULL
is specified, the value remains unchanged. If an empty string (") is specified, the application name for
the client is reset to the default value.

client_acctstr
An input parameter of type VARCHAR(255) that specifies the accounting string for the client. If NULL
is specified, the value remains unchanged. If an empty string (") is specified, the accounting string for
the client is reset to the default value.

Examples
Set the user ID, workstation name, application name, and accounting string for the client.

strcpy(user_id, "db2user");
strcpy(wkstn_name, "mywkstn");
strcpy(appl_name, "db2bp.exe");
strcpy(acct_str, "myacctstr");
iuser_id = 0;
iwkstn_name = 0;
iappl_name = 0;
iacct_str = 0;
EXEC SQL CALL SYSPROC.WLM_SET_CLIENT_INFO(:user_id:iuser_id, :wkstn_name:iwkstn_name,
 :appl_name:iappl_name, :acct_str:iacct_str);

Set the user ID to db2user for the client without setting the other client attributes.

strcpy(user_id, "db2user");
iuser_id = 0;
iwkstn_name = -1;
iappl_name = -1;
iacct_str = -1;
EXEC SQL CALL SYSPROC.WLM_SET_CLIENT_INFO(:user_id:iuser_id, :wkstn_name:iwkstn_name,
 :appl_name:iappl_name, :acct_str:iacct_str);

Reset the user ID for the client to blank without modifying the values of the other client attributes.

strcpy(user_id, "");
iuser_id = 0;
iwkstn_name = -1;
iappl_name = -1;
iacct_str = -1;
EXEC SQL CALL SYSPROC.WLM_SET_CLIENT_INFO(:user_id:iuser_id, :wkstn_name:iwkstn_name,
 :appl_name:iappl_name, :acct_str:iacct_str);

XSR_ADDSCHEMADOC stored procedure
The XSR_ADDSCHEMADOC stored procedure adds every XML schema, other than the primary XML
schema document, to the XSR.

Each XML schema in the XSR can consist of one or more XML schema documents. When an XML schema
consists of multiple documents, you need to call XSR_ADDSCHEMADOC for the additional documents.

1000 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Environment for XSR_ADDSCHEMADOC
XSR_ADDSCHEMADOC runs in a WLM-established stored procedures address space.

Recommendation: Use WLM environment DSNWLM_XML for running XSR_ADDSCHEMADOC. The startup
procedure for this environment, DSNWLMX, can be configured during installation, using installation panel
DSNTIPRJ, XML schema processing routines.

Authorization required for XSR_ADDSCHEMADOC
The user ID of the caller of the procedure must have the EXECUTE privilege on the XSR_ADDSCHEMADOC
stored procedure.

XSR_ADDSCHEMADOC syntax diagram
The following syntax diagram shows the CALL statement for invoking XSR_ADDSCHEMADOC.

CALL
SYSPROC

. XSR_ADDSCHEMADOC (rschema

NULL

, name

, schemalocation

NULL

, content , docproperty

NULL

)

rschema
An input parameter of type VARCHAR (128) that specifies the SQL schema part of the qualified name
that identifies the XML schema in the XSR. If a non-null value is specified, it must be SYSXSR. If
rschema is a null value, the default SQL schema SYSXSR is used.

name

An input parameter of type VARCHAR(128) that specifies the name of the XML schema. The complete
qualified name for the XML schema is rschema.name, and it should be unique among all objects in the
XSR. If a null value is specified, a unique value is generated and stored within the XSR. Rules for valid
characters and delimiters that apply to any SQL identifier also apply to name

schemalocation
An input parameter of type VARCHAR(1000), which can have a null value, that indicates the schema
location of the primary XML schema document to which the XML schema document is being added.
This argument is the external name of the XML schema, that is, the primary document can be
identified in the XML instance documents with the xsi:schemaLocation attribute. The document that
references the schemalocation must use valid a URI format.

content
An input parameter of type BLOB(30M) that contains the content of the XML schema document being
added. This argument cannot have a null value. An XML schema document must be supplied. The
content of the XML schema document must be encoded in Unicode.

docproperty
An input parameter of type BLOB(5M) that indicates the properties for the XML schema document
being added. This parameter can be an XML document or a null value.

Example of XSR_ADDSCHEMADOC
The following example calls the XSR_ADDSCHEMADOC stored procedure:

CALL SYSPROC.XSR_ADDSCHEMADOC(
 'SYSXSR',
 'POschema',
 'http://myPOschema/PO.xsd',

Chapter 5. Procedures that are supplied with Db2 1001

 :schema_content,
 :schema_properties)

In this example, XSR_ADDSCHEMADOC folds the name POschema to uppercase, so the name of the XML
schema that is added is POSCHEMA. If you do not want XSR_ADDSCHEMADOC to fold POschema to
uppercase, you need to delimit the name with double quotation marks ("), as in the following example.

CALL SYSPROC.XSR_ADDSCHEMADOC(
 'SYSXSR',
 '"POschema"',
 'http://myPOschema/PO.xsd',
 :schema_content,
 :schema_properties)

Related concepts
The Db2 command line processor (Db2 Commands)
Example of XML schema registration and removal using stored procedures (Db2 Programming for XML)

XSR_COMPLETE stored procedure
The XSR_COMPLETE procedure is the final stored procedure to be called as part of the XML schema
registration process, which registers XML schemas with the XSR.

An XML schema is not available for validation until the schema registration completes through a call to
this stored procedure.

Environment for XSR_COMPLETE
XSR_COMPLETE requires a WLM-established stored procedures address space that is configured for
running Java routines.

Recommendation: Use WLM environment DSNWLM_JAVA for running XSR_COMPLETE. The startup
procedure for this environment, DSNWLMJ, can be configured during installation, using installation panel
DSNTIPRH, XML schema processing routines.

Authorization required for XSR_COMPLETE
The user ID of the caller of the procedure must have the EXECUTE privilege on the XSR_COMPLETE stored
procedure.

XSR_COMPLETE syntax diagram
The following syntax diagram shows the CALL statement for invoking XSR_COMPLETE.

CALL
SYSPROC

. XSR_COMPLETE (rschema , name ,

schema-properties , for-decomposition)

rschema
An input parameter of type VARCHAR (128) that specifies the SQL schema part of the qualified name
that identifies the XML schema in the XSR. If a non-null value is specified, it must be SYSXSR. If
rschema is a null value, the default SQL schema SYSXSR is used.

name

An input parameter of type VARCHAR(128) that specifies the name of the XML schema. The complete
qualified name for the XML schema is rschema.name, and it should be unique among all objects in the
XSR. If a null value is specified, a unique value is generated and stored within the XSR. Rules for valid
characters and delimiters that apply to any SQL identifier also apply to name.

1002 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_commandlineprocessor.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/xml/src/tpc/db2z_xsrstoredprocexample.html

schema-properties
An input parameter of type BLOB(5M) that specifies properties, associated with the XML schema. The
argument can be an XML document that represents properties for the XML schema, or a null value.

for-decomposition
This value must be 0. XML schema decomposition is not supported.

Example of XSR_COMPLETE
The following example calls the XSR_COMPLETE stored procedure:

 CALL SYSPROC.XSR_COMPLETE(
 'SYSXSR',
 'POschema',
 :schemaproperty_host_var,
 0)

In this example, XSR_COMPLETE folds the name POschema to uppercase, so the name of the XML
schema for which registration is completed is POSCHEMA. If you do not want XSR_COMPLETE to fold
POschema to uppercase, you need to delimit the name with double quotation marks ("), as in the
following example.

 CALL SYSPROC.XSR_COMPLETE(
 'SYSXSR',
 '"POschema"',
 :schemaproperty_host_var,
 0)

Related concepts
Example of XML schema registration and removal using stored procedures (Db2 Programming for XML)
The Db2 command line processor (Db2 Commands)
Related tasks
Additional steps for enabling the stored procedures and objects for XML schema support (Db2 Installation
and Migration)

XSR_REGISTER stored procedure
The XSR_REGISTER procedure is the first stored procedure to be called as part of the XML schema
registration process, which registers XML schemas with the XSR.

The user that calls this stored procedure is considered the creator of this XML schema. Db2 obtains the
namespace attribute from the schema document when XSR_COMPLETE is invoked.

Environment for XSR_REGISTER
XSR_REGISTER runs in a WLM-established stored procedures address space.

Recommendation: Use WLM environment DSNWLM_XML for running XSR_REGISTER. The startup
procedure for this environment, DSNWLMX, can be configured during installation, using installation panel
DSNTIPRJ, XML schema processing routines.

Authorization required for XSR_REGISTER
The user ID of the caller of the procedure must have the EXECUTE privilege on the XSR_REGISTER stored
procedure.

XSR_REGISTER syntax diagram
The following syntax diagram shows the CALL statement for invoking XSR_REGISTER.

Chapter 5. Procedures that are supplied with Db2 1003

https://www.ibm.com/docs/en/SSEPEK_12.0.0/xml/src/tpc/db2z_xsrstoredprocexample.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_commandlineprocessor.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_enablexmlstprocs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_enablexmlstprocs.html

CALL
SYSPROC

. XSR_REGISTER (rschema

NULL

, name

NULL

, schemalocation

NULL

, content , docproperty

NULL

)

rschema
An input parameter of type VARCHAR (128) that specifies the SQL schema part of the qualified name
that identifies the XML schema in the XSR. If a non-null value is specified, it must be SYSXSR. If
rschema is a null value, the default SQL schema SYSXSR is used.

name

An input and output parameter of type VARCHAR(128) that specifies the name of the XML schema.
The complete SQL identifier for the XML schema is rschema.name, and it should be unique among all
objects in the XSR. If a null value is specified, a unique value is generated and stored within the XSR.
Rules for valid characters and delimiters that apply to any SQL identifier also apply to name.

schemalocation
An input parameter of type VARCHAR(1000), which can have a null value, that indicates the schema
location of the primary XML schema document. This argument is the external name of the XML
schema, that is, the primary document can be identified in the XML instance documents with the
xsi:schemaLocation attribute.

content
An input parameter of type BLOB(30M) that contains the content of the primary XML schema
document. This argument cannot have a null value; an XML schema document must be supplied.
The content of the XML schema document must be encoded in Unicode.

docproperty
An input parameter of type BLOB(5M) that indicates the properties for the primary XML schema
document. This parameter can be an XML document or a null value.

Example of XSR_REGISTER
The following example calls the XSR_REGISTER stored procedure:

 CALL SYSPROC.XSR_REGISTER(
 'SYSXSR',
 'POschema',
 'http://myPOschema/PO.xsd',
 :content_host_var,
 :docproperty_host_var)

In this example, XSR_REGISTER folds the name POschema to uppercase, so the registered schema name
is POSCHEMA. If you do not want XSR_REGISTER to fold POschema to uppercase, you need to delimit the
name with double quotation marks ("), as in the following example.

 CALL SYSPROC.XSR_REGISTER(
 'SYSXSR',
 '"POschema"',
 'http://myPOschema/PO.xsd',
 :content_host_var,
 :docproperty_host_var)

Related concepts
Example of XML schema registration and removal using stored procedures (Db2 Programming for XML)
The Db2 command line processor (Db2 Commands)

1004 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/xml/src/tpc/db2z_xsrstoredprocexample.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_commandlineprocessor.html

XSR_REMOVE stored procedure
The XSR_REMOVE procedure is used to remove all components of an XML schema. After the XML schema
is removed, you can reuse the name of the removed XML schema when you register a new XML schema.

Environment for XSR_REMOVE
XSR_REMOVE runs in a WLM-established stored procedures address space.

Recommendation: Use WLM environment DSNWLM_XML for running XSR_REMOVE. The startup
procedure for this environment, DSNWLMX, can be configured during installation, using installation panel
DSNTIPRJ, XML schema processing routines.

Authorization required for XSR_REMOVE
The user ID of the caller of the procedure must have the EXECUTE privilege on the XSR_REMOVE stored
procedure.

XSR_REMOVE syntax diagram
The following syntax diagram shows the CALL statement for invoking XSR_REMOVE.

CALL
SYSPROC

. XSR_REMOVE (rschema

NULL

, name)

rschema
An input parameter of type VARCHAR (128) that specifies the SQL schema part of the qualified name
that identifies the XML schema in the XSR. If a non-null value is specified, it must be SYSXSR. If
rschema is a null value, the default SQL schema SYSXSR is used.

name
An input parameter of type VARCHAR(128) that specifies the name of the XML schema. The complete
qualified name for the XML schema is rschema.name, and it should be unique among all objects in the
XSR. If a null value is specified, a unique value is generated and stored within the XSR. Rules for valid
characters and delimiters that apply to any SQL identifier also apply to name.

XSR_REMOVE notes
If you run XSR_REMOVE against an XML schema that is part of an XML type modifier for a table column,
an error occurs.

Example of XSR_REMOVE
The following example calls the XSR_REMOVE stored procedure:

 CALL SYSPROC.XSR_REMOVE(
 'SYSXSR',
 'POschema')

In this example, XSR_REMOVE folds the name POschema to uppercase, so the name of the XML schema
that is removed is POSCHEMA. If you do not want XSR_REMOVE to fold POschema to uppercase, you
need to delimit the name with double quotation marks ("), as in the following example.

 CALL SYSPROC.XSR_REMOVE(
 'SYSXSR',
 '"POschema"')

Chapter 5. Procedures that are supplied with Db2 1005

Related concepts
The Db2 command line processor (Db2 Commands)
Example of XML schema registration and removal using stored procedures (Db2 Programming for XML)
XML schema validation with an XML type modifier (Db2 Programming for XML)

1006 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_commandlineprocessor.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/xml/src/tpc/db2z_xsrstoredprocexample.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/xml/src/tpc/db2z_validatewithxmlmodifier.html

Chapter 6. Queries
A query specifies a result table or an intermediate table. A query is a component of certain SQL
statements.

A query can have one of the following forms:

• “subselect” on page 1009
• “fullselect” on page 1060
• “select-statement” on page 1067

A subselect is a subset of a fullselect, and a fullselect is a subset of a select-statement.

Restriction: For all three forms of a query, you cannot reference both a system-period temporal table and
an archive-enabled table in the same query.

Another SQL statement that can be used to retrieve at most a single row is described in “SELECT INTO
statement” on page 2117. SELECT INTO is not a subselect, fullselect, or a select-statement.

Related concepts
Types of tables (Db2 Administration Guide)
Temporal tables and data versioning (Db2 Administration Guide)
Archive-enabled tables and archive tables (Introduction to Db2 for z/OS)

Authorization for queries
The same authorization rules for apply to the SELECT statement, the fullselect, select-statement, and
subselect query forms.

For any form of a query, the privilege set that is defined below must include one of the following
authorities or privilege sets:

• For each table or view identified in the statement, the privilege set must include one of the following:

– Ownership of the table or view
– The SELECT privilege on the table or view
– DBADM authority for the database (tables only)

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

• SYSADM authority
• SYSCTRL authority (catalog tables only)
• DATAACCESS authority
• Installation SYSOPR authority (catalog tables and system tables only)

If a query includes a user-defined function, the privileges that are held by the authorization ID of the
statement must include at least one of the following:

• For each user-defined function that is identified in the statement, one of the following:

– The EXECUTE privilege on the function
– Ownership of the function

• SYSADM authority
• DATAACCESS authority

If a query includes a sequence object, the privileges that are held by the authorization ID of the statement
must include at least one of the following:

© Copyright IBM Corp. 1982, 2024 1007

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_typesoftables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_temporaltables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_archivetables.html

• For each sequence object that is identified in the statement, one of the following:

– The USAGE privilege on the sequence object
– Ownership of the sequence object

• DATAACCESS authority

If the select-statement is part of a DECLARE CURSOR statement, the privilege set is the privileges that are
held by the authorization ID of the owner of the plan or package.

If the select-statement contains an SQL data change statement, the privilege set must include the SELECT
privilege and the appropriate privileges for the SQL data change statement (insert, update, or delete
privileges) on the target table or view.

If the select-statement references a table that contain an active row or column access control, and row
permissions or column masks are defined for the table, the authorization ID or role of the statement does
not need authority to reference objects that are specified in the definitions of those row permissions or
column masks.

Privilege sets for queries
If the statement is embedded in an application program, the privilege set is the privileges that are held by
the owner of the plan or package.

If the statement is dynamically prepared, and the application is bound in a trusted context, the privilege
set is the set of privileges that are held by that role. Otherwise, the privilege set depends on the dynamic
SQL statement behavior, which is specified by option DYNAMICRULES:

Run behavior
The privilege set is the union of the privilege sets that are held by each authorization ID of the
process.

Bind behavior
The privilege set is the privileges that are held by the authorization ID of the owner of the plan or
package.

Define behavior
The privilege set is the privileges that are held by the authorization ID of the owner of the stored
procedure or user-defined function.

Invoke behavior
The privilege set is the privileges that are held by the authorization ID of the invoker of the stored
procedure or user-defined function.

For a list of the DYNAMICRULES values that specify run, bind, define, or invoke behavior, see Table 14 on
page 94.

When any form of a query is used as a component of another statement, the authorization rules that apply
to the query are specified in the description of that statement. For example, see the authorization rules
that apply to the subselect in a CREATE VIEW statement in “CREATE VIEW statement” on page 1812.

If your installation uses the access control authorization exit (DSNX@XAC), that exit might be controlling
the authorization rules instead of the rules that are listed here.

Related reference
subselect
The subselect is a component of the fullselect. A subselect specifies a result table that is derived from the
tables or views that are identified in the FROM clause.
fullselect
The fullselect is a component of the select-statement, ALTER TABLE statement for the definition of
a materialized query table, CREATE TABLE statement, CREATE VIEW statement, DECLARE GLOBAL
TEMPORARY TABLE statement, INSERT statement, UPDATE statement, and MERGE statement.
select-statement

1008 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The select-statement is the form of a query that can be directly specified in a DECLARE CURSOR statement
or FOR statement, prepared and then referenced in a DECLARE CURSOR statement, or directly specified
in an SQLJ assignment clause. It can also be issued using SPUFI or the command line processor which
causes a result table to be displayed at your terminal. In any case, the result table specified by a
select-statement is the result of the fullselect.

subselect
The subselect is a component of the fullselect. A subselect specifies a result table that is derived from the
tables or views that are identified in the FROM clause.

Authorization for subselect
See “Authorization for queries” on page 1007.

Syntax for subselect

select-clause from-clause

where-clause group-by-clause

having-clause order-by-clause offset-clause

fetch-clause

Description
The derivation of the result table can be described as a sequence of operations in which the result of each
operation is input for the next. (This is only a way of describing the subselect. The method that is used to
perform the derivation might be quite different from this description. If portions of the subselect do not
actually need to be executed for the correct result to be obtained, they might not be executed.)

When a subselect directly or indirectly references a table for which row or column access control is
enforced, the rules that are defined in the row permissions or column masks affect how the rows in the
result table are derived. Typically those rules are based on the authorization ID or role of the process.

A scalar-subselect is a subselect, enclosed in parentheses, that returns a single result row and a single
result column. If the result of the subselect is no rows, the null value is returned. An error is returned if
the result contains more than one row.

The clauses of the subselect are processed in the following sequence:

1. FROM clause
2. WHERE clause
3. GROUP BY clause
4. HAVING clause
5. SELECT clause
6. ORDER BY clause
7. OFFSET clause
8. FETCH clause

Related reference
SELECT statement

Chapter 6. Queries 1009

The select-statement is the form of a query that can be directly specified in a DECLARE CURSOR
statement, or prepared and then referenced in a DECLARE CURSOR statement. It can also be issued
interactively using SPUFI or the command line processor which causes a result table to be displayed at
your terminal. In any case, the table specified by select-statement is the result of the fullselect.
select-statement
The select-statement is the form of a query that can be directly specified in a DECLARE CURSOR statement
or FOR statement, prepared and then referenced in a DECLARE CURSOR statement, or directly specified
in an SQLJ assignment clause. It can also be issued using SPUFI or the command line processor which
causes a result table to be displayed at your terminal. In any case, the result table specified by a
select-statement is the result of the fullselect.
fullselect
The fullselect is a component of the select-statement, ALTER TABLE statement for the definition of
a materialized query table, CREATE TABLE statement, CREATE VIEW statement, DECLARE GLOBAL
TEMPORARY TABLE statement, INSERT statement, UPDATE statement, and MERGE statement.

select-clause
The SELECT clause specifies the columns of the final result table. The column values are produced by the
application of the select list to R. The select list is a list of names and expressions specified in the SELECT
clause, and R is the result of the previous operation of the subselect. For example, if SELECT, FROM, and
WHERE are the only clauses specified, then R is the result of that WHERE clause.

select-clause

SELECT
ALL

DISTINCT

*
,

expression

AS
new-column-name

unpacked-row

table-name

view-name

correlation-name

.*

ALL
Retains all rows of the final result table and does not eliminate redundant duplicates. This is the
default.

DISTINCT
Eliminates all but one of each set of duplicate rows of the final result table.

Two rows are duplicates of one another only if each value in the first row is equal to the corresponding
value in the second row. For determining duplicate rows, two null values are considered equal.

When SELECT DISTINCT is specified, no column or expression in the implicit or explicit list can return
a value that is a LOB or XML data type. When a column or expression in the list returns a value
that is a DECFLOAT data type and multiple bit representations of the same number exists in the
intermediate result, the value that is returned is unpredictable. See “Numeric comparisons” on page
156 for additional information.

1010 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column access controls do not affect the operation of SELECT DISTINCT. The elimination of
duplicated rows is based on the original column values, not the masked values. However, after
the application of column masks, the masked values in the final result table might not reflect the
uniqueness that is enforced by SELECT DISTINCT.

If a column mask is applied to a column that directly or indirectly derives the result of SELECT
DISTINCT, SELECT DISTINCT can return a result that is not deterministic. The following conditions are
a few examples of when a result that is not deterministic might be returned:

• The definition of the column mask references other columns of the table to which the column mask
is applied.

• The column is referenced in the argument of a built-in scalar function, such as COALESCE, IFNULL,
NULLIF, MAX, MIN, LOCATE, TOTALORDER, etc.

• The column is referenced in the argument of an aggregation function.
• The column is embedded in an expression and the expression contains a function that is not

deterministic or has an external action.

For compatibility with other SQL implementations, UNIQUE can be specified as a synonym for
DISTINCT.

Select list notation:
*

Represents a list of columns of table R, excluding any columns that are defined with the IMPLICITLY
HIDDEN attribute. The list of names is established when the statement containing the SELECT clause
is prepared. Therefore, * does not identify any columns that have been added to a table after the
statement has been prepared.

A column that is defined with the IMPLICITLY HIDDEN attribute can be explicitly referenced in the
select list.

* cannot be used in the definition of a row permission or a column mask.

expression
Specifies the values of a result column. Each column-name in the expression must unambiguously
identify a column of the intermediate result table.

The result of the expression must not be an array type, except in the following contexts:

• The outer select list of a fullselect that does not include a set operator other than UNION ALL, in the
definition of a cursor that is not scrollable

• The outer select list of a SELECT INTO statement, when the target for the corresponding column of
the result table of the fullselect is an array variable

• The outer select list of a scalar fullselect that does not include a set operator on the right side of
a SET assignment-statement or SQL PL assignment-statement statement, when the corresponding
target of the assignment is an array variable

AS new-column-name
Names or renames the result column. The name must not be qualified and does not have to be
unique. new-column-name is an SQL identifier of 128 UTF-8 bytes or less.

name.*
Represents a list of columns of name, excluding any columns that are defined as implicitly hidden, in
the order the columns are produced by the FROM clause. name can be a table name, view name, or
correlation name, and must designate an exposed table, view, or correlation name in the FROM clause
that immediately follows the SELECT clause. The first name in the list identifies the first column of the
table or view, the second name in the list identifies the second column of the table or view, and so on.

The list of names is established when the statement that contains the SELECT clause is prepared.
Therefore, * does not identify any columns that have been added to a table after the statement has
been prepared.

name.* cannot be used in the definition of a row permission or a column mask.

Chapter 6. Queries 1011

SQL statements can be implicitly or explicitly prepared again. The effect of another prepare on statements
that include * or name.* is that the list of names is re-established. Therefore, the number of columns
returned by the statement might change.

The number of columns in the result of SELECT is the same as the number of expressions in the
operational form of the select list (that is, the list established at the time the statement is prepared),
and cannot exceed 750. The result of a subquery must be a single column unless the subquery is used in
an EXISTS predicate.

Notes:
If the FROM clause contains a MERGE statement:

The SELECT list must not implicitly or explicitly refer to a column that has a LOB data type, a ROWID
data type (or a distinct type that is based on a LOB, or ROWID), or an XML data type.

Implicitly hidden columns in the select list:
The result for SELECT * does not include any columns that are defined with the IMPLICITLY HIDDEN
attribute. To be included in the result, implicitly hidden columns must be explicitly specified in the
select list.

VARBINARY data:
If the identified table has an index on a VARBINARY column or a column that is a distinct type that
is based on VARBINARY data type, that index column cannot specify the DESC attribute. To query the
identified table, either drop the index or alter the data type of the column to BINARY and then rebuild
the index.

Applying the select list:
Some of the results of applying the select list to R depend on whether GROUP BY or HAVING is used.
The following three lists describe the results.
IF neither GROUP BY nor HAVING is used:

• The select list can include aggregate functions only if it includes other aggregate functions,
constants, or expressions that only involve constants.

• If the select list does not include aggregate functions, it is applied to each row of R and the
result contains as many rows as there are rows in R.

• If the select list includes aggregate functions, R is the source of the arguments of the functions
and the result of applying the select list is one row, even when R has no rows.

• If a column mask is used to mask the values in the final result table, and the select list includes
aggregate functions, the definition of the column mask must not reference the following:

– A scalar fullselect
– An aggregate function

If HAVING is used and GROUP BY is not used:
Each expression or column-name in an expression in the select list must be specified within an
aggregate function. Constants or expressions that involve only constants can also be in the select
list.

If a column mask is used to mask the values in the final result table, the definition of the column
mask must not reference the following:

• A scalar fullselect
• An aggregate function

If GROUP BY is used:

• Each expression in the select list must use one or more grouping expressions. Or, each
expression or column-name in an expression must:

– Unambiguously identify a grouping column of R.
– Be specified within an aggregate function.

1012 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

– Be a correlated reference. (A column-name is a correlated reference if it identifies a column of
a table or view identified in an outer subselect.)

• If an expression in the select list is a scalar fullselect, a correlated reference from the scalar
fullselect to a group R must either identify a grouping column or be contained within an
aggregate function. For example, the following query fails because the correlated reference
T1.C1 || T1.C2 in the select list of the scalar fullselect does not match a grouping column from
the outer subselect. (Matching the grouping expression T1.C1 || T1.C2 is not supported.)

SELECT MAX(T1.C2) AS X1,
 (SELECT T1.C1 || T1.C2 FROM T2 GROUP BY T2.C1) AS Y1
 FROM T1
 GROUP BY T1.C1, T1.C1 || T1.C2;

• You cannot use GROUP BY with a name defined using the AS clause unless the name is defined
in a nested table expression. Example 6 demonstrates the valid use of AS and GROUP BY in a
SELECT statement.

In either case, the nth column of the result contains the values specified by applying the nth
expression in the operational form of the select list.

If a column mask is used to mask the column values in the final result table, a column for which
the column mask is applied must satisfy one of the following conditions:

• The column must be specified in an aggregate function and the definition of the column mask
must not reference the following:

– A scalar fullselect
– An aggregate function

• The column must identify a column-name in the GROUP BY clause and the column must not be
referenced in an expression in the GROUP BY clause. In addition, any columns of the same table
as the column for which the column mask is applied and are referenced in the definition of the
column mask must be identified with a column-name in the GROUP BY clause. These columns
must not be referenced in an expression in the GROUP BY clause.

• A column of a non-base tables in the select list must be specified in an aggregate function if
a column mask is used to mask the column values in the final result table, and the column
of a non-base table maps directly or indirectly to a column name or to an expression in a
materialized table expression or view to the table where the column mask is applied.

Effect of column masks on result columns:
When column masks are enabled, they determine the values in the final result table of an outermost
select list. When a column mask is enabled for a column, if the column appears in the outermost
select list (either implicitly or explicitly), the column mask is applied to the column to produce the
values for the final result table. If the column itself does not appear in the outermost select list, but
is included in the output (for example, it appears in a materialized table expression or a view), the
masked value is included in the result table of the table expression or view so that it can be used in
the final result table.

The enabled column masks do not interfere with the operations of other clauses within the statement,
such as the WHERE, GROUP BY, HAVING, SELECT DISTINCT, and ORDER BY clauses.

The rows that are returned in the final result table remain the same, except that the values in the
result rows might be masked. As such, if a column with masked values also appears in an ORDER BY
clause with a sort-key expression, the order is based on the original column values (the masked values
in the final result table might not reflect that order). Similarly, the masked values might not reflect the
uniqueness enforced by a SELECT DISTINCT. If the masked column is embedded in an expression, the
result of the expression might be different because the column mask is applied to the column before
the expression is evaluated. For example, a column mask on column SSN can change the result of the
function COUNT(DISTINCT SSN) because the DISTINCT operation is performed on the masked values.
However, if the expression in the query is the same as the expression that is used to mask the column
value in the definition of the column mask, the result of the expression might remain unchanged.
For example, the expression in the query is 'XXX-XX-' || SUBSTR(SSN, 8, 4) and the same

Chapter 6. Queries 1013

expression is used in the column mask definition. In this particular example, the expression in the
query can be replaced with column SSN to avoid the same expression being evaluated twice.

If a CASE expression appears in the outermost select list, column masks are not applied to the
search-condition of the WHEN clause.

When the definition of a column mask is applied to an SQL statement to mask column values in the
final result table, the semantics of the column mask might conflict with certain SQL semantics in the
statement. In these situations, the combination of the statement and the column mask might return
an error.

See “ALTER TABLE statement” on page 1232 for more information about the application of enabled
column masks.

Null attributes of result columns:
Result columns allow null values if they are derived from one of the following:

• Any aggregate function except COUNT or COUNT_BIG
• A column that allows null values
• A view column in an outer select list that is derived from an arithmetic expression
• An arithmetic expression in an outer select list
• An arithmetic expression that allows nulls
• A scalar function or string expression that allows null values
• A host variable that has an indicator variable, an SQL parameter or variable, a global variable, or in

the case of Java, a host variable or expression whose type is able to represent a Java null value
• A result of a set operator if at least one of the corresponding items in the select list is nullable

Names of result columns:
In the following cases a result column is considered a named column:

• If the AS clause is specified, the name of the result column is the name specified on the AS clause.
• If the AS clause is not specified and a column list is specified in the correlation clause, the name of

the result column is the corresponding name in the correlation column list.
• If neither an AS clause nor a column list in the correlation clause is specified and the result column

is derived only from a single column (without any functions or operators), the result column name is
the unqualified name of that column.

• If neither an AS clause nor a column list in the correlation clause is specified and the result column
is derived only from a single SQL variable, global variable, or SQL parameter (without any functions
or operators), the result column name is the unqualified name of that SQL variable, global variable,
or SQL parameter.

In all other cases, a result column is an unnamed column.

Names of result columns, SQL variables, and global variables are placed into the SQL descriptor area
(SQLDA) when the DESCRIBE statement is executed. This allows an interactive SQL processor such as
SPUFI, the command line processor, or QMF to use the column names when displaying the results.
The names in the SQLDA include those specified by the AS clause.

Data types of result columns:
Each column of the result of SELECT acquires a data type from the expression from which it is derived.
The following table shows the data types of result columns.

Table 163. Data types of result columns

When the expression is... The data type of the result column is...

The name of any numeric
column

The same as the data type of the column, with the same precision and scale for
decimal columns.

An integer constant INTEGER.

1014 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 163. Data types of result columns (continued)

When the expression is... The data type of the result column is...

A decimal or floating-point
constant

The same as the data type of the constant, with the same precision and scale
for decimal constants. For floating-point constants, the data type is DOUBLE
PRECISION.

A decimal floating point
constant

DECFLOAT(34)

The name of any numeric
host variable

The same as the data type of the variable, with the same precision and scale for
decimal variables. The result is decimal if the data type of the host variable is not
an SQL data type; for example, DISPLAY SIGN LEADING SEPARATE in COBOL.

An arithmetic or string
expression

The same as the data type of the result, with the same precision and scale for
decimal results as described in “Expressions” on page 245.

Any function The data type of the result of the function. For a built-in function, see Chapter
4, “Built-in functions,” on page 341 to determine the data type of the result. For
a user-defined function, the data type of the result is what was defined in the
CREATE FUNCTION statement for the function.

The name of any string
column

The same as the data type of the column, with the same length attribute.

The name of any string host
variable

The same as the data type of the variable, with a length attribute equal to the
length of the variable. The result is a varying-length character string if the data
type of the host variable is not an SQL data type; for example, a NUL-terminated
string in C.

A character string constant
of length n

VARCHAR(n).

A binary string constant of
length n

VARBINARY(n)

A graphic string constant of
length n

VARGRAPHIC(n).

The name of a datetime
column

The same as the data type of the column.

The name of a ROWID
column

Row ID.

The name of a distinct type
column

The same as the distinct type of the column, with the same length, precision,
and scale attributes, if any.

For information about the CCSID of the result column, see “Rules for result data types” on page 166.

Related reference
Examples of subselects
You can use the various clauses of the subselect to construct queries.

unpacked-row
An unpacked-row specifies a row that is the result of an invocation of the UNPACK built-in function.

unpacked-row

Chapter 6. Queries 1015

UNPACK-function-invocation . * AS (

,

field-name data-type)

UNPACK-function-invocation
Specifies an invocation of the UNPACK built-in function. The number of specified field-names and
field-types must be the same as the number of fields that are returned by the UNPACK function
invocation.

field-name
Names the field that is returned from the UNPACK function. A name must not be qualified, and it does
not have to be unique.

data-type
Specifies the built-in data type of the field. The specified data type, length, and CCSID must
correspond to the data type, length, and CCSID of the data when the argument was initially encoded
with the PACK function.

The CCSID 1208 and CCSID 1200 clauses must not be specified for unpacked-row.

The following table provides the supported data type mappings from the packed string data:

Table 164. Data type mappings from packed string data

Data type of an encoded
value in the packed
string for UNPACK Data type specified for UNPACK

SMALLINT SMALLINT, INTEGER, BIGINT

INTEGER INTEGER, BIGINT

BIGINT BIGINT

decimal (p,s)1 decimal(p', s') if s'< s, s-s' digits are truncated. An error occurs if there are
more than p'-s' significant digits.

real2 or double3 double

CHAR(n) or VARCHAR(n) CHAR(m), VARCHAR(m)

If m < n and any of the n-m characters is not a blank, an error occurs.
Otherwise, the n-m blanks are truncated. If m > n and the specified data
type is CHAR, m-n blanks are appended.

BINARY(n) or
VARBINARY(n)

BINARY(m), VARBINARY(m)

If m < n, an error occurs. If m > n and the UNPACK target is BINARY, m-n
X'00' bytes are appended.

DATE DATE

TIME TIME

TIMESTAMP(p) WITHOUT
TIME ZONE

TIMESTAMP(p') WITHOUT TIME ZONE. If p' > p, p'-p zeros are appended.
If p' < p, p-p' digits are truncated.

TIMESTAMP(p) WITH
TIME ZONE

TIMESTAMP(p') WITH TIME ZONE. If p' > p, p'-p zeros are appended. If p'
< p, p-p' digits are truncated.

1016 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 164. Data type mappings from packed string data (continued)

Data type of an encoded
value in the packed
string for UNPACK Data type specified for UNPACK

Note: The data types in lower case are defined as follows:

1. decimal = DECIMAL(p,s) or NUMERIC(p,s)
2. real = REAL or FLOAT(n) where n is the specification for a single precision floating point
3. double = DOUBLE, DOUBLE PRECISION, FLOAT or FLOAT(n) where n is the specification for a

double precision floating point

The synonyms for the data types, in either long or short form, are considered the same as those that
are listed.

Related reference
select-clause
The SELECT clause specifies the columns of the final result table. The column values are produced by the
application of the select list to R. The select list is a list of names and expressions specified in the SELECT
clause, and R is the result of the previous operation of the subselect. For example, if SELECT, FROM, and
WHERE are the only clauses specified, then R is the result of that WHERE clause.
PACK scalar function
The PACK function returns a binary string value that contains a data type array and a packed
representation of each non-null expression argument.
UNPACK row function
The UNPACK function returns a row of values that are derived from unpacking the input binary string. It is
used to unpack a string that was encoded according to the PACK function.

from-clause
The FROM clause specifies an intermediate result table.

from-clause

FROM

,

table-reference

If only one table-reference is specified, the intermediate result table is simply the result of that table-
reference. If more than one table-reference is specified, the intermediate result table consists of all
possible combinations of the rows of the result of each specified table-reference.

Each row of the result is a row from the result of the first table-reference concatenated with a row from the
result of the second table-reference, concatenated with a row from the result of the third table-reference,
and so on. The number of rows in the result is the product of the number of rows in the result of each
table-reference. Thus, if the result of any table-reference is empty, the result is empty.

If more than one table-reference is specified, the referenced tables and views must not include both
inclusive-exclusive BUSINESS_TIME periods and inclusive-inclusive BUSINESS_TIME periods.

If table-reference has row access controls enforced, table-reference has at least one row permission: the
default row permission. When there are multiple row permissions defined for a table-reference, a row
access control search condition is derived by applying the logical OR operator to the search condition in
each enabled permission. This derived search condition acts as a filter to the table-reference to determine
the result table of the table-reference that is accessible to the authorization ID or role of the subselect.

Chapter 6. Queries 1017

If a table-reference contains a security label column, Db2 compares the security label of the user to the
security label of each row. Results are returned according to the following rules:

• If the security label of the user dominates the security label of the row, Db2 returns the row.
• If the security label of the user does not dominate the security label of the row, Db2 does not return the

data from that row, and Db2 does not generate an error report.

Related reference
Examples of subselects
You can use the various clauses of the subselect to construct queries.

table-reference
A table-reference specifies a result table as either a table or view, or an intermediate table.

table-reference:

single-table-reference

single-view-reference

nested-table-expression

data-change-table-reference

table-function-reference

table-locator-reference

xmltable-expression

collection-derived-table

joined-table

single-table-reference:

table-name

period-specification correlation-clause

single-view-reference:

view-name

period-specification correlation-clause

period-specification:

FOR SYSTEM_TIME
1

BUSINESS_TIME
2

AS OF value

FROM value1 TO value2

BETWEEN value1 AND value2

Notes:

1018 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

1 AS OF TIMESTAMP can be specified as an alternative and is treated as if FOR SYSTEM_TIME AS OF had
been specified.
2 SYSTEM_TIME and BUSINESS_TIME cannot be specified more than one time per table.

nested-table-expression:

TABLE

( fullselect)

correlation-clause

data-change-table-reference:

FINAL TABLE ( INSERT statement)

FINAL

OLD

TABLE ( searched UPDATE statement)

OLD TABLE ( searched DELETE statement)

FINAL TABLE ( MERGE statement)

correlation-clause

table-function-reference:

TABLE ( function-name (
,

expression

TABLE transition-table-name

)

table-UDF-cardinality-clause

)

correlation-clause

typed-correlation-clause
1

Notes:
1 The typed-correlation-clause is required for generic table functions. This clause cannot be specified for
any other table functions.

table-UDF-cardinality-clause:

CARDINALITY integer-constant

CARDINALITY MULTIPLIER numeric-constant

table-locator-reference:

TABLE (table-locator-variable LIKE table-name)

correlation-name

xmltable-expression:

Chapter 6. Queries 1019

xmltable-function

correlation clause

A table-reference specifies an intermediate result table.

• If a single-table-reference is specified and it is not an archive-enabled table or a temporal table,
the intermediate result table is the specified table. If a period-specification is also specified, the
intermediate result table consists of the rows of the temporal table where the period matches the
specification.

• If a single-table-reference is specified and it is an archive-enabled table, the setting of the
SYSIBMADM.GET_ARCHIVE global variable and the ARCHIVESENSITIVE bind option determine the
contents of the intermediate result table. If the global variable is set to Y and the bind option is set
to YES, the intermediate result table includes the rows in the associated archive table. Otherwise, the
intermediate result table does not include rows in the associated archive table.

• If a single-view-reference is specified without a period-specification, the intermediate result table is that
view. If a period-specification is specified, temporal table references in the view consider only the rows
where the period matches the specification.

• If a nested-table-expression is specified, the result table is the result of the specified fullselect. The
columns of the result do not need unique names, but a column with a non-unique name cannot be
explicitly referenced.

• If a data-change-table-reference is specified, the intermediate result table is the set of rows that are
directly affected by the data change statement.

• If a table-function-reference is specified, the intermediate result table is the set of rows that are
returned by the table function.

• If a table-locator-reference is specified, the host variable represents the intermediate result table. The
intermediate result table has the same structure as the table identified in table-name.

• If a collection-derived-table is specified, the intermediate result table is a set of rows from one or more
array values. For more information, see “collection-derived-table” on page 1031.

• If an xmltable-expression is specified, the intermediate result table is the set of rows that are returned
by the “XMLTABLE table function” on page 693 function.

• If a joined-table is specified, the intermediate result table is the result of one or more join operations.
For more information, see “joined-table” on page 1034.

Each table-name or view-name specified in every FROM clause of the same SQL statement must identify a
table or view that exists at the same Db2 subsystem. If a FROM clause is specified in a subquery of a basic
predicate, a view that includes GROUP BY or HAVING must not be identified.

A table-reference must not identify a table that was implicitly created for an XML column.

table-locator-variable
table-locator-variable must specify a variable with a table locator type. The only way to assign a value
to a table locator is to pass the old or new transition table of a trigger to a user-defined function or
stored procedure. A table locator host variable must not have a null indicator. A table locator variable
must not be a parameter marker. In addition, a table locator can be used only in a manipulative SQL
statement. table-locator-reference must not be specified in the body of a trigger.

table-name must refer to an EBCDIC table with a Unicode column if the transition table that is
identified by table-locator-variable is for a trigger that is defined on an EBCDIC table with a Unicode
column.

nested-table-expression
A fullselect in parentheses is called a nested table expression. If a nested table expression is specified,
the result table is the result of that nested-table-expression. The columns of the result do not need
unique names, but a column with a non-unique name cannot be referenced. At any time, the table
consists of the rows that would result if the fullselect were executed.

1020 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

table-function-reference
If a function-name is specified, the result table is the set of rows returned by the table function.

expression must not contain a scalar fullselect, a function, or a reference to a column.

Each function-name, together with the types of its arguments, must resolve to a table function that
exists at the same Db2 subsystem. An algorithm called function resolution, which is described in
“Function resolution” on page 239, uses the function name and the arguments to determine the exact
function to use. Unless given column names in the correlation-clause, the column names for a table
function are those specified on the RETURNS clause of the CREATE FUNCTION statement. This is
analogous to the column names of a table, which are defined in the CREATE TABLE statement.

If a column mask is used to mask the column values in the final result table, and if the result of the
table function is used to derive the final result table, the column mask cannot be applied to a column
that is specified in the argument of the table function.

table-UDF-cardinality-clause
The table-UDF-cardinality-clause can be specified to each user-defined table function reference
within the table spec of the FROM clause in a subselect. This option indicates the expected
number of rows to be returned only for the SELECT statement that contains it.

CARDINALITY integer-constant specifies an estimate of the expected number of rows returned
by the reference to the user-defined function. The value of integer-constant must range 0–
2147483647.

The value set in the CARDINALITY field of SYSIBM.SYSROUTINES for the table function name is
used as the reference cardinality value. The product of the specified CARDINALITY MULTIPLIER
numeric-constant and the reference cardinality value are used by Db2 as the expected number of
rows returned by the table function reference.

In this case, the numeric-constant can be in the integer, decimal, or floating-point format. The
value must be greater than or equal to zero. If the decimal number notation is used, the number
of digits can be up to 31. An integer value is treated as a decimal number with no fraction. The
maximum value allowed for a floating-point number is about 7.237E + 75. If no value has been
set in the CARDINALITY field of SYSIBM.SYSROUTINES, its default value is used as the reference
cardinality value. If zero is specified or the computed cardinality is less than 1, Db2 assumes that
the cardinality of the reference to the user-defined table function is 1.

Only a numeric constant can follow the keyword CARDINALITY or CARDINALITY MULTIPLIER.
No host variable or parameter marker is allowed in a cardinality option. Specifying a cardinality
option in a table function reference does not change the corresponding CARDINALITY field in
SYSIBM.SYSROUTINES. The CARDINALITY field value in SYSIBM.SYSROUTINES can be initialized
by the CARDINALITY option in the CREATE FUNCTION (external table) statement when a user-
defined table function is created. It can be changed by the CARDINALITY option in the ALTER
FUNCTION statement or by a direct update operation to SYSIBM.SYSROUTINES.

data-change-table-reference
A data-change-table-reference clause specifies an intermediate result table. This table is based on the
rows that are directly changed by the SQL data change statement that is included in the clause. A
data-change-table-reference can only be specified as the only table-reference in the FROM clause of
the outer fullselect that is used in a select-statement and that fullselect must be in a subselect, or
a SELECT INTO statement. A data-change-table-reference in a SELECT statement of a cursor makes
the cursor read only. The target table or view of the SQL data change statement is a table or view
that is reference in the query. The privileges that are held by the authorization ID of the statement
must include the SELECT privilege on that target table or view. The encoding scheme of the result
table of the SELECT must be the same as the encoding scheme of the target table or view of the
data-change-table-reference.

If row access control is enforced for the target of the data change statement, the rows in the
intermediate result table already satisfy the rules that are specified in the enabled row permissions.
If column access control is enforced for the target of the data change statement, the enabled column
masks are applied to the outermost select list. For more information, see “select-clause” on page
1010. If an INCLUDE clause is specified as part of the SQL data change statement, and these

Chapter 6. Queries 1021

additional columns appear in the outermost select list, the column values must not be derived from
columns for which column masks are defined.

Expressions in the select list of a view in a table reference can only be selected if OLD TABLE is
specified or if the expression does not include any of the following objects:

• a function that is defined to read or modify SQL data
• a function that is defined as not deterministic or has an external action
• a NEXT VALUE expression for a sequence

FINAL TABLE
Specifies that the rows of the intermediate result table represent the set of rows that are changed
by the SQL data change statement as they appear at the completion of the SQL data change
statement. If there are AFTER triggers that result in further operations on the table that is the
target of the SQL data change statement, an error is returned. If the target of the SQL data change
statement is a view that is defined with an INSTEAD OF trigger for the type of data change, an
error is returned.

OLD TABLE
The rows of the intermediate result table represent the set of affected rows as they exist prior to
the application of the SQL data change statement.

INSERT statement
Specifies an INSERT statement as described in “INSERT statement” on page 1996. A fullselect
in the INSERT statement cannot contain correlated references to columns that are outside of
the fullselect of the INSERT statement. The target of the INSERT statement must be a base
table, a view that is defined with the WITH CASCADED CHECK clause, or a view where the
view definition has no WHERE clause. If there are input variables elsewhere in the fullselect, the
INSERT statement cannot be a multiple row not atomic insert, or a multiple row atomic insert that
specifies the USING DESCRIPTOR clause.

MERGE statement
Specifies a MERGE statement as described in “MERGE statement” on page 2019. The MERGE
statement must conform to the following rules:

• The target of the MERGE statement must be a base table, a view that is defined with the WITH
CASCADED CHECK clause, or a view where the view definition has no WHERE clause.

• The target table or view of the MERGE statement must not have a column with a ROWID data
type. Additionally, when NOT ATOMIC CONTINUE ON SQLEXCEPTION is specified, the target
table or view of the MERGE statement must not have a column with a LOB or XML data type.

• If table-reference is specified in the MERGE statement, it must not contain correlated references
to columns that are outside of the table reference in the MERGE statement.

• If table-reference is specified in the MERGE statement, AFTER triggers that result in further
operations on the target table must not exist.

• When NOT ATOMIC CONTINUE ON SQLEXCEPTION is specified in the MERGE statement, or
the NOT ATOMIC CONTINUE ON SQLEXCEPTION clause is not specified, and source-values
(VALUES) is specified, the MERGE statement must not include a delete operation.

searched UPDATE statement
Specifies a searched UPDATE statement as described in “UPDATE statement” on page 2178. A
WHERE clause or a SET clause in the UPDATE statement cannot contain correlated referenced to
columns that are outside of the UPDATE statement. The target of the UPDATE statement must be a
base table, a symmetric view, or a view where the view definition has no WHERE clause.

If the searched UPDATE statement is used in the SELECT statement and the UPDATE statement
references a view, the view must be defined using the WITH CASCADED CHECK OPTION clause.

A searched UPDATE statement in a SELECT statement will not clear the AREO* status of a table.

AFTER triggers that result in further operations on the target table cannot exist on the target table.

1022 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

searched DELETE statement
Specifies a searched DELETE statement as described in “DELETE statement” on page 1853. A
WHERE clause in the DELETE statement cannot contain correlated references to columns that are
outside of the DELETE statement. The target of the DELETE statement must be a base table, a
symmetric view, or a view where the view definition has no WHERE clause.

If the searched DELETE statement is used in the SELECT statement and the DELETE statement
references a view, the view must be defined using the WITH CASCADED CHECK OPTION clause.

AFTER triggers that result in further operations on the target table cannot exist on the target table.

The content of the intermediate result table for a table reference that contains an SQL data change
statement is determined when the cursor is opened. The intermediate result table includes a column
for each of the columns of the target table (including implicitly hidden columns) or view. All of the
columns of the target table or view of an SQL data change statement are accessible by using the
names of the columns from the target table or view unless the columns are renamed by using the
correlation clause. If an INCLUDE clause is specified as part of the SQL data change statement, the
intermediate result table will contain these additional columns.

correlation-clause
Each correlation-name in a correlation-clause defines a designator for the immediately preceding
result table, which can be used to qualify references to the columns of the table. For more
information, see “correlation-clause” on page 1028.

The exposed names of all table references in the FROM clause should be unique. An exposed name is
considered to be any of the following names:

• A correlation-name
• A table-name that is not followed by a correlation-name
• A view-name that is not followed by a correlation-name
• A function-name that is not followed by a correlation-name
• The table name that is specified after LIKE when a table-locator is not followed by a correlation-

name
• The target table or view name for a data-change-table-reference that is not followed by a

correlation-name
• An alias-name that is not followed by a correlation-name
• A synonym-name that is not followed by a correlation-name

If a correlation-clause clause does not follow an xmltable-expression reference, a nested-table-
expression reference, or a collection-derived-table-reference, there is no exposed name for that table
reference.

Any qualified reference to a column must use the exposed name. If the same name is specified
twice, at least one specification should be followed by a correlation-name. The correlation-name is
used to qualify references to the columns of the table or view. When a correlation-name is specified,
column names can also be specified to give names to the columns of the table reference. If the
correlation-clause does not include column names, the exposed column names are determined as
follows:

• Column names of the referenced table or view when the table-reference is table-name, view-name,
alias-name, or synonym-name

• Column names specified in the RETURNS clause of the CREATE FUNCTION statement when the
table-reference is a function-name reference

• Column names of the table referenced after LIKE when the table-reference is a table-locator
• Column names specified in the COLUMNS clause of the xmltable-expression when the table-

reference is an xmltable-expression
• Column names returned by the fullselect when the table-reference is a nested-table-expression

Chapter 6. Queries 1023

• Column names from the target table of the data change statement, along with any defined INCLUDE
columns, when the table-reference is a data-change-table-reference

Otherwise, there are no exposed names for the columns of that table reference.

typed-correlation-clause
A typed-correlation-clause defines the appearance and contents of the table generated by a generic
table function. This clause must be specified when the table-function-reference is a generic table
function and cannot be specified for any other table reference. For more information, see “typed-
correlation-clause” on page 1029.

xmltable-expression
Specifies an invocation of the built-in XMLTABLE function. For more information, see “XMLTABLE table
function” on page 693.

If a column mask is used to mask the column values in the final result table, and if the result of the
XMLTABLE function is used to derive the final result table, the column mask cannot be applied to a
column that is specified in the PASSING clause of the XMLTABLE function.

collection-derived-table
A collection-derived-table is used to convert the elements of one or more arrays into column values
in separate rows of an intermediate result table, as explained in “collection-derived-table” on page
1031.

joined-table
If a joined-table is specified, the result table is the result of one or more join operations as explained
in “joined-table” on page 1034.

period-specification
Specifies that a period specification applies to the table-reference. The same period name
(SYSTEM_TIME or BUSINESS_TIME) must not be specified more than one time for the same table.
If the table reference specifies a view, the definition of that view must not reference a user-defined
function.

The rows of the table reference are derived by application of the specified period specification. The
intermediate result table does not include rows in the associated history table that were added for the
ON DELETE ADD EXTRA ROW attribute in the system-period temporal table definition.

Note: History tables are intended to include only rows that Db2 stores to record the history of the
associated system-period temporal table. However, if the history table contains other rows with
the same value in the two columns that correspond to the row-begin and row-end columns in the
system-period temporal table, the intermediate result table might include these rows. These rows
might be included in the following cases:

• The system-period temporal table is defined with the ON DELETE ADD EXTRA ROW attribute, the
table contains a DATA CHANGE OPERATION column, and the value of the corresponding column in
the history table is not 'D'.

• The system-period temporal table is not defined with the ON DELETE ADD EXTRA ROW attribute.

The rows of a view reference are derived by application of the specified period specifications to all of
the temporal tables that are accessed when computing the result table of the view. If the view does
not access any temporal tables, the period specification has no effect on the result table of the view.

If the table is a bitemporal table and a period-specification is not specified for both SYSTEM_TIME or
BUSINESS_TIME, the table reference includes all current rows of the table and does not include any
historical rows of the table.

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a value other than the null value,
a period-specification for a table or view cannot reference SYSTEM_TIME. This restriction applies
even if the view body does not reference a system-period temporal table. The exception is if the
value in effect for the SYSTIMESENSITIVE bind option is NO. In this case, the period-specification can
reference SYSTEM_TIME.

If the CURRENT TEMPORAL BUSINESS_TIME special register is set to a value other than the null
value, a period-specification for a table or view cannot reference BUSINESS_TIME. This restriction

1024 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

applies even if the view body does not reference an application-period temporal table. The exception
is if the value in effect for the BUSTIMESENSITIVE bind option is NO. In this case, the period-
specification can reference BUSINESS_TIME.

For more information, see:

“CURRENT TEMPORAL BUSINESS_TIME special register” on page 208
“CURRENT TEMPORAL SYSTEM_TIME special register” on page 210

FOR SYSTEM_TIME
Specifies that the SYSTEM_TIME period is used for the period-specification. The table reference
must be a system-period temporal table or a view.

Do not specify FOR SYSTEM_TIME if the value of the CURRENT TEMPORAL SYSTEM_TIME special
register is not NULL and the SYSTIMESENSITIVE bind option is set to YES .

FOR BUSINESS_TIME
Specifies that the BUSINESS_TIME period is used for the period-specification. The table reference
must be an application-period temporal table or a view.

Do not specify FOR BUSINESS_TIME if the value of the CURRENT TEMPORAL BUSINESS_TIME
special register is not NULL and the BUSTIMESENSITIVE bind option is set to YES .

AS OF value
Specifies that the table-reference includes rows that exist at the time that is specified by value as
follows:

• For an inclusive-exclusive period, a row is included if the begin value for the specified period is
less than or equal to value, and the end value for the period is greater than value. If value is the
null value, the table reference is an empty table.

• For an inclusive-inclusive period, a row is included if the begin value for the specified period is
less than or equal to value, and the end value for the period is greater than or equal to value. If
value is the null value, the table reference is an empty table.

value
Specifies an expression that returns a value of a built-in data type. The result of the expression
must be comparable to the data type of the columns of the specified period according to the
comparison rules specified in “Assignment and comparison” on page 143.

The expression must not have a timestamp precision that is greater than the precision of the
columns for the period.

If the begin and end columns of the period are defined as TIMESTAMP WITHOUT TIME ZONE,
the expression must not return a value of a timestamp with a time zone.

The expression can contain any of the following supported operands:

• A constant
• A special register
• A variable
• An array element specification
• A built-in scalar function whose arguments are supported operands
• A CAST specification where the cast operand is a supported operand
• An expression that uses arithmetic operators and operands

A period specification for a view must not contain an untyped parameter marker.

FROM value1 TO value2
Specifies that the table-reference includes rows that exist for the period that is specified from
value1 up to value2.

• For an inclusive-exclusive period, a row is included in the table-reference if the start value for
the period in the row is less than value2, and the end value for the period in the row is greater

Chapter 6. Queries 1025

than value1. The table-reference contains zero rows if value1 is greater than or equal to value2.
If value1 or value2 is the null value, the table reference is an empty table.

• For an inclusive-inclusive period, a row is included in the table-reference if the start value for
the period in the row is less than value2, and the end value for the period in the row is greater
than or equal to value1. The table-reference contains zero rows if value1 is greater than or equal
tovalue2. If value1 or value2 is the null value, the table reference is an empty table.

value1 or value2
Specifies an expression that returns a value of a built-in data type. The result of the expression
must be comparable to the data type of the columns of the specified period according to the
comparison rules specified in “Assignment and comparison” on page 143.

The expression must not have a timestamp precision that is greater than the precision of the
columns for the period.

If the begin and end columns of the period are defined as TIMESTAMP WITHOUT TIME ZONE,
the expression must not return a value of a timestamp with a time zone.

The expression can contain any of the following supported operands:

• A constant
• A special register
• A variable
• An array element specification
• A built-in scalar function whose arguments are supported operands
• A CAST specification where the cast operand is a supported operand
• An expression that uses arithmetic operators and operands

A period specification for a view must not contain an untyped parameter marker.

BETWEEN value1 AND value2
Specifies that the table-reference includes rows in which the specified period overlaps at any point
in time between value1 and value2.

• For an inclusive-exclusive period, a row is included in the table-reference if the start value for
the period in the row is less than or equal to value2 and the end value for the period in the row
is greater than value1. The table-reference contains zero rows if value1 is greater than value2.
If value1 = value2, the expression is equivalent to AS OF value1. If value1 or value2 is the null
value, the table-reference is an empty table.

• For an inclusive-inclusive period, a row is included in the table-reference if the start value for the
period in the row is less than or equal to value2 and the end value for the period in the row is
greater than or equal to value1. The table-reference contains zero rows if value1 is greater than
value2. If value1 = value2, the expression is equivalent to AS OF value1. If value1 or value2 is
the null value, the table-reference is an empty table.

value1 or value2
Specifies an expression that returns a value of a built-in data type. The result of the expression
must be comparable to the data type of the columns of the specified period according to the
comparison rules specified in “Assignment and comparison” on page 143.

The expression must not have a timestamp precision that is greater than the precision of the
columns for the period.

If the begin and end columns of the period are defined as TIMESTAMP WITHOUT TIME ZONE,
the expression must not return a value of a timestamp with a time zone.

The expression can contain any of the following supported operands:

• A constant
• A special register
• A variable

1026 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• An array element specification
• A built-in scalar function whose arguments are supported operands
• A CAST specification where the cast operand is a supported operand
• An expression that uses arithmetic operators and operands

A period specification for a view must not contain an untyped parameter marker.

Notes
Correlated references in table-reference:

In general, nested table expressions and table functions can be specified in any FROM clause.
Columns from the nested table expressions and table functions can be referenced in the select list
and in the rest of the fullselect using the correlation name. The scope of this correlation name is the
same as correlation names for other table or view names in the FROM clause. The basic rule that
applies for both these cases is that the correlated reference must be from a table-reference at a higher
level in the hierarchy of subqueries.

Nested table expressions can be used in place of a view to avoid creating a view when general use of
the view is not required. They can also be used when the result table is based on host variables.

For table functions, an additional capability exists. A table function can contain one or more correlated
references to other tables in the same FROM clause if the referenced tables precede the reference in
the left-to-right order of the tables in the FROM clause. The same capability exists for nested table
expressions if the optional keyword TABLE is specified; otherwise, only references to higher levels in
the hierarchy of subqueries is allowed.

A nested table expression or table function that contains correlated references to other tables in the
same FROM clause:

• Cannot participate in a FULL OUTER JOIN or a RIGHT OUTER JOIN
• Can participate in LEFT OUTER JOIN or an INNER JOIN if the referenced tables precede the

reference in the left-to-right order of the tables in the FROM clause

The following table shows some examples of valid and invalid correlated references. TABF1 and
TABF2 represent table functions.

Table 165. Examples of correlated references

Subselect Valid Reason

SELECT T.C1, Z.C5
FROM TABLE(TABF1(T.C2)) AS Z, T
WHERE T.C3 = Z.C4;

No T.C2 cannot be resolved because T
does not precede TABF1 in FROM

SELECT T.C1, Z.C5
FROM T, TABLE(TABF1(T.C2)) AS Z
WHERE T.C3 = Z.C4;

Yes T precedes TABF1 in FROM, making
T.C2 known

SELECT A.C1, B.C5
FROM TABLE(TABF2(B.C2)) AS A,
 TABLE(TABF1(A.C6)) AS B
WHERE A.C3 = B.C4;

No B in B.C2 cannot be resolved
because the table function that
would resolve it, TABF1, follows its
reference in TABF2 in FROM

SELECT D.DEPTNO, D.DEPTNAME,
 EMPINFO.AVGSAL, EMPINFO.EMPCOUNT
FROM DEPT D,
 (SELECT AVG(E.SALARY) AS AVGSAL,
 COUNT(*) AS EMPCOUNT
 FROM EMP E
 WHERE E.WORKDEPT = D.DEPTNO)
 AS EMPINFO;

No DEPT precedes nested table
expression, but keyword TABLE is
not specified, making D.DEPTNO
unknown

Chapter 6. Queries 1027

Table 165. Examples of correlated references (continued)

Subselect Valid Reason

SELECT D.DEPTNO, D.DEPTNAME,
 EMPINFO.AVGSAL, EMPINFO.EMPCOUNT
FROM DEPT D,
 TABLE (SELECT AVG(E.SALARY) AS AVGSAL,
 COUNT(*) AS EMPCOUNT
 FROM EMP E
 WHERE E.WORKDEPT = D.DEPTNO)
 AS EMPINFO;

Yes DEPT precedes nested table
expression and keyword TABLE is
specified, making D.DEPTNO known

Affects of special registers:
The setting of the CURRENT TEMPORAL BUSINESS_TIME and CURRENT TEMPORAL SYSTEM_TIME
special registers might affect the result of a query, as described in the following situations:

• Assume the following conditions:

– A table reference is an application-period temporal table.
– The columns of the BUSINESS_TIME period are defined as TIMESTAMP(6).
– The CURRENT TEMPORAL BUSINESS_TIME special register is set to a non-null value.

In this case, a query is executed as if it contained the following specification:

FOR BUSINESS_TIME AS OF CURRENT TEMPORAL BUSINESS_TIME

• Assume the following conditions:

– A table reference is an application-period temporal table.
– The columns of the BUSINESS_TIME period are defined as DATE.
– The CURRENT TEMPORAL BUSINESS_TIME special register is set to a non-null value.

In this case, a query is executed as if it contained the following specification:

FOR BUSINESS_TIME AS OF CAST(CURRENT TEMPORAL BUSINESS_TIME AS DATE)

• If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a non-null value, a query is
executed as if it contained the following specification:

FOR SYSTEM_TIME AS OF CURRENT TEMPORAL SYSTEM_TIME

Related reference
Examples of subselects
You can use the various clauses of the subselect to construct queries.

correlation-clause
Each correlation-name in a correlation-clause defines a designator for the immediately preceding result
table, which can be used to qualify references to the columns of the table.

correlation-clause:

AS
correlation-name

(

,

 new-column-name)

The preceding result table is one of the following objects:

• A table

1028 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• A view
• A nested table expression
• A table function
• A data-change table reference
• A collection-derived table

new-column-name is an SQL identifier of 128 UTF-8 bytes or less. Using new-column-name to list and
rename the columns is optional. A correlation name must be specified for nested table expressions and
references to table functions.

If correlation-name is not specified for a data-change table reference, the correlation name is the name of
the target table or view of the SQL data change statement. Otherwise, the correlation name is correlation-
name.

If a new-column-name list is specified in correlation-clause, the number of names must be the same
as the number of columns in the corresponding object. Each name must be unique and unqualified. If
columns are added to an underlying table of a table-reference, the number of columns in the result of
the table-reference no longer matches the number of names in its correlation-clause. Therefore, when a
rebind of a package containing the query in question is attempted, Db2 returns an error and the rebind
fails. At that point, change the correlation-clause of the embedded SQL statement in the application
program so that the number of names matches the number of columns. Then prepare the modified
program again.

An exposed name is a correlation-name or a table-name or view name that is not followed by a
correlation-name. The exposed names in a FROM clause must be unique. Any qualified reference to
a column for a table, view, nested table expression, table function, data-change table reference, or
collection-derived table must use the exposed name.

If the same table name or view name is specified twice, at least one specification must be followed by a
correlation-name. The correlation-name is used to qualify references to the columns of the table or view.

When a correlation-name is specified, column names can also be specified to give names to the columns
of the table-name, view-name, nested-table-expression, table-function, data-change-table-reference, or
collection-derived-table. If a column list is specified, there must be a name in the column list for each
column in the table or view and for each result column in the table-function, data-change-table-reference,
or collection-derived-table.

For more information, see “Correlation names” on page 220.

In general, nested-table-expression, table-function, data-change-table-reference, or collection-derived-
table can be specified in any FROM clause. Columns from the nested-table-expression, table-function,
data-change-table-reference, or collection-derived-table can be referenced in the SELECT list and in the
rest of the subselect using a correlation name. The scope of this correlation name is the same as
correlation names for other table or view names in the FROM clause.

Related reference
SET assignment-statement statement
The SET assignment-statement statement assigns values to variables and array elements.
table-reference
A table-reference specifies a result table as either a table or view, or an intermediate table.

typed-correlation-clause
A typed-correlation-clause defines the appearance and contents of the table generated by a generic table
function.

typed-correlation-clause:

Chapter 6. Queries 1029

AS
correlation-name (

,

column-name data-type)

data-type:

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

1030 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

typed-correlation-clause
The typed-correlation-clause defines the appearance and contents of the table that is generated by a
generic table function. typed-correlation-clause must be specified when the table-function-reference
is a generic table function and cannot be specified for any other table reference.

The maximum number of columns specified in the typed-correlation-clause is 750, an error is returned
if the number of specified columns exceeds the limit.

An error is returned if duplicate column names are specified in a typed-correlation-clause.

An error is returned if the data type that is specified for a column name is not one of the supported
data types for a generic table function.

Related reference
CREATE FUNCTION statement (external table function)
This CREATE FUNCTION statement registers a user-defined external table function with a database
server. A user-defined external table function can be used in the FROM clause of a subselect. It returns a
table to the subselect by returning one row at a time each time it is invoked.

collection-derived-table
A collection-derived table is used to convert the elements of one or more arrays into column values in
separate rows of an intermediate result table.

collection-derived-table:

UNNEST (

,

 ordinary-array-expression

associative-array-expression

)

WITH ORDINALITY
1

correlation-clause

Notes:
1 WITH ORDINALITY can be specified only if the argument to UNNEST is ordinary-array-expression.
associative-array-expression must not be specified when WITH ORDINALITY is also specified.

WITH ORDINALITY
Specifies that an extra column of data type INTEGER is returned as the last column in the result table.
This column contains the position of the element in the array.

correlation-clause
Specifies the correlation name that is to be used as a table designator for the result table of the
collection derived table, and a list of column names for the result table. The correlation name can be
used to qualify references to the columns of the result table.

The result columns can be referenced in the SELECT list, and in the rest of the subselect by using the
names that are specified for the columns in the correlation clause.

A collection-derived table can be specified as a table reference in a FROM clause, in a context where
arrays are supported.

The intermediate result table is derived as follows:

• If a single expression that returns an ordinary array is specified, the intermediate result table is a
single-column table with a column data type that matches the array element data type.

• If multiple expressions that return an ordinary array are specified:

– The first array provides the first column in the result table, the second array provides the second
column, and so on.

Chapter 6. Queries 1031

– The data type of each column matches the data type of the array elements of the corresponding array
argument.

– If the cardinalities of the arrays are not identical, the cardinality of the resulting table is the same as
the array with the largest cardinality.

– The column values in the table are set to the null value for all rows whose array index value is greater
than the cardinality of the corresponding array. In other words, if each array is viewed as a table with
two columns, one for the array indexes and one for the data, UNNEST performs an outer join among
the arrays, using equality on the array indexes as a join predicate.

• If a single associative-array-expression or an array-function-invocation that returns an associative array
is specified:

– The intermediate result table is a table with two columns, where the first column data type matches
the array index data type, and the second column data type matches the array element data type.

– The first column contains the indexes of the elements in the array.
– The second column contains the elements in the array.
– The columns can be referenced in the SELECT list and the in rest of the subselect by using the names

that are specified for the columns in the correlation-clause.
• If all arguments are null arrays, the result is an empty table.

The intermediate result table that is produced by an invocation of UNNEST must not result in more than
750 columns.

An array-function-invocation is a function invocation that resolves to a function that returns an ordinary
or an associative array type. An array-function-invocation must not include a reference to a column of a
common table expression.

ordinary-array-expression
Specifies one of the following items:

• An SQL variable
• An SQL parameter
• A global variable of an ordinary array type
• An array-function-invocation
• A CAST specification of a parameter marker to an ordinary array type

associative-array-expression
Specifies one of the following items:

• An SQL variable
• An SQL parameter
• A global variable of an associative array type
• An array-function-invocation
• A CAST specification of a parameter marker to an associative array type

Names for the result columns that are produced by an UNNEST specification can be provided as part of
the correlation-clause of the collection-derived-table clause.

Example 1: Suppose that PHONENUMBERS is a user-defined array type that is defined as an ordinary
array. RECENT_CALLS is an array variable of the PHONENUMBERS type. RECENT_CALLS contains the
following phone numbers:

• 9055553907
• 4165554213
• 4085553678

1032 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The following SELECT statement uses UNNEST to retrieve the list of phone numbers from the array:

SELECT T.ID, T.NUM
 FROM UNNEST(RECENT_CALLS) WITH ORDINALITY AS T(NUM, ID);

The WITH ORDINALITY clause indicates that the result table is to include an additional column that
reflects the ordinal position of each array element in the array. The additional column is the last column
of the result table from the UNNEST operation. The correlation clause that follows the WITH ORDINALITY
clause specifies that the additional column is named ID, and the array element column is named NUM.
These column names can be explicitly referenced in the SELECT list of the query. The SELECT list in this
example reorders the columns from the result of UNNEST. The result table looks like this:

ID NUM

1 9055553907

2 4165554213

3 4085553678

In the SELECT statement, the columns that result from the UNNEST operation have been reordered in the
SELECT list, so that the column that reflects the position of each array element is the first column of the
final result table.

Example 2: Suppose that PERSONAL_PHONENUMBERS is a user-defined array type that is defined as an
associative array. PHONELIST is an array variable of the PERSONAL_PHONENUMBERS type. Values have
been assigned to the elements of PHONELIST with the following statements:

SET PHONELIST['Home'] = '4443051234';
SET PHONELIST['Work'] = '4443052345';
SET PHONELIST['Cell'] = '4447893456';

The following SELECT statement is executed:

SELECT T.ID, T.PHONE
 FROM UNNEST(PHONELIST) AS T(ID, PHONE);

The result table looks like this, although the order of rows might differ:

ID PHONE

Cell 4447893456

Home 4443051234

Work 4443052345

Example 3: Suppose that PHONES and IDS are two SQL variables with array values of the same
cardinality. The following SQL statement converts the array contents into a table with three columns
(one for each array and one for the position), and one row for each array element.

The following SELECT statement is executed:

SELECT T.PHONE, T.ID, T.INDEX FROM UNNEST(PHONES, IDS)
WITH ORDINALITY AS T(PHONE, ID, INDEX)
ORDER BY T.INDEX;

Related reference
SET assignment-statement statement
The SET assignment-statement statement assigns values to variables and array elements.
table-reference

Chapter 6. Queries 1033

A table-reference specifies a result table as either a table or view, or an intermediate table.

joined-table
A joined-table specifies an intermediate result table that is the result of either an inner join, an outer join,
or a cross join. The table is derived by applying one of the join operators: INNER, LEFT OUTER, RIGHT
OUTER, FULL OUTER, or CROSS to its operands.

joined-table

table-reference
INNER

LEFT

RIGHT

FULL

OUTER

JOIN table-reference ON join-condition

table-reference CROSS JOIN table-reference

(joined-table)

Cross joins represent the cross product of the tables, where each row of the left table is combined with
every row of the right table. Inner joins can be thought of as the cross product of the tables, keeping only
the rows where the join condition is true. The result table might be missing rows from either or both of
the joined tables. Outer joins include the rows produced by the inner join as well as the missing rows,
depending on the type of outer join as follows:

Left outer join
Includes rows from the left table that were missing from the inner join.

Right outer join
Includes rows from the right table that were missing from the inner join.

Full outer join
Includes rows from both the left and right tables that were missing from the inner join.

If a join operator is not specified, INNER is the default. The order in which a LEFT OUTER JOIN or RIGHT
OUTER JOIN is performed can affect the result.

A joined-table can be used in any context in which any form of the SELECT statement is used. Both a view
and a cursor is read-only if its SELECT statement includes a joined-table.

If LEFT OUTER JOIN, RIGHT OUTER JOIN, or FULL OUTER JOIN is specified:

• A ROW CHANGE TIMESTAMP expression can only be referenced in a subselect of the outer join if the
table designator identifies a base table that includes a row change timestamp column.

• The RID built-in function and the ROW CHANGE TOKEN expression must not be specified in the
subselect that contains the FROM clause.

Related concepts
Investigating join operations (Db2 Performance)
Related tasks
Joining data from more than one table (Db2 Application programming and SQL)
Related reference
Examples of subselects
You can use the various clauses of the subselect to construct queries.

join-condition
join-condition specifies the conditions of a join that is used in a query.

join-condition

1034 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_plantablejoinexamples.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_joindatamoretable.html

For INNER, LEFT OUTER, and RIGHT OUTER joins:

search-condition

For FULL OUTER joins:

AND

full-join-expression = full-join-expression

full-join-expression:

column-name

cast-function
1

COALESCE (column-name

cast-function
1

, column-name

, cast-function
1

)

Notes:
1 cast-function must only contain a column and the casting data type must be a distinct type or the data
type upon which the distinct type was based.

For INNER, LEFT OUTER, and RIGHT OUTER joins, the join-condition is a search-condition that must
conform to these rules:

• With one exception, It cannot contain any subqueries. If the join-table that contains the join-condition
in the associated FROM clause is composed of only INNER joins, the join-condition can contain
subqueries.

• Any column that is referenced in an expression of the join-condition must be a column of one of the
operand tables of the associated join operator (in the scope of the same joined-table clause).

For a FULL OUTER (or FULL) join, the join-condition is a search condition in which the predicates can only
be combined with AND. In addition, each predicate must have the form 'expression = expression', where
one expression references only columns of one of the operand tables of the associated join operator, and
the other expression references only columns of the other operand table. The values of the expressions
must be comparable. Implicit cast between numeric and string data types is not supported for FULL
OUTER join.

Each full-join-expression in a FULL OUTER join must include a column name or a cast function that
references a column. The COALESCE function is allowed.

For any type of join, column references in an expression of the join-condition are resolved using the rules
for resolution of column name qualifiers specified in “Resolution of column name qualifiers and column
names” on page 223 before any rules about which tables the columns must belong to are applied.

Related reference
Examples of subselects

Chapter 6. Queries 1035

You can use the various clauses of the subselect to construct queries.

Join operations
A join-condition specifies pairings of T1 and T2, where T1 and T2 are the left and right operand tables of
its associated JOIN operator. For all possible combinations of rows T1 and T2, a row of T1 is paired with a
row of T2 if the join-condition is true.

When a row of T1 is joined with a row of T2, a row in the result consists of the values of that row of T1
concatenated with the values of that row of T2. The execution might involve the generation of a null row.
The null row of a table consists of a null value for each column of the table, regardless of whether the
columns allow null values.

The following summarizes the results of the join operations:

• The result of T1 INNER JOIN T2 consists of their paired rows.
• The result of T1 LEFT OUTER JOIN T2 consists of their paired rows and, for each unpaired row of T1, the

concatenation of that row with the null row of T2. All columns derived from T2 allow null values.
• The result of T1 RIGHT OUTER JOIN T2 consists of their paired rows and, for each unpaired row of T2,

the concatenation of that row with the null row of T1. All columns derived from T1 allow null values.
• The result of T1 FULL OUTER JOIN T2 consists of their paired rows and, for each unpaired row of T1, the

concatenation of that row with the null row of T2, and for each unpaired row of T2, the concatenation of
that row with the null row in T1. All columns of the result table allow null values.

• The result of T1 CROSS JOIN T2 consists of each row of T1 paired with each row of T2. CROSS JOIN is
also known as Cartesian product.

A join operation is part of a FROM clause. For the purpose of predicting which rows will be returned from
a SELECT statement containing a join operation, assume that the join operation is performed before the
other clauses in the statement.

A cross join can also be specified without the CROSS JOIN syntax, by listing the two tables in the FROM
clause separated by commas without using a WHERE clause to supply join criteria.

Related reference
Examples of subselects
You can use the various clauses of the subselect to construct queries.

where-clause
The WHERE clause specifies a result table that consists of those rows of R for which the search condition
is true. R is the result of the FROM clause of the subselect.

where-clause

WHERE search-condition

The search condition must conform to the following rules:

• Each column name must unambiguously identify a column of R or be a correlated reference. A column
name is a correlated reference if it identifies a column of a table, view, common-table-expression, or
nested-table-expression that is identified in an outer subselect.

• An aggregate function must not be specified unless the WHERE clause is specified in a subquery of a
HAVING clause and the argument of the function is a correlated reference to a group.

Any subquery in the search-condition is effectively executed for each row of R and the results are used in
the application of the search-condition to the given row of R. A subquery is actually executed for each row
of R only if it includes a correlated reference. In fact, a subquery with no correlated references is executed
just one time, whereas a subquery with a correlated reference might have to be executed one time for
each row.

1036 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If row access controls are enabled for a table and no other row permission is defined, the row access
control search condition is the default row permission, 1 = 0. If only one row permission is defined,
the row access control search condition is the search conditions that are specified by that permission.
Otherwise, if multiple row permissions are defined for a table, the row access control search condition
is derived by application of the logical OR operator to the search conditions that are specified by each
row permission. This row access control search condition, as a whole, is connected by application of
the logical AND operator to the search conditions specified by the WHERE clause and has the same
precedence level as other search conditions in the WHERE clause. This process is repeated for each
table-reference in the FROM clause of the subselect for which row access controls are enabled.

The row access control search condition acts as a filter to the table-reference to determine the results of
the table-reference that are accessible to the authorization ID or role of the subselect. Because the order
in which operators are evaluated is undefined for operators at the same precedence level, other search
conditions in the WHERE clause might be evaluated before the row access control search condition. So,
the other search conditions have access to the rows that are restricted by the row permission rules.
To ensure that sensitive data is protected, the predicates that reference user-defined functions that are
defined with the NOT SECURED option are always evaluated after the row access control search condition.

The column access control does not affect the operation of the WHERE clause.

Related concepts
Subqueries (Db2 Application programming and SQL)
Related tasks
Writing efficient subqueries (Db2 Performance)
Related reference
Examples of subselects
You can use the various clauses of the subselect to construct queries.

group-by-clause
The GROUP BY clause specifies a result table that consists of a grouping of the rows of intermediate result
table that is the result of the previous clause.

group-by-clause

GROUP BY

,

grouping-expression

grouping-sets

super-groups

In its simplest form, a GROUP BY clause contains a grouping-expression.

grouping-expression
A grouping-expression is an expression that defines the grouping of R. The following restrictions apply
to grouping-expression:

• If grouping-expression is a single column, the column name must unambiguously identify a column
of R.

• The result of grouping-expression cannot be a LOB data type (or a distinct type that is based on a
LOB) or an XML data type.

• grouping-expression cannot include any of the following items:

– A correlated column
– A host variable
– An aggregate function
– Any function or expression that is not deterministic or that is defined to have an external action

Chapter 6. Queries 1037

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_selectstmtsubquery.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_writeefficientsubquery.html

– A scalar fullselect
– A CASE expression whose searched-when-clause contains a quantified predicate, an IN predicate

using a fullselect, or an EXISTS predicate

More complex forms of the GROUP BY clause include grouping-sets and super-groups.

The result of GROUP BY is a set of groups of rows. In each group of more than one row, all values of each
grouping-expression are equal, and all rows with the same set of values of the grouping-expression are in
the same group. For grouping, all null values for a grouping-expression are considered equal.

If a grouping-expression contains DECFLOAT values, the DECFLOAT values with the same value will be in
the same group. But the number of digits returned for each group is unpredictable.

Because every row of a group contains the same value of any grouping-expression, a grouping-expression
can be used in a search condition in a HAVING clause or an expression in a SELECT clause, or in a
sort-key-expression of an ORDER BY clause. In each case, the reference specifies only one value for each
group. For example, if grouping-expression is col1+col2, col1+col2+3 would be an allowed expression
in the select list. Associative rules for expressions do not allow the similar expression of 3+col1+col2,
unless parentheses are used to ensure that the corresponding expression is evaluated in the same order.
Thus, 3+(col1+col2) would also be allowed in the select list. If the concatenation operator is used,
grouping-expression must be used exactly as the expression was specified in the select list.

If a grouping-expression contains varying-length strings with trailing blanks, the values in the group can
differ in the number of trailing blanks and might not all have the same length. In that case, a reference
to grouping-expression still specifies only one value for each group, but the value for a group is chosen
arbitrarily from the available set of values. Thus, the actual length of the result value is unpredictable.

Row access controls do not affect the operation of the GROUP BY clause.

Related links:

• select-clause
• “Examples of subselects” on page 1048

grouping-sets

GROUPING SETS (

,

grouping-expression

super-groups

(

,

grouping-expression

super-groups

)

)

A grouping-sets specification can be used to specify multiple grouping clauses in a single statement.
This can be thought of as the union of two or more groups of rows into a single result set. It is logically
equivalent to the union of multiple subselects with the GROUP BY clause in each subselect corresponding
to one grouping set. A grouping set can be a single element or can be a list of elements delimited by
parentheses, where an element is either a grouping-expression or a super-group. The groups can be
computed with a single pass over the base table using grouping-sets.

Grouping sets are the fundamental building blocks for GROUP BY operations. A simple GROUP BY with a
single column can be considered a grouping set with one element. For example, the following clauses are
equivalent:

Simple GROUP BY clause Equivalent GROUPING SETS clause

 GROUP BY a GROUP BY GROUPING SETS((a))

1038 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Simple GROUP BY clause Equivalent GROUPING SETS clause

 GROUP BY a,b,c GROUP BY GROUPING SETS((a,b,c))

Non-aggregation columns from the select list of the subselect that are excluded from a grouping set will
return a null for such columns for each row generated for that grouping set. This reflects the fact that
aggregation was done without considering the values for those columns.

If GROUPING SETS is specified, a table-reference in the associated FROM clause must not contain a
column defined with a field procedure.

Related links:

• “Examples of grouping sets, rollup, and cube queries” on page 1054

super-groups
ROLLUP (grouping-expression-list)

1

CUBE (grouping-expression-list)
2

grand-total

grouping-expression-list
,

grouping-expression

(

,

grouping-expression)

grand-total
()

Notes:
1 Alternate specification when used alone in a group-by-clause is: grouping-expression-list WITH
ROLLUP.
2 Alternate specification when used alone in group-by-clause is: grouping-expression-list WITH CUBE.

ROLLUP (grouping-expression-list)
A ROLLUP grouping produces a result set that contains sub-total rows in addition to the "regular"
grouped rows. Sub-total rows are "super-aggregate" rows that contain further aggregates whose
values are derived by applying the same aggregate functions that were used to obtain the grouped
rows. These rows are called sub-total rows, because that is their most common use. However, any
aggregate function can be used for the aggregation.

A ROLLUP grouping is a series of grouping-sets. The n elements of the ROLLUP translate to n+1
grouping sets.

The general specification of a ROLLUP with n elements, as shown in the first column of the following
table, is equivalent to the n+1 grouping sets as shown in the second column of the table:

ROLLUP clause with n elements Equivalent GROUPING SETS clause

GROUP BY ROLLUP(C1,C2,...,Cn-1,Cn) GROUP BY GROUPING SETS((C1,C2,...,Cn-1,Cn)
 (C1,C2,...,Cn-1)
 ...
 (C1,C2)
 (C1)
 ())

Chapter 6. Queries 1039

Note: The order in which the elements of the grouping-expression-list are specified is significant
for ROLLUP. As the following table shows, the initial element in the grouping-expression-list for the
ROLLUP is the final element in the GROUPING SET.

ROLLUP clause Equivalent GROUPING SETS clause

 GROUP BY ROLLUP(a,b) GROUP BY GROUPING SETS((a,b)
 (a)
 ())

 GROUP BY ROLLUP(b,a) GROUP BY GROUPING SETS((b,a)
 (b)
 ())

The ORDER BY clause is the only way to guarantee the order of the rows in the result set.

Related links:

• “GROUPING aggregate function” on page 363
• “order-by-clause” on page 1043
• “Examples of grouping sets, rollup, and cube queries” on page 1054

CUBE (grouping-expression-list)
A CUBE grouping produces a result set that contains all the rows of a ROLLUP aggregation and, in
addition, contains "cross-tabulation" rows. Cross-tabulation rows are additional "super-aggregate"
rows that are not part of an aggregation with sub-totals.

Similar to a ROLLUP, a CUBE grouping can also be thought of as a series of grouping-sets. In the case
of a CUBE, all permutations of the cubed grouping-expression-list are computed along with the grand
total. Therefore, the n elements of a CUBE translate to 2n grouping-sets.

For example, the following clauses are equivalent:

CUBE clause Equivalent GROUPING SETS clause

 GROUP BY CUBE(a,b,c) GROUP BY GROUPING SETS((a,b,c)
 (a,b)
 (a,c)
 (b,c)
 (a)
 (b)
 (c)
 ())

Note: The three elements of the CUBE translate into eight grouping sets.

The order specified for the elements does not matter for CUBE. CUBE (DayOfYear,
Sales_Person) and CUBE (Sales_Person, DayOfYear) yield the same result sets (the result
sets might not be in the same order).

The ORDER BY clause is the only way to guarantee the order of the rows in the result set.

Related links:

• “GROUPING aggregate function” on page 363
• “order-by-clause” on page 1043
• “Examples of grouping sets, rollup, and cube queries” on page 1054

grouping-expression-list
A grouping-expression-list is used within a ROLLUP or CUBE clause to define the number of elements
in the ROLLUP or CUBE operation. The number of elements is controlled by using parentheses to
delimit elements with multiple grouping-expression elements.

1040 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

For example, suppose that a query is to return the total expenses for the ROLLUP of City within
Province but not within County. Without a grouping-expression-list, the following clause results in
unwanted subtotal rows for County:

 GROUP BY ROLLUP(Province, County, City)

Compare the equivalent GROUPING SETS clause:

 GROUP BY GROUPING SETS((Province, County, City)
 (Province, County)
 (Province)
 ())

In the following clause, the composite (County, City) forms one element in the ROLLUP clause and,
therefore, a query that uses the following clause will yield the required result:

 GROUP BY ROLLUP(Province, (County, City))

In other words, this is a two-element ROLLUP, which is equivalent to the following GROUPING SETS
clause:

 GROUP BY GROUPING SETS((Province, County, City)
 (Province)
 ())

Related links:

• “GROUPING aggregate function” on page 363
• “order-by-clause” on page 1043
• “Examples of grouping sets, rollup, and cube queries” on page 1054

grand-total
Both ROLLUP and CUBE return a row which is the overall aggregation (grand total). This can be
separately specified with empty parentheses within the GROUPING SETS clause. It can also be
specified directly in the GROUP BY clause, although there is no effect on the result of the query.

Related links:

• “Examples of grouping sets, rollup, and cube queries” on page 1054

Combined groupings
The different types of GROUP BY clause can be combined. When simple grouping-expression expressions
are combined with other groups, those expressions are prepended to the resulting grouping sets. When
ROLLUP or CUBE expressions are combined, those expressions form additional grouping set entries on
the remaining expression, according to the definition of either a ROLLUP expression or a CUBE expression.

Table 166. Combined grouping-expression and equivalent GROUPING SETS clauses

GROUP BY clause with combined grouping-
expression

Equivalent GROUP BY clause with GROUPING
SETS clause

 GROUP BY a, ROLLUP(b,c) GROUP BY GROUPING SETS((a,b,c)
 (a,b)
 (a))

 GROUP BY a, b, ROLLUP(c,d) GROUP BY GROUPING SETS((a,b,c,d)
 (a,b,c)
 (a,b))

Chapter 6. Queries 1041

Table 166. Combined grouping-expression and equivalent GROUPING SETS clauses (continued)

GROUP BY clause with combined grouping-
expression

Equivalent GROUP BY clause with GROUPING
SETS clause

 GROUP BY ROLLUP(a), ROLLUP(b,c) GROUP BY GROUPING SETS((a,b,c)
 (a,b)
 (a)
 (b,c)
 (b)
 ())

 GROUP BY ROLLUP(a), CUBE(b,c) GROUP BY GROUPING SETS((a,b,c)
 (a,b)
 (a,c)
 (a)
 (b,c)
 (b)
 (c)
 ())

 GROUP BY CUBE(a,b), ROLLUP(c,d) GROUP BY GROUPING SETS((a,b,c,d)
 (a,b,c)
 (a,b)
 (a,c,d)
 (a,c)
 (a)
 (b,c,d)
 (b,c)
 (b)
 (c,d)
 (c)
 ())

 GROUP BY a, ROLLUP(a,b) GROUP BY GROUPING SETS((a,b)
 (a))

1

Note:

1. Combined grouping sets also eliminate duplicates within each grouping set.

A more complete example of combining grouping sets is to construct a result set that eliminates certain
rows that might be returned for a full CUBE aggregation. For example, consider the following GROUP BY
clause:

 GROUP BY Region,
 ROLLUP(Sales_Person, WEEK(Sales_Date)),
 CUBE(YEAR(Sales_Date), MONTH (Sales_Date))

The column listed immediately to the right of GROUP BY is grouped, the columns within the parenthesis
following ROLLUP are rolled up, and the columns within the parenthesis following CUBE are cubed. Thus,
the GROUP BY clause results in a cube of MONTH within YEAR which is then rolled up within WEEK within
Sales_Person within the Region aggregation. This GROUP BY does not result in any grand total row or any
cross-tabulation rows on Region, Sales_Person or WEEK(Sales_Date), so it produces fewer rows than the
following clause:

 GROUP BY ROLLUP (Region, Sales_Person, WEEK(Sales_Date),
 YEAR(Sales_Date), MONTH(Sales_Date))

1042 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

having-clause
The HAVING clause specifies a result table that consists of those groups of the intermediate result table
for which the search-condition is true. The intermediate result table is the result of the previous clause. If
this clause is not GROUP BY, the intermediate result table is considered a single group with no grouping
columns of the previous clause of the subselect.

having-clause

HAVING search-condition

Each column-name in search-condition must be one of the following:

• Unambiguously identify a grouping column of the intermediate result table
• Be specified within an aggregate function22

• Be a correlated reference. A column-name is a correlated reference if it identifies a column of a table,
view, common-table-expression, or nested-table-expression that is identified in an outer subselect

A group of the intermediate result table to which the search condition is applied supplies the argument for
each function in the search condition, except for any function whose argument is a correlated reference.

If the search condition contains a subquery, the subquery can be thought of as being executed each time
the search condition is applied to a group of the intermediate result table, and the results used in applying
the search condition. In actuality, the subquery is executed for each group only if it contains a correlated
reference. For an illustration of the difference, see Example 4 and Example 5.

A correlated reference to a group of the intermediate result table must either identify a grouping column
or be contained within an aggregate function.

When HAVING is used without GROUP BY, any expression or column name in the select list must appear
within an aggregate function.

The RID built-in function and the ROW CHANGE expression cannot be specified in a HAVING clause
unless they are within an aggregate function.

Row access controls do not affect the operation of the HAVING clause.

Related concepts
Subqueries (Db2 Application programming and SQL)
Related tasks
Writing efficient subqueries (Db2 Performance)
Related reference
Examples of subselects
You can use the various clauses of the subselect to construct queries.

order-by-clause
The ORDER BY clause specifies an ordering of the rows of the result table.

order-by-clause

22 See Chapter 4, “Built-in functions,” on page 341 for restrictions that apply to the use of aggregate
functions.

Chapter 6. Queries 1043

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_selectstmtsubquery.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_writeefficientsubquery.html

ORDER BY

,

sort-key
ASC

DESC

INPUT SEQUENCE

ORDER OF table-designator

sort-key:

column-name

integer

sort-key-expression

A subselect that contains an ORDER BY clause cannot be specified in the outermost fullselect of a view

If the subselect is not enclosed within parentheses and is not the outermost fullselect, the ORDER BY
clause cannot be specified.

An ORDER BY clause that is specified in a subselect only affects the order of the rows that are returned by
the query if the subselect is the outermost fullselect, except when a nested subselect includes an ORDER
BY clause and the outermost fullselect specifies that the ordering of the rows should be retained (by using
the ORDER OF table-designator clause).

Multiple ORDER BY clauses can be specified in the same subselect if each clause is separated with
parentheses.

INPUT SEQUENCE
Indicates that the result table reflects the input order of the rows specified in the VALUES clause of
an INSERT statement. INPUT SEQUENCE ordering can be specified only when an INSERT statement is
specified in a from-clause.

ORDER OF table-designator
Specifies that the same ordering of the rows for the result table that is designated by table-designator
should be applied to the result table of the subselect (or fullselect) that contains the ORDER OF
specification. There must be a table reference in the FROM clause of the subselect (or fullselect) that
specifies this clause and matches table-designator.

For an ORDER BY clause in an OLAP specification, table-designator must not specify a table function,
a collection-derived table, a materialized view, a nested table expression that is materialized, an alias,
or a synonym.

sort-key
A column-name, integer, or sort-key-expression that specifies the value that is to be used to order the
rows of the result of the subselect.

If a single sort-key is identified, the rows are ordered by the values of that sort-key. If more than one
sort-key is identified, the rows are ordered by the values of the first sort-key, then by the values of the
second sort-key, and so on. A sort-key cannot be a LOB or XML expression.

The result table can be ordered by a named column in the select list by specifying a sort-key that is an
integer or the column name. The result table can be ordered by an unnamed column in the select list
by specifying a sort-key that is an integer or, in some cases, by a sort-key-expression that matches the
expression in the select list.

1044 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

column-name
An identifier that usually identifies a column of the result table. In this case, column-name must
be the name of a named column in the select list. If the fullselect includes a set operator, the
column name cannot be qualified.

If the query is a subselect, the column-name can also identify a column name of a table, view,
or nested table expression identified in the FROM clause, including a column that is defined as
implicitly hidden. The subselect must not include any of the following:

• DISTINCT in the select list
• Aggregate functions in the select list
• GROUP BY clause

integer
An unsigned integer that must be greater than 0 and not greater than the number of columns in
the result table. The integer n identifies the nth column of the result table.

sort-key-expression
An expression that is not simply a column-name or unsigned integer constant. The query to which
ordering is applied must be a subselect to use this form of the sort-key.

The sort-key-expression cannot include an expression that is not deterministic or a function that
is defined to have an external action except for the RID built-in function and the ROW CHANGE
expression. Any column name in the expression must conform to the rules described Column
names in sort keys. If sort-key-expression includes an aggregate function, the input arguments
to that function must not reference a named column in the select list that is derived from an
aggregate function.

If DISTINCT is used in the select list of the subselect, sort-key-expression must match an
expression in the select list of the subselect. Scalar-fullselects are never matched.

If the subselect is grouped, the sort-key-expression might or might not be in the select list of the
subselect. When sort-key-expression is not in the select list the following rules apply:

• Each expression in the ORDER BY clause must either:

– Use one or more grouping expressions
– Use a column name that either unambiguously identifies a grouping column of R or is

specified within a aggregate function.
• Each expression in the ORDER BY clause must not contain a scalar fullselect.

ASC
Uses the values of the sort-key in ascending order.

ASC is the default.

DESC
Uses the values of the sort-key in descending order.

Ordering is performed in accordance with the comparison rules described in Chapter 2, “Language
elements in SQL,” on page 75, beginning on page “Numeric comparisons” on page 156. The null value is
higher than all other values. If your ordering specification does not determine a complete ordering, rows
with duplicate values of the last identified sort-key have an arbitrary order. If you do not specify ORDER
BY, the rows of the result table have an arbitrary order.

Column access controls do not effect the operation of the ORDER BY clause. The order is based on the
original column values. However, after column masks are applied, the masked values in the final result
table might not reflect the order of the original column values.

Column names in sort keys: A column name in a sort-key must conform to the following rules:

• If the column name is qualified, the query must be a subselect. The column name must unambiguously
identify a column of a table, view, or nested table expression in the FROM clause of the subselect; its
value is used to compute the value of the sort specification.

Chapter 6. Queries 1045

• If the column name is unqualified and the query is a subselect:

– If the column name is identical to the name of more than one column of the result table, the column
name must unambiguously identify a column of some table, view, or nested table expression in the
FROM clause of the ordering subselect.

– If the column name is identical is one column of the result table, its value is used to compute the
value of the sort specification.

– If the column name is not identical to a column in the result table, it must unambiguously identify a
column of a table, view, or nested table expression in the FROM clause of the subselect. If the column
name is identical to one column of a table, view, or nested table expression in the FROM clause of the
subselect, its value is used to compute the value of the sort specification.

Related reference
Examples of subselects
You can use the various clauses of the subselect to construct queries.

offset-clause
The offset-clause specifies the number of rows of the result table to skip before any rows are retrieved.

offset-clause

OFFSET offset-row-count ROW

ROWS

The offset-clause specifies that the number of rows specified by offset-row-count should be skipped
before rows are retrieved. If offset-clause is not specified, the default is equivalent to OFFSET 0 ROWS.
If offset-row-count specifies more rows than the number of rows in the intermediate result table, the
intermediate result table is treated as an empty result table.
offset-row-count

A constant or variable that specifies the number of rows to skip before any rows are retrieved.
offset-row-count must be a numeric value that is a positive number or zero. If the value is not a
BIGINT value, the value is cast to a BIGINT value. offset-row-count must not be the null value.

When the offset-clause is specified as a prepare attribute, offset-row-count must not reference a
variable.

A subselect or fullselect that contains an offset-clause is only allowed as the outermost fullselect in a
prepared SQL statement or a DECLARE CURSOR statement. A subselect or fullselect that contains an
offset-clause is not allowed in other contexts including the following contexts:

• The definition of a view
• The definition of a materialized query table
• The RETURN statement of an SQL table function
• The definition of a row permission
• The definition of a column mask
• The outermost fullselect for a sensitive dynamic cursor

An offset-clause can also be specified in a SELECT INTO statement.

If a subselect, fullselect, or SELECT INTO statement includes an offset-clause, the select list of that
subselect, fullselect, or SELECT INTO statement must not contain an expression that is not deterministic
or that has external action.

If the fullselect contains an SQL data change statement in the FROM clause, all rows of the result table
are modified regardless of the number of rows to skip.

The offset-clause must not be specified in the outer fullselect for a sensitive dynamic scrollable cursor.

1046 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Determining a predictable set of rows to skip requires the specification of an ORDER BY clause with sort
keys that uniquely identify the sort order of each row in the intermediate result table. If the intermediate
result table includes duplicate sort keys for some rows, the order of these rows is not deterministic. If
there is no ORDER BY clause, the intermediate result table is not in a deterministic order. If the order of
the intermediate result table is not deterministic, the set of skipped rows is unpredictable.

If both the offset-clause and the ORDER BY clause are specified, the ordering is performed on the entire
result table prior to skipping the specified number of rows.

Row access controls can indirectly affect the offset-clause because row access controls affect the rows
that are accessible to the authorization ID or role of the fullselect. Column access controls do not affect
the offset-clause.

The offset-clause can be used to return rows from a point in the result table to the end of the result table.
In this case, the fetch-clause is not specified.

Notes
Syntax alternatives:

The fetch-clause is an alternative for setting the number of rows to skip when specifying the maximum
number of rows to retrieve. See“fetch-clause” on page 1047.

Related tasks
Fetching a limited number of rows (Db2 Performance)
Related reference
Examples of subselects
You can use the various clauses of the subselect to construct queries.

fetch-clause
The fetch-clause limits the number of rows that can be fetched.

FETCH FIRST

NEXT

1

fetch-row-count

ROW

ROWS

ONLY

The fetch-clause sets a maximum number of rows that can be retrieved. It specifies that an application
does not want to retrieve more than fetch-row-count rows, regardless of how many rows there might be
in the intermediate result table when this clause is not specified. An attempt to fetch beyond fetch-row-
count rows is handled the same way as normal end of data.

A subselect or fullselect that contains a fetch-clause cannot be specified in the following objects:

• The outermost fullselect of a view
• The definition of a materialized query table

A fetch-clause can also be specified in a SELECT INTO statement.

Determining a predictable set of rows to retrieve requires the specification of an ORDER BY clause with
sort keys that would uniquely identify the sort order of each row in the intermediate result table. If
the intermediate result table includes duplicate sort keys for some rows, the order of these rows is not
deterministic. If there is no ORDER BY clause, the intermediate result table is not in a deterministic order.
If the order of the intermediate result table is not deterministic, the set of rows retrieved is unpredictable.
If both the fetch-clause and the ORDER BY clause are specified, the fetch-clause is processed on the
ordered data.

If the fullselect contains an SQL data change statement in the FROM clause, all the rows are modified
regardless of the limit on the number of rows fetched.

Chapter 6. Queries 1047

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_fetchfirstnrows.html

fetch-row-count

A constant or variable that specifies the maximum number of rows to retrieve. fetch-row-count must
be a numeric value that is a positive number or zero. If the value is not BIGINT, the value is cast to a
BIGINT value. fetch-row-count must not be the null value.

When the fetch-clause is specified as a prepare attribute, fetch-row-count must not reference a
variable.

Use of the fetch-clause with a constant for fetch-row-count that is not greater than the maximum big
integer influences query optimization of the subselect or fullselect, based on the fact that, at most, a
known number of rows will be retrieved.

Limiting the result table to a specified number of rows can improve performance. In some cases, the
database manager will cease processing the query when it has determined the specified number of rows.
If the offset-clause is also specified with a constant for offset-row-count, the database manager will also
consider the offset value constant in determining when to cease processing.

Row access controls can indirectly affect the fetch-clause because row access controls affect the rows
that are accessible to the authorization ID or role of the subselect or fullselect. Column access controls do
no affect the fetch-clause.

Notes:
Syntax alternatives:

• The keywords FIRST and NEXT can be used interchangeably. The result is unchanged; however,
using the keyword NEXT is generally more readable when using the offset-clause.

• The keywords ROW and ROWS can be used interchangeably. The result is unchanged, however,
using ROWS is generally more readable when associated with a number of rows other than 1.

• The following alternatives are supported for compatibility with SQL used by other database
products. These alternatives are non-standard and should not be used.

Alternative syntax Equivalent syntax

LIMIT x FETCH FIRST x ROWS ONLY

LIMIT x OFFSET y OFFSET y ROWS FETCH NEXT x ROWS ONLY

LIMIT y, x OFFSET y ROWS FETCH NEXT x ROWS ONLY

Related concepts
Fast implicit close (Db2 Performance)
Related tasks
Fetching a limited number of rows (Db2 Performance)
Related reference
Examples of subselects
You can use the various clauses of the subselect to construct queries.
offset-clause
The offset-clause specifies the number of rows of the result table to skip before any rows are retrieved.

Examples of subselects
You can use the various clauses of the subselect to construct queries.

The following example subselects illustrate how to use the various clauses of the subselect to construct
queries.

Example 1: Show all rows of the table DSN8C10.EMP.

 SELECT * FROM DSN8C10.EMP;

1048 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_fastimplicitclose.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_fetchfirstnrows.html

Example 2: Show the job code, maximum salary, and minimum salary for each group of rows of
DSN8C10.EMP with the same job code, but only for groups with more than one row and with a maximum
salary greater than 50000.

 SELECT JOB, MAX(SALARY), MIN(SALARY)
 FROM DSN8C10.EMP
 GROUP BY JOB
 HAVING COUNT(*) > 1 AND MAX(SALARY) > 50000;

Example 3: For each employee in department E11, get the following information from the table
DSN8C10.EMPPROJACT: employee number, activity number, activity start date, and activity end date.
Using the CHAR function, convert the start and end dates to their USA formats. Get the needed
department information from the table DSN8C10.EMP.

 SELECT EMPNO, ACTNO, CHAR(EMSTDATE,USA), CHAR(EMENDATE,USA)
 FROM DSN8C10.EMPPROJACT
 WHERE EMPNO IN (SELECT EMPNO FROM DSN8C10.EMP
 WHERE WORKDEPT = 'E11');

Example 4: Show the department number and maximum departmental salary for all departments whose
maximum salary is less than the average salary for all employees. (In this example, the subquery would
be executed only one time.)

 SELECT WORKDEPT, MAX(SALARY)
 FROM DSN8C10.EMP
 GROUP BY WORKDEPT
 HAVING MAX(SALARY) < (SELECT AVG(SALARY)
 FROM DSN8C10.EMP);

Example 5: Show the department number and maximum departmental salary for all departments whose
maximum salary is less than the average salary for employees in all other departments. (In contrast to
Example 4, the subquery in this statement, containing a correlated reference, would need to be executed
for each group.)

 SELECT WORKDEPT, MAX(SALARY)
 FROM DSN8C10.EMP Q
 GROUP BY WORKDEPT
 HAVING MAX(SALARY) < (SELECT AVG(SALARY)
 FROM DSN8C10.EMP
 WHERE NOT WORKDEPT = Q.WORKDEPT);

Example 6: For each group of employees hired during the same year, show the year-of-hire and current
average salary. (This example demonstrates how to use the AS clause in a FROM clause to name a derived
column that you want to refer to in a GROUP BY clause.)

 SELECT HIREYEAR, AVG(SALARY)
 FROM (SELECT YEAR(HIREDATE) AS HIREYEAR, SALARY
 FROM DSN8C10.EMP) AS NEWEMP
 GROUP BY HIREYEAR;

Example 7: For an example of how to group the results of a query by an expression in the SELECT clause
without having to retype the expression, see Example 4 for CASE expressions.

Example 8: Get the employee number and employee name for all the employees in DSN8C10.EMP. Order
the results by the date of hire.

 SELECT EMPNO, FIRSTNME, LASTNAME
 FROM DSN8C10.EMP
 ORDER BY HIREDATE;

Example 9: Select all the rows from tables T1 and T2 and order the rows such that the rows from table
T1 are first and are ordered by column C1, followed by the rows from T2, which are ordered by column
C2. The rows of T1 are retrieved by one subselect which is connected to the results of another subselect
that retrieves the rows from T2. Each subselect specifies the ordering for the rows from the referenced
table. Note that both subselects need to be enclosed in parenthesis because each subselect is not the

Chapter 6. Queries 1049

outermost fullselect. Because each of the two ORDER BY clauses appears in a parenthesized subselect,
neither ORDER BY clause provides an ordering for the outermost result table.

(SELECT * FROM T1 ORDER BY C1)
UNION
(SELECT * FROM T2 ORDER BY C2);

Example 10: Specify the ORDER BY clause to order the results of a union using the second column of
the result table if the union. In this example, the second ORDER BY clause applies to the results of the
outermost fullselect (the result of the union) rather than to the second subselect. If the intent is to apply
the second ORDER BY clause to the second subselect, the second subselect should be enclosed within
parentheses as shown in Example 9.

(SELECT * FROM T1 ORDER BY C1)
UNION
SELECT * FROM T2 ORDER BY C2

Example 11: Retrieve all rows of table T1 with no specific ordering) and connect the result table to the
rows of table T2, which have been ordered by the first column of table T2. The ORDER BY ORDER OF
clause in the fullselect specifies that the order of the rows in the result table of the union is to be inherited
by the final result.

SELECT *
 FROM (SELECT * FROM T1
 UNION ALL
 (SELECT * FROM T2 ORDER BY 1)
) AS UTABLE
 ORDER BY ORDER OF UTABLE;

Example 12: The following example uses a query to join data from a table to the result table of a nested
table expression. The query uses the ORDER BY ORDER OF clause to order the rows of the result table
using the order of the rows of the nested table expression.

SELECT T1.C1, T1.C2, TEMP.Cy, TEMP.Cx
 FROM T1,
 (SELECT T2.C1, T2.C2 FROM T2 ORDER BY 2) AS TEMP(Cx, Cy)
 WHERE Cy = T1.C1
 ORDER BY ORDER OF TEMP;

Example 13: Using the EMP_ACT table, find the project numbers that have an employee whose salary is in
the top three salaries for all employees.

SELECT EMP_ACT.EMPNO, PROJNO
 FROM EMP_ACT
 WHERE EMP_ACT.EMPNO IN
 (SELECT EMPLOYEE.EMPNO
 FROM EMPLOYEE
 ORDER BY SALARY DESC
 FETCH FIRST 3 ROWS ONLY);

Example 14: Assume that an external function named ADDYEARS exists. For a given date, the function
adds a given number of years and returns a new date. (The data types of the two input parameters to the
function are DATE and INTEGER.) Get the employee number and employee name for all employees who
have been hired within the last 5 years.

 SELECT EMPNO, FIRSTNME, LASTNAME
 FROM DSN8C10.EMP
 WHERE ADDYEARS(HIREDATE, 5) > CURRENT DATE;

To distinguish the different types of joins, to show nested table expressions, and to demonstrate how to
combine join columns, the remaining examples use these two tables:

The PARTS table The PRODUCTS table
PART PROD# SUPPLIER PROD# PRODUCT PRICE
======= ===== ============ ===== =========== =====
WIRE 10 ACWF 505 SCREWDRIVER 3.70
OIL 160 WESTERN_CHEM 30 RELAY 7.55
MAGNETS 10 BATEMAN 205 SAW 18.90

1050 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

PLASTIC 30 PLASTIK_CORP 10 GENERATOR 45.75
BLADES 205 ACE_STEEL

Example 15: Join the tables on the PROD# column to get a table of parts with their suppliers and the
products that use the parts:

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT
 FROM PARTS, PRODUCTS
 WHERE PARTS.PROD# = PRODUCTS.PROD#;

or

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT
 FROM PARTS INNER JOIN PRODUCTS
 ON PARTS.PROD# = PRODUCTS.PROD#;

Either one of these two statements give this result:

PART SUPPLIER PROD# PRODUCT
======= ============ ===== ==========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW

Notice two things about the example:

• There is a part in the parts table (OIL) whose product (#160) is not listed in the products table.
There is a product (SCREWDRIVER, #505) that has no parts listed in the parts table. Neither OIL nor
SCREWDRIVER appears in the result of the join.

An outer join, however, includes rows where the values in the joined columns do not match.
• There is explicit syntax to express that this familiar join is not an outer join but an inner join. You can

use INNER JOIN in the FROM clause instead of the comma. Use ON when you explicitly join tables in the
FROM clause.

You can specify more complicated join conditions to obtain different sets of results. For example,
eliminate the suppliers that begin with the letter A from the table of parts, suppliers, product numbers
and products:

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT
 FROM PARTS INNER JOIN PRODUCTS
 ON PARTS.PROD# = PRODUCTS.PROD#
 AND SUPPLIER NOT LIKE 'A%';

The result of the query is all rows that do not have a supplier that begins with A:

PART SUPPLIER PROD# PRODUCT
======= ============ ===== ==========
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY

Example 16: Join the tables on the PROD# column to get a table of all parts and products, showing the
supplier information, if any.

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT
 FROM PARTS FULL OUTER JOIN PRODUCTS
 ON PARTS.PROD# = PRODUCTS.PROD#;

The result is:

PART SUPPLIER PROD# PRODUCT
======= ============ ===== ==========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW
OIL WESTERN_CHEM 160 (null)
(null) (null) (null) SCREWDRIVER

Chapter 6. Queries 1051

The clause FULL OUTER JOIN includes unmatched rows from both tables. Missing values in a row of the
result table are filled with nulls.

Example 17: Join the tables on the PROD# column to get a table of all parts, showing what products, if
any, the parts are used in:

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT
 FROM PARTS LEFT OUTER JOIN PRODUCTS
 ON PARTS.PROD# = PRODUCTS.PROD#;

The result is:

PART SUPPLIER PROD# PRODUCT
======= ============ ===== ==========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW
OIL WESTERN_CHEM 160 (null)

The clause LEFT OUTER JOIN includes rows from the table identified before it where the values in the
joined columns are not matched by values in the joined columns of the table identified after it.

Example 18: Join the tables on the PROD# column to get a table of all products, showing the parts used in
that product, if any, and the supplier.

SELECT PART, SUPPLIER, PRODUCTS.PROD#, PRODUCT
 FROM PARTS RIGHT OUTER JOIN PRODUCTS
 ON PARTS.PROD# = PRODUCTS.PROD#;

The result is:

PART SUPPLIER PROD# PRODUCT
======= ============ ===== ===========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW
(null) (null) 505 SCREWDRIVER

The clause RIGHT OUTER JOIN includes rows from the table identified after it where the values in the
joined columns are not matched by values in the joined columns of the table identified before it.

Example 19: The result of Example 16 (a full outer join) shows the product number for SCREWDRIVER
as null, even though the PRODUCTS table contains a product number for it. This is because
PRODUCTS.PROD# was not listed in the SELECT list of the query. Revise the query using COALESCE
so that all part numbers from both tables are shown.

SELECT PART, SUPPLIER,
 COALESCE(PARTS.PROD#, PRODUCTS.PROD#) AS PRODNUM, PRODUCT
 FROM PARTS FULL OUTER JOIN PRODUCTS
 ON PARTS.PROD# = PRODUCTS.PROD#;

In the result, notice that the AS clause (AS PRODNUM), provides a name for the result of the COALESCE
function:

PART SUPPLIER PRODNUM PRODUCT
======= ============ ======= ===========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW
OIL WESTERN_CHEM 160 (null)
(null) (null) 505 SCREWDRIVER

Example 20: For all parts that are used in product numbers less than 200, show the part, the part supplier,
the product number, and the product name. Use a nested table expression.

SELECT PART, SUPPLIER, PRODNUM, PRODUCT
 FROM (SELECT PART, PROD# AS PRODNUM, SUPPLIER

1052 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 FROM PARTS
 WHERE PROD# < 200) AS PARTX
 LEFT OUTER JOIN PRODUCTS
 ON PRODNUM = PROD#;

The result is:

PART SUPPLIER PRODNUM PRODUCT
======= ============ ======= ==========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
OIL WESTERN_CHEM 160 (null)

Example 21: Examples of statements with DISTINCT specified more than once in a subselect:

 SELECT DISTINCT COUNT(DISTINCT A1), COUNT(A2)
 FROM T1;

 SELECT COUNT(DISTINCT A))
 FROM T1
 WHERE A3 > 0
 HAVING AVG(DISTINCT A4) >1;

Example 22: Examples of cross join to combine information for all customers with all states.
Use a cross join to combine information for all customers with all of the states. The cross join
combines all rows in both tables and creates a Cartesian product. Assume that the following tables
exist:

Customer:

ACOL1 | ACOL2

A1 | AA1
A2 | AA2
A3 | AA3

States:

BCOL1 | BCOL2

B1 | BB1
B2 | BB2

The following two select statements produce identical results:

SELECT * FROM customer CROSS JOIN states

SELECT * FROM A, B

The result table for either of these select statements looks like the following:

--
ACOL1 | ACOL2 | BCOL1 | BCOL2
--
A1 | AA1 | B1 | BB1
A1 | AA1 | B2 | BB2
A2 | AA2 | B1 | BB1
A2 | AA2 | B2 | BB2
A3 | AA3 | B1 | BB1
A3 | AA3 | B2 | BB2
--

Chapter 6. Queries 1053

Example 22: Example of using a typed-correlation-clause when referencing a generic table function.
In the following select statement, 'tf6' is a generic table function defined using the CREATE
FUNCTION (external table) statement. The typed-correlation-clause is used to define the column
names and data types of the result table.

SELECT c1, c2
 FROM T1(tf6('abcd'))
 AS z (c1 int, c2 varchar(100));

Examples of grouping sets, rollup, and cube queries
You can use GROUPING SETS, ROLLUP, and CUBE clauses of the GROUP BY clause in subselect queries.

The following examples illustrate the use of GROUPING SETS, ROLLUP, and CUBE clauses of the GROUP
BY clause in subselect queries. The queries in Examples 1–4 use a subset of the rows in the SALES tables
based on the predicate 'WEEK(SALES_DATE) = 13'. The other examples do not specify this predicate.

 SELECT WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 SALES_PERSON, SALES AS UNITS_SOLD
 FROM SALES
 WHERE WEEK(SALES_DATE) = 13;

The previous query returns results similar to the following:

 WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
 ----------- ----------- --------------- -----------
 13 6 LUCCHESSI 3
 13 6 LUCCHESSI 1
 13 6 LEE 2
 13 6 LEE 2
 13 6 LEE 3
 13 6 LEE 5
 13 6 GOUNOT 3
 13 6 GOUNOT 1
 13 6 GOUNOT 7
 13 7 LUCCHESSI 1
 13 7 LUCCHESSI 2
 13 7 LUCCHESSI 1
 13 7 LEE 7
 13 7 LEE 3
 13 7 LEE 7
 13 7 LEE 4
 13 7 GOUNOT 2
 13 7 GOUNOT 18
 13 7 GOUNOT 1

Example 1:
A query with a basic GROUP BY clause over 3 columns:

 SELECT WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 SALES_PERSON, SUM(SALES) AS UNITS_SOLD
 FROM SALES
 WHERE WEEK(SALES_DATE) = 13
 GROUP BY WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON
 ORDER BY WEEK, DAY_WEEK, SALES_PERSON;

The previous query returns results similar to the following:

 WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
 ----------- ----------- --------------- -----------
 13 6 GOUNOT 11
 13 6 LEE 12
 13 6 LUCCHESSI 4
 13 7 GOUNOT 21
 13 7 LEE 21
 13 7 LUCCHESSI 4

1054 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 2:
The following query produces the result based on two different grouping sets of rows from the SALES
table.

 SELECT WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 SALES_PERSON, SUM(SALES) AS UNITS_SOLD
 FROM SALES
 WHERE WEEK(SALES_DATE) = 13
 GROUP BY GROUPING SETS ((WEEK(SALES_DATE), SALES_PERSON),
 (DAYOFWEEK(SALES_DATE), SALES_PERSON))
 ORDER BY WEEK, DAY_WEEK, SALES_PERSON;

The previous query returns results similar to the following:

 WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
 ----------- ----------- --------------- -----------
 13 - GOUNOT 32
 13 - LEE 33
 13 - LUCCHESSI 8
 - 6 GOUNOT 11
 - 6 LEE 12
 - 6 LUCCHESSI 4
 - 7 GOUNOT 21
 - 7 LEE 21
 - 7 LUCCHESSI 4

The rows with WEEK 13 are from the first grouping set while the other rows are from the second
grouping set.

Example 3:
If you use the three distinct columns involved in the grouping sets in Example 2 in a ROLLUP clause,
you can see grouping sets for (WEEK,DAY_WEEK,SALES_PERSON), (WEEK, DAY_WEEK), (WEEK),
and grand-total.

SELECT WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 SALES_PERSON, SUM(SALES) AS UNITS_SOLD
 FROM SALES
 WHERE WEEK(SALES_DATE) = 13
 GROUP BY ROLLUP (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON)
 ORDER BY WEEK, DAY_WEEK, SALES_PERSON;

The previous query returns results similar to the following:

 WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
 ----------- ----------- --------------- -----------
 13 6 GOUNOT 11
 13 6 LEE 12
 13 6 LUCCHESSI 4
 13 6 - 27
 13 7 GOUNOT 21
 13 7 LEE 21
 13 7 LUCCHESSI 4
 13 7 - 46
 13 - - 73
 - - - 73

Example 4:
The same query as Example 3, using CUBE instead of ROLLUP results in additional grouping sets
for (WEEK,SALES_PERSON), (DAY_WEEK,SALES_PERSON), (DAY_WEEK), and (SALES_PERSON) in
the result.

 SELECT WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 SALES_PERSON, SUM(SALES) AS UNITS_SOLD
 FROM SALES
 WHERE WEEK(SALES_DATE) = 13
 GROUP BY CUBE (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON)
 ORDER BY WEEK, DAY_WEEK, SALES_PERSON;

Chapter 6. Queries 1055

The previous query returns results similar to the following:

 WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
 ----------- ----------- --------------- -----------
 13 6 GOUNOT 11
 13 6 LEE 12
 13 6 LUCCHESSI 4
 13 6 - 27
 13 7 GOUNOT 21
 13 7 LEE 21
 13 7 LUCCHESSI 4
 13 7 - 46
 13 - GOUNOT 32
 13 - LEE 33
 13 - LUCCHESSI 8
 13 - - 73
 - 6 GOUNOT 11
 - 6 LEE 12
 - 6 LUCCHESSI 4
 - 6 - 27
 - 7 GOUNOT 21
 - 7 LEE 21
 - 7 LUCCHESSI 4
 - 7 - 46
 - - GOUNOT 32
 - - LEE 33
 - - LUCCHESSI 8
 - - - 73

Example 5:
The following query returns a result set that includes a grand-total of the selected rows from the
SALES table together with a group of rows aggregated by SALES_PERSON and MONTH.

 SELECT SALES_PERSON,
 MONTH(SALES_DATE) AS MONTH,
 SUM(SALES) AS UNITS_SOLD
 FROM SALES
 GROUP BY GROUPING SETS ((SALES_PERSON, MONTH(SALES_DATE)),
 ()
)
 ORDER BY SALES_PERSON, MONTH;

The previous query returns results similar to the following:

 SALES_PERSON MONTH UNITS_SOLD
 --------------- ----------- -----------
 GOUNOT 3 35
 GOUNOT 4 14
 GOUNOT 12 1
 LEE 3 60
 LEE 4 25
 LEE 12 6
 LUCCHESSI 3 9
 LUCCHESSI 4 4
 LUCCHESSI 12 1
 - - 155

Example 6:
This example shows two simple ROLLUP queries followed by a query which treats the two ROLLUP
clauses as grouping sets in a single result set and specifies row ordering for each column involved in
the grouping sets.
Example 6-1:

 SELECT WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 SUM(SALES) AS UNITS_SOLD
 FROM SALES
 GROUP BY ROLLUP (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE))
 ORDER BY WEEK, DAY_WEEK;

1056 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The previous query returns results similar to the following:

 WEEK DAY_WEEK UNITS_SOLD
 ----------- ----------- -----------
 13 6 27
 13 7 46
 13 - 73
 14 1 31
 14 2 43
 14 - 74
 53 1 8
 53 - 8
 - - 155

Example 6-2:

 SELECT MONTH(SALES_DATE) AS MONTH,
 REGION,
 SUM(SALES) AS UNITS_SOLD
 FROM SALES
 GROUP BY ROLLUP (MONTH(SALES_DATE), REGION)
 ORDER BY MONTH, REGION;

The previous query returns results similar to the following:

 MONTH REGION UNITS_SOLD
 ----------- --------------- -----------
 3 Manitoba 22
 3 Ontario-North 8
 3 Ontario-South 34
 3 Quebec 40
 3 - 104
 4 Manitoba 17
 4 Ontario-North 1
 4 Ontario-South 14
 4 Quebec 11
 4 - 43
 12 Manitoba 2
 12 Ontario-South 4
 12 Quebec 2
 12 - 8
 - - 155

Example 6-3:

 SELECT WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 MONTH(SALES_DATE) AS MONTH,
 REGION,
 SUM(SALES) AS UNITS_SOLD
 FROM SALES
 GROUP BY GROUPING SETS (ROLLUP(WEEK(SALES_DATE),
 DAYOFWEEK(SALES_DATE)),
 ROLLUP(MONTH(SALES_DATE), REGION))
 ORDER BY WEEK, DAY_WEEK, MONTH, REGION;

The previous query returns results similar to the following:

 WEEK DAY_WEEK MONTH REGION UNITS_SOLD
 ----------- ----------- ----------- --------------- -----------
 13 6 - - 27
 13 7 - - 46
 13 - - - 73
 14 1 - - 31
 14 2 - - 43
 14 - - - 74
 53 1 - - 8
 53 - - - 8
 - - 3 Manitoba 22
 - - 3 Ontario-North 8
 - - 3 Ontario-South 34
 - - 3 Quebec 40
 - - 3 - 104
 - - 4 Manitoba 17
 - - 4 Ontario-North 1
 - - 4 Ontario-South 14

Chapter 6. Queries 1057

 - - 4 Quebec 11
 - - 4 - 43
 - - 12 Manitoba 2
 - - 12 Ontario-South 4
 - - 12 Quebec 2
 - - 12 - 8
 - - - - 155
 - - - - 155

Using the two ROLLUP clauses as grouping sets causes the result to include duplicate rows. There are
even two grand total rows.

Observe how the use of ORDER BY has affected the results:

• In the first grouped set, week 53 has been repositioned to the end.
• In the second grouped set, month 12 has now been positioned to the end and the regions now

display in alphabetic order.
• Null values are sorted high.

Example 7:
In queries that perform multiple ROLLUP operations in a single pass (such as Example 6-3) you might
need to indicate which grouping set produced each row. The following steps demonstrate how to
provide a column (called GROUP) which indicates the origin of each row in the result set. Origin means
which of the two grouping sets produced the row in the result set.
Step 1:

Introduce a way of generating new data values, using a query which selects from the SYSDUMMY1
table. The following query shows how a table (named "X") can be derived with two columns, "R1"
and "R2", and one row of data.

 SELECT R1,R2
 FROM (SELECT 'GROUP 1' as R1, 'GROUP 2' as R2
 FROM SYSIBM.SYSDUMMY1) AS X(R1,R2);

The results are similar to the following:

 R1 R2
 ------- -------
 GROUP 1 GROUP 2

Step 2:
Form the cross product of the table "X" with the SALES table. The following query adds columns
"R1" and "R2" to every row.

 SELECT R1, R2, WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 MONTH(SALES_DATE) AS MONTH,
 REGION,
 SALES AS UNITS_SOLD
 FROM SALES, (SELECT 'GROUP 1' as R1, 'GROUP 2' as R2
 FROM SYSIBM.SYSDUMMY1) AS X(R1,R2);

Step 3:
Now the "R1" and "R2" columns can be combined with the grouping sets to include "R1" and "R2"
in the rollup analysis.

 SELECT R1, R2,
 WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 MONTH(SALES_DATE) AS MONTH,
 REGION, SUM(SALES) AS UNITS_SOLD
 FROM SALES, (SELECT 'GROUP 1' as R1, 'GROUP 2' as R2
 FROM SYSIBM.SYSDUMMY1) AS X(R1,R2)
 GROUP BY GROUPING SETS ((R1, ROLLUP(WEEK(SALES_DATE),
 DAYOFWEEK(SALES_DATE))),
 (R2,ROLLUP(MONTH(SALES_DATE), REGION)))
 ORDER BY WEEK, DAY_WEEK, MONTH, REGION

1058 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The previous query returns results similar to the following:

 R1 R2 WEEK DAY_WEEK MONTH REGION UNITS_SOLD
 ------- ------- -------- --------- --------- ---------- -----------
 GROUP 1 - 13 6 - - 27
 GROUP 1 - 13 7 - - 46
 GROUP 1 - 13 - - - 73
 GROUP 1 - 14 1 - - 31
 GROUP 1 - 14 2 - - 43
 GROUP 1 - 14 - - - 74
 GROUP 1 - 53 1 - - 8
 GROUP 1 - 53 - - - 8
 - GROUP 2 - - 3 Manitoba 22
 - GROUP 2 - - 3 Ontario-North 8
 - GROUP 2 - - 3 Ontario-South 34
 - GROUP 2 - - 3 Quebec 40
 - GROUP 2 - - 3 - 104
 - GROUP 2 - - 4 Manitoba 17
 - GROUP 2 - - 4 Ontario-North 1
 - GROUP 2 - - 4 Ontario-South 14
 - GROUP 2 - - 4 Quebec 11
 - GROUP 2 - - 4 - 43
 - GROUP 2 - - 12 Manitoba 2
 - GROUP 2 - - 12 Ontario-South 4
 - GROUP 2 - - 12 Quebec 2
 - GROUP 2 - - 12 - 8
 - GROUP 2 - - - - 155
 GROUP 1 - - - - - 155

Step 4:
Because "R1" and "R2" are used in different grouping sets, whenever "R1" is non-null in the
result, "R2" is null and whenever "R2" is non-null in the result, "R1" is null. You can consolidate
these columns into a single column ("GROUP") using the COALESCE function. You can also use the
"GROUP" column in the ORDER BY clause to keep the results of the two grouping sets together.

 SELECT COALESCE(R1,R2) AS GROUP,
 WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 MONTH(SALES_DATE) AS MONTH,
 REGION, SUM(SALES) AS UNITS_SOLD
 FROM SALES, (SELECT 'GROUP 1' as R1, 'GROUP 2' as R2
 FROM SYSIBM.SYSDUMMY1) AS X(R1,R2)
 GROUP BY GROUPING SETS ((R1, ROLLUP(WEEK(SALES_DATE),
 DAYOFWEEK(SALES_DATE))),
 (R2, ROLLUP(MONTH(SALES_DATE),
 REGION)))
 ORDER BY GROUP, WEEK, DAY_WEEK, MONTH, REGION;

The previous query returns results similar to the following:

 GROUP WEEK DAY_WEEK MONTH REGION UNITS_SOLD
 ------- ----------- ----------- ----------- ---------- -----------
 GROUP 1 13 6 - - 27
 GROUP 1 13 7 - - 46
 GROUP 1 13 - - - 73
 GROUP 1 14 1 - - 31
 GROUP 1 14 2 - - 43
 GROUP 1 14 - - - 74
 GROUP 1 53 1 - - 8
 GROUP 1 53 - - - 8
 GROUP 1 - - - - 155
 GROUP 2 - - 3 Manitoba 22
 GROUP 2 - - 3 Ontario-North 8
 GROUP 2 - - 3 Ontario-South 34
 GROUP 2 - - 3 Quebec 40
 GROUP 2 - - 3 - 104
 GROUP 2 - - 4 Manitoba 17
 GROUP 2 - - 4 Ontario-North 1
 GROUP 2 - - 4 Ontario-South 14
 GROUP 2 - - 4 Quebec 11
 GROUP 2 - - 4 - 43
 GROUP 2 - - 12 Manitoba 2
 GROUP 2 - - 12 Ontario-South 4
 GROUP 2 - - 12 Quebec 2

Chapter 6. Queries 1059

 GROUP 2 - - 12 - 8
 GROUP 2 - - - - 155

Example 8:
The following example illustrates the use of various aggregate functions when using a CUBE clause.
The example also makes use of cast functions and rounding to produce a decimal result with
reasonable precision and scale.

 SELECT MONTH(SALES_DATE) AS MONTH,
 REGION,
 SUM(SALES) AS UNITS_SOLD,
 MAX(SALES) AS BEST_SALE,
 CAST(ROUND(AVG(DECIMAL(SALES)),2) AS DECIMAL(5,2))
 AS AVG_UNITS_SOLD
 FROM SALES
 GROUP BY CUBE(MONTH(SALES_DATE),REGION)
 ORDER BY MONTH, REGION;

The previous query returns results similar to the following:

MONTH REGION UNITS_SOLD BEST_SALE AVG_UNITS_SOLD
----------- --------------- ----------- ----------- --------------
 3 Manitoba 22 7 3.14
 3 Ontario-North 8 3 2.67
 3 Ontario-South 34 14 4.25
 3 Quebec 40 18 5.00
 3 - 104 18 4.00
 4 Manitoba 17 9 5.67
 4 Ontario-North 1 1 1.00
 4 Ontario-South 14 8 4.67
 4 Quebec 11 8 5.50
 4 - 43 9 4.78
 12 Manitoba 2 2 2.00
 12 Ontario-South 4 3 2.00
 12 Quebec 2 1 1.00
 12 - 8 3 1.60
 - Manitoba 41 9 3.73
 - Ontario-North 9 3 2.25
 - Ontario-South 52 14 4.00
 - Quebec 53 18 4.42
 - - 155 18 3.87

Related reference
group-by-clause
The GROUP BY clause specifies a result table that consists of a grouping of the rows of intermediate result
table that is the result of the previous clause.

fullselect
The fullselect is a component of the select-statement, ALTER TABLE statement for the definition of
a materialized query table, CREATE TABLE statement, CREATE VIEW statement, DECLARE GLOBAL
TEMPORARY TABLE statement, INSERT statement, UPDATE statement, and MERGE statement.

Authorization for fullselect
See “Authorization for queries” on page 1007.

1060 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Syntax for fullselect

subselect

( fullselect)

values-clause
1

UNION

EXCEPT

INTERSECT

DISTINCT

ALL

subselect

( fullselect)

order-by-clause offset-clause fetch-clause

values-clause
VALUES sequence-reference

(

,

 sequence-reference)

Notes:
1 If values-clause is specified, UNION, EXCEPT, INTERSECT, order-by-clause, or fetch-clause must not
also be specified. If fullselect contains a values-clause, the fullselect must only be specified in a select-
statement that is referenced by statement-name in a PREPARE statement.

Description
A fullselect that is enclosed in parentheses is called a subquery. For example, a subquery can be used in a
search condition.

A scalar-fullselect is a fullselect, enclosed in parentheses, that returns a single result row and a single
result column. If the result of the fullselect is no rows, then the null value is returned. An error is returned
if there is more than one row in the result. For example, a scalar-fullselect can be used in the assignment
clause of the DELETE, UPDATE and MERGE statements.

A row-fullselect is a fullselect that returns a single row. An error is returned if there is more than one
row in the result. For example, a row-fullselect can be used in the assignment clause of the DELETE and
UPDATE statements.

UNION, EXCEPT, or INTERSECT
The set operators, UNION, EXCEPT, and INTERSECT, correspond to the relational operators union,
difference, and intersection. A fullselect specifies a result table. If a set operator is not used, the
result of the fullselect is the result of the specified subselect. Otherwise, the result table is derived by
combining the two other result tables (R1 and R2) subject to the specified set operator.
UNION DISTINCT or UNION ALL

If UNION ALL is specified, the result consists of all rows in R1 and R2. With UNION DISTINCT, the
result is the set of all rows in either R1 or R2 with the redundant duplicate rows eliminated. In
either case, each row of the result table of the union is either a row from R1 or a row from R2.

The expression that corresponds to the nth column in R1 and R2 can reference columns with
column masks. The nth column of the result of the union can be derived from the masked values in
R1 or R2.

Chapter 6. Queries 1061

With UNION DISTINCT, the elimination of the duplicate rows is based on the unmasked values in
R1 and R2. Because all rows are from R1 or R2, the output values in the result table of the union
may vary when one or more of the following conditions occur:

• The expression corresponding to the nth column in R1 references columns with column masks,
but the expression corresponding to the nth column in R2 does not, or vise versa.

• The expressions corresponding to the nth column in R1 and R2 reference columns with different
column masks.

• The column mask definition references columns that are not the same target column for which
the column mask is defined, and those columns are not part of the UNION DISTINCT operation.
It is recommended that the column mask definition does not reference other columns from the
target table.

For example, a row in R1 is derived from the masked value, and a row in R2 is derived from the
unmasked value. If the row in the result table is from R1, the masked value is returned. If the row
in the result table is from R2, the unmasked value is returned.

EXCEPT and INTERSECT can be intermixed with UNION if the rows in R1 and R2 for EXCEPT and
INTERSECT do not reference columns with column masks.

For compatibility with other SQL implementations, UNIQUE can be specified as a synonym for
DISTINCT.

EXCEPT DISTINCT or EXCEPT ALL
If EXCEPT ALL is specified, the result consists of all rows from only R1, including significant
redundant duplicate rows. With EXCEPT DISTINCT, the result consists of all rows that are only in
R1, with redundant duplicate rows eliminated. In either case, each row in the result table of the
difference is a row from R1 that does not have a matching row in R2.

Column masks cannot be applied to the select lists that derive the final result table of set
operations if any of the set operators that are used to derive the final result table is EXCEPT
ALL or EXCEPT DISTINCT.

For compatibility with other SQL implementations, MINUS can be specified as a synonym for
EXCEPT, and UNIQUE can be specified as a synonym for DISTINCT.

INTERSECT DISTINCT or INTERSECT ALL
If INTERSECT ALL is specified, the result consists of all rows that are both in R1 and R2, including
significant redundant duplicate rows. With INTERSECT DISTINCT, the result consists of all rows
that are in both R1 and R2, with redundant duplicate rows eliminated. In either case each row of
the result table of the intersection is a row that exists in both R1 and R2.

Column masks cannot be applied to the select lists that derive the final result table of set
operations if any of the set operators that are used to derive the final result table is INTERSECT
ALL or INTERSECT DISTINCT.

For compatibility with other SQL implementations, UNIQUE can be specified as a synonym for
DISTINCT.

values-clause
Derives a result table by specifying the actual values, using sequence expressions, for each column of
a row in the result table.

A values-clause is specified by:

• A single sequence expression for a single-column result table.
• n sequence expressions, separated by commas and enclosed in parentheses. n is the number of

columns in the result table.

All result columns in a values-clause are unnamed.

values-clause must only be specified in the outer fullselect of select-statement for a PREPARE
statement.

1062 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

order-by-clause
See “subselect” on page 1009 for details of the order-by-clause. A fullselect that contains an order-
by-clause cannot be specified in the following contexts:

• The outermost fullselect of a view

Note: An ORDER BY clause in a fullselect might not affect the order of the rows returned by a
query. An ORDER BY clause only affects the order of the rows returned in a query if it is specified
in the outermost fullselect. An order-by-clause should be specified to ensure a predictable order for
determining the set of rows from the fullselect if the offset-clause or the fetch-clause are specified.

• In the outer fullselect in the RETURN statement of an SQL table function.

offset-clause
See “offset-clause” on page 1046 for details of the offset-clause. A fullselect that contains an offset-
clause cannot be specified in the following contexts:

• The definition of a view
• The definition of a materialized query table
• In the RETURN statement of an SQL table function
• The definition of a row permission
• The definition of a column mask
• The outermost fullselect for a sensitive dynamic cursor

fetch-clause
See “fetch-clause” on page 1047 for details of the fetch-clause. A fullselect that contains a fetch-
clause cannot be specified in the following contexts:

• The definition of a materialized query table
• The outermost fullselect of the definition of a view
• The outer fullselect in the RETURN statement of an SQL table function
• The outermost fullselect for a sensitive dynamic cursor

Rules for columns

• R1 and R2 must have the same number of columns, and the data type of the nth column of R1 must
be compatible with the data type of the nth column of R2.

• The nth column of the result of a set operator is derived from the nth columns of R1 and R2. The
attributes of the result columns are determined using the rules for result columns.

• R1 and R2 must not include columns having a data type of CLOB, BLOB, DBCLOB, XML, or a distinct
type that is based on any of these types. However, this rule is not applicable when UNION ALL is
used with the set operator.

• If the nth column of R1 and the nth column of R2 have the same result column name, the nth
column of the result table of the set operation has the same result column name. Otherwise, the nth
column of the result table of the set operation is unnamed.

• Qualified column names cannot be used in the ORDER BY clause when the set operators are
specified.

For information on the valid combinations of operand columns and the data type of the result column,
see “Rules for result data types” on page 166.

Duplicate rows

Two rows are duplicates if the value in each column in the first row is equal to the corresponding value
of the second row. For determining duplicates, two null values are considered equal.

The DECFLOAT data type allows for multiple bit representations of the same number. For example
2.00 and 2.0 are two numbers with the same coefficient, but different exponent values. See “Numeric
comparisons” on page 156 section for more information. So if the result table of UNION contains a

Chapter 6. Queries 1063

DECFLOAT column and multiple bit representations of the same number exist, the one returned is
unpredictable.

Operator precedence
When multiple set operations are combined in an expression, set operations within parentheses are
performed first. If the order is not specified by parentheses, set operations are performed from left
to right with the exception that all INTERSECT operations are performed before any UNION or any
EXCEPT operations.

Results of set operators
The following table illustrates the results of all set operations, with rows from result table R1 and
R2 as the first two columns and the result of each operation on R1 and R2 under the corresponding
column heading.

Table 167. Example of UNION, EXCEPT, and INTERSECT set operations on result tables R1 and R2.

Rows in R1 Rows in R2
Result of
UNION ALL

Result of
UNION
DISTINCT

Result of
EXCEPT
ALL

Result of
EXCEPT
DISTINCT

Result of
INTERSECT
ALL

Result of
INTERSECT
DISTINCT

1 1 1 1 1 2 1 1

1 1 1 2 2 5 1 3

1 3 1 3 2 3 4

2 3 1 4 2 4

2 3 1 5 4

2 3 2 5

3 4 2

4 2

4 3

5 3

3

3

3

4

4

4

5

Examples for fullselect

Example 1
A query specifies the union of result tables R1 and R2. A column in R1 has the data type CHAR(10)
and the subtype BIT. The corresponding column in R2 has the data type CHAR(15) and the subtype
SBCS. Hence, the column in the union has the data type CHAR(15) and the subtype BIT. Values from
the first column are converted to CHAR(15) by adding five trailing blanks.

Example 2
Show all the rows from DSN8C10.EMP.

 SELECT * FROM DSN8C10.EMP;

1064 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 3

Using sample tables DSN8C10.EMP and DSN8C10.EMPPROJACT, list the employee numbers of all
employees for which either of the following statements are true:

• Their department numbers begin with 'D'.
• They are assigned to projects whose project numbers begin with 'AD'.

 SELECT EMPNO FROM DSN8C10.EMP
 WHERE WORKDEPT LIKE 'D%'
 UNION
 SELECT EMPNO FROM DSN8C10.EMPPROJACT
 WHERE PROJNO LIKE 'AD%';

The result is the union of two result tables, one formed from the sample table DSN8C10.EMP, the
other formed from the sample table DSN8C10.EMPPROJACT. The result—a one-column table—is a list
of employee numbers. Because UNION, rather than UNION ALL, was used, the entries in the list are
distinct. If instead UNION ALL were used, certain employee numbers would appear in the list more
than once. These would be the numbers for employees in departments that begin with 'D' while their
projects begin with 'AD'.

Example 4
Specify a series of unions and order the results by the first column of the final result table.

SELECT * FROM T1
UNION
SELECT * FROM T2
UNION
SELECT * FROM T3
ORDER BY 1;

Example 5
Specify a series of unions and order the results by the first column of the final result table. The first
ORDER BY clause order the rows of the result of the first union by the first column of that result table.
The second ORDER BY clause is applied as part of the outer fullselect and it causes the rows of the
final result table to be ordered by the first column of the final result table.

(SELECT * FROM T1
 UNION
 SELECT * FROM T2
 ORDER BY 1)
UNION
SELECT * FROM T3
ORDER BY 1;

Example 6
Assume that tables T1 and T2 exist and each contain the same number of columns named C1, C2,
and so on. This example of the EXCEPT operator produces all rows that are in T1 but not in T2, with
duplicate rows removed:

(SELECT * FROM T1)
 EXCEPT DISTINCT
(SELECT * FROM T2);

Example 7
Assume that tables T1 and T2 exist and each contain the same number of columns named C1, C2, and
so on. This example of the INTERSECT operator produces all rows that are in both table T1 and table
T2, with duplicate rows removed:

(SELECT * FROM T1)
 INTERSECT DISTINCT
(SELECT * FROM T2);

Example 8
Retrieve the most recently generated value for the sequence MYSEQ1:

Chapter 6. Queries 1065

VALUES PREVIOUS VALUE FOR MYSEQ1;

Example 9
Retrieve the next value for the sequence MYSEQ1:

VALUES NEXT VALUE FOR MYSEQ1;

Related reference
SELECT statement
The select-statement is the form of a query that can be directly specified in a DECLARE CURSOR
statement, or prepared and then referenced in a DECLARE CURSOR statement. It can also be issued
interactively using SPUFI or the command line processor which causes a result table to be displayed at
your terminal. In any case, the table specified by select-statement is the result of the fullselect.
select-statement
The select-statement is the form of a query that can be directly specified in a DECLARE CURSOR statement
or FOR statement, prepared and then referenced in a DECLARE CURSOR statement, or directly specified
in an SQLJ assignment clause. It can also be issued using SPUFI or the command line processor which
causes a result table to be displayed at your terminal. In any case, the result table specified by a
select-statement is the result of the fullselect.
subselect
The subselect is a component of the fullselect. A subselect specifies a result table that is derived from the
tables or views that are identified in the FROM clause.

Character conversion in set operations and concatenations
The SQL operations that combine strings include concatenation, set operators, and the IN list of an IN
predicate. Within an SQL statement, concatenation combines two or more strings into a new string. Within
a fullselect, set operation, or the IN list of an IN predicate combine two or more string columns resulting
from the subselects into results column.

All such operations have the following in common:

• The choice of a result CCSID for the string or column
• The possible conversion of one or more of the component strings or columns to the result CCSID

For all such operations, the rules for those two actions are the same, as described in “Selecting the result
CCSID” on page 1066. These rules also apply to the COALESCE scalar function.

Selecting the result CCSID
The result CCSID is selected at package prepare time. The result CCSID is the CCSID of one of the
operands.

Two operands: When two operands are used, the result CCSID is determined by the operand types, their
CCSIDs, and their relative positions in the operation. When a CCSID is X'FFFF', the result CCSID is always
X'FFFF', and no character conversions take place. When neither CCSID is X'FFFF', the rules for selecting
the result CCSID are identical to the ones for string comparison. See “Conversion rules for comparisons”
on page 159.

Three or more operands:

If all the operands have the same CCSID, the result CCSID is the common CCSID.

If at least one of the CCSIDs has the value X'FFFF', the result CCSID also has the value X'FFFF'.

Otherwise, selection proceeds as follows:

1. The rules for a pair of operands are applied to the first two operands. This picks a "candidate" for the
second step. The candidate is the operand that would furnish the result CCSID if just the first two
operands were involved in the operation.

1066 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

2. The rules are applied to the Step 1 candidate and the third operand, thereby selecting a second
candidate.

3. If a fourth operand is involved, the rules are applied to the second candidate and fourth operand, to
select a third candidate, and so on.

The process continues until all operands have been used. The remaining candidate is the one that
furnishes the result CCSID. Whenever the rules for a pair are applied to a candidate and an operand, the
candidate is considered to be the first operand.

Consider, for example, the following concatenation:

 A CONCAT B CONCAT C

Here, the rules are first applied to the strings A and B. Suppose that the string selected as candidate is A.
Then the rules are applied to A and C. If the string selected is again A, then A furnishes the result CCSID.
Otherwise, C furnishes the result CCSID.

Character conversion of components: An operand of concatenation or the selected argument of the
COALESCE scalar function is converted, if necessary, to the coded character set of the result string. Each
string of an operand of a set operation is converted, if necessary, to the coded character set of the
result column. In either case, the coded character set is the one identified by the result CCSID. Character
conversion is necessary only if all of the following are true:

• The result and operand CCSIDs are different.
• Neither CCSID is X'FFFF' (neither string is defined as BIT data).
• The string is neither null nor empty.
• The SYSSTRINGS catalog table indicates that conversion is necessary.

An error occurs if a character of a string cannot be converted, SYSSTRINGS is used but contains no
information about the CCSID pair, or Db2 cannot do the conversion through z/OS support for Unicode. A
warning occurs if a character of a string is converted to the substitution character.

select-statement
The select-statement is the form of a query that can be directly specified in a DECLARE CURSOR statement
or FOR statement, prepared and then referenced in a DECLARE CURSOR statement, or directly specified
in an SQLJ assignment clause. It can also be issued using SPUFI or the command line processor which
causes a result table to be displayed at your terminal. In any case, the result table specified by a
select-statement is the result of the fullselect.

Authorization for select-statement
See “Authorization for queries” on page 1007.

Chapter 6. Queries 1067

Syntax for select-statement

WITH

,

common-table-expression

fullselect
1

update-clause

read-only-clause
2

optimize-clause

isolation-clause

queryno-clause

SKIP LOCKED DATA

3

Notes:
1 If fullselect is a VALUES clause, common-table-expression, update-clause, read-only-clause, optimize-
clause, isolation-clause, queryno-clause, and SKIP LOCKED DATA must not also be specified
2 The read-only-clause must not be specified if update-clause is specified.
3 The same clause must not be specified more than one time.

The tables and view identified in a select statement can be at the current server or any Db2 subsystem
with which the current server can establish a connection.

For local queries on Db2 for z/OS or remote queries in which the server and requester are Db2 for z/OS,
if a table is encoded as ASCII or Unicode, the retrieved data is encoded in EBCDIC. For information on
retrieving data encoded in ASCII or Unicode, see Distributed queries against ASCII or Unicode tables (Db2
Application programming and SQL).

A select statement can implicitly or explicitly invoke user-defined functions or implicitly invoke stored
procedures. This technique is known as nesting of SQL statements. A function or procedure is implicitly
invoked in a select statement when it is invoked at a lower level. For instance, if you invoke a user-defined
function from a select statement and the user-defined function invokes a stored procedure, you are
implicitly invoking the stored procedure.

Related reference
SELECT statement
The select-statement is the form of a query that can be directly specified in a DECLARE CURSOR
statement, or prepared and then referenced in a DECLARE CURSOR statement. It can also be issued
interactively using SPUFI or the command line processor which causes a result table to be displayed at
your terminal. In any case, the table specified by select-statement is the result of the fullselect.
fullselect
The fullselect is a component of the select-statement, ALTER TABLE statement for the definition of
a materialized query table, CREATE TABLE statement, CREATE VIEW statement, DECLARE GLOBAL
TEMPORARY TABLE statement, INSERT statement, UPDATE statement, and MERGE statement.
subselect

1068 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_distributedqueryasciiunicode.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_distributedqueryasciiunicode.html

The subselect is a component of the fullselect. A subselect specifies a result table that is derived from the
tables or views that are identified in the FROM clause.

common-table-expression
A common table expression defines a result table with table-identifier that can be referenced in any FROM
clause of the fullselect that follows.

Multiple common table expressions can be specified following the single WITH keyword. Each specified
common table expression can also be referenced by name in the FROM clause of subsequent common
table expressions.

common-table-expression

table-identifier

(

,

column-name

)

AS ( fullselect)

If a list of columns is specified, it must consist of as many names as there are columns in the result
table of the fullselect. Each column-name must be unique and unqualified. If these column names are
not specified, the names are derived from the select list of the fullselect used to define the common table
expression.

table-identifier must be an unqualified SQL identifier, and it must be different from any other table-
identifier in the same statement. If the common table expression is specified in an INSERT statement,
the table-identifier must not be the same as the table or view name that is the object of the insert. If the
common table expression is specified in a CREATE VIEW statement, the table-identifier must not be the
same as the view name that is created. A common table expression table-identifier can be specified as a
table name in any FROM clause throughout the fullselect.

If more than one common table expression is defined in the same statement, cyclic references between
the common table expressions are not permitted. A cyclic reference occurs when two common table
expressions dt1 and dt2 are created such that dt1 refers to dt2 and dt2 refers to dt1. Furthermore, a
common table expression defined before cannot refer to subsequent common table expressions.

A common table expression name can only be referenced in the select-statement, SELECT INTO
statement, INSERT statement, CREATE VIEW statement, or RETURN statement that defines it.

If a select-statement, SELECT INTO statement, INSERT statement, or CREATE VIEW statement that is
not contained in a trigger definition refers to a unqualified table name, the following rules are applied to
determine which table is actually being referenced:

• If the unqualified name corresponds to one or more common table expression names that are specified
in the select-statement, the name identifies the common table expression that is in the innermost scope.

• Otherwise, the name identifies a persistent table, a temporary table, or a view that is present in the
default schema.

If a select-statement, SELECT INTO statement, INSERT statement, or CREATE VIEW statement that is
contained in a trigger definition refers to a unqualified table name, the following rules are applied to
determine which table is actually being referenced:

• If the unqualified name corresponds to one or more common table expression names that are specified
in the select-statement, the name identifies the common table expression that is in the innermost scope.

• If the unqualified name corresponds to a transition table name, the name identifies that transition table.
• Otherwise, the name identifies a persistent table, a temporary table, or a view that is present in the

default schema.

Chapter 6. Queries 1069

The common table expression is also optional prior to the fullselect in the CREATE VIEW and INSERT
statements. However, the use of common table expressions is not allowed in a INSERT within SELECT
statement.

A common table expression can be used:

• In place of a view to avoid creating the view (when general use of the view is not required and
positioned updates or deletes are not used)

• When the result table that you want is based on host variables
• When the same result table needs to be shared in a fullselect
• When the result needs to be derived using recursion

If a fullselect of a common table expression contains a reference to itself in a FROM clause, the common
table expression is a recursive common table expression. Queries using recursion are useful in supporting
applications such as bill of materials (BOM), reservation systems, and network planning.

The following must be true of a recursive common table expression:

• Each fullselect that is part of the recursion cycle must start with SELECT or SELECT ALL. Use of SELECT
DISTINCT is not allowed. Furthermore, the set operators must use the ALL keyword.

• The column names must be specified following the table-name of the common table expression.
• The first fullselect of the first set operator (the initialization fullselect) must not include a reference to

the common table expression itself in any FROM clause).
• If a column name of the common table expression is referred to in the iterative fullselect, the data

type, length, and CCSID for the column are determined based on the initialization fullselect. The
corresponding column in the iterative fullselect must have the same data type and length as the data
type and length determined based on the initialization fullselect and the CCSID must match. However,
for character string types, the length of the two data types can differ. In this case, the column in the
iterative fullselect must have a length that would always be assignable to the length determined from
the initialization fullselect. If a column of a recursive common table expression is not used recursively
in its definition, the data type, length, and CCSID for the column are determined by applying rules
associated with non-recursive queries.

• Each fullselect that is part of the recursion cycle must not include any aggregate functions, GROUP BY
clauses, HAVING clauses, ORDER BY clauses, OFFSET clauses, or FETCH FIRST clauses. The FROM
clauses of these fullselects can include at most one reference to a common table expression that is part
of a recursion cycle.

• Subqueries (scalar or quantified) must not be part of any recursion cycles.
• Outer join must not be part of any recursion cycles.

All columns referenced in a recursive common table expression are nullable for the query, even if they are
defined as NOT NULL.

When developing recursive common table expressions, remember that an infinite recursion cycle (loop)
can be created. Check that recursion cycles will terminate. This is especially important if the data involved
is cyclic. A recursive common table expression is expected to include a predicate that will prevent an
infinite loop. The recursive common table expression is expected to include:

• In the iterative fullselect, an integer column incremented by a constant.
• A predicate in the WHERE clause of the iterative fullselect in the form of "counter_col < constant" or

"counter_col < :hostvar". A warning is issued if this syntax is not found.

If the result of a recursive common table expression is used to derive the final result table, and if a column
mask is used to mask the column values in the final result table, the column mask cannot be applied to a
column that is specified in the fullselect of the recursive common table expression.

1070 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

update-clause
The optional FOR UPDATE clause identifies the columns that can appear as targets in an assignment
clause in a later positioned UPDATE statement.

update-clause

FOR UPDATE

OF

,

column-name

Each column name must be unqualified and must identify a column of the table or view identified in the
first FROM clause of the fullselect. The clause must not be specified if the result table of the fullselect is
read-only.

If FOR UPDATE clause is specified with a column-name list, and extended indicators are not enabled,
column-name must be an updatable column.

If the FOR UPDATE clause is specified without a column-name list, the implicit list of column names
consists of all updatable columns of the table or view that is identified in the first FROM clause of the
fullselect.

If a dynamically prepared select-statement does not contain a FOR UPDATE clause, the cursor that is
associated with the select statement cannot be referenced in a positioned UPDATE statement.

If a statically prepared select-statement does not contain a FOR UPDATE clause, and its result table is not
read-only, an implicit UPDATE clause will result. The implicit column name list is determine as follows:

• If extended indicators are enabled, all columns of the table or view that is identified in the first FROM
clause of the fullselect are included.

• Otherwise, all updatable columns of the table or view that is identified in the first FROM clause of the
fullselect are included.

The declaration of a cursor referenced in a positioned UPDATE statement need not include an UPDATE
clause if the STDSQL(YES) or NOFOR SQL processing option is specified when the program is prepared.
For more information, see “Positioned updates of columns” on page 326.

When FOR UPDATE is used, FETCH operations referencing the cursor acquire U or X locks rather than S
locks when:

• The isolation level of the statement is cursor stability.
• The isolation level of the statement is repeatable read or read stability and the RRULOCK subsystem

parameter is set to YES.
• The isolation level of the statement is repeatable read or read stability and USE AND KEEP EXCLUSIVE

LOCKS or USE AND KEEP UPDATE LOCKS is specified in the SQL statement, an X lock or a U lock,
respectively, is acquired at fetch time.

No locks are acquired on declared temporary tables. For a discussion of U locks and S locks, see Lock
modes and compatibility of locks (Db2 Performance).

Notes
Referencing columns that will be updated:

If a cursor uses FETCH statements to retrieve columns that will be updated later, specify FOR UPDATE
OF when you select the columns. Then specify WHERE CURRENT OF in the subsequent UPDATE
or DELETE statements. These clauses prevent Db2 from selecting access through an index on the
columns that are being updated, which might otherwise cause Db2 to read the same row more than
once.

Chapter 6. Queries 1071

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_lockmode.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_lockmode.html

For more information, see Updating previously retrieved data (Db2 Application programming and
SQL).

Related tasks
Updating previously retrieved data (Db2 Application programming and SQL)
Related reference
U LOCK FOR RR/RS field (RRULOCK subsystem parameter) (Db2 Installation and Migration)

read-only-clause
The read-only clause specifies that the result table is read-only. Therefore, the cursor cannot be referred
to in positioned UPDATE or DELETE statements.

read-only-clause

FOR READ ONLY

Some result tables are read-only by nature (for example, a table based on a read-only view.) FOR READ
ONLY can still be specified for such tables, but the specification has no effect.

For tables in which updates and deletes are allowed, specifying FOR READ ONLY can possibly improve
the performance of FETCH operations as Db2 can do blocking and avoid exclusive locks. For example, in
programs that contain dynamic SQL statements without the FOR READ ONLY or ORDER BY clause, Db2
might open cursors as if the UPDATE clause was specified.

A read-only result table must not be referred to in an UPDATE or DELETE statement, whether it is
read-only by nature or specified as FOR READ ONLY.

To take advantage of the possibly improved performance of FETCH operations while guaranteeing that
selected data is not modified and preventing some types of deadlocks, you can specify FOR READ ONLY in
combination with the optional syntax of USE AND KEEP ... LOCKS on the isolation-clause.

Alternative syntax and synonyms: FOR FETCH ONLY can be specified as a synonym for FOR READ ONLY.

Related concepts
Block fetch (Introduction to Db2 for z/OS)
Problems with ambiguous cursors (Db2 Performance)
Related tasks
Enabling block fetch for distributed applications (Db2 Performance)
Related reference
FETCH statement
The FETCH statement positions a cursor on a row of its result table. It can return zero, one, or multiple
rows and assigns the values of the rows to variables if there is a target specification.
UPDATE statement
The UPDATE statement updates the values of specified columns in rows of a table or view. Updating a row
of a view updates a row of its base table if no INSTEAD OF UPDATE trigger is defined for this view. If such
a trigger is defined, the trigger is activated instead.
DELETE statement
The DELETE statement deletes rows from a table or view. Deleting a row from a view deletes the row from
the table on which the view is based if no INSTEAD OF DELETE trigger is defined for this view. If such a
trigger is defined, the trigger is activated instead.
isolation-clause

1072 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_updateretrieveddata.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_updateretrieveddata.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_updateretrieveddata.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_rrulock.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_blockfetch.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_ambiguouscursorproblem.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_ensureblockfetch.html

The isolation-clause specifies the isolation level at which the statement is executed. (Isolation level does
not apply to declared temporary tables because no locks are acquired.)

optimize-clause
The OPTIMIZE clause requests special optimization of the select-statement.

optimize-clause

OPTIMIZE FOR integer ROWS

ROW

The optimize-clause tells Db2 to assume that the program does not intend to retrieve more than integer
rows from the result table. Without this clause, Db2 assumes that all rows of the result table will
be retrieved, unless the FETCH FIRST clause is specified. Optimizing for integer rows can improve
performance. If this clause is omitted and the FETCH FIRST is specified, OPTIMIZE FOR integer ROWS is
assumed, where integer is the value that is specified in the FETCH FIRST clause. Db2 will optimize the
query based on the specified number of rows.

The clause does not limit the number of rows that can be fetched, change the result table, or change the
order in which the rows are fetched. Any number of rows can be fetched, but performance can possibly
degrade after integer fetches. In general, if you are retrieving only a few rows, specify OPTIMIZE FOR 1
ROW to influence the access path that Db2 selects.

The value of integer must be a positive integer (not zero).

Row access controls indirectly affects the OPTIMIZE FOR clause because row access controls affect the
rows that are accessible to the authorization ID or role of the subselect.

Column access controls do not affect the OPTIMIZE FOR clause.

If the optimize-clause is not specified, a default of OPTIMIZE FOR integer ROWS, integer is determined
from the following table. The Db2 subsystem uses this value for access path optimization.

Table 168. Determination of integer for OPTIMIZE clause

OFFSET mROWS FETCH FIRST n ROWS
ONLY

OPTIMIZE FOR o ROWS

Specified Not Specified

constant constant o m+n

Not specified constant o n

All other combinations of OFFSET and FETCH
FIRST clauses

o All rows

Related tasks
Minimizing the cost of retrieving few rows (Db2 Performance)
Optimizing retrieval for a small set of rows (Db2 Application programming and SQL)

isolation-clause
The isolation-clause specifies the isolation level at which the statement is executed. (Isolation level does
not apply to declared temporary tables because no locks are acquired.)

isolation-clause

Chapter 6. Queries 1073

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_optimizefornrows.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_optimizeretrievalsmallset.html

WITH RR

lock-clause

RS

lock-clause

CS

UR

lock-clause
USE AND KEEP EXCLUSIVE

UPDATE

SHARE

LOCKS

RR
Repeatable read

RR lock-clause
Repeatable read, using and keeping the type of lock that is specified in lock-clause on all accessed
pages and rows

RS
Read stability

RS lock-clause
Read stability, using and keeping the type of lock that is specified in lock-clause on all accessed pages
and rows

CS
Cursor stability

UR
Uncommitted read

lock-clause
Specifies the type of lock.
USE AND KEEP EXCLUSIVE LOCKS
USE AND KEEP UPDATE LOCKS
USE AND KEEP SHARE LOCKS

Specifies that Db2 is to acquire and hold X, U, or S locks, respectively.

WITH UR can be specified only if the result table of the fullselect or the SELECT INTO statement is
read-only.

In an ODBC application, the SQLSetStmtAttr function can be used to set statement attributes that interact
with the lock-clause. If SQLSetStmtAttr is invoked with a cursor's statement handle and specifying that its
SQL_ATTR_CLOSE_BEHAVIOR is SQL_CC_RELEASE (locks are to be released when the cursor is closed),
then irrespective of any lock-clause, lock used by the cursor that are not needed to protect the integrity of
changed data are released..

Although requesting an UPDATE or EXCLUSIVE LOCK can reduce concurrency, it can prevent some types
of deadlocks.

The default isolation level of the statement depends on:

• The isolation of the package or plan that the statement is bound in
• Whether the result table is read-only

Table 169 on page 1075 shows the default isolation level of the statement.

1074 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 169. Default isolation level based on the isolation level of the package or plan and whether the
result table is read-only

If package isolation is: And plan isolation is: And the result table is: Then the default
isolation is:

RR Any Any RR

RS Any Any RS

CS Any Any CS

UR Any Read-only UR

Not read-only CS

Not specified Not specified Any RR

RR Any RR

RS Any RS

CS Any CS

UR Read-only UR

Not read-only CS

A simple way to ensure that a result table is read-only is to specify FOR READ ONLY in the SQL statement.

Alternative syntax and synonyms: KEEP UPDATE LOCKS can be specified as a synonym for USE AND
KEEP EXCLUSIVE LOCKS. However, KEEP UPDATE LOCKS can be specified only if FOR UPDATE OF is
specified, and it is not supported in the SELECT INTO statement.

Related concepts
Lock modes and compatibility of locks (Db2 Performance)
Related tasks
Choosing an ISOLATION option (Db2 Performance)
Programming for concurrency (Db2 Performance)
Related reference
SQLSetStmtAttr() - Set statement attributes (Db2 Programming for ODBC)

queryno-clause
The QUERYNO clause specifies the number to be used for this SQL statement in EXPLAIN output and
trace records. The number is used for the QUERYNO columns of the plan tables for the rows that
contain information about this SQL statement. This number is also used in the QUERYNO column of the
SYSIBM.SYSSTMT and SYSIBM.SYSPACKSTMT catalog tables.

queryno-clause

QUERYNO integer

integer is the value to be used to identify this SQL statement in EXPLAIN output and trace records.

If the clause is omitted, the number associated with the SQL statement is the statement number assigned
during precompilation. Thus, if the application program is changed and then precompiled, that statement
number might change.

Using the QUERYNO clause to assign unique numbers to the SQL statements in a program is helpful:

• For simplifying the use of optimization hints for access path selection
• For correlating SQL statement text with EXPLAIN output in the plan table

Chapter 6. Queries 1075

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_lockmode.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_chooseisolationoption.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_programapps4concurrency.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/odbc/src/tpc/db2z_fnsetstmtattr.html

For more information about using and enabling optimization hints, see Influencing access path selection
(Db2 Performance)

For information on accessing the plan table, see Investigating SQL performance by using EXPLAIN (Db2
Performance).

SKIP LOCKED DATA
The SKIP LOCKED DATA clause specifies that rows are skipped when incompatible locks that would block
the progress of the statement are held on the rows by other transactions. These rows can belong to any
accessed table that is specified in the statement. SKIP LOCKED DATA can be used only with isolation CS
or RS and applies only to row level or page level locks.

SKIP LOCKED DATA

Important: The recommendation is to not rely on the SKIP LOCKED DATA option to remove rows from
results returned by a query. The SKIP LOCKED DATA option is meant only to prevent possibly incompatible
locks from impeding the progress of queries that can tolerate possibly incomplete results. However, Db2
might use lock avoidance techniques to avoid taking certain locks.

SKIP LOCKED DATA is ignored if it is specified when the isolation level that is in effect is repeatable read
(WITH RR) or uncommitted read (WITH UR). The default isolation level of the statement depends on the
isolation level of the package or plan with which the statement is bound, and whether the result table is
read-only.

Related concepts
Lock avoidance (Db2 Performance)
Related tasks
Improving concurrency for applications that tolerate incomplete results (Db2 Performance)
Related reference
select-statement
The select-statement is the form of a query that can be directly specified in a DECLARE CURSOR statement
or FOR statement, prepared and then referenced in a DECLARE CURSOR statement, or directly specified
in an SQLJ assignment clause. It can also be issued using SPUFI or the command line processor which
causes a result table to be displayed at your terminal. In any case, the result table specified by a
select-statement is the result of the fullselect.
SELECT INTO statement
The SELECT INTO statement produces a result table that contains at most one row. The statement
assigns the values in that row to variables. If the table is empty, the statement does not assign values to
the host variables or global variables.
UPDATE statement
The UPDATE statement updates the values of specified columns in rows of a table or view. Updating a row
of a view updates a row of its base table if no INSTEAD OF UPDATE trigger is defined for this view. If such
a trigger is defined, the trigger is activated instead.
DELETE statement
The DELETE statement deletes rows from a table or view. Deleting a row from a view deletes the row from
the table on which the view is based if no INSTEAD OF DELETE trigger is defined for this view. If such a
trigger is defined, the trigger is activated instead.
PREPARE statement

1076 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_influenceaccesspaths.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_influenceaccesspaths.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_useexplain2capturesqlinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_useexplain2capturesqlinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_lockavoidance.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_useskiplockeddata.html

The PREPARE statement creates an executable SQL statement from a string form of the statement. The
character-string form is called a statement string. The executable form is called a prepared statement.

Examples of SELECT statements
Examples of SELECT statements.

Introductory concepts

How a SELECT statement works (Introduction to Db2 for z/OS)

Example 1: Select all the rows from DSN8C10.EMP.

 SELECT * FROM DSN8C10.EMP;

Example 2: Select all the rows from DSN8C10.EMP, arranging the result table in chronological order by
date of hiring.

 SELECT * FROM DSN8C10.EMP
 ORDER BY HIREDATE;

Example 3: Select the department number (WORKDEPT) and average departmental salary (SALARY)
for all departments in the table DSN8C10.EMP. Arrange the result table in ascending order by average
departmental salary.

 SELECT WORKDEPT, AVG(SALARY)
 FROM DSN8C10.EMP
 GROUP BY WORKDEPT
 ORDER BY 2;

Example 4: Change various salaries, bonuses, and commissions in the table DSN8C10.EMP. Confine the
changes to employees in departments D11 and D21. Use positioned updates to do this with a cursor
named UP_CUR. Use a FOR UPDATE clause in the cursor declaration to indicate that all updatable columns
are updated. Below is the declaration for a PL/I program.

 EXEC SQL DECLARE UP_CUR CURSOR FOR
 SELECT WORKDEPT, EMPNO, SALARY, BONUS, COMM
 FROM DSN8C10.EMP
 WHERE WORKDEPT IN ('D11','D21')
 FOR UPDATE;

Beginning where the cursor is declared, all updatable columns would be updated. If only specific columns
needed to be updated, such as only the salary column, the FOR UPDATE clause could be used to specify
the salary column (FOR UPDATE OF SALARY).

Example 5: Find the maximum, minimum, and average bonus in the table DSN8C10.EMP. Execute the
statement with uncommitted read isolation, regardless of the value of ISOLATION with which the plan or
package containing the statement is bound. Assign 13 as the query number for the SELECT statement.

 EXEC SQL
 SELECT MAX(BONUS), MIN(BONUS), AVG(BONUS)
 INTO :MAX, :MIN, :AVG
 FROM DSN8C10.EMP
 WITH UR
 QUERYNO 13;

If bind option EXPLAIN(YES) is specified, rows are inserted into the plan table. The value used for the
QUERYNO column for these rows is 13.

Example 6: The cursor declaration shown below is in a PL/I program. In the query within the declaration,
X.RMT_TAB is an alias for a table at some other Db2. Hence, when the query is used, it is processed using
DRDA access. See Distributed relational databases (Introduction to Db2 for z/OS).

The declaration indicates that no positioned updates or deletes will be done with the query's cursor.
It also specifies that the access path for the query be optimized for the retrieval of at most 50 rows.
Even so, the program can retrieve more than 50 rows from the result table, which consists of the entire

Chapter 6. Queries 1077

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_howselectstatementworks.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_distributeddatasql.html

table identified by the alias. However, when more than 50 rows are retrieved, performance could possibly
degrade.

 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT * FROM X.RMT_TAB
 OPTIMIZE FOR 50 ROWS
 FOR READ ONLY;

The FETCH FIRST clause could be used instead of the OPTIMIZE FOR clause to ensure that only 50 rows
are retrieved as in the following example:

 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT * FROM X.RMT_TAB
 FETCH FIRST 50 ROWS ONLY;

Example 7: Assume that table DSN8C10.EMP has 1000 rows and you want to see the first five
EMP_ROWID values that were inserted into DSN8C10.EMP_PHOTO_RESUME.

 EXEC SQL DECLARE CS1 CURSOR FOR
 SELECT EMP_ROWID
 FROM FINAL TABLE (INSERT INTO DSN8C10.EMP_PHOTO_RESUME (EMPNO)
 SELECT EMPNO FROM DSN8C10.EMP)
 FETCH FIRST 5 ROWS ONLY;

All 1000 rows are inserted into DSN8C10.EMP_PHOTO_RESUME, but only the first five are returned.

Related tasks
Coding SQL statements to avoid unnecessary processing (Db2 Performance)
Retrieving data by using the SELECT statement (Db2 Application programming and SQL)

1078 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_codequerysimply.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_retrievedataselect.html

Chapter 7. Statements
This section contains syntax diagrams, semantic descriptions, rules, and examples of the use of the SQL
statements.

For similar information about the use of SQL procedure language (SQL PL) statements, see Chapter 8,
“SQL procedural language (SQL PL),” on page 2207.

List of supported statements
This section contains an alphabetical list of the SQL statements that Db2 for z/OS supports.

Table 170. Supported SQL statements

SQL statement Function

“ALLOCATE CURSOR statement” on
page 1093

Defines and associates a cursor with a result set locator variable

“ALTER DATABASE statement” on
page 1095

Changes the description of a database

“ALTER FUNCTION statement
(external function)” on page 1097

Changes the description of a user-defined external scalar or external
table function

“ALTER FUNCTION statement
(compiled SQL scalar function)” on
page 1113

Changes the description of a compiled SQL scalar function

“ALTER FUNCTION statement
(inlined SQL scalar function)” on
page 1142

Changes the description of an inlined SQL scalar function

“ALTER FUNCTION statement (SQL
table function)” on page 1150

Changes the description of an SQL table function

“ALTER INDEX statement” on page
1157

Changes the description of an index

“ALTER MASK statement” on page
1174

Changes the description of a column mask

“ALTER PERMISSION statement” on
page 1177

Changes the description of a row permission

“ALTER PROCEDURE statement
(external procedure)” on page 1180

Changes the description of an external procedure

“ALTER PROCEDURE statement (SQL
- external procedure) (deprecated)”
on page 1189

Changes the description of an external SQL procedure

“ALTER PROCEDURE statement (SQL
- native procedure)” on page 1194

Changes the description of or defines additional versions for a native SQL
procedure

“ALTER SEQUENCE statement” on
page 1224

Changes the description of a sequence

“ALTER STOGROUP statement” on
page 1228

Changes the description of a storage group

© Copyright IBM Corp. 1982, 2024 1079

Table 170. Supported SQL statements (continued)

SQL statement Function

“ALTER TABLE statement” on page
1232

Changes the description of a table

“ALTER TABLESPACE statement” on
page 1321

Changes the description of a table space

“ALTER TRIGGER statement
(advanced trigger)” on page 1342

Changes the description of an advanced trigger

“ALTER TRIGGER statement (basic
trigger)” on page 1365

Changes the description of a basic trigger

“ALTER TRUSTED CONTEXT
statement” on page 1368

Changes the description of a trusted context

“ALTER VIEW statement” on page
1378

Regenerates a view

“ASSOCIATE LOCATORS statement”
on page 1380

Gets the result set locator value for each result set returned by a stored
procedure

“BEGIN DECLARE SECTION
statement” on page 1383

Marks the beginning of a host variable declaration section

“CALL statement” on page 1384 Calls a stored procedure

“CLOSE statement” on page 1395 Closes a cursor

“COMMENT statement” on page
1396

Adds or replaces a comment to the description of an object

“COMMIT statement” on page 1406 Ends a unit of recovery and commits the database changes made by that
unit of recovery

“CONNECT statement” on page
1409

Connects the process to a server

“CREATE ALIAS statement” on page
1415

Defines an alias

“CREATE AUXILIARY TABLE
statement” on page 1418

Defines an auxiliary table for storing LOB data

“CREATE DATABASE statement” on
page 1421

Defines a database

“CREATE FUNCTION statement
(compiled SQL scalar function)” on
page 1428

Defines a compiled SQL scalar function

“CREATE FUNCTION statement
(external scalar function)” on page
1453

Defines a user-defined external scalar function

“CREATE FUNCTION statement
(external table function)” on page
1472

Defines a user-defined external table function

“CREATE FUNCTION statement
(inlined SQL scalar function)” on
page 1489

Defines an inlined SQL scalar function

1080 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 170. Supported SQL statements (continued)

SQL statement Function

“CREATE FUNCTION statement
(sourced function)” on page 1498

Defines a user-defined function that is based on an existing scalar or
aggregate function

“CREATE FUNCTION statement (SQL
table function)” on page 1510

Defines a user-defined SQL table function

“CREATE GLOBAL TEMPORARY
TABLE statement” on page 1518

Defines a created temporary table

“CREATE INDEX statement” on page
1524

Defines an index on a table

“CREATE LOB TABLESPACE” on
page 1553

Defines a LOB table space

“CREATE MASK statement” on page
1562

Defines a column mask

“CREATE PERMISSION statement”
on page 1571

Defines a row permission

“CREATE PROCEDURE statement
(external procedure)” on page 1580

Defines an external stored procedure

“CREATE PROCEDURE statement
(SQL - external procedure)
(deprecated)” on page 1597

Defines an external SQL procedure

“CREATE PROCEDURE statement
(SQL - native procedure)” on page
1607

Defines a native SQL procedure

“CREATE ROLE statement” on page
1637

Defines a role

“CREATE SEQUENCE statement” on
page 1638

Defines a sequence

“CREATE STOGROUP statement” on
page 1645

Defines a storage group

“CREATE SYNONYM statement
(unsupported)” on page 1649

Defines an alternative name for a table or view

“CREATE TABLE statement” on page
1650

Defines a table

“CREATE TABLESPACE statement”
on page 1718

Defines a table space, which includes allocating and formatting the table
space

“CREATE TRIGGER statement
(advanced trigger)” on page 1740

Defines an advanced trigger

“CREATE TRIGGER statement (basic
trigger)” on page 1769

Defines a basic trigger

“CREATE TRUSTED CONTEXT
statement” on page 1787

Defines a trusted context

“CREATE TYPE statement (array
type)” on page 1795

Defines an array type

Chapter 7. Statements 1081

Table 170. Supported SQL statements (continued)

SQL statement Function

“CREATE TYPE statement (distinct
type)” on page 1801

Defines a distinct type

“CREATE VARIABLE statement” on
page 1808

Defines a global variable

“CREATE VIEW statement” on page
1812

Defines a view of one or more tables or views

“DECLARE CURSOR statement” on
page 1819

Defines an SQL cursor

“DECLARE GLOBAL TEMPORARY
TABLE statement” on page 1830

Defines a declared temporary table

“DECLARE STATEMENT statement”
on page 1844

Declares names used to identify prepared SQL statements

“DECLARE TABLE statement” on
page 1845

Provides the programmer and the precompiler with a description of a
table or view

“DECLARE VARIABLE statement” on
page 1850

Defines a CCSID for a host variable

“DELETE statement” on page 1853 Deletes one or more rows from a table

“DESCRIBE CURSOR statement” on
page 1869

Puts information about the result set associated with a cursor into a
descriptor

“DESCRIBE INPUT statement” on
page 1871

Puts information about the input parameter markers of a prepared
statement into a descriptor

“DESCRIBE OUTPUT statement” on
page 1873

Describes the result columns of a prepared statement

“DESCRIBE PROCEDURE
statement” on page 1879

Puts information about the result sets returned by a stored procedure
into a descriptor

“DESCRIBE TABLE statement” on
page 1881

Describes the columns of a table or view

“DROP statement” on page 1886 Removes an object at the current server. Except for storage groups, any
objects that are directly or indirectly dependent on that object are also
removed.

“END DECLARE SECTION
statement” on page 1907

Marks the end of a host variable declaration section

“EXCHANGE statement” on page
1908

Exchanges data between the specified base table and an associated
clone table

EXECUTE Executes a prepared SQL statement

“EXECUTE IMMEDIATE statement”
on page 1914

Prepares and executes an SQL statement

“EXPLAIN statement” on page 1917 Obtains information about how an SQL statement would be executed

“FETCH statement” on page 1924 Positions the cursor, returns data, or both positions the cursor and
returns data

1082 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 170. Supported SQL statements (continued)

SQL statement Function

“FREE LOCATOR statement” on
page 1949

Removes the association between a LOB locator variable and its value

“GET DIAGNOSTICS statement” on
page 1949

Provides diagnostic information about the last SQL statement that was
executed

“GRANT statement” on page 1963 Grants privileges to authorization IDs

“GRANT statement (collection
privileges)” on page 1967

Grants authority to create a package in a collection

“GRANT statement (database
privileges)” on page 1968

Grants privileges on a database

“GRANT statement (function or
procedure privileges)” on page 1970

Grants privileges on a user-defined function or a stored procedure

“GRANT statement (package
privileges)” on page 1975

Grants authority to bind, execute, or copy a package

“GRANT statement (plan
privileges)” on page 1977

Grants authority to bind or execute an application plan

“GRANT statement (schema
privileges)” on page 1978

Grants privileges on a schema

“GRANT statement (sequence
privileges)” on page 1979

Grants privileges on a user-defined sequence

“GRANT statement (system
privileges)” on page 1981

Grants system privileges

“GRANT statement (table or view
privileges)” on page 1988

Grants privileges on a table or view

“GRANT statement (type or JAR file
privileges)” on page 1991

Grants privileges to use distinct types, array types, or JAR files

“GRANT statement (variable
privileges)” on page 1992

Grants privileges on global variables

“GRANT statement (use privileges)”
on page 1993

Grants authority to use specified buffer pools, storage groups, or table
spaces

“HOLD LOCATOR statement” on
page 1994

Allows a LOB locator variable to retain its association with its value
beyond a unit of work

“INCLUDE statement” on page 1995 Inserts declarations into a source program

“INSERT statement” on page 1996 Inserts one or more rows into a table

“LABEL statement” on page 2015 Adds or replaces a label on the description of a table, view, alias, or
column

“LOCK TABLE statement” on page
2017

Locks a table or table space partition in shared or exclusive mode

“MERGE statement” on page 2019 Updates a target (a table or view) using data from a source (result of
VALUES clause or table reference)

“OPEN statement” on page 2037 Opens a cursor

Chapter 7. Statements 1083

Table 170. Supported SQL statements (continued)

SQL statement Function

“PREPARE statement” on page
2042

Prepares an SQL statement (with optional parameters) for execution

“REFRESH TABLE statement” on
page 2062

Refreshes the data in a materialized query table

“RELEASE statement (connection)”
on page 2063

Places one or more connections in the release pending status

“RELEASE SAVEPOINT statement”
on page 2065

Releases a savepoint and any subsequently set savepoints within a unit
of recovery

“RENAME statement” on page 2066 Renames an existing table or index

“REVOKE statement” on page 2070 Revokes privileges from authorization IDs

“REVOKE statement (collection
privileges)” on page 2076

Revokes authority to create a package in a collection

“REVOKE statement (database
privileges)” on page 2078

Revokes privileges on a database

“REVOKE statement (function or
procedure privileges)” on page 2081

Revokes privileges on a user-defined function or a stored procedure

“REVOKE statement (package
privileges)” on page 2087

Revokes authority to bind, execute, or copy a package

“REVOKE statement (plan
privileges)” on page 2089

Revokes authority to bind or execute an application plan

“REVOKE statement (schema
privileges)” on page 2091

Revokes privileges on a schema

“REVOKE statement (sequence
privileges)” on page 2093

Revokes privileges on a user-defined sequence

“REVOKE statement (system
privileges)” on page 2095

Revokes system privileges

“REVOKE statement (table or view
privileges)” on page 2101

Revokes privileges on a table or view

“REVOKE (type or JAR file
privileges)” on page 2104

Revokes privileges on a user-defined data type or a JAR file

“REVOKE (variable privileges)” on
page 2106

Revokes privileges on global variables

“REVOKE statement (use
privileges)” on page 2108

Revokes authority to use specified buffer pools, storage groups, or table
spaces

“ROLLBACK statement” on page
2110

Ends a unit of recovery and backs out the changes to the database made
by that unit of recovery, or partially rolls back the changes to a savepoint
within the unit of recovery

“SAVEPOINT statement” on page
2113

Sets a savepoint within a unit of recovery

“SELECT statement” on page 2114 Specifies the SELECT statement of the cursor

“SELECT INTO statement” on page
2117

Specifies a result table of no more than one row and assigns the values
to variables

1084 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 170. Supported SQL statements (continued)

SQL statement Function

“SET CONNECTION statement” on
page 2122

Establishes the database server of the process by identifying one of its
existing connections

“SET assignment-statement
statement” on page 2124

Assigns values to variables and array elements

“SET CURRENT ACCELERATOR
statement” on page 2129

Assigns a value to the CURRENT ACCELERATOR special register

“SET CURRENT APPLICATION
COMPATIBILITY statement” on
page 2130

Assigns a value to the CURRENT APPLICATION COMPATIBILITY special
register

“SET CURRENT APPLICATION
ENCODING SCHEME” on page 2132

Assigns a value to the CURRENT APPLICATION ENCODING SCHEME
special register

“SET CURRENT DEBUG MODE
statement” on page 2133

Assigns a value to the CURRENT DEBUG MODE special register

“SET CURRENT DECFLOAT
ROUNDING MODE statement” on
page 2134

Assigns a value to the CURRENT DECFLOAT ROUNDING MODE special
register

“SET CURRENT DEGREE statement”
on page 2136

Assigns a value to the CURRENT DEGREE special register

“SET CURRENT EXPLAIN MODE
statement” on page 2137

Assigns a value to the CURRENT EXPLAIN MODE special register

“SET CURRENT
GET_ACCEL_ARCHIVE statement”
on page 2138

Assigns a value to the CURRENT GET_ACCEL_ARCHIVE special register

“SET CURRENT LOCALE LC_CTYPE
statement” on page 2139

Assigns a value to the CURRENT LOCALE LC_CTYPE special register

“SET CURRENT MAINTAINED
TABLE TYPES FOR OPTIMIZATION
statement” on page 2141

Assigns a value to the CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION special register

“SET CURRENT OPTIMIZATION
HINT statement” on page 2142

Assigns a value to the CURRENT OPTIMIZATION HINT special register

“SET CURRENT PACKAGE PATH
statement” on page 2143

Assigns a value to the CURRENT PACKAGE PATH special register

“SET CURRENT PACKAGESET
statement” on page 2146

Assigns a value to the CURRENT PACKAGESET special register

“SET CURRENT PRECISION
statement” on page 2148

Assigns a value to the CURRENT PRECISION special register

“SET CURRENT QUERY
ACCELERATION statement” on page
2148

Assigns a value to the CURRENT QUERY ACCELERATION special register

“SET CURRENT QUERY
ACCELERATION WAITFORDATA
statement” on page 2150

Assigns a value to the CURRENT QUERY ACCELERATION WAITFORDATA
special register

Chapter 7. Statements 1085

Table 170. Supported SQL statements (continued)

SQL statement Function

“SET CURRENT REFRESH AGE
statement” on page 2153

Assigns a value to the CURRENT REFRESH AGE special register

“SET CURRENT ROUTINE VERSION
statement” on page 2154

Assigns a value to the CURRENT ROUTINE VERSION special register

“SET CURRENT RULES statement”
on page 2156

Assigns a value to the CURRENT RULES special register

“SET CURRENT SQLID statement”
on page 2156

Assigns a value to the CURRENT SQLID special register

“SET CURRENT TEMPORAL
BUSINESS_TIME statement” on
page 2158

Assigns a value to the CURRENT TEMPORAL BUSINESS_TIME special
register

“SET CURRENT TEMPORAL
SYSTEM_TIME statement” on page
2160

Assigns a value to the CURRENT TEMPORAL SYSTEM_TIME special
register

“SET ENCRYPTION PASSWORD
statement” on page 2161

Assigns a value for the ENCRYPTION PASSWORD and an optional hint for
the password

“SET PATH statement” on page
2163

Assigns a value to the CURRENT PATH special register

“SET SCHEMA statement” on page
2166

Assigns a value to the CURRENT SCHEMA special register

“SET SESSION TIME ZONE
statement” on page 2168

Assigns a value to the CURRENT SESSION TIME ZONE special register

SIGNAL Signals an error or warning condition and optionally returns the specified
message text

“TRANSFER OWNERSHIP
statement” on page 2172

Transfers ownership of a database or system object from one owner to
another

“TRUNCATE statement” on page
2175

Deletes all rows from a base table or declared temporary table

“UPDATE statement” on page 2178 Updates the values of one or more columns in one or more rows of a
table

“VALUES statement” on page 2199 Provides a way to invoke a user-defined function from a trigger

“VALUES INTO statement” on page
2200

Assigns values to variables

“WHENEVER statement” on page
2204

Defines actions to be taken on the basis of SQL return codes

How SQL statements are invoked
SQL statements are invoked in different ways depending on whether the statement is an executable or
nonexecutable statement or the select-statement.

The SQL statements are classified as executable or nonexecutable. The description of each statement
includes a heading on invocation that indicates whether or not the statement is executable.

Executable statements can be invoked in the following ways:

1086 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• Embedded in an application program
• Dynamically prepared and executed
• Dynamically prepared and executed using Db2 ODBC function calls
• Issued interactively

Depending on the statement, you can use some or all of these methods. The section on invocation in the
description of each statement tells you which methods can be used.

A nonexecutable statement can only be embedded in an application program.

The select-statement is an additional SQL statement construct. (See “select-statement” on page 1067.) It
is used in a different way from other statements.

A select-statement can be invoked in the following ways:

• Included in DECLARE CURSOR and implicitly executed by OPEN
• Dynamically prepared, referred to in DECLARE CURSOR, and implicitly executed by OPEN
• Dynamically executed (no PREPARE required) using a Db2 ODBC function call
• Issued interactively

The first two methods are called, respectively, the static and the dynamic invocation of select-statement.

Related concepts
Submitting SQL statements to Db2 (Introduction to Db2 for z/OS)
The Db2 command line processor (Db2 Commands)
Related tasks
Executing SQL by using SPUFI (Db2 Application programming and SQL)
Overview of programming applications that access Db2 for z/OS data (Db2 Application programming and
SQL)

Embedding a statement in an application program
You can include SQL statements in a source program that will be submitted to the Db2 precompiler
or coprocessor. Such statements are said to be embedded in the application program. An embedded
statement can be placed anywhere in the application program where a host language statement is
allowed. Each embedded statement must be preceded by a keyword (or keywords) to indicate that the
statement is an SQL statement.

• In C and COBOL, each embedded statement must be preceded by the keywords EXEC SQL.
• In Java, each embedded statement must be preceded by the keywords #sql.
• In REXX, each embedded statement must be preceded by the keyword EXECSQL.

Executable statements: An executable statement embedded in an application program is executed every
time a statement of the host language would be executed if specified in the same place. (Thus, for
example, a statement within a loop is executed every time the loop is executed, and a statement within a
conditional construct is executed only when the condition is satisfied.)

An embedded statement can contain references to host variables. A host variable referred to in this way
can be used in one of two ways:
As input

The current value of the host variable is used in the execution of the statement.
As output

The variable is assigned a new value as a result of executing the statement.

In particular, all references to host variables in expressions and predicates are effectively replaced by
current values of the variables; that is, the variables are used as input. The treatment of other references
is described individually for each statement.

Chapter 7. Statements 1087

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_waystoexecutesql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_commandlineprocessor.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_executesqlspufi.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_writedb2application.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_writedb2application.html

The successful or unsuccessful execution of the statement is indicated by setting the SQLCODE
and SQLSTATE fields in the SQLCA.23 You must therefore follow all executable statements by a
test of SQLCODE or SQLSTATE. Alternatively, you can use the WHENEVER statement (which is itself
nonexecutable) to change the flow of control immediately after the execution of an embedded statement.

Nonexecutable statements: An embedded nonexecutable statement is processed only by the precompiler
or coprocessor. The precompiler or coprocessor reports any errors encountered in the statement. The
statement is never executed, and acts as a no-operation if placed among executable statements of the
application program. Therefore, do not follow such statements with a test of an SQL return code.

Dynamic preparation and execution
Your application program can dynamically build an SQL statement in the form of a character string placed
in a host variable. In general, the statement is built from some data available to the application program
(for example, input from a workstation).

In non-Java languages, the statement so constructed can be prepared for execution by means of the
(embedded) statement PREPARE and executed by means of the (embedded) statement EXECUTE, as
described in Dynamically executing an SQL statement by using PREPARE and EXECUTE (Db2 Application
programming and SQL). Alternatively, you can use the (embedded) statement EXECUTE IMMEDIATE to
prepare and execute a statement in one step. In Java, the statement can be prepared for execution by
means of the Statement, PreparedStatement, and CallableStatement classes, and executed by means of
their respective execute() methods.

The statement can also be prepared by calling the Db2 ODBC SQLPrepare function and then executed by
calling the Db2 ODBC SQLExecute function. In both cases, the application does not contain an embedded
PREPARE or EXECUTE statement. You can execute the statement, without preparation, by passing the
statement to the Db2 ODBC SQLExecDirect function. Introduction to Db2 ODBC (Db2 Programming for
ODBC) describes the APIs supported with this interface.

A statement that is going to be prepared must not contain references to host variables. It can instead
contain parameter markers. (See Parameter markers in the description of the PREPARE statement for
rules concerning parameter markers.) When the prepared statement is executed, the parameter markers
are effectively replaced by current values of the host variables specified in the EXECUTE statement. (See
the EXECUTE statement for rules concerning this replacement.) After it is prepared, a statement can be
executed several times with different values of host variables. Parameter markers are not allowed in the
SQL statement prepared and executed using EXECUTE IMMEDIATE.

In non-Java languages, the successful or unsuccessful execution of the statement is indicated by the
values returned in the SQLCODE and SQLSTATE fields in the SQLCA after the EXECUTE (or EXECUTE
IMMEDIATE) statement. You should check the fields as described above for embedded statements. In
Java, the successful or unsuccessful execution of the statement is handled by Java Exceptions.

As explained in “Authorization IDs and dynamic SQL” on page 94, the DYNAMICRULES behavior in effect
determines the privilege set that is used for authorization checking when dynamic SQL statements are
processed. The following table summarizes those privilege sets. (See “Authorization IDs and dynamic
SQL” on page 94 for a list of the DYNAMICRULES bind option values that determine which behavior is in
effect).

23 SQLCODE and SQLSTATE cannot be in the SQLCA when the SQL processing option STDSQL(YES) is in effect.
See “SQL standard language” on page 326.

1088 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_dynamicexecuteprepareexecute.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_dynamicexecuteprepareexecute.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/odbc/src/tpc/db2z_hdint.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/odbc/src/tpc/db2z_hdint.html

Table 171. DYNAMICRULES behaviors and authorization checking

DYNAMICRULES
behavior

Privilege set

Run behavior The union of the set of privileges held by each authorization ID of the process
if the dynamically prepared statement is other than an ALTER, CREATE, DROP,
GRANT, RENAME, or REVOKE statement.

The privileges that are held by the SQL authorization ID of the process or
the role of the primary authorization ID (if the process is running in a trusted
context that is defined with the ROLE AS OBJECT OWNER clause), if the
dynamic SQL statement is a CREATE, GRANT, or REVOKE statement.

Bind behavior The privileges that are held by the primary authorization ID of the owner of
the package or plan.

Define behavior The privileges that are held by the authorization ID of the stored procedure or
user-defined function owner (definer).

Invoke behavior The privileges that are held by the authorization ID of the stored procedure
or user-defined function invoker. However, if the invoker is the primary
authorization ID of the process or the CURRENT SQLID value, secondary
authorization IDs are also checked if they are needed for the required
authorization. Therefore, in that case, the privilege set is the union of the
set of privileges that are held by each authorization ID or role (if running in a
trusted context).

Static invocation of a SELECT statement
A SELECT statement can be invoked statically in different ways.

You can include a SELECT statement as a part of the (nonexecutable) statement DECLARE CURSOR. Such
a statement is executed every time you open the cursor by means of the (embedded) statement OPEN.
After the cursor is open, you can retrieve the result table a row at a time by successive executions of the
(embedded) SQL FETCH statement.

If the application is using Db2 ODBC, the SELECT statement is first prepared with the SQLPrepare function
call. It is then executed with the SQLExecute function call. Data is then fetched with the SQLFetch
function call. The application does not explicitly open the cursor.

The SELECT statement used in this way can contain references to host variables. These references are
effectively replaced by the values that the variables have at the moment of executing OPEN.

The successful or unsuccessful execution of the SELECT statement is indicated by the values returned in
the SQLCODE and SQLSTATE fields in the SQLCA after the OPEN. You should check the fields as described
above for embedded statements.

If the application is using Db2 ODBC, the successful execution of the SELECT statement is indicated by
the return code from the SQLExecute function call. If necessary, the application can retrieve the SQLCA by
calling the SQLGetSQLCA function.

Dynamic invocation of a SELECT statement
Your application program can dynamically build a SELECT statement in the form of a character string
placed in a host variable. In general, the statement is built from some data available to the application
program (for example, a query obtained from a terminal).

The statement so constructed can be prepared for execution by means of the (embedded) statement
PREPARE, and referred to by a (nonexecutable) statement DECLARE CURSOR. The statement is then
executed every time you open the cursor by means of the (embedded) statement OPEN. After the cursor
is open, you can retrieve the result table a row at a time by successive executions of the (embedded) SQL
FETCH statement.

Chapter 7. Statements 1089

The SELECT statement used in that way must not contain references to host variables. It can instead
contain parameter markers. (See "Notes" in “PREPARE statement” on page 2042 for rules concerning
parameter markers.) The parameter markers are effectively replaced by the values of the host variables
specified in the OPEN statement. (See “OPEN statement” on page 2037 for rules concerning this
replacement.)

The successful or unsuccessful execution of the SELECT statement is indicated by the values returned in
the SQLCODE and SQLSTATE fields in the SQLCA after the OPEN. You should check the fields as described
above for embedded statements.

Interactive invocation
An SQL statement submitted to Db2 from a terminal is said to be issued interactively.

IBM relational database management systems allow you to enter SQL statements from a terminal. Db2
for z/OS provides SPUFI to prepare and execute SQL statements. Other products are also available. A
statement entered in this way is said to be issued interactively.

A statement issued interactively must not contain parameter markers or references to host variables,
because these make sense only in the context of an application program. For the same reason, there is no
SQLCA involved.

Related concepts
Interactive SQL (Introduction to Db2 for z/OS)
The Db2 command line processor (Db2 Commands)
Related tasks
Executing SQL by using SPUFI (Db2 Application programming and SQL)

SQL diagnostics information
Db2 uses a diagnostics area to store status information and diagnostics information about the execution
of an executable SQL statement.

When an SQL statement other than GET DIAGNOSTICS or compound-statement is processed, the current
diagnostics area is cleared before processing the SQL statement. As each SQL statement is processed,
information about the execution of that SQL statement is recorded in the current diagnostics area as one
or more completion conditions or exception conditions.

A completion condition indicates that the SQL statement completed successfully, completed with a
warning condition, or completed with a not found condition. An exception condition indicates that
the statement was not successful. The GET DIAGNOSTICS statement can be executed in most
languages to return conditions and other information about the previously executed SQL statement
from the diagnostics area. Additionally, the condition information is provided through language specific
mechanisms for SQL procedures, and host language applications.

Related concepts
Detecting and processing error and warning conditions in host language applications
Errors and warnings conditions in host language applications can be checked by using the SQLCODE or
SQLSTATE host variables or by using the SQLCA.
Related reference
GET DIAGNOSTICS statement
The GET DIAGNOSTICS statement provides diagnostic information about the last SQL statement (other
than a GET DIAGNOSTICS statement) that was executed. This diagnostic information is gathered as the
previous SQL statement is executed. Some of the information available through the GET DIAGNOSTICS
statement is also available in the SQLCA.
SQL-procedure-statement (SQL PL)

1090 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_interactivesql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_commandlineprocessor.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_executesqlspufi.html

An SQL control statement can allow multiple SQL statements to be specified within the SQL control
statement. These statements are defined as SQL procedure statements.

Detecting and processing error and warning conditions in host language
applications

Errors and warnings conditions in host language applications can be checked by using the SQLCODE or
SQLSTATE host variables or by using the SQLCA.

Each host language provides a mechanism for handling diagnostic information.

• In Assembler, C, COBOL, Fortran, and PL/I, an application program that contains executable SQL
statements must provide at least one of the following:

– A structure named SQLCA, which can be provided by using the INCLUDE SQLCA statement
– A stand-alone CHAR(5) (CHAR(6) in C) variable named SQLSTATE (SQLSTT in Fortran)
– A stand-alone integer variable named SQLCODE (SQLCOD in Fortran)

• In Java, for error conditions, the getSQLState method of the JDBC SQLException class can be used to
get the SQLSTATE and the getErrorCode method can be used to get the SQLCODE.

• In REXX, an SQLCA is provided automatically.

Whether you define stand-alone SQLCODE and SQLSTATE host variables or an SQLCA in your program
depends on the Db2 precompiler option you choose.

If the application is using Db2 ODBC and it calls the SQLGetSQLCA function, it need only include an
SQLCA. Otherwise, all notification of success or errors is specified with return codes for the various
function calls.

When you specify STDSQL(YES), which indicates conformance to the SQL standard, you should not define
an SQLCA. The stand-alone variable for SQLCODE must be a valid host variable in the DECLARE SECTION
of a program. It can also be declared outside of the DECLARE SECTION when no variable is defined for
SQLSTATE. The stand-alone variable for SQLSTATE must be declared in the DECLARE SECTION. It must
not be declared as an element of a structure.

Use a stand-alone SQLSTATE to conform with the SQL 2003 Core standard. When you specify
STDSQL(NO), which indicates conformance to Db2 rules, you must include an SQLCA explicitly to have
access to the SQLSTATE and SQLCODE information.

SQLSTATE
Db2 sets SQLSTATE after each SQL statement (other than GET DIAGNOSTICS or a compound statement)
is executed. Db2 returns values that conform to the error specification in the SQL standard. Thus,
application programs can check the execution of SQL statements by testing SQLSTATE instead of
SQLCODE.

SQLSTATE provides application programs with common codes for common error conditions (the values
of SQLSTATE are product-specific if the error or warning is product-specific). Furthermore, SQLSTATE is
designed so that application programs can test for specific errors or classes of errors. The coding scheme
is the same for all IBM implementations of SQL. The SQLSTATE values are based on the SQLSTATE
specifications contained in the SQL standard. Error messages and the tokens that are substituted for
variables in error messages are associated with SQLCODE values, not SQLSTATE values.

In the case of a LOOP statement, the SQLSTATE is set after the END LOOP portion of the LOOP statement
completes. With the REPEAT statement, the SQLSTATE is set after the UNTIL and END REPEAT portions of
the REPEAT statement completes.

If the application is using Db2 ODBC, the SQLSTATE returned conforms to the ODBC Version 2.0
specification.

Chapter 7. Statements 1091

SQLCODE
The SQLCODE is also set by Db2 after each SQL statement is executed.

SQLCODE
The SQLCODE value is set by Db2 after each statement is executed, as shown in the following table.

SQLCODE value Meaning SQLCODE descriptions

SQLCODE = 0 Successful execution, if SQLWARN0 is blank.

If SQLWARN0 = 'W', successful execution with
warning.

000

SQLCODE = 100 No data was found. For example, a FETCH
statement returned no data because the cursor
was positioned after the last row of the result
table.

+100

SQLCODE > 0 and not =
100

Successful execution with a warning. +sqlcode-num

SQLCODE < 0 Execution was not successful. -sqlcode-num

For PDF format descriptions of the SQL codes that Db2 12 might issue, see Codes.

In the case of a LOOP statement, the SQLSTATE is set after the END LOOP portion of the LOOP statement
completes. With the REPEAT statement, the SQLSTATE is set after the UNTIL and END REPEAT portions of
the REPEAT statement completes.

The SQL standard does not define the meaning of any other specific positive or negative values of
SQLCODE, and the meaning of these values is not the same in all implementations of SQL.

If the application is using Db2 ODBC, an SQLCODE is only returned if the application issues the
SQLGetSQLCA function.

Related concepts
SQL codes (Db2 Codes)
Related tasks
Handling SQL error codes (Db2 Application programming and SQL)

SQL comments
Static SQL statements can include host language or SQL comments. Dynamic SQL statements can include
SQL comments. There are two types of SQL comments, simple comments and bracketed comments.

simple comments
Simple comments are introduced with two consecutive hyphens (--) and end with the end of a line.
The following rules apply to the use of simple comments:

• The two hyphens must be on the same line and must not be separated by a space.
• Simple comments can be started whenever a space is valid (except within a delimiter token or

between 'EXEC' and 'SQL').
• Simple comments cannot be continued to the next line.
• In COBOL, a space must precede the two hyphens (' --').

bracketed comments
Bracketed comments are introduced with /* and end with */. The following rules apply to the use of
bracketed comments:

1092 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/p000.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/p100.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/db2z_p.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/db2z_n.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/db2z_sqlcodes.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_handlesqlerrorcodes.html

• The /* must be on the same line and not separated by a space.
• The */ must be on the same line and not separated by a space.
• Bracketed comments can be started wherever a space is valid (except within a delimiter token or

between 'EXEC' and 'SQL').
• Bracketed comments can be continued to the next line.
• Bracketed comments can be nested within other bracketed comments. However, nested bracketed

comments are not supported by DSNTEP2, DSNTEP4, SPUFI, or the command line processor.
• Bracketed comments are not allowed in static SQL statements in a COBOL, Fortran, or Assembler

program.

Example

The following example shows how to include comments in an SQL statement within a C program. The
example uses both simple and bracketed comments:

 EXEC SQL
 CREATE VIEW PRJ_MAXPER --projects with most support personnel
 /*
 * Returns number and name of the project
 */
 AS SELECT PROJNO, PROJNAME -- number and name of project
 FROM DSN8910.PROJ
 /*
 * E21 is the systems support dept code
 */
 WHERE DEPTNO = 'E21' -- systems support dept code
 AND PRSTAFF > 1;

Host language comments
For more information about comments in specific host languages, see the following topics:

• Assembler applications that issue SQL statements (Db2 Application programming and SQL)
• C and C++ applications that issue SQL statements (Db2 Application programming and SQL)
• COBOL applications that issue SQL statements (Db2 Application programming and SQL)
• Fortran applications that issue SQL statements (Db2 Application programming and SQL)
• PL/I applications that issue SQL statements (Db2 Application programming and SQL)
• REXX applications that issue SQL statements (Db2 Application programming and SQL)

Related concepts
Characters and tokens in SQL
The most basic elements of SQL syntax are characters and tokens. Tokens are the basic syntactical units
of the SQL language.

ALLOCATE CURSOR statement
The ALLOCATE CURSOR statement defines a cursor and associates it with a result set locator variable.

Invocation for ALLOCATE CURSOR
This statement can be embedded in an application program. It is an executable statement that can be
dynamically prepared. It cannot be issued interactively.

Authorization for ALLOCATE CURSOR
None required.

Chapter 7. Statements 1093

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_sqlstatementsassembler.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_sqlstatementsc.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_sqlstatementscobol.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_sqlstatementsfortran.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_sqlstatementspli.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_sqlstatementsrexx.html

Syntax for ALLOCATE CURSOR

ALLOCATE cursor-name CURSOR FOR RESULT SET rs-locator-variable

Description for ALLOCATE CURSOR
cursor-name

Names the cursor. The name must not identify a cursor that has already been declared in the source
program.

CURSOR FOR RESULT SET rs-locator-variable
Specifies a result set locator variable that has been declared in the application program according to
the rules for declaring result set locator variables.

The result set locator variable must contain a valid result set locator value, as returned by the
ASSOCIATE LOCATORS or DESCRIBE PROCEDURE SQL statement. The value of the result set locator
variable is used at the time the cursor is allocated. Subsequent changes to the value of the result set
locator have no affect on the allocated cursor. The result set locator value must not be the same as a
value used for another cursor allocated in the source program.

Notes for ALLOCATE CURSOR
Dynamically prepared ALLOCATE CURSOR statements: The EXECUTE statement with the USING clause
must be used to execute a dynamically prepared ALLOCATE CURSOR statement. In a dynamically
prepared statement, references to variables are represented by parameter markers (question marks).
In the ALLOCATE CURSOR statement, rs-locator-variable is always a variable. Thus, for a dynamically
prepared ALLOCATE CURSOR statement, the USING clause of the EXECUTE statement must identify the
variable whose value is to be substituted for the parameter marker that represents rs-locator-variable.

You cannot prepare an ALLOCATE CURSOR statement with a statement identifier that has already been
used in a DECLARE CURSOR statement. For example, the following SQL statements are invalid because
the PREPARE statement uses STMT1 as an identifier for the ALLOCATE CURSOR statement and STMT1
has already been used for a DECLARE CURSOR statement.

 DECLARE CURSOR C1 FOR STMT1;
 PREPARE STMT1 FROM INVALID
 'ALLOCATE C2 CURSOR FOR RESULT SET ?';

Rules for using an allocated cursor: The following rules apply when you use an allocated cursor:

• You cannot open an allocated cursor with the OPEN statement.
• You can close an allocated cursor with the CLOSE statement. Closing an allocated cursor closes the

associated cursor defined in the stored procedure.
• You can allocate only one cursor to each result set.

The life of an allocated cursor: A rollback operation, an implicit close, or an explicit close destroy
allocated cursors. A commit operation destroys allocated cursors that are not defined WITH HOLD by
the stored procedure. Destroying an allocated cursor closes the associated cursor defined in the stored
procedure.

Considerations for scrollable cursors: Following an ALLOCATE CURSOR statement, a GET DIAGNOSTICS
statement can be used to get the attributes of the cursor such as the following information (for more
information, see “GET DIAGNOSTICS statement” on page 1949):

• DB2_SQL_ATTR_CURSOR_HOLD. Whether the cursor was defined with the WITH HOLD attribute.
• DB2_SQL_ATTR_CURSOR_SCROLLABLE. Scrollability of the cursor.
• DB2_SQL_ATTR_CURSOR_SENSITIVITY. Effective sensitivity of the cursor.

The sensitivity information can be used by applications (such as an ODBC driver) to determine what
type of FETCH (INSENSITIVE or SENSITIVE) to issue for a cursor defined as ASENSITIVE.

1094 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• DB2_SQL_ATTR_CURSOR_ROWSET. Whether the cursor can be used to access rowsets.
• DB2_SQL_ATTR_CURSOR_TYPE. Whether a cursor type is forward-only, static, or dynamic.

• The scrollability of the cursor is in SQLWARN1.
• The sensitivity of the cursor is in SQLWARN4.
• The effective capability of the cursor is in SQLWARN5.

Example for ALLOCATE CURSOR
The statement in the following example is assumed to be in a PL/I program.

Define and associate cursor C1 with the result set locator variable LOC1 and the related result set
returned by the stored procedure:

 EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :LOC1;

ALTER DATABASE statement
The ALTER DATABASE statement changes the description of a database at the current server.

Invocation for ALTER DATABASE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for ALTER DATABASE
The privilege set that is defined below must include at least one of the following:

• The DROP privilege on the database
• Ownership of the database
• DBADM or DBCTRL authority for the database
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

If the database is implicitly created, the privileges must be on the implicit database or on DSNDB04.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the package. If the statement is dynamically prepared, the privilege set is
the union of the privilege sets that are held by each authorization ID and role of the process.

Syntax for ALTER DATABASE

ALTER DATABASE database-name
1

BUFFERPOOL bpname

INDEXBP bpname

STOGROUP stogroup-name

CCSID ccsid-value

Notes:
1 The same clause must not be specified more than one time.

Chapter 7. Statements 1095

Description for ALTER DATABASE
DATABASE database-name

Identifies the database that is to be altered. The name must identify a database that exists at the
current server and must not identify an implicitly created system database.

BUFFERPOOL bpname
Identifies the default buffer pool for the table spaces within the database. It does not apply to table
spaces that already exist within the database.

If the database is a work file database, 8 KB and 16 KB buffer pools cannot be specified.

If the table space is implicitly created, Db2 selects the buffer pool as described in Implicitly defined
table spaces (Db2 Administration Guide).

See “Naming conventions in SQL” on page 79 for more details about bpname.

INDEXBP bpname
Identifies the default buffer pool for the indexes within the database. It does not apply to indexes that
already exist within the database. The name can identify a 4 KB, 8 KB, 16 KB, or 32 KB buffer pool.
See “Naming conventions in SQL” on page 79 for more details about bpname.

STOGROUP stogroup-name
Identifies the storage group to be used, as required, as a default storage group to support DASD space
requirements for table spaces and indexes within the database. It does not apply to table spaces and
indexes that already exist within the database.

CCSID ccsid-value
Identifies the default CCSID for table spaces within the database. It does not apply to existing table
spaces in the database. ccsid-value must identify a CCSID value that is compatible with the current
value of the CCSID for the database. “Notes for ALTER DATABASE” on page 1096 contains a list that
shows the CCSID to which a given CCSID can be altered.

CCSID cannot be specified for a work file database.

Notes for ALTER DATABASE
Altering the CCSID

The ability to alter the default CCSID enables you to change to a CCSID that supports the Euro symbol.
You can only convert between specific CCSIDs that do and do not define the Euro symbol. In most
cases, the code point that supports the Euro symbol replaces an existing code point, such as the
International Currency Symbol (ICS).

Changing a CCSID can be disruptive to the system and requires several steps. For each encoding
scheme of a system (ASCII, EBCDIC, and Unicode), Db2 supports SBCS, DBCS, and mixed CCSIDs.
Therefore, the CCSIDs for all databases and all table spaces within an encoding scheme should be
altered at the same time. Otherwise, unpredictable results might occur.

The recommended method for changing the CCSID requires that the data be unloaded and reloaded.
For the steps needed to change the CCSID, such as running an installation CLIST to modify the CCSID
data in DSNHDECP, when to drop and re-create views, and when to rebind invalidated packages, see
Working with international data (Db2 Installation and Migration).

The following lists show the CCSIDs that can be converted. The second CCSID in each pair is the
CCSID with the Euro symbol. The CCSID can be changed from the CCSID that does not support the
Euro symbol to the CCSID that does, and vice versa. For example, if the current CCSID is 500, it can be
changed to 1148.

EBCDIC CCSIDs

37 1140
273 1141
277 1142
278 1143
280 1144

1096 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicitlydefinedtablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicitlydefinedtablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_workingwintldata.html

284 1145
285 1146
297 1147
500 1148
871 1149

ASCII CCSIDs

850 858
874 4970
1250 5346
1251 5347
1252 5348
1253 5349
1254 5350
1255 5351
1256 5352
1257 5353

Example for ALTER DATABASE
Change the default buffer pool for both table spaces and indexes within database ABCDE to BP2.

 ALTER DATABASE ABCDE
 BUFFERPOOL BP2
 INDEXBP BP2;

ALTER FUNCTION statement (external function)
The ALTER FUNCTION statement changes the description of a user-defined external scalar function or
external table function at the current server.

Invocation for ALTER FUNCTION (external)
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for ALTER FUNCTION (external)
The privilege set defined below must include at least one of the following:

• Ownership of the function
• The ALTERIN privilege on the schema
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The authorization ID that matches the schema name implicitly has the ALTERIN privilege on the schema.

If the authorization ID that is used to alter the function has the installation SYSADM authority or the
installation SYSOPR authority and if the current SQLID is set to SYSINSTL, the function is identified as
system-defined function when the function definition is reevaluated.

At least one of the following privileges is required if the SECURED option is specified or if the function is
currently secured and the NOT SECURED option is specified:

• SECADM authority
• CREATE_SECURE_OBJECT privilege

For external scalar functions, when LANGUAGE is JAVA and a jar-name is specified in the EXTERNAL NAME
clause, the privilege set must include USAGE on the JAR file.

Chapter 7. Statements 1097

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the package.

If the statement is dynamically prepared, the privilege set is the set of privileges that are held by the SQL
authorization IDs of the process. The specified routine name can include a schema name (a qualifier).
However, if the schema name is not the same as one of these SQL authorization IDs, one of the following
conditions must be met:

1. The privilege set includes SYSADM authority
2. The privilege set includes SYSCTRL authority
3. The SQL authorization ID of the process has the ALTERIN privilege on the schema

If the environment in which the function is to be run is being changed, the authorization ID must have
authority to use the WLM environment specified. The required authorization is obtained from an external
security product, such as RACF. For more information, see Managing authorizations for creation of stored
procedures in WLM environments (Managing Security).

Syntax for ALTER FUNCTION (external)

ALTER

FUNCTION function-name

(

,

parameter-type

)

SPECIFIC FUNCTION specific-name

option-list

parameter-type:

data-type

AS LOCATOR
1

Notes:
1 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data type.

data-type:

built-in-type

distinct-type-name

built-in-type:

1098 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_manageaccess2wlmenv.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_manageaccess2wlmenv.html

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

BIT

DATA

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID ASCII

EBCDIC

UNICODE

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

ROWID

option-list: (Specify options in any order. Specify at least one option. Do not specify the same option more than
once.)

Chapter 7. Statements 1099

EXTERNAL NAME external-program-name
1

identifier

LANGUAGE ASSEMBLE

C

COBOL

JAVA
2 3

PLI

PARAMETER STYLE SQL

JAVA
2 3

NOT DETERMINISTIC

DETERMINISTIC

RETURNS NULL ON NULL INPUT

CALLED ON NULL INPUT

MODIFIES SQL DATA
3

READS SQL DATA

CONTAINS SQL

NO SQL

NO EXTERNAL ACTION

EXTERNAL ACTION

PACKAGE PATH package-path

NO PACKAGE PATH

NO SCRATCHPAD

SCRATCHPAD length

NO FINAL CALL

FINAL CALL

ALLOW PARALLEL
3

DISALLOW PARALLEL

NO DBINFO

DBINFO

CARDINALITY integer
4

NO COLLID

COLLID collection-id

WLM ENVIRONMENT name

(name , *)

ASUTIME

NO LIMIT

LIMIT integer

STAY RESIDENT NO

YES

PROGRAM TYPE

SUB

MAIN

SECURITY DB2

USER

DEFINER

STOP AFTER SYSTEM DEFAULT FAILURES

STOP AFTER integer FAILURES

CONTINUE AFTER FAILURE

RUN OPTIONS run-time-options

INHERIT SPECIAL REGISTERS

DEFAULT SPECIAL REGISTERS

STATIC DISPATCH SECURED

NOT SECURED

Notes:
1 If LANGUAGE is JAVA, EXTERNAL NAME must be specified with a valid external-java-routine-name.
2 When LANGUAGE JAVA is specified, PARAMETER STYLE JAVA must also be specified. When
PARAMETER STYLE JAVA is specified, LANGUAGE JAVA must also be specified.
3 LANGUAGE JAVA, PARAMETER STYLE JAVA, MODIFIES SQL DATA, and ALLOW PARALLEL are not
supported for external table functions.
4 CARDINALITY is not supported for external scalar functions.

1100 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

external-java-routine-name

jar-name :

method-name

method-signature

jar-name

schema-name .

jar-id

method-name

 package-id .

/
1

.

!
2

method-id

method-signature

(
,

 java-datatype

)

Notes:
1 The slash (/) is supported for compatibility with previous releases of Db2 for z/OS.
2 The exclamation point (!) is supported for compatibility with other products in the Db2 family.

Description for ALTER FUNCTION (external)
One of the following three clauses identifies the function to be changed.

FUNCTION function-name
Identifies the external function by its function name. function-name must identify a function that
exists at the current server. The function must be a user-defined external function, and there must be
exactly one function with function-name in the schema.

The function can have any number of input parameters. If the schema does not contain a function
with function-name or contains more than one function with this name, an error occurs.

FUNCTION function-name (parameter-type,...)
Identifies the external function by its function signature, which uniquely identifies the function.
function-name

Identifies the function by its name.

If function-name() is specified, the function that is identified must have zero parameters.

(parameter-type,...)
Identifies the number of input parameters of the function and their data types.

The data type of each parameter must match the data type that was specified in the CREATE
FUNCTION statement for the parameter in the corresponding position. The number of data
types and the logical concatenation of the data types are used to uniquely identify the function.
Therefore, you cannot change the number of parameters or the data types of the parameters.

For data types that have a length, precision, or scale attribute, you can use a set of empty
parentheses, specify a value, or accept the default values:

Chapter 7. Statements 1101

If the function was defined with a table parameter (the LIKE TABLE name AS LOCATOR clause
was specified in the CREATE FUNCTION statement to indicate that one of the input parameters
is a transition table), the function signature cannot be used to uniquely identify the function.
Instead, use one of the other syntax variations to identify the function with its function name, if
unique, or its specific name.

• Empty parentheses indicate that Db2 is to ignore the attribute when determining whether the
data types match.

For example, DEC() will be considered a match for a parameter of a function defined with a
data type of DEC(7,2). Similarly DECFLOAT() will be considered a match for DECFLOAT(16) or
DECFLOAT(34).

FLOAT cannot be specified with empty parentheses because its parameter value indicates
different data types (REAL or DOUBLE).

• If you use a specific value for a length, precision, or scale attribute, the value must exactly
match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION statement.

The specific value for FLOAT(n) does not have to exactly match the defined value of the source
function because 1<=n<=21 indicates REAL and 22<=n<=53 indicates DOUBLE. Matching is
based on whether the data type is REAL or DOUBLE.

• If length, precision, or scale is not explicitly specified and empty parentheses are not specified,
the default length of the data type is implied. The implicit length must exactly match the value
that was specified (implicitly or explicitly) in the CREATE FUNCTION statement.

For data types with a subtype or encoding scheme attribute, specifying the FOR subtype DATA
clause or the CCSID clause is optional. Omission of either clause indicates that Db2 is to ignore
the attribute when determining whether the data types match. If you specify either clause, it must
match the value that was implicitly or explicitly specified in the CREATE FUNCTION statement.

See “CREATE FUNCTION statement (overview)” on page 1424 for more information on the
specification of the parameter list.

A function with the function signature must exist in the explicitly or implicitly specified schema.

SPECIFIC FUNCTION specific-name
Identifies the external function by its specific name. A function with the specific name must exist in
the schema.

The following clauses change the description of the function that has been identified to be changed.

EXTERNAL NAME external-program-name or identifier
Identifies the user-written code (program) that runs when the function is invoked.

If LANGUAGE is JAVA, external-program-name must be specified and enclosed in single quotation
marks, with no extraneous blanks within the single quotation marks. It must specify a valid external-
java-routine-name. If multiple external-program-name values are specified, the total length of all of
them must not be greater than 1305 bytes and they must be separated by a space or a line break. Do
not specify a JAR file for a Java function for which NO SQL is in effect.

An external-java-routine-name contains the following parts:
jar-name

Identifies the name given to the JAR file when it was installed in the database. The name
contains jar-id, which can optionally be qualified with a schema. Examples are "myJar" and
"mySchema.myJar." The unqualified jar-id is implicitly qualified with a schema name according to
the following rules:

• If the statement is embedded in a program, the schema name is the authorization ID in the
QUALIFIER option of the BIND subcommand for a package or plan when the package or
plan was created or last changed. The schema name can also be the authorization ID in the
QUALIFIER option of the CREATE PROCEDURE or ALTER PROCEDURE statement for a native SQL

1102 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

procedure when the procedure was created or last changed. If the QUALIFIER is not specified,
the schema name is the owner of the package, plan, or native SQL procedure.

• If the statement is dynamically prepared, the schema name is the SQL authorization ID in the
CURRENT SCHEMA special register.

If jar-name is specified, it must exist when the ALTER FUNCTION statement is processed.

If jar-name is not specified, the function is loaded from the class file directly. Db2 searches the
directories in the CLASSPATH associated with the WLM Environment. Environmental variables for
Java routines are specified in a data set identified in a JAVAENV DD card on the JCL used to start
the address space for a WLM-managed function.

method-name
Identifies the name of the method and must not be longer than 254 bytes. Its package, class, and
method IDs are specific to Java and as such are not limited to 18 bytes. In addition, the rules
for what method IDs can contain are not necessarily the same as the rules for an SQL ordinary
identifier.
package-id

Identifies a package. The concatenated list of package-ids identifies the package that the
class identifier is part of. If the class is part of a package, the method name must include the
complete package prefix, such as "myPacks.UserFuncs." The Java virtual machine looks in the
directory "/myPacks/UserFuncs/" for the classes.

class-id
Identifies the class identifier of the Java object.

method-id
Identifies the method identifier with the Java class to be invoked.

method-signature
Identifies a list of zero or more Java data types for the parameter list and must not be longer than
1024 bytes. Specify the method-signature if the user-defined function involves any input or output
parameters that can be NULL. When the function that is being created is called, Db2 searches for
a Java method with the exact method-signature. The number of java-datatype elements that are
specified indicates how many parameters that the Java method must have.

A Java procedure can have no parameters. In this case, you code an empty set of parentheses
for method-signature. If a Java method-signature is not specified, Db2 searches for a Java method
with a signature derived from the default JDBC types associated with the SQL types specified in
the parameter list of the ALTER FUNCTION statement.

For other values of LANGUAGE, the value must conform to the naming conventions for load modules:
the value must be less than or equal to 8 bytes, and it must conform to the rules for an ordinary
identifier with the exception that it must not contain an underscore.

LANGUAGE
Specifies the application programming language in which the function is written. All programs must be
designed to run in IBM's Language Environment® environment.
ASSEMBLE

The function is written in Assembler.
C

The function is written in C or C++.
COBOL

The function is written in COBOL, including the object-oriented language extensions.
JAVA

The user-defined function is written in Java and is executed in the Java virtual machine. If the
ALTER FUNCTION statement results in changing LANGUAGE to JAVA, PARAMETER STYLE JAVA
and an EXTERNAL NAME clause must be specified to provide the appropriate values. When
LANGUAGE JAVA is specified, the EXTERNAL NAME clause must also be specified with a valid
external-java-routine-name and PARAMETER STYLE must be specified with JAVA.

Chapter 7. Statements 1103

Do not specify LANGUAGE JAVA when SCRATCHPAD, FINAL CALL, DBINFO, PROGRAM TYPE
MAIN, or RUN OPTIONS is specified. Do not specify LANGUAGE JAVA for a table function.

PLI
The function is written in PL/I.

PARAMETER STYLE
Specifies the linkage convention that the function program uses to receive input parameters from and
pass return values to the invoking SQL statement.
SQL

Specifies the parameter passing convention that supports passing null values both as input and
for output. The parameters that are passed between the invoking SQL statement and the function
include:

• Input parameters. The first n parameters are the input parameters that are specified for the
function.

• Result parameters. For an external scalar function, a parameter for the result of the function.
For an external table function, the next m parameters that are specified on the RETURNS TABLE
clause of the CREATE statement that defined the function.

• Input parameter indicator variables. n parameters for the indicator variables for the input
parameters.

• Result parameter indicator variables. For an external scalar function, a parameter for the
indicator variable for the result of the function that is specified on the RETURNS clause of the
CREATE statement that defined the function. For an external table function, m parameters for
the indicator variables of the result columns of the function that are specified on the RETURNS
TABLE clause of the CREATE statement that defined the function.

• The SQLSTATE to be returned to Db2.
• The qualified name of the function.
• The specific name of the function.
• The SQL diagnostic string to be returned to Db2.
• The scratchpad, if SCRATCHPAD is specified.
• The call type. For an external scalar function, the call type is passed only if FINAL CALL is
specified. The call type is always passed for an external table function.

• The DBINFO structure, if DBINFO is specified.

JAVA
Indicates that the user-defined function uses a convention for passing parameters that conforms
to the Java and SQLJ specifications. If the ALTER FUNCTION statement results in changing
LANGUAGE to JAVA, PARAMETER STYLE JAVA and an EXTERNAL NAME clause must be specified
to provide the appropriate values. PARAMETER STYLE JAVA can be specified only if LANGUAGE is
JAVA. JAVA must be specified for PARAMETER STYLE when LANGUAGE is JAVA.

Do not specify PARAMETER STYLE JAVA for a table function.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results each time that the function is invoked with
the same input arguments.
NOT DETERMINISTIC

The function might not return the same result each time that the function is invoked with the
same input arguments. The function depends on some state values that affect the results. Db2
uses this information to disable the merging of views and table expressions when processing
SELECT or SQL data change statements that refer to this function. An example of a function that
is not deterministic is one that generates random numbers, or any function that contains SQL
statements.

1104 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Some SQL functions that invoke functions that are not deterministic can receive incorrect results
if the function is executed by parallel tasks. Specify the DISALLOW PARALLEL clause for these
functions.

If a view or a materialized query table definition refers to the function, the function cannot be
changed to NOT DETERMINISTIC. To change the function, drop any views or materialized query
tables that refer to the function first.

DETERMINISTIC
The function always returns the same result each time that the function is invoked with the same
input arguments. An example of a deterministic function is a function that calculates the square
root of the input. Db2 uses this information to enable the merging of views and table expressions
for SELECT or SQL data change statements that refer to this function. If applicable, specify
DETERMINISTIC to prevent non-optimal access paths from being chosen for SQL statements that
refer to this function.

Db2 does not verify that the function program is consistent with the specification of DETERMINISTIC
or NOT DETERMINISTIC.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
Specifies whether the function is called if any of the input arguments is null at execution time.
RETURNS NULL ON NULL INPUT

The function is not called if any of the input arguments is null. For an external scalar function, the
result is the null value. For an external table function, the result is an empty table, which is a table
with no rows.

CALLED ON NULL INPUT
The function is called regardless of whether any of the input arguments are null, making the
function responsible for testing for null argument values. For an external scalar function, the
function can return a null or nonnull value. For an external table function, the function can return
an empty table, depending on its logic.

MODIFIES SQL DATA, READS SQL DATA, CONTAINS SQL, or NO SQL
Specifies the classification of SQL statements and nested routines that this routine can execute
or invoke. The database manager verifies that the SQL statements issued by the function, and all
routines locally invoked by the routine, are consistent with this specification; the verification is not
performed when nested remote routines are invoked. For the classification of each statement, see
Appendix D, “SQL statement data access classification for routines,” on page 2275.
MODIFIES SQL DATA

Specifies that the function can execute any SQL statement except the statements that are not
supported in functions. Do not specify MODIFIES SQL DATA when ALLOW PARALLEL is in effect.

If a function that is defined with MODIFIES SQL DATA is invoked anywhere except the select-
clause of the outermost SELECT statement, the results are unpredictable because the function
can be invoked multiple times depending on the access plan that is used.

Recommendation: If a SELECT statement invokes a function that is defined with the MODIFIES
SQL DATA option, ensure that statements nested inside the function do not modify objects that
are referenced in any SQL statement at a higher level of nesting. Otherwise, unpredictable results
are likely to occur.

READS SQL DATA
Specifies that the function can execute statements with a data access indication of READS SQL
DATA, CONTAINS SQL, or NO SQL. The function cannot execute SQL statements that modify data.

CONTAINS SQL
Specifies that the function can execute only SQL statements with a data classification of
CONTAINS SQL or NO SQL. SQL statements that neither read nor modify SQL data can be
executed by the function. Statements that are not supported in any function return a different
error.

Chapter 7. Statements 1105

NO SQL
Specifies that the function can execute only SQL statements with a data access classification of
NO SQL. Do not specify NO SQL for a Java function that uses a JAR file.

NO EXTERNAL ACTION or EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an object that Db2 does not
manage. An example of an external action is sending a message or writing a record to a file.

Because Db2 uses the RRS attachment for external functions, Db2 can participate in two-phase
commit with any other resource manager that uses RRS. For resource managers that do not use RRS,
there is no coordination of commit or rollback operations on non-Db2 resources.

NO EXTERNAL ACTION
The function does not take any action that changes the state of an object that Db2 does not
manage. Db2 uses this information to enable the merging of views and table expressions for
SELECT or SQL data change statements that refer to this function. If applicable, specify NO
EXTERNAL ACTION to prevent non-optimal access paths from being chosen for SQL statements
that refer to this function.

EXTERNAL ACTION
The function can take an action that changes the state of an object that Db2 does not manage.

Some SQL statements that invoke functions with external actions can result in incorrect results if
parallel tasks execute the function. For example, if the function sends a note for each initial call to
it, one note is sent for each parallel task instead of once for the function. Specify the DISALLOW
PARALLEL clause for functions that do not work correctly with parallelism.

If you specify EXTERNAL ACTION, Db2:

• Materializes the views and table expressions in SELECT or SQL data change statements that
refer to the function. This materialization can adversely affect the access paths that are chosen
for the SQL statements that refer to this function. Do not specify EXTERNAL ACTION if the
function does not have an external action.

• Does not move the function from one task control block (TCB) to another between FETCH
operations.

• Does not allow another function or stored procedure to use the TCB until the cursor is closed.
This is also applicable for cursors declared WITH HOLD.

The only changes to resources made outside of Db2 that are under the control of commit and
rollback operations are those changes made under RRS control.

If a view or a materialized query table definition refers to the function, the function cannot be
changed to EXTERNAL ACTION. To change the function, drop any views or materialized query
tables that refer to the function first.

Db2 does not verify that the function program is consistent with the specification of EXTERNAL
ACTION or NO EXTERNAL ACTION.

NO PACKAGE PATH or PACKAGE PATH package-path
Identifies the package path to use when the function is run. This is the list of the possible package
collections into which the DBRM that is associated with the function is bound.
NO PACKAGE PATH

Specifies that the list of package collections for the function is the same as the list of package
collections for the program that invokes the function. If the program that invokes the function
does not use a package, Db2 resolves the package by using the CURRENT PACKAGE PATH special
register, the CURRENT PACKAGESET special register, or the PKLIST bind option (in this order).
For information about how Db2 uses these three items, see Binding an application plan (Db2
Application programming and SQL).

PACKAGE PATH package-path
Specifies a list of package collections, in the same format as used in the SET CURRENT PACKAGE
PATH statement.

1106 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_bindplan.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_bindplan.html

If the COLLID clause is specified with PACKAGE PATH, the COLLID clause is ignored when the
function is invoked.

The package-path value that is associated with the function definition is checked when the
function is invoked. If package-path contains SESSION_USER (or USER), PATH, or PACKAGE PATH,
an error is returned when the package-path value is checked.

NO SCRATCHPAD or SCRATCHPAD
Specifies whether Db2 is to provide a scratchpad for the function. Using reentrant external functions
and a scratchpad (which provides an area for the function to save information from one invocation to
the next) is strongly recommended.
NO SCRATCHPAD

A scratchpad is not allocated and passed to the function.
SCRATCHPAD length

When the function is invoked for the first time, Db2 allocates memory for a scratchpad. A
scratchpad has the following characteristics:

• length must be in the range 1–32767. The default value is 100 bytes.
• Db2 initializes the scratchpad to all binary zeros (X'00').
• The scope of a scratchpad is the SQL statement. For each reference to the function in an SQL

statement, there is one scratchpad.

For example, assuming that user-defined function UDFX is a scalar function that is defined with
the SCRATCHPAD option, three scratchpads are allocated for the three references to UDFX in the
following SQL statement:

 SELECT A, UDFX(A) FROM TABLEB
 WHERE UDFX(A) > 103 OR UDFX(A) < 19;

For another example, assume that UDFX is a user-defined table function that is defined with the
SCRATCHPAD option. Two scratchpads are allocated for the two references to function UDFX in
the following SQL statement:

 SELECT *
 FROM TABLE (UDFX(A)), TABLE (UDFX(B));

If the function is run under parallel tasks, one scratchpad is allocated for each parallel task of
each reference to the function in the SQL statement. This can lead to unpredictable results. For
example, if a function uses the scratchpad to count the number of times that it is invoked,
the count reflects the number of invocations done by the parallel task and not the SQL
statement. Specify the DISALLOW PARALLEL clause for functions that do not work correctly
with parallelism.

• The scratchpad is persistent. Db2 preserves its content from one invocation of the function to
the next. Any changes that the function makes to the scratchpad on one call are still there on the
next call. Db2 initializes the scratchpads when it begins to execute an SQL statement. Db2 does
not reset scratchpads when a correlated subquery begins to execute.

• The scratchpad can be a central point for the system resources that the function acquires. If the
function acquires system resources, specify FINAL CALL to ensure that Db2 calls the function
one more time so that the function can free those system resources.

Each time that the function is invoked, Db2 passes an additional argument to the function that
contains the address of the scratchpad.

If you specify SCRATCHPAD, Db2:

• Does not move the function from one TCB or address space to another between FETCH operations.
• Does not allow another function or stored procedure to use the TCB until the cursor is closed. This is

also applicable for cursors declared WITH HOLD.

Do not specify SCRATCHPAD when LANGUAGE JAVA is specified.

Chapter 7. Statements 1107

NO FINAL CALL or FINAL CALL
Specifies whether a final call is made to the function. A final call enables the function to free any
system resources that it has acquired. A final call is useful when the function has been defined
with the SCRATCHPAD keyword and the function acquires system resource and anchors them in the
scratchpad.

The effect of NO FINAL CALL or FINAL CALL depends on whether the external function is a scalar
function or a table function.

For an external scalar function:
NO FINAL CALL

A final call is not made to the external scalar function. The function does not receive an additional
argument that specifies the type of call.

FINAL CALL
A final call is made to the external scalar function. See the following description of call types
for the characteristics of a final call. When FINAL CALL is specified, the function receives an
additional argument that specifies the type of call to enable the function to differentiate between
a final call and another type of call. Do not specify FINAL CALL when LANGUAGE JAVA is
specified.

For more information on NO FINAL CALL and FINAL CALL for external scalar functions, including
the types of calls, see the description of the option for “CREATE FUNCTION statement (external scalar
function)” on page 1453.

For an external table function:
NO FINAL CALL

A first and final call are not made to the external table function.
FINAL CALL

A first call and final call are made to the external table function in addition to one or more other
types of calls.

For both NO FINAL CALL and FINAL CALL, the function receives an additional argument that
specifies the type of call. For more information on NO FINAL CALL and FINAL CALL for external
table functions, including the types of calls, see the description of the option for “CREATE FUNCTION
statement (external table function)” on page 1472.

ALLOW or DISALLOW PARALLEL
Specifies whether, for a single reference to the function, the function can be executed in parallel.
If the function is defined with MODIFIES SQL DATA, specify DISALLOW PARALLEL, not ALLOW
PARALLEL.
ALLOW PARALLEL

Specifies that Db2 can consider parallelism for the function. Parallelism is not forced on the SQL
statement that invokes the function or on any SQL statement in the function. Existing restrictions
on parallelism apply.

See SCRATCHPAD, EXTERNAL ACTION, and FINAL CALL for considerations when specifying
ALLOW PARALLEL.

DISALLOW PARALLEL
Specifies that Db2 does not consider parallelism for the function.

NO DBINFO or DBINFO
Specifies whether additional status information is passed to the function when it is invoked.
NO DBINFO

Additional information is not passed.
DBINFO

An additional argument is passed when the function is invoked. The argument is a structure that
contains information such as the application run time authorization ID, the schema name, the
name of a table or column that the function might be inserting into or updating, and identification

1108 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

of the database server that invoked the function. For details about the argument and its structure,
see DBINFO structure (Db2 Application programming and SQL).

Do not specify DBINFO when LANGUAGE JAVA is specified.

CARDINALITY integer
Specifies an estimate of the expected number of rows that the function returns. The number is used
for optimization purposes. The value of integer must range 0–2147483647.

If a function has an infinite cardinality (which means that the function never returns the "end-of-table"
condition and always returns a row), a query that requires the end-of-table condition to work correctly
needs to be interrupted. Thus, avoid using such functions in queries that involve GROUP BY and
ORDER BY.

Do not specify CARDINALITY for external scalar functions.

NO COLLID or COLLID collection-id
Identifies the package collection that is to be used when the function is executed. This is the package
collection into which the DBRM that is associated with the function is bound.
NO COLLID

Specifies the package collection for the function is the same as the package collection of the
program that invokes the function. If a trigger invokes the function, the collection of the trigger
package is used. If the invoking program does not use a package, Db2 resolves the package
by using the CURRENT PACKAGE PATH special register, the CURRENT PACKAGESET special
register, or the PKLIST bind option (in this order). For details about how Db2 uses these three
items, see the information on package resolution in Binding an application plan (Db2 Application
programming and SQL).

COLLID collection-id
Specifies the name of the package collection that is to be used when the function is executed.

WLM ENVIRONMENT
An SQL identifier that identifies the name of the WLM (workload manager) application environment in
which the function is to run.
name

The WLM environment in which the function must run. If the user-defined function is nested and if
the calling stored procedure or invoking user-defined function is not running in an address space
associated with the specified WLM environment, Db2 routes the function request to a different
address space.

(name,*)
When an SQL application program calls the function, name specifies the WLM environment in
which the function runs.

If another user-defined function or a stored procedure calls the function, the function runs in the
same environment that the calling routine uses. In this case, authorization to run the function in
the WLM environment is not checked because the authorization of the calling routine suffices.

The name of the WLM environment is an SQL identifier.

You must have appropriate authority for the WLM environment.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single invocation of the
function can run. The value is unrelated to the ASUTIME column of the resource limit specification
table.

When you are debugging a function, setting a limit can be helpful if the function gets caught in a loop.
For information on service units, see z/OS MVS Initialization and Tuning Guide.

NO LIMIT
There is no limit on the service units.

Chapter 7. Statements 1109

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_dbinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_bindplan.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_bindplan.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae100/abstract.htm

LIMIT integer
The limit on the number of CPU service units is a positive integer in the range 1–2147483647.
If the procedure uses more service units than the specified value, Db2 cancels the procedure.
The CPU cycles that are consumed by parallel tasks in a procedure do not contribute towards the
specified ASUTIME LIMIT.

STAY RESIDENT
Specifies whether the load module for the function is to remain resident in memory when the function
ends.
NO

The load module is deleted from memory after the function ends. Use NO for non-reentrant
functions.

YES
The load module remains resident in memory after the function ends. Use YES for reentrant
functions.

PROGRAM TYPE
Specifies whether the function program runs as a main routine or a subroutine.
SUB

The function runs as a subroutine.
MAIN

The function runs as a main routine.

Do not specify PROGRAM TYPE MAIN when LANGUAGE JAVA is in effect.

SECURITY
Specifies how the function interacts with an external security product, such as RACF, to control access
to non-SQL resources.
DB2

The function does not require an external security environment. If the function accesses
resources that an external security product protects, the access is performed using the
authorization ID associated with the WLM-established stored procedure address space.

USER
An external security environment should be used with the function. If the function accesses
resources that the external security product protects, the access is performed using the primary
authorization ID of the process that invoked the function.

DEFINER
An external security environment should be used with the function. If the function accesses
resources that the external security product protects, the access is performed using the
authorization ID of the owner of the function.

STOP AFTER SYSTEM DEFAULT FAILURES, STOP AFTER nn FAILURES, or CONTINUE AFTER
FAILURE

Specifies whether the routine is to be put in a stopped state after some number of failures. The
following options must not be specified for SQL functions or sourced functions.
STOP AFTER SYSTEM DEFAULT FAILURES

Specifies that this routine should be placed in a stopped state after the number of failures
indicated by the value of field MAX ABEND COUNT on installation panel DSNTIPX.

STOP AFTER nn FAILURES
Specifies that this routine should be placed in a stopped state after nn failures. The value nn can
be an integer 1–32767.

CONTINUE AFTER FAILURE
Specifies that this routine should not be placed in a stopped state after any failure.

RUN OPTIONS run-time-options
Specifies the Language Environment run time options to be used for the function. You must specify
run-time-options as a character string that is no longer than 254 bytes. To replace any existing run

1110 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

time options with no options, specify an empty string with RUN OPTIONS. When you specify an empty
string, Db2 does not pass any run time options to Language Environment, and Language Environment
uses its installation defaults.

For a description of the Language Environment run time options, see Language Environment
Programming Reference (z/OS Language Environment Programming Reference).

Do not specify RUN OPTIONS when LANGUAGE JAVA is specified.

INHERIT SPECIAL REGISTERS or DEFAULT SPECIAL REGISTERS
Specifies how special registers are set on entry to the routine.
INHERIT SPECIAL REGISTERS

Specifies that special registers should be inherited according to the rules listed in the table
for characteristics of special registers in a user-defined function in “Special registers in a user-
defined function or a stored procedure” on page 215.

DEFAULT SPECIAL REGISTERS
Specifies that special registers should be initialized to the default values, as indicated by the rules
in the table for characteristics of special registers in a user-defined function in “Special registers
in a user-defined function or a stored procedure” on page 215.

STATIC DISPATCH
At function resolution time, Db2 chooses a function based on the static (or declared) types of the
function parameters.

SECURED or NOT SECURED
Specifies whether the function is considered secure.
SECURED

Specifies that the function is considered secure.

Use of this clause or keyword might invalidate packages that depend on the target object, or
packages that depend on related objects through cascading effects. See Changes that invalidate
packages (Db2 Application programming and SQL).

NOT SECURED
Specifies that the function is considered not secure. NOT SECURED must not be specified when a
row permission or a column mask depends on the function.

When the function is invoked, the arguments of the function must not reference a column for
which a column mask is enabled when the table is using active column access control.

Use of this clause or keyword might invalidate packages that depend on the target object, or
packages that depend on related objects through cascading effects. See Changes that invalidate
packages (Db2 Application programming and SQL).

Notes for ALTER FUNCTION (external)
Invalidation of packages:

This statement might invalidate all packages that depend on target objects, and sometimes other
related objects through cascading effects, depending on the clauses and keywords specified
and other factors. For more information, see Changes that invalidate packages (Db2 Application
programming and SQL).

LANGUAGE C and the PARAMETER VARCHAR clause:
The ALTER statement does not allow you to alter the value of the PARAMETER VARCHAR or
PARAMETER CCSID clauses that are associated with the function definition. However, you can alter
the LANGUAGE clause for the function. If the PARAMETER VARCHAR clause is specified for the creation
of a LANGUAGE C function, the catalog information for that option is not affected by a subsequent
ALTER function statement. The function might be changed to a language other than C, in which case
the PARAMETER VARCHAR setting is ignored. If the function is later changed back to LANGUAGE C,
the setting of the PARAMETER VARCHAR option that was specified during the CREATE FUNCTION
statement will be used.

Chapter 7. Statements 1111

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ceea300/abstract.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ceea300/abstract.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

Altering a function from NOT SECURED to SECURED:
Typically, the security administrator will examine the data that is accessed by a function, ensure that
it is secure, and grant the CREATE_SECURE_OBJECT privilege to the user that requires privileges
to change the user-defined function to be secured. After the function is changed to SECURED, the
security administrator will revoke the CREATE_SECURE_OBJECT privilege from the owner of the
function.

The function is considered secure after the ALTER FUNCTION statement is executed. Db2 treats
the SECURED attribute as an assertion that declares that the security administrator has established
an audit procedure for all changes to the user-defined function. Db2 assumes that such a control
audit procedure is in place for all subsequent ALTER FUNCTION statements or changes to external
packages.

Packages and statements in the dynamic statement cache that reference the function are invalidated.

Altering a function from SECURED to NOT SECURED:
Packages and statements in the dynamic statement cache that reference the function are invalidated
when the function is changed from SECURED to NOT SECURED. An function that is not secured might
negatively impact performance if that function accesses data in a table that is using row access
control or column access control. To minimize the performance impact, either change the function to
use the SECURED option or deactivate row access control or column access control for the table that
the function is accessing.

Invoking other user-defined functions in a secure function:
When a secure user-defined function is referenced in an SQL data change statement that references
a table that is using row access control or column access control, and if the secure user-defined
function invokes other user-defined functions, the nested user-defined functions are not validated
as secure. If those nested functions can access sensitive data, the security administrator needs to
ensure that those functions are allowed to access sensitive data and should ensure that a change
control audit procedure has been established for all changes to those functions.

The SECURE column in the DSN_FUNCTION_TABLE EXPLAIN table:
The SECURE column in the DSN_FUNCTION_TABLE EXPLAIN table indicates if a user-defined function
is considered secure.

Alternative syntax and synonyms:
To provide compatibility with previous releases of Db2 or other products in the Db2 family, Db2
supports the following keywords:

• VARIANT as a synonym for NOT DETERMINISTIC
• NOT VARIANT as a synonym for DETERMINISTIC
• NOT NULL CALL as a synonym for RETURNS NULL ON NULL INPUT
• NULL CALL as a synonym for CALLED ON NULL INPUT
• PARAMETER STYLE DB2SQL as a synonym for PARAMETER STYLE SQL
• TIMEZONE can be specified as an alternative to TIME ZONE.

Examples for ALTER FUNCTION (external)

Example 1
Assume that two functions CENTER are in the PELLOW schema. The first function has two input
parameters with INTEGER and FLOAT data types, respectively. The specific name for the first function
is FOCUS1. The second function has three parameters with CHAR(25), DEC(5,2), and INTEGER data
types.

Using the specific name to identify the function, change the WLM environment in which the first
function runs from WLMENVNAME1 to WLMENVNAME2:

 ALTER SPECIFIC FUNCTION ENGLES.FOCUS1 WLM ENVIRONMENT WLMENVNAME2;

1112 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 2
Change the second function that is described in Example 1 so that it is not invoked when any of the
arguments are null. Use the function signature to identify the function:

 ALTER FUNCTION ENGLES.CENTER (CHAR(25), DEC(5,2), INTEGER)
 RETURNS NULL ON NULL INPUT;

You can also code the ALTER FUNCTION statement without the exact values for the CHAR and DEC
data types:

 ALTER FUNCTION ENGLES.CENTER (CHAR(), DEC(), INTEGER)
 RETURNS NULL ON NULL INPUT;

If you use empty parentheses, Db2 ignores the length, precision, and scale attributes when looking for
matching data types to find the function.

Related concepts
External functions (Db2 Application programming and SQL)
Related tasks
Altering user-defined functions (Db2 Administration Guide)

ALTER FUNCTION statement (compiled SQL scalar function)
The ALTER FUNCTION (compiled SQL scalar) statement changes the description of a user-defined
compiled SQL scalar function at the current server. The function options, parameter names, and routine
body can be changed and additional versions of the procedure can be defined and maintained using the
ALTER FUNCTION statement.

Invocation for ALTER FUNCTION (compiled SQL scalar)
This statement can only be dynamically prepared and the DYNAMICRULES run behavior must be specified
implicitly or explicitly.

Authorization for ALTER FUNCTION (compiled SQL scalar)
The privilege set defined below must include at least one of the following:

• Ownership of the function
• The ALTERIN privilege on the schema
• System DBADM authority
• SYSCTRL authority
• SYSADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The authorization ID that matches the schema name implicitly has the ALTERIN privilege on the schema.

If the authorization ID that is used to alter the function has the installation SYSADM authority or the
installation SYSOPR authority and if the current SQLID is set to SYSINSTL, the function is identified as
system-defined function when the function definition is reevaluated.

Additional privileges might be required in the following situations:

• If SQL-routine-body is specified, the privilege set must include the privileges that are required to
execute the statements in SQL-routine-body.

• If a user-defined type is referenced (i.e. as the data type of an SQL variable in the body of the function),
the privilege set must include at least one of the following:

– Ownership of the distinct type
– The USAGE privilege on the user-defined type

Chapter 7. Statements 1113

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_externaludf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_alterudfs.html

– System DBADM authority
– DATAACCESS authority
– SYSADM authority

• If the function uses a table as a parameter, the privilege set must also include at least one of the
following:

– Ownership of the table
– The SELECT privilege on the table
– DATAACCESS authority
– SYSADM authority

• If you specify the WLM ENVIRONMENT FOR DEBUG MODE clause, RACF or an external security product
is invoked to check the required authority for defining programs in the WLM environment. If the WLM
environment access is protected in RACF, the privilege set must include the required authority.

• When replacing an SQL scalar function, the privilege set must include the required authorization to
add a new package or a new version of an existing package depending on the value of the BIND NEW
PACKAGE field on installation panel DSNTIPP, or the privilege set must include SYSADM or SYSCTRL
authority.

Additional authorization might be required on the SYSDUMMYx tables depending on the content of the
function definition. For details, see SYSDUMMYx tables (Introduction to Db2 for z/OS).

At least one of the following privileges is required if the SECURED option is specified or if the function is
currently secured and the NOT SECURED option is specified:

• SECADM authority
• CREATE_SECURE_OBJECT privilege

At least one of those privileges is also required if the function is currently secure and the ALTER ACTIVE
VERSION, ALTER VERSION routine-version-id, ADD VERSION, or REPLACE clause is specified.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the package.

If the statement is dynamically prepared, the privilege set is the set of privileges that are held by the SQL
authorization IDs of the process. The specified routine name can include a schema name (a qualifier).
However, if the schema name is not the same as one of these SQL authorization IDs, one of the following
conditions must be met:

1. The privilege set includes SYSADM authority
2. The privilege set includes SYSCTRL authority
3. The SQL authorization ID of the process has the ALTERIN privilege on the schema

When ALTER FUNCTION is issued in a trusted context that has the ROLE AS OBJECT OWNER clause, the
package owner is determined as follows:

• If the PACKAGE OWNER option is not specified, the role associated with the binder becomes the
package owner.

• If the PACKAGE OWNER option is specified, the role specified in the PACKAGE OWNER option becomes
the package owner. In a trusted context, the PACKAGE OWNER specified must be a role.

1114 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sysdummy.html

Syntax for ALTER FUNCTION (compiled SQL scalar)
ALTER function-designator

ALTER ACTIVE VERSION

ALL VERSIONS

VERSION routine-version-id

option-list

REPLACE
ACTIVE VERSION

VERSION routine-version-id

routine-specification

ADD VERSION routine-version-id routine-specification

ACTIVATE VERSION routine-version-id

REGENERATE
ACTIVE VERSION

VERSION routine-version-id USING APPLICATION COMPATIBILITY applcompat-level

DROP VERSION routine-version-id

function-designator:
FUNCTION function-name

(

,

data-type

)

SPECIFIC FUNCTION specific-name

routine-specification:
(

,

parameter-name data-type

) RETURNS data-type2

option-list

SQL-routine-body

data-type, data-type2:
built-in-type

distinct-type-name

array-type-name

built-in-type:

Chapter 7. Statements 1115

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

BIT

DATA

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID ASCII

EBCDIC

UNICODE

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

ROWID

XML

SQL-routine-body:
SQL-control-statement

option-list:

1116 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

1
NOT DETERMINISTIC

DETERMINISTIC

EXTERNAL ACTION

NO EXTERNAL ACTION

READS SQL DATA

CONTAINS SQL

MODIFIES SQL DATA

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

STATIC DISPATCH

ALLOW PARALLEL

DISALLOW PARALLEL

DISALLOW DEBUG MODE

ALLOW DEBUG MODE

DISABLE DEBUG MODE

QUALIFIER schema-name PACKAGE OWNER authorization-name

ASUTIME NO LIMIT

ASUTIME LIMIT integer

INHERIT SPECIAL REGISTERS

DEFAULT SPECIAL REGISTERS

WLM ENVIRONMENT FOR DEBUG MODE name

CURRENT DATA NO

CURRENT DATA YES

DEGREE 1

DEGREE ANY

CONCURRENT ACCESS RESOLUTION USE CURRENTLY COMMITTED

CONCURRENT ACCESS RESOLUTION WAIT FOR OUTCOME

DYNAMICRULES RUN

DYNAMICRULES BIND

DYNAMICRULES DEFINEBIND

DYNAMICRULES DEFINERUN

DYNAMICRULES INVOKEBIND

DYNAMICRULES INVOKERUN

APPLICATION ENCODING SCHEME ASCII

APPLICATION ENCODING SCHEME EBCDIC

APPLICATION ENCODING SCHEME UNICODE

WITHOUT EXPLAIN

WITH EXPLAIN

WITHOUT IMMEDIATE WRITE

WITH IMMEDIATE WRITE

option-list-continued

option-list-continued:

Chapter 7. Statements 1117

ISOLATION LEVEL CS

ISOLATION LEVEL RS

ISOLATION LEVEL RR

ISOLATION LEVEL UR

OPTHINT ''

OPTHINT string-constant

SQL PATH

,

schema-name

SYSTEM PATH

SESSION USER

USER

QUERY ACCELERATION NONE

QUERY ACCELERATION ENABLE

QUERY ACCELERATION ENABLE WITH FAILBACK

QUERY ACCELERATION ELIGIBLE

QUERY ACCELERATION ALL

GET_ACCEL_ARCHIVE NO

GET_ACCEL_ARCHIVE YES

ACCELERATION WAITFORDATA nnnn.m

ACCELERATOR accelerator-name

REOPT NONE

REOPT ALWAYS

REOPT ONCE

VALIDATE RUN

VALIDATE BIND ROUNDING DEC_ROUND_CEILING

ROUNDING DEC_ROUND_DOWN

ROUNDING DEC_ROUND_FLOOR

ROUNDING DEC_ROUND_HALF_DOWN

ROUNDING DEC_ROUND_HALF_EVEN

ROUNDING DEC_ROUND_HALF_UP

ROUNDING DEC_ROUND_UP

DATE FORMAT ISO

DATE FORMAT EUR

DATE FORMAT USA

DATE FORMAT JIS

DATE FORMAT LOCAL

DECIMAL(15)

DECIMAL(31)

DECIMAL(15,  s)

DECIMAL(31,  s)

FOR UPDATE CLAUSE REQUIRED

FOR UPDATE CLAUSE OPTIONAL TIME FORMAT ISO

TIME FORMAT EUR

TIME FORMAT USA

TIME FORMAT JIS

TIME FORMAT LOCAL

SECURED

NOT SECURED

BUSINESS_TIME SENSITIVE YES

BUSINESS_TIME SENSITIVE NO

SYSTEM_TIME SENSITIVE YES

SYSTEM_TIME SENSITIVE NO

ARCHIVE SENSITIVE YES

ARCHIVE SENSITIVE NO

APPLCOMPAT applcompat-value

CONCENTRATE STATEMENTS

OFF

CONCENTRATE STATEMENTS WITH LITERALS

Notes:
1 Specify options in any order. Specify at least one option. Do not specify the same option more than one
time.

1118 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Description for ALTER FUNCTION (compiled SQL scalar)
One of the following three clauses identifies the function to be changed.

FUNCTION function-name
Identifies the SQL function by its function name.

The identified function must be an SQL scalar function. There must be exactly one function with
function-name in the schema. The function can have any number of input parameters.24 If the schema
does not contain a function with function-name or contains more than one function with this name, an
error occurs.

The function must not be obfuscated.

FUNCTION function-name (parameter-type,...)
Identifies the SQL function by its function signature, which uniquely identifies the function.
function-name

Gives the function name of the SQL function.

If function-name() is specified, the function that is identified must have zero parameters.

(parameter-type,...)
Specifies the number of input parameters of the function and the name and data type of each
parameter.

If the function was defined with a table parameter (the LIKE TABLE name AS LOCATOR clause
was specified in the CREATE FUNCTION statement to indicate that one of the input parameters
is a transition table), the function signature cannot be used to uniquely identify the function.
Instead, use one of the other syntax variations to identify the function with its function name, if
unique, or its specific name.

(data-type,...)
Identifies the number of input parameters of the function and the data type of each parameter.
The data type of each parameter must match the data type that was specified in the CREATE
FUNCTION statement for the parameter in the corresponding position. The number of data
types and the logical concatenation of the data types are used to uniquely identify the function.
Therefore, you cannot change the number of parameters or the data types of the parameters.

For data types that have a length, precision, or scale attribute, you can use a set of empty
parentheses, specify a value, or accept the default values:

• Empty parentheses indicate that Db2 is to ignore the attribute when determining whether the
data types match.

For example, DEC() will be considered a match for a parameter of a function defined with a
data type of DEC(7,2). Similarly DECFLOAT() will be considered a match for DECFLOAT(16) or
DECFLOAT(34).

FLOAT cannot be specified with empty parentheses because its parameter value indicates
different data types (REAL or DOUBLE).

• If you use a specific value for a length, precision, or scale attribute, the value must exactly
match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION statement.

The specific value for FLOAT(n) does not have to exactly match the defined value of the source
function because 1<=n<= 21 indicates REAL and 22<=n<=53 indicates DOUBLE. Matching is
based on whether the data type is REAL or DOUBLE.

• If length, precision, or scale is not explicitly specified and empty parentheses are not specified,
the default length of the data type is implied. The implicit length must exactly match the value
that was specified (implicitly or explicitly) in the CREATE FUNCTION statement.

24 If the function has more than 30 parameters, only the first 30 parameters are used to determine whether
the function is unique.

Chapter 7. Statements 1119

For data types with a subtype or encoding scheme attribute, specifying the FOR subtype DATA
clause or the CCSID clause is optional. Omission of either clause indicates that Db2 is to ignore
the attribute when determining whether the data types match. If you specify either clause, it must
match the value that was implicitly or explicitly specified in the CREATE FUNCTION statement.

See “CREATE FUNCTION statement (overview)” on page 1424 for more information on the
specification of the parameter list.

A function with the function signature must exist in the explicitly or implicitly specified schema.

SPECIFIC FUNCTION specific-name
Identifies a particular user-defined function by its specific name. The name is implicitly or explicitly
qualified with a schema name. A compiled SQL scalar function with the specific name must exist in
the schema. If the specific name is not qualified, it is implicitly qualified with a schema name as
described in the description for FUNCTION function-name.

ACTIVE VERSION, ALL VERSION or, VERSION routine-version-id
Identifies the version of the function that is to be changed.
ACTIVE VERSION

Specifies that the currently active version of the function is to be changed, replaced, or
regenerated. If the function is secure, the changed, replaced, or regenerated version remains
secure.

ACTIVE VERSION is the default.

ALL VERSIONS
Specifies that all of the versions of the function are to be changed. SECURED and NOT SECURED
are the only options that can be changed when ALL VERSIONS is specified.

VERSION routine-version-id
Identifies the version of the function that is to be changed, replaced, or regenerated. routine-
version-id is the version identifier that is assigned when the version of the function is defined.
routine-version-id must identify a version of the specified function that exists at the current server.
If the function is secure, the changed, replaced, or regenerated version remains secure.

ALTER
Specifies that a version of the function is to be changed. When you change a function using ALTER
option-list, any option that is not explicitly specified will use the existing value from the version of the
function that is being changed.

REPLACE
Specifies that a version of the function is to be replaced.

Binding the replaced version of the function might result in a new access path even if the routine body
is not being changed.

When you replace a function, the data types, CCSID specifications, and character data attributes (FOR
BIT/SBCS/MIXED DATA) of the parameters must be the same as the attributes of the corresponding
parameters for the currently active version of the function. For options that are not explicitly specified,
the system default values for those options are used, even if those options were explicitly specified for
the version of the function that is being replaced. This is not the case for versions of the function that
specified DISABLE DEBUG MODE. If DISABLE DEBUG MODE is specified for a version of a function, it
cannot be changed by using the REPLACE clause. When a function definition is replaced, any existing
comments in the catalog for that definition of the function are removed.

ADD VERSION routine-version-id
Specifies that a new version of the function is to be created. routine-version-id is the version identifier
for the new version of the function. routine-version-id must not identify a version of the specified
function that already exists at the current server.

When you add a new version of a function, the data types, CCSID specifications, and character data
attributes (FOR BIT/SBCS/MIXED DATA) of the parameters must be the same as the attributes of the
corresponding parameters for the currently active version of the function. The parameter names can

1120 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

differ from the other versions of the function. For options that are not explicitly specified, the system
default values will be used.

If the function is secure, the new version is considered secure.

ACTIVATE VERSION routine-version-id
Specifies the version of the function that is to be the currently active version. routine-version-id
is the version identifier that is assigned when the version of the function is defined. The version
that is specified with routine-version-id is the version that will be invoked by a function invocation.
routine-version-id must identify a version of the function that exists at the current server.

REGENERATE
Specifies that a version of the function is to be regenerated.

REGENERATE automatically rebinds, at the current server, the package for the SQL control statements
for the function and rebinds the package for the SQL statements that are included in the body of the
function.

REGENERATE is different than the REBIND PACKAGE command. REBIND PACKAGE rebinds the
SQL statements (usually to generate better access paths for those statement) but the SQL control
statements in the function definition are not rebound.

When a function definition is regenerated, any existing comments in the catalog for that definition of
the function are not removed.

Generally, the REGENERATE keyword is used only for specific situations, such as when implicit
regeneration fails for routines or objects, or Db2 maintenance requires objects or routines to be
regenerated. For more information, see When to regenerate Db2 database objects and routines (Db2
Administration Guide).

USING APPLICATION COMPATIBILITY applcompat-level
Specifies the application compatibility level used to regenerate the version of the procedure. The
ALTER statement returns an error if the existing definition of the version includes syntax, semantics or
options that require a higher application compatibility level. This situation can occur when the version
was most recently defined or regenerated while running at a higher application compatibility level
than applcompat-level.

The following values can be specified:

VvvRrMmmm

Compatibility with the behavior of the identified Db2 function level. For example, V12R1M510
specifies compatibility with the highest available Db2 12 function level. The equivalent function
level or higher must be activated.

For the new capabilities that become available in each application compatibility level, see:

• SQL changes in Db2 13 application compatibility levels
• SQL changes in Db2 12 application compatibility levels

Tip: Extra program preparation steps might be required to increase the application compatibility
level for applications that use data server clients or drivers to access Db2 for z/OS. For more
information, see Setting application compatibility levels for data server clients and drivers (Db2
Application programming and SQL).

V12R1
Compatibility with the behavior of Db2 12 function level 500. This value has the same result as
specifying V12R1M500.

V11R1
Compatibility with the behavior of Db2 11 new-function mode. After migration to Db2 12, this
value has the same result as specifying V12R1M100. For more information, see V11R1 application
compatibility level (Db2 Application programming and SQL)

Chapter 7. Statements 1121

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_whenalterregenerate.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_whenalterregenerate.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/wnew/src/tpc/db2z_13_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html

V10R1
Compatibility with the behavior of DB2 10 new-function mode. For more information, see V10R1
application compatibility level (Db2 Application programming and SQL).

If USING APPLICATION COMPATIBILITY is omitted, the regeneration uses the APPLCOMPAT value of
the applicable SYSIBM.SYSPACKAGE catalog table row.

DROP VERSION routine-version-id
Drops the version of the function that is identified with routine-version-id. routine-version-id is the
version identifier that is assigned when the version is defined. routine-version-id must identify a
version of the function that exists at the current server and must not identify the currently active
version of the function. Only the identified version of the function is dropped.

When only a single version of the function exists at the current server, use the DROP FUNCTION
statement to drop the function.

RETURNS
Identifies the output of the function.

data-type2
Specifies the data type of the output. The data type must match the data type that was specified in
the RETURNS clause of the CREATE FUNCTION statement.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results each time that the function is invoked with
the same input arguments.
NOT DETERMINISTIC

The function might not return the same result each time that the function is invoked with the same
input arguments. The function depends on some state values that affect the results. Db2 uses
this information to disable the merging of views and table expressions when processing SELECT
or SQL data change statements that refer to this function. An example of a function that is not
deterministic is one that generates random numbers.

NOT DETERMINISTIC must be specified explicitly or implicitly if the function program accesses a
special register or invokes another function that is not deterministic.

DETERMINISTIC
The function always returns the same result each time that the function is invoked with the same
input arguments. An example of a deterministic function is a function that calculates the square
root of the input. Db2 uses this information to enable the merging of views and table expressions
for SELECT or SQL data change statements that refer to this function. If applicable, specify
DETERMINISTIC to prevent non-optimal access paths from being chosen for SQL statements that
refer to this function.

Db2 does not verify that the function program is consistent with the specification of DETERMINISTIC
or NOT DETERMINISTIC.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an object that Db2 does not
manage. An example of an external action is sending a message or writing a record to a file.
EXTERNAL ACTION

The function can take an action that changes the state of an object that Db2 does not manage.

Some SQL statements that invoke functions with external actions can result in incorrect results if
parallel tasks execute the function. For example, if the function sends a note for each initial call to
it, one note is sent for each parallel task instead of once for the function.

If you specify EXTERNAL ACTION, Db2:

• Materializes the views and table expressions in SELECT or SQL data change statements that
refer to the function. This materialization can adversely affect the access paths that are chosen
for the SQL statements that refer to this function. Do not specify EXTERNAL ACTION if the
function does not have an external action.

1122 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html

• Does not move the function from one task control block (TCB) to another between FETCH
operations.

• Does not allow another function or stored procedure to use the TCB until the cursor is closed.
This is also applicable for cursors declared WITH HOLD.

The only changes to resources made outside of Db2 that are under the control of commit and
rollback operations are those changes made under RRS control.

EXTERNAL ACTION must be specified implicitly or explicitly specified if the SQL routine body
invokes a function that is defined with EXTERNAL ACTION.

NO EXTERNAL ACTION
The function does not take any action that changes the state of an object that Db2 does not
manage. Db2 uses this information to enable the merging of views and table expressions for
SELECT or SQL data change statements that refer to this function. If applicable, specify NO
EXTERNAL ACTION to prevent non-optimal access paths from being chosen for SQL statements
that refer to this function.

Db2 does not verify that the function program is consistent with the specification of EXTERNAL
ACTION or NO EXTERNAL ACTION.

MODIFIES SQL DATA, READS SQL DATA, or CONTAINS SQL
Specifies the classification of SQL statements and nested routines that this routine can execute
or invoke. The database manager verifies that the SQL statements issued by the function, and all
routines locally invoked by the routine, are consistent with this specification; the verification is not
performed when nested remote routines are invoked. For the classification of each statement, see
Appendix D, “SQL statement data access classification for routines,” on page 2275.
MODIFIES SQL DATA

Specifies that the function can execute any SQL statement except the statements that are not
supported in functions. Do not specify MODIFIES SQL DATA when ALLOW PARALLEL is in effect.

If a function that is defined with MODIFIES SQL DATA is invoked anywhere except the select-
clause of the outermost SELECT statement, the results are unpredictable because the function
can be invoked multiple times depending on the access plan that is used.

Recommendation: If a SELECT statement invokes a function that is defined with the MODIFIES
SQL DATA option, ensure that statements nested inside the function do not modify objects that
are referenced in any SQL statement at a higher level of nesting. Otherwise, unpredictable results
are likely to occur.

READS SQL DATA
Specifies that the function can execute statements with a data access classification of READS SQL
DATA, CONTAINS SQL, or NO SQL. The function cannot execute SQL statements that modify data.

READS SQL DATA is the default.

CONTAINS SQL
Specifies that the function can execute only SQL statements with a data access classification of
CONTAINS SQL or NO SQL. The function cannot execute SQL statements the read or modify data.

CALLED ON NULL INPUT or RETURNS NULL ON NULL INPUT
Specifies whether the function is invoked if any of the input arguments is null at execution time.
CALLED ON NULL INPUT

Specifies that the function is to be invoked, if any, or all, argument values are null. This
specification means that the body of the function must be coded to test for null argument values.

CALLED ON NULL INPUT is the default.

RETURNS NULL ON NULL INPUT
Specifies that the function is not invoked and returns the null value if any of the input arguments is
null.

Chapter 7. Statements 1123

STATIC DISPATCH
At function resolution time, Db2 chooses a function based on the static (or declared) types of the
function parameters.

STATIC DISPATCH is the default.

ALLOW PARALLEL or DISALLOW PARALLEL
Specifies if the function can be run in parallel. The default is DISALLOW PARALLEL, if you specify one
or more of the following clauses:

• NOT DETERMINISTIC
• EXTERNAL ACTION
• MODIFIES SQL DATA

Otherwise, ALLOW PARALLEL is the default.

ALLOW PARALLEL
Specifies that the function can be run in parallel.

DISALLOW PARALLEL
Specifies that the function cannot be run in parallel.

ALLOW DEBUG MODE, DISALLOW DEBUG MODE, or DISABLE DEBUG MODE
Specifies whether this version of the routine can be run in debugging mode. The default is determined
using the value of the CURRENT DEBUG MODE special register.
ALLOW DEBUG MODE

Specifies that this version of the routine can be run in debugging mode. When this version of the
routine is invoked and debugging is attempted, a WLM environment must be available.

DISALLOW DEBUG MODE
Specifies that this version of the routine cannot be run in debugging mode.

You can use an ALTER statement to change this option to ALLOW DEBUG MODE for this initial
version of the routine.

DISABLE DEBUG MODE
Specifies that this version of the routine can never be run in debugging mode.

This version of the routine cannot be changed to specify ALLOW DEBUG MODE or DISALLOW
DEBUG MODE after this version of the routine has been created or altered to use DISABLE DEBUG
MODE. To change this option, drop the routine and create it again using the option that you want.
An alternative to dropping and recreating the routine is to create a version of the routine that uses
the option that you want and making that version the active version.

When DISABLE DEBUG MODE is in effect, the WLM ENVIRONMENT FOR DEBUG MODE is ignored.

QUALIFIER schema-name
Specifies the implicit qualifier that is used for unqualified object names that are referenced in the
procedure body. For information about how the default for this option is determined, see “Unqualified
alias, index, JAR file, mask, permission, sequence, table, trigger, and view names” on page 86.

PACKAGE OWNER authorization-name
Specifies the owner of the package that is associated with the version of the routine. The SQL
authorization ID of the process is the default value.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single invocation of a routine
can run. The value is unrelated to the ASUTIME column of the resource limit specification table.

When you are debugging a routine, setting a limit can be helpful in case the routine gets caught in a
loop. For information on service units, see z/OS MVS Initialization and Tuning Guide.

NO LIMIT
Specifies that there is no limit on the service units.

NO LIMIT is the default.

1124 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae100/abstract.htm

LIMIT integer
The limit on the number of CPU service units is a positive integer in the range 1–2 147 483 647.
If the procedure uses more service units than the specified value, Db2 cancels the procedure.
The CPU cycles that are consumed by parallel tasks in a procedure do not contribute towards the
specified ASUTIME LIMIT.

INHERIT SPECIAL REGISTERS or DEFAULT SPECIAL REGISTERS
Specifies how special registers are set on entry to the routine.
INHERIT SPECIAL REGISTERS

Specifies that the values of special registers are inherited, according to the rules that are listed in
the table for characteristics of special registers in a routine in Table 47 on page 215.

INHERIT SPECIAL REGISTERS is the default.

DEFAULT SPECIAL REGISTERS
Specifies that special registers are initialized to the default values, as indicated by the rules in the
table for characteristics of special registers in a routine in Table 47 on page 215.

WLM ENVIRONMENT FOR DEBUG MODE name
Specifies the WLM (workload manager) application environment that is used by Db2 when debugging
the routine. The name of the WLM environment is an SQL identifier.

If you do not specify WLM ENVIRONMENT FOR DEBUG MODE, Db2 uses the default WLM-established
stored procedure address space specified at installation time.

You must have the appropriate authority for the WLM application environment.

The WLM ENVIRONMENT FOR DEBUG MODE value is ignored when DISABLE DEBUG MODE is in
effect.

CURRENT DATA YES or CURRENT DATA NO
Specifies whether to require data currency for read-only and ambiguous cursors when the isolation
level of cursor stability is in effect. CURRENT DATA also determines whether block fetch can be used
for distributed, ambiguous cursors.
CURRENT DATA YES

Specifies that data currency is required for read-only and ambiguous cursors. Db2 acquired page
or row locks to ensure data currency. Block fetch is ignored for distributed, ambiguous cursors.

CURRENT DATA NO
Specifies that data currency is not required for read-only and ambiguous cursors. Block fetch is
allowed for distributed, ambiguous cursors. Use of CURRENT DATA NO is not recommended if the
routine attempts to dynamically prepare and execute a DELETE WHERE CURRENT OF statement
against an ambiguous cursor after that cursor is opened. You receive a negative SQLCODE if your
routine attempts to use a DELETE WHERE CURRENT OF statement for any of the following cursors:

• A cursor that is using block fetch
• A cursor that is using query parallelism
• A cursor that is positioned on a row that is modified by this or another application process

CURRENT DATA NO is the default.

DEGREE
Specifies whether to attempt to run a query using parallel processing to maximize performance.
1

Specifies that parallel processing should not be used.

1 is the default.

ANY
Specifies that parallel processing can be used.

CONCURRENT ACCESS RESOLUTION
Specifies the whether processing uses only committed data or whether it will wait for commit or
rollback of data that is in the process of being updated.

Chapter 7. Statements 1125

WAIT FOR OUTCOME
Specifies that processing will wait for the commit or rollback of data that is in the process of being
updated.

USE CURRENTLY COMMITTED
Specifies that processing use the currently committed version of the data when data that is in the
process of being updated is encountered. USE CURRENTLY COMMITTED is applicable on scans
that access tables that are defined in universal table spaces with row or page level lock size.

When there is lock contention between a read transaction and an insert transaction, USE
CURRENTLY COMMITTED is applicable to scans with isolation level CS or RS. Applicable scans
include intent read scans for read-only and ambiguous queries and for updatable cursors. USE
CURRENTLY COMMITTED is also applicable to scans initiated from WHERE predicates of UPDATE
or DELETE statements and the subselect of INSERT statements.

When there is lock contention is between a read transaction and a delete transaction, USE
CURRENTLY COMMITTED is applicable to scans with isolation level CS and when CURRENT DATA
NO is specified.

DYNAMICRULES
Specifies the values that apply, at run time, for the following dynamic SQL attributes:

• The authorization ID that is used to check authorization
• The qualifier that is used for unqualified objects
• The source for application programming options that Db2 uses to parse and semantically verify

dynamic SQL statements

DYNAMICRULES also specifies whether dynamic SQL statements can include GRANT, REVOKE, ALTER,
CREATE, DROP, and RENAME statements.

In addition to the value of the DYNAMICRULES clause, the run time environment of a routine controls
how dynamic SQL statements behave at run time. The combination of the DYNAMICRULES value and
the run time environment determines the value for the dynamic SQL attributes. That set of attribute
values is called the dynamic SQL statement behavior. The following values can be specified:
RUN

Specifies that dynamic SQL statements are to be processed using run behavior.

RUN is the default.

BIND
Specifies that dynamic SQL statements are to be processed using bind behavior.

DEFINEBIND
Specifies that dynamic SQL statements are to be processed using either define behavior or bind
behavior.

DEFINERUN
Specifies that dynamic SQL statements are to be processed using either define behavior or run
behavior.

INVOKEBIND
Specifies that dynamic SQL statements are to be processed using either invoke behavior or bind
behavior.

INVOKERUN
Specifies that dynamic SQL statements are to be processed using either invoke behavior or run
behavior.

See For information on the effects of these options, see “Authorization IDs and dynamic SQL” on page
94.

APPLICATION ENCODING SCHEME
Specifies the default encoding scheme for SQL variables in static SQL statements in the routine body.
The value is used for defining an SQL variable in a compound statement if the CCSID clause is not
specified as part of the data type, and the PARAMETER CCSID routine option is not specified.

1126 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

ASCII
Specifies that the data is encoded using the ASCII CCSIDs of the server.

EBCDIC
Specifies that the data is encoded using the EBCDIC CCSIDs of the server.

UNICODE
Specifies that the data is encoded using the Unicode CCSIDs of the server.

See the ENCODING bind option in ENCODING bind option (Db2 Commands) for information about how
the default for this option is determined.

WITH EXPLAIN or WITHOUT EXPLAIN
Specifies whether information will be provided about how SQL statements in the routine will execute.
WITHOUT EXPLAIN

Specifies that information will not be provided about how SQL statements in the routine will
execute.

You can get EXPLAIN output for a statement that is embedded in a routine that is specified using
WITHOUT EXPLAIN by embedding the SQL statement EXPLAIN in the routine body. Otherwise, the
value of the EXPLAIN option applies to all explainable SQL statements in the routine body, and to
the fullselect portion of any DECLARE CURSOR statements.

WITHOUT EXPLAIN is the default.

WITH EXPLAIN
Specifies that information will be provided about how SQL statements in the routine will execute.
Information is inserted into the table owner.PLAN_TABLE. owner is the authorization ID of the
owner of the routine. Alternatively, the authorization ID of the owner of the routine can have an
alias as owner.PLAN_TABLE that points to the base table, PLAN_TABLE. owner must also have
the appropriate SELECT and INSERT privileges on that table. WITH EXPLAIN does not obtain
information for statements that access remote objects. PLAN_TABLE must have a base table and
can have multiple aliases with the same table name, PLAN_TABLE, but have different schema
qualifiers. It cannot be a view or a synonym and should exist before the CREATE statement is
processed. In all inserts to owner.PLAN_TABLE, the value of QUERYNO is the statement number
that is assigned by Db2.

The WITH EXPLAIN option also populates two optional tables, if they exist:
DSN_STATEMNT_TABLE and DSN_FUNCTION_TABLE. DSN_STATEMNT_TABLE contains an
estimate of the processing cost for an SQL statement and DSN_FUNCTION_TABLE contains
information about function resolution. For more information, see EXPLAIN tables (Db2
Performance).

For more information about the EXPLAIN statement, including a description of the tables that are
populated by the WITH EXPLAIN option, see “EXPLAIN statement” on page 1917.

WITH IMMEDIATE WRITE or WITHOUT IMMEDIATE WRITE
Specifies whether immediate writes are to be done for updates that are made to group buffer pool
dependent page sets or partitions. This option is only applicable for data sharing environments. The
IMMEDWRITE subsystem parameter has no affect of this option. IMMEDWRITE bind option (Db2
Commands) shows the implied hierarchy of the IMMEDWRITE bind option (which is similar to this
routine option) as it affects run time.
WITHOUT IMMEDIATE WRITE

Specifies that normal write activity is performed. Updated pages that are group buffer pool
dependent are written at or before phase one of commit or at the end of abort for transactions
that have been rolled back.

WITHOUT IMMEDIATE WRITE is the default.

WITH IMMEDIATE WRITE
Specifies that updated pages that are group buffer pool dependent are immediately written as
soon as the buffer update completes. Updated pages are written immediately even if the buffer

Chapter 7. Statements 1127

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptencoding.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_explaintables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_explaintables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptimmedwrite.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptimmedwrite.html

is updated during forward progress or during the rollback of a transaction. WITH IMMEDIATE
WRITE might impact performance.

ISOLATION LEVEL RR, RS, CS, or UR
Specifies how far to isolate the routine from the effects of other running applications. For information
about isolation levels, see Choosing an ISOLATION option (Db2 Performance).
RR

Specifies repeatable read.
RS

Specifies read stability.
CS

Specifies cursor stability. CS is the default.
UR

Specifies uncommitted read.
OPTHINT 'hint-id'

Specifies whether query optimization hints are used for static SQL statements that are contained
within the body of the routine.

hint-id is a character string of up to 128 bytes in length, which is used by the Db2 subsystem when
searching the PLAN_TABLE for rows to use as input. The default value is an empty string (''), which
indicates that the Db2 subsystem does not use optimization hints for static SQL statements.

Optimization hints are only used if optimization hints are enabled for your system. For more
information, see OPTIMIZATION HINTS field (OPTHINTS subsystem parameter) (Db2 Installation and
Migration).

SQL PATH
Specifies the SQL path that the Db2 subsystem uses to resolve unqualified user-defined types,
functions, and procedure names (in CALL statements) in the body of the routine. The default value
is "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM", and the value of the QUALIFIER option, which is
the qualifier for the trigger that is the target of the statement. The maximum length of the SQL path
is 2048 bytes. Db2 calculates the length by taking each schema-name that is specified and removing
any trailing blanks from it, adding two delimiters around it, and adding one comma after each schema
name except for the last name. The length of the resulting string cannot exceed 2048 bytes.
schema-name

Identifies a schema. Db2 does not verify that the schema exists when the ALTER statement is
processed. The same schema name should not appear more than one time in the list of schema
names.

SYSPUBLIC must not be specified for the SQL path.

SYSTEM PATH
Specifies the schema names "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM".

SESSION_USER or USER
Specifies the value of the SESSION_USER (or USER) special register. At the time the ALTER
statement is processed, the actual length is included in the total length of the list of schema
names that is specified for the SQL PATH option.

REOPT
Specifies if Db2 will determine the access path at run time by using the values of SQL variables or SQL
parameters, parameter markers, and special registers.
NONE

Specifies that Db2 does not determine the access path at run time by using the values of SQL
variables or SQL parameters, parameter markers, and special registers.

NONE is the default.

1128 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_chooseisolationoption.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_opthints.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_opthints.html

ALWAYS
Specifies that Db2 always determines the access path at run time each time an SQL statement is
run. Do not specify REOPT ALWAYS with the WITH KEEP DYNAMIC or NODEFER PREPARE clauses.

ONCE
Specifies that Db2 determine the access path for any dynamic SQL statements only once, at
the first time the statement is opened. This access path is used until the prepared statement is
invalidated or removed from the dynamic statement cache and need to be prepared again.

QUERY ACCELERATION
Specifies whether a static SQL query is bound for acceleration, and if so, with what behavior.
NONE

Specifies that no static SQL query in the application is bound for acceleration or will be
accelerated when the application is run.

ENABLE
Specifies that a static SQL query is bound for acceleration if it satisfies the acceleration criteria,
including the cost and heuristics criteria. The query is routed to an accelerator when the
application runs. Otherwise, if the static query does not satisfy the acceleration criteria, the query
is bound for execution in Db2.

If an error condition, such as one of the following examples, occurs while executing the
accelerated static query when the application is run, Db2 fails the static query and returns a
negative SQL code to the application:

• A failure occurs while running the static query on the accelerator.
• The accelerator returns an error for the query.
• The accelerator is not started and Db2 cannot route the static query to the accelerator for

execution.

ENABLE WITH FAILBACK
Results in the same behavior as ENABLE, except if one of the error conditions occurs on the first
OPEN of the accelerated static query when the application is run. In this case, instead of failing
the static query and returning a negative SQL code to the application, Db2 performs a temporary
statement-level incremental bind of the query and runs the query in Db2. The application does not
see the acceleration failure. Failback to Db2 is not possible after the application does a successful
OPEN for the query on the accelerator.

ELIGIBLE
Specifies that a static SQL query is bound for acceleration if the query meets the basic
acceleration criteria, regardless of the cost or heuristics criteria. The query is routed to the
accelerator when the application runs.

Like the behavior for ENABLE, if an error condition occurs while executing the accelerated static
query when the application is run, Db2 fails the static query and returns a negative SQL code to
the application.

ALL
Specifies that all of the static SQL queries in the application are to be bound for acceleration and
routed to the accelerator when the application runs. If Db2 determines that a static query cannot
be bound to run on the accelerator and the query references a user base table or view, the BIND
or REBIND PACKAGE operation fails with an error message for that query. (A failure exception
is made for declared global temporary tables (DGTTs) and created global temporary tables and
(CGTTs) because these tables cannot be accelerated.)

Like the behavior for ENABLE, if an error condition occurs while executing the accelerated static
query when the application is run, Db2 fails the static query and returns a negative SQL code to
the application.

This bind option does not apply to a fullselect or WITH common-table-expression that is specified in
a RETURN statement for the routine, or in a SET host-variable-assignment that is used in the routine.
The queries that are specified in these cases cannot be accelerated.

Chapter 7. Statements 1129

GET_ACCEL_ARCHIVE
Specifies whether a static SQL query that is bound for acceleration retrieves archived data on the
accelerator, instead of active data.
NO

Specifies that no static SQL query is bound to retrieve archived data from the accelerator. If the
static query also is not bound for acceleration, the query is bound to run in Db2.

If the static query is bound for acceleration because the QUERYACCELERATION bind option was
specified, the query is routed to the accelerator when the application runs; however, the query
does not retrieve any archived data.

YES
Specifies that if all of the following criteria are met, the query is bound for acceleration and
retrieves the archived data on the accelerator when the application runs:

• The QUERYACCELERATION bind option is also specified.
• The static SQL query references an accelerated table that has partitioned data archived on an

accelerator.
• The static query satisfies the acceleration criteria that is specified by the QUERYACCELERATION

bind option.

If the static query does not satisfy the acceleration criteria that is specified by the
QUERYACCELERATION bind option, the BIND or REBIND PACKAGE operation fails with an error
message for that query.

This bind option does not apply to a fullselect or WITH common-table-expression that is specified in
a RETURN statement for the routine, or in a SET host-variable-assignment that is used in the routine.
The queries that are specified in these cases cannot be accelerated.

ACCELERATION WAITFORDATA
Specifies the maximum amount of time, if any, that an accelerator will delay a query while the
accelerator waits for the replication of committed Db2 data changes that occurred prior to Db2
running the query.

For static accelerated queries, you must also set the QUERYACCELERATION bind option for this
function or procedure to a valid value other than NONE to request that static queries be accelerated. If
the QUERYACCELERATION bind option value is set to NONE, the ACCELERATIONWAITFORDATA bind
option is accepted and the package is bound with the option value; however, the option will not apply
to static SQL queries because no static queries will be accelerated.

For dynamic accelerated queries, specifying the ACCELERATION WAITFORDATA bind option also
initializes the CURRENT QUERY ACCELERATION WAITFORDATA special register, which is used for
the dynamic queries in the Db2 function or procedure if the function or procedure option DEFAULT
SPECIAL REGISTERS is also used. Initializing CURRENT QUERY ACCELERATION WAITFORDATA to a
value greater than 0 specifies that Db2 and the accelerator will apply WAITFORDATA delay behavior
and restrictions to all dynamic SQL queries to be accelerated from the Db2 function or procedure. The
CURRENT QUERY ACCELERATION special register must also have a valid value other than NONE to
request that dynamic queries be accelerated.

nnnn.m
Specifies a DECIMAL(5,1) numeric-constant value that specifies the maximum number of seconds
that the accelerator will delay a query while the accelerator waits for the replication of committed
Db2 data changes that occurred prior to Db2 running the query.

You can specify a value in the range of 0.0–3600.0 seconds. For example, a value of 20.0
represents 20.0 seconds (or 20000 milliseconds), and a value of 30.5 represents 30.5 seconds
(or 30500 milliseconds). The maximum value of 3600.0 means they the query is delayed for 3600
seconds.

You can also specify the value as an INTEGER numeric-constant value ranging 0–3600 seconds,
which Db2 will convert to a DECIMAL(5,1) value.

1130 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Important: When a non-zero value is specified for the ACCELERATIONWAITFORDATA bind
option, Db2 and the accelerator will apply other WAITFORDATA delay behaviors, restrictions, and
requirements to all queries that will be accelerated from the application package. These behaviors,
restrictions, and requirements can cause queries that were formerly accelerated successfully to
no longer be accelerated or to fail. See “SET CURRENT QUERY ACCELERATION WAITFORDATA
statement” on page 2150 for more information about WAITFORDATA behaviors, restrictions, and
requirements.

ACCELERATOR
Specifies an accelerator server that, if enabled and available, Db2 will consider as the preferred
accelerator for eligible SQL queries before sending the queries to other accelerator servers. If the
specified accelerator server is not enabled or available, Db2 will send the queries to other available
accelerator servers.

VALIDATE RUN or VALIDATE BIND
Specifies whether to recheck, at run time, errors of the type "OBJECT NOT FOUND" and "NOT
AUTHORIZED" that are found during bind or rebind. The option has no effect if all objects and needed
privileges exist.
VALIDATE RUN

Specifies that if needed objects or privileges do not exist when the CREATE statement is
processed, warning messages are returned, but the CREATE statement succeeds. The Db2
subsystem rechecks for the objects and privileges at run time for those SQL statements that
failed the checks during processing of the CREATE statement. The authorization checks the use of
the authorization ID of the owner of the routine.

VALIDATE RUN is the default.

VALIDATE BIND
Specifies that if needed objects or privileges do not exist at the time the CREATE statement is
processed, an error is issued and the CREATE statement fails.

ROUNDING
Specifies the rounding mode for manipulation of DECFLOAT data. The default value is taken from the
DEFAULT DECIMAL FLOATING POINT ROUNDING MODE in DECP.
DEC_ROUND_CEILING

Specifies numbers are rounded towards positive infinity.
DEC_ROUND_DOWN

Specifies numbers are rounded towards 0 (truncation).
DEC_ROUND_FLOOR

Specifies numbers are rounded towards negative infinity.
DEC_ROUND_HALF_DOWN

Specifies numbers are rounded to nearest; if equidistant, round down.
DEC_ROUND_HALF_EVEN

Specifies numbers are rounded to nearest; if equidistant, round so that the final digit is even.
DEC_ROUND_HALF_UP

Specifies numbers are rounded to nearest; if equidistant, round up.
DEC_ROUND_UP

Specifies numbers are rounded away from 0.
DATE FORMAT ISO, EUR, USA, JIS, or LOCAL

Specifies the date format for result values that are string representations of date or time values. For
more information, see “String representations of datetime values” on page 120.

The default format is specified in the DATE FORMAT field of installation panel DSNTIP4 of the system
where the routine is defined. You cannot use the LOCAL option unless you have a date exit routine.

DECIMAL(15), DECIMAL(31), DECIMAL(15,s), or DECIMAL(31,s)
Specifies the maximum precision that is to be used for decimal arithmetic operations. For more
information see “Arithmetic with two decimal operands” on page 251. The default format is specified

Chapter 7. Statements 1131

in the DECIMAL ARITHMETIC field of installation panel DSNTIPF of the system where the routine is
defined. If the form pp.s is specified, s must be a number in the range 1–9. s represents the minimum
scale that is to be used for division.

FOR UPDATE CLAUSE OPTIONAL or FOR UPDATE CLAUSE REQUIRED
Specifies whether the FOR UPDATE clause is required for a DECLARE CURSOR statement if the cursor
is to be used to perform positioned updates.
FOR UPDATE CLAUSE REQUIRED

Specifies that a FOR UPDATE clause must be specified as part of the cursor definition if the cursor
will be used to make positioned updates.

FOR UPDATE CLAUSE REQUIRED is the default.

FOR UPDATE CLAUSE OPTIONAL
Specifies that the FOR UPDATE clause does not need to be specified in order for a cursor to be
used for positioned updates. The routine body can include positioned UPDATE statements that
update columns that the user is authorized to update.

The FOR UPDATE clause with no column list applies to static or dynamic SQL statements. Even if you
do not use this clause, you can specify FOR UPDATE OF with a column list to restrict updates to only
the columns that are identified in the FOR UPDATE clause and to specify the acquisition of update
locks.

TIME FORMAT ISO, EUR, USA, JIS, or LOCAL
Specifies the time format for result values that are string representations of date or time values. For
more information, see “String representations of datetime values” on page 120.

The default format is specified in the TIME FORMAT field of installation panel DSNTIP4 of the system
where the routine is defined. You cannot use the LOCAL option unless you have a date exit routine.

SECURED or NOT SECURED
Specifies if the function is considered secure. When the option is specified with the ALL VERSIONS
clause, it applies to all existing versions and to any future versions of the function. When it is specified
with other clauses such as ADD VERSION, or REPLACE, the value must be the same as the value that
is in effect for the function that is being changed.
SECURED

Specifies that the function is considered secure.

Use of this clause or keyword might invalidate packages that depend on the target object, or
packages that depend on related objects through cascading effects. See Changes that invalidate
packages (Db2 Application programming and SQL).

NOT SECURED
Specifies that the function is considered not secure. NOT SECURED must not be specified when a
row permission or a column mask depends on the function.

When the function is invoked, the arguments of the function must not reference a column for
which a column mask is enabled when the table is using active column access control.

Use of this clause or keyword might invalidate packages that depend on the target object, or
packages that depend on related objects through cascading effects. See Changes that invalidate
packages (Db2 Application programming and SQL).

BUSINESS_TIME SENSITIVE
Determines whether references to application-period temporal tables in both static and dynamic SQL
statements are affected by the value of the CURRENT TEMPORAL BUSINESS_TIME special register.
YES

References to application-period temporal tables are affected by the value of the CURRENT
TEMPORAL BUSINESS_TIME special register. YES is the default value.

NO
References to application-period temporal tables are not affected by the value of the CURRENT
TEMPORAL BUSINESS_TIME special register.

1132 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

For more information, see “CURRENT TEMPORAL BUSINESS_TIME special register” on page 208.

SYSTEM_TIME SENSITIVE
Determines whether references to system-period temporal tables in both static and dynamic SQL
statements are affected by the value of the CURRENT TEMPORAL SYSTEM_TIME special register.
YES

References to system-period temporal tables are affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register. YES is the default value.

NO
References to system-period temporal tables are not affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

For more information, see “CURRENT TEMPORAL SYSTEM_TIME special register” on page 210.

ARCHIVE SENSITIVE
Determines whether references to archive-enabled tables in SQL statements are affected by the value
of the SYSIBMADM.GET_ARCHIVE built-in global variable.
YES

References to archive-enabled tables are affected by the value of the SYSIBMADM.GET_ARCHIVE
built-in global variable. YES is the default value.

NO
References to archive-enabled tables are not affected by the value of the
SYSIBMADM.GET_ARCHIVE built-in global variable. For more information, see “GET_ARCHIVE”
on page 330.

APPLCOMPAT applcompat-level

Specifies the application compatibility level behavior for static SQL statements in the function body. If
this option is not specified then the behavior is determined, in priority order, by the applcompat-level
of the previous bind of the package if one exists, or the APPLCOMPAT subsystem parameter.

The following applcompat-level values can be specified:
VvvRrMmmm

Compatibility with the behavior of the identified Db2 function level. For example, V12R1M510
specifies compatibility with the highest available Db2 12 function level. The equivalent function
level or higher must be activated.

For the new capabilities that become available in each application compatibility level, see:

• SQL changes in Db2 13 application compatibility levels
• SQL changes in Db2 12 application compatibility levels

Tip: Extra program preparation steps might be required to increase the application compatibility
level for applications that use data server clients or drivers to access Db2 for z/OS. For more
information, see Setting application compatibility levels for data server clients and drivers (Db2
Application programming and SQL).

V12R1
Compatibility with the behavior of Db2 12 function level 500. This value has the same result as
specifying V12R1M500.

V11R1
Compatibility with the behavior of Db2 11 new-function mode. After migration to Db2 12, this
value has the same result as specifying V12R1M100. For more information, see V11R1 application
compatibility level (Db2 Application programming and SQL)

V10R1
Compatibility with the behavior of DB2 10 new-function mode. For more information, see V10R1
application compatibility level (Db2 Application programming and SQL).

Chapter 7. Statements 1133

https://www.ibm.com/docs/en/SSEPEK_13.0.0/wnew/src/tpc/db2z_13_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html

CONCENTRATE STATEMENTS OFF or CONCENTRATE STATEMENTS WITH LITERALS
Specifies whether each dynamic SQL statement in the routine that specifies literal constants will be
cached as a separate unique statement entry in the dynamic statement cache, instead of sharing an
existing statement in the cache. Dynamic SQL statements are eligible to share an existing statement
in the cache if the new statement meets all of the conditions for sharing a cached version of the same
dynamic statement, except that the new statement specifies one or more literal constants that are
different than the cached statement.
CONCENTRATE STATEMENTS OFF

Specifies that each dynamic SQL statement that specifies literal constants will be cached as a
unique statement entry if it specifies one or more constants that are different than the cached
version of the same dynamic statement. CONCENTRATE STATEMENTS OFF is the default dynamic
statement caching behavior.

CONCENTRATE STATEMENTS WITH LITERALS

Specifies that each dynamic SQL statement that specifies literal constants will share a cached
version of the same dynamic statement that is also prepared using the CONCENTRATE
STATEMENTS WITH LITERALS option, if the new dynamic statement meets all of the conditions for
sharing the cached statement, and the constants that are specified can be reused in place of the
constants in the cached statement.

SQL-routine-body
Specifies a single SQL control statement, including a compound-statement. See Chapter 8, “SQL
procedural language (SQL PL),” on page 2207 for more information about defining SQL functions.

A call to a procedure that issues a COMMIT, ROLLBACK, CONNECT, RELEASE, or SET CONNECTION
statement is not allowed in a function.

If the SQL-routine-body is a compound statement, it must contain at least one RETURN statement and
a RETURN statement must be executed when the function is invoked.

An ALTER FUNCTION (compiled SQL scalar) statement or an ALTER PROCEDURE (SQL native)
statement with an ADD VERSION or REPLACE clause is not allowed in an SQL-routine-body.

Notes for ALTER FUNCTION (compiled SQL scalar)
The order of options and the RETURNS clause

The RETURNS clause must precede the options-list. If the body of the function contains only a
RETURN-statement, RETURN-statement must be specified after the RETURNS clause and the options-
list in the routine body.

ALTER FUNCTION for in use functions:
ALTER FUNCTION will be locked out from making changes if the function is in use. For example, if a
query that is currently running is referencing an SQL scalar function named 'fn1' (routine-version-id
is 'v1'), an ALTER FUNCTION fn1 ACTIVATE VERSION v2 statement will wait for the query that is
currently running to complete before making 'v2' the active version for function 'fn1'. This wait for
completion behavior happens even if the query invokes the function multiple times for processing
multiple rows or if the query contains multiple references to the function that is being changed.

Considerations for changing a version of a function:
To change a version of a function, the environment settings that are in effect when the ALTER
FUNCTION statement is issued must be the same as the environment settings that are in effect
when the version of the function is first created using the CREATE FUNCTION or ALTER FUNCTION
statement if one of the following options is specified:

• QUALIFIER
• PACKAGE OWNER
• WLM ENVIRONMENT FOR DEBUG MODE
• OPTHINT
• SQL PATH

1134 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• DECIMAL (if the value includes a comma)

Considerations for catalog comments for a routine definition:
When a function definition is replaced, any existing comment in the catalog for the definition is
removed. However, when a function definition is regenerated, any existing comment in the catalog for
the definition is retained.

Identifier resolution
See Chapter 8, “SQL procedural language (SQL PL),” on page 2207 for information on how names are
resolved to columns, variables, or SQL parameters within an SQL routine.

If duplicate names are used for columns, variables, and parameters, qualify the duplicate names by
using the table designator for columns, the routine name for parameters, the label name for SQL
variables, and the schema name for global variables.

Characteristics of the package that is generated for a function:
The package that is associated with a version of a function is named as follows:

• location is set to the value of the CURRENT SERVER special register
• collection-id (schema) for the package is the same as the schema qualifier of the function
• package-id is the same as the specific name of the function
• version-id is the same as the version identifier for the version of the function

The package is generated using the bind options that correspond to the implicitly or explicitly
specified function options. In addition to the corresponding bind options, the package is generated
using the following bind options:

• FLAG(I)
• SQLERROR(NOPACKAGE)
• ENABLE(*)

Correspondence of function options to bind command options:
The following table lists options for CREATE FUNCTION and ALTER FUNCTION and the corresponding
bind command option. See BIND and REBIND options for packages, plans, and services (Db2
Commands) for information about the BIND command options.

Table 172. Correspondence of function options to bind options

CREATE FUNCTION or ALTER FUNCTION option bind command option

ACCELERATION WAITFORDATA nnnn.m ACCELERATIONWAITFORDATA(nnnn.m)

ACCELERATOR accelerator-name ACCELERATOR(accelerator-name)

APPLICATION ENCODING SCHEME ASCII ENCODING(ASCII)

APPLICATION ENCODING SCHEME EBCDIC ENCODING(EBCDIC)

APPLICATION ENCODING SCHEME UNICODE ENCODING(UNICODE)

ARCHIVE SENSITIVE NO ARCHIVESENSITIVE(NO)

ARCHIVE SENSITIVE YES ARCHIVESENSITIVE(YES)

BUSINESS_TIME SENSITIVE NO BUSTIMESENSITIVE(NO)

BUSINESS_TIME SENSITIVE YES BUSTIMESENSITIVE(YES)

CURRENT DATA NO CURRENTDATA(NO)

CURRENT DATA YES CURRENTDATA(YES)

DYNAMICRULES RUN DYNAMICRULES(RUN)

DYNAMICRULES BIND DYNAMICRULES(BIND)

Chapter 7. Statements 1135

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html

Table 172. Correspondence of function options to bind options (continued)

CREATE FUNCTION or ALTER FUNCTION option bind command option

DYNAMICRULES DEFINEBIND DYNAMICRULES(DEFINEBIND)

DYNAMICRULES DEFINERUN DYNAMICRULES(DEFINERUN)

DYNAMICRULES INVOKEBIND DYNAMICRULES(INVOKEBIND)

DYNAMICRULES INVOKERUN DYNAMICRULES(INVOKERUN)

GET_ACCEL_ARCHIVE NO GETACCELARCHIVE(NO)

GET_ACCEL_ARCHIVE YES GETACCELARCHIVE(YES)

ISOLATION LEVEL CS ISOLATION(CS)

ISOLATION LEVEL RS ISOLATION(RS)

ISOLATION LEVEL RR ISOLATION(RR)

ISOLATION LEVEL UR ISOLATION(UR)

OPTHINT string-constant OPTHINT(hint-id)

PACKAGE OWNER authorization-name OWNER(authorization-id)

QUALIFIER schema-name QUALIFIER(qualifier-name)

QUERY ACCELERATION NONE QUERYACCELERATION(NONE)

QUERY ACCELERATION ENABLE QUERYACCELERATION(ENABLE)

QUERY ACCELERATION ENABLE WITH FAILBACK QUERYACCELERATION(ENABLE WITH
FAILBACK)

QUERY ACCELERATION ELIGIBLE QUERYACCELERATION(ELIGIBLE)

QUERY ACCELERATION ALL QUERYACCELERATION(ALL)

REOPT ALWAYS REOPT(ALWAYS)

REOPT NONE REOPT(NONE)

REOPT ONCE REOPT(ONCE)

ROUNDING DEC_ROUND_CEILING ROUNDING(CEILING)

ROUNDING DEC_ROUND_DOWN ROUNDING(DOWN)

ROUNDING DEC_ROUND_FLOOR ROUNDING(FLOOR)

ROUNDING DEC_ROUND_HALF_DOWN ROUNDING(HALFDOWN)

ROUNDING DEC_ROUND_HALF_EVEN ROUNDING(HALFEVEN)

ROUNDING DEC_ROUND_HALF_UP ROUNDING(HALFUP)

ROUNDING DEC_ROUND_UP ROUNDING(UP)

SQL PATH path-specification PATH(path-specification)

SYSTEM_TIME SENSITIVE NO SYSTIMESENSITIVE(NO)

SYSTEM_TIME SENSITIVE YES SYSTIMESENSITIVE(YES)

VALIDATE BIND VALIDATE(BIND)

VALIDATE RUN VALIDATE(RUN)

1136 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 172. Correspondence of function options to bind options (continued)

CREATE FUNCTION or ALTER FUNCTION option bind command option

WITH EXPLAIN EXPLAIN(YES)

WITHOUT EXPLAIN EXPLAIN(NO)

WITH IMMEDIATE WRITE IMMEDWRITE(YES)

WITHOUT IMMEDIATE WRITE IMMEDWRITE(NO)

Application compatibility level considerations for function objects
The application compatibility level controls the adoption and use of new capabilities and
enhancements. When an object is created or altered, two separate application compatibility levels
are used: one to process the definition of the object, and the other for processing the SQL statements
in the object body:

Object definition The CURRENT APPLICATION COMPATIBILITY special register value is
used to process the object definition, except for statements in the object
body

This application compatibility level is stored in the
SYSENVIRONMENT.APPLCOMPAT column. You can use the environment
ID value in the catalog definition of the object to locate the
SYSENVIRONMENT row with the matching ENVID value.

This application compatibility level can be changed when the object is
regenerated.

Statements in the
object body

The application compatibility level that is implicitly or explicitly specified
with the APPLCOMPAT option of the CREATE or ALTER statement is used to
process statements in the object body.

This application compatibility level is stored in the
SYSPACKAGE.APPLCOMPAT column for the package associated with the
object definition.

Altering a function definition using a lower application compatibility level than the current definition
If the CURRENT APPLICATION COMPATIBILITY special register value is lower than the application
compatibility level of the existing object definition, altering an object might result in an error even
if the content of the ALTER statement is valid at the current level. The errors can occur when the
existing object definition contains some functionality that requires a higher level than the CURRENT
APPLICATION COMPATIBILITY special register setting.

Application compatibility levels for regenerating function objects

For ALTER statements that regenerate objects, the object definition is reprocessed using the
application compatibility setting that is specified implicitly or explicitly by the USING APPLICATION
COMPATIBILITY clause that follows the REGENERATE keyword. This application compatibility value
replaces the existing value in the SYSENVIRONMENT.APPLCOMPAT column for the environment
settings associated with the object definition.

If the USING APPLICATION COMPATIBILITY clause is not specified, the existing application
compatibility value in the SYSENVIRONMENT.APPLCOMPAT column for the object definition is used to
reprocess the text associated with the object definition.

The behavior of the statements in the body remains controlled by the value the existing APPLCOMPAT
option of the object.

Invalidation of packages
This statement might invalidate all packages that depend on target objects, and sometimes other
related objects through cascading effects, depending on the clauses and keywords specified and

Chapter 7. Statements 1137

other factors. When a version of an SQL function is altered to change certain options that are specified
for the active version, all application packages that refer to that function are marked invalid, and
those invoking packages require a rebind. This includes changes to certain bind options and routine
options that result in the implicit regeneration of the function. These options are marked accordingly
in the following table in columns "Change requires rebind of invoking application" and "Change results
in implicit regeneration of the entire body of the function." For more information, see Changes that
invalidate packages (Db2 Application programming and SQL).

Implicit rebind and regeneration
When certain attributes of an SQL function are changed, the body of the function might be rebound
or regenerated. The columns "Change results in implicit rebind of non-control statements in the body
of the function" and the "Change results in implicit regeneration of the entire body of the function" in
the following table summarize when implicit rebind and regeneration occurs when specific options are
changed.

Table 173. CREATE FUNCTION and ALTER FUNCTION options that result in rebind or regeneration of
the function when changed

CREATE FUNCTION
or ALTER FUNCTION
option

Change requires
rebind of invoking
application?

Change results in
implicit rebind of non-
control statements
in the body of the
function?

Change results in
implicit regeneration
of the entire body of
the function?

ACCELERATION
WAITFORDATA

No Yes No

ACCELERATOR No Yes No

ALLOW DEBUG MODE,
DISALLOW DEBUG
MODE, or DISABLE
DEBUG MODE

Yes “1” on page 1139, “2” on
page 1139

Yes “1” on page 1139 Yes

APPLICATION
ENCODING SCHEME

Yes Yes Yes

ARCHIVE SENSITIVE Yes Yes Yes

ASUTIME Yes No No

BUSINESS_TIME
SENSITIVE

Yes Yes Yes

CURRENT DATA No Yes No

DATE FORMAT Yes Yes Yes

DECIMAL Yes Yes Yes

DYNAMICRULES No Yes No

FOR UPDATE CLAUSE
OPTIONAL or FOR
UPDATE CLAUSE
REQUIRED

Yes Yes Yes

GET_ACCEL_ARCHIVE Yes Yes Yes

INHERIT SPECIAL
REGISTERS or
DEFAULT SPECIAL
REGISTERS

Yes No No

ISOLATION LEVEL No Yes No

1138 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

Table 173. CREATE FUNCTION and ALTER FUNCTION options that result in rebind or regeneration of
the function when changed (continued)

CREATE FUNCTION
or ALTER FUNCTION
option

Change requires
rebind of invoking
application?

Change results in
implicit rebind of non-
control statements
in the body of the
function?

Change results in
implicit regeneration
of the entire body of
the function?

MODIFIES SQL DATA,
READS SQL DATA, or
CONTAINS SQL

Yes Yes Yes

NOT DETERMINISTIC
or DETERMINISTIC

No No No

OPTHINT No Yes No

PACKAGE OWNER No Yes No

QUALIFIER No Yes No

QUERY ACCELERATION Yes Yes Yes

REOPT No Yes No

ROUNDING Yes Yes Yes

SQL PATH No Yes No

SYSTEM_TIME
SENSITIVE

Yes Yes Yes

TIME FORMAT Yes Yes Yes

VALIDATE RUN or
VALIDATE BIND

No Yes No

WITH EXPLAIN or
WITHOUT EXPLAIN

No Yes No

WITH IMMEDIATE
WRITE or WITHOUT
IMMEDIATE WRITE

No Yes No

WLM ENVIRONMENT
FOR DEBUG MODE

Yes No No

Note:

1. The function package is rebound or regenerated if a value of ALLOW DEBUG MODE is changed to
DISALLOW DEBUG MODE

2. Invoking applications are invalidated if a value of DISALLOW DEBUG MODE is changed to
DISABLE DEBUG MODE

Considerations for SQL processor programs:
SQL processor programs (such as SPUFI, the command line processor, and DSNTEP2) might not
correctly parse SQL statements in the routine body that are ended with semicolons. These processor
programs accept multiple SQL statements as input when each statement is separated with a
terminator character. Processor programs that use a semicolon as the SQL statement terminator
might truncate an ALTER FUNCTION statement with embedded semicolons and pass only a portion
of the statement to Db2. Therefore, you might need to change to SQL terminator character for these
processor programs.

Chapter 7. Statements 1139

Considerations for the SYSENVIRONMENTS catalog table:
An ALTER statement that specifies new environment settings will result in a new row being added to
the SYSENVIRONMENTS catalog table. The new row will be added even if an error is subsequently
encountered during processing of the statement. Thus, a new SYSENVIRONMENT row might be added
to the table even for an ALTER statement that fails.

Dependent objects:
An SQL routine is dependent on objects that are referenced in the routine body.

Altering a function from NOT SECURED to SECURED:
Typically, the security administrator will examine the data that is accessed by a function, ensure that
it is secure, and grant the CREATE_SECURE_OBJECT privilege to the user that requires privileges
to change the user-defined function to be secured. After the function is changed to SECURED, the
security administrator will revoke the CREATE_SECURE_OBJECT privilege from the owner of the
function.

The function is considered secure after the ALTER FUNCTION statement is executed. Db2 treats
the SECURED attribute as an assertion that declares that the security administrator has established
an audit procedure for all changes to the user-defined function. Db2 assumes that such a control
audit procedure is in place for all subsequent ALTER FUNCTION statements or changes to external
packages.

Packages and statements in the dynamic statement cache that reference the function are invalidated.

Altering a function from SECURED to NOT SECURED:
Packages and statements in the dynamic statement cache that reference the function are invalidated
when the function is changed from SECURED to NOT SECURED. An function that is not secured might
negatively impact performance if that function accesses data in a table that is using row access
control or column access control. To minimize the performance impact, either change the function to
use the SECURED option or deactivate row access control or column access control for the table that
the function is accessing.

Invoking other user-defined functions in a secure function:
When a secure user-defined function is referenced in an SQL data change statement that references
a table that is using row access control or column access control, and if the secure user-defined
function invokes other user-defined functions, the nested user-defined functions are not validated
as secure. If those nested functions can access sensitive data, the security administrator needs to
ensure that those functions are allowed to access sensitive data and should ensure that a change
control audit procedure has been established for all changes to those functions.

The SECURE column in the DSN_FUNCTION_TABLE EXPLAIN table:
The SECURE column in the DSN_FUNCTION_TABLE EXPLAIN table indicates if a user-defined function
is considered secure.

Altering obfuscated functions:
Obfuscated functions cannot be altered in any way.

Deploying a compiled SQL function:
When a BIND DEPLOY command is issued to deploy a compiled SQL function to a target location, the
SECURED and NOT SECURED options are included in the deployment process.

When deploying a compiled SQL function, if a function with the same target name does not exist at
the target location, the deployed function is created as a new function at the target location with the
same SECURED or NOT SECURED option that is specified (or the default of NOT SECURED is used) in
the source function of the deployment.

When deploying a compiled SQL function, if a function with the same target name already exists at
the target location, the deployed function is either added as a new version of the function or is used
to replace an existing version of the function. The SECURED or NOT SECURED option of the deployed
function must be the same as that of the existing function at the target location

Compatibilities:
For compatibility with the CREATE FUNCTION (SQL scalar) statement, the following clause can be
specified, but will be ignored:

1140 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• LANGUAGE SQL

Optional syntax:
To provide compatibility with the syntax of the CREATE FUNCTION statement, the following options
can also be specified:

• SPECIFIC
• PARAMETER CCSID

However, if these options are specified, the value for the option must be the same as the value that is
already in effect for the function.

Alternative syntax and synonyms:
To provide compatibility with previous releases of Db2 or other products in the Db2 family, Db2
supports the following keywords:

• VARIANT as a synonym for NOT DETERMINISTIC
• NOT VARIANT as a synonym for DETERMINISTIC
• NULL CALL as a synonym for CALLED ON NULL INPUT
• NOT NULL CALL as a synonym for RETURNS NULL ON NULL INPUT
• TIMEZONE can be specified as an alternative to TIME ZONE

Examples for ALTER FUNCTION (compiled SQL scalar)

Example 1
Modify the definition for an SQL function to indicate that the function is deterministic.

 ALTER FUNCTION MY_UDF1
 DETERMINISTIC;

Example 2
The following statement changes the existing function options for the active version of the REVERSE
SQL function. If you need to change a different version of the function, you would specify VERSION
routine-version-id in place of ACTIVE VERSION. Note, the ALTER clause that precedes the version
specification can be omitted:

 ALTER FUNCTION REVERSE
 ALTER ACTIVE VERSION
 NOT DETERMINISTIC
 ALLOW DEBUG MODE;

Example 3
To change the function body of any existing version of a function, you need to use the REPLACE
clause. The following statement changes both the function body and the existing SQL data access
option for the version V2 of the REVERSE function. The list of parameters is specified even though
no changes are made to the list. To replace an existing version of the function, you must specify the
list of parameters, RETURNS clause, any options that are to have non-default values (even if those
options are already specified in the version of the function that you are replacing), and the body of the
function, as in the following statement:

 ALTER FUNCTION REVERSE(INSTR VARCHAR(4000))
 REPLACE VERSION V2 (INSTR VARCHAR(4000))
 RETURNS VARCHAR(4000)
 DETERMINISTIC
 NO EXTERNAL ACTION
 CONTAINS SQL
 BEGIN
 DECLARE REVSTR, RESTSTR VARCHAR(4000) DEFAULT '';
 DECLARE LEN INT;
 IF INSTR IS NULL THEN
 RETURN NULL;
 END IF;
 SET RESTSTR = INSTR;
 SET LEN = LENGTH(INSTR);

Chapter 7. Statements 1141

 WHILE LEN > 0 DO
 SET (REVSTR, RESTSTR, LEN) = (SUBSTR(RESTSTR, 1, 1) CONCAT
 REVSTR, SUBSTR(RESTSTR, 2, LEN - 1), LEN - 1);
 END WHILE;
 RETURN REVSTR;
 END

Example 4
To add a new version of an existing function, use the ADD VERSION clause. The following statement
adds a new version of the REVERSE function to combine two SET statements into one SET statement.
The list of parameters is specified even though the new version of the function uses the same
parameters as the existing version of the function. To add a new version of the function, you must
specify the list of parameters, RETURNS clause, any options that will have non-default values, and the
body of the function, as in the following statement, which creates version V3 of the REVERSE function:

 ALTER FUNCTION REVERSE(INSTR VARCHAR(4000))
 ADD VERSION V3 (INSTR VARCHAR(4000))
 RETURNS VARCHAR(4000)
 DETERMINISTIC
 NO EXTERNAL ACTION
 CONTAINS SQL
 BEGIN
 DECLARE REVSTR, RESTSTR VARCHAR(4000) DEFAULT '';
 DECLARE LEN INT;
 IF INSTR IS NULL THEN
 RETURN NULL;
 END IF;
 SET (RESRSTR, LEN) = (INSTR, LENGTH(INSTR));
 WHILE LEN > 0 DO
 SET (REVSTR, RESTSTR, LEN) = (SUBSTR(RESTSTR, 1, 1) CONCAT
 REVSTR, SUBSTR(RESTSTR, 2, LEN - 1), LEN - 1);
 END WHILE;
 RETURN REVSTR;
 END

Example 5
To change the currently active version of the function, you must specify the ACTIVATE VERSION
clause on the ALTER FUNCTION statement, even if the version you want to be the active version has
just been defined. The following statement causes version V3 of the REVERSE SQL function to be the
currently active version:

 ALTER FUNCTION REVERSE(INSTR VARCHAR(4000))
 ACTIVATE VERSION V3;

Example 6
To regenerate the currently active version of the function, you must specify the REGENERATE clause,
as in the following statement:

 ALTER FUNCTION REVERSE(INSTR VARCHAR(4000))
 REGENERATE ACTIVE VERSION;

ALTER FUNCTION statement (inlined SQL scalar function)
The ALTER FUNCTION (inlined SQL scalar) statement changes the description of a user-defined inlined
SQL scalar function at the current server.

Invocation for ALTER FUNCTION (inlined SQL scalar)
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for ALTER FUNCTION (inlined SQL scalar)
The privilege set defined below must include at least one of the following:

• Ownership of the function

1142 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• The ALTERIN privilege on the schema
• SYSADM authority
• SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The authorization ID that matches the schema name implicitly has the ALTERIN privilege on the schema.

If the authorization ID that is used to alter the function has the installation SYSADM authority or the
installation SYSOPR authority and if the current SQLID is set to SYSINSTL, the function is identified as
system-defined function when the function definition is reevaluated.

Additional privileges might be required in the following situations:

• If SQL-routine-body is specified, the privilege set must include the privileges that are required to
execute the statements in SQL-routine-body.

• If a user-defined type is referenced (for example, as the data type of a parameter), the privilege set
must include at least one of the following:

– Ownership of the user-defined type
– The USAGE privilege on the user-defined type
– SYSADM authority

At least one of the following privileges is required if the SECURED option is specified or if the function is
currently secured and the NOT SECURED option is specified:

• SECADM authority
• CREATE_SECURE_OBJECT privilege

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the package.

If the statement is dynamically prepared, the privilege set is the set of privileges that are held by the SQL
authorization IDs of the process. The specified routine name can include a schema name (a qualifier).
However, if the schema name is not the same as one of these SQL authorization IDs, one of the following
conditions must be met:

1. The privilege set includes SYSADM authority
2. The privilege set includes SYSCTRL authority
3. The SQL authorization ID of the process has the ALTERIN privilege on the schema

Syntax for ALTER FUNCTION (inlined SQL scalar)

ALTER

FUNCTION function-name

(

,

parameter-type

)

SPECIFIC FUNCTION specific-name

option-list

parameter-type:

Chapter 7. Statements 1143

data-type

data-type:

built-in-type

distinct-type-name

built-in-type:

1144 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

BIT

DATA

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID ASCII

EBCDIC

UNICODE

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

ROWID

XML

option-list: (Specify options in any order. Specify at least one option. Do not specify the same option more than
one time.)

Chapter 7. Statements 1145

NOT DETERMINISTIC

DETERMINISTIC

EXTERNAL ACTION

NO EXTERNAL ACTION

CONTAINS SQL

READS SQL DATA

STATIC DISPATCH CALLED ON NULL INPUT NOT SECURED

SECURED

Description for ALTER FUNCTION (inlined SQL scalar)
One of the following three clauses identifies the function to be changed.

FUNCTION function-name
Identifies the SQL function by its function name.

The identified function must be an inlined SQL scalar function. There must be exactly one function
with function-name in the schema. The function can have any number of input parameters.25 If the
schema does not contain a function with function-name or contains more than one function with this
name, an error occurs.

The function must not be obfuscated.

FUNCTION function-name (parameter-type,...)
Identifies the SQL function by its function signature, which uniquely identifies the function.
function-name

Gives the function name of the inlined SQL scalar function.

If function-name() is specified, the function that is identified must have zero parameters.

(parameter-type,...)
Specifies the number of input parameters of the function and the name and data type of each
parameter.

(data-type,...)
Identifies the number of input parameters of the function and the data type of each parameter.
The data type of each parameter must match the data type that was specified in the CREATE
FUNCTION statement for the parameter in the corresponding position. The number of data
types and the logical concatenation of the data types are used to uniquely identify the function.
Therefore, you cannot change the number of parameters or the data types of the parameters.

For data types that have a length, precision, or scale attribute, you can use a set of empty
parentheses, specify a value, or accept the default values:

• Empty parentheses indicate that Db2 is to ignore the attribute when determining whether the
data types match.

For example, DEC() will be considered a match for a parameter of a function defined with a
data type of DEC(7,2). Similarly DECFLOAT() will be considered a match for DECFLOAT(16) or
DECFLOAT(34).

FLOAT cannot be specified with empty parentheses because its parameter value indicates
different data types (REAL or DOUBLE).

• If you use a specific value for a length, precision, or scale attribute, the value must exactly
match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION statement.

The specific value for FLOAT(n) does not have to exactly match the defined value of the source
function because 1<=n<= 21 indicates REAL and 22<=n<=53 indicates DOUBLE. Matching is
based on whether the data type is REAL or DOUBLE.

25 If the function has more than 30 parameters, only the first 30 parameters are used to determine whether
the function is unique.

1146 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• If length, precision, or scale is not explicitly specified and empty parentheses are not specified,
the default length of the data type is implied. The implicit length must exactly match the value
that was specified (implicitly or explicitly) in the CREATE FUNCTION statement.

For data types with a subtype or encoding scheme attribute, specifying the FOR subtype DATA
clause or the CCSID clause is optional. Omission of either clause indicates that Db2 is to ignore
the attribute when determining whether the data types match. If you specify either clause, it must
match the value that was implicitly or explicitly specified in the CREATE FUNCTION statement.

See “CREATE FUNCTION statement (overview)” on page 1424 for more information on the
specification of the parameter list.

A function with the function signature must exist in the explicitly or implicitly specified schema.

SPECIFIC FUNCTION specific-name
Identifies a particular user-defined function by its specific name. The name is implicitly or explicitly
qualified with a schema name. An inlined SQL scalar function with the specific name must exist in the
schema. If the specific name is not qualified, it is implicitly qualified with a schema name as described
in the description for FUNCTION function-name.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results each time that the function is invoked with
the same input arguments.
NOT DETERMINISTIC

The function might not return the same result each time that the function is invoked with the same
input arguments. The function depends on some state values that affect the results. Db2 uses
this information to disable the merging of views and table expressions when processing SELECT
or SQL data change statements that refer to this function. An example of a function that is not
deterministic is one that generates random numbers.

NOT DETERMINISTIC must be specified explicitly or implicitly if the function program accesses a
special register or invokes another function that is not deterministic.

DETERMINISTIC
The function always returns the same result each time that the function is invoked with the same
input arguments. An example of a deterministic function is a function that calculates the square
root of the input. Db2 uses this information to enable the merging of views and table expressions
for SELECT or SQL data change statements that refer to this function. If applicable, specify
DETERMINISTIC to prevent non-optimal access paths from being chosen for SQL statements that
refer to this function.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an object that Db2 does not
manage. An example of an external action is sending a message or writing a record to a file.
EXTERNAL ACTION

The function can take an action that changes the state of an object that Db2 does not manage.

Some SQL statements that invoke functions with external actions can result in incorrect results if
parallel tasks execute the function. For example, if the function sends a note for each initial call to
it, one note is sent for each parallel task instead of once for the function.

If you specify EXTERNAL ACTION, Db2:

• Materializes the views and table expressions in SELECT or SQL data change statements that
refer to the function. This materialization can adversely affect the access paths that are chosen
for the SQL statements that refer to this function. Do not specify EXTERNAL ACTION if the
function does not have an external action.

• Does not move the function from one task control block (TCB) to another between FETCH
operations.

• Does not allow another function or stored procedure to use the TCB until the cursor is closed.
This is also applicable for cursors declared WITH HOLD.

Chapter 7. Statements 1147

The only changes to resources made outside of Db2 that are under the control of commit and
rollback operations are those changes made under RRS control.

EXTERNAL ACTION must be specified implicitly or explicitly specified if the SQL routine body
invokes a function that is defined with EXTERNAL ACTION.

NO EXTERNAL ACTION
The function does not take any action that changes the state of an object that Db2 does not
manage. Db2 uses this information to enable the merging of views and table expressions for
SELECT or SQL data change statements that refer to this function. If applicable, specify NO
EXTERNAL ACTION to prevent non-optimal access paths from being chosen for SQL statements
that refer to this function.

Db2 does not verify that the function program is consistent with the specification of EXTERNAL
ACTION or NO EXTERNAL ACTION.

READS SQL DATA or CONTAINS SQL
Specifies the classification of SQL statements and nested routines that this routine can execute
or invoke. The database manager verifies that the SQL statements issued by the function, and all
routines locally invoked by the routine, are consistent with this specification; the verification is not
performed when nested remote routines are invoked. For the classification of each statement, see
Appendix D, “SQL statement data access classification for routines,” on page 2275.
READS SQL DATA

Specifies that the function can execute statements with a data access classification of READS SQL
DATA, CONTAINS SQL, or NO SQL. The function cannot execute SQL statements that modify data.

READS SQL DATA is the default.

CONTAINS SQL
Specifies that the function can execute only SQL statements with a data access classification of
CONTAINS SQL or NO SQL. The function cannot execute SQL statements the read or modify data.

STATIC DISPATCH
At function resolution time, Db2 chooses a function based on the static (or declared) types of the
function parameters.

CALLED ON NULL INPUT
The function is called regardless of whether any of the input arguments are null, making the function
responsible for testing for null arguments. The function can return null.

SECURED or NOT SECURED
Specifies if the function is considered secure.
SECURED

Specifies that the function is considered secure.

Use of this clause or keyword might invalidate packages that depend on the target object, or
packages that depend on related objects through cascading effects. See Changes that invalidate
packages (Db2 Application programming and SQL).

NOT SECURED
Specifies that the function is considered not secure. NOT SECURED must not be specified when a
row permission or a column mask depends on the function.

When the function is invoked, the arguments of the function must not reference a column for
which a column mask is enabled when the table is using active column access control.

Use of this clause or keyword might invalidate packages that depend on the target object, or
packages that depend on related objects through cascading effects. See Changes that invalidate
packages (Db2 Application programming and SQL).

1148 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

Notes for ALTER FUNCTION (inlined SQL scalar)
ALTER FUNCTION for in use functions:

ALTER FUNCTION will be locked out from making changes if the function is in use. This wait for
completion behavior happens even if the query invokes the function multiple times for processing
multiple rows or if the query contains multiple references to the function that is being changed.

Invalidation of plans and packages:
When an inlined SQL function is altered, all the plans and packages that refer to that function are
marked invalid.

Dependent objects:
An SQL routine is dependent on objects that are referenced in the routine body.

Altering a function from NOT SECURED to SECURED:
Typically, the security administrator will examine the data that is accessed by a function, ensure that
it is secure, and grant the CREATE_SECURE_OBJECT privilege to the user that requires privileges
to change the user-defined function to be secured. After the function is changed to SECURED, the
security administrator will revoke the CREATE_SECURE_OBJECT privilege from the owner of the
function.

The function is considered secure after the ALTER FUNCTION statement is executed. Db2 treats
the SECURED attribute as an assertion that declares that the security administrator has established
an audit procedure for all changes to the user-defined function. Db2 assumes that such a control
audit procedure is in place for all subsequent ALTER FUNCTION statements or changes to external
packages.

Packages and statements in the dynamic statement cache that reference the function are invalidated.

Altering a function from SECURED to NOT SECURED:
Packages and statements in the dynamic statement cache that reference the function are invalidated
when the function is changed from SECURED to NOT SECURED. An function that is not secured might
negatively impact performance if that function accesses data in a table that is using row access
control or column access control. To minimize the performance impact, either change the function to
use the SECURED option or deactivate row access control or column access control for the table that
the function is accessing.

Invoking other user-defined functions in a secure function:
When a secure user-defined function is referenced in an SQL data change statement that references
a table that is using row access control or column access control, and if the secure user-defined
function invokes other user-defined functions, the nested user-defined functions are not validated
as secure. If those nested functions can access sensitive data, the security administrator needs to
ensure that those functions are allowed to access sensitive data and should ensure that a change
control audit procedure has been established for all changes to those functions.

The SECURE column in the DSN_FUNCTION_TABLE EXPLAIN table:
The SECURE column in the DSN_FUNCTION_TABLE EXPLAIN table indicates if a user-defined function
is considered secure.

Altering obfuscated functions:
Obfuscated functions cannot be altered in any way.

Compatibilities:
For compatibility with the CREATE FUNCTION (SQL scalar) statement, the following clause can be
specified, but will be ignored:

• LANGUAGE SQL

Optional syntax:
To provide compatibility with the syntax of the CREATE FUNCTION statement, the following options
can also be specified:

• SPECIFIC
• PARAMETER CCSID

Chapter 7. Statements 1149

However, if these options are specified, the value for the option must be the same as the value that is
already in effect for the function.

Alternative syntax and synonyms:
To provide compatibility with previous releases of Db2 or other products in the Db2 family, Db2
supports the following keywords:

• VARIANT as a synonym for NOT DETERMINISTIC
• NOT VARIANT as a synonym for DETERMINISTIC
• NULL CALL as a synonym for CALLED ON NULL INPUT

Examples for ALTER FUNCTION (inlined SQL scalar)

Example 1: Modify the definition for an SQL function to indicate that the function is deterministic.

 ALTER FUNCTION MY_UDF1
 DETERMINISTIC;

ALTER FUNCTION statement (SQL table function)
The ALTER FUNCTION (SQL table) statement changes the description of a user-defined SQL table function
at the current server.

Invocation for ALTER FUNCTION (SQL table)
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for ALTER FUNCTION (SQL table)
The privilege set that is defined below must include at least one of the following privileges or authorities:

• Ownership of the function
• The ALTERIN privilege on the schema
• SYSADM authority
• SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The authorization ID that matches the schema name implicitly has the ALTERIN privilege on the schema.

If the authorization ID that is used to alter the function has the installation SYSADM authority or the
installation SYSOPR authority and if the current SQLID is set to SYSINSTL, the function is identified as
system-defined function when the function definition is reevaluated.

If a distinct type is referenced (i.e. as the data type of an SQL variable in the body of the function), the
privilege set must also include at least one of the following:

• Ownership of the distinct type
• The USAGE privilege on the distinct type
• SYSADM authority

At least one of the following privileges is required if the SECURED option is specified or if the function is
currently secured and the NOT SECURED option is specified:

• SECADM authority
• CREATE_SECURE_OBJECT privilege

1150 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the package.

If the statement is dynamically prepared, the privilege set is the set of privileges that are held by the SQL
authorization IDs of the process. The specified routine name can include a schema name (a qualifier).
However, if the schema name is not the same as one of these SQL authorization IDs, one of the following
conditions must be met:

1. The privilege set includes SYSADM authority
2. The privilege set includes SYSCTRL authority
3. The SQL authorization ID of the process has the ALTERIN privilege on the schema

Syntax for ALTER FUNCTION (SQL table)

ALTER function-designator RESTRICT option-list

function-designator:
FUNCTION function-name

(

,

parameter-type

)

SPECIFIC FUNCTION specific-name

parameter-type:
data-type

data-type:
built-in-type

distinct-type-name

Chapter 7. Statements 1151

built-in-type:
SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

BIT

DATA

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID ASCII

EBCDIC

UNICODE

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

ROWID

XML

1152 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

option-list:
1

NOT DETERMINISTIC

DETERMINISTIC

EXTERNAL ACTION

NO EXTERNAL ACTION

READS SQL DATA

CONTAINS SQL

CALLED ON NULL INPUT INHERIT SPECIAL REGISTERS

STATIC DISPATCH CARDINALITY integer SECURED

NOT SECURED

Notes:
1 The options in the option-list can be specified in any order. However, the same clause cannot be
specified more than one time.

Description for ALTER FUNCTION (SQL table)
FUNCTION function-name

Identifies the SQL table function by its function name. The identified function must be an SQL table
function.

There must be exactly one function with function-name in the schema. The function can have any
number of input parameters. If the schema does not contain a function with function-name, or
contains more than one function with this name, an error is returned.

The function must not be obfuscated.

FUNCTION function-name (parameter-type, ...)
Identifies the SQL function by its function signature, which uniquely identifies the function.

A function with the function signature must exist in the explicitly or implicitly specified schema.

function-name
Identifies the function name of the SQL function. If the function was defined with a table
parameter (the LIKE TABLE name AS LOCATOR clause was specified in the CREATE FUNCTION
statement to indicate that one of the input parameters is a transition table), the function signature
cannot be used to uniquely identify the function. Instead, use one of the other syntax variations to
identify the function with its function name, if unique, or its specified parameters.

If function-name() is specified, the function that is identified must have zero parameters.

parameter-type
Identifies the number of parameters of the function.

data-type
Identifies the data type of each input parameter of the function. The data type of each parameter
must match the data type that was specified in the CREATE FUNCTION statement for the
parameter in the corresponding position. The number of data types and the logical concatenation
of the data types are used to uniquely identify the function. Therefore , you cannot change the
number of parameters or the data types of the parameters.

For data types that have a length, precision, or scale attribute, you can use a set of empty
parentheses, specify a value, or accept the default values:

• Empty parentheses indicate that Db2 is to ignore the attribute when determining whether the
data types match.

Chapter 7. Statements 1153

For example, DEC() will be considered a match for a parameter of a function defined with a
data type of DEC(7,2). Similarly DECFLOAT() will be considered a match for DECFLOAT(16) or
DECFLOAT(34).

FLOAT cannot be specified with empty parentheses because its parameter value indicates
different data types (REAL or DOUBLE).

• If you use a specific value for a length, precision, or scale attribute, the value must exactly
match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION statement.

The specific value for FLOAT(n) does not have to exactly match the defined value of the source
function because 1<=n<= 21 indicates REAL and 22<=n<=53 indicates DOUBLE. Matching is
based on whether the data type is REAL or DOUBLE.

• If length, precision, or scale is not explicitly specified and empty parentheses are not specified,
the default length of the data type is implied. The implicit length must exactly match the value
that was specified (implicitly or explicitly) in the CREATE FUNCTION statement.

For data types with a subtype or encoding scheme attribute, specifying the FOR subtype DATA
clause or the CCSID clause is optional. Omission of either clause indicates that Db2 is to ignore
the attribute when determining whether the data types match. If you specify either clause, it must
match the value that was implicitly or explicitly specified in the CREATE FUNCTION statement.

See “CREATE FUNCTION statement (overview)” on page 1424 for more information on the
specification of the parameter list.

RESTRICT
Indicates that the function will not be altered or replaced it if is referenced by any dependent
package, function, materialized query table, or view.

Exception: When the ALTER statement specifies only DETERMINISTIC or NOT DETERMINISTIC, the
function is altered, and all dependent packages are invalidated.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results each time that the function is invoked with
the same input arguments. Db2 does not verify that the function program is consistent with the
specification of NOT DETERMINISTIC or DETERMINISTIC.
NOT DETERMINISTIC

Specifies that the function might not return the same result table each time that the function
is invoked with the same input arguments, even when the referenced data in the database has
not changed. The function depends on some state values that might affect the results. Db2 uses
this information to disable the merging of views and table expressions when processing SELECT
and SQL data change statements that refer to this function. An example of a table function
that is not deterministic is one which references special registers, other functions that are not
deterministic, or a sequence in a way that affects the table function's result table. Use of this
clause or keyword might invalidate packages that depend on the target object, or packages that
depend on related objects through cascading effects. See Changes that invalidate packages (Db2
Application programming and SQL).

DETERMINISTIC
Specifies that the function always returns the same result table each time that the function is
invoked with the same input arguments (provided that the referenced data in the database has
not changed). Db2 uses this information to enable the merging of views and table expressions
for SELECT and SQL data change statements that refer to this function. Use of this clause or
keyword might invalidate packages that depend on the target object, or packages that depend on
related objects through cascading effects. See Changes that invalidate packages (Db2 Application
programming and SQL).

If applicable, specify DETERMINISTIC to prevent non-optimal access paths from being chosen for
SQL statements that refer to this function.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function contains an external action. Db2 does not verify that the function
program is consistent with the specification of EXTERNAL ACTION or NO EXTERNAL ACTION.

1154 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

EXTERNAL ACTION
The function performs some external action (outside the scope of the function program). Thus, the
function must be invoked with each successive function invocation. EXTERNAL ACTION must be
specified if the function invokes another function that has external actions.

NO EXTERNAL ACTION
The function does not perform any external action. It need not be called with each successive
function invocation. Functions that are defined with NO EXTERNAL ACTION might perform better
than functions that are defined with EXTERNAL ACTION because the function might not be
invoked for each successive function invocation.

READS SQL DATA or CONTAINS SQL
Specifies the classification of SQL statements and nested routines that this routine can execute
or invoke. The database manager verifies that the SQL statements issued by the function, and all
routines locally invoked by the routine, are consistent with this specification; the verification is not
performed when nested remote routines are invoked. For the classification of each statement, see
Appendix D, “SQL statement data access classification for routines,” on page 2275.
READS SQL DATA

Specifies that the function can execute statements with a data access indication of READS SQL
DATA or CONTAINS SQL. The function cannot execute SQL statements that modify data.

CONTAINS SQL
Specifies that the function can execute only SQL statements with a data access indication of
CONTAINS SQL. The function cannot execute statements that read or modify data.

CALLED ON NULL INPUT
Specifies that the function is called regardless of whether any of the input argument values are null,
making the function responsible for testing for null argument values. The function might return an
empty table, depending on the logic in the body of the function.

INHERIT SPECIAL REGISTERS
Specifies that existing values of special registers are inherited upon entry to the function.

STATIC DISPATCH
Specifies that at function resolution time, Db2 chooses a function based on the static (or declared)
types of the function parameters.

CARDINALITY integer
Specifies an estimate of the expected number of rows that the function returns. The number is used
for optimization purposes. The value of integer must be in the range 0–2147483647.

If a function has an infinite cardinality (the function never returns the end-of-table condition and
always returns a row), a query that requires the end-of-table condition to work correctly will need to
be interrupted.

SECURED or NOT SECURED
Specifies whether the function is considered secure.
SECURED

Specifies that the function is considered secure.

Use of this clause or keyword might invalidate packages that depend on the target object, or
packages that depend on related objects through cascading effects. See Changes that invalidate
packages (Db2 Application programming and SQL).

NOT SECURED
Specifies that the function is considered not secure. NOT SECURED must not be specified when a
row permission or a column mask depends on the function.

When the function is invoked, the arguments of the function must not reference a column for
which a column mask is enabled when the table is using active column access control.

Use of this clause or keyword might invalidate packages that depend on the target object, or
packages that depend on related objects through cascading effects. See Changes that invalidate
packages (Db2 Application programming and SQL).

Chapter 7. Statements 1155

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

Notes for ALTER FUNCTION (SQL table)
Invalidation of packages:

This statement might invalidate all packages that depend on target objects, and sometimes other
related objects through cascading effects, depending on the clauses and keywords specified
and other factors. For more information, see Changes that invalidate packages (Db2 Application
programming and SQL).

Dependent objects:
An SQL routine is dependent on objects that are referenced in the routine body.

Altering a function from NOT SECURED to SECURED:
Typically, the security administrator will examine the data that is accessed by a function, ensure that
it is secure, and grant the CREATE_SECURE_OBJECT privilege to the user that requires privileges
to change the user-defined function to be secured. After the function is changed to SECURED, the
security administrator will revoke the CREATE_SECURE_OBJECT privilege from the owner of the
function.

The function is considered secure after the ALTER FUNCTION statement is executed. Db2 treats
the SECURED attribute as an assertion that declares that the security administrator has established
an audit procedure for all changes to the user-defined function. Db2 assumes that such a control
audit procedure is in place for all subsequent ALTER FUNCTION statements or changes to external
packages.

Packages and statements in the dynamic statement cache that reference the function are invalidated.

Altering a function from SECURED to NOT SECURED:
Packages and statements in the dynamic statement cache that reference the function are invalidated
when the function is changed from SECURED to NOT SECURED. An function that is not secured might
negatively impact performance if that function accesses data in a table that is using row access
control or column access control. To minimize the performance impact, either change the function to
use the SECURED option or deactivate row access control or column access control for the table that
the function is accessing.

Invoking other user-defined functions in a secure function:
When a secure user-defined function is referenced in an SQL data change statement that references
a table that is using row access control or column access control, and if the secure user-defined
function invokes other user-defined functions, the nested user-defined functions are not validated
as secure. If those nested functions can access sensitive data, the security administrator needs to
ensure that those functions are allowed to access sensitive data and should ensure that a change
control audit procedure has been established for all changes to those functions.

The SECURE column in the DSN_FUNCTION_TABLE EXPLAIN table:
The SECURE column in the DSN_FUNCTION_TABLE EXPLAIN table indicates if a user-defined function
is considered secure.

Altering obfuscated functions:
Obfuscated functions cannot be altered in any way.

Compatibilities:
For compatibility with the CREATE FUNCTION (SQL table) statement, the following clause can be
specified, but will be ignored:

• LANGUAGE SQL

Alternative syntax and synonyms:
To provide compatibility with previously releases of Db2 or other products in the Db2 family, Db2
supports the following keywords:

• VARIANT as a synonym for NOT DETERMINISTIC
• NOT VARIANT as a synonym for DETERMINISTIC
• NULL CALL as a synonym for CALLED ON NULL INPUT

1156 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

Examples for ALTER FUNCTION (SQL table)

Example 1: The following statement modifies the definition of an SQL table function to set the estimated
cardinality to 10,000.

ALTER FUNCTION GET_TABLE
 RESTRICT CARDINALITY 10000;

ALTER INDEX statement
The ALTER INDEX statement changes the description of an index at the current server.

Invocation for ALTER INDEX
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for ALTER INDEX
The privilege set that is defined below must include one of the following:

• Ownership of the index
• Ownership of the table on which the index is defined
• DBADM authority for the database that contains the table
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

If BUFFERPOOL or USING STOGROUP is specified, additional privileges could be needed, as explained in
the description of those clauses.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the package. If the statement is dynamically prepared, the privilege set is
the union of the privilege sets that are held by each authorization ID and role of the process.

Chapter 7. Statements 1157

Syntax for ALTER INDEX
ALTER INDEX index-name

1

REGENERATE
2

USING APPLICATION COMPATIBILITY applcompat-level

BUFFERPOOL bpname

CLOSE YES

NO

COPY NO

YES

DSSIZE integer G

PIECESIZE integer K

M

G

using-specification

free-specification

gbpcache-specification

CLUSTER

NOT CLUSTER

NOT PADDED

PADDED

COMPRESS NO

COMPRESS YES

ADD COLUMN (column-name
ASC

DESC

RANDOM

)
3

INCLUDE COLUMN (column-name)

4

,

ALTER
5

partition-element

using-specification

free-specification

gbpcache-specification

DSSIZE integer G

4

Notes:
1 At least one clause must be specified after index-name. It can be from the optional list or it can be ALTER
PARTITION.

1158 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

2 If REGENERATE is specified, it must be the only clause specified on the ALTER INDEX statement.
3 If ADD COLUMN and PADDED or NOT PADDED are specified, ADD COLUMN must be specified before PADDED
or NOT PADDED.
4 The same clause must not be specified more than one time.
5 The ALTER clause can only be specified for partitioned indexes. The ALTER clause must be specified last.

using-specification:

USING VCAT catalog-name

STOGROUP stogroup-name

PRIQTY integer

SECQTY integer

ERASE YES

NO

1

Notes:
1 The same clause must not be specified more than one time.

free-specification:

FREEPAGE integer

PCTFREE integer

1

Notes:
1 The same clause must not be specified more than one time.

gbpcache-specification:

GBPCACHE CHANGED

GBPCACHE ALL

GBPCACHE NONE

partition-element:

PARTITION
1

integer

ENDING
AT

(

,

constant

MAXVALUE

MINVALUE

)
INCLUSIVE

Notes:

Chapter 7. Statements 1159

1 If PARTITION is specified, either the ENDING clause, using-specification, free-specification, or gbpcache-
specification should also be specified.

Description for ALTER INDEX
index-name

Identifies the index to be changed or regenerated. The name must identify a user-created index
that exists at the current server. The name must not identify an index that is defined on a declared
temporary table.

REGENERATE
Specifies that Db2 regenerates the structure that represents the index definition from the Db2
catalog.

Any existing authorities and dependencies are retained. The catalog is updated with the regenerated
index definition. The index is put into rebuild-pending state and catalog entries for the index statistics
are deleted. Use of this clause or keyword might invalidate packages that depend on the target object,
or packages that depend on related objects through cascading effects. See Changes that invalidate
packages (Db2 Application programming and SQL).

If the index cannot be successfully regenerated, an error is returned. In this case, the index must be
dropped and re-created.

Generally, the REGENERATE keyword is used only for specific situations, such as when implicit
regeneration fails for routines or objects, or Db2 maintenance requires objects or routines to be
regenerated. For more information, see When to regenerate Db2 database objects and routines (Db2
Administration Guide).

USING APPLICATION COMPATIBILITY applcompat-level
Specifies that the object is regenerated under applcompat-level application compatibility rules. The
ALTER statement fails if it includes any syntax, semantics, or options that require a higher application
compatibility level.

If USING APPLICATION COMAPTIBILITY is omitted, the regeneration uses the APPLCOMPAT value of
the applicable SYSIBM.SYSENVIRONMENT catalog table row.

The following applcompat-level values can be specified:
VvvRrMmmm

Compatibility with the behavior of the identified Db2 function level. For example, V12R1M510
specifies compatibility with the highest available Db2 12 function level. The equivalent function
level or higher must be activated.

For the new capabilities that become available in each application compatibility level, see:

• SQL changes in Db2 13 application compatibility levels
• SQL changes in Db2 12 application compatibility levels

Tip: Extra program preparation steps might be required to increase the application compatibility
level for applications that use data server clients or drivers to access Db2 for z/OS. For more
information, see Setting application compatibility levels for data server clients and drivers (Db2
Application programming and SQL).

V12R1
Compatibility with the behavior of Db2 12 function level 500. This value has the same result as
specifying V12R1M500.

V11R1
Compatibility with the behavior of Db2 11 new-function mode. After migration to Db2 12, this
value has the same result as specifying V12R1M100. For more information, see V11R1 application
compatibility level (Db2 Application programming and SQL)

1160 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_whenalterregenerate.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_whenalterregenerate.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/wnew/src/tpc/db2z_13_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html

V10R1
Compatibility with the behavior of DB2 10 new-function mode. For more information, see V10R1
application compatibility level (Db2 Application programming and SQL).

BUFFERPOOL bpname
Identifies the buffer pool that is to be used for the index. bpname must identify an activated 4K, 8 KB,
16 KB, or 32 KB buffer pool, and the privilege set must include SYSADM authority, SYSCTRL authority,
or the USE privilege for the buffer pool.

A buffer pool with a smaller size should be chosen for indexes with random insert patterns. A buffer
pool with a larger size should be chosen for indexes with sequential insert patterns.

If the index is changed to use index compression (the COMPRESS YES clause), the buffer pool must
be 8 KB, 16 KB, or 32 KB in size.

Depending on the situation when this clause is specified, Db2 might process the ALTER statement as
a pending data definition change, which means the current object definition and data do not reflect
the alteration at the time that the statement is issued. Instead, the altered object is placed in an
advisory REORG-pending (AREOR) state, and a subsequent reorganization of the altered object with
an appropriate utility materializes the changes to the catalog and data. For more information, see
Pending data definition changes (Db2 Administration Guide).

If the change is an immediate change, the change to the description of the index takes effect the next
time the data sets of the index space are opened. The data sets can be closed and reopened by a
STOP DATABASE command to stop the index followed by a START DATABASE command to start the
index.

If the buffer pool is changed to a buffer pool with a different page size, and the change is an
immediate change, the index is placed into REBUILD-pending status.

CLOSE
Specifies whether the data set is eligible to be closed when the index is not being used and the limit
on the number of open data sets is reached. The change to the close rule takes effect the next time
the data sets of the index space are opened.
YES

Eligible for closing.
NO

Not eligible for closing.

If DSMAX is reached and there are no CLOSE YES page sets to close, CLOSE NO page sets will be
closed.

COPY
Indicates whether the COPY utility is allowed for the index.
NO

Does not allow full image or concurrent copies or the use of the RECOVER utility on the index.
YES

Allows full image or concurrent copies and the use the RECOVER utility on the index. For data
sharing, changing COPY to YES causes additional SCA (Shared Communications Area) storage to
be used until the next full or incremental image copy is taken or until COPY is set back to NO.

DSSIZE integer G
Specifies the maximum size for each partition of a partitioned index. Any integer 1–1024 can be
specified (for example, 1 G or 1024 G). DSSIZE can be specified only if the index uses relative page
numbering. This keyword is not valid for nonpartitioned secondary indexes.

The DSSIZE value that is specified at the index level is applied to each of the partitions of the index.

If the data sets of the index are already created, you cannot specify a partition-level DSSIZE value
that is smaller than the current DSSIZE value of the specified partition, or an index-level DSSIZE value
that is smaller than the current DSSIZE value for any partition.

The value of DSSIZE for a particular partition is given by the first of these choices that applies:

Chapter 7. Statements 1161

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html

• The value of DSSIZE given in the PARTITION clause for that partition.
• The value given by a DSSIZE keyword that is not in any PARTITION clause.
• The default value is inherited from the base table space.

PIECESIZE integer
Specifies the maximum addressability of each data set for a non-partitioned index. The PIECESIZE
clause can only be specified for non-partitioned indexes.

Be aware that when you alter the PIECESIZE value, the index is placed into page set REBUILD-
pending (PSRBD) status. The entire index space becomes inaccessible. You must run the REBUILD
INDEX or the REORG TABLESPACE utility to remove that status.

The subsequent keyword K, M, or G, indicates the units of the value that is specified in integer. integer
can be separated from K, M, or G by 0 or more spaces.
K

Indicates that the integer value is to be multiplied by 1024 to specify the maximum data set size in
bytes. integer must be a power of two in the range 1–268435456.

M
Indicates that the integer value is to be multiplied by 1048576 to specify the maximum data set
size in bytes. integer must be a power of two in the range 1–262144.

G
Indicates that the integer value is to be multiplied by 1073741824 to specify the maximum data
set size in bytes. integer must be a power of two in the range 1–256.

The following table shows the valid values for the data set size, which depend on the size of the table
space.

Table 174. Valid values of PIECESIZE clause

K units M units G units Size attribute of table space

256K

512 K

1024 K 1 M

2048 K 2 M

4096 K 4 M

8192 K 8 M

16384 K 16 M

32768 K 32 M

65536 K 64 M

131072 K 128 M

262144 K 256 M

524288 K 512 M

1048576 K 1024 M 1 G

2097152 K 2048 M 2 G

4194304 K 4096 M 4 G LARGE, DSSIZE 4 G (or greater)

8388608 K 8192 M 8 G DSSIZE 8 G (or greater)

16777216 K 16384 M 16 G DSSIZE 16 G (or greater)

33554432 K 32768 M 32 G DSSIZE 32 G (or greater)

1162 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 174. Valid values of PIECESIZE clause (continued)

K units M units G units Size attribute of table space

67108864 K 65536 M 64 G DSSIZE 64 G (or greater)

134217728 K 131072 M 128 G DSSIZE 128 G (or greater)

268435456 K 262144 M 256 G DSSIZE 256 G

The data set size limit for partitioned table spaces with more than 256 partitions is 4096.

begin using-specification block

The components of the using-specification are discussed below, first for non-partitioned indexes and then
for partitioned indexes.

USING (specification for nonpartitioned indexes)
For nonpartitioned indexes, the USING clause specifies whether the data sets for the index are to be
managed by the user or managed by Db2. The USING clause applies to every data set that can be
used for the index.

If you specify USING, the index must be in the stopped state when the ALTER INDEX statement is
executed. See Altering storage attributes to determine how and when changes take effect.

VCAT catalog-name
Specifies a user-managed data set.

The data sets are VSAM linear data sets cataloged in the integrated catalog facility catalog
that catalog-name identifies. For more information about catalog-name values, see “Naming
conventions in SQL” on page 79.

More than one Db2 subsystem can share the integrated catalog facility catalogs with the current
server. To avoid the chance of those subsystems attempting to assign the same name to different
data sets, specify a catalog-name value that is not used by the other Db2 subsystems.

STOGROUP stogroup-name
Specifies using a Db2-managed data set that resides on a volume of the specified storage group.
stogroup-name must identify a storage group that exists at the current server and the privilege
set must include SYSADM authority, SYSCTRL authority, or the USE privilege for the storage group.
When the new description of the index is applied, the description of the storage group must
include at least one volume serial number. Each volume serial number must identify a volume that
is accessible to z/OS for dynamic allocation of the data set, and all identified volumes must be
of the same device type. Furthermore, the integrated catalog facility catalog used for the storage
group must not contain an entry for the data set.

If you specify USING STOGROUP and the current data set is Db2-managed, omission of the
PRIQTY, SECQTY, or ERASE clause is an implicit specification of the current value of the omitted
clause.

If you specify USING STOGROUP to convert from user-managed data sets to Db2-managed data
sets:

• Omission of the PRIQTY clause is an implicit specification of the default value. For information
on how Db2 determines the default value, see Rules for primary and secondary space allocation.

• Omission of the SECQTY clause is an implicit specification of the default value. For information
on how Db2 determines the default value, see Rules for primary and secondary space allocation.

• Omission of the ERASE clause is an implicit specification of ERASE NO.

PRIQTY integer
Specifies the minimum primary space allocation for a Db2-managed data set. integer must be a
positive integer, or -1. This clause can be specified only if the data set is currently managed by Db2
and USING VCAT is not specified.

Chapter 7. Statements 1163

When you specify PRIQTY with a positive integer value, the primary space allocation is at least n
kilobytes, where n is:
 12

If integer is less than 12
 integer

If integer is in the range 12–4194304
 2097152

If both of the following conditions are true:

• integer is greater than 2097152.
• The index is a non-partitioned index on a table space that is not defined with the LARGE or

DSSIZE attribute.

 4194304
If integer is greater than 4194304

If you specify PRIQTY with a value of -1, Db2 uses a default value for the primary space allocation.
For information on how Db2 determines the default value for primary space allocation, see Rules for
primary and secondary space allocation.

If USING STOGROUP is specified and PRIQTY is omitted, the value of PRIQTY is its current value.
(However, if the current data set is being changed from being user-managed to Db2-managed, the
value is its default value. See the description of USING STOGROUP.)

If you specify PRIQTY and do not specify a value of -1, Db2 specifies the primary space allocation
to access method services using the smallest multiple of 4 KB not less than n, where n is defined as
in the PRIQTY description. The allocated space can be greater than the amount of space requested
by Db2. For example, it could be the smallest number of tracks that will accommodate the space
requested. To more closely estimate the actual amount of storage, see DEFINE CLUSTER command
(DFSMS Access Method Services for Catalogs).

When determining a suitable value for PRIQTY, be aware that two of the pages of the primary space
could be used by Db2 for purposes other than storing index entries.

SECQTY integer
Specifies the minimum secondary space allocation for a Db2-managed data set. integer must be a
positive integer, 0, or -1. This clause can be specified only if the data set is currently managed by Db2
and USING VCAT is not specified.

If you specify SECQTY with a value of -1, Db2 uses a default value for the secondary space allocation.

If USING STOGROUP is specified and SECQTY is omitted, the value of SECQTY is its current value.
(However, if the current data set is being changed from being user-managed to Db2-managed, the
value is its default value. See the description of USING STOGROUP.)

For information on the actual value that is used for secondary space allocation, whether you specify a
value or Db2 uses a default value, see Rules for primary and secondary space allocation.

If you specify SECQTY, and do not specify a value of -1, Db2 specifies the secondary space allocation
to access method services using the smallest multiple of 4 KB not less than integer. The allocated
space can be greater than the amount of space requested by Db2. For example, it could be the
smallest number of tracks that will accommodate the space requested. To more closely estimate
the actual amount of storage, see DEFINE CLUSTER command (DFSMS Access Method Services for
Catalogs).

ERASE
Indicates whether the Db2-managed data sets are to be erased when they are deleted during the
execution of a utility or an SQL statement that drops the index.
NO

Does not erase the data sets. Operations involving data set deletion will perform better than
ERASE YES. However, the data is still accessible, though not through Db2.

1164 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/defclu.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/defclu.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/defclu.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/defclu.htm

YES
Erases the data sets. As a security measure, Db2 overwrites all data in the data sets with zeros
before they are deleted.

This clause can be specified only if the data set is currently managed by Db2 and USING VCAT is
not specified. If you specify ERASE, the index must be in the stopped state when the ALTER INDEX
statement is executed. See Altering storage attributes to determine how and when changes take
effect.

USING (specification for partitioned indexes:)
For a partitioned index, there is an optional PARTITION clause for each partition. A using-specification
can be specified at the global level or at the partition level. A using-specification within a PARTITION
clause applies only to that partition. A using-specification specified before any PARTITION clauses
applies to every partition except those with a PARTITION clause with a using-specification.

For Db2-managed data sets, the values of PRIQTY, SECQTY, and ERASE for each partition are given by
the first of these choices that applies:

• The values of PRIQTY, SECQTY, and ERASE given in the using-specification within the PARTITION
clause for the partition. Do not use more than one using-specification in any PARTITION clause.

• The values of PRIQTY, SECQTY, and ERASE given in the using-specification before any PARTITION
clause

• The current values of PRIQTY, SECQTY, and ERASE

For data sets that are being changed from user-managed to Db2-managed, the values of PRIQTY,
SECQTY, and ERASE for each partition are given by the first of these choices that applies:

• The values of PRIQTY, SECQTY, and ERASE given in the using-specification within the PARTITION
clause for the partition. Do not use more than one using-specification in any PARTITION clause.

• The values of PRIQTY, SECQTY, and ERASE given in a using-specification before any PARTITION
clauses

• The default values of PRIQTY, SECQTY, and ERASE, which are:

– PRIQTY 12
– SECQTY 12, if PRIQTY is not specified in either using-specification, or 10% of PRIQTY or 3 times

the index page size (whichever is larger) when PRIQTY is specified
– ERASE NO

Any partition for which USING or ERASE is specified (either explicitly at the partition level or implicitly
at the global level) must be in the stopped state when the ALTER INDEX statement is executed. See
Altering storage attributes to determine how and when changes take effect.

VCAT catalog-name
Specifies a user-managed data set with a name that starts with the specified catalog name. You
must specify the catalog name in the form of an SQL identifier. Thus, you must specify an alias if
the name of the integrated catalog facility catalog is longer than eight characters.

If n is the number of the partition, the identified integrated catalog facility catalog must already
contain an entry for the vth data set of the index, conforming to the Db2 naming convention for
data sets described in “Naming conventions in SQL” on page 79.

One or more Db2 subsystems could share integrated catalog facility catalogs with the current
server. To avoid the chance of having one of those subsystems attempt to assign the same
name to different data sets, select a value for catalog-name that is not used by the other Db2
subsystems.

Db2 assumes one and only one data set for each partition.

STOGROUP stogroup-name
If USING STOGROUP is used, stogroup-name must identify a storage group that exists at the
current server and the privilege set must include SYSADM authority, SYSCTRL authority, or the USE
privilege for the storage group.

Chapter 7. Statements 1165

Db2 assumes one and only one data set for each partition.

For information on the PRIQTY, SECQTY, and ERASE clauses, see the description of those clauses in
the using-specification for secondary indexes.

end using-specification block

begin free-specification block

FREEPAGE integer
Specifies how often to leave a page of free space when index entries are created as the result of
executing a Db2 utility. One free page is left for every integer pages. The value of integer can range
from 0 to 255. The change to the description of the index or partition has no effect until it is loaded or
reorganized using a Db2 utility. Do not specify FREEPAGE for an implicitly created XML index.

PCTFREE integer
Determines the percentage of free space to leave in each nonleaf page and leaf page when entries
are added to the index or partition as the result of executing a Db2 utility. The first entry in a
page is loaded without restriction. When additional entries are placed in a nonleaf or leaf page, the
percentage of free space is at least as great as integer.

The value of integer can range 0–99, however, if a value greater than 10 is specified, only 10 percent
of free space will be left in nonleaf pages. The change to the description of the index or partition has
no effect until it is loaded or reorganized using a Db2 utility. Do not specify PCTFREE for an implicitly
created XML index.

If the index is partitioned, the values of FREEPAGE and PCTFREE for a particular partition are given by
the first of these choices that applies:

• The values of FREEPAGE and PCTFREE given in the PARTITION clause for that partition. Do not use
more than one free-specification in any PARTITION clause.

• The values given in a free-specification before any PARTITION clauses.
• The current values of FREEPAGE and PCTFREE for that partition.

end free-specification block

begin gbpcache-specification block

GBPCACHE
Specifies what index pages are written to the group buffer pool in a data sharing environment. In a
non-data-sharing environment, you can specify this option, but it is ignored.
CHANGED

When there is inter-Db2 read-write interest on the index or partition, updated pages are written to
the group buffer pool. When there is no inter-Db2 read-write interest, the group buffer pool is not
used. Inter-Db2 read-write interest exists when more than one member in the data sharing group
has the index or partition open, and at least one member has it open for update.

If the index is in a group buffer pool that is defined as GBPCACHE(NO), CHANGED is ignored and no
pages are cached to the group buffer pool.

ALL
Indicates that pages are to be cached to the group buffer pool as they are read in from DASD, with
one exception. When the page set is not GBP-dependent and one Db2 data sharing member has
exclusive read-write interest in that page set (no other group members have any interest in the
page set), no pages are cached in the group buffer pool.

If the index is in a group buffer pool that is defined as GBPCACHE(NO), ALL is ignored and no pages
are cached to the group buffer pool.

NONE
Indicates that no pages are to be cached to the group buffer pool. Db2 uses the group buffer pool
only for cross-invalidation.

If you specify NONE, the index or partition must not be in group buffer pool recover-pending
(GRECP) status.

1166 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If the index is partitioned, the value of GBPCACHE for a particular partition is given by the first of these
choices that applies:

1. The value of GBPCACHE given in the PARTITION clause for that partition. Do not use more than one
gbpcache-specification in any PARTITION clause.

2. The value given in a gbpcache-specification before any PARTITION clauses.
3. The current value of GBPCACHE for that partition.

If you specify GBPCACHE in a data sharing environment, the index or partition must be in the stopped
state when the ALTER INDEX statement is executed. You cannot alter the GBPCACHE value for certain
indexes on Db2 catalog tables; for more information, see “SQL statements allowed on the catalog” on
page 2739.

end gbpcache-specification block

CLUSTER or NOT CLUSTER
Specifies whether the index is the clustering index for the table.
CLUSTER

The index is used as the clustering index for the table. This change takes effect immediately. Any
subsequent insert operations will use the new clustering index. Existing data remains clustered by
the previous clustering index until the table space is reorganized.

The implicit or explicit clustering index is ignored when data is inserted into a table space that is
defined with MEMBER CLUSTER. Instead of using cluster order, Db2 chooses where to locate the
data, based on available space. The MEMBER CLUSTER attribute affects only data that is inserted
with an insert operation; data is always loaded and reorganized in cluster order.

Do not specify CLUSTER in the following cases:

• The index is for an auxiliary table.
• CLUSTER was used already for a different index on the table.
• The index is an XML index.
• The index includes expressions.
• The index is for a table that uses hash organization.
• The index is the hash overflow index for a table.

NOT CLUSTER
The index is not used as the clustering index of the table. If the index is already defined as the
clustering index, it continues to be used as the clustering index by Db2 and the REORG utility until
clustering is explicitly changed by specifying CLUSTER for a different index.

Specifying NOT CLUSTER for an index that is not a clustering index is ignored.

If the index is the partitioning index for a table that uses index-controlled partitioning, the table
is converted to use table-controlled partitioning. The high limit key for the last partition is set to
the highest possible value for ascending key columns or the lowest possible value for descending
key columns. Use of this clause or keyword might invalidate packages that depend on the target
object, or packages that depend on related objects through cascading effects. See Changes that
invalidate packages (Db2 Application programming and SQL).

COMPRESS NO or COMPRESS YES
Specifies whether the index data will be compressed. If the index is partitioned, this option will apply
to all partitions.

Depending on the situation when this clause is specified, Db2 might process the ALTER statement as
a pending data definition change, which means the current object definition and data do not reflect
the alteration at the time that the statement is issued. Instead, the altered object is placed in an
advisory REORG-pending (AREOR) state, and a subsequent reorganization of the altered object with
an appropriate utility materializes the changes to the catalog and data. For more information, see
Pending data definition changes (Db2 Administration Guide).

Chapter 7. Statements 1167

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html

If the change is an immediate change, the change to the description of the index takes effect the next
time the data sets of the index space are opened. The data sets can be closed and reopened by a
STOP DATABASE command to stop the index followed by a START DATABASE command to start the
index.

If the compress attribute is changed to a different value, and the change is an immediate change, the
index is placed into REBUILD-pending status.

COMPRESS NO
Specifies that index compression will be turned off.

COMPRESS YES
Specifies that the index will use index compression. COMPRESS YES can be specified for user-
managed data sets only if the control interval size is 4K.

NOT PADDED or PADDED
Specifies how varying-length string columns are to be stored in the index. If the index contains no
varying-length columns, this option is ignored, and a warning message is returned.
NOT PADDED

Specifies that varying-length string columns are not to be padded to their maximum length in the
index. The length information for a varying-length column is stored with the key.

NOT PADDED is ignored and has no effect if the index is on an auxiliary table. Indexes on auxiliary
tables are always padded.

When PADDED is changed to NOT PADDED, the maximum key length is recalculated with the
varying-length formula (2000 - n - 2m - 3d, where n is the number of columns that can
contain null values, m is the number of varying-length columns, and d is the number of DECFLOAT
columns in the key). If it is possible that the index key length might exceed the maximum length
(because when it was padded, the formula 2000 - n was used), an error occurs.

PADDED
Specifies that varying-length string columns within the index are always padded with the default
pad character to their maximum length.

When an index with at least one varying-length column is changed from PADDED to NOT PADDED,
or vice versa, the index is placed in restricted rebuild-pending status (RBDP). The index cannot be
accessed until it is rebuilt from the table (using the REBUILD INDEX, REORG TABLESPACE, or LOAD
REPLACE utility). For nonpartitioned secondary indexes (NPSIs), the index is placed in page set
rebuild-pending status (PSRBD), and the entire index must be rebuilt. In addition, dynamically cached
statements that are dependent on the index are invalidated. Use of this clause or keyword might
invalidate packages that depend on the target object, or packages that depend on related objects
through cascading effects. See Changes that invalidate packages (Db2 Application programming and
SQL).

Do not specify PADDED if the index is an XML index.

ADD COLUMN column-name
Adds column-name to the index.

column-name must be unqualified, must identify a column of the table, and must not be one of the
existing columns of the index.

The column cannot be:

• a LOB column, or a distinct-type column that is based on a LOB data type
• A timestamp with time zone column or a column with a distinct-type that is based on the timestamp

with time zone data type, if the PARTITION or PARTITION BY RANGE clause is also specified
• a VARBINARY column or a distinct-type column that is based on a VARBINARY data type, if the

column is defined with the DESC attribute or if the index is defined with the PADDED attribute
• a row change timestamp column for a range partitioned index

1168 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

A character or graphic string column that is added to an index must have the same encoding scheme
as other character or graphic string columns in the index.

The index must not already be defined with the BUSINESS_TIME WITHOUT OVERLAPS specification.

A temporal referential constraint must not be dependent on the index.

The total number of columns for the index cannot exceed 64.

If a column is added to an index that is defined with the EXCLUDE NULL KEYS clause, the index is
placed in REBUILD-pending status.

If the index is defined with the EXCLUDE NULL KEYS clause, the specified column must allow null
values.

For PADDED indexes, the sum of the length attributes of the columns must not be greater than 2000
- n, where n is the number of columns that can contain null values. For NOT PADDED indexes, the
sum of the length attributes of the columns must not be greater than 2000 - n - 2m - 3d, where
n is the number of nullable columns, m is the number of varying-length columns, and d is the number
of DECFLOAT columns.

The index cannot be any of the following types of indexes:

• A system-defined catalog index
• An index that enforces a primary key, unique key, or referential constraint
• An index that enforces a temporal referential constraint
• A partitioning index when index-controlled partitioning is being used
• A unique index required for a ROWID column defined as GENERATED BY DEFAULT
• An auxiliary index
• An XML index
• An index that includes expressions
• The hash overflow index for a table

The index is put into rebuild-pending (RBDP) status in the following cases:

• column-name specifies is a ROWID column
• a column is added to a table, rows are inserted into the table, and the same column is added to an

associated index all within the same commit scope
• a column is added to a table and then is added to an associated index in a separate commit scope

Otherwise, the index is put into an advisory reorg-pending (AREO*) state.

ASC
Index entries are put in ascending order by the column.

DESC
Index entries are put in descending order by the column.

RANDOM
Index entries are put in a random order by the column. RANDOM cannot be specified in the
following cases:

• A varying length column is part of the index key and the index is defined with the NOT PADDED
option.

• A column of the index key is defined as TIMESTAMP WITH TIME ZONE or DECFLOAT.
• The index is part of a partitioning key.

ADD INCLUDE (column-name)
Specifies an additional column to append to the set of index key columns of a unique index. Any
column that is specified using INCLUDE column-name, is not used to enforce uniqueness. The
included column might improve performance for some queries using index only access.

Chapter 7. Statements 1169

Columns that are specified in the ADD INCLUDE clause count towards the limits for the number of
columns and the limits on the sum of the length attributes of the columns that are specified in the
index. The total number of columns for the index cannot exceed 64.

column-name must be unqualified, must identify a column of the specified table, and must not be one
of the existing columns of the index. column-name must not identify a LOB or DECFLOAT column (or a
distinct type that is based on one of those types).

The INCLUDE clause cannot be specified for the following types of indexes:

• A system defined catalog index
• A non-unique index
• A partitioning index when index-controlled partitioning is used
• An auxiliary index
• An index on a foreign key
• An XML index
• An extended index
• An index that includes expressions
• An index that is created with the EXCLUDE NULL KEYS clause
• An index that is required for a temporal referential constraint

If a column is added to both a table and an associated index within the same commit scope and
the column is not a ROWID column, the index is placed in an advisory reorg-pending state (AREO*).
Otherwise, the index is placed in a rebuild-pending state (RBDP).

Columns in the INCLUDE list that are defined as character or graphic string data types must be
defined with the same encoding scheme as other key columns with character or graphic string data
types.

ALTER PARTITION integer
Identifies the partition of the index to be altered. For an index that has n partitions, you must specify
an integer in the range 1 to n. You must not use this clause under the following conditions:

• If the index is nonpartitioned
• If the index is defined on a table that contains an XML column and uses index-controlled partitioning

You must use this clause if the index is partitioned and you specify the ENDING AT clause.

ENDING AT(constant), MAXVALUE, or MINVALUE
Specifies the highest value of the index key for the identified partition of the partitioning index.
In this context, highest means highest in the sorting sequence of the index columns. In a column
defined as ascending (ASC), highest and lowest have the usual meanings. In a column defined as
descending (DESC), the lowest actual value is highest in the sorting sequence.

You must use at least one value (constant, MAXVALUE, or MINVALUE) after ENDING AT in
each PARTITION clause. You can use as many values as there are columns in the key. The
concatenation of all the values is the highest value of the key in the corresponding partition of the
index. The length of each highest key value (also called the limit key) is the same as the length of
the partitioning index

constant
Specifies a constant value with a data type that must conform to the rules for assigning that
value to the column. If a string constant is longer or shorter than required by the length
attribute of its column, the constant is either truncated or padded on the right to the required
length. If the column is ascending, the padding character is X'FF'. If the column is descending,
the padding character is X'00'. The precision and scale of a decimal constant must not
be greater than the precision and scale of its corresponding column. A hexadecimal string
constant (GX) cannot be specified.

1170 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

MAXVALUE
Specifies a value greater than the maximum value for the limit key of a partition boundary
(that is, all X'FF' regardless of whether the column is ascending or descending). If all of the
columns in the partitioning key are ascending, a constant or the MINVALUE clause cannot be
specified following MAXVALUE. After MAXVALUE is specified, all subsequent columns must be
MAXVALUE.

MINVALUE
Specifies a value that is smaller than the minimum value for the limit key of a partition
boundary (that is, all X'00' regardless of whether the column is ascending or descending).
If all of the columns in the partitioning key are descending, a constant or the MAXVALUE
clause cannot be specified following MAXVALUE. After MINVALUE is specified, all subsequent
columns must be MINVALUE.

The key values are subject to the following rules:

• The first value corresponds to the first column of the key, the second value to the second
column, and so on.

• If a key includes a ROWID column (or a column with a distinct type that is based on a ROWID
data type), the values of the ROWID column are assumed to be in the range of X'000...00' to
X'FFF...FF'. Only the first 17 bytes of the value that is specified for the corresponding ROWID
column are considered.

• Using fewer values than there are columns in the key has the same effect as using the highest
possible values for all omitted columns for an ascending index.

• If the key exceeds 255 bytes, only the first 255 bytes are considered.
• The highest value of the key in any partition must be lower than the highest value of the key in

the next partition.
• The highest value of the key in the last partition depends on how the table space was defined.

For table spaces created without the LARGE or DSSIZE option, the constants you specify after
ENDING AT are not enforced. The highest value of the key that can be placed in the table is the
highest possible value of the key.

For table spaces created with the LARGE or DSSIZE options, the constants you specify after
ENDING AT are enforced. The value specified for the last partition is the highest value of the key
that can be placed in the table. Any keys that are made invalid after the ALTER TABLE statement
is executed are placed in a discard data set when you run the REORG utility. If the last partition
is in reorg-pending status, regardless of whether you changed its limiting key values, you must
specify a discard data set when you run the REORG utility.

ENDING AT must not be specified for any indexes defined on a table that uses table-controlled
partitioning. Use ALTER TABLE ALTER PARTITION to modify the partitioning boundaries for a table
that uses table-controlled partitioning.

INCLUSIVE
Specifies that the specified range values are included in the data partition.

Notes for ALTER INDEX
Pending definition changes:

The following table lists clauses and specific conditions that cause an ALTER INDEX statement to be
processed as a pending definition change, which is not reflected in the current definition or data at the
time that the ALTER statement is issued. Instead, the index is placed in an advisory REORG-pending
(AREOR) state. A subsequent reorganization of the entire index with an appropriate utility materializes
the changes and applies the pending definition changes to the catalog and data.

If there are no pending definition changes for the table space, you can run the REORG INDEX utility
with SHRLEVEL CHANGE or the REORG TABLESPACE utility with SHRLEVEL CHANGE or REFERENCE to
materialize the changes to the definition of the index. If pending definition changes also exist for the

Chapter 7. Statements 1171

table space, you must run the REORG TABLESPACE utility with SHRLEVEL CHANGE or REFERENCE to
enable the changes to the definition of the index (and the pending table space definition).

Clause or option Pending definition change used if...

BUFFERPOOL The data sets of the index are created, and all of the following conditions
are true:

• The index is defined on a base table, or an associated XML table or
auxiliary table, where the table space for the base table is a universal
table space (UTS) or is being converted to a UTS by a pending definition
change.

• The buffer pool is changed to a buffer pool with a different size, or the
buffer pool is changed to a buffer pool with the same size and the table
space or objects in the table space have pending definition changes.

COMPRESS The data sets of the index are created, and all of the following conditions
are true:

• The index is defined on a base table, or an associated XML table or
auxiliary table, where the table space for the base table is a universal
table space (UTS) or is being converted to a UTS by a pending definition
change.

• The compress attribute is changed, or the table space or objects in the
table space have pending definition changes.

For more information, see Pending data definition changes (Db2 Administration Guide).

Restrictions for pending data definition changes
The following restrictions apply to ALTER TABLESPACE, ALTER TABLE, and ALTER INDEX statements
that result in pending data definition changes:

• Options that cause pending changes cannot be specified with options that take effect immediately.
• Options that cause pending changes cannot be specified for the Db2 catalog, other system objects,

or objects in a work file database.
• The DROP PENDING CHANGES clause of the ALTER TABLESPACE statement cannot be specified for

a catalog table space.
• If the table space, or any table it contains is in an incomplete state, you cannot specify options that

cause pending changes.
• For ALTER INDEX, options that cause pending changes cannot be specified if the definition of the

table space or table on which the index is defined is not complete.

Also, many alter operations are restricted for a table space that has existing pending data definition
changes for the table space, the table it contains, or indexes on the table. For more information, see
Restrictions for pending data definition changes (Db2 Administration Guide).

Altering storage attributes:
The USING, PRIQTY, SECQTY, and ERASE clauses define the storage attributes of the index or
partition. If you specify the USING or ERASE clause when altering storage attributes, the index
or partition must be in the stopped state when the ALTER INDEX statement is executed. A STOP
DATABASE…SPACENAM… command can be used to stop the index or partition.

If the catalog name changes, the changes take effect after you move the data and start the index or
partition using the START DATABASE…SPACENAM… command. The catalog name can be implicitly or
explicitly changed by the ALTER INDEX statement. The catalog name also changes when you move
the data to a different device. See the procedures for moving data in Moving a Db2 data set (Db2
Administration Guide).

Changes to the secondary space allocation (SECQTY) take effect the next time Db2 extends the
data set; however, the new value is not reflected in the integrated catalog until you use the REORG,

1172 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_restrictpendingchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_movingdataset.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_movingdataset.html

RECOVER, or LOAD REPLACE utility on the index or partition. Changes to the other storage attributes
take effect the next time you use the REORG, RECOVER, or LOAD REPLACE utility on the index or
partition. If you change the primary space allocation parameters or erase rule, you can have the
changes take effect earlier if you move the data before you start the index or partition.

Altering indexes on Db2 catalog tables:
For details on altering options on catalog tables, see “SQL statements allowed on the catalog” on
page 2739.

Size restriction for the object descriptor of an index:
The following case might result in an error being returned if the ALTER INDEX statement results in a
versioned object descriptor that is larger than 30,000 bytes being added (or updated):

• An ALTER INDEX statement that results in the first version of the object descriptor being generated
for the index

You might need to drop and re-create the index if the object descriptor for the index exceeds 30,000
bytes.

Invalidation of packages:
This statement might invalidate all packages that depend on target objects, and sometimes other
related objects through cascading effects, depending on the clauses and keywords specified
and other factors. For more information, see Changes that invalidate packages (Db2 Application
programming and SQL).

Altering limit keys:
If you specify ALTER PARTITION integer ENDING AT to change the limit key values of a partitioning
index, the packages that are dependent on that index are marked invalid and go through automatic
rebind the next time they are run.

Restrictions on SQL data change statements in the same commit scope as ALTER INDEX:
SQL data change statements that affect an index cannot be performed in the same commit scope as
ALTER INDEX statements that affect that index.

Altering indexes for tables that are involved in a clone relationship:
You cannot change any index for a table that is involved in a clone relationship (base table or clone
table). If a change to an index is required, the clone table must be dropped before the index can be
changed. After the index is changed, the clone table can be created again.

Adding a varying length column to a key for a system with NOT PADDED as the default:
If the system default is NOT PADDED (the value of field PAD INDEXES BY DEFAULT on installation
panel DSNTIPE is NO), no varying length columns are in the key, and the PADDED or NOT
PADDED option is not explicitly specified when the index is created, the PADDED column of the
SYSIBM.SYSINDEXES catalog table is populated with a blank value. If a varying length column is
later added to the key, the value of the PADDED column in SYSIBM.SYSINDEXES is changed to 'Y' to
indicate that the index is now a PADDED index.

Running utilities:
You cannot execute the ALTER INDEX statement while a Db2 utility has control of the index or its
associated table space.

Alternative syntax and synonyms:
To provide compatibility with previous releases of Db2 or other products in the Db2 family, Db2
supports the following keywords when altering the partitions of a partitioned index:

• PART can be specified as a synonym for PARTITION. In addition, the ALTER keyword that precedes
PARTITION is optional. In addition, if you alter more than one partition, specifying a comma
between each ALTER PARTITION integer clause is optional.

• VALUES can be specified as a synonym for ENDING AT.

Although these keywords are supported as alternatives, they are not the preferred syntax.

Examples for ALTER INDEX

Chapter 7. Statements 1173

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

Example 1
Alter the index DSN8C10.XEMP1. Indicate that Db2 is not to close the data sets that support the index
when there are no current users of the index.

 ALTER INDEX DSN8C10.XEMP1
 CLOSE NO;

Example 2
Alter the index DSN8C10.XPROJ1. Use BP1 as the buffer pool that is to be associated with the index,
indicate that full image or concurrent copies on the index are allowed, and change the maximum size
of each data set to 8 megabytes.

 ALTER INDEX DSN8C10.XPROJ1
 BUFFERPOOL BP1
 COPY YES
 PIECESIZE 8 M;

Example 3
Assume that index X1 contains a least one varying-length column and is a padded index. Alter the
index to an index that is not padded.

 ALTER INDEX X1
 NOT PADDED;

The index is placed in restricted rebuild-pending status (RBDP) and cannot be accessed until it is
rebuilt from the table.

Example 4
Alter partitioned index DSN8C10.DEPT1. For partition 3, leave one page of free space for every 13
pages and 13 percent of free space per page. For partition 5, leave one page for every 25 pages
and 25 percent of free space. For all the other partitions, leave one page of free space for every 6
pages and 11 percent of free space. Ensure that index pages are cached to the group buffer pool for
all partitions except partition 4. For partition 4, write pages only when there is inter-Db2 read-write
interest on the partition.

 ALTER INDEX DSN8C10.XDEPT1
 BUFFERPOOL BP1
 CLOSE YES
 COPY YES
 USING VCAT CATLGG
 FREEPAGE 6
 PCTFREE 11
 GBPCACHE ALL
 ALTER PARTITION 3
 USING VCAT CATLGG
 FREEPAGE 13
 PCTFREE 13,
 ALTER PARTITION 4
 USING VCAT CATLGG
 GBPCACHE CHANGED,
 ALTER PARTITION 5
 USING VCAT CATLGG
 FREEPAGE 25
 PCTFREE 25;

ALTER MASK statement
The ALTER MASK statement changes a column mask that exists at the current server.

Invocation for ALTER MASK
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

1174 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Authorization for ALTER MASK
The privilege set that is defined below must include the following authority:

• SECADM authority

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the package. If the statement is dynamically prepared, the privilege set is
the union of the privilege sets that are held by each authorization ID and role of the process.

Syntax for ALTER MASK

ALTER MASK mask-name

ENABLE

DISABLE

REGENERATE

USING APPLICATION COMPATIBILITY applcompat-level

Description for ALTER MASK
mask-name

Identifies the column mask to be altered. The name must identify a mask that exists at the current
server.

ENABLE
Specifies that the column mask is to be enabled for column access control. If column access control
is not currently activated for the table, the column mask will become effective when column access
control is activated for the table. If column access control is currently activated for the table, the
column mask becomes effective immediately and dynamic cached statements that reference the
table are invalidated. Use of this clause or keyword might invalidate packages that depend on the
target object, or packages that depend on related objects through cascading effects. See Changes that
invalidate packages (Db2 Application programming and SQL).

A column mask with a regeneration error cannot be enabled. To clear the status of the column mask,
the column mask must be dropped and re-created with a modified definition.

ENABLE is ignored if the column mask is already defined as enabled for column access control.

DISABLE
Specifies that the column mask is to be disabled for column access control. If column access control
is not currently activated for the table, the column mask will remain ineffective when column access
control is activated for the table. If column access control is currently activated for the table, the
column mask becomes ineffective immediately and all dynamic cached statements that reference the
table are invalidated. Use of this clause or keyword might invalidate packages that depend on the
target object, or packages that depend on related objects through cascading effects. See Changes that
invalidate packages (Db2 Application programming and SQL).

DISABLE is ignored if the column mask is already defined as disabled for column access control.

REGENERATE
Specifies that the column mask is to be regenerated. The column mask definition in the catalog is
used, and any existing dependencies and authorization are retained. The column mask definition is
reevaluated as if the column mask was being created. The user-defined functions that are referenced
in the column mask definition must be resolved to the same secure UDFs as that were resolved during
the column mask creation.

Generally, the REGENERATE keyword is used only for specific situations, such as when implicit
regeneration fails for routines or objects, or Db2 maintenance requires objects or routines to be

Chapter 7. Statements 1175

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

regenerated. For more information, see When to regenerate Db2 database objects and routines (Db2
Administration Guide).

USING APPLICATION COMPATIBILITY applcompat-level
Specifies that the object is regenerated under applcompat-level application compatibility rules. The
ALTER statement fails if it includes any syntax, semantics, or options that require a higher application
compatibility level.

If USING APPLICATION COMAPTIBILITY is omitted, the regeneration uses the APPLCOMPAT value of
the applicable SYSIBM.SYSENVIRONMENT catalog table row.

The following applcompat-level values can be specified:
VvvRrMmmm

Compatibility with the behavior of the identified Db2 function level. For example, V12R1M510
specifies compatibility with the highest available Db2 12 function level. The equivalent function
level or higher must be activated.

For the new capabilities that become available in each application compatibility level, see:

• SQL changes in Db2 13 application compatibility levels
• SQL changes in Db2 12 application compatibility levels

Tip: Extra program preparation steps might be required to increase the application compatibility
level for applications that use data server clients or drivers to access Db2 for z/OS. For more
information, see Setting application compatibility levels for data server clients and drivers (Db2
Application programming and SQL).

V12R1
Compatibility with the behavior of Db2 12 function level 500. This value has the same result as
specifying V12R1M500.

V11R1
Compatibility with the behavior of Db2 11 new-function mode. After migration to Db2 12, this
value has the same result as specifying V12R1M100. For more information, see V11R1 application
compatibility level (Db2 Application programming and SQL)

V10R1
Compatibility with the behavior of DB2 10 new-function mode. For more information, see V10R1
application compatibility level (Db2 Application programming and SQL).

Notes for ALTER MASK
Applying Db2 maintenance:

When Db2 maintenance is applied that affects how a column mask is generated, the column mask
might need to be regenerated to ensure the column mask is still valid.

If the column mask is regenerated successfully, the status of the column mask is set to a blank in the
catalog table. If the column mask is enabled and column access control is currently activated for the
table all dynamic cached statements that reference the table are invalidated.

If the column mask cannot be regenerated successfully, an error is returned. The regeneration status
of the column mask is an error. If the column mask is enabled and column access control is currently
activated for the table, all packages and dynamic cached statements that reference the table are
marked invalidated. To clear the status of the column mask, the column mask must be dropped and
re-created with a modified definition. Or the column mask can be disabled if not disabled yet. A
disabled column mask becomes ineffective to a column access control enforced table.

When the table is referenced in a data manipulation statement, the statement returns an error if any
enabled column mask has an regeneration error.

1176 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_whenalterregenerate.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_whenalterregenerate.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/wnew/src/tpc/db2z_13_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html

Invalidation of packages:
This statement might invalidate all packages that depend on target objects, and sometimes other
related objects through cascading effects, depending on the clauses and keywords specified
and other factors. For more information, see Changes that invalidate packages (Db2 Application
programming and SQL).

Examples for ALTER MASK

Example 1:
Enable column mask M1.

ALTER MASK M1 ENABLE;

Example 2:
Regenerate column mask M1.

ALTER MASK M1 REGENERATE;

COMMIT;

ALTER PERMISSION statement
The ALTER PERMISSION statement alters a row permission that exists at the current server.

Invocation for ALTER PERMISSION
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for ALTER PERMISSION
The privilege set that is defined below must include the following authority:

SECADM authority

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the package. If the statement is dynamically prepared, the privilege set is
the union of the privilege sets that are held by each authorization ID and role of the process.

Syntax for ALTER PERMISSION

ALTER PERMISSION permission-name

ENABLE

DISABLE

REGENERATE

USING APPLICATION COMPATIBILITY applcompat-level

Description for ALTER PERMISSION
permission-name

Identifies the permission to be altered. The name must identify a row permission that exists at the
current server. The name must not identify a default row permission that is created implicitly by Db2.

Chapter 7. Statements 1177

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

ENABLE
Specifies that the row permission is to be enabled for row access control. If row access control is not
currently activated for the table, the row permission will become effective when row access control
is activated for the table. Use of this clause or keyword might invalidate packages that depend on the
target object, or packages that depend on related objects through cascading effects. See Changes that
invalidate packages (Db2 Application programming and SQL).

A row permission with a regeneration error cannot be enabled. To clear the status of the row
permission, the row permission must be dropped and re-created with a modified definition.

ENABLE is ignored if the row permission is already defined as enabled for row access control.

DISABLE
Specifies that the row permission is to be disabled for row access control. If row access control is not
currently activated for the table, the row permission will remain ineffective when row access control
is activated for the table. Use of this clause or keyword might invalidate packages that depend on the
target object, or packages that depend on related objects through cascading effects. See Changes that
invalidate packages (Db2 Application programming and SQL).

DISABLE is ignored if the row permission is already defined as disabled for row access control.

REGENERATE
Specifies that the row permission is to be regenerated. The row permission definition in the catalog
is used, and any existing authorizations and dependencies are retained. The user-defined functions
that are referenced in the row permission definition must be resolved to the same secure UDFs as that
were resolved during the row permission creation.

Generally, the REGENERATE keyword is used only for specific situations, such as when implicit
regeneration fails for routines or objects, or Db2 maintenance requires objects or routines to be
regenerated. For more information, see When to regenerate Db2 database objects and routines (Db2
Administration Guide).

USING APPLICATION COMPATIBILITY applcompat-level
Specifies that the object is regenerated under applcompat-level application compatibility rules. The
ALTER statement fails if it includes any syntax, semantics, or options that require a higher application
compatibility level.

If USING APPLICATION COMAPTIBILITY is omitted, the regeneration uses the APPLCOMPAT value of
the applicable SYSIBM.SYSENVIRONMENT catalog table row.

The following applcompat-level values can be specified:
VvvRrMmmm

Compatibility with the behavior of the identified Db2 function level. For example, V12R1M510
specifies compatibility with the highest available Db2 12 function level. The equivalent function
level or higher must be activated.

For the new capabilities that become available in each application compatibility level, see:

• SQL changes in Db2 13 application compatibility levels
• SQL changes in Db2 12 application compatibility levels

Tip: Extra program preparation steps might be required to increase the application compatibility
level for applications that use data server clients or drivers to access Db2 for z/OS. For more
information, see Setting application compatibility levels for data server clients and drivers (Db2
Application programming and SQL).

V12R1
Compatibility with the behavior of Db2 12 function level 500. This value has the same result as
specifying V12R1M500.

1178 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_whenalterregenerate.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_whenalterregenerate.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/wnew/src/tpc/db2z_13_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html

V11R1
Compatibility with the behavior of Db2 11 new-function mode. After migration to Db2 12, this
value has the same result as specifying V12R1M100. For more information, see V11R1 application
compatibility level (Db2 Application programming and SQL)

V10R1
Compatibility with the behavior of DB2 10 new-function mode. For more information, see V10R1
application compatibility level (Db2 Application programming and SQL).

Notes for ALTER PERMISSION
Invalidation of packages:

This statement might invalidate all packages that depend on target objects, and sometimes other
related objects through cascading effects, depending on the clauses and keywords specified
and other factors. For more information, see Changes that invalidate packages (Db2 Application
programming and SQL).

Invalidation of cached dynamic SQL statements:
This statement might invalidate cached dynamic SQL statements that depend on target objects, and
sometimes other related objects through cascading effects. For more information, see Invalidation of
cached dynamic statements (Db2 Performance).

Applying Db2 maintenance:
When Db2 maintenance is applied that affects how a row permission is generated, the row permission
might need to be regenerated to ensure the row permission is still valid. For more information, see
When to regenerate Db2 database objects and routines (Db2 Administration Guide).

If the row permission is regenerated successfully, the status of the row permission is set to a blank in
the catalog table.

If the row permission cannot be regenerated successfully, an error is returned. The regeneration
status of the row permission is set to an error. To clear the status of the row permission, the row
permission must be dropped and re-created with a modified definition. Or the row permission can be
disabled if not disabled yet. A disabled row permission becomes ineffective to a row access control
enforced table.

When the table is referenced in a data manipulation statement, the statement returns an error if any
enabled row permission has an regeneration error.

Examples for ALTER PERMISSION

Example 1
Enable permission P1.

ALTER PERMISSION P1 ENABLE;

Example 2
Regenerate permission P1.

ALTER PERMISSION P1 REGENERATE;

Chapter 7. Statements 1179

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_dynamicsqlcacheinvalidation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_dynamicsqlcacheinvalidation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_whenalterregenerate.html

ALTER PROCEDURE statement (external procedure)
The ALTER PROCEDURE statement changes the description of an external stored procedure at the current
server.

Invocation for ALTER PROCEDURE (external)
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for ALTER PROCEDURE (external)
The privilege set that is defined below must include at least one of the following:

• Ownership of the stored procedure
• The ALTERIN privilege on the schema
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The authorization ID that matches the schema name implicitly has the ALTERIN privilege on the schema.

If the authorization ID that is used to alter the procedure has the installation SYSADM authority or the
installation SYSOPR authority and if the current SQLID is set to SYSINSTL, the procedure is identified as
system-defined procedure when the procedure definition is reevaluated.

When LANGUAGE is JAVA and a jar-name is specified in the EXTERNAL NAME clause, the privilege set
must include USAGE on the JAR file, the Java archive file.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the package.

If the statement is dynamically prepared, the privilege set is the set of privileges that are held by the SQL
authorization IDs of the process. The specified routine name can include a schema name (a qualifier).
However, if the schema name is not the same as one of these SQL authorization IDs, one of the following
conditions must be met:

1. The privilege set includes SYSADM authority
2. The privilege set includes SYSCTRL authority
3. The SQL authorization ID of the process has the ALTERIN privilege on the schema

If the environment in which the stored procedure is to run is being changed, the authorization ID
must have authority to use the WLM environment. This authorization is obtained from an external
security product, such as RACF. For more information, see Managing authorizations for creation of stored
procedures in WLM environments (Managing Security).

Syntax for ALTER PROCEDURE (external)

ALTER PROCEDURE procedure-name option-list

option-list: (Specify options in any order. Specify at least one option. Do not specify the same option more than
once.)

1180 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_manageaccess2wlmenv.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_manageaccess2wlmenv.html

DYNAMIC RESULT SETS integer EXTERNAL NAME external-program-name
1

identifier

LANGUAGE ASSEMBLE

C

COBOL

JAVA

PLI

REXX

PARAMETER STYLE SQL

GENERAL

GENERAL WITH NULLS

JAVA

NOT DETERMINISTIC

DETERMINISTIC

PACKAGE PATH package-path

NO PACKAGE PATH

MODIFIES SQL DATA

READS SQL DATA

CONTAINS SQL

NO SQL

NO DBINFO

DBINFO

NO COLLID

COLLID collection-id

WLM ENVIRONMENT name

(name , *)

ASUTIME

NO LIMIT

LIMIT integer

STAY RESIDENT NO

YES

PROGRAM TYPE

SUB

MAIN

SECURITY DB2

USER

DEFINER

RUN OPTIONS run-time-options

COMMIT ON RETURN NO

YES

INHERIT SPECIAL REGISTERS

DEFAULT SPECIAL REGISTERS

CALLED ON NULL INPUT STOP AFTER SYSTEM DEFAULT FAILURES

STOP AFTER integer FAILURES

CONTINUE AFTER FAILURE

DISALLOW DEBUG MODE

ALLOW DEBUG MODE

DISABLE DEBUG MODE

Notes:
1 If LANGUAGE is JAVA, EXTERNAL NAME must be specified with a valid external-java-routine-name.

external-java-routine-name

jar-name :

method-name

method-signature

Chapter 7. Statements 1181

jar-name

schema-name ,

jar-id

method-name

 package-id .

/
1

class-id .

!
2

method-id

method-signature

(
,

 java-datatype

)

Notes:
1 The slash (/) is supported for compatibility with previous releases of Db2 for z/OS.
2 The exclamation point (!) is supported for compatibility with other products in the Db2 family.

Description for ALTER PROCEDURE (external)
procedure-name

Identifies the stored procedure to be altered.
DYNAMIC RESULT SETS integer

Specifies the maximum number of query result sets that the stored procedure can return. The value
must be in the range 0–32767.

EXTERNAL NAME external-program-name or identifier
Specifies the name of the MVS load module for the program that runs when the procedure name is
specified in an SQL CALL statement.

If LANGUAGE is JAVA, external-program-name must be specified and enclosed in single quotation
marks, with no extraneous blanks within the single quotation marks. It must specify a valid external-
java-routine-name. If multiple external-program-name values are specified, the total length of all of
the values must not be greater than 1305 bytes and each value must be separated by a space or a line
break. Do not specify a JAR file for a Java procedure for which NO SQL is in effect.

An external-java-routine-name contains the following parts:
jar-name

Identifies the name given to the JAR file when it was installed in the database. The name
contains jar-id, which can optionally be qualified with a schema. Examples are "myJar" and
"mySchema.myJar." The unqualified jar-id is implicitly qualified with a schema name according to
the following rules:

• If the statement is embedded in a program, the schema name is the authorization ID in
the QUALIFIER bind option when the package or plan was created or last rebound. If the
QUALIFIER was not specified, the schema name is the owner of the package or plan.

• If the statement is dynamically prepared, the schema name is the SQL authorization ID in the
CURRENT SCHEMA special register.

If jar-name is specified, it must exist when the ALTER PROCEDURE statement is processed.

1182 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If jar-name is not specified, the procedure is loaded from the class file directly instead of being
loaded from a JAR file. Db2 searches the directories in the CLASSPATH associated with the WLM
Environment. Environmental variables for Java routines are specified in a data set identified in
a JAVAENV DD card on the JCL used to start the address space for a WLM-managed stored
procedure.

method-name
Identifies the name of the method and must not be longer than 254 bytes. Its package, class, and
method ID's are specific to Java and as such are not limited to 18 bytes. In addition, the rules for
what these can contain are not necessarily the same as the rules for an SQL ordinary identifier.
package-id

Identifies a package. The concatenated list of package-ids identifies the package that the
class identifier is part of. If the class is part of a package, the method name must include the
complete package prefix, such as "myPacks.StoredProcs." The Java virtual machine looks in
the directory "/myPacks/StoredProcs/" for the classes.

class-id
Identifies the class identifier of the Java object.

method-id
Identifies the method identifier with the Java class to be invoked.

method-signature
Identifies a list of zero or more Java data types for the parameter list and must not be longer
than 1024 bytes. Specify the method-signature if the procedure involves any input or output
parameters that can be NULL. When the stored procedure being created is called, Db2 searches
for a Java method with the exact method-signature. The number of java-datatype elements
specified indicates how many parameters that the Java method must have.

A Java procedure can have no parameters. In this case, you code an empty set of parentheses
for method-signature. If a Java method-signature is not specified, Db2 searches for a Java method
with a signature derived from the default JDBC types associated with the SQL types specified in
the parameter list of the ALTER PROCEDURE statement.

For other values of LANGUAGE, the value must conform to the naming conventions for MVS load
modules: the value must be less than or equal to 8 bytes, and it must conform to the rules for an
ordinary identifier with the exception that it must not contain an underscore.

LANGUAGE
Specifies the application programming language in which the stored procedure is written. Assembler,
C, COBOL, and PL/I programs must be designed to run in IBM's Language Environment.
ASSEMBLE

The stored procedure is written in Assembler.
C

The stored procedure is written in C or C++.
COBOL

The stored procedure is written in COBOL, including the OO-COBOL language extensions.
JAVA

The stored procedure is written in Java and is executed in the Java Virtual Machine. When
LANGUAGE JAVA is specified, the EXTERNAL NAME clause must also be specified with a valid
external-java-routine-name and PARAMETER STYLE must be specified with JAVA. The procedure
must be a public static method of the specified Java class.

Do not specify LANGUAGE JAVA when DBINFO, PROGRAM TYPE MAIN, or RUN OPTIONS is in
effect.

PLI
The stored procedure is written in PL/I.

Chapter 7. Statements 1183

REXX
The stored procedure is written in REXX. Do not specify LANGUAGE REXX when PARAMETER
STYLE SQL is specified.

PARAMETER STYLE
Identifies the linkage convention used to pass parameters to and return values from the stored
procedure. All of the linkage conventions provide arguments to the stored procedure that contain
the parameters specified on the CALL statement. Some of the linkage conventions pass additional
arguments to the stored procedure that provide more information to the stored procedure. For more
information on linkage conventions, see Linkage conventions for external stored procedures (Db2
Application programming and SQL).
SQL

Specifies that, in addition to the parameters on the CALL statement, several additional parameters
are passed to the stored procedure. The following parameters are passed:

• The first n parameters that are specified on the CREATE PROCEDURE statement.
• n parameters for indicator variables for the parameters.
• The SQLSTATE to be returned.
• The qualified name of the stored procedure.
• The specific name of the stored procedure.
• The SQL diagnostic string to be returned to Db2.
• If DBINFO is specified, the DBINFO structure.

Do not specify PARAMETER STYLE SQL when LANGUAGE REXX is specified.

GENERAL
Specifies that the stored procedure uses a parameter passing mechanism where the stored
procedure receives only the parameters specified on the CALL statement. Arguments to
procedures defined with this parameter style cannot be null.

GENERAL WITH NULLS
Specifies that, in addition to the parameters on the CALL statement as specified in GENERAL,
another argument is also passed to the stored procedure. The additional argument contains an
indicator array with an element for each of the parameters on the CALL statement. In C, this is an
array of short integers. The indicator array enables the stored procedure to accept or return null
parameter values.

JAVA
Specifies that the stored procedure uses a parameter passing convention that conforms to
the Java and SQLJ Routines specifications. PARAMETER STYLE JAVA can be specified only if
LANGUAGE is JAVA. If the ALTER PROCEDURE statement results in changing LANGUAGE to JAVA,
PARAMETER STYLE JAVA, and an EXTERNAL NAME clause might need to be specified to provide
appropriate values. JAVA must be specified for PARAMETER STYLE when LANGUAGE is JAVA.

INOUT and OUT parameters are passed as single-entry arrays. The INOUT and OUT parameters are
declared in the Java method as single-element arrays of the Java type.

PARAMETER STYLE SQL cannot be used with LANGUAGE REXX.
DETERMINISTIC or NOT DETERMINISTIC

Specifies whether the stored procedure returns the same results each time the stored procedure is
called with the same IN and INOUT arguments.
DETERMINISTIC

The stored procedure always returns the same results each time the stored procedure is called
with the same IN and INOUT arguments, if the referenced data in the database has not changed.

NOT DETERMINISTIC
The stored procedure might not return the same result each time the procedure is called with the
same IN and INOUT arguments, even when the referenced data in the database has not changed.

1184 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_linkageconventionssp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_linkageconventionssp.html

Db2 does not verify that the stored procedure code is consistent with the specification of
DETERMINISTIC or NOT DETERMINISTIC.

NO PACKAGE PATH or PACKAGE PATH package-path
Identifies the package path to use when the procedure is run. This is the list of the possible package
collections into which the DBRM this is associated with the procedure is bound.
NO PACKAGE PATH

Specifies that the list of package collections for the procedure is the same as the list of package
collections for the calling program. If the calling program does not use a package, Db2 resolves
the package by using the CURRENT PACKAGE PATH special register, the CURRENT PACKAGESET
special register, or the PKLIST bind option (in this order). For information about how Db2 uses
these three items, see Binding an application plan (Db2 Application programming and SQL).

PACKAGE PATH package-path
Specifies a list of package collections, in the same format as used in the CURRENT PACKAGE PATH
special register.

If the COLLID clause is specified with PACKAGE PATH, the COLLID clause is ignored when the
routine is invoked.

The package-path value that is associated with the procedure definition is checked when the
procedure is invoked. If package-path contains SESSION_USER, USER, PATH, or PACKAGE PATH,
an error is returned when the package-path value is checked.

MODIFIES SQL DATA, READS SQL DATA, CONTAINS SQL, or NO SQL
Specifies the classification of SQL statements and nested routines that this routine can execute or
invoke. The database manager verifies that the SQL statements issued by the procedure, and all
routines locally invoked by the routine, are consistent with this specification; the verification is not
performed when nested remote routines are invoked. For the classification of each statement, see
Appendix D, “SQL statement data access classification for routines,” on page 2275.
MODIFIES SQL DATA

Specifies that the procedure can execute any SQL statement except statements that are not
supported in procedures.

READS SQL DATA
Specifies that procedure can execute statements with a data access indication of READS SQL
DATA, CONTAINS SQL, or NO SQL. The procedure cannot execute SQL statements that modify
data.

CONTAINS SQL
Specifies that the procedure can execute only SQL statements with an access indication of
CONTAINS SQL. The procedure cannot execute statements that read or modify data.

NO SQL
Specifies that the procedure can execute only SQL statements with a data access classification of
NO SQL. Do not specify NO SQL for a Java procedure that uses a JAR file.

NO DBINFO or DBINFO
Specifies whether additional status information is passed to the stored procedure when it is invoked.
NO DBINFO

Additional information is not passed.
DBINFO

An additional argument is passed when the stored procedure is invoked. The argument is a
structure that contains information such as the application run time authorization ID, the schema
name, the name of a table or column that the procedure might be inserting into or updating, and
identification of the database server that invoked the procedure. For details about the argument
and its structure, see DBINFO structure (Db2 Application programming and SQL).

DBINFO can be specified only if PARAMETER STYLE SQL is specified.

Chapter 7. Statements 1185

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_bindplan.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_dbinfo.html

NO COLLID or COLLID collection-id
Identifies the package collection that is to be used when the stored procedure is executed. This is the
package collection into which the DBRM that is associated with the stored procedure is bound.
NO COLLID

Specifies that the package collection for the stored procedure is the same as the package
collection of the calling program. If the invoking program does not use a package, Db2 resolves
the package by using the CURRENT PACKAGE PATH special register, the CURRENT PACKAGESET
special register, or the PKLIST bind option (in this order). For details about how Db2 uses
these three items, see the information on package resolution in Binding an application plan (Db2
Application programming and SQL).

COLLID collection-id
Identifies the package collection that is to be used when the stored procedure is executed. It is
the name of the package collection into which the DBRM associated with the stored procedure is
bound.

For REXX stored procedures, collection-id can be DSNREXRR, DSNREXRS, DSNREXCR, or
DSNREXCS.

WLM ENVIRONMENT
Identifies the WLM (workload manager) environment in which the stored procedure is to run when the
Db2 stored procedure address space is WLM-established. The name of the WLM environment is an
SQL identifier.
name

The WLM environment in which the stored procedure must run. If another stored procedure
or a user-defined function calls the stored procedure and that calling routine is running in an
address space that is not associated with the specified WLM environment, Db2 routes the stored
procedure request to a different address space.

(name,*)
When the stored procedure is called directly by an SQL application program, the WLM
environment in which the stored procedure runs.

If another stored procedure or a user-defined function calls the stored procedure, the stored
procedure runs in the same WLM environment that the calling routine uses.

You must have appropriate authority for the WLM environment. Managing authorizations for creation
of stored procedures in WLM environments (Managing Security).-->

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single invocation of a stored
procedure can run. The value is unrelated to the ASUTIME column in the resource limit specification
table.

When you are debugging a stored procedure, setting a limit can be helpful in case the stored
procedure gets caught in a loop. For information on CPU service units, see z/OS MVS Initialization
and Tuning Guide.

NO LIMIT
There is no limit on the service units.

LIMIT integer
The limit on the service units is a positive integer in the range 1–2147483647. If the stored
procedure uses more service units than the specified value, Db2 cancels the stored procedure.

STAY RESIDENT
Specifies whether the stored procedure load module is to remain resident in memory when the stored
procedure ends.
NO

The load module is deleted from memory after the stored procedure ends. Use NO for non-
reentrant stored procedures.

1186 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_bindplan.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_bindplan.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_manageaccess2wlmenv.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_manageaccess2wlmenv.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae100/abstract.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae100/abstract.htm

YES
The load module remains resident in memory after the stored procedure ends.

PROGRAM TYPE
Specifies whether the stored procedure runs as a main routine or a subroutine. If PROGRAM TYPE is
altered, the stored procedure needs to be re-compiled for the change to take effect.
SUB

The stored procedure runs as a subroutine.

Do not specify PROGRAM TYPE SUB for stored procedures with a LANGUAGE value of REXX.

MAIN
The stored procedure runs as a main routine.

Do not specify PROGRAM TYPE MAIN when LANGUAGE JAVA is specified.

SECURITY
Specifies how the stored procedure interacts with an external security product, such as RACF, to
control access to non-SQL resources.
DB2

The stored procedure does not require a special external security environment. If the stored
procedure accesses resources that an external security product protects, the access is performed
using the authorization ID associated with the stored procedure address space.

USER
An external security environment should be established for the stored procedure. If the stored
procedure accesses resources that the external security product protects, the access is performed
using the authorization ID of the user who invoked the stored procedure.

DEFINER
An external security environment should be established for the stored procedure. If the stored
procedure accesses resources that the external security product protects, the access is performed
using the authorization ID of the owner of the stored procedure.

RUN OPTIONS run-time-options
Specifies the Language Environment run time options to be used for the stored procedure. For a REXX
stored procedure, specifies the Language Environment run time options to be passed to the REXX
language interface to Db2. You must specify run-time-options as a character string that is no longer
than 254 bytes. To replace any existing run time options with no options, specify an empty string
with RUN OPTIONS. When you specify an empty string, Db2 does not pass any run time options to
Language Environment, and Language Environment uses its installation defaults. For a description
of the Language Environment run time options, see Language Environment Programming Reference
(z/OS Language Environment Programming Reference).

Do not specify RUN OPTIONS when LANGUAGE JAVA is specified.

COMMIT ON RETURN
Indicates whether Db2 is to commit the transaction immediately on return from the stored procedure.
NO

Db2 does not issue a commit when the stored procedure returns.
YES

Db2 issues a commit when the stored procedure returns if the following statements are true:

• The SQLCODE that is returned by the CALL statement is not negative.
• The stored procedure is not in a must abort state.

The commit operation includes the work that is performed by the calling application process and
the stored procedure.

If the stored procedure returns result sets, the cursors that are associated with the result sets
must have been defined WITH HOLD to be usable after the commit.

Chapter 7. Statements 1187

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ceea300/abstract.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ceea300/abstract.htm

INHERIT SPECIAL REGISTERS or DEFAULT SPECIAL REGISTERS
Specifies how special registers are set on entry to the routine.
INHERIT SPECIAL REGISTERS

Indicates that values of special registers are inherited according to the rules listed in the table
for characteristics of special registers in a stored procedure in “Special registers in a user-defined
function or a stored procedure” on page 215.

DEFAULT SPECIAL REGISTERS
Indicates that special registers are initialized to the default values, as indicated by the rules in
the table for characteristics of special registers in a stored procedure in “Special registers in a
user-defined function or a stored procedure” on page 215.

CALLED ON NULL INPUT
Specifies that the procedure is to be called even if any or all of the argument values are null, which
means that the procedure must be coded to test for null argument values. The procedure can return
null or nonnull values.

STOP AFTER SYSTEM DEFAULT FAILURES, STOP AFTER nn FAILURES, or CONTINUE AFTER
FAILURE

Specifies whether the routine is to be put in a stopped state after some number of failures.
STOP AFTER SYSTEM DEFAULT FAILURES

Specifies that this routine should be placed in a stopped state after the number of failures
indicated by the value of field MAX ABEND COUNT on installation field DSNTIPX.

STOP AFTER nn FAILURES
Specifies that this routine should be placed in a stopped state after nn failures. The value nn can
be an integer 1–32767.

CONTINUE AFTER FAILURE
Specifies that this routine should not be placed in a stopped state after any failure.

ALLOW DEBUG MODE, DISALLOW DEBUG MODE, or DISABLE DEBUG MODE
Specifies whether the procedure can be run in debugging mode.

Do not specify this option unless the procedure is defined with LANGUAGE JAVA.

ALLOW DEBUG MODE
Specifies that the procedure can be run in debugging mode.

DISALLOW DEBUG MODE
Specifies that the procedure cannot be run in debugging mode.

You can use a subsequent ALTER PROCEDURE statement to change this option to ALLOW DEBUG
MODE.

DISABLE DEBUG MODE
Specifies that the procedure can never be run in debugging mode.

The procedure cannot be changed to specify ALLOW DEBUG MODE or DISALLOW DEBUG MODE
when the procedure has been created or altered to use DISABLE DEBUG MODE. To change this
option, you must drop and re-create the procedure using the option that you want.

Notes for ALTER PROCEDURE (external)
Invalidation of packages: When an external procedure is altered, all the packages that refer to that
procedure are marked invalid.

LANGUAGE C and the PARAMETER VARCHAR clause: The ALTER PROCEDURE statement does not allow
you to alter the value of the PARAMETER VARCHAR or PARAMETER CCSID clauses that are associated
with the procedure definition. However, you can alter the LANGUAGE clause for the procedure. If the
PARAMETER VARCHAR clause is specified for the creation of a LANGUAGE C procedure, the catalog
information for that option is not affected by subsequent ALTER PROCEDURE statements. The procedure
might be changed to a language other than C, in which case the PARAMETER VARCHAR setting is ignored.

1188 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If the procedure is later changed back to LANGUAGE C, the setting of the PARAMETER VARCHAR option
that was specified for the CREATE PROCEDURE statement (which is still in the catalog) will be used.

Alternative syntax and synonyms: To provide compatibility with previous releases of Db2 or other
products in the Db2 family, Db2 supports the following keywords:

• DYNAMIC RESULT SET, RESULT SET, and RESULT SETS as synonyms for DYNAMIC RESULT SETS
• STANDARD CALL as a synonym for DB2SQL
• SIMPLE CALL as a synonym for GENERAL
• SIMPLE CALL WITH NULLS as a synonym for GENERAL WITH NULLS
• VARIANT as a synonym for NOT DETERMINISTIC
• NOT VARIANT as a synonym for DETERMINISTIC
• NULL CALL as a synonym for CALLED ON NULL INPUT
• PARAMETER STYLE DB2SQL as a synonym for PARAMETER STYLE SQL

Examples for ALTER PROCEDURE (external)

Example 1
Assume that stored procedure SYSPROC.MYPROC is currently defined to run in WLM environment
PARTSA and that you have appropriate authority on that WLM environment and WLM environment
PARTSEC. Change the definition of the stored procedure so that it runs in PARTSEC.

 ALTER PROCEDURE SYSPROC.MYPROC WLM ENVIRONMENT PARTSEC;

Related tasks
Altering stored procedures (Db2 Administration Guide)

ALTER PROCEDURE statement (SQL - external procedure)
(deprecated)

The ALTER PROCEDURE statement changes the description, at the current server, of an external SQL
procedure.

Deprecated function: External SQL procedures are deprecated and not as fully supported as native SQL
procedures. For best results, create native SQL procedures instead. For more information, see Creating
native SQL procedures (Db2 Application programming and SQL) and Migrating an external SQL procedure
to a native SQL procedure (Db2 Application programming and SQL).

Invocation for ALTER PROCEDURE (SQL - external)
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for ALTER PROCEDURE (SQL - external)
The privilege set that is defined below must include at least one of the following:

• Ownership of the stored procedure
• The ALTERIN privilege on the schema
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The authorization ID that matches the schema name implicitly has the ALTERIN privilege on the schema.

Chapter 7. Statements 1189

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_alterstoredprocedures.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createnativesqlprocedure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createnativesqlprocedure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_migrateexternalsptonativesp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_migrateexternalsptonativesp.html

If the authorization ID that is used to alter the procedure has the installation SYSADM authority or the
installation SYSOPR authority and if the current SQLID is set to SYSINSTL, the procedure is identified as
system-defined procedure when the procedure definition is reevaluated.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the package.

If the statement is dynamically prepared, the privilege set is the set of privileges that are held by the SQL
authorization IDs of the process. The specified routine name can include a schema name (a qualifier).
However, if the schema name is not the same as one of these SQL authorization IDs, one of the following
conditions must be met:

1. The privilege set includes SYSADM authority
2. The privilege set includes SYSCTRL authority
3. The SQL authorization ID of the process has the ALTERIN privilege on the schema

The SQL authorization ID that is used to alter the procedure definition must have appropriate authority for
the WLM environment in which the procedure is currently defined to run. This authorization is obtained
from an external security product, such as RACF. For more information, see Managing authorizations for
creation of stored procedures in WLM environments (Managing Security).

Syntax for ALTER PROCEDURE (SQL - external)

ALTER PROCEDURE procedure-name option-list

option-list: (Specify options in any order. Specify at least one option. Do not specify the same option more than
once.)

DYNAMIC RESULT SETS integer EXTERNAL NAME external-program-name

identifier

NOT DETERMINISTIC

DETERMINISTIC

MODIFIES SQL DATA

READS SQL DATA

CONTAINS SQL

NO COLLID

COLLID collection-id

WLM ENVIRONMENT name

(name , *)

ASUTIME NO LIMIT

LIMIT integer

STAY RESIDENT NO

YES

PROGRAM TYPE

SUB

MAIN

SECURITY DB2

USER

DEFINER

COMMIT ON RETURN NO

YES

RUN OPTIONS run-time-options INHERIT SPECIAL REGISTERS

DEFAULT SPECIAL REGISTERS

STOP AFTER SYSTEM DEFAULT FAILURES

STOP AFTER integer FAILURES

CONTINUE AFTER FAILURES

1190 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_manageaccess2wlmenv.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_manageaccess2wlmenv.html

Description for ALTER PROCEDURE (SQL - external)
procedure-name

Identifies the stored procedure to be altered.
DYNAMIC RESULT SETS integer

Specifies the maximum number of query result sets that the procedure can return. The value must be
in the range 0–32767.

EXTERNAL NAME external-program-name or identifier
Specifies the name of the MVS load module for the program that runs when the procedure name is
specified in an SQL CALL statement. The value must conform to the naming conventions for MVS load
modules: the value must be less than or equal to 8 bytes, and it must conform to the rules for an
ordinary identifier with the exception that it must not contain an underscore.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the procedure returns the same results each time the procedure is called with the
same IN and INOUT arguments.
NOT DETERMINISTIC

The procedure might not return the same result each time the procedure is called with the same
IN and INOUT arguments, even when the referenced data in the database has not changed.

DETERMINISTIC
The procedure always returns the same results each time the procedure is called with the same
IN and INOUT arguments, if the referenced data in the database has not changed.

Db2 does not verify that the procedure code is consistent with the specification of DETERMINISTIC or
NOT DETERMINISTIC.

MODIFIES SQL DATA, READS SQL DATA, or CONTAINS SQL
Specifies the classification of SQL statements and nested routines that this routine can execute or
invoke. The database manager verifies that the SQL statements issued by the procedure, and all
routines locally invoked by the routine, are consistent with this specification; the verification is not
performed when nested remote routines are invoked. For the classification of each statement, see
Appendix D, “SQL statement data access classification for routines,” on page 2275. Statements that
are not supported in any procedure will return an error.
MODIFIES SQL DATA

Specifies that the procedure can execute any SQL statement except statements that are not
supported in procedures.

READS SQL DATA
Specifies that procedure can execute statements with a data access indication of READS SQL
DATA or CONTAINS SQL. The procedure cannot execute SQL statements that modify data.

CONTAINS SQL
Specifies that the procedure can execute only SQL statements with an access indication of
CONTAINS SQL. The procedure cannot execute statements that read or modify data.

NO COLLID or COLLID collection-id
Identifies the package collection that is to be used when the procedure is executed. This is the
package collection into which the DBRM that is associated with the procedure is bound.
NO COLLID

Indicates that the package collection for the procedure is the same as the package collection of
the calling program. If the invoking program does not use a package, Db2 resolves the package
by using the CURRENT PACKAGE PATH special register, the CURRENT PACKAGESET special
register, or the PKLIST bind option (in this order). For details about how Db2 uses these three
items, see the information on package resolution in Binding an application plan (Db2 Application
programming and SQL).

COLLID collection-id
Specifies the package collection for the procedure.

Chapter 7. Statements 1191

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_bindplan.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_bindplan.html

WLM ENVIRONMENT name or (name,*)
Identifies the WLM (workload manager) environment in which the procedure is to run when the Db2
stored procedure address space is WLM-established. The name of the WLM environment is an SQL
identifier.
name

Specifies the WLM environment in which the procedure must run. If another routine calls the
procedure and that calling routine is running in an address space that is not associated with the
specified WLM environment, Db2 routes the procedure request to a different address space.

(name,*)
When an SQL application program directly calls a procedure, name specifies the WLM environment
in which the stored procedure runs.

If another routine calls the procedure, the procedure runs in the same WLM environment that the
calling routine uses.

You must have appropriate authority for the WLM environment.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single invocation of a
procedure can run. The value is unrelated to the ASUTIME column of the resource limit specification
table.

When you are debugging a procedure, setting a limit can be helpful in case the procedure gets caught
in a loop. For information on service units, see z/OS MVS Initialization and Tuning Guide.

NO LIMIT
There is no limit on the number of CPU service units that the procedure can run.

LIMIT integer
The limit on the number of CPU service units is a positive integer in the range 1–2147483647.
If the procedure uses more service units than the specified value, Db2 cancels the procedure.
The CPU cycles that are consumed by parallel tasks in a procedure do not contribute towards the
specified ASUTIME LIMIT.

STAY RESIDENT
Specifies whether the load module for the procedure is to remain resident in memory when the
procedure ends.
NO

The load module is deleted from memory after the procedure ends.
YES

The load module remains resident in memory after the procedure ends.
PROGRAM TYPE

Specifies whether the procedure runs as a main routine or a subroutine. If PROGRAM TYPE is altered,
the stored procedure needs to be re-compiled for the change to take effect.
SUB

The procedure runs as a subroutine.
MAIN

The procedure runs as a main routine.
SECURITY

Specifies how the procedure interacts with an external security product, such as RACF, to control
access to non-SQL resources.
DB2

The procedure does not require a special external security environment. If the procedure
accesses resources that an external security product protects, the access is performed using
the authorization ID that is associated with the address space in which the procedure runs.

1192 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae100/abstract.htm

USER
An external security environment should be established for the procedure. If the procedure
accesses resources that the external security product protects, the access is performed using
the authorization ID of the user who invoked the procedure.

DEFINER
An external security environment should be established for the procedure. If the procedure
accesses resources that the external security product protects, the access is performed using
the authorization ID of the owner of the procedure.

RUN OPTIONS run-time-options
Specifies the Language Environment run time options that are to be used for the procedure. You
must specify run-time-options as a character string that is no longer than 254 bytes. If you do not
specify RUN OPTIONS or pass an empty string, Db2 does not pass any run time options to Language
Environment, and Language Environment uses its installation defaults.

For a description of the Language Environment run time options, see Language Environment
Programming Reference (z/OS Language Environment Programming Reference).

COMMIT ON RETURN
Indicates whether Db2 commits the transaction immediately on return from the procedure.
NO

Db2 does not issue a commit when the procedure returns.
YES

Db2 issues a commit when the procedure returns if the following statements are true:

• A positive SQLCODE is returned by the CALL statement.
• The procedure is not in a must abort state.

The commit operation includes the work that is performed by the calling application process and
the procedure.

If the procedure returns result sets, the cursors that are associated with the result sets must have
been defined as WITH HOLD to be usable after the commit.

INHERIT SPECIAL REGISTERS or DEFAULT SPECIAL REGISTERS
Specifies how special registers are set on entry to the routine.
INHERIT SPECIAL REGISTERS

Specifies that special registers should be inherited according to the rules listed in the table for
characteristics of special registers in a procedure in Table 47 on page 215.

DEFAULT SPECIAL REGISTERS
Specifies that special registers should be initialized to the default values, as indicated by the rules
in the table for characteristics of special registers in a procedure in Table 47 on page 215.

STOP AFTER SYSTEM DEFAULT FAILURES, STOP AFTER nn FAILURES, or CONTINUE AFTER
FAILURE

Specifies if the routine is stopped after failures.
STOP AFTER SYSTEM DEFAULT FAILURES

Specifies that this routine should be placed in a stopped state after the number of failures
indicated by the value of field MAX ABEND COUNT on installation panel DSNTIPX.

STOP AFTER nn FAILURES
Specifies that this routine should be placed in a stopped state after nn failures. The value nn can
be an integer 1–32767.

CONTINUE AFTER FAILURES
Specifies that this routine should not be placed in a stopped state after any failure.

Chapter 7. Statements 1193

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ceea300/abstract.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ceea300/abstract.htm

Notes for ALTER PROCEDURE (SQL - external)
Changing to a native SQL procedure:

You cannot change an external SQL procedure to a native SQL procedure. You can drop the procedure
that you want to change using the DROP statement and create a native SQL procedure with a
similar definition using the CREATE PROCEDURE statement. Alternatively, you can create a native
SQL procedure using a different schema.

For more information, see Migrating an external SQL procedure to a native SQL procedure (Db2
Application programming and SQL).

Invalidation of packages:
When an SQL procedure is altered, all packages that refer to that procedure are marked invalid.

Alternative syntax and synonyms:

To provide compatibility with previous releases of Db2 or other products in the Db2 UDB family, Db2
supports the following keywords:

• RESULT SET, RESULT SETS, and DYNAMIC RESULT SET as synonyms for DYNAMIC RESULT SETS.
• VARIANT as a synonym for NOT DETERMINISTIC
• NOT VARIANT as a synonym for DETERMINISTIC

Example for ALTER PROCEDURE (SQL - external)

The following statement, modifies the definition for an SQL procedure so that SQL changes are committed
on return from the SQL procedure and the SQL procedure runs in the WLM environment named WLMSQLP.

ALTER PROCEDURE UPDATE_SALARY_1
 COMMIT ON RETURN YES
 WLM ENVIRONMENT WLMSQLP;

Related concepts
External stored procedures (Db2 Application programming and SQL)
Related tasks
Altering stored procedures (Db2 Administration Guide)

ALTER PROCEDURE statement (SQL - native procedure)
The ALTER PROCEDURE statement changes the definition of an SQL procedure at the current server. The
procedure options, parameter names, and routine body can be changed and additional versions of the
procedure can be defined and maintained using the ALTER PROCEDURE statement.

For information about the SQL control statements that are supported in native SQL procedures, refer to
Chapter 8, “SQL procedural language (SQL PL),” on page 2207.

Invocation for ALTER PROCEDURE (SQL - native)
This can be dynamically prepared only if dynamic rules run behavior is in effect. For more information, see
“Authorization IDs and dynamic SQL” on page 94.

Authorization for ALTER PROCEDURE (SQL - native)
The privilege set that is defined below must include at least one of the following:

• Ownership of the procedure
• The ALTERIN privilege on the schema
• System DBADM
• SYSCTRL authority

1194 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_migrateexternalsptonativesp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_migrateexternalsptonativesp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_externalsp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_alterstoredprocedures.html

• SYSADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The authorization ID that matches the schema name implicitly has the ALTERIN privilege on the schema.

If the authorization ID that is used to alter the procedure has the installation SYSADM authority or the
installation SYSOPR authority and if the current SQLID is set to SYSINSTL, the procedure is identified as
system-defined procedure when the procedure definition is reevaluated.

Additional privileges might be required in the following situations:

• If SQL-routine-body is specified, the privilege set must include the privileges that are required to
execute the statements in SQL-routine-body.

• If a user-defined type is referenced (as the data type of a parameter or SQL variable), the privilege set
must also include at least one of the following privileges or authorities:

– Ownership of the user-defined type
– The USAGE privilege on the user-defined type
– System DBADM authority
– DATAACCESS authority
– SYSADM authority

• If the procedure uses a table as a parameter, the privilege set must also include at least one of the
following privileges or authorities:

– Ownership of the table
– The SELECT privilege on the table
– DATAACCESS authority
– SYSADM authority

• If you specify the WLM ENVIRONMENT FOR DEBUG MODE clause, RACF or an external security product
is invoked to check the required authority for defining programs in the WLM environment. If the WLM
environment access is protected in RACF, the privilege set must include the required authority. For
more information, see Managing authorizations for creation of stored procedures in WLM environments
(Managing Security).

• When defining a new version of a procedure (using the ADD VERSION clause) or when replacing an
existing version (using the REPLACE VERSION clause), the privilege set must include the required
authorization to add a new package or a new version of an existing package depending on the value of
the BIND NEW PACKAGE field on installation panel DSNTIPP, or the privilege set must include SYSADM
or SYSCTRL authority.

Additional authorization may be required on the SYSDUMMYx tables depending on the content of the
procedure definition. See SYSDUMMYx tables.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the package.

If the statement is dynamically prepared, the privilege set is the set of privileges that are held by the SQL
authorization IDs of the process. The specified routine name can include a schema name (a qualifier).
However, if the schema name is not the same as one of these SQL authorization IDs, one of the following
conditions must be met:

1. The privilege set includes SYSADM authority
2. The privilege set includes SYSCTRL authority
3. The SQL authorization ID of the process has the ALTERIN privilege on the schema

When ALTER PROCEDURE is issued in a trusted context that has the ROLE AS OBJECT OWNER clause, the
package owner is determined as follows:

• If the PACKAGE OWNER option is not specified, the role associated with the binder becomes the
package owner.

Chapter 7. Statements 1195

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_manageaccess2wlmenv.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_manageaccess2wlmenv.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sysdummy.html

• If the PACKAGE OWNER option is specified, the role specified in the PACKAGE OWNER option becomes
the package owner. In a trusted context, the PACKAGE OWNER specified must be a role.

Syntax for ALTER PROCEDURE (SQL - native)

ALTER PROCEDURE procedure-name

ALTER ACTIVE VERSION

ALL VERSIONS

VERSION routine-version-id

option-list

REPLACE
ACTIVE VERSION

VERSION routine-version-id

routine-specification

ADD VERSION routine-version-id routine-specification

ACTIVATE VERSION routine-version-id

REGENERATE
ACTIVE VERSION

VERSION routine-version-id USING APPLICATION COMPATIBILITY applcompat-level

DROP VERSION routine-version-id

routine-specification:

(
,

parameter-declaration

)
1 option-list

SQL-routine-body

Notes:
1 All versions of the procedure must have the same number of parameters.

parameter-declaration:

IN

OUT

INOUT

parameter-name data-type

data-type:

built-in-type

distinct-type-name

array-type-name

built-in-type:

1196 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

FOR SBCS

MIXED

BIT

DATA CCSID ASCII

EBCDIC

UNICODE

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) FOR SBCS

MIXED

DATA CCSID ASCII

EBCDIC

UNICODE

GRAPHIC

(1)

( integer)

VARGRAPHIC ( integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID ASCII

EBCDIC

UNICODE

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

XML

option-list: (The options can be specified in any order, but each option can be specified only one time.)

Chapter 7. Statements 1197

NOT DETERMINISTIC

DETERMINISTIC

MODIFIES SQL DATA

READS SQL DATA

CONTAINS SQL

CALLED ON NULL INPUT DYNAMIC RESULT SETS integer

DISALLOW DEBUG MODE

ALLOW DEBUG MODE

DISABLE DEBUG MODE

PARAMETER CCSID ASCII

PARAMETER CCSID EBCDIC

PARAMETER CCSID UNICODE

QUALIFIER schema-name PACKAGE OWNER authorization-name

ASUTIME NO LIMIT

ASUTIME LIMIT integer

COMMIT ON RETURN NO

COMMIT ON RETURN YES

AUTONOMOUS

INHERIT SPECIAL REGISTERS

DEFAULT SPECIAL REGISTERS

WLM ENVIRONMENT FOR DEBUG MODE name DEFER PREPARE

NODEFER PREPARE

CURRENT DATA NO

CURRENT DATA YES

DEGREE 1

DEGREE ANY

CONCURRENT ACCESS RESOLUTION USE CURRENTLY COMMITTED

CONCURRENT ACCESS RESOLUTION WAIT FOR OUTCOME

DYNAMICRULES RUN

DYNAMICRULES BIND

DYNAMICRULES DEFINEBIND

DYNAMICRULES DEFINERUN

DYNAMICRULES INVOKEBIND

DYNAMICRULES INVOKERUN

APPLICATION ENCODING SCHEME ASCII

APPLICATION ENCODING SCHEME EBCDIC

APPLICATION ENCODING SCHEME UNICODE

WITHOUT EXPLAIN

WITH EXPLAIN

WITHOUT IMMEDIATE WRITE

WITH IMMEDIATE WRITE

ISOLATION LEVEL CS

ISOLATION LEVEL RS

ISOLATION LEVEL RR

ISOLATION LEVEL UR

WITHOUT KEEP DYNAMIC

WITH KEEP DYNAMIC

OPTHINT ''

OPTHINT string-constant

SQL PATH

,

schema-name

SYSTEM PATH

SESSION USER

USER

RELEASE AT COMMIT

RELEASE AT DEALLOCATE QUERY ACCELERATION NONE

QUERY ACCELERATION ENABLE

QUERY ACCELERATION ENABLE WITH FAILBACK

QUERY ACCELERATION ELIGIBLE

QUERY ACCELERATION ALL

GET_ACCEL_ARCHIVE NO

GET_ACCEL_ARCHIVE YES

ACCELERATION WAITFORDATA nnnn.m

ACCELERATOR accelerator-name

REOPT NONE

REOPT ALWAYS

REOPT ONCE

VALIDATE RUN

VALIDATE BIND ROUNDING DEC_ROUND_CEILING

ROUNDING DEC_ROUND_DOWN

ROUNDING DEC_ROUND_FLOOR

ROUNDING DEC_ROUND_HALF_DOWN

ROUNDING DEC_ROUND_HALF_EVEN

ROUNDING DEC_ROUND_HALF_UP

ROUNDING DEC_ROUND_UP

DATE FORMAT ISO

DATE FORMAT EUR

DATE FORMAT USA

DATE FORMAT JIS

DATE FORMAT LOCAL

DECIMAL(15)

DECIMAL(31)

DECIMAL(15,  s)

DECIMAL(31,  s)

FOR UPDATE CLAUSE REQUIRED

FOR UPDATE CLAUSE OPTIONAL TIME FORMAT ISO

TIME FORMAT EUR

TIME FORMAT USA

TIME FORMAT JIS

TIME FORMAT LOCAL

BUSINESS_TIME SENSITIVE YES

BUSINESS_TIME SENSITIVE NO

SYSTEM_TIME SENSITIVE YES

SYSTEM_TIME SENSITIVE NO

ARCHIVE SENSITIVE YES

ARCHIVE SENSITIVE NO APPLCOMPAT applcompat-level

CONCENTRATE STATEMENTS OFF

CONCENTRATE STATEMENTS WITH LITERALS

SQL-routine-body:

1198 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SQL-control-statement

ALTER DATABASE statement

ALTER FUNCTION statement (external scalar, external table, sourced, SQL scalar, or SQL table)

ALTER INDEX statement

ALTER PROCEDURE statement (external, SQL - external, or SQL - native)

ALTER SEQUENCE statement

ALTER STOGROUP statement

ALTER TABLE statement

ALTER TABLESPACE statement

ALTER TRUSTED CONTEXT statement

ALTER VIEW statement

COMMENT statement

COMMIT statement

CONNECT statement

CREATE ALIAS statement

CREATE DATABASE statement

CREATE FUNCTION statement (external scalar, external table, or sourced)

CREATE GLOBAL TEMPORARY TABLE statement

CREATE INDEX statement

CREATE PROCEDURE (external) statement

CREATE ROLE statement

CREATE SEQUENCE statement

CREATE STOGROUP statement

CREATE SYNONYM statement

CREATE TABLE statement

CREATE TABLESPACE statement

CREATE TRUSTED CONTEXT statement

CREATE TYPE statement

CREATE VIEW statement

DECLARE GLOBAL TEMPORARY TABLE statement

DELETE statement

DROP statement

EXCHANGE statement

EXECUTE IMMEDIATE statement

GRANT statement

INSERT statement

LABEL statement

LOCK TABLE statement

MERGE statement

REFRESH TABLE statement

RELEASE statement

RELEASE SAVEPOINT statement

RENAME statement

REVOKE statement

ROLLBACK statement

SAVEPOINT statement

SELECT INTO statement

SET CONNECTION statement

SET special-register statement

TRUNCATE statement

UPDATE statement

VALUES INTO statement

1 2

Notes:
1 An ALTER FUNCTION (SQL scalar) statement or an ALTER PROCEDURE (SQL native) statement with an
ADD VERSION or REPLACE clause is not allowed in an SQL-routine-body.

Chapter 7. Statements 1199

2 The COMMIT statement and the ROLLBACK statement (without the TO SAVEPOINT clause) must not be
issued in a routine body if the routine is in the calling chain of an SQL routine, an external routine, or a
trigger.

Description for ALTER PROCEDURE (SQL - native)
procedure-name

Identifies the procedure to alter. The procedure that is identified in procedure-name must exist at the
current server.

The procedure must not be obfuscated.

ACTIVE VERSION or ALL VERSIONS or VERSION routine-version-id
Identifies the version of the procedure that is to be changed, replaced, or regenerated depending on
whether the ALTER, REPLACE, or REGENERATE keyword is specified.

Important: Do not create additional versions of procedures that are supplied with Db2 by specifying
the VERSION keyword. Only versions that are supplied with Db2 are supported. Additional versions of
such routines cause the installation and configuration of the supplied routines to fail.

ACTIVE VERSION
Specifies that the currently active version of the procedure is to be changed, replaced, or
regenerated.

ACTIVE VERSION is the default value.

ALL VERSIONS
Specifies that all of the versions of the procedure are to be changed. Only the following options
can be changed when this option is specified:

• AUTONOMOUS or COMMIT ON RETURN

VERSION routine-version-id
Identifies the version of the procedure that is to be changed, replaced, or regenerated. routine-
version-id is the version identifier that is assigned when the version is defined. routine-version-id
must identify a version of the specified procedure that exists at the current server.

ALTER
Specifies that a version of the procedure is to be changed.

When you change a procedure to add or replace a version of the procedure, any option that is not
explicitly specified will use the existing value from the version of the procedure that is being changed.

REPLACE
Specifies that a version of the procedure is to be replaced.

Binding the replaced version of the procedure might result in a new access path even if the routine
body is not changed.

When you replace a procedure, the data types, CCSID specifications, and character data attributes
(FOR BIT/SBCS/MIXED DATA) of the parameters must be the same as the attributes of the
corresponding parameters for the currently active version of the procedure. For options that are
not explicitly specified, the system default values for those options are used, even if those options
were explicitly specified for the version of the procedure that is being replaced. This is not the case
for versions of the procedure that specified DISABLE DEBUG MODE. If DISABLE DEBUG MODE is
specified for a version of a procedure, it cannot be changed by the REPLACE clause. When a procedure
definition is replaced, any existing comments in the catalog for that definition of the procedure are
removed.

ADD VERSION routine-version-id
Specifies that a new version of the procedure is to be created. routine-version-id is the version
identifier for the new version of the procedure. routine-version-id must not identify a version of the
specified procedure that already exists at the current server.

1200 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

When you add a new version of a procedure the data types, CCSID specifications, and character data
attributes (FOR BIT/SBCS/MIXED DATA) of the parameters must be the same as the attributes of the
corresponding parameters for the currently active version of the procedure. The parameter names can
differ from the other versions of the procedure. For options that are not explicitly specified, the system
default values will be used.

ACTIVATE VERSION routine-version-id
Specifies the version of the procedure that is to be the currently active version of the procedure.
routine-version-id is the version identifier that is assigned when the version of the procedure is
defined. The version that is specified with routine-version-id is the version that will be invoked by
the CALL statement, unless the value of the CURRENT ROUTINE VERSION special register overrides
the currently active version of the procedure when the procedure is invoked. routine-version-id must
identify a version of the procedure that already exists at the current server.

REGENERATE
Regenerates a version of the procedure. When Db2 maintenance is applied that changes how an SQL
procedure is generated, the procedure might need to be regenerated to process the maintenance
changes.

REGENERATE automatically rebinds, at the local server, the package for the SQL control statements
for the procedure and rebinds the package for the SQL statements that are included in the procedure
body. If a remote bind is also needed, the BIND PACKAGE COPY command must be explicitly done for
all of the remote servers.

REGENERATE is different from a REBIND PACKAGE command where the SQL statements are rebound
(i.e. to generate better access paths for those statements), but the SQL control statements in the
procedure definition remain the same.

USING APPLICATION COMPATIBILITY applcompat-level
Specifies the application compatibility level used to regenerate the version of the procedure. The
ALTER statement returns an error if the existing definition of the version includes syntax, semantics,
or options that require a higher application compatibility level. This situation can occur when the
version was most recently defined or regenerated while running at a higher application compatibility
level than applcompat-level.

The following values can be specified:

VvvRrMmmm

Compatibility with the behavior of the identified Db2 function level. For example, V12R1M510
specifies compatibility with the highest available Db2 12 function level. The equivalent function
level or higher must be activated.

For the new capabilities that become available in each application compatibility level, see:

• SQL changes in Db2 13 application compatibility levels
• SQL changes in Db2 12 application compatibility levels

Tip: Extra program preparation steps might be required to increase the application compatibility
level for applications that use data server clients or drivers to access Db2 for z/OS. For more
information, see Setting application compatibility levels for data server clients and drivers (Db2
Application programming and SQL).

V12R1
Compatibility with the behavior of Db2 12 function level 500. This value has the same result as
specifying V12R1M500.

V11R1
Compatibility with the behavior of Db2 11 new-function mode. After migration to Db2 12, this
value has the same result as specifying V12R1M100. For more information, see V11R1 application
compatibility level (Db2 Application programming and SQL)

Chapter 7. Statements 1201

https://www.ibm.com/docs/en/SSEPEK_13.0.0/wnew/src/tpc/db2z_13_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html

V10R1
Compatibility with the behavior of DB2 10 new-function mode. For more information, see V10R1
application compatibility level (Db2 Application programming and SQL).

If USING APPLICATION COMPATIBILITY is omitted, the regeneration uses the APPLCOMPAT value of
the applicable SYSIBM.SYSPACKAGE catalog table row.

DROP VERSION routine-version-id
Drops the version of the procedure that is identified with routine-version-id. routine-version-id is the
version identifier that is assigned when the version is defined. routine-version-id must identify a
version of the procedure that already exists at the current server and must not identify the currently
active version of the procedure. Only the identified version of the procedure is dropped.

When only a single version of the procedure exists at the current server, use the DROP PROCEDURE
statement to drop the procedure. A version of the procedure for which the version identifier is the
same as the contents of the CURRENT ROUTINE VERSION special register can be dropped if that
version is not the currently active version of the procedure.

(parameter-declaration,…)
Specifies the number of parameters of the procedure, the data type and usage of each parameter,
and the name of each parameter for the version of the procedure that is being defined or changed.
The number of parameters and the specified data type and usage of each parameter must match the
data types in the corresponding position of the parameter for all other versions of this procedure.
Synonyms for data types are considered to be a match.

IN, OUT, and INOUT specify the usage of the parameter. The usage of the parameters must match the
implicit or explicit usage of the parameters of other versions of the same procedure.

IN
Identifies the parameter as an input parameter to the procedure. The value of the parameter on
entry to the procedure is the value that is returned to the calling SQL application, even if changes
are made to the parameter within the procedure.

IN is the default.

OUT
Identifies the parameter as an output parameter that is returned by the procedure. If the
parameter is not set within the procedure, the null value is returned.

INOUT
Identifies the parameter as both an input and output parameter for the procedure. If the
parameter is not set within the procedure, its input value is returned.

parameter-name
Names the parameter for use as an SQL variable. The name cannot be the same as the name of
any other parameter-name for this version of the procedure. The name of the parameter in this
version of the procedure can be different than the name of the corresponding parameter for other
versions of this procedure.

built-in-type
Specifies the data type of the parameter. See “CREATE PROCEDURE statement (SQL - native
procedure)” on page 1607 for more information on data type specifications.

distinct-type-name
The data type of the input parameter is a distinct type. Any length, precision, scale, subtype, or
encoding scheme attributes for the parameter are those of the source type of the distinct type.
The distinct type must not be based on a LOB data type.

array-type-name
The data type of the input parameter is a user-defined array type.

If you specify array-type-name without a schema name, Db2 resolves the array type by searching
the schemas in the SQL path.

1202 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the procedure returns the same results each time it is called with the same IN and
INOUT arguments.
NOT DETERMINISTIC

The procedure might not return the same result each time it is called with the same IN and INOUT
arguments, even when the data that is referenced in the database has not changed.

NOT DETERMINISTIC is the default.

DETERMINISTIC
The procedure always returns the same results each time it is called with the same IN and INOUT
arguments if the data that is referenced in the database has not changed.

Db2 does not verify that the procedure code is consistent with the specification of DETERMINISTIC or
NOT DETERMINISTIC.

MODIFIES SQL DATA, READS SQL DATA, or CONTAINS SQL
Specifies the classification of SQL statements and nested routines that this routine can execute or
invoke. The database manager verifies that the SQL statements issued by the procedure, and all
routines locally invoked by the routine, are consistent with this specification; the verification is not
performed when nested remote routines are invoked. For the classification of each statement, see
Appendix D, “SQL statement data access classification for routines,” on page 2275.
MODIFIES SQL DATA

Specifies that the procedure can execute any SQL statement except statements that are not
supported in procedures.

MODIFIES SQL DATA is the default.

READS SQL DATA
Specifies that procedure can execute statements with a data access indication of READS SQL
DATA or CONTAINS SQL. The procedure cannot execute SQL statements that modify data.

CONTAINS SQL
Specifies that the procedure can execute only SQL statements with an access indication of
CONTAINS SQL. The procedure cannot execute statements that read or modify data.

CALLED ON NULL INPUT
Specifies that the procedure will be called if any, or even if all parameter values are null.

DYNAMIC RESULT SETS integer
Specifies the maximum number of query result sets that the procedure can return. The default is
DYNAMIC RESULT SETS 0, which indicates that there are no result sets. The value must be in the
range 0–32767.

ALLOW DEBUG MODE, DISALLOW DEBUG MODE, or DISABLE DEBUG MODE
Specifies whether the version of the procedure can be run in debugging mode. The default for a new
version of a procedure is determined using the value of the CURRENT DEBUG MODE special register.
ALLOW DEBUG MODE

Specifies that this version of the procedure can be run in debugging mode. When this version of
the procedure is invoked and debugging is attempted, a WLM environment must be available.

DISALLOW DEBUG MODE
Specifies that the version of the procedure cannot be run in debugging mode.

You can use a subsequent ALTER PROCEDURE statement to change this option to ALLOW DEBUG
MODE.

DISABLE DEBUG MODE
Specifies that the version of the procedure can never be run in debugging mode.

The version of the procedure cannot be changed to specify ALLOW DEBUG MODE or DISALLOW
DEBUG MODE after the version of the procedure has been created, replaced, or altered to use
DISABLE DEBUG MODE. To change DEBUG MODE for a version of a procedure that specifies

Chapter 7. Statements 1203

DISABLE DEBUG MODE, you must drop and re-create the version of the procedure using the
option that you want.

When DISABLE DEBUG MODE is in effect, the WLM ENVIRONMENT FOR DEBUG MODE option is
ignored.

PARAMETER CCSID
Indicates whether the encoding scheme for character or graphic string parameters is ASCII, EBCDIC,
or UNICODE. The default encoding scheme is the value that is specified in the CCSID clauses of the
parameter list or in the field DEF ENCODING SCHEME on installation panel DSNTIPF.

This clause provides a convenient way to specify the encoding scheme for character or graphic string
parameters. If individual CCSID clauses are specified for individual parameters in addition to this
PARAMETER CCSID clause, the value that is specified in all of the CCSID clauses must be the same
value that is specified in this clause.

If the data type for a parameter is a user-defined distinct type that is defined as a character or graphic
type string, the CCSID of the distinct type must be the same as the value that is specified in this
clause.

If the data type for a parameter is a user-defined array type that is defined with character or graphic
string array elements, or a character string array index, the CCSID of these array attributes must be
the same as the value that is specified in this clause.

This clause also specifies the encoding scheme that will be used for system-generated parameters of
the routine.

QUALIFIER schema-name
Specifies the implicit qualifier that is used for unqualified object names that are referenced in the
procedure body. For information about how the default for this option is determined, see “Unqualified
alias, index, JAR file, mask, permission, sequence, table, trigger, and view names” on page 86.

PACKAGE OWNER authorization-name

Specifies the owner of the package that is associated with the version of the procedure. The SQL
authorization ID of the process is the default value.

This authorization ID must have the privileges required to execute the SQL statements that are
contained in the body of the routine and must contain the necessary bind privileges. The value of the
PACKAGE OWNER option is subject to translation when sent to a remote system.

Refer to the Authorization section of the BIND PACKAGE subcommand (DSN) (Db2 Commands)
command for authorization requirements.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single invocation of a
procedure can run. The value is unrelated to the ASUTIME column of the resource limit specification
table.

When you are debugging a procedure, setting a limit can be helpful in case the procedure gets caught
in a loop. For information on service units, see z/OS MVS Initialization and Tuning Guide.

NO LIMIT
Specifies that there is no limit on the number of CPU service units that the procedure can run.

NO LIMIT is the default.

LIMIT integer
The limit on the number of CPU service units is a positive integer in the range 1 - 2147483647.
If the procedure uses more service units than the specified value, Db2 cancels the procedure.
The CPU cycles that are consumed by parallel tasks in a procedure do not contribute towards the
specified ASUTIME LIMIT.

COMMIT ON RETURN NO, COMMIT ON RETURN YES, or AUTONOMOUS
Indicates whether Db2 commits the transaction immediately on return from the procedure.

1204 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_bindpackage.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae100/abstract.htm

COMMIT ON RETURN NO
Db2 does not issue a commit when the procedure returns. NO is the default.

COMMIT ON RETURN YES,
Db2 issues a commit when the procedure returns if the following statements are true:

• The SQLCODE that is returned by the CALL statement is not negative.
• The procedure is not in a must-abort state.

The commit operation includes the work that is performed by the calling application process and
by the procedure.

If the procedure returns result sets, the cursors that are associated with the result sets must have
been defined as WITH HOLD to be usable after the commit.

AUTONOMOUS
Db2 executes the SQL procedure in a unit of work that is independent from the calling application.
When this option is specified the procedure follows the rules of the COMMIT ON RETURN YES
option before returning to the calling application. However, it does not commit changes in the
calling application. When autonomous is specified:

• DYNAMIC RESULT SETS 0 must be in effect.
• Stored procedure parameters must not be defined as:

– A LOB type
– The XML data type
– A distinct data type that is based on a LOB or XML value
– An array type that is defined with array elements that are a LOB type

A value must not be assigned to a global variable when an autonomous procedure is executing.

INHERIT SPECIAL REGISTERS or DEFAULT SPECIAL REGISTERS
Specifies how special registers are set on entry to the routine.
INHERIT SPECIAL REGISTERS

Specifies that the values of special registers are inherited, according to the rules that are listed
in the table for characteristics of special registers in a procedure in “Special registers in a user-
defined function or a stored procedure” on page 215.

INHERIT SPECIAL REGISTERS is the default.

DEFAULT SPECIAL REGISTERS
Specifies that special registers are initialized to the default values, as indicated by the rules in the
table for characteristics of special registers in a procedure in “Special registers in a user-defined
function or a stored procedure” on page 215.

WLM ENVIRONMENT FOR DEBUG MODE name
Specifies the WLM (workload manager) application environment used by Db2 when debugging the
procedure. The name of the WLM environment is an SQL identifier.

If you do not specify WLM ENVIRONMENT FOR DEBUG MODE, Db2 uses the default WLM-established
stored procedure address space that is specified at installation time.

The WLM ENVIRONMENT FOR DEBUG MODE value is ignored when DISABLE DEBUG MODE is in
effect.

You must have the appropriate authority for the WLM application environment.

DEFER PREPARE or NODEFER PREPARE
Specifies whether to defer preparation of dynamic SQL statements that refer to remote objects, or to
prepare them immediately.

The default depends on the value that is specified for the REOPT option. If REOPT NONE is specified,
the default is NODEFER PREPARE. Otherwise, the default is DEFER PREPARE.

Chapter 7. Statements 1205

DEFER PREPARE
Specifies that the preparation of dynamic SQL statements that refer to remote objects will be
deferred.

For considerations with distributed processing, see DEFER and NODEFER bind options (Db2
Commands).

NODEFER PREPARE
Specifies that the preparation of dynamic SQL statements that refer to remote objects will not be
deferred.

CURRENT DATA
Specifies whether to require data currency for read-only and ambiguous cursors when the isolation
level of cursor stability is in effect. CURRENT DATA also determines whether block fetch can be used
for distributed, ambiguous cursors. For more information about updating the current row of a cursor,
block fetch, and data currency, see Choosing a CURRENTDATA option (Db2 Performance).
YES

Specifies that data currency is required for read-only and ambiguous cursors. Db2 acquired page
or row locks to ensure data currency. Block fetch is not allowed for distributed, ambiguous
cursors.

NO
Specifies that data currency is not required for read-only and ambiguous cursors. Block fetch
is allowed for distributed, ambiguous cursors. Use of CURRENT DATA(NO) is not recommended
if the procedure attempts to dynamically prepare and execute a DELETE WHERE CURRENT OF
statement against an ambiguous cursor after that cursor is opened. You receive a negative
SQLCODE if your procedure attempts to use a DELETE WHERE CURRENT OF statement for any
of the following cursors:

• A cursor that is using block fetch
• A cursor that is using query parallelism
• A cursor that is positioned on a row that is modified by this or another application process

No is the default.

DEGREE
Specifies whether to attempt to run a query using parallel processing to maximize performance.
1

Specifies that parallel processing should not be used.

1 is the default.

ANY
Specifies that parallel processing can be used.

CONCURRENT ACCESS RESOLUTION
Specifies the whether processing uses only committed data or whether it will wait for commit or
rollback of data that is in the process of being updated.
WAIT FOR OUTCOME

Specifies that processing will wait for the commit or rollback of data that is in the process of being
updated.

USE CURRENTLY COMMITTED
Specifies that processing use the currently committed version of the data when data that is in the
process of being updated is encountered. USE CURRENTLY COMMITTED is applicable on scans
that access tables that are defined in universal table spaces with row or page level lock size.

When there is lock contention between a read transaction and an insert transaction, USE
CURRENTLY COMMITTED is applicable to scans with isolation level CS or RS. Applicable scans
include intent read scans for read-only and ambiguous queries and for updatable cursors. USE
CURRENTLY COMMITTED is also applicable to scans initiated from WHERE predicates of UPDATE
or DELETE statements and the subselect of INSERT statements.

1206 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptdeferandnodefer.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptdeferandnodefer.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_choosecurrentdataopt.html

When there is lock contention is between a read transaction and a delete transaction, USE
CURRENTLY COMMITTED is applicable to scans with isolation level CS and when CURRENT DATA
NO is specified.

DYNAMICRULES
Specifies the values that apply, at run time, for the following dynamic SQL attributes:

• The authorization ID that is used to check authorization
• The qualifier that is used for unqualified objects
• The source for application programming options that Db2 uses to parse and semantically verify

dynamic SQL statements

DYNAMICRULES also specifies whether dynamic SQL statements can include GRANT, REVOKE, ALTER,
CREATE, DROP, and RENAME statements.

In addition to the value of the DYNAMICRULES clause, the run time environment of a native SQL
procedure controls how dynamic SQL statements behave at run time. The combination of the
DYNAMICRULES value and the run time environment determines the value for the dynamic SQL
attributes. That set of attribute values is called the dynamic SQL statement behavior. The following
values can be specified:
RUN

Specifies that dynamic SQL statements are to be processed using run behavior.

RUN is the default.

BIND
Specifies that dynamic SQL statements are to be processed using bind behavior.

DEFINEBIND
Specifies that dynamic SQL statements are to be processed using either define behavior or bind
behavior.

DEFINERUN
Specifies that dynamic SQL statements are to be processed using either define behavior or run
behavior.

INVOKEBIND
Specifies that dynamic SQL statements are to be processed using either invoke behavior or bind
behavior.

INVOKERUN
Specifies that dynamic SQL statements are to be processed using either invoke behavior or run
behavior.

See “Authorization IDs and dynamic SQL” on page 94 for information on the effects of these options.

APPLICATION ENCODING SCHEME
Specifies the default encoding scheme for SQL variables in static SQL statements in the procedure
body. The value is used for defining an SQL variable in a compound statement if the CCSID clause is
not specified as part of the data type, and the PARAMETER CCSID routine option is not specified.
ASCII

Specifies that the data is encoded using the ASCII CCSIDs of the server.
EBCDIC

Specifies that the data is encoded using the EBCDIC CCSIDs of the server.
UNICODE

Specifies that the data is encoded using the Unicode CCSIDs of the server.

For information about how the default for this option is determined, see ENCODING bind option (Db2
Commands).

WITH EXPLAIN or WITHOUT EXPLAIN
Specifies whether information will be provided about how SQL statements in the procedure will
execute.

Chapter 7. Statements 1207

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptencoding.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptencoding.html

WITHOUT EXPLAIN
Specifies that information will not be provided about how SQL statements in the procedure will
execute.

You can get EXPLAIN output for a statement that is embedded in a native SQL procedure that is
specified using WITHOUT EXPLAIN by embedding the SQL statement EXPLAIN in the procedure
body. Otherwise, the value of the EXPLAIN option applies to all explainable SQL statements in the
procedure body, and to the fullselect portion of any DECLARE CURSOR statements.

WITHOUT EXPLAIN is the default.

WITH EXPLAIN
Specifies that information will be provided about how SQL statements in the procedure will
execute. Information is inserted into the table owner.PLAN_TABLE. owner is the authorization ID
of the owner of the procedure package. Alternatively, the authorization ID of the owner of the
procedure can have an alias as owner.PLAN_TABLE that points to the base table, PLAN_TABLE.
owner must also have the appropriate SELECT and INSERT privileges on that table. WITH EXPLAIN
does not obtain information for statements that access remote objects. PLAN_TABLE must have
a base table and can have multiple aliases with the same table name, PLAN_TABLE, but have
different schema qualifiers; it cannot be a view or a synonym. It should exist before the version
is added or replaced. In all inserts to owner.PLAN_TABLE, the value of QUERYNO is the statement
number that is assigned by Db2.

The WITH EXPLAIN option also populates two optional tables, if they exist:
DSN_STATEMNT_TABLE and DSN_FUNCTION_TABLE. DSN_STATEMNT_TABLE contains an
estimate of the processing cost for an SQL statement.

For more information about the EXPLAIN statement, including a description of the tables that are
populated by the WITH EXPLAIN option, see “EXPLAIN statement” on page 1917.

WITH IMMEDIATE WRITE or WITHOUT IMMEDIATE WRITE
Specifies whether immediate writes are to be done for updates that are made to group buffer pool
dependent page sets or partitions. This option is only applicable for data sharing environments. The
IMMEDWRITE subsystem parameter has no affect of this option. IMMEDWRITE bind option (Db2
Commands) shows the implied hierarchy of the IMMEDWRITE bind option (which is similar to this
procedure option) as it affects run time.
WITHOUT IMMEDIATE WRITE

Specifies that normal write activity is performed. Updated pages that are group buffer pool
dependent are written at or before phase one of commit or at the end of abort for transactions
that have been rolled back.

WITHOUT IMMEDIATE WRITE is the default.

WITH IMMEDIATE WRITE
Specifies that updated pages that are group buffer pool dependent are immediately written as
soon as the buffer update completes. Updated pages are written immediately even if the buffer is
updated during forward progress or during the rollback of a transaction. WITH IMMEDIATE WRITE
might impact performance.

ISOLATION LEVEL RR, RS, CS, or UR
Specifies how far to isolate the procedure from the effects of other running applications. For
information about isolation levels, see Choosing a RELEASE option (Db2 Performance).
RR

Specifies repeatable read.
RS

Specifies read stability.
CS

Specifies cursor stability. CS is the default.
UR

Specifies uncommitted read.

1208 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptimmedwrite.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptimmedwrite.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_choosereleaseoption.html

WITH KEEP DYNAMIC or WITHOUT KEEP DYNAMIC
Specifies whether Db2 keeps dynamic SQL statements after commit points.
WITHOUT KEEP DYNAMIC

Specifies that Db2 does not keep dynamic SQL statements after commit points.

WITHOUT KEEP DYNAMIC is the default.

WITH KEEP DYNAMIC
Specifies that Db2 keeps dynamic SQL statements after commit points. If you specify WITH KEEP
DYNAMIC, the application does not need to prepare an SQL statement after every commit point.
Db2 keeps the dynamic SQL statement until one of the following occurs:

• The application process ends
• A rollback operations occurs
• The application executes an explicit PREPARE statement with the same statement identifier as

the dynamic SQL statement

If you specify WITH KEEP DYNAMIC, and the dynamic statement cache is active, the Db2
subsystem keeps a copy of the prepared statement in the cache. If the dynamic statement
cache is not active, the subsystem keeps only the SQL statement string past a commit point.
If the application executes an OPEN, EXECUTE, or DESCRIBE operation for that statement, the
statement is implicitly prepared.

If you specify WITH KEEP DYNAMIC, DDF server threads that are used to execute procedures or
packages that have this option in effect will remain active. Active DDF server threads are subject
to idle thread time outs. For more information, see IDLE THREAD TIMEOUT field (IDTHTOIN
subsystem parameter) (Db2 Installation and Migration).

If you specify WITH KEEP DYNAMIC, you must not specify REOPT ALWAYS. WITH KEEP DYNAMIC
and REOPT ALWAYS are mutually exclusive. However, you can specify WITH KEEP DYNAMIC and
REOPT ONCE.

Use WITH KEEP DYNAMIC to improve performance if your DRDA client application uses a cursor
that is defined as WITH HOLD. The Db2 subsystem automatically closes a held cursor when there
are no more rows to retrieve, which eliminates an extra network message.

OPTHINT string-constant
Specifies whether query optimization hints are used for static SQL statements that are contained
within the body of the procedure.

string-constantis a character string of up to 128 bytes in length, which is used by the Db2 subsystem
when searching the PLAN_TABLE for rows to use as input. The default value is an empty string, which
indicates that the Db2 subsystem does not use optimization hints for static SQL statements.

Optimization hints are only used if optimization hints are enabled for you system. For more
information, see OPTIMIZATION HINTS field (OPTHINTS subsystem parameter) (Db2 Installation and
Migration)

SQL PATH
Specifies the SQL path that the Db2 subsystem uses to resolve unqualified user-defined types,
functions, and procedure names (in CALL statements) in the body of the procedure. The default value
is "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM", and the value of the QUALIFIER option.

The maximum length of the SQL path is 2048 bytes. Db2 calculates the length by taking each
schema-name specified and removing any trailing blanks from it, adding two delimiters around it, and
adding one comma after each schema name except for the last one. The length of the resulting string
cannot exceed 2048 bytes.

schema-name
Specifies a schema. Db2 does not validate that the specified schema actually exists when the
ALTER statement is processed.

SYSPUBLIC must not be specified for the SQL path.

Chapter 7. Statements 1209

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_idthtoin.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_idthtoin.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_opthints.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_opthints.html

schema-name-list
Specifies a comma separated list of schema names. The same schema name should not appear
more than one time in the list of schema names. The number of schema names that you can
specify is limited by the maximum length of the resulting SQL path.

SYSPUBLIC must not be specified for the SQL path.

SYSTEM PATH
Specifies the schema names "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM".

SESSION_USER or USER
Specifies the value of the SESSION_USER (or USER) special register. At the time the ALTER
statement is processed, the actual length is included in the total length of the list of schema
names that is specified for the PATH option. If you specify SESSION_USER (or USER) in a list of
schema names, do not use delimiters around the SESSION_USER (or USER) keyword.

RELEASE AT
Specifies when to release resources that the procedure uses: either at each commit point or when the
procedure terminates.
COMMIT

Specifies that resources will be released at each commit point.

COMMIT is the default.

DEALLOCATE
Specifies that resources will be released only when the procedure terminates. DEALLOCATE has
no effect on packages that run on a Db2 server through a DRDA connection with a client system.
DEALLOCATE also has no effect on dynamic SQL statements, which always use RELEASE AT
COMMIT, with this exception: When you use the RELEASE AT DEALLOCATE clause and the WITH
KEEP DYNAMIC clause, and the subsystem is installed with a value of YES for the field CACHE
DYNAMIC SQL on installation panel DSNTIP8, the RELEASE AT DEALLOCATE option is honored for
dynamic SELECT and SQL data change statements.

Locks that are acquired for dynamic statements are held unit one of the following events occurs:

• The application process ends.
• The application process issues a PREPARE statement with the same statement identifier. (Locks

are released at the next commit point).
• The statement is removed from the dynamic statement cache because the statement has not

been used. (Locks are released at the next commit point).
• An object that the statement is dependent on is dropped or altered, or a privilege that the

statement needs is revoked. (Locks are released at the next commit point).

RELEASE AT DEALLOCATE can increase the package size because additional items become
resident in the package.

For more information about how the RELEASE clause affects locking and concurrency, see
Choosing a RELEASE option (Db2 Performance).

QUERY ACCELERATION
Specifies whether a static SQL query is bound for acceleration, and if so, with what behavior.
NONE

Specifies that no static SQL query in the application is bound for acceleration or will be
accelerated when the application is run.

ENABLE
Specifies that a static SQL query is bound for acceleration if it satisfies the acceleration criteria,
including the cost and heuristics criteria. The query is routed to an accelerator when the
application runs. Otherwise, if the static query does not satisfy the acceleration criteria, the query
is bound for execution in Db2.

1210 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_choosereleaseoption.html

If an error condition, such as one of the following examples, occurs while executing the
accelerated static query when the application is run, Db2 fails the static query and returns a
negative SQL code to the application:

• A failure occurs while running the static query on the accelerator.
• The accelerator returns an error for the query.
• The accelerator is not started and Db2 cannot route the static query to the accelerator for

execution.

ENABLE WITH FAILBACK
Results in the same behavior as ENABLE, except if one of the error conditions occurs on the first
OPEN of the accelerated static query when the application is run. In this case, instead of failing
the static query and returning a negative SQL code to the application, Db2 performs a temporary
statement-level incremental bind of the query and runs the query in Db2. The application does not
see the acceleration failure. Failback to Db2 is not possible after the application does a successful
OPEN for the query on the accelerator.

ELIGIBLE
Specifies that a static SQL query is bound for acceleration if the query meets the basic
acceleration criteria, regardless of the cost or heuristics criteria. The query is routed to the
accelerator when the application runs.

Like the behavior for ENABLE, if an error condition occurs while executing the accelerated static
query when the application is run, Db2 fails the static query and returns a negative SQL code to
the application.

ALL
Specifies that all of the static SQL queries in the application are to be bound for acceleration and
routed to the accelerator when the application runs. If Db2 determines that a static query cannot
be bound to run on the accelerator and the query references a user base table or view, the BIND
or REBIND PACKAGE operation fails with an error message for that query. (A failure exception
is made for declared global temporary tables (DGTTs) and created global temporary tables and
(CGTTs) because these tables cannot be accelerated.)

Like the behavior for ENABLE, if an error condition occurs while executing the accelerated static
query when the application is run, Db2 fails the static query and returns a negative SQL code to
the application.

This bind option does not apply to a fullselect or WITH common-table-expression that is specified in
a RETURN statement for the routine, or in a SET host-variable-assignment that is used in the routine.
The queries that are specified in these cases cannot be accelerated.

GET_ACCEL_ARCHIVE
Specifies whether a static SQL query that is bound for acceleration retrieves archived data on the
accelerator, instead of active data.
NO

Specifies that no static SQL query is bound to retrieve archived data from the accelerator. If the
static query also is not bound for acceleration, the query is bound to run in Db2.

If the static query is bound for acceleration because the QUERYACCELERATION bind option was
specified, the query is routed to the accelerator when the application runs; however, the query
does not retrieve any archived data.

YES
Specifies that if all of the following criteria are met, the query is bound for acceleration and
retrieves the archived data on the accelerator when the application runs:

• The QUERYACCELERATION bind option is also specified.
• The static SQL query references an accelerated table that has partitioned data archived on an

accelerator.

Chapter 7. Statements 1211

• The static query satisfies the acceleration criteria that is specified by the QUERYACCELERATION
bind option.

If the static query does not satisfy the acceleration criteria that is specified by the
QUERYACCELERATION bind option, the BIND or REBIND PACKAGE operation fails with an error
message for that query.

This bind option does not apply to a fullselect or WITH common-table-expression that is specified in
a RETURN statement for the routine, or in a SET host-variable-assignment that is used in the routine.
The queries that are specified in these cases cannot be accelerated.

ACCELERATION WAITFORDATA
Specifies the maximum amount of time, if any, that an accelerator will delay a query while the
accelerator waits for the replication of committed Db2 data changes that occurred prior to Db2
running the query.

For static accelerated queries, you must also set the QUERYACCELERATION bind option for this
function or procedure to a valid value other than NONE to request that static queries be accelerated. If
the QUERYACCELERATION bind option value is set to NONE, the ACCELERATIONWAITFORDATA bind
option is accepted and the package is bound with the option value; however, the option will not apply
to static SQL queries because no static queries will be accelerated.

For dynamic accelerated queries, specifying the ACCELERATION WAITFORDATA bind option also
initializes the CURRENT QUERY ACCELERATION WAITFORDATA special register, which is used for
the dynamic queries in the Db2 function or procedure if the function or procedure option DEFAULT
SPECIAL REGISTERS is also used. Initializing CURRENT QUERY ACCELERATION WAITFORDATA to a
value greater than 0 specifies that Db2 and the accelerator will apply WAITFORDATA delay behavior
and restrictions to all dynamic SQL queries to be accelerated from the Db2 function or procedure. The
CURRENT QUERY ACCELERATION special register must also have a valid value other than NONE to
request that dynamic queries be accelerated.

nnnn.m
Specifies a DECIMAL(5,1) numeric-constant value that specifies the maximum number of seconds
that the accelerator will delay a query while the accelerator waits for the replication of committed
Db2 data changes that occurred prior to Db2 running the query.

You can specify a value in the range of 0.0–3600.0 seconds. For example, a value of 20.0
represents 20.0 seconds (or 20000 milliseconds), and a value of 30.5 represents 30.5 seconds
(or 30500 milliseconds). The maximum value of 3600.0 means they the query is delayed for 3600
seconds.

You can also specify the value as an INTEGER numeric-constant value ranging 0–3600 seconds,
which Db2 will convert to a DECIMAL(5,1) value.

Important: When a non-zero value is specified for the ACCELERATIONWAITFORDATA bind
option, Db2 and the accelerator will apply other WAITFORDATA delay behaviors, restrictions, and
requirements to all queries that will be accelerated from the application package. These behaviors,
restrictions, and requirements can cause queries that were formerly accelerated successfully to
no longer be accelerated or to fail. See “SET CURRENT QUERY ACCELERATION WAITFORDATA
statement” on page 2150 for more information about WAITFORDATA behaviors, restrictions, and
requirements.

ACCELERATOR
Specifies an accelerator server that, if enabled and available, Db2 will consider as the preferred
accelerator for eligible SQL queries before sending the queries to other accelerator servers. If the
specified accelerator server is not enabled or available, Db2 will send the queries to other available
accelerator servers.

REOPT
Specifies if Db2 will determine the access path at run time by using the values of SQL variables or SQL
parameters, parameter markers, and special registers.

1212 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

NONE
Specifies that Db2 does not determine the access path at run time by using the values of SQL
variables or SQL parameters, parameter markers, and special registers.

NONE is the default.

ALWAYS
Specifies that Db2 always determine the access path at run time each time an SQL statement is
run.

ONCE
Specifies that Db2 determine the access path for any dynamic SQL statements only one time, at
the first time the statement is opened. This access path is used until the prepared statement is
invalidated or removed from the dynamic statement cache and needs to be prepared again.

VALIDATE RUN or VALIDATE BIND
Specifies whether to recheck, at run time, errors of the type "OBJECT not FOUND" and NOT
AUTHORIZED" that are found during bind or rebind. The option has no effect if all objects and needed
privileges exist.
VALIDATE RUN

Specifies that if needed objects or privileges do not exist when the ALTER PROCEDURE statement
is processed, warning messages are returned, but the ALTER PROCEDURE statement succeeds.
The Db2 subsystem rechecks for the objects and privileges at run time for those SQL statements
that failed the checks during processing of the ALTER PROCEDURE statement. The authorization
checks the use of the authorization ID of the owner of the procedure package.

VALIDATE RUN is the default.

VALIDATE BIND
Specifies that if needed objects or privileges do not exist at the time the ALTER PROCEDURE
statement is processed, an error is issued and the ALTER PROCEDURE statement fails.

ROUNDING
Specifies the rounding mode for manipulation of DECFLOAT data.
DEC_ROUND_CEILING

Specifies numbers are rounded towards positive infinity.
DEC_ROUND_DOWN

Specifies numbers are rounded towards 0 (truncation).
DEC_ROUND_FLOOR

Specifies numbers are rounded towards negative infinity.
DEC_ROUND_HALF_DOWN

Specifies numbers are rounded to nearest; if equidistant, round down.
DEC_ROUND_HALF_EVEN

Specifies numbers are rounded to nearest; if equidistant, round so that the final digit is even.
DEC_ROUND_HALF_UP

Specifies numbers are rounded to nearest; if equidistant, round up.
DEC_ROUND_UP

Specifies numbers are rounded away from 0.
DATE FORMAT ISO, EUR, USA, JIS, or LOCAL

Specifies the date format for result values that are string representations of date or time values. See
“String representations of datetime values” on page 120 for more information.

The default format is specified in the DATE FORMAT field of installation panel DSNTIP4 of the system
where the procedure is defined. You cannot use the LOCAL option unless you have a date exit routine.

DECIMAL(15), DECIMAL(31), DECIMAL(15,s), or DECIMAL(31,s)
Specifies the maximum precision that is to be used for decimal arithmetic operations. For more
information, see “Arithmetic with two decimal operands” on page 251. The default format is specified
in the DECIMAL ARITHMETIC field of installation panel DSNTIPF of the system where the procedure is

Chapter 7. Statements 1213

defined. If the form pp.s is specified, s must be a number in the range 1–9. s represents the minimum
scale that is to be used for division.

FOR UPDATE CLAUSE OPTIONAL or FOR UPDATE CLAUSE REQUIRED
Specifies whether the FOR UPDATE clause is required for a DECLARE CURSOR statement if the cursor
is to be used to perform positioned updates.
FOR UPDATE CLAUSE REQUIRED

Specifies that a FOR UPDATE clause must be specified as part of the cursor definition if the cursor
will be used to make positioned updates.

FOR UPDATE CLAUSE REQUIRED is the default.

FOR UPDATE CLAUSE OPTIONAL
Specifies that the FOR UPDATE clause does not need to be specified in order for a cursor to be
used for positioned updates. The procedure body can include positioned UPDATE statements that
update columns that the user is authorized to update.

If the resulting DBRM for the procedure is very large, you might need extra storage when you
specify FOR UPDATE CLAUSE OPTIONAL.

The FOR UPDATE clause of the select-statement with no column list applies to static or dynamic SQL
statements. You can specify the FOR UPDATE OF clause of the select-statement with a column list to
restrict updates to only the columns that are named in the column list and to specify the acquisition of
update locks.

TIME FORMAT ISO, EUR, USA, JIS, or LOCAL
Specifies the time format for result values that are string representations of date or time values. See
“String representations of datetime values” on page 120 for more information.

The default format is specified in the TIME FORMAT field of installation panel DSNTIP4 of the system
where the procedure is defined. You cannot use the LOCAL option unless you have a date exit routine.

BUSINESS_TIME SENSITIVE
Determines whether references to application-period temporal tables in both static and dynamic SQL
statements are affected by the value of the CURRENT TEMPORAL BUSINESS_TIME special register.
YES

References to application-period temporal tables are affected by the value of the CURRENT
TEMPORAL BUSINESS_TIME special register. YES is the default value.

NO
References to application-period temporal tables are not affected by the value of the CURRENT
TEMPORAL BUSINESS_TIME special register.

For more information, see “CURRENT TEMPORAL BUSINESS_TIME special register” on page 208.

SYSTEM_TIME SENSITIVE
Determines whether references to system-period temporal tables in both static and dynamic SQL
statements are affected by the value of the CURRENT TEMPORAL SYSTEM_TIME special register.
YES

References to system-period temporal tables are affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register. YES is the default value.

NO
References to system-period temporal tables are not affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

For more information, see “CURRENT TEMPORAL SYSTEM_TIME special register” on page 210.

ARCHIVE SENSITIVE
Determines whether references to archive-enabled tables in SQL statements are affected by the value
of the SYSIBMADM.GET_ARCHIVE built-in global variable.
YES

References to archive-enabled tables are affected by the value of the SYSIBMADM.GET_ARCHIVE
built-in global variable. YES is the default value.

1214 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

NO
References to archive-enabled tables are not affected by the value of the
SYSIBMADM.GET_ARCHIVE built-in global variable.

For more information, see “GET_ARCHIVE” on page 330.

APPLCOMPAT applcompat-level
Specifies the application compatibility behavior for SQL statements in the procedure body. If this
option is not specified, the behavior is determined by the applcompat-level of the previous bind of the
package if one exists, or otherwise by the APPLCOMPAT subsystem parameter.

The following applcompat-level values can be specified:
VvvRrMmmm

Compatibility with the behavior of the identified Db2 function level. For example, V12R1M510
specifies compatibility with the highest available Db2 12 function level. The equivalent function
level or higher must be activated.

For the new capabilities that become available in each application compatibility level, see:

• SQL changes in Db2 13 application compatibility levels
• SQL changes in Db2 12 application compatibility levels

Tip: Extra program preparation steps might be required to increase the application compatibility
level for applications that use data server clients or drivers to access Db2 for z/OS. For more
information, see Setting application compatibility levels for data server clients and drivers (Db2
Application programming and SQL).

V12R1
Compatibility with the behavior of Db2 12 function level 500. This value has the same result as
specifying V12R1M500.

V11R1
Compatibility with the behavior of Db2 11 new-function mode. After migration to Db2 12, this
value has the same result as specifying V12R1M100. For more information, see V11R1 application
compatibility level (Db2 Application programming and SQL)

V10R1
Compatibility with the behavior of DB2 10 new-function mode. For more information, see V10R1
application compatibility level (Db2 Application programming and SQL).

CONCENTRATE STATEMENTS OFF or CONCENTRATE STATEMENTS WITH LITERALS
Specifies whether each dynamic SQL statement in the routine that specifies literal constants will be
cached as a separate unique statement entry in the dynamic statement cache, instead of sharing an
existing statement in the cache. Dynamic SQL statements are eligible to share an existing statement
in the cache if the new statement meets all of the conditions for sharing a cached version of the same
dynamic statement, except that the new statement specifies one or more literal constants that are
different than the cached statement.
CONCENTRATE STATEMENTS OFF

Specifies that each dynamic SQL statement that specifies literal constants will be cached as a
unique statement entry if it specifies one or more constants that are different than the cached
version of the same dynamic statement. CONCENTRATE STATEMENTS OFF is the default dynamic
statement caching behavior.

CONCENTRATE STATEMENTS WITH LITERALS

Specifies that each dynamic SQL statement that specifies literal constants will share a cached
version of the same dynamic statement that is also prepared using the CONCENTRATE
STATEMENTS WITH LITERALS option, if the new dynamic statement meets all of the conditions for
sharing the cached statement, and the constants that are specified can be reused in place of the
constants in the cached statement.

Chapter 7. Statements 1215

https://www.ibm.com/docs/en/SSEPEK_13.0.0/wnew/src/tpc/db2z_13_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html

SQL-routine-body
Specifies the statements that define the body of the SQL procedure. For information on the SQL
control statements that are supported in native SQL procedures, see Chapter 8, “SQL procedural
language (SQL PL),” on page 2207. If an SQL-procedure-statement is the only statement in the
procedure body, the statement must not end with a semicolon.

Notes for ALTER PROCEDURE (SQL - native)
Considerations for altering a version of a procedure

To alter a version of a procedure, the environment settings that are in effect when the ALTER
PROCEDURE statement is issued must be the same as the environment settings that are in
effect when the version of the procedure is first created using the CREATE PROCEDURE or ALTER
PROCEDURE statements if one of the following options is specified:

• QUALIFIER
• PACKAGE OWNER
• OPTHINT
• SQL PATH
• DECIMAL (if the value includes a comma

For the WLM FOR DEBUG MODE clause, the name specified must be representable in the CCSID of the
original statement that defined the object or version.

Changing to a native SQL procedure
You cannot change an external SQL procedure to a native SQL procedure. You can drop the external
SQL procedure that you want to change by using the DROP statement and create a native SQL
procedure with a similar definition using the CREATE PROCEDURE statement. Alternatively, you can
create a native SQL procedure using a different schema.

Identifier resolution
See Chapter 8, “SQL procedural language (SQL PL),” on page 2207 for information on how names are
resolved to columns, SQL variables, or SQL routines for native SQL procedures. Name resolution is
unchanged for external SQL procedures.

If duplicate names are used for columns and SQL variables and parameters, qualify the duplicate
names by using the table designator for columns, the procedure name for parameters, and the label
name for SQL variables.

Characteristics of the package that is generated for a version of a procedure
The package that is associated with a version of a procedure is named as follows:

• location is set to the value of the CURRENT SERVER special register
• collection-id (schema) for the package is the same as the schema qualifier of the procedure
• package-id is the same as the specific name of the procedure
• version-id is the same as the version identifier for the initial version of the procedure

The package is generated using the bind options that correspond to the implicitly or explicitly
specified procedure options. In addition to the corresponding bind options, the package is generated
using the following bind options:

• DBPROTOCAL(DRDA)
• FLAG(1)
• SQLERROR(NOPACKAGE)
• ENABLE(*)

Application compatibility level considerations for procedure objects
The application compatibility level controls the adoption and use of new capabilities and
enhancements. When an object is created or altered, two separate application compatibility levels

1216 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

are used: one to process the definition of the object, and the other for processing the SQL statements
in the object body:

Object definition The CURRENT APPLICATION COMPATIBILITY special register value is
used to process the object definition, except for statements in the object
body

This application compatibility level is stored in the
SYSENVIRONMENT.APPLCOMPAT column. You can use the environment
ID value in the catalog definition of the object to locate the
SYSENVIRONMENT row with the matching ENVID value.

This application compatibility level can be changed when the object is
regenerated.

Statements in the
object body

The application compatibility level that is implicitly or explicitly specified
with the APPLCOMPAT option of the CREATE or ALTER statement is used to
process statements in the object body.

This application compatibility level is stored in the
SYSPACKAGE.APPLCOMPAT column for the package associated with the
object definition.

Altering a procedure definition using a lower application compatibility level than the current
definition

If the CURRENT APPLICATION COMPATIBILITY special register value is lower than the application
compatibility level of the existing object definition, altering an object might result in an error even
if the content of the ALTER statement is valid at the current level. The errors can occur when the
existing object definition contains some functionality that requires a higher level than the CURRENT
APPLICATION COMPATIBILITY special register setting.

Application compatibility levels for regenerating procedure objects

For ALTER statements that regenerate objects, the object definition is reprocessed using the
application compatibility setting that is specified implicitly or explicitly by the USING APPLICATION
COMPATIBILITY clause that follows the REGENERATE keyword. This application compatibility value
replaces the existing value in the SYSENVIRONMENT.APPLCOMPAT column for the environment
settings associated with the object definition.

If the USING APPLICATION COMPATIBILITY clause is not specified, the existing application
compatibility value in the SYSENVIRONMENT.APPLCOMPAT column for the object definition is used to
reprocess the text associated with the object definition.

The behavior of the statements in the body remains controlled by the value the existing APPLCOMPAT
option of the object.

Considerations for a procedure that is defined using a TABLE LIKE name AS LOCATOR clause
If a procedure is defined with a table parameter (the TABLE LIKE name AS LOCATOR clause was
specified in the CREATE PROCEDURE statement to indicate that one of the input parameters is a
transition table), the procedure cannot be changed with an ALTER PROCERDURE statement if the
change requires that the parameter list be specified. For example, to add or replace a version of a
native SQL procedure, the procedure must be dropped and re-created.

Considerations for SQL processor programs
SQL processor programs, such as SPUFI, the command line processor, and DSNTEP2, might not
correctly parse SQL statements in the routine body that end with semicolons. These processor
programs accept multiple SQL statements as input, with each statement separated with a terminator
character. Processor programs that use a semicolon as the SQL statement terminator can truncate
a CREATE FUNCTION statement with embedded semicolons and pass only a portion of it to Db2.
Therefore, you might need to change the SQL terminator character for these processor programs.
For information on changing the terminator character for SPUFI and DSNTEP2, see Setting the SQL

Chapter 7. Statements 1217

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_setsqlterminator.html

terminator character in a SPUFI input data set (Db2 Application programming and SQL) and DSNTEP2
and DSNTEP4 sample programs (Db2 Application programming and SQL).

Correspondence of procedure options to BIND options

The following table lists the corresponding bind command options for specific CREATE PROCEDURE
and ALTER PROCEDURE options. For more information about the bind options, see BIND and REBIND
options for packages, plans, and services (Db2 Commands).

Correspondence of procedure options to bind options

CREATE PROCEDURE or ALTER PROCEDURE
option

Bind commands option

ACCELERATION WAITFORDATA nnnn.m ACCELERATIONWAITFORDATA(nnnn.m)

ACCELERATOR accelerator-name ACCELERATOR(accelerator-name)

APPLICATION ENCODING SCHEME ASCII ENCODING(ASCII)

APPLICATION ENCODING SCHEME EBCDIC ENCODING(EBCDIC)

APPLICATION ENCODING SCHEME UNICODE ENCODING(UNICODE)

ARCHIVE SENSITIVE NO ARCHIVESENSITIVE(NO)

ARCHIVE SENSITIVE YES ARCHIVESENSITIVE(YES)

BUSINESS_TIME SENSITIVE NO BUSTIMESENSITIVE(NO)

BUSINESS_TIME SENSITIVE YES BUSTIMESENSITIVE(YES)

CURRENT DATA NO CURRENTDATA(NO)

CURRENT DATA YES CURRENTDATA(YES)

DEFER PREPARE DEFER(PREPARE)

NODEFER PREPARE NODEFER(PREPARE)

DEGREE 1 DEGREE(1)

DEGREE ANY DEGREE(ANY)

DYNAMICRULES RUN DYNAMICRULES(RUN)

DYNAMICRULES BIND DYNAMICRULES(BIND)

DYNAMICRULES DEFINEBIND DYNAMICRULES(DEFINEBIND)

DYNAMICRULES DEFINERUN DYNAMICRULES(DEFINERUN)

DYNAMICRULES INVOKEBIND DYNAMICRULES(INVOKEBIND)

DYNAMICRULES INVOKERUN DYNAMICRULES(INVOKERUN)

GET_ACCEL_ARCHIVE NO GETACCELARCHIVE(NO)

GET_ACCEL_ARCHIVE YES GETACCELARCHIVE(YES)

ISOLATION LEVEL CS ISOLATION(CS)

ISOLATION LEVEL RS ISOLATION(RS)

ISOLATION LEVEL RR ISOLATION(RR)

ISOLATION LEVEL UR ISOLATION(UR)

OPTHINT string-constant OPTHINT(hint-id)

PACKAGE OWNER authorization-name OWNER(authorization-id)

1218 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_setsqlterminator.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_dsntep24.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_dsntep24.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html

CREATE PROCEDURE or ALTER PROCEDURE
option

Bind commands option

QUALIFIER schema-name QUALIFIER(qualifier-name)

QUERY ACCELERATION NONE QUERYACCELERATION(NONE)

QUERY ACCELERATION ENABLE QUERYACCELERATION(ENABLE)

QUERY ACCELERATION ENABLE WITH FAILBACK QUERYACCELERATION(ENABLE WITH
FAILBACK)

QUERY ACCELERATION ELIGIBLE QUERYACCELERATION(ELIGIBLE)

QUERY ACCELERATION ALL QUERYACCELERATION(ALL)

RELEASE AT COMMIT RELEASE(COMMIT)

RELEASE AT DEALLOCATE RELEASE(DEALLOCATE)

REOPT ALWAYS REOPT(ALWAYS)

REOPT NONE REOPT(NONE)

REOPT ONCE REOPT(ONCE)

ROUNDING DEC_ROUND_CEILING ROUNDING(CEILING)

ROUNDING DEC_ROUND_DOWN ROUNDING(DOWN)

ROUNDING DEC_ROUNDING_FLOOR ROUNDING(FLOOR)

ROUNDING DEC_ROUNDING_HALF_DOWN ROUNDING(HALFDOWN)

ROUNDING DEC_ROUNDING_HALF_EVEN ROUNDING(HALFEVEN)

ROUNDING DEC_ROUNDING_HALF_UP ROUNDING(HALFUP)

ROUNDING DEC_ROUNDING_UP ROUNDING(UP)

SQL PATH path-specification PATH(path-specification)

SYSTEM_TIME SENSITIVE NO SYSTIMESENSITIVE(NO)

SYSTEM_TIME SENSITIVE YES SYSTIMESENSITIVE(YES)

VALIDATE BIND VALIDATE(BIND)

VALIDATE RUN VALIDATE(RUN)

WITH EXPLAIN EXPLAIN(YES)

WITHOUT EXPLAIN EXPLAIN(NO)

WITH IMMEDIATE WRITE IMMEDWRITE(YES)

WITHOUT IMMEDIATE WRITE IMMEDWRITE(NO)

WITH KEEPDYNAMIC KEEPDYNAMIC(YES)

WITHOUT KEEPDYNAMIC KEEPDYNAMIC(NO)

Invalidation of packages
This statement might invalidate all packages that depend on target objects, and sometimes other
related objects through cascading effects, depending on the clauses and keywords specified and
other factors.

ALTER PROCEDURE with the ACTIVATE VERSION option invalidates all packages that are dependent
on a previous version of the procedure. (The ACTIVATE VERSION does not invalidate packages if the
value of routine-version-id is the same as the current active version of the procedure.)

Chapter 7. Statements 1219

When a version of an SQL procedure is altered to change certain options that are specified for the
active version, all application packages that refer to that procedure are marked invalid, and those
invoking packages require a rebind. This includes changes to certain bind options and routine options
that result in the implicit regeneration of the procedure. These options are marked accordingly in the
following table in columns "Change requires rebind of invoking applications" and "Change results in
implicit regeneration of the entire body of the procedure." For more information, see Changes that
invalidate packages (Db2 Application programming and SQL).

Implicit rebind and regeneration
When certain attributes of a native SQL procedure are changed, the body of the procedure might
be rebound or regenerated. The columns "Change results in implicit regeneration of the entire body
of the procedure" and "Change results in implicit rebind of non-control statements in the body of
the procedure" in the following table summarize when implicit rebind and regeneration occurs when
specific options are changed.

Table 175. CREATE PROCEDURE and ALTER PROCEDURE options that result in rebind or regeneration when
changed.

CREATE PROCEDURE
or ALTER PROCEDURE
option

Change requires rebind
of invoking applications?

Change results in implicit
rebind of the non-control
statements of the body of
the procedure?

Change results in implicit
regeneration of the entire
body of the procedure?

ACCELERATION
WAITFORDATA

No Yes No

ACCELERATOR No Yes No

ALLOW DEBUG MODE,
DISALLOW DEBUG
MODE, or DISABLE
DEBUG MODE

Yes“1” on page 1222, “2” on page
1222

Yes“1” on page 1222 Yes

APPLICATION
ENCODING SCHEME

Yes Yes Yes

ARCHIVE SENSITIVE Yes Yes Yes

ASUTIME Yes No No

BUSINESS_TIME
SENSITIVE

Yes Yes Yes

COMMIT ON RETURN Yes No No

CURRENT DATA No Yes No

DATE FORMAT Yes Yes Yes

DECIMAL Yes Yes Yes

DEFER PREPARE or
NODEFER PREPARE

No Yes No

DEGREE No Yes No

DYNAMIC RESULT SETS Yes No No

DYNAMICRULES No Yes No

FOR UPDATE CLAUSE
OPTIONAL or FOR
UPDATE CLAUSE
REQUIRED

Yes Yes Yes

GET_ACCEL_ARCHIVE Yes Yes Yes

1220 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

Table 175. CREATE PROCEDURE and ALTER PROCEDURE options that result in rebind or regeneration when
changed. (continued)

CREATE PROCEDURE
or ALTER PROCEDURE
option

Change requires rebind
of invoking applications?

Change results in implicit
rebind of the non-control
statements of the body of
the procedure?

Change results in implicit
regeneration of the entire
body of the procedure?

INHERIT SPECIAL
REGISTERS or DEFAULT
SPECIAL REGISTERS

Yes No No

ISOLATION LEVEL No Yes No

MODIFIES SQL DATA,
READS SQL DATA, or
CONTAINS SQL

Yes Yes Yes

NOT DETERMINISTIC or
DETERMINISTIC

No No No

OPTHINT No Yes No

PACKAGE OWNER No Yes No

QUALIFIER No Yes No

QUERYACCELERATION Yes Yes Yes

RELEASE AT COMMIT
or RELEASE AT
DEALLOCATE

No Yes No

REOPT No Yes No

SQL PATH No Yes No

STOP AFTER SYSTEM
DEFAULT FAILURES,
STOP AFTER nn
FAILURES, or CONTINUE
AFTER FAILURES

Yes No No

SYSTEM_TIME
SENSITIVE

Yes Yes Yes

TIME FORMAT Yes Yes Yes

VALIDATE RUN or
VALIDATE BIND

No Yes No

WITH EXPLAIN or
WITHOUT EXPLAIN

No Yes No

WITH IMMEDIATE
WRITE or WITHOUT
IMMEDIATE WRITE

No Yes No

WITH KEEP DYNAMIC
or WITHOUT KEEP
DYNAMIC

No Yes No

WLM ENVIRONMENT FOR
DEBUG MODE

Yes No No

Chapter 7. Statements 1221

Note:

1. The procedure package is rebound or regenerated if a value of ALLOW DEBUG MODE is changed to
DISALLOW DEBUG MODE.

2. Invoking applications are invalidated if a value of DISALLOW DEBUG MODE is changed to DISABLE
DEBUG MODE.

Considerations for SYSENVIRONMENTS catalog table
An ALTER statement that specifies a new environment settings will result in a new row being added
to the SYSENVIRONMENTS catalog table. The new row will be added even if an error is subsequently
encountered during processing of the ALTER statement. Thus, a new SYSENVIRONMENTS row might
be added even for an ALTER statement that fails.

Compatibilities:
For compatibility with previous versions of Db2, when any of the following options are implicitly or
explicitly specified as part of option-list, a warning is issued, but the statement is executed. However,
if REPLACE or ADD VERSION is specified with one of the following options, an error is issued, and
the statement does not execute. For example, if ADD VERSION and STAY RESIDENT are specified, an
error is issued.

• STAY RESIDENT
• PROGRAM TYPE
• RUN OPTIONS
• NO DBINFO
• COLLID or NOCOLLID
• SECURITY
• PARAMETER STYLE GENERAL WITH NULLS
• STOP AFTER SYSTEM DEFAULT FAILURES
• STOP AFTER nn FAILURES
• CONTINUE AFTER FAILURES

If WLM ENVIRONMENT is specified for a native SQL procedure, WLM ENVIRONMENT FOR DEBUG
MODE must be specified.

For compatibility with the CREATE PROCEDURE statement, the following clause can be specified, but
will be ignored:

• LANGUAGE SQL

Altering obfuscated procedures
Obfuscated procedures cannot be altered in any way.

Alternative syntax and synonyms:
To provide compatibility with previous releases of Db2 or other products in the Db2 family, Db2
supports the following keywords:

• RESULT SET, RESULT SETS, and DYNAMIC RESULT SET as synonyms for DYNAMIC RESULT SETS.
• VARIANT as a synonym for NOT DETERMINISTIC
• NOT VARIANT as a synonym for DETERMINISTIC

Considerations for catalog comments for a routine definition
When a function definition is replaced any existing comment in the catalog for the definition is
removed, and when a function definition is regenerated any existing comment in the catalog for the
definition is retained.

Example for ALTER PROCEDURE (SQL - native)

1222 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 1
The following statement changes the existing procedure options for the active version of the
UPDATE_SALARY_1 native SQL procedure. If you need to change a different version of the procedure,
you would specify VERSION routine-version-id in place of ACTIVE VERSION. Note that the
ALTER clause that precedes the version specification can be omitted.

ALTER PROCEDURE UPDATE_SALARY_1
 ALTER ACTIVE VERSION
 NOT DETERMINISTIC
 CALLED ON NULL INPUT
 ALLOW DEBUG MODE
 ASUTIME LIMIT 10

Example 2
To change the procedure body of any existing version of a procedure, you need to use the REPLACE
clause. The following statement changes both the procedure body and the existing SQL data access
option for version V2 of the UPDATE_SALARY_1 SQL procedure. Note that the list of parameters is
specified even though no changes are made to the list. To replace an existing version of a procedure,
you must specify the list of parameters, any options that are to have non-default values (even if those
options are specified in the version of the procedure that you are replacing), and the body of the
procedure.

ALTER PROCEDURE UPDATE_SALARY_1
 REPLACE VERSION V2 (P1 INTEGER, P2 CHAR(5))
 MODIFIES SQL DATA
 UPDATE EMP SET SALARY = SALARY * RATE
 WHERE EMPNO = EMPLOYEE_NUMBER;

Example 3
To add a new version of an existing procedure, use the ADD VERSION clause. The following statement
adds a new version of the UPDATE_SALARY_1 procedure to apply a larger salary increase. Note that
the list of parameters is specified even though the new version of the procedure uses the same
parameters as the existing version of the procedure. To add a new version of a procedure, you must
specify the list of parameters, any options that will have non-default values, and the body of the
procedure.

ALTER PROCEDURE UPDATE_SALARY_1
 ADD VERSION V3 (P1 INTEGER, P2 CHAR(5))
 UPDATE EMP SET SALARY = SALARY * (RATE*10)
 WHERE EMPNO = EMPLOYEE_NUMBER;

Example 4
When the new version of the procedure has been defined, as in Example 3, you must use the ALTER
PROCEDURE statement with the ACTIVATE VERSION clause if the new version of the procedure is to
be the currently active version, as in the following example.

ALTER PROCEDURE UPDATE_SALARY_1
 ACTIVATE VERSION V3;

Example 5
To regenerate the currently active version of a procedure, use the following statement.

ALTER PROCEDURE UPDATE_SALARY_1
 REGENERATE ACTIVE VERSION;

Related concepts
SQL procedures (Db2 Application programming and SQL)
Related tasks
Altering stored procedures (Db2 Administration Guide)
Changing an existing version of a native SQL procedure (Db2 Application programming and SQL)
Regenerating an existing version of a native SQL procedure (Db2 Application programming and SQL)

Chapter 7. Statements 1223

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_sqlprocedure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_alterstoredprocedures.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changeversionnativesp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_regenerateversionnativesp.html

ALTER SEQUENCE statement
The ALTER SEQUENCE statement changes the attributes of a sequence at the current server. Only future
values of the sequence are affected by the ALTER SEQUENCE statement.

Invocation for ALTER SEQUENCE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for ALTER SEQUENCE
The privilege set that is defined below must include at least one of the following:

• Ownership of the sequence
• The ALTER privilege for the sequence
• The ALTERIN privilege on the schema
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

Installation SYSADM privilege is required to alter the SYSIBM.DSNSEQ_IMPLICITDB sequence (which
specifies the maximum number of implicitly created databases).

The authorization ID that matches the schema name implicitly has the ALTERIN privilege on the schema.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the package. If the statement is dynamically prepared, the privilege set is
the union of the privilege sets that are held by each authorization ID and role of the process.

Syntax for ALTER SEQUENCE

ALTER SEQUENCE sequence-name

1

RESTART

WITH numeric-constant

INCREMENT BY numeric-constant

NO MINVALUE

MINVALUE numeric-constant

NO MAXVALUE

MAXVALUE numeric-constant

NO CYCLE

CYCLE

NO CACHE

CACHE integer-constant

NO ORDER

ORDER

Notes:

1224 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

1 At least one option must be specified and the same clause must not be specified more than once.
Separator commas can be specified between sequence attributes when a sequence is defined.

Description for ALTER SEQUENCE
sequence-name

Identifies the sequence. The combination of sequence name and the implicit or explicit qualifier must
identify an existing sequence at the current server. sequence-name must not identify a sequence that
is generated by Db2 for an identity column or a DB2_GENERATED_DOCID_FOR_XML column.

RESTART
Restarts the sequence. If numeric-constant is not specified, the sequence is restarted at the value
specified implicitly or explicitly as the starting value on the CREATE SEQUENCE statement that
originally created the sequence. RESTART does not change the original START WITH value.
WITH numeric-constant

Specifies the value at which to restart the sequence. The value can be any positive or negative
value that could be assigned to the a column of the data type that is associated with the sequence
without non-zero digits existing to the right of the decimal point. The range used for cycles is
defined by MINVALUE and MAXVALUE. However, MAXVALUE and MINVALUE do not constrain the
RESTART WITH numeric-constant value. That is, the RESTART WITH clause can be used to start
the generation of values outside the range that is used for cycles. For more information, see
“Specifying RESTART WITH values outside the range for cycles” on page 1227.

If RESTART is not specified, the sequence is not restarted. Instead, it resumes with the current values
in effect for all the options after the ALTER statement is issued.

After a sequence is restarted or changed to allow cycling, sequence numbers might be duplicates of
values generated by the sequence previously.

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the sequence. The value can be any positive or
negative value (including 0) that could be assigned to a column of the data type that is associated with
the sequence without any non-zero digits existing to the right of the decimal point.

If INCREMENT BY numeric-constant is positive, the sequence ascends. If INCREMENT BY numeric-
constant is negative, the sequence descends. If INCREMENT BY numeric-constant is 0, the sequence
is treated as an ascending sequence.

The absolute value of INCREMENT BY can be greater than the difference between MAXVALUE and
MINVALUE.

NO MINVALUE or MINVALUE
Specifies whether or not there is a minimum end point of the range of values for the sequence.
NO MINVALUE

Specifies that the minimum end point of the range of values for the sequence has not been
specified explicitly. In such a case, the value for MINVALUE becomes one of the following:

• For an ascending sequence, the value is the original starting value.
• For a descending sequence, the value is the minimum of the data type that is associated with

the sequence.

MINVALUE numeric-constant
Specifies the minimum value at which a descending sequence either cycles or stops generating
values, or an ascending sequence cycles to after reaching the maximum value. The last value that
is generated for a cycle of a descending sequence will be equal to or greater than this value.
MINVALUE is the value to which an ascending sequence cycles to after reaching the maximum
value.

Chapter 7. Statements 1225

The value can be any positive or negative value that could be assigned to the a column of the
data type that is associated with the sequence without non-zero digits existing to the right of the
decimal point. The value must be less than or equal to the maximum value.

NO MAXVALUE or MAXVALUE
Specifies whether or not there is a maximum end point of the range of values for the sequence.
NO MAXVALUE

Specifies either explicitly or implicitly that the minimum end point of the range of values for the
sequence has not be set. In such a case, the default value for MAXVALUE becomes one of the
following:

• For an ascending sequence, the value is the maximum value of the data type that is associated
with the sequence

• For a descending sequence, the value is the original starting value.

If NO MAXVALUE is explicitly specified in the ALTER SEQUENCE statement, the value of the
MAXVALUE column in the catalog table is reset to the maximum value of the data type associated
with the sequence if the sequence is ascending or the value stored in the START column of the
catalog table if the sequence is descending. Whether the sequence is ascending or descending
depends on whether or not the INCREMENT BY option is reset. If it is, the new INCREMENT BY
VALUE determines if the sequence is ascending or descending. If it is not explicitly reset, the value
stored in the INCREMENT column of the catalog table determines if the sequence is ascending or
descending.

MAXVALUE numeric-constant
Specifies the maximum value at which an ascending sequence either cycles or stops generating
values or a descending sequence cycles to after reaching the minimum value. The last value that is
generated for a cycle of an ascending sequence will be less than or equal to this value. MAXVALUE
is the value to which a descending sequence cycles to after reaching the minimum value.

The value can be any positive or negative value that could be assigned to the a column of the
data type that is associated with the sequence without non-zero digits existing to the right of the
decimal point. The value must be greater than or equal to the minimum value.

NO CYCLE or CYCLE
Specifies whether or not the sequence should continue to generate values after reaching either its
maximum or minimum value. The boundary of the sequence can be reached either with the next value
landing exactly on the boundary condition or by overshooting it.
NO CYCLE

Specifies that the sequence cannot generate more values once the maximum or minimum value
for the sequence has been reached.

CYCLE
Specifies that the sequence continue to generate values after either the maximum or minimum
value has been reached. If this option is used, after an ascending sequence reaches its maximum
value, it generates its minimum value. After a descending sequence reaches its minimum value, it
generates its maximum value. The maximum and minimum values for the sequence defined by the
MINVALUE and MAXVALUE options determine the range that is used for cycling.

When CYCLE is in effect, duplicate values can be generated by the sequence. When a sequence
is defined with CYCLE, any application conversion tools for converting applications from other
vendor platforms to Db2 should also explicitly specify MINVALUE, MAXVALUE, and START WITH
values.

NO CACHE or CACHE
Specifies whether or not to keep some preallocated values in memory for faster access. This is a
performance and tuning option.
NO CACHE

Specifies that values of the sequence are not to be preallocated. This option ensures that there is
not a loss of values in the case of a system failure. When NO CACHE is specified, the values of the

1226 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

sequence are not stored in the cache. In this case, every request for a new value for the sequence
results in synchronous I/O to the log.

CACHE integer-constant
Specifies the maximum number of sequence values that Db2 can preallocate and keep in memory.
Preallocating values in the cache reduces synchronous I/O when values are generated for the
sequence. The actual number of values that Db2 caches is always the lesser of the number in
effect for the CACHE option and the number of remaining values within the logical range. Thus, the
CACHE value is essentially an upper limit for the size of the cache.

In the event the system is shut down (either normally or through a system failure), all cached
sequence values that have not been used in committed statements are lost (that is, they will never
be used). The value specified for the CACHE option is the maximum number of sequence values
that could be lost when the system is shut down.

The minimum value is 2.

In a data sharing environment, you can use the CACHE and NO ORDER options to allow multiple
Db2 members to cache sequence values simultaneously.

NO ORDER or ORDER
Specifies whether the sequence numbers must be generated in order of request.
NO ORDER

Specifies that the sequence numbers do not need to be generated in order of request.
ORDER

Specifies that the sequence numbers are generated in order of request. Specifying ORDER
might disable the caching of values. There is no guarantee that values are assigned in order
across the entire server unless NO CACHE is also specified. ORDER applies only to a single-
application process.

In a data sharing environment, if the CACHE and NO ORDER options are in effect, multiple caches
can be active simultaneously, and the requests for next value assignments from different Db2
members might not result in the assignment of values in strict numeric order. For example, if
members DB2A and DB2B are using the same sequence, and DB2A gets the cache values 1 to 20
and DB2B gets the cache values 21 to 40, the actual order of values assigned would be 1,21,2
if DB2A requested for next value first, then DB2B requested, and then DB2A again requested.
Therefore, to guarantee that sequence numbers are generated in strict numeric order among
multiple Db2 members using the same sequence concurrently, specify the ORDER option.

Notes for ALTER SEQUENCE
Altering a sequence

The changes to the attributes of a sequence take effect after the ALTER SEQUENCE statement is
committed. Only future sequence numbers are affected by the ALTER SEQUENCE statement. If the
ALTER SEQUENCE request results in an error or is rolled back, nothing is changed; however, unused
cache values might be lost.

• The data type of a sequence cannot be changed. Instead, drop and re-create the sequence
specifying the desired data type for the new sequence.

• All cached values are lost when a sequence is altered.
• After restarting a sequence or changing it to cycle, it is possible that a generated value will duplicate

a value previously generated for that sequence.

Specifying RESTART WITH values outside the range for cycles

The RESTART WITH value is not constrained by the values of MINVALUE and MAXVALUE. That is, if the
RESTART WITH value is greater than MAXVALUE, it has the following results:

• An ascending sequence generates the RESTART WITH value and then cycles to MINVALUE if CYCLE
is in effect. If NO CYCLE is in effect, the sequence generates the RESTART WITH value one time, and
the next attempt to generate a sequence value returns an error.

Chapter 7. Statements 1227

• A descending sequence generates the RESTART WITH value and then generates values according
to the INCREMENT BY specification until it reaches MINVALUE. MAXVALUE does not constrain the
generation of values for a descending sequence in this situation, so many values greater than
MAXVALUE can potentially be generated.

Likewise, if the RESTART WITH value is less than MINVALUE, it has the following results:

• A descending sequence generates the RESTART WITH value and then cycles to MAXVALUE if CYCLE
is in effect. If NO CYCLE is in effect, the sequence generates the RESTART WITH value one time, and
the next attempt to generate a sequence value returns an error.

• An ascending sequence generates the RESTART WITH value and then generates values according
to the INCREMENT BY specification until it reaches MAXVALUE. MINVALUE does not constrain
the generation of values for an ascending sequence in this situation, so many values less than
MINVALUE can potentially be generated.

Alternative syntax and synonyms

To provide compatibility with previous releases of Db2 or other products in the Db2 family, Db2
supports the following keywords:

• NOCACHE (single key word) as a synonym for NO CACHE
• NOCYCLE (single key word) as a synonym for NO CYCLE
• NOMINVALUE (single key word) as a synonym for NO MINVALUE
• NOMAXVALUE (single key word) as a synonym for NO MAXVALUE
• NOORDER (single key word) as a synonym for NO ORDER

Examples for ALTER SEQUENCE

Example 1: Reset a sequence to the START WITH value to generate the numbers from 1 up to the number
of rows in the table:

 ALTER SEQUENCE org_seq
 RESTART;

ALTER STOGROUP statement
The ALTER STOGROUP statement changes the description of a storage group at the current server.

Invocation for ALTER STOGROUP
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for ALTER STOGROUP
The privilege set that is defined below must include one of the following:

• Ownership of the storage group
• SYSADM or SYSCTRL authority
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the package. If the statement is dynamically prepared, the privilege set is
the union of the privilege sets that are held by each authorization ID and role of the process.

1228 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Syntax for ALTER STOGROUP

ALTER STOGROUP stogroup-name

1
ADD VOLUMES (

,
2

2
 volume-id

,

'*'

)

REMOVE VOLUMES (

,
2

2
 volume-id

,

'*'

)

NO KEY LABEL

KEY LABEL key-label-name

DATACLAS dc-name MGMTCLAS mc-name

STORCLAS sc-name

Notes:
1 The same clause must not be specified more than once.
2 The same volume-id must not be specified more than once in the same clause.

Description for ALTER STOGROUP
stogroup-name

Identifies the storage group to be altered. The name must identify a storage group that exists at the
current server.

ADD VOLUMES(volume-id,...) or ADD VOLUMES('*',...)
Adds volumes to the storage group. Each volume-id is the volume serial number of a storage volume
to be added. It can have a maximum of six characters and is specified as an identifier or a string
constant.

A volume-id must not be specified if any volume of the storage group is designated by an asterisk (*).
An asterisk must not be specified if any volume of the storage group is designated by a volume-id.

You cannot add a volume that is already in the storage group unless you first remove it with REMOVE
VOLUMES.

Asterisks are recognized only by Storage Management Subsystem (SMS). If the data set that is
associated with the storage group is non SMS managed, either ADD VOLUMES or REMOVE VOLUMES
must be specified. Neither ADD VOLUMES or REMOVE VOLUMES is required if DATACLAS, MGMTCLAS,
or STORCLAS is specified. SMS usage is recommended, rather than using Db2 to allocate data to
specific volumes. Having Db2 select the volume requires non-SMS usage or assigning an SMS Storage
Class with guaranteed space. However, because guaranteed space reduces the benefits of SMS
allocation, it is not recommended.

Chapter 7. Statements 1229

If you do choose to use specific volume assignments, additional manual space management must be
performed. Free space must be managed for each individual volume to prevent failures during the
initial allocation and extension. This process generally requires more time for space management and
results in more space shortages. Guaranteed space should be used only where the space needs are
relatively small and do not change.

REMOVE VOLUMES(volume-id,...) or REMOVE VOLUMES('*',...)
Removes volumes from the storage group. Each volume-id is the volume serial number of a storage
volume to be removed. Each volume-id must identify a volume that is in the storage group.

The REMOVE VOLUMES clause is applied to the current list of volumes before the ADD VOLUMES
clause is applied. Removing a volume from a storage group does not affect existing data, but a volume
that has been removed is not used again when the storage group is used to allocate storage for table
spaces or index spaces.

Asterisks are recognized only by Storage Management Subsystem (SMS). If the data set that is
associated with the storage group is non SMS managed, either ADD VOLUMES or REMOVE VOLUMES
must be specified. Neither ADD VOLUMES or REMOVE VOLUMES is required if DATACLAS, MGMTCLAS,
or STORCLAS is specified.

DATACLAS dc-name
Identifies the name of the SMS data class to associate with the Db2 storage group. The SMS data class
name must be from 1-8 characters in length. The SMS storage administrator defines the data class
that can be used. DATACLAS must not be specified more than one time.

MGMTCLAS mc-name
Identifies the name of the SMS management class to associate with the Db2 storage group. The
SMS management class name must be from 1-8 characters in length. The SMS storage administrator
defines the management class that can be used. MGMTCLAS must not be specified more than one
time.

STORCLAS sc-name
Identifies the name of the SMS storage class to associate with the Db2 storage group. The SMS
storage class name must be from 1-8 characters in length. The SMS storage administrator defines the
storage class that can be used. STORCLAS must not be specified more than one time.

FL 502 KEY LABEL key-label-name or NO KEY LABEL
Specifies whether a key label is specified at the storage group level for encryption. For the changed
KEY LABEL value to take effect, a subsequent REORG of the table spaces or indexes that use the
storage group is required.
KEY LABEL key-label-name

Specifies the default key label that is used to encrypt any data set allocated for the table spaces
and index spaces using the storage group.

The Db2 address space RACF user ID or group must be permitted access to the key label in RACF.

The key label can be overridden when the data set is allocated. For details about the order of
precedence, see “Notes for ALTER STOGROUP” on page 1230.

NO KEY LABEL
Indicates that there is no key label specified at the storage group level for encryption.

Notes for ALTER STOGROUP
Work file databases:

If the storage group altered contains data sets in a work file database, the database must be stopped
and restarted for the effects of the ALTER to be recognized. To stop and restart a database, issue the
following commands:

 -STOP DATABASE(database-name)
 -START DATABASE(database-name)

1230 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html

Device types:
When the storage group is used at run time, an error can occur if the volumes in the storage group are
of different device types, or if a volume is not available to z/OS for dynamic allocation of data sets.

When a storage group is used to extend a data set, all volumes in the storage group must be of the
same device type as the volumes used when the data set was defined. Otherwise, an extend failure
occurs if an attempt is made to extend the data set.

Number of volumes:
There is no specific limit on the number of volumes that can be defined for a storage group. However,
the maximum number of volumes that can be managed for a storage group is 133.

If the VOLUMES clause is specified, the maximum number of volumes is 59.

Verifying the existence of volumes and classes:
When processing the VOLUMES, DATACLAS, MGMTCLAS, or STORCLAS clauses, Db2 does not check
the existence of the volumes or classes or determine the types of devices that are identified or if
SMS is active. Later, when the storage group allocates data sets, the list of volumes is passed in the
specified order to Data Facilities (DFSMSdfp).

SMS data set management:
You can have Storage Management Subsystem (SMS) manage the storage needed for the objects that
the storage group supports. To do so, specify ADD VOLUMES('*') and REMOVE VOLUMES(current-vols)
in the ALTER statement, where current-vols is the list of the volumes currently assigned to the storage
group. SMS manages every data set created later for the storage group. SMS does not manage data
sets created before the execution of the statement.

You can also specify ADD VOLUMES(volume-id) and REMOVE VOLUMES('*') to make the opposite
change.

For considerations for using SMS to manage data sets, see Implementing Db2 storage groups (Db2
Administration Guide).

Key label requirement
To use a key label for encryption, the VSAM data sets for the page sets need to be associated with an
SMS Data Class that has extended format capability (EF enabled).

Determining a key label for base table space and associated objects
When a key label is specified at the table level, Db2 provides the key label to DFSMS to encrypt all
the table spaces and index spaces associated with the table. This includes base table space, auxiliary
table spaces, XML table spaces, index spaces, and clone table space, regardless of whether the base
table space or associated objects are explicitly or implicitly created. Db2 does not enforce any key
label relationship between the base table and an associated history or archive table. The key label for
the archive and the history tables has to be set independent of the base table. If there is no key label
specified at the table level, Db2 will provide the key label to DFSMS specified for the storage group.

When Db2 calls DFSMS to allocate the dataset for table space or index space, DFSMS uses its order of
precedence to determine the key label and can override the key label specified by Db2.

DFSMS order of precedence:

• RACF data set profile
• JCL, dynamic allocation, TSO ALLOCATE
• SMS data class construct

If the security administrator has specified a key label for the RACF data set profile, that key label takes
precedence over the Db2 provided key label. The REPORT utility can be run to determine the key label
used for encryption.

Examples for ALTER STOGROUP

Chapter 7. Statements 1231

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_storagegroupimplementation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_storagegroupimplementation.html

Example 1: Alter storage group DSN8G120. Add volumes DSNV04 and DSNV05.

 ALTER STOGROUP DSN8G120
 ADD VOLUMES (DSNV04,DSNV05);

Example 2: Alter storage group DSN8G120. Remove volumes DSNV04 and DSNV05.

 ALTER STOGROUP DSN8G120
 REMOVE VOLUMES (DSNV04,DSNV05);

Example 3: Alter storage group DSNCG120 to remove the key label.

 ALTER STOGROUP DSNCG120
 NO KEY LABEL;

ALTER TABLE statement
The ALTER TABLE statement changes the description of a table at the current server.

Invocation for ALTER TABLE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for ALTER TABLE
The privilege set that is defined below must include at least one of the following:

• The ALTER privilege on the table
• Ownership of the table
• DBADM authority for the database
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

To alter a system-period temporal table when one or more of the changes also result in changes to the
associated history table, the privileges that are held by the authorization ID of the statement must also
include at least one of the following:

• The ALTER privilege on the history table
• Ownership of the history table
• DBADM authority for the database
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

The privilege set must include SECADM authority if one of the following clauses is specified:

• ACTIVATE
• DEACTIVATE

Additional privileges might be required in the following situations:

• FOREIGN KEY, ADD PRIMARY KEY, ADD UNIQUE, DROP PRIMARY KEY, DROP FOREIGN KEY, or DROP
CONSTRAINT is specified.

1232 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• The data type of a column that is added to the table is a distinct type.
• A fullselect is specified.
• A column is defined as a security label column.
• A column is defined as ROWID GENERATED BY DEFAULT.

See the description of the appropriate clauses for the details about these privileges.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the package. If the statement is dynamically prepared, the privilege set is
the union of the privilege sets that are held by each authorization ID and role of the process.

Chapter 7. Statements 1233

Syntax for ALTER TABLE
ALTER TABLE table-name

1

ADD
COLUMN

column-definition

ALTER
COLUMN

column-alteration

RENAME COLUMN source-column-name TO target-column-name

DROP
COLUMN

column-name RESTRICT

ADD PERIOD
FOR

period-definition

ADD unique-constraint

referential-constraint

check-constraint

4

DROP R

PRIMARY KEY

UNIQUE

FOREIGN KEY

CHECK

CONSTRAINT

constraint-name

ADD PARTITION BY
RANGE

partitioning-clause

ADD PARTITION

partition-clause

ALTER PARTITION integer partition-clause

ROTATE PARTITION FIRST

integer

TO LAST rotate-partition-clause

DROP ORGANIZATION

alter-hash-organization

5

ADD
SYSTEM

VERSIONING USE HISTORY TABLE history-table-name

extra-row-option

DROP
SYSTEM

 VERSIONING

ADD

MATERIALIZED
QUERY

materialized-query-definition

ALTER
MATERIALIZED

QUERY materialized-query-alteration

DROP
MATERIALIZED

QUERY

options-continued

Notes:
1 The same clause must not be specified more than one time, except for the ADD COLUMN or ALTER COLUMN
clauses. If multiple ADD COLUMN clauses are specified in the same statement, at most one ADD COLUMN
clause can contain a references-clause. If ALTER COLUMN SET DATA TYPE is specified, it must be specified
first.
2 The ADD PARTITION and ALTER PARTITION clauses can be specified together only when adding a
new partition between existing logical partitions. Otherwise, the ALTER COLUMN, ADD PARTITION, ALTER
PARTITION, and ROTATE PARTITION clauses are mutually exclusive with each other.

1234 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

3 If ADD CLONE, DROP CLONE, RENAME COLUMN, ALTER ORGANIZATION, DROP ORGANIZATION, ADD
VERSIONING, DROP VERSIONING, DROP COLUMN, ACTIVATE, DEACTIVATE, ENABLE ARCHIVE, or DISABLE
ARCHIVE is specified, no other clause is allowed on the ALTER TABLE statement.
4 The ADD keyword is optional for referential-constraint or unique-constraint if it is the first clause specified in
the statement. Otherwise, ADD is required.
5 FL 504 Hash-organized tables are deprecated. Beginning in Db2 12, packages bound with
APPLCOMPAT(V12R1M504) or higher cannot create hash-organized tables or alter existing tables to use
hash-organization. Existing hash organized tables remain supported, but they are likely to be unsupported in
the future.

options-continued:

12

DATA CAPTURE NONE

CHANGES

VOLATILE

NOT VOLATILE

CARDINALITY

ADD CLONE clone-table-name

DROP CLONE

ADD RESTRICT ON DROP

DROP RESTRICT ON DROP

ACTIVATE

DEACTIVATE

ROW ACCESS CONTROL

ACTIVATE

DEACTIVATE

COLUMN ACCESS CONTROL

APPEND NO

YES

AUDIT NONE

CHANGES

ALL

VALIDPROC program-name

NULL

ENABLE ARCHIVE USE archive-table-name

DISABLE ARCHIVE

NO KEY LABEL

KEY LABEL key-label-name

Notes:
1 The same clause must not be specified more than one time, except for the ADD COLUMN or ALTER COLUMN
clauses. If multiple ADD COLUMN clauses are specified in the same statement, at most one ADD COLUMN
clause can contain a references-clause. If ALTER COLUMN SET DATA TYPE is specified, it must be specified
first.
2 If ADD CLONE, DROP CLONE, RENAME COLUMN, ALTER ORGANIZATION, DROP ORGANIZATION, ADD
VERSIONING, DROP VERSIONING, DROP COLUMN, ACTIVATE, DEACTIVATE, ENABLE ARCHIVE, or DISABLE
ARCHIVE is specified, no other clause is allowed on the ALTER TABLE statement.

Chapter 7. Statements 1235

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

column-definition:

column-name data-type
1 2

default-clause

NOT NULL

column-constraint

generated-clause

IMPLICITLY HIDDEN

AS SECURITY LABEL
3

FIELDPROC program-name

(

,

constant)

INLINE LENGTH integer
4

Notes:
1 data-type is optional if as-row-change-timestamp-clause is specified.
2 The same clause must not be specified more than one time.
3 AS SECURITY LABEL can be specified only for a CHAR(8) data type and requires that the NOT NULL and
WITH DEFAULT clauses be specified.
4 INLINE LENGTH only applies to a column with a LOB data type or a distinct type that is based on a LOB data
type.

data-type:
built-in-type

distinct-type-name

1236 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

built-in-type:
SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

FOR SBCS

MIXED

BIT

DATA

CCSID 1208
1

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) FOR SBCS

MIXED

BIT

DATA

CCSID 1208
1

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID 1200
1

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

ROWID

XML

(XML-type-modifier)

Notes:
1 The CCSID clause must only be specified for a character string or graphic string column in an EBCDIC table
when the ADD COLUMN clause is also specified.

Chapter 7. Statements 1237

XML-type-modifier:

XMLSCHEMA

,

XML-schema-specification

ELEMENT element-name

XML-schema-specification:
ID registered-XML-schema-name

URI target-namespace

NO NAMESPACE LOCATION schema-location

default-clause:
WITH

DEFAULT

constant

SESSION_USER

USER

CURRENT SQLID

NULL
1

cast-function-name (constant

SESSION_USER

USER

CURRENT SQLID

NULL

)

Notes:
1 The cast-function-name form of the DEFAULT value can only be used with a column that is defined as a
distinct type.

column-constraint
references-clause

check-constraint

generated-clause:

GENERATED
ALWAYS

BY DEFAULT as-identity-clause

as-row-change-timestamp-clause

GENERATED
ALWAYS

as-row-transaction-start-id-clause

as-row-transaction-timestamp-clause

as-generated-expression-clause

1238 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

as-identity-clause:
AS IDENTITY

(
1

START WITH numeric-constant

INCREMENT BY 1

INCREMENT BY numeric-constant

NO MINVALUE

MINVALUE numeric-constant

NO MAXVALUE

MAXVALUE numeric-constant

NO CYCLE

CYCLE

CACHE 20

NO CACHE

CACHE integer-constant

NO ORDER

ORDER

)

Notes:
1 Separator commas can be specified between attributes when an identity column is defined.

as-row-change-timestamp-clause:
FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

as-row-transaction-start-id-clause:
AS TRANSACTION START ID

as-row-transaction-timestamp-clause:
AS ROW BEGIN

START

END

as-generated-expression-clause:
AS (non-deterministic-expression)

non-deterministic-expression:
DATA CHANGE OPERATION

special-register

session-variable

Chapter 7. Statements 1239

special-register:
1

CURRENT CLIENT_ACCTNG

CURRENT CLIENT_APPLNAME

CURRENT CLIENT_CORR_TOKEN

CURRENT CLIENT_USERID

CURRENT CLIENT_WRKSTNNAME

CURRENT SERVER

CURRENT SQLID

SESSION_USER
2

Notes:
1 This definition of special register is specific to this context, as part of non-deterministic-expression.
2 USER can be specified as a synonym for SESSION_USER.

session-variable:
1

SYSIBM.PACKAGE_NAME

SYSIBM.PACKAGE_SCHEMA

SYSIBM.PACKAGE_VERSION

Notes:
1 This definition of session variable is specific to this context, as part of non-deterministic-expression.

column-alteration:
column-name

SET DATA TYPE altered-data-type

INLINE LENGTH integer
1

SET default-clause

SET INLINE LENGTH integer

SET GENERATED ALWAYS

BY DEFAULT identity-alteration

identity-alteration

SET GENERATED
ALWAYS

as-row-transaction-timestamp-clause

as-row-transaction-start-id-clause

DROP DEFAULT

Notes:
1 INLINE LENGTH can only be specified for LOB columns in tables that are in universal table spaces. INLINE
LENGTH cannot be specified if FOR SBCS DATA or FOR MIXED DATA is also specified.

1240 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

altered-data-type:
SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

(integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

FOR SBCS

MIXED

BIT

DATA

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) FOR SBCS

MIXED

DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

XML

(XML-type-modifier)

Chapter 7. Statements 1241

XML-type-modifier:

XMLSCHEMA

,

XML-schema-specification

ELEMENT element-name

XML-schema-specification:
ID registered-XML-schema-name

URI target-namespace

NO NAMESPACE LOCATION schema-location

identity-alteration:

1

RESTART

WITH numeric-constant

SET INCREMENT BY numeric-constant

SET NO MINVALUE

MINVALUE numeric-constant

SET NO MAXVALUE

MAXVALUE numeric-constant

SET NO CYCLE

CYCLE

SET NO CACHE

CACHE integer-constant

SET NO ORDER

ORDER

Notes:
1 At least one option must be specified and the same clause must not be specified more than one time.

unique-constraint:

CONSTRAINT constraint-name

PRIMARY KEY

UNIQUE

(

,

 column-name
, BUSINESS_TIME WITHOUT OVERLAPS

)

1242 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

referential-constraint:

CONSTRAINT constraint-name

FOREIGN KEY
1

(

,

 column-name
PERIOD BUSINESS_TIME

) references-clause

Notes:
1 For compatibility with prior releases, when the CONSTRAINT clause (shown above) is not specified, a
constraint-name can be specified following FOREIGN KEY.

references-clause:
REFERENCES parent-table-name

(

,

column-name

PERIOD BUSINESS_TIME

)

ON DELETE RESTRICT

NO ACTION

CASCADE

SET NULL

ENFORCED

NOT ENFORCED

ENABLE QUERY OPTIMIZATION

check-constraint:

CONSTRAINT constraint-name

CHECK ( check-condition)

partitioning-clause:

(

,

partition-expression) (

,

partition-element)

partition-expression:

column-name
NULLS LAST ASC

DESC

Chapter 7. Statements 1243

partition-element:

PARTITION integer ENDING
AT

(

,

constant

MAXVALUE

MINVALUE

)

INCLUSIVE

partition-hash-space
1

Notes:
1 FL 504 Hash-organized tables are deprecated. Beginning in Db2 12, packages bound with
APPLCOMPAT(V12R1M504) or higher cannot create hash-organized tables or alter existing tables to use
hash-organization. Existing hash organized tables remain supported, but they are likely to be unsupported in
the future.

partition-clause:

ENDING
AT

(

,

constant

MAXVALUE

MINVALUE

)
INCLUSIVE

1

partition-hash-space
2

Notes:
1 The ENDING clause must not be specified for a partition-by-growth table space, but must be specified for a
range partitioned table space.
2 FL 504 Hash-organized tables are deprecated. Beginning in Db2 12, packages bound with
APPLCOMPAT(V12R1M504) or higher cannot create hash-organized tables or alter existing tables to use
hash-organization. Existing hash organized tables remain supported, but they are likely to be unsupported in
the future.

rotate-partition-clause:

ENDING
AT

(

,

constant

MAXVALUE

MINVALUE

)
INCLUSIVE

RESET

extra-row-option:
ON DELETE ADD EXTRA ROW

materialized-query-definition:
(fullselect) refreshable-table-options

1244 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

refreshable-table-options:
DATA INITIALLY DEFERRED REFRESH DEFERRED

1

MAINTAINED BY SYSTEM

MAINTAINED BY USER

ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION

Notes:
1 The same clause must not be specified more than one time.

materialized-query-table-alteration:

SET
1

MAINTAINED BY SYSTEM

MAINTAINED BY USER

ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION

Notes:
1 The same clause must not be specified more than one time.

period-definition:
SYSTEM_TIME (begin-column-name , end-column-name)

BUSINESS_TIME (begin-column-name , end-column-name
EXCLUSIVE

INCLUSIVE

)

Description for ALTER TABLE
table-name

Identifies the table to be altered. The name must identify a table that exists at the current server.
The name must not identify a declared temporary table, a directory table, a view, or a table that
was implicitly created for an XML column. If the name identifies a catalog table, DATA CAPTURE
CHANGES is the only clause that can be specified. If the name identifies an accelerator-only table,
ADD RESTRICT ON DROP or DROP RESTRICT ON DROP are the only clauses that can be specified.

If table-name identifies an auxiliary table, alterations are limited to the following clauses:

• APPEND

If table-name identifies a materialized query table, alterations are limited to the following clauses:

• AUDIT
• DATA CAPTURE
• ALTER MATERIALIZED QUERY
• ALTER PARTITION
• DROP MATERIALIZED QUERY

Chapter 7. Statements 1245

• ADD RESTRICT ON DROP
• DROP RESTRICT ON DROP
• ROTATE PARTITION
• KEY LABEL
• NO KEY LABEL

FL 502 KEY LABEL key-label-name or NO KEY LABEL
Specifies whether key label is specified at the table level for encryption. For the changed KEY LABEL
value to take effect, a subsequent REORG of the existing associated table spaces and index spaces is
required. The table-name must identify a table that resides in a universal table space or a partitioned
table space
KEY LABEL key-label-name

Specifies the default key label that is used to encrypt all the table spaces and index spaces
associated with the table. This includes base table spaces, auxiliary table spaces, XML table
spaces, index spaces, and table spaces for clone tables, regardless of whether it is explicitly or
implicitly created. Users must set the key label for archive or history tables independently.

The data set must be Db2-managed for all the table spaces and index spaces associated with the
table.

The table-name must not identify one of the following:

• A catalog table.
• A directory table.
• A clone table.
• An auxiliary table.
• A table that was implicitly created for an XML column.
• A created global temporary table.

The key label must be defined in ICSF. The Db2 address space RACF user ID or group must be
permitted access to the key label in RACF.

The key label can be inherited or overridden when the data set is allocated. For details about the
order of precedence, see Determining a key label for base table space and associated objects.

NO KEY LABEL
Indicates that there is no key label specified at the table level for encryption. Any existing table
level key label is removed.

ADD COLUMN
ADD COLUMN column-definition

Adds a column to the table. Except for the following columns, all values of the column in existing rows
are set to its default value:

• ROWID column
• Identity column
• Row change timestamp column
• Row-begin column
• Row-end column
• Transaction-start-ID column

If the table has n columns, the ordinality of the new column is n+1. The value of n cannot be greater
than 749. For a dependent table, n cannot be greater than 748.

The column cannot be added if the increase in the total byte count of the columns exceeds the
maximum row size. The maximum row size for the table is eight less than the maximum record size as
described in Maximum record size.

1246 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html

If you add a LOB column and the table does not already have a ROWID column, Db2 creates an
implicitly hidden ROWID column. For details about adding a LOB column, such as the other objects
that might be implicitly created or need to be explicitly created, see Creating a table with LOB
columns. For more information about adding a ROWID column, see Adding a ROWID column.

For implicitly created LOB objects, the privilege set requires CREATETAB and CREATETS privileges
on the database that contains the table (DSNDB04 if the database is implicitly created) and the USE
privilege on the buffer pool and the storage group that is used by the auxiliary table and the LOB table
space. Implicitly created objects are owned by the owner of the base table.

If you add an XML column, the privilege set requires the CREATETAB and CREATETS privileges on the
database that contains the table (DSNDB04 if the database is implicitly created), INDEX on the base
table for the first DOCID column that is added, and USE privilege on the buffer pool and the storage
group that is used by the XML objects. These privileges are required for implicitly created XML objects.
Implicitly created objects are owned by the owner of the base table.

If you add an XML column to an existing table, the underlying XML table space is implicitly created
according to the PAGENUM attribute of the associated base table. The DSSIZE value depends on the
type of table space that contains the base table. For more information, see XML table space implicit
creation (Db2 Administration Guide).

When you add a column to a table, the table space is placed in advisory REORG-pending (AREO*)
status. However, if you add an identity column to a table that is not empty, the table space is placed in
REORG-pending (REORP) status.

The table must not be a history table or archive table.

If the table is a system-period temporal table, the column is also added to the associated history
table. If the table is an archive-enabled table, the column is also added to the associated archive
table. The following attributes of the column in the associated table are the same as the attributes of
the corresponding column of the table that is being altered:

• Name
• Data type
• Length (including inline LOB lengths), precision, scale
• FOR BIT, SBCS, or MIXED DATA attribute for a character string column
• Null attribute
• Hidden attribute
• Field procedure

You cannot add the following columns:

• A column to a table that has an edit procedure that is defined as WITH ROW ATTRIBUTES.
• A ROWID column to a table that already has an explicitly defined ROWID column
• An identity column to a table that has an identity column
• A security label column to a table that already has a security label column
• A security label column to a system-period temporal table or archive-enabled table
• A row change timestamp column to a table that already has a row change timestamp column
• A LOB, ROWID, identity column, or row change timestamp column to a created temporary table
• A GRAPHIC, VARGRAPHIC, DBCLOB, or CHAR FOR MIXED DATA column, in an EBCDIC or ASCII

table, when the setting for installation option MIXED DATA is NO. An exception is that a Unicode
column can be added to an EBCDIC table even when the installation option MIXED DATA is NO.

If the column that is being added is a security label column, row permissions, including the default
row permission, cannot exist for the table

column-name
Names of the column you want to add to the table. The name must not be the same as the
name of an existing column of the table or the name of a period in the table. A column named

Chapter 7. Statements 1247

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_howimplicitlycreatexmltablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_howimplicitlycreatexmltablespace.html

SYSTEM_TIME or BUSINESS_TIME cannot be added to a table that is defined as a system-period
temporal table or a history table. Do not qualify column-name.

data-type
Specifies the data type of the column. The data type can be a built-in data type or a distinct type.
built-in-type

Specifies that the data type of the column is one of the built-in data types. See built-in-type for
information about the built-in data types that can be used when adding a column to a table.

distinct-type-name
Specifies the distinct type (user-defined data type) of the column. The length and scale of
the column are respectively the length and scale of the source type of the distinct type. The
privilege set must implicitly or explicitly include the USAGE privilege on the distinct type.

The encoding scheme of the distinct type must be the same as the encoding scheme of the
table.

If the column is to be used in the definition of the foreign key of a referential constraint, the
data type of the corresponding column of the parent key must have the same distinct type.

NOT NULL
Prevents the column from containing null values. If NOT NULL is specified, the DEFAULT clause
must be used to specify a non-null default value for the column unless the column has a row
ID data type or is an identity column. For a ROWID column, NOT NULL must be specified, and
DEFAULT must not be specified. For an identity column, although NOT NULL can be specified,
DEFAULT must not be specified.

DEFAULT
Specifies the default value that is assigned to the column in the absence of a value specified in a
data change statement, or LOAD. Do not specify DEFAULT for the following types of columns:

• A ROWID column (Db2 generates default values)
• An identity column (Db2 generates default values)
• An XML column
• A row change timestamp column

Do not specify a value after the DEFAULT keyword for a security label column. Db2 provides the
default for a security label column.

If a value is not specified after the DEFAULT keyword, the default value depends on the data type
of the column:

Data Type
Default Value

Numeric
0

Fixed-length character or graphic string
Blanks

Fixed-length binary string
Hexadecimal zeros

Varying-length string
A string of length 0

Inline BLOB
Hexadecimal zeros

Inline CLOB
Blanks

Inline DBCLOB
Blanks

1248 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Date
For existing rows, a date corresponding to 1 January 0001. For added rows, CURRENT DATE.

Use of this clause or keyword might invalidate packages that depend on the target object,
or packages that depend on related objects through cascading effects. See Changes that
invalidate packages (Db2 Application programming and SQL).

Time
For existing rows, a time corresponding to 0 hours, 0 minutes, and 0 seconds. For added rows,
CURRENT TIME.

Use of this clause or keyword might invalidate packages that depend on the target object,
or packages that depend on related objects through cascading effects. See Changes that
invalidate packages (Db2 Application programming and SQL).

Timestamp without time zone
For existing rows, a date corresponding to 1 January 0001, and a time corresponding to
0 hours, 0 minutes, 0 seconds, and zeros for fractional seconds up to the timestamp
precision. For added rows, CURRENT_TIMESTAMP(p) WITHOUT TIME ZONE where p is the
corresponding timestamp precision. Use of this clause or keyword might invalidate packages
that depend on the target object, or packages that depend on related objects through
cascading effects. See Changes that invalidate packages (Db2 Application programming and
SQL).

Timestamp with time zone
For existing rows, a date corresponding to 1 January 0001, and a time corresponding to 0
hours, 0 minutes, 0 seconds, and zeros for fractional seconds up to the timestamp precision, 0
time zone hours, 0 time zone minutes. For added rows, CURRENT_TIMESTAMP(p) WITH TIME
ZONE where p is the corresponding timestamp precision.

If the column is defined as timestamp with time zone, the default value must include a time
zone.

Use of this clause or keyword might invalidate packages that depend on the target object,
or packages that depend on related objects through cascading effects. See Changes that
invalidate packages (Db2 Application programming and SQL).

In a given column definition:

• DEFAULT and FIELDPROC cannot both be specified.
• NOT NULL and DEFAULT NULL cannot both be specified.
• Omission of NOT NULL and DEFAULT for a column other than an identity column is an implicit
specification of DEFAULT NULL. For an identity column, it is an implicit specification of NOT
NULL, and Db2 generates default values.

A default value other than the one that is listed above can be specified in one of the following
forms:

• WITH DEFAULT for a default value of an empty string
• DEFAULT NULL for a default value of null

constant
Specifies a constant as the default value for the column. The value of the constant must
conform to the rules for assigning that value to the column.

A character or string constant must be short enough so that its UTF-8 representation requires
no more than 1536 bytes. A hexadecimal graphic string (GX) constant cannot be specified.

In addition, the length of the constant value cannot be greater than the INLINE LENGTH
attribute for LOB columns.

SESSION_USER or USER
Specifies the value of the SESSION_USER (USER) special register at the time of an SQL data
change statement or LOAD, as the default for the column. If SESSION_USER is specified,

Chapter 7. Statements 1249

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

the data type of the column must be a character string with a length attribute greater than
or equal to 8 characters when the value is expressed in CCSID 37. If the data type of the
column is an inline CLOB, the INLINE LENGTH attribute must be greater than or equal to 8
characters when the value is expressed as CCSID 37. For existing rows, the value is that of the
SESSION_USER special register at the time the ALTER TABLE statement is processed.

CURRENT SQLID
Specifies the value of the SQL authorization ID of the process at the time of an SQL data
change statement or LOAD, as the default for the column. If CURRENT SQLID is specified, the
data type of the column must be a character string with a length attribute greater than or
equal to the length attribute of the CURRENT SQLID special register. If the data type of the
column is an inline CLOB, the INLINE LENGTH attribute must be greater than or equal to the
length attribute of the CURRENT SQLID special register. For existing rows, the value is the SQL
authorization ID of the process at the time the ALTER TABLE statement is processed.

NULL
Specifies null as the default value for the column.

cast-function-name
The name of the cast function that matches the name of the distinct type for the column. A
cast function can be specified only if the data type of the column is a distinct type.

The schema name of the cast function, whether it is explicitly specified or implicitly resolved
through function resolution, must be the same as the explicitly or implicitly specified schema
name of the distinct type.
constant

Specifies a constant as the argument. The constant must conform to the rules of a
constant for the source type of the distinct type. The length of the constant cannot be
greater than the INLINE LENGTH attribute for LOB columns.

SESSION_USER or USER
Specifies the value of the SESSION_USER (USER) special register at the time a row is
inserted as the default for the column. The source type of the distinct type of the column
must be a CHAR, VARCHAR, or inline CLOB with a length attribute (inline length attribute
for CLOB) that is greater than or equal to the length attribute of the SESSION_USER special
register.

CURRENT SQLID
Specifies the value of the CURRENT SQLID special register at the time a row is inserted as
the default for the column. The source type of the distinct type of the column must be a
CHAR, VARCHAR, or inline CLOB with a length attribute (or inline length attribute for CLOB)
that is greater than or equal to the length attribute of the CURRENT SQLID special register.

NULL
Specifies the NULL value as the argument.

GENERATED
Specifies that Db2 generates values for the column.

GENERATED is applicable only to the following columns:

• ROWID columns
• Identity columns
• Row change timestamp columns
• Row-begin columns
• Row-end columns
• Transaction-start-ID columns
• Generated expression columns

If the table is a system-period temporal table or an archive-enabled table, GENERATED must not
be specified for the column that is to be added, unless the column is a ROWID column. The default
is GENERATED ALWAYS.

1250 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

ALWAYS
Specifies that Db2 will generate a value for the column when a row is inserted into the table.
ALWAYS is the recommended value unless you are using data propagation.

BY DEFAULT
Specifies that Db2 will generate a value for the column when a row is inserted unless a value
was specified for the column on the data change statement.

If a user-supplied value is specified for a ROWID column, Db2 uses the value only if both of
the following conditions are true:

• The value is a valid row ID value that was previously generated by Db2.
• The column has a unique, single-column index.

Until this index is created on the ROWID column, the insert, and update operations and the
LOAD utility cannot be used to add rows to the table. If the table space name is not specified
on the CREATE TABLE statement, Db2 implicitly creates the necessary object to make the
table complete, including the index. The name of this index is 'I' followed by the first ten
characters of the column name followed by seven randomly generated characters. If the
column name is less than ten characters, Db2 adds underscore characters to the end of the
name until it has ten characters. An implicitly created index has the COPY NO attribute.

For an identity column, Db2 inserts a specified value but does not verify that it is a unique
value for the column unless the identity column has a unique, single-column index.

If a user-supplied value is specified for an identity column, Db2 inserts the specified value
but does not perform any special validation on that value beyond the normal validation that is
performed for any column. Db2 does not check how the specified value affects the sequential
properties that are defined for the identity column. To ensure the uniqueness of an identity
column that is defined as GENERATED BY DEFAULT, define a unique index on the identity
column.

BY DEFAULT is the recommended value only when you are using data propagation.

AS IDENTITY
Specifies that the column is an identity column for the table. A table can have only one identity
column. AS IDENTITY can be specified only if the data type for the column is an exact numeric
type with a scale of zero (SMALLINT, INTEGER, BIGINT, DECIMAL with a scale of zero, or a
distinct type that is based on one of these types). Separator commas between identity column
attribute specifications are optional when the identity column is defined.

An identity column is implicitly NOT NULL. When adding an identity column to a table, you
must also specify GENERATED ALWAYS or GENERATED BY DEFAULT.

Defining a column AS IDENTITY does not necessarily guarantee uniqueness of the values. To
ensure uniqueness of the values, define a unique, single-column index on the identity column.

START WITH numeric-constant
Specifies the first value that is generated for the identity column. The value can be any
positive or negative value that could be assigned to the column without non-zero digits
existing to the right of the decimal point.

If a value is not explicitly specified when the identity column is defined, the default is the
MINVALUE for an ascending identity column and the MAXVALUE for a descending identity
column. This value is not necessarily the value that would be cycled to after reaching the
maximum or minimum value for the identity column. The range used for cycles is defined
by MINVALUE and MAXVALUE. MAXVALUE and MINVALUE do not constrain the numeric-
constant value. That is, the START WITH clause can be used to start the generation of
values outside the range that is used for cycles. For a description of the resulting behavior,
see “Specifying START or RESTART WITH values outside the range for cycles for identity
columns” on page 1298.

Chapter 7. Statements 1251

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the identity column. The value can
be any positive or negative value (including 0) that does not exceed the value of a large
integer constant and can be assigned to the column without any non-zero digits to the
right of the decimal point. The default is 1.

If the value is positive or zero, the sequence of values for the identity column ascends. If
the value is negative, the sequence of values descends.

MINVALUE or NO MINVALUE
Specifies the minimum value at which a descending identity column either cycles or stops
generating values or an ascending identity column cycles to after reaching the maximum
value.
NO MINVALUE

Specifies that the minimum end point of the range of values for the identity column
is not set. In this case, the default value for MINVALUE becomes one of the following
values:

• For an ascending identity column, the value is the START WITH value or 1 if START
WITH was not specified.

• For a descending identity column, the value is the minimum value of the data type of
the column.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value that is generated for this
identity column. This value can be any positive or negative value that can be assigned
to this column without non-zero digits to the right of the decimal point. The value must
be less than or equal to the maximum value.

MAXVALUE or NO MAXVALUE
Specifies the maximum value at which an ascending identity column either cycles or stops
generating values or a descending identity column cycles to after reaching the minimum
value.
NO MAXVALUE

Specifies that the minimum end point of the range of values for the identity column is
not set. In such a case, the default value for MAXVALUE becomes one of the following
values:

• For an ascending identity column, the value is the maximum value of the data type of
the column.

• For a descending identity column, the value is the START WITH value or -1 if START
WITH is not specified.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value that is generated for this
identity column. This value can be any positive or negative value that can be assigned
to this column without non-zero digits to the right of the decimal point. The value must
be greater than or equal to the minimum value.

CYCLE or NO CYCLE
Specifies whether this identity column is to continue to generate values after reaching
either its maximum or minimum value.
NO CYCLE

Specifies that values will not be generated for the identity column after the maximum
or minimum value has been reached. NO CYCLE is the default.

CYCLE
Specifies that values continue to be generated for this column after the maximum
or minimum value has been reached. If this option is used, after an ascending
identity column reaches the maximum value, it generates its minimum value. After

1252 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

a descending identity column reaches its minimum value, it generates its maximum
value. The maximum and minimum values for the identity column determine the range
that is used for cycling.

When CYCLE is in effect, duplicate values can be generated by Db2 for an identity
column. However, if a unique index exists on the identity column and a non-unique
value is generated for it, an error occurs.

CACHE or NO CACHE
Specifies whether to keep some preallocated values in memory. Preallocating and storing
values in the cache improves the performance of inserting rows into a table. The default is
CACHE 20.

In a non-data sharing environment, if the system is shut down (either normally or through
a system failure), all cached sequence values that have not been used in committed
statements are lost (that is, they will never be used). The value specified for the CACHE
option is the maximum number of sequence values that could be lost when the system is
shut down.

In a data sharing environment, you can use the CACHE and NO ORDER options to allow
multiple Db2 members to cache sequence values simultaneously.

NO CACHE
Specifies that values for the identity column are not preallocated and stored in the
cache, ensuring that values will not be lost in the case of a system failure. In this case,
every request for a new value for the identity column results in synchronous I/O.

CACHE integer-constant
Specifies the maximum number of values of the identity column sequence that Db2
can preallocate and keep in memory.

During a system failure, all cached identity column values that are yet to be assigned
might be lost and will not be used. Therefore, the value that is specified for CACHE also
represents the maximum number of values for the identity column that could be lost
during a system failure.

The minimum value is 2.

In a data sharing environment, you can use the CACHE and NO ORDER options to allow
multiple Db2 members to cache sequence values simultaneously.

ORDER or NO ORDER
Specifies whether the identity column values must be generated in order of request. The
default is NO ORDER.

In a non-data sharing environment, there is no guarantee that values are assigned in
order across the entire server unless NO CACHE is also specified. ORDER applies only to a
single-application process.

In a data sharing environment, if ORDER is specified, NO CACHE is implicitly set, even if
CACHE integer-constant is specified.

NO ORDER
Specifies that the values do not need to be generated in order of request.

ORDER
Specifies that the values are generated in order of request. Specifying ORDER might
disable the caching of values. ORDER applies only to a single-application process.

In a data sharing environment, if the CACHE and NO ORDER options are in effect, multiple
caches can be active simultaneously, and the requests for identity values from different Db2
members might not result in the assignment of values in strict numeric order. For example,
suppose that members DB2A and DB2B are using the identity column, DB2A gets the cache
values 1 to 20, and DB2B gets the cache values 21 to 40. If DB2A requested a value first,
then DB2B requested, and then DB2A again requested, the actual order of values that are

Chapter 7. Statements 1253

assigned would be 1,21,2 . Therefore, to guarantee that identity values are generated in strict
numeric order among multiple Db2 members using the same identity column, specify the
ORDER option.

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP
Specifies that the column is a timestamp and the values will be generated by Db2. Db2
generates a value for the column for each row as a row is inserted, and for any row for which
any column is updated. The value that is generated for a row change timestamp column is a
timestamp that corresponds to the time of the insert or update of the row. If multiple rows are
inserted or updated with a single statement, the value of the row change timestamp column
might be different for each row.

Adding a row change timestamp column to an existing table means that existing rows might be
affected, and that an AREO* state might be set for the table space until a REORG is completed.
For each existing row, a timestamp value is assigned for the new row change timestamp
column.

If data-type is specified, it must be TIMESTAMP WITHOUT TIME ZONE with a precision of 6.
You must specify NOT NULL with a row change timestamp column.

AS ROW BEGIN
Specifies that a timestamp value is assigned to the column whenever a row
is inserted or any column in the row is updated. If the value of the
SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME built-in global variable at the time of the
insert or update is null, the value is generated using a reading of the time-of-day clock during
execution of the first data change statement in the unit of work that requires a value to
be assigned to a row-begin column or transaction-start-ID column in a table, or a row in a
system-period temporal table is deleted. Otherwise, the row-begin column is assigned the
value of the SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME built-in global variable at the
time of the insert or update.

A row-begin column is intended to be used for a system-period temporal table.

A table can have only one row-begin column. If data-type is not specified, the column
is defined as TIMESTAMP(12) WITHOUT TIME ZONE. If data-type is specified, it must be
TIMESTAMP(12) WITHOUT TIME ZONE or TIMESTAMP(12) WITH TIME ZONE. If the column is
defined as TIMESTAMP WITH TIME ZONE, the values are stored in UTC, with a time zone of
+00:00. The column cannot have a DEFAULT clause, and must be defined as NOT NULL.

A row-begin column is not updatable.

A value for a row-begin column is composed of a TIMESTAMP(9) value that is unique per
transaction per data sharing member followed by 3 digits that indicate the data sharing
member number.

Related information

“TEMPORAL_LOGICAL_TRANSACTION_TIME” on page 334

AS ROW END
Specifies that a value for the data type of the column is assigned when a row is inserted or any
column in the row is updated. The value that is assigned for a timestamp without time zone
column is TIMESTAMP '9999-12-30-00.00.00.000000000000'. The value that is assigned for
a timestamp with time zone column is TIMESTAMP '9999-12-30.00.00.00.000000000000
+00:00'.

A row-end column is intended to be used for a system-period temporal table.

For a table with system-period data versioning, when a row is deleted as the result of an
update or delete operation, the value of the row-end column in the historical row reflects
when the row was deleted. The value that is generated for the column in the historical row
is a timestamp that corresponds to the most recent transaction start time that is associated
with the transaction. If a row that is to be updated would result in a value for the row-end
column that is less than or equal to the value for the corresponding row-begin column, the

1254 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

timestamp value for the row-end column is adjusted. If multiple rows are deleted with a single
SQL statement, the values for the column in the historical rows are the same.

A table can have only one row-end column. If data-type is not specified, the column is
defined as TIMESTAMP(12) WITHOUT TIME ZONE. If data-type is specified, it must be
TIMESTAMP(12) WITHOUT TIME ZONE or TIMESTAMP(12) WITH TIME ZONE. If the column is
defined as TIMESTAMP WITH TIME ZONE, the values are stored in UTC, with a time zone of
+00:00. The column cannot have a DEFAULT clause.

A row-end column is not updatable.

AS TRANSACTION START ID
Specifies that a timestamp value is assigned when the row is inserted or any column in the
row is updated. If the value of the row-begin column is unique from row-begin column values
that are generated for other transactions, the row-begin column value is assigned to the
transaction-start-ID column. Otherwise, the value of the transaction-start-ID column is derived
from the row-begin column value and adjusted to make it unique from transaction-start-ID
column values that are generated for other transactions.

A transaction-start-ID column is intended to be used for a system-period temporal table.

A table can have only one transaction-start-id column. If data-type is not specified, the column
is defined as TIMESTAMP(12) WITHOUT TIME ZONE. If data-type is specified, it must be
TIMESTAMP(12) WITHOUT TIME ZONE or TIMESTAMP(12) WITH TIME ZONE. If the column is
defined as TIMESTAMP WITH TIME ZONE, the values are stored in UTC, with a time zone of
+00:00. The column cannot have a DEFAULT clause.

A transaction-start-id column is not updatable.

as-generated-expression-clause
Specifies that values for the column are generated by Db2. The generated value is assigned to
the column whenever a row is inserted, or any column in the row is updated.
DATA CHANGE OPERATION

Specifies that the database manager generates one of the following values, depending on
the data change statement that changes the row:
I

Insert operation
U

Update operation.
D

Delete operation.

A table can have only one DATA CHANGE OPERATION column. The column must be
defined as CHAR(1). The column cannot have a DEFAULT clause and must not be defined
as NOT NULL.

The column is a non-deterministic generated expression column.

Do not specify any of the following clauses for the column:

• CCSID 1200
• CCSID 1208
• FIELDPROC

special-register
Specifies the value of the special register. This column is to contain the value of the special
register at the time of the data change statement that assigns the value to the column.
If multiple rows are inserted or updated with a single SQL statement, the value for the
column is the same for all of the rows.

special-register must be one of the following special registers, and the column must use
the required data type.

Chapter 7. Statements 1255

Table 176. Possible special register values for non-deterministic generated expression
columns

Special register Data type for the column

CURRENT CLIENT_ACCTNG VARCHAR(255)

CURRENT CLIENT_APPLNAME VARCHAR(255)

CURRENT CLIENT_CORR_TOKEN VARCHAR(255)

CURRENT CLIENT_USERID VARCHAR(255)

CURRENT CLIENT_WRKSTNNAME VARCHAR(255)

CURRENT SERVER CHAR(16)

CURRENT SQLID VARCHAR(n) where n ≥ 8

SESSION_USER or USER VARCHAR(128)

This column cannot have a DEFAULT clause and must not be defined as NOT NULL.

The column is a non-deterministic generated expression column.

Do not specify any of the following clauses for the column:

• CCSID 1200
• CCSID 1208
• FIELDPROC

For more information, see “Special registers” on page 177.

session-variable
Specifies the value of a built-in session variable. The fully qualified name of the session
variable must be specified. The value of the session variable is obtained from the
GETVARIABLE function at the time of the data change operation that assigns the value
to the column. If multiple rows are changed with a single SQL statement, the value for the
column is the same for all of the rows.

session-variable must be one of the following session variables, and the column must use
the required data type.

Table 177. Possible session variable values for non-deterministic generated expression
columns

Session variable Data type for the column

SYSIBM.PACKAGE_NAME VARCHAR(128)

SYSIBM.PACKAGE_SCHEMA VARCHAR(128)

SYSIBM.PACKAGE_VERSION VARCHAR(122)

The column cannot have a DEFAULT clause and must not be defined as NOT NULL.

The column is a non-deterministic generated expression column.

Do not specify any of the following clauses for the column:

• CCSID 1200
• CCSID 1208
• FIELDPROC

For more information, see “Built-in session variables” on page 336.

1256 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

IMPLICITLY HIDDEN
Specifies that the column is not visible in the results of SQL statements unless you refer explicitly
to the column by name. For example, assume that table T1 includes a column that is defined
with the IMPLICITLY HIDDEN clause. The result of SELECT * FROM T1 would not include the
implicitly hidden column. However, the result of a SELECT statement that explicitly refers to the
name of the implicitly hidden column would include that column in the result table.

IMPLICITLY HIDDEN must not be specified for a column that is defined as a ROWID, or a distinct
type that is based on a ROWID.

column-constraint
Provides a shorthand method of defining a constraint composed of a single column. If a column-
constraint is specified in the definition of column C, the effect is the same as if that constraint were
specified as a unique-constraint, referential-constraint, or check-constraint in which column C is
the only identified column.
references-clause

The references-clause of a column-definition provides a shorthand method of defining a foreign
key composed of a single column. Thus, if references-clause is specified in the definition of
column C, the effect is the same as if that references-clause were specified as part of a
FOREIGN KEY clause in which C is the only identified column.

Do not specify references-clause in the definition of the following types of columns because
these types of columns cannot be a foreign key:

• LOB columns
• ROWID columns
• XML columns
• DECFLOAT columns
• Row change timestamp columns
• Security label columns

check-constraint
The check-constraint of a column-definition has the same effect as specifying a check
constraint in a separate ADD check-constraint clause. For conformance with the SQL standard,
a check constraint specified in the definition of column C should not reference any columns
other than C.

Do not specify a check constraint in the definition of the following types of columns:

• LOB columns
• ROWID columns
• XML columns
• DECFLOAT columns
• Security label columns

AS SECURITY LABEL
Specifies that the table is defined with multilevel security with row level granularity and specifies
that the column will contain the security label values. A table can have only one security label
column. To define a table with a security label column, the primary authorization ID of the
statement must have a valid security label, and the RACF SECLABEL class must be active. In
addition, the following conditions are also required:

• The data type of the column must be CHAR(8).
• The subtype of the column must be SBCS.
• The column does not have any field procedures, check constraints, or referential constraints.
• The column must be defined as NOT NULL and WITH DEFAULT clauses.

Chapter 7. Statements 1257

• The WITH DEFAULT clause must not be specified with a default value (Db2 provides the default
value).

• The table does not have an edit procedure that is defined as WITH ROW ATTRIBUTES.
• The column must not be a Unicode column in an EBCDIC table.
• The table is not the source table for a materialized query table.

For existing rows in the table, the value of the security label column defaults to the security label
of the user at the time the ALTER statement is executed.

FIELDPROC program-name
Designates program-name as the field procedure exit routine for the column. A field procedure
can be specified only for a column with a length attribute that is not greater than 255 bytes.
FIELDPROC can only be specified for columns that are a built-in character string or graphic string
data types. The column must not be one of the following:

• a LOB column
• a security label column
• a row change timestamp column
• a column with the TIMESTAMP WITH TIME ZONE data type

The field procedure encodes and decodes column values. Before a value is inserted in the column,
it is passed to the field procedure for encoding. Before a value from the column is used by a
program, it is passed to the field procedure for decoding. A field procedure could be used, for
example, to alter the sorting sequence of values entered in the column.

The field procedure is also invoked during the processing of the ALTER TABLE statement. When
so invoked, the procedure provides Db2 with the column's field description. The field description
defines the data characteristics of the encoded values. By contrast, the information you supply for
the column in the ALTER TABLE statement defines the data characteristics of the decoded values.

If you omit FIELDPROC, the column has no field procedure.

For more information, see Field procedures (Db2 Administration Guide).

constant
Is a parameter that is passed to the field procedure when it is invoked. A parameter list is
optional. The nth parameter specified in the FIELDPROC clause on ALTER TABLE corresponds
to the nth parameter of the specified field procedure. The maximum length of the parameter
list is 255 bytes, including commas but excluding insignificant blanks and the delimiting
parentheses.

INLINE LENGTH integer
Specifies the maximum length of the inline portion of a LOB column value. The inline portion is the
portion that is stored in the base table space. INLINE LENGTH cannot be specified if the column is
not a LOB column (or a distinct type that is based on a LOB), if the table is not in a universal table
space, or if the table is an accelerator-only table.

For BLOB and CLOB columns, integer specifies the maximum number of bytes that are stored in
the base table space for the column. integer must be in the range 0–32680 (inclusive) for a BLOB
or CLOB column.

For a DBCLOB column, integer specifies the maximum number of double-byte characters that are
stored in the table space for the column. integer must be in the range 0–16340 (inclusive) for a
DBCLOB column.

If INLINE LENGTH is specified, the value of integer cannot be greater than the maximum length of
the LOB column.

If the INLINE LENGTH clause is not specified, the maximum length of the LOB column depends on
the following conditions:

• If a distinct type is not used or the distinct type that is used has been created without the
INLINE LENGTH attribute, the LOB column will use the value of the LOB INLINE LENGTH

1258 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_fieldprocedure.html

parameter on installation panel DSNTIPD as the default inline length when the value of LOB
INLINE LENGTH does not exceed the maximum length of the LOB column. If the value of LOB
INLINE LENGTH exceeds the maximum length of the LOB column, the maximum length is the
inline length of this LOB column.

• If a distinct type that has been created with the INLINE LENGTH attribute is used, the LOB
column inherits the inline length from the distinct type.

Regardless of how the length is determined, the inline length of the LOB cannot be greater than its
maximum length.

Be aware that specifying the ADD COLUMN clause might affect subsequent requests to recover to a point
in time. See Point-in-time recovery (Db2 Utilities) for information about possible restrictions, effects on
recovery status, and other considerations.

ALTER COLUMN
ALTER COLUMN column-alteration

Alters the definition of an existing column, including the attributes of an existing identity column.
Only the attributes specified are altered. Other attributes remain unchanged. Only future values of the
column are affected by the changes made with an ALTER TABLE ALTER COLUMN statement.

The table being altered must not be in an incomplete state because of a missing unique index on a
unique constraint (primary or unique key). An ALTER TABLE ALTER COLUMN statement might not be
processed in the same unit of work as a data change statement. A column cannot be altered if any of
the following conditions are true:

• The table has an edit procedure that is defined as WITH ROW ATTRIBUTES or a validation exit
procedure

• The table is used in a materialized query table definition
• The table is a materialized query table
• The table is a system-period temporal table that is enabled for system-period data versioning
• The table is a history table
• The table is an archive-enabled table or an archive table
• The table is a created temporary table.
• There is an extended index that depends on that column
• The column is referenced in a field procedure
• The column is referenced in a referential constraint
• The column is referenced in a check constraint
• The column is referenced in the definition of a SYSTEM_TIME or BUSINESS_TIME period
• The column is defined as a transaction-start-ID column
• The column is defined as a security label column
• The column is defined as a row change timestamp column
• The column is a generated expression column.

Db2 11 Unicode columns in EBCDIC tables can only be altered to the same data type, length, and
CCSID. Starting in Db2 12 at function level 500 or higher, this type of alteration converts Db2 11
Unicode columns to Db2 12 or later Unicode columns. For more information, see “Unicode columns in
EBCDIC tables” on page 113.

You can modify all the attributes of an existing identity column, except for the data type of the column.
To change the data type of an identity column, drop the table containing the column and recreate it.
When the attributes of an identity column are altered, the column of the specified column-name must
exist in the specified table and must have been defined with the IDENTITY attribute. To change an
existing column that is not an identity column into an identity column, drop the table that contains the
column and recreate it.

Chapter 7. Statements 1259

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_pointintimerecovery.html

column-name
Identifies the column to be altered. The name must not be qualified and must identify an existing
column in the table being altered when the ALTER statement is processed. The name must not
identify a column that is being added in the same ALTER TABLE statement.

A column can only be referenced in one ALTER COLUMN clause in a single ALTER TABLE
statement. However, that same column can be referenced multiple times for adding or dropping
constraints in the same ALTER TABLE statement.

SET DATA TYPE altered-data-type
Specifies the new data type of the column to be altered. For a character column, you can also use
the clause to change the definition of the subtype that is stored in the Db2 catalog and OBD.

The following restrictions apply to use of the SET DATA TYPE clause:

• The data type of a column cannot be altered if the column is an identity column or is part of a
hash key.

• The existing data type of the column cannot be a ROWID, date, time, or distinct type.
• The new data type must be compatible with the existing data type of the column.
• When the source data type is a LOB, the target data type must be the same LOB data type. If the

source data type is a LOB and the maximum length is altered, the new maximum length must be
at least as large as the existing length attribute.

• If the column is a partitioning column, and the existing data type is CHAR or VARCHAR FOR BIT
DATA, the new data type cannot be VARBINARY or BINARY.

• If the column is CHAR FOR BIT DATA, VARCHAR FOR BIT DATA, or BINARY, the new data type
cannot be VARBINARY if the column is part of an index and is defined with the DESC attribute.

• If the column is a Unicode column, the new data type cannot specify FOR BIT DATA, FOR MIXED
DATA, or FOR SBCS DATA.

• If altered-data-type is XML, the old data type of the altered column must also be XML.
• A row in a table with PAGENUM RELATIVE or in a table space with PAGENUM RELATIVE must

have a minimum data size of 3 bytes. If an ALTER TABLE ALTER COLUMN results in row size that
is less than the minimum size, it will not be valid.

For more information on the compatibility of data types, see “Assignment and comparison” on
page 143.

A TIMESTAMP column can only be altered to TIMESTAMP with a larger precision. A TIMESTAMP
WITH TIME ZONE column can only be altered to TIMESTAMP WITH TIME ZONE with a larger
precision. If the precision of a timestamp column is increased, the fractional seconds of existing
data values are extended with zeros so that the number of fractional second digits matches the
specified timestamp precision.

If any numeric data type is being converted to DECFLOAT, the ALTER statement will fail if there is a
partitioning key, index, or a unique constraint on the column.

If the data type is a character or graphic string, the new length attribute must be at least as large
as the existing length attribute of the column. If the data type is a numeric data type, the specified
precision and scale must be at least as large as the existing precision and scale. If a decimal
fraction is being converted to floating point, the ALTER statement will fail if there is a unique index
or a unique constraint on the column.

If the specified column has a default value, the existing default value must represent a value that
could be assigned to a column with the new data type in accordance with the rules for assignment.
The default value is updated to reflect the new data type.

If the column is specified in an index, the new column length must not exceed the limit on an
index size. For PADDED indexes, the sum of the length attributes of the columns must not be
greater than 2000-n, where n is the number of columns that can contain null values. For NOT
PADDED indexes, the sum of the length attributes of the columns must not be greater than 2000

1260 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

- n - 2m - 3d, where n is the number of nullable columns, m is the number of varying length
columns, and d is the number of DECFLOAT columns.

If the column is specified in a primary key or a unique constraint, the change must not make the
sum of the column length attributes of the identified columns and the begin and end columns of
any identified periods exceed the permitted limit for the type of constraint.

The total byte count of columns after the alteration must not exceed the maximum row size. If the
column is in the partitioning key, the new partitioning key cannot exceed 255-n.

Table 178 on page 1261 shows the numeric data type alterations that are supported for SET DATA
TYPE:

Table 178. Supported numeric data type alterations for SET DATA TYPE

From/To SMALLINT INTEGER BIGINT DECIMAL
(q,t)

REAL DOUBLE DECFLOAT
(16)

DECFLOAT
(34)

SMALLINT Y Y Y (q-t)>4 Y Y Y Y

INTEGER N Y Y (q-t)>9 N Y Y Y

BIGINT N N Y (q-t)>18 N N N Y

DECIMAL
(p,s)

s=0
p<5

s=0
p<10

s=0
p<=19

q>=p
(q-t)>=(p-
s)

p<7 p<16 p<17 Y

DECFLOAT
(16)

N N N N N N Y Y

DECFLOAT
(34)

N N N N N N N Y

FLOAT
(1-21)

N N N N Y Y Y Y

FLOAT
(22-53)

N N N N N Y Y Y

Table 179 on page 1261 shows the character data type alterations that are supported for SET
DATA TYPE:

Table 179. Supported character data type alterations for SET DATA TYPE (x > =0).

From/To CHARACTER
(n+x) VARCHAR

(n+x)
LONG
VARCHAR GRAPHIC

(n+x)
VARGRAPHIC
(n+x)

LONG
VARGRAPHIC

CHARACTER(n) Y Y N N N N

VARCHAR(n) Y Y N N N N

LONG VARCHAR N Y N N N N

GRAPHIC(n) N N N Y Y N

VARGRAPHIC(n) N N N Y Y N

LONG
VARGRAPHIC

N N N N Y N

Chapter 7. Statements 1261

When a CHAR FOR BIT DATA or VARCHAR FOR BIT DATA column is converted to a BINARY or
VARBINARY data type, and there is an index defined on that column, the index will be put in RBDP.

Table 180. Supported binary data type alterations for SET DATA TYPE (x >= 0)

From/To BINARY(n+x) VARBINARY(n+x)

CHAR(n) FOR BIT DATA Y Y

VARCHAR(n) FOR BIT DATA Y Y

BINARY(n) Y Y

VARBINARY(n) Y1 Y

Note: ALTER from VARBINARY to BINARY is not allowed when the column is part of a unique index.

Depending on the situation when this clause is specified, Db2 might process the ALTER statement
as a pending data definition change, which means the current object definition and data do not
reflect the alteration at the time that the statement is issued. Instead, the altered object is placed
in an advisory REORG-pending (AREOR) state, and a subsequent reorganization of the altered
object with an appropriate utility materializes the changes to the catalog and data. For more
information, see Pending data definition changes (Db2 Administration Guide).

If the change takes effect immediately, and the alteration results in the generation of a new
table version, the table space that contains the table that is being changed is left in an advisory
REORG-pending (AREO*) status.

FOR subtype DATA
Alters the subtype of a character column. This clause does not change the data. The clause
only updates the definition of the subtype as it is stored in the Db2 catalog and the OBD. The
length and data type that are specified must match the existing length and data type of the
column.

Only character strings are valid when subtype is BIT.

For more information on the subtype values (SBCS, MIXED, and BIT), see the subtype
information under built-in-type.

INLINE LENGTH integer
Specifies the new inline length for the column. INLINE LENGTH can only be specified for
an inline LOB column in a table that is in a universal table space. INLINE LENGTH cannot be
specified if FOR SBCS DATA or FOR MIXED DATA is also specified in the same ALTER TABLE
statement. Inline LOB columns cannot be added to a table that is in a table space that has
basic row format. The new length can be smaller or larger than the original length. integer is
a value in the range 0–32680 bytes (inclusive) for a BLOB or CLOB column or in the range
0–16340 characters (inclusive) for a DBCLOB column. The inline length cannot be changed in
the following cases:

• The LOB column is referenced in an expression-based index or a spatial index.
• If the column has a default value, the new inline length is less than the length of the default

value for the column.
• The new inline length is greater than the maximum length of the LOB column.

When the base table space is not empty, increasing the length puts the table space in an
advisory REORG-pending state, and decreasing the length puts the table space in a REORG-
pending state.

No expression-based indexes can be created after the inline length is changed until the
REORG utility is run on the base table space.

SET INLINE LENGTH integer
Specifies the new inline length for the column. SET INLINE LENGTH can only be specified for an
inline LOB column in a table that is in a universal table space. INLINE LENGTH cannot be specified

1262 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html

if FOR SBCS DATA or FOR MIXED DATA is also specified in the same ALTER TABLE statement.
Inline LOB columns cannot be added to a table that is in a table space that has basic row format.
The new length can be smaller or larger than the original length. integer is a value in the range 0–
32680 bytes (inclusive) for a BLOB or CLOB column or in the range 0–16340 characters (inclusive)
for a DBCLOB column. The inline length cannot be changed in the following cases:

• The LOB column is referenced in an expression-based index or a spatial index.
• If the column has a default value, the new inline length is less than the length of the default

value for the column.
• The new inline length is greater than the maximum length of the LOB column.

When the base table space is not empty, increasing the length puts the table space in an advisory
REORG-pending state, and decreasing the length puts the table space in a REORG-pending state.

No expression-based indexes can be created after the inline length is changed until the REORG
utility is run on the base table space.

SET default-clause
Specifies the new default value of the column to be altered. The new default value must conform
to the current rules for assigning that value to the column. Existing rows will retain their current
value. The new default value will be reflected only in the rows that are inserted after the alter.

The table must not be referenced by a view. The table must not be defined with the DATA
CAPTURE CHANGES attribute when the subsystem parameter RESTRICT_ALT_COL_FOR_DCC is
set to YES.

If the column is specified in a unique constraint (unique key or primary key) or unique index, the
default value might be altered to the same value as an existing row of that column. However,
subsequent data change operations will fail in the absence of a value specified for that column on
the insert operation.

If the column was defined by ALTER TABLE with the ADD COLUMN clause, run the REORG utility
for the containing table space before setting the default value.

For LOB columns, default values can be changed only for inline LOB. The length of the new default
value cannot be greater than the inline length.

If an ALTER TABLE statement with an ADD COLUMN clause that specifies a default value is
successful, you cannot request a subsequent point-in-time recovery to a time that precedes
processing of the ALTER TABLE statement.

DROP DEFAULT
Drops the current default value of the column. For columns that are not nullable, the specified
column must be defined with a default value. For columns that are nullable, the specified column
cannot have a null default value. For columns that are nullable, the new default value is the null
value.

The table that contains the specified column must not be referenced in a view. The table must
not be defined with the DATA CAPTURE CHANGES attribute when the subsystem parameter
RESTRICT_ALT_COL_FOR_DCC is set to YES.

Follow these steps to remove the default value for a column that was defined using ALTER TABLE
with the ADD COLUMN clause:

1. Run the REORG utility or the UPDATE statement to reset the AREO* state:

• Run the REORG utility on the table space that contains the table
• If the table is in a universal table space and the table does not have row access control

activated, run an UPDATE statement without the SKIP LOCKED DATA or WHERE clauses
specified. The update operation must be done with a searched UPDATE statement and the
expression in the SET clause cannot be a scalar-fullselect or a row-fullselect. An update
operation within a SELECT statement will not reset the AREO* status.

2. Issue the ALTER TABLE statement that specifies the DROP DEFAULT clause

Chapter 7. Statements 1263

If the REORG is not done before the ALTER TABLE, or the UPDATE statement does not reset the
AREO* statue, an error is returned for the ALTER TABLE statement.

If an ALTER TABLE statement with an ALTER COLUMN clause that specifies DROP DEFAULT is
successful, you cannot request a subsequent point-in-time recovery to a time that precedes
processing of the ALTER TABLE statement.

SET GENERATED
Specifies that Db2 generates values for the column. SET GENERATED can be specified to change
the generation attribute for an existing identity column. The clause can also be specified to change
an existing non-generated column into a row-begin column, a row-end column, or a transaction-
start-ID column.
ALWAYS

Specifies that Db2 always generates a value for the column when a row is inserted or updated
and a default value must be generated.

BY DEFAULT
Specifies that Db2 generates a value for the column when a row is inserted or updated and
a default value must be generated, unless an explicit value is specified. For a row change
timestamp column, Db2 inserts or updates a specified value but does not verify that it is a
unique value for the column unless the row change timestamp column has a unique constraint
or a unique index that solely specifies the row change timestamp column.

RESTART
Specifies the next value for the identity column, If numeric-constant is not specified, the sequence
is restarted at the value that is specified implicitly or explicitly as the starting value when the
identity column was originally created. RESTART does not change the original START WITH value.
WITH numeric-constant

Specifies that, when it is time to generate the next value for this identity column, numeric-
constant will be used as the next value for the column. This value can be any positive or
negative value (including 0) that could be assigned to this column without nonzero digits
existing to the right of the decimal point. The range used for cycles is defined by MINVALUE
and MAXVALUE. MAXVALUE and MINVALUE do not constrain the numeric-constant value. That
is, the RESTART WITH clause can be used to start the generation of values outside the range
that is used for cycles. For more information, see “Specifying START or RESTART WITH values
outside the range for cycles for identity columns” on page 1298.

If RESTART is not specified, the sequence is not restarted. Instead, it resumes with the current
values that are in effect for all the options after the ALTER statement is issued.

After an identity column is restarted or changed to allow cycling, sequence numbers might be
duplicates of values generated previously.

SET INCREMENT BY numeric-constant
For a definition, see the description of INCREMENT BY numeric-constant for defining an identity
column.

SET MINVALUE or NO MINVALUE
For a definition, see the description of MINVALUE or NO MINVALUE for defining an identity
column.

SET MAXVALUE or NO MAXVALUE
For a definition, see the description of MAXVALUE or NO MAXVALUE for defining an identity
column.

SET CYCLE or NO CYCLE
For a definition, see the description of CYCLE or NO CYCLE for defining an identity column.

SET CACHE or NO CACHE
For a definition, see the description of CACHE or NO CACHE for defining an identity column.

SET ORDER or NO ORDER
For a definition, see the description of ORDER or NO ORDER for defining an identity column.

1264 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Be aware that specifying the ALTER COLUMN clause might affect subsequent requests to recover
to a point in time. For information about possible restrictions, effects on recovery status, and other
considerations, see Point-in-time recovery (Db2 Utilities).

RENAME COLUMN
RENAME COLUMN source-column-name TO target-column-name

Renames the specified column. The names must not be qualified.
source-column-name

Identifies the column that is to be renamed. The name must identify an existing column of the
table.

target-column-name
Specifies the new name for the column. The name must not identify a column that already exists
in the table, or the name of a period that exists in the table.

You cannot rename a column if any of the following conditions apply:

• The column is referenced in a view
• The column is referenced in the expression of an index definition
• The column is referenced in the definition of a row permission or a column mask
• The column is referenced in an SQL table user-defined function
• The column has a check constraint defined
• The column has a field procedure defined
• The table has a trigger
• The table is a materialized query table or is referenced by a materialized query table
• The table has a valid procedure, or an edit procedure that is defined as WITH ROW ATTRIBUTES
• The table is a Db2 catalog table
• The table is a system-period temporal table or a history table
• The table is an archive-enabled table or an archive table

DROP COLUMN
DROP COLUMN column-name

Drops the identified column from the table. Any privileges that are associated with the column are
revoked.

A column cannot be dropped if any of the following conditions are true:

• The containing table space is not a universal table space
• The table is a created global temporary table
• The table is a system-period temporal table
• The table is a history table
• The table is an archive-enabled table
• The table is an archive table
• The table has an edit procedure or a validation exit procedure
• The table contains check constraints
• The table is a materialized query table
• The table is referenced in a materialized query table definition
• The table definition is in an incomplete state
• The column is the only column of the table
• The column is referenced in the definition of a period

Chapter 7. Statements 1265

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_pointintimerecovery.html

• The column is defined as a security label column
• The column is an XML column
• The column is a DOCID column
• The column is an implicitly generated hidden ROWID column
• The column is defined as ROWID GENERATED BY DEFAULT, and the table contains an implicitly

generated hidden ROWID column
• The column is a ROWID column on which there is a dependent LOB column
• The column is part of the table partitioning key
• The column is part of the hash key
• A row contains less than the minimum data size of 3 bytes
• All of the remaining columns in the table are hidden
• A view depends on the column
• A view that is dependent on the table has INSTEAD OF triggers
• A trigger is defined on the table
• Any of the following objects are dependent on the table:

– Extended indexes
– Row permissions
– Column masks
– SQL table functions

column-name
Identifies the column that is to be dropped. The column name must not be qualified. The name
must identify a column of the specified table.

If the column is a LOB column, any auxiliary tables that are associated with the column and
the indexes on the auxiliary tables are also dropped. Any LOB table spaces that were implicitly
created for the auxiliary tables are also dropped. If the column is the last LOB column in the table,
any implicitly created ROWID column in the table is also dropped.

Depending on the situation when this clause is specified, Db2 might process the ALTER statement as
a pending data definition change, which means the current object definition and data do not reflect
the alteration at the time that the statement is issued. Instead, the altered object is placed in an
advisory REORG-pending (AREOR) state, and a subsequent reorganization of the altered object with
an appropriate utility materializes the changes to the catalog and data. For more information, see
Pending data definition changes (Db2 Administration Guide).

Use of this clause or keyword might invalidate packages that depend on the target object, or packages
that depend on related objects through cascading effects. See Changes that invalidate packages (Db2
Application programming and SQL).

RESTRICT
Specifies that the column cannot be dropped if any views, indexes, unique constraints, or referential
constraints are dependent on the column.

Be aware that specifying the DROP COLUMN clause might affect subsequent requests to recover to a
point in time. See Point-in-time recovery (Db2 Utilities) for information about possible restrictions, effect
on recovery status, and other considerations.

ADD PERIOD:
ADD PERIOD FOR period-definition

Adds a period to the table.

The table must not be an archive-enabled table or an archive table.

1266 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_pointintimerecovery.html

begin-column-name must not be the same as end-column-name. The data type, precision, and scale
for begin-column-name must be the same as for end-column-name.

SYSTEM_TIME(begin-column-name, end-column-name)
Names the period SYSTEM_TIME. The name must not identify an existing column in the table. A
table can have only one SYSTEM_TIME period.

The begin-column-name must specify a row-begin column and the end-column-name must specify
a row-end column. Both columns must be defined as GENERATED ALWAYS. A column mask or row
permission must not be defined for the table.

BUSINESS_TIME(begin-column-name, end-column-name)
Names the period BUSINESS_TIME. The name must not identify an existing column in the table. A
table can have only one BUSINESS_TIME period.

An implicit check constraint is generated to ensure the relationship of the value of end-column-
name to the value of begin-column-name as follows:

• For an inclusive-exclusive BUSINESS_TIME period, the value of end-column-name is greater
than the value of begin-column-name.

• For an inclusive-inclusive BUSINESS_TIME period, the value of end-column-name is greater than
or equal to the value of begin-column-name.

The name of the implicitly created check constraint is
DB2_GENERATED_CHECK_CONSTRAINT_FOR_BUSINESS_TIME, and that name must not be
defined as the name of an existing check constraint.

The columns that are specified for begin-column-name and end-column-name must be defined as
DATE or TIMESTAMP(6) WITHOUT TIME ZONE, and must be defined as NOT NULL. The columns
that are specified for begin-column-name and end-column-name must not identify a column that
is defined with a GENERATED clause.

Use of this clause or keyword might invalidate packages that depend on the target object, or
packages that depend on related objects through cascading effects. See Changes that invalidate
packages (Db2 Application programming and SQL).

begin-column-name
Identifies the column that records the start value for the period. The name must identify an
existing column in the table. begin-column-name must not be the same as a column that is used in
the definition of another period for the table.

end-column-name
Identifies the column that records the end value for the period. The name must identify an existing
column in the table. end-column-name must not be the same as a column that is used in the
definition of another period for the table.

EXCLUSIVE
Specifies that the value of the end column is not included in the period. The BUSINESS_TIME
period is defined as inclusive-exclusive.

INCLUSIVE
Specifies that the value of the end column is included in the period. The BUSINESS_TIME period is
defined as inclusive-inclusive.

ADD unique-constraint
CONSTRAINT constraint-name

Names the primary key or unique key constraint. If a constraint name is not specified, a unique
constraint name is generated. If a name is specified, it must be different from the names of any
referential, check, primary key, or unique key constraints previously specified on the table. If the
table space is implicitly created, the enforcing primary key and unique key indexes are also implicitly
created.

Chapter 7. Statements 1267

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

PRIMARY KEY(column-name,...)
Defines a primary key composed of the identified columns. Each column name must be an unqualified
name that identifies a column of the table. The same column must not be identified more than one
time. The following types of columns cannot be specified in a PRIMARY KEY clause:

• a LOB column
• a ROWID column
• a distinct type column that is based on a LOB or ROWID data type
• an XML column
• a row change timestamp column

All character and graphic string columns in the key must use the same encoding scheme.

The number of identified columns must not exceed 64. In addition, the sum of the length attributes of
the columns must not be greater than 2000 - n - 2m - 3d, where m is the number of varying-length
columns and d is the number of DECFLOAT columns in the key. The table must not have a primary key
and the identified columns must be defined as NOT NULL.

The set of columns in the primary key cannot be the same as the set of columns of another unique
key.

The table must have a unique index with a unique key that is identical to the primary key. The keys are
identical only if they have the same number of columns and the nth column name of one is the same
as the nth column name of the other. If the table is in a table space that is implicitly created, and no
unique index is defined on the identified columns, Db2 will automatically create a primary index. The
privilege set must include the INDEX privilege on the table and the USE privilege on the buffer pool
and the storage group. The implicitly created primary key index is owned by the owner of the base
table.

The identified columns are defined as the primary key of the table. The description of the index is
changed to indicate that it is a primary index. If the table has more than one unique index with a key
that is identical to the primary key, the selection of the primary index is arbitrary.

BUSINESS_TIME WITHOUT OVERLAPS
BUSINESS_TIME WITHOUT OVERLAPS can be specified as the last item in the list. If
BUSINESS_TIME WITHOUT OVERLAPS is specified, the list must include at least one column-
name or key-expression. When WITHOUT OVERLAPS is specified, the values for the rest of
the specified keys are unique with respect to the time for the BUSINESS_TIME period. When
BUSINESS_TIME WITHOUT OVERLAPS is specified, the columns of the BUSINESS_TIME period
must not be specified as part of the constraint. The specification of BUSINESS_TIME WITHOUT
OVERLAPS adds the following to the constraint:

• The end column of the BUSINESS_TIME period in ascending order
• The start column of the BUSINESS_TIME period in ascending order

UNIQUE(column-name,…)
Defines a unique key composed of the identified columns with the specified constraint-name. If a
constraint-name is not specified, a name is generated. Each column name must be an unqualified
name that identifies a column of the table. The same column must not be identified more than one
time. The following types of columns cannot be specified in a UNIQUE clause:

• a LOB column
• a ROWID column
• a distinct type column that is based on a LOB or ROWID data type
• an XML column
• a row change timestamp column

Each identified column must be defined as NOT NULL. The number of identified columns must not
exceed 64. In addition, the sum of the length attributes of the columns must not be greater than 2000
- n for padded indexes and 2000 - n - 2m - 3d for nonpadded indexes, where n is the number of

1268 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

columns that can contain null values, m is the number of varying-length columns, and d is the number
of DECFLOAT columns in the key.

The set of columns in the unique key cannot be the same as the set of columns of the primary key
or another unique key. A unique key is a duplicate if it is the same as the primary key or a previously
defined unique key. The specification of a duplicate unique key is ignored with a warning.

The table must have a unique index with a key that is identical to the unique key. The keys are
identical only if they have the same number of columns and the nth column name of one is the same
as the nth column name of the other. If the table is in a table space that is implicitly created, and
no unique index is defined on the identified columns, Db2 will automatically create a unique index to
enforce the unique key constraint. The privilege set must include the INDEX privilege on the table and
the USE privilege on the buffer pool and the storage group. The implicitly created unique key index is
owned by the owner of the base table.

The identified columns are defined as a unique key of the table. The description of the index is
changed to indicate that it is enforcing a unique key constraint. If the table has more than one unique
index with a key that is identical to the unique key, the selection of the enforcing index is arbitrary.

BUSINESS_TIME WITHOUT OVERLAPS
BUSINESS_TIME WITHOUT OVERLAPS can be specified as the last item in the list. If
BUSINESS_TIME WITHOUT OVERLAPS is specified, the list must include at least one column-
name or key-expression. When WITHOUT OVERLAPS is specified, the values for the rest of
the specified keys are unique with respect to the time for the BUSINESS_TIME period. When
BUSINESS_TIME WITHOUT OVERLAPS is specified, the columns of the BUSINESS_TIME period
must not be specified as part of the constraint. The specification of BUSINESS_TIME WITHOUT
OVERLAPS adds the following to the constraint:

• The end column of the BUSINESS_TIME period in ascending order
• The start column of the BUSINESS_TIME period in ascending order

ADD referential-constraint
CONSTRAINT constraint-name

Names the referential constraint. If a constraint name is not specified, a unique constraint name
is generated. If a name is specified, it must be different from the names of any referential, check,
primary key, or unique key constraints previously specified on the table.

FOREIGN KEY (column-name,...) references-clause
Specifies a referential constraint with the specified constraint-name.

FOREIGN KEY cannot be specified if the table is a history table or an archive table.

Let T1 denote the object table of the ALTER TABLE statement. T1 is the child table for the referential
constraint.

The foreign key of the referential constraint is composed of the identified columns and the columns
of the BUSINESS_TIME period if the clause PERIOD BUSINESS_TIME is specified. Each column-name
must be an unqualified name that identifies a column of T1. The same column must not be identified
more than one time. If PERIOD BUSINESS_TIME is specified, the columns of the BUSINESS_TIME
period must not be specified as part of the constraint. The following types of columns cannot be
specified in the FOREIGN KEY clause:

• a LOB column
• a ROWID column
• a DECFLOAT column
• an XML column
• a distinct type column that is based on a LOB, ROWID, or DECFLOAT data type
• a security label column
• a row change timestamp column

Chapter 7. Statements 1269

The number of identified columns, and the columns of the BUSINESS_TIME period if the clause
PERIOD BUSINESS_TIME is specified, must not exceed 64, and the sum of their length attributes
must not exceed 255 minus the number of columns that allow null values. The referential constraint
is a duplicate if the FOREIGN KEY and the parent table are the same as the FOREIGN KEY and parent
table of an existing referential constraint on T1. The specification of a duplicate referential constraint
is ignored with a warning. An exception is that a duplicate referential constraint is not allowed if the
definition of the constraint includes the PERIOD BUSINESS_TIME clause.

If PERIOD BUSINESS_TIME is specified in the FOREIGN KEY clause, then PERIOD BUSINESS_TIME
must also be specified in the REFERENCES clause. If PERIOD BUSINESS_TIME is not specified in the
FOREIGN KEY clause, then PERIOD BUSINESS_TIME must also not be specified in the REFERENCES
clause.

If PERIOD BUSINESS_TIME is specified in the FOREIGN KEY clause, then the semantic for the
BUSINESS_TIME period in both the parent and child tables must be the same.

The foreign key of the referential constraint cannot reference a parent key that contains
BUSINESS_TIME WITHOUT OVERLAPS.

REFERENCES parent-table-name (column-name,...)
The table name specified after REFERENCES is the parent table for the referential constraint. The
parent-table-name value must identify a table that exists at the current server. This table is referred to
as the parent table in the constraint relationship.

parent-table-name must not identify:

• A catalog table
• A directory table
• A declared global temporary table
• A history table
• An archive table

Let T2 denote the identified parent table and let T1 denote the table that is being changed (T1 and T2
can be the same table).

T2 must have a unique index. The privilege set on T2 must include the ALTER or REFERENCES
privilege on the parent table, or the REFERENCES privilege on the columns of the nominated parent
key, including the columns of the BUSINESS_TIME period if the PERIOD BUSINESS_TIME clause is
specified.

The parent key of the referential constraint is composed of the identified columns, or columns of
the BUSINESS_TIME period if PERIOD BUSINESS_TIME is specified. Each column-name must be an
unqualified name that identifies a column of T2. The same column must not be identified more than
one time. If PERIOD BUSINESS_TIME is specified, the columns of the BUSINESS_TIME period must
not be specified as part of the constraint. The following types of columns cannot be specified in a
REFERENCES clause:

• a LOB column
• a ROWID column
• a DECFLOAT column
• an XML column
• a distinct type column that is based on a LOB, ROWID, or DECFLOAT data type
• a security label column
• a row change timestamp column

The list of column names in the parent key must match the list of column names in a primary key or
unique key in the parent table T2. The column names must be specified in the same order as in the
primary key or unique key. If PERIOD BUSINESS_TIME was specified for the primary key or unique key
of the parent table T2, then PERIOD BUSINESS_TIME must also be specified for the foreign key clause
for T1. If any of the referenced columns in T2 has a non-numeric data type, T2 and T1 must use the

1270 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

same encoding scheme, unless T2 is a Unicode table, and T1 is an EBCDIC table with Unicode key
columns. In that case, for each character or graphic string column in T1, the CCSID must be the same
as the corresponding column in T2.

If a list of column names is not specified, then T2 must have a primary key. Omission of a list of
column names is an implicit specification of the columns of the primary key for T2.

The specified foreign key must have the same number of columns as the parent key of T2 and,
except for their names, default values, null attributes and check constraints, the description of the nth
column of the foreign key must be identical to the description of the nth column of the nominated
parent key. If the foreign key includes a column defined as a distinct type, the corresponding column
of the nominated parent key must be the same distinct type. If a column of the foreign key has a
field procedure, the corresponding column of the nominated parent key must have the same field
procedure and an identical field description. A field description is a description of the encoded value
as it is stored in the database for a column that has been defined to have an associated field
procedure.

The table space that contains T1 must be available to Db2. If T1 is populated, its table space is placed
in a check pending status. A table in a segmented table space is populated if the table is not empty.
A table in a table space that is not segmented is considered populated if the table space has ever
contained any records.

The referential constraint specified by the FOREIGN KEY clause defines a relationship in which T2
is the parent and T1 is the dependent. A description of the referential constraint is recorded in the
catalog.

PERIOD BUSINESS_TIME
Specifies that the BUSINESS_TIME period is considered part of the referential constraint. When
PERIOD BUSINESS_TIME is specified, the values for the rest of the specified columns are unique with
respect to the specified point of time.

PERIOD BUSINESS_TIME can be specified as the last key expression. If PERIOD BUSINESS_TIME is
not the last key expression, an error is returned. If PERIOD BUSINESS_TIME is specified, the columns
of the BUSINESS_TIME period must not be specified as part of the constraint.

When PERIOD BUSINESS_TIME is specified, the following columns are implicitly added to the end of
the constraint:

• The end column of the BUSINESS_TIME period.
• The start column of the BUSINESS_TIME period.

The PERIOD BUSINESS_TIME clause specifies that there must not be a row in the child table for which
the period of time represented by the BUSINESS_TIME period values for that row is not contained
in the BUSINESS_TIME period of a corresponding row in the parent table. Furthermore, it is not
necessary that there be exactly one corresponding row in the parent table where the BUSINESS_TIME
period contains the BUSINESS_TIME period of the child row. As long as the BUSINESS_TIME period
of a row in the child table is contained in the union of the BUSINESS_TIME periods of two or more
contiguous matching rows in the parent table, the referential constraint is considered satisfied.

When the FOREIGN KEY clause specifies the PERIOD BUSINESS_TIME clause, the following
conditions apply:

• The corresponding REFERENCES clause must also specify the PERIOD BUSINESS_TIME clause.
• A unique index with the BUSINESS_TIME WITHOUT OVERLAPS clause must be defined on the table.

The table is marked as unavailable until the index is created.
• A unique index must be defined on the parent table with the BUSINESS_TIME WITHOUT OVERLAPS

clause.

ON DELETE RESTRICT must be specified when PERIOD BUSINESS_TIME is also specified.

ON DELETE
The delete rule of the relationship is determined by the ON DELETE clause. For more on the concepts
used here, see Referential constraints (Introduction to Db2 for z/OS).

Chapter 7. Statements 1271

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_integrity.html

If T1 and T2 are the same table, CASCADE or NO ACTION must be specified. SET NULL must not
be specified unless some column of the foreign key allows null values. Also, SET NULL must not be
specified if any nullable column of the foreign key is a column of the key of a partitioning index. The
default value for the rule depends on the value of the CURRENT RULES special register when the
ALTER TABLE statement is processed. If the value of the register is 'DB2', the delete rule defaults to
RESTRICT; if the value is 'SQL', the delete rule defaults to NO ACTION.

The delete rule applies when a row of T2 is the object of a DELETE or propagated delete operation and
that row has dependents in T1. Let p denote such a row of T2.

• If RESTRICT or NO ACTION is specified, an error occurs and no rows are deleted.
• If CASCADE is specified, the delete operation is propagated to the dependents of p in T1.
• If SET NULL is specified, each nullable column of the foreign key of each dependent of p in T1 is set

to null.

A cycle involving two or more tables must not cause a table to be delete-connected to itself. Thus, if
the relationship would form a cycle:

• The referential constraint cannot be defined if each of the existing relationships that would be part
of the cycle have a delete rule of CASCADE.

• CASCADE must not be specified if T2 is delete-connected to T1.

If T1 is delete-connected to T2 through multiple paths, those relationships in which T1 is a dependent
and which form all or part of those paths must have the same delete rule and it must not be SET NULL.
For example, assume that T1 is a dependent of T3 in a relationship with a delete rule of r and that one
of the following is true:

• T2 and T3 are the same table.
• T2 is a descendent of T3 and the deletion of rows from T3 cascades to T2.
• T2 and T3 are both descendents of the same table and the deletion of rows from that table

cascades to both T2 and T3.

In this case, the referential constraint cannot be defined when r is SET NULL. When r is other than
SET NULL, the referential constraint can be defined, but the delete rule that is implicitly or explicitly
specified in the FOREIGN KEY clause must be the same as r.

ENFORCED or NOT ENFORCED
Indicates whether or not the referential constraint is enforced by Db2 during normal operations, such
as insert, update, or delete.
ENFORCED

Specifies that the referential constraint is enforced by Db2 during normal operations (such as data
change operations) and that it is guaranteed to be correct. ENFORCED is the default.

NOT ENFORCED
Specifies that the referential constraint is not enforced by Db2 during normal operations (such as
data change operations). NOT ENFORCED should only be used when the data that is stored in the
table is verified to conform to the constraint by some other method than relying on Db2.

ENABLE QUERY OPTIMIZATION
Specifies that the constraint can be used for query optimization. Db2 uses the information in query
optimization using materialized query tables with the assumption that the constraint is correct. This is
the default.

ADD check-constraint
CONSTRAINT constraint-name

Names the check constraint. If constraint-name is not specified, a unique constraint name is derived
from the name of the first column in the check-condition specified in the definition of the check
constraint. If a name is specified, it must be different from the names of any referential, check,
primary key, or unique key constraints previously specified on the table.

1272 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

CHECK (check-condition)
Defines a check constraint. At any time, check-condition must be true or unknown for every row of
the table. A check-condition can evaluate to unknown if a column that is an operand of the predicate
is null. A check-condition that evaluates to unknown does not violate the check constraint. A check-
condition is a search condition, with the following restrictions:

• It can refer only to the columns of table table-name.
• The columns cannot be any of the following types of columns:

– LOB columns
– ROWID columns
– DECFLOAT columns
– XML columns
– distinct type columns that are based on LOB, ROWID, and DECFLOAT data types
– security label columns

• It must not result in CCSID conversion.
• It can be up to 7400 bytes long, not including redundant blanks.
• It must not contain any of the following:

– Subselects
– Built-in or user-defined functions
– CAST specifications
– Cast functions other than those created when the distinct type was created
– Host variables
– Global variables
– Parameter markers
– Special registers
– Columns that include a field procedure
– CASE expressions
– ROW CHANGE expressions
– Row-value expressions
– DISTINCT predicates
– GX constants (hexadecimal graphic string constants)
– Sequence references
– OLAP specifications

• If a check-condition refers to a LOB column (including a distinct type that is based on a LOB), the
reference must occur within a LIKE predicate.

• The AND and OR logical operators can be used between predicates. The NOT logical operator
cannot be used.

• The first operand of every predicate must be the column name of a column in the table.
• The second operand in the check-condition must be either a constant or a column name of a column

in the table.

– If the second operand of a predicate is a constant, and if the constant is:

- A floating-point number, then the column data type must be floating point.
- A decimal number, then the column data type must be either floating point or decimal.
- A big integer number, then the column data type must not be an integer or a small integer
- An integer number, then the column data type must not be a small integer.

Chapter 7. Statements 1273

- A small integer number, then the column data type must be small integer.
- A decimal constant, then its precision must not be larger than the precision of the column.

– If the second operand of a predicate is a column, then both columns of the predicate must have:

- The same data type
- Identical descriptions with the exception that the specification of the NOT NULL and DEFAULT

clauses for the columns can be different, and that string columns with the same data type can
have different length attributes

Effects of defining a check constraint on a populated table: When a check constraint is defined on
a populated table and the value of the special register CURRENT RULES is 'DB2', the check constraint
is not immediately enforced on the table. The check constraint is added to the description of the table,
and the table space that contains the table is placed in a check pending status. For a description of
the check pending status and the implications for utility operations, see CHECK-pending status (Db2
Utilities).

When a check constraint is defined on a populated table and the value of the special register
CURRENT RULES is 'STD', the check constraint is checked against all rows of the table. If no violations
occur, the check constraint is added to the table. If any rows violate the new check constraint, an error
occurs and the description of the table is unchanged.

DROP constraint
DROP PRIMARY KEY

Drops the definition of the primary key and all referential constraints in which the primary key is
a parent key. The table must have a primary key and the privilege set must include the ALTER or
REFERENCES privilege on every dependent table of the table.

The description of the primary index is changed to indicate that it is not a primary index. If the
table space was implicitly created, the corresponding enforcing index is dropped if the primary key is
dropped.

DROP UNIQUE constraint-name
Drops the definition of the unique key constraint and all referential constraints in which the unique
key is a parent key. The table must have a unique key. The privilege set must include the ALTER or
REFERENCES privilege on every dependent table of the table. The description of the enforcing index
is changed to indicate that it is not enforcing a unique key constraint. If the table space is implicitly
created, the corresponding enforcing index is dropped if the unique key is dropped.

DROP FOREIGN KEY constraint-name
Drops the referential constraint constraint-name. The constraint-name must identify a referential
constraint in which the table is the dependent table, and the privilege set must include the ALTER or
REFERENCES privilege on the parent table of that relationship, or the REFERENCES privilege on the
columns of the parent table of that relationship.

DROP CHECK constraint-name
Drops the check constraint constraint-name. The constraint-name must identify an existing check
constraint defined on the table.

DROP CONSTRAINT constraint-name
Drops the constraint constraint-name. The constraint-name must identify an existing primary key,
unique key, check, or referential constraint defined on the table.

DROP CONSTRAINT must not be used on the same ALTER TABLE statement as DROP PRIMARY KEY,
DROP UNIQUE KEY, DROP FOREIGN KEY or DROP CHECK.

ADD PARTITION BY RANGE partitioning-clause
Specifies the range partitioning scheme for the table (the columns used to partition the data). The RANGE
keyword is optional.

1274 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_checkpendingstatus.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_checkpendingstatus.html

When this clause is specified, the table uses table-controlled partitioning. The number of partitions
specified in the ADD PARTITION BY RANGE clause has to be the same as the number of partitions defined
in the table space.

This clause applies only to tables in a partitioned table space. If the table is already complete by having
established either table-controlled partitioning or index-controlled partitioning, the ADD PARTITION BY
RANGE clause is not allowed. If this clause is used, then the ENDING AT clause cannot be used on a
subsequent CREATE INDEX statement for this table.

partitioning-clause
partition-expression

Specifies the key data over which the range is defined to determine the target data partition of the
data.
column-name

Specifies the columns of the key. Each column-name must identify a column of the table. Do not
specify more than 64 columns, the same column more than one time, a qualified column name, or
any of the following types of columns:

• a BINARY or VARBINARY column
• a LOB column
• a DECFLOAT column
• an XML column
• a column with a distinct type that is based on any of the preceding data types

All character and graphic string columns in the key must use the same encoding scheme.

The sum of length attributes of the columns must not be greater than 255 - n, where n is the
number of columns that can contain null values.

A timestamp with time zone column (or a column with a distinct type that is based on the
timestamp with time zone data type) can only be specified as the last column in a partitioning key.

NULLS LAST
Specifies that null values are treated as positive infinity for purposes of comparison.

ASC
Puts the entries in ascending order by the column. ASC is the default.

DESC
Puts the entries in descending order by the column.

partition-element
Specifies ranges for a data partitioning key and the table space where rows of the table in the range
will be stored.
PARTITION integer

Specifies a number of a physical partition in the table space. A PARTITION clause must be
specified for every partition of the table space. In the context, highest means highest in the sorting
sequence of the columns. In a column that is defined as ascending (ASC), highest and lowest have
the usual meanings. In a column that is defined as descending (DESC), the lowest actual value is
the highest in the sorting sequence.

ENDING AT (constant, MAXVALUE, or MINVALUE...)
Specifies the limit key for a partition boundary. Specify at least one value (constant, MAXVALUE,
or MINVALUE) after ENDING AT in each PARTITION clause. You can use as many values as there
are columns in the key. The concatenation of all the values is the highest value of the key for
ascending and the lowest for descending.
constant

Specifies a constant value with a data type that must conform to the rules for assigning that
value to the column. If a string constant is longer or shorter than required by the length
attribute of its column, the constant is either truncated or padded on the right to the required

Chapter 7. Statements 1275

length. If the column is ascending, the padding character is X'FF'. If the column is descending,
the padding character is X'00'. The precision and scale of a decimal constant must not
be greater than the precision and scale of its corresponding column. A hexadecimal string
constant (GX) cannot be specified.

MAXVALUE
Specifies a value greater than the maximum value for the limit key of a partition boundary
(that is, all X'FF' regardless of whether the column is ascending or descending). If all of the
columns in the partitioning key are ascending, a constant or the MINVALUE clause cannot be
specified following MAXVALUE. After MAXVALUE is specified, all subsequent columns must
specify MAXVALUE.

MINVALUE
Specifies a value that is smaller than the minimum value for the limit key of a partition
boundary (that is, all X'00' regardless of whether the column is ascending or descending).
If all of the columns in the partitioning key are descending, a constant or the MAXVALUE
clause cannot be specified following MINVALUE. After MINVALUE is specified, all subsequent
columns must be MINVALUE.

The key values are subject to the following rules:

• The first value corresponds to the first column of the key, the second value to the second
column, and so on. Using fewer values than there are columns in the key has the same effect
as using the highest or lowest values for the omitted columns, depending on whether they are
ascending or descending.

• The highest value of the key in any partition must be lower than the highest value of the key in
the next partition.

• The values specified for the last partition are enforced. The value specified for the last partition
is the highest value of the key that can be placed in the table. If the limit was not previously
enforced, any existing key values that are greater than the value that is specified for the added
partition are placed into the discard data set when REORG is run.

• If a key includes a ROWID column or a column with a distinct type that is based on a ROWID
data type, 17 bytes of the constant that is specified for the corresponding ROWID column are
considered.

• The combination of the number of table space partitions and the corresponding limit key size
cannot exceed the number of partitions * (106 + limit key size in bytes) < 65394

• If the concatenation of all the values exceeds 255 bytes, only the first 255 bytes are considered.

INCLUSIVE
Specifies that the specified range values are included in the data partition.

ADD PARTITION
ADD PARTITION

Specifies that a partition is added to the table and each partitioned index on the table. A partition
can be added as the last logical partition of any partitioned table space. Partitions can also be added
between existing logical partitions in partition-by-range table spaces. The new partition is the next
physical partition not being used until the maximum for the table space has been reached. ADD
PARTITION must not be specified for nonpartitioned tables. Adding a partition is not allowed if the
table is a materialized query table, or if a materialized query table is defined on the table. However,
adding a partition is allowed if an accelerated query table is defined on the table.

Depending on the situation when this clause is specified, Db2 might process the ALTER statement as
a pending data definition change, which means the current object definition and data do not reflect
the alteration at the time that the statement is issued. Instead, the affected partitions placed in an
advisory REORG-pending (AREOR) state, and a subsequent reorganization of the affected partitions
with an appropriate utility materializes the changes to the catalog and data. For more information, see
Pending data definition changes (Db2 Administration Guide).

1276 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html

Adding a partition as the last logical partition of a table specifies that a partition is added to the
table and each partitioned index on the table. A partition added as the last logical partition is
always an immediate definition change. A partition cannot be added if the table space definition
is incomplete because a partitioning key or partitioning index is missing. If the table uses index-
controlled partitioning, it is converted to use table-controlled partitioning. In addition, adding a
partition to the end of the table is not allowed if there are any outstanding pending definition changes
on the partitions.

Adding a partition between existing logical partitions is supported only for partition-by-range table
spaces. When inserting a new partition between existing partitions, the following rules apply:

• If ADD PARTITION ENDING with the optional ALTER PARTITION clause is used to add a new
partition between existing partitions, the ALTER PARTITION clause must specify the very next
logical partition to the partition being added. The high limit key value specified in the ALTER
PARTITION clause must be the existing high limit key value for the very next logical partition. The
high limit key value cannot be altered in the same statement when inserting a new partition.

• Any pending definition changes for the high limit key of the last logical partition must be
materialized before a partition can be added between existing partitions in the same table.

• After a new partition is added between existing partitions of a table, altering the limit key is not
allowed for any partition in the same table until the newly inserted partition is materialized by a
REORG execution.

• A partition cannot be inserted on any table that contains a LOB column, or a distinct type column
that is based on a LOB data type.

• A partition cannot be inserted on any table that contains an XML column.

If the table is in a partition-by-growth table space, a new partition can be added until the number
of partitions reaches the MAXPARTITIONS limit. The total number of table space partitions cannot
exceed the value that is specified for MAXPARTITIONS for the table space.

The default DSSIZE is determined by the value in SYSIBM.SYSTABLESPACE catalog table. The
maximum number of partitions allowed is shown in the following table.

Table 181. Maximum number of partitions allowed

DSSIZE Page size 4 KB Page size 8 KB Page size 16
KB

Page size 32 KB

1GB-4GB 4096 4096 4096 4096

8GB 2048 4096 4096 4096

16GB 1024 2048 4096 4096

32GB 512 1024 2048 4096

64GB 256 512 1024 2048

128GB 128 256 512 1024

256GB 64 128 256 512

If LARGE was specified when the table space was created, the maximum number of partitions is
shown in the fourth row of Table 182 on page 1277. For more than 254 partitions when LARGE or
DSSIZE is not specified, the maximum number of partitions is determined by the page size of the table
space.

Table 182. Maximum number of partitions when DSSIZE = 0

Type of table space Number of existing
partitions

Maximum partitions

non-large 1 to 16 16

Chapter 7. Statements 1277

Table 182. Maximum number of partitions when DSSIZE = 0 (continued)

Type of table space Number of existing
partitions

Maximum partitions

non-large 17 to 32 32

non-large 33 to 64 64

large N/A 4096

The new partition inherits most attributes from the table space or the previous last logical partition,
depending on the position of the new partition and other factors. For details see How Db2 determines
attributes for added partitions (Db2 Administration Guide).

To change specific attributes of the added partition, you can issue separate ALTER TABLESPACE and
ALTER INDEX statements after you add the partition.

If the table uses index-controlled partitioning, it is converted to use table-controlled partitioning. Db2
enforces the high limit key for table-controlled partitioning, so any existing key values that are greater
than the high limit key are placed into the discard data set when REORG is run.

HASH SPACE cannot be specified with ADD PARTITION. For partition-by-growth table spaces, the
hash space value is not applicable at the partition level.

ENDING AT (constant, MAXVALUE, or MINVALUE, ...)
Specifies the high key limit for the new partition.
Specify at least one value after ENDING AT in the PARTITION clause. You can specify as many values
as there are columns in the key. The concatenation of all the values is the highest value of the key in
the corresponding partition of the index. ENDING AT cannot be specified for a table in a partition-by
growth table space, but must be specified if the table is in a partition-by-range table space.
constant

Specifies a constant value with a data type that must conform to the rules for assigning that value
to the column. If a string constant is longer or shorter than required by the length attribute of
its column, the constant is either truncated or padded on the right to the required length. If the
column is ascending, the padding character is X'FF'. If the column is descending, the padding
character is X'00'. The precision and scale of a decimal constant must not be greater than the
precision and scale of its corresponding column. A hexadecimal string constant (GX) cannot be
specified.

MAXVALUE
Specifies a value greater than the maximum value for the limit key of a partition boundary (that is,
all X'FF' regardless of whether the column is ascending or descending). If all of the columns in the
partitioning key are ascending, a constant or the MINVALUE clause cannot be specified following
MAXVALUE. After MAXVALUE is specified, all subsequent columns must specify MAXVALUE.

MINVALUE
Specifies a value that is smaller than the minimum value for the limit key of a partition boundary
(that is, all X'00' regardless of whether the column is ascending or descending). If all of the
columns in the partitioning key are descending, a constant or the MAXVALUE clause cannot be
specified following MINVALUE. After MINVALUE is specified, all subsequent columns must be
MINVALUE.

The key values are subject to the following rules:

• The first value corresponds to the first column of the key, the second value to the second column,
and so on. Using fewer values than there are columns in the key has the same effect as using the
highest or lowest values for the omitted columns, depending on whether they are ascending or
descending.

• The highest value of the key in any partition must be lower than the highest value of the key in the
next partition.

1278 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_attributesaddparts.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_attributesaddparts.html

• The values specified for the last partition are enforced. The value specified for the last partition is
the highest value of the key that can be placed in the table. If the limit was not previously enforced,
any existing key values that are greater than the value that is specified for the added partition are
placed into the discard data set when REORG is run.

• If a key includes a ROWID column or a column with a distinct type that is based on a ROWID data
type, 17 bytes of the constant that is specified for the corresponding ROWID column are considered.

• The combination of the number of table space partitions and the corresponding limit key size cannot
exceed the number of partitions * (106 + limit key size in bytes) < 65394

• If the concatenation of all the values exceeds 255 bytes, only the first 255 bytes are considered.

INCLUSIVE
Specifies that the specified range values are included in the data partition.

partition-hash-space
See partition-hash-space.

Be aware that specifying the ADD PARTITION clause might affect subsequent requests to recover to a
point in time. See Point-in-time recovery (Db2 Utilities) for information about possible restrictions, effects
on recovery status, and other considerations.

ALTER PARTITION
ALTER PARTITION

Specifies that the partitioning limit key for the identified partition is to be changed.

This clause applies only to tables in a partitioned table space. ALTER PARTITION must not be
specified for a table in a partition-by-growth table space or for tables that have XML columns. If
there are any pending definition changes to insert a new partition in the middle of the table for a
partition-by-range table space, altering the limit key is not allowed for any partition in the same table
until the newly inserted partition is materialized by a REORG execution.

If the table uses index-controlled partitioning, it is converted to use table-controlled partitioning. The
high limit key for the last partition is set to the highest possible value for ascending key columns or
the lowest possible value for descending key columns. The alteration is immediate and the altered
partition is placed in REORG-pending (REORP) status. If the altered partition is not the last logical
partition, the next logical partition is also placed in REORG-pending (REORP) status.

integer
Identifies the physical partition number in the range 1–n, where n is the number of partitions in
the table. integer is the physical partition number.

Depending on the situation when this clause is specified, Db2 might process the ALTER statement
as a pending data definition change, which means the current object definition and data do not
reflect the alteration at the time that the statement is issued. Instead, the affected partitions
placed in an advisory REORG-pending (AREOR) state, and a subsequent reorganization of the
affected partitions with an appropriate utility materializes the changes to the catalog and data. For
more information, see Pending data definition changes (Db2 Administration Guide).

If an immediate change is used, it places the affected partitions in REORG-pending (REORP)
status if integer identifies the last logical partition, the partition data set ever contained any data,
and the limit key is altered to a different value from MAXVALUE (for ascending) or from MINVALUE
(for descending).

ENDING AT (constant, MAXVALUE, or MINVALUE...)
Specifies the highest value of the partitioning key for the identified partition.

In this context, highest means highest in the sorting sequences of the columns. In a column
defined as ascending (ASC), highest and lowest have their usual meanings. In a column defined as
descending (DESC) the lowest actual value is highest in the sorting sequence.

Specify at least one value after ENDING AT in each ALTER PARTITION clause. You can use as
many values as there are columns in the key. The concatenation of all the values is the highest

Chapter 7. Statements 1279

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_pointintimerecovery.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html

value of the key in the corresponding partition. The length of each highest key value (the limit key)
is the same as the length of the partitioning key.
constant

Specifies a constant value with a data type that must conform to the rules for assigning that
value to the column. If a string constant is longer or shorter than required by the length
attribute of its column, the constant is either truncated or padded on the right to the required
length. If the column is ascending, the padding character is X'FF'. If the column is descending,
the padding character is X'00'. The precision and scale of a decimal constant must not
be greater than the precision and scale of its corresponding column. A hexadecimal string
constant (GX) cannot be specified.

MAXVALUE
Specifies a value greater than the maximum value for the limit key of a partition boundary
(that is, all X'FF' regardless of whether the column is ascending or descending). If all of the
columns in the partitioning key are ascending, a constant or the MINVALUE clause cannot be
specified following MAXVALUE. After MAXVALUE is specified, all subsequent columns must
specify MAXVALUE.

MINVALUE
Specifies a value that is smaller than the minimum value for the limit key of a partition
boundary (that is, all X'00' regardless of whether the column is ascending or descending).
If all of the columns in the partitioning key are descending, a constant or the MAXVALUE
clause cannot be specified following MINVALUE. After MINVALUE is specified, all subsequent
columns must be MINVALUE.

The key values are subject to the following rules:

• The first value corresponds to the first column of the key, the second value to the second
column, and so on. Using fewer values than there are columns in the key has the same effect
as using the highest or lowest values for the omitted columns, depending on whether they are
ascending or descending.

• The highest value of the key in any partition must be lower than the highest value of the key in
the next partition.

• The values specified for the last partition are enforced. The value specified for the last partition
is the highest value of the key that can be placed in the table. If the limit was not previously
enforced, any existing key values that are greater than the value that is specified for the added
partition are placed into the discard data set when REORG is run.

• If a key includes a ROWID column or a column with a distinct type that is based on a ROWID
data type, 17 bytes of the constant that is specified for the corresponding ROWID column are
considered.

• The combination of the number of table space partitions and the corresponding limit key size
cannot exceed the number of partitions * (106 + limit key size in bytes) < 65394

• If the concatenation of all the values exceeds 255 bytes, only the first 255 bytes are considered.

The value that is specified must not be equal to or beyond the range of the partition boundaries of
the adjacent partitions.

INCLUSIVE
Specifies that the specified range values are included in the data partition.

partition-hash-space
See partition-hash-space.

Be aware that specifying the ALTER PARTITION clause might affect subsequent requests to recover to a
point in time. See Point-in-time recovery (Db2 Utilities) for information about possible restrictions, effects
on recovery status, and other considerations.

1280 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_pointintimerecovery.html

ROTATE PARTITION
ROTATE PARTITION FIRST or integer TO LAST

Specifies that the first logical partition or the physical partition that corresponds to integer is to be
rotated to become the last partition. Processing resets the specified partition to empty, and the limit
key that is associated with the partition is set to the constant that is specified with the boundary
specification clause. For ascending limit keys, the new limit key must be higher than the limit key
for the preexisting last logical partition prior to this statement being processed. For descending limit
keys, the new limit must be lower than the limit for the preexisting last logical partition prior to this
statement being processed.

The table definition must be complete and must contain more than one partition. This clause must be
followed by the ENDING AT clause, which specifies the new high key limit for this partition, which is
now logically last.

Rotating a partition occurs immediately. If there is a referential constraint with DELETE RESTRICT on
the table, the ROTATE might fail. If the table uses index-controlled partitioning, it is converted to use
table-controlled partitioning.

After an ALTER TABLE statement with the ROTATE PARTITION clause is run, the RUNSTATS utility or
the REORG utility with the STATISTICS option should be run on the table space to ensure effective
access paths are available for selection.

If the table has a security label column, the user must have a valid security label to rotate partitions.
In addition, if write-down is in effect, the user must have the write-down privilege.

ROTATE PARTITION must not be specified in the following situations:

• The table is in a partition-by-growth table space.
• The table has XML columns.
• The table is a system-period temporal table or a history table.
• The table is an archive-enabled table or an archive table.

Adding a partition is allowed if an accelerated query table is defined on the table.

If the table uses index-controlled partitioning, it is converted to use table-controlled partitioning. Db2
enforces the high limit key for table-controlled partitioning, so any existing key values that are greater
than the high limit key are placed into the discard data set when REORG is run.

integer
Specifies a positive integer that represents a physical partition number as identified by the
PARTITION column of the SYSIBM.SYSTABLEPART catalog table. The partition must be a data
partition that exists in the table. The partition cannot be the last partition of the table.

ENDING AT (constant, MAXVALUE, or MINVALUE...)
The ENDING AT clause specifies the new high key limit for the existing partition holding the oldest
data.

In this context, highest means highest in the sorting sequences of the columns. In a column defined
as ascending (ASC), highest and lowest have their usual meanings. In a column defined as descending
(DESC) the lowest actual value is highest in the sorting sequence.

Specify at least one value after ENDING AT. You can use as many values as there are columns in the
key. The concatenation of all the values is the highest value of the key in the corresponding partition.
The length of each highest key value (the limit key) is the same as the length of the partitioning key.
constant

Specifies a constant value with a data type that must conform to the rules for assigning that value
to the column. If a string constant is longer or shorter than required by the length attribute of
its column, the constant is either truncated or padded on the right to the required length. If the
column is ascending, the padding character is X'FF'. If the column is descending, the padding
character is X'00'. The precision and scale of a decimal constant must not be greater than the
precision and scale of its corresponding column. A hexadecimal string constant (GX) cannot be
specified.

Chapter 7. Statements 1281

MAXVALUE
Specifies a value greater than the maximum value for the limit key of a partition boundary (that is,
all X'FF' regardless of whether the column is ascending or descending). If all of the columns in the
partitioning key are ascending, a constant or the MINVALUE clause cannot be specified following
MAXVALUE. After MAXVALUE is specified, all subsequent columns must specify MAXVALUE.

MINVALUE
Specifies a value that is smaller than the minimum value for the limit key of a partition boundary
(that is, all X'00' regardless of whether the column is ascending or descending). If all of the
columns in the partitioning key are descending, a constant or the MAXVALUE clause cannot be
specified following MINVALUE. After MINVALUE is specified, all subsequent columns must be
MINVALUE.

The key values are subject to the following rules:

• The first value corresponds to the first column of the key, the second value to the second column,
and so on. Using fewer values than there are columns in the key has the same effect as using the
highest or lowest values for the omitted columns, depending on whether they are ascending or
descending.

• The highest value of the key in any partition must be lower than the highest value of the key in the
next partition.

• The values specified for the last partition are enforced. The value specified for the last partition is
the highest value of the key that can be placed in the table. If the limit was not previously enforced,
any existing key values that are greater than the value that is specified for the added partition are
placed into the discard data set when REORG is run.

• If a key includes a ROWID column or a column with a distinct type that is based on a ROWID data
type, 17 bytes of the constant that is specified for the corresponding ROWID column are considered.

• The combination of the number of table space partitions and the corresponding limit key size cannot
exceed the number of partitions * (106 + limit key size in bytes) < 65394

• If the concatenation of all the values exceeds 255 bytes, only the first 255 bytes are considered.

INCLUSIVE
Specifies that the specified range values are included in the data partition.

RESET
Specifies that the existing data in the first logical partition is deleted. Also, the key entries from the
associated physical and logical index partitions are deleted.

In a partitioned table with limit values that are in ascending sequence, ALTER TABLE ROTATE
PARTITION FIRST TO LAST logically operates as if the partition with the lowest high key limit were
dropped and then a new partition was added with the specified high key limit. The new key limit
for the partition must be higher than any other partition in the table. For descending limit keys, the
rotation operates as the partition with the highest limit values becomes the partition with the lowest
limit values.

If the partition contains any of the following attributes, Db2 deletes each data row in the partition
individually:

• Referential integrity parent relationships
• DATA CAPTURE logging enabled
• Delete row triggers
• Validation procedures

If the table resides in a partition-by-range table space and does not have any of the previous
attributes, Db2 uses mass delete processing, and individual data rows are not touched or logged.

Be aware that specifying the ROTATE PARTITION clause might affect subsequent requests to recover to a
point in time. See Point-in-time recovery (Db2 Utilities) for information about possible restrictions, effects
on recovery status, and other considerations.

1282 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_pointintimerecovery.html

DROP ORGANIZATION
DROP ORGANIZATION

Specifies that the data organization definition for the table is dropped. The entire table becomes
inaccessible and is placed in REORG-pending status. REORG must be run to make the table
accessible. If the table is in a partition by range universal table space, the entire table space must be
reorganized at one time.

If any type of clustering is required, you must create the clustering index or add the MEMBER
CLUSTER clause to the table.

After the next time the REORG utility is run, the hash space value will be cleared and the implicitly
created hash overflow index will be dropped.

DROP ORGANIZATION must only be specified for has-organized tables.

Use of this clause or keyword might invalidate packages that depend on the target object, or packages
that depend on related objects through cascading effects. See Changes that invalidate packages (Db2
Application programming and SQL).

ADD ORGANIZE BY HASH or ALTER ORGANIZATION
Deprecated function: FL 504 Hash-organized tables are deprecated. Beginning in Db2 12, packages
bound with APPLCOMPAT(V12R1M504) or higher cannot create hash-organized tables or alter existing
tables to use hash-organization. Existing hash organized tables remain supported, but they are likely to be
unsupported in the future.

For information, see hash-organization.

ADD VERSIONING
ADD VERSIONING

Specifies that the table is a system-period temporal table.

The table must not already be defined as a system-period temporal table, a history table, an archive-
enabled table, or an archive table.

A SYSTEM_TIME period and a transaction-start-ID column must be defined for the table. The data
type, length, precision, and scale for a transaction-start-ID column must be defined the same as the
row-begin column and row-end column of the SYSTEM_TIME period in the table. The table must be the
only table in the table space. The table must not be a materialized query table, an incomplete table,
an auxiliary table, a table that is involved in a clone relationship, a table that was implicitly created
for an XML column, or a table that contains a security label column. ADD VERSIONING must not be
specified with other clauses on the ALTER TABLE statement.

The privilege set must include the privileges to issue an ALTER TABLE statement for the associated
history table.

Historical versions of the rows in the table are retained by Db2. A system-period temporal table
contains extra information that indicates when a row is inserted into the table, and when it is updated
or deleted. An associated history table is used to store the historical rows of the table. When data in
the system-period temporal table is updated, the previous version of the row is kept in the associated
history table. When data in a system-period temporal table is deleted, the last version of the row is
inserted into the history table.

References to the table can include a period clause to indicate which versions of the data are
returned.

Use of this clause or keyword might invalidate packages that depend on the target object, or packages
that depend on related objects through cascading effects. See Changes that invalidate packages (Db2
Application programming and SQL).

USE HISTORY TABLE history-table-name
Specifies a history table in which to keep the historical rows of the system-period temporal table.

Chapter 7. Statements 1283

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

If the history table contains data, ensure that the data accurately represents historical rows. If
the data does not accurately represent historical rows, the results of temporal queries might be
unexpected.

history-table-name must identify a table that exists at the current server and must not identify one of
the following tables:

• A system-period temporal table. The table was defined as a system-period temporal table by a
previous statement, or the current statement defines the table as a system-period temporal table.

• An existing history table.
• An archive-enabled table.
• An archive table.
• A declared global temporary table.
• A created global temporary table.
• A materialized query table.
• A view.
• An auxiliary table.
• A table that was implicitly created for an XML column.
• A table that is involved in a clone relationship.

The history table must be the only table in the table space.

Restrictions:

• The history table must not contain any of the following columns:

– Identity column
– Row change timestamp column
– Row-begin column
– Row-end column
– Transaction-start-ID column
– Generated expression column
– Column mask
– Security label column.

• The history table must not include a period.
• The history table must not have an incomplete table definition.
• A row permission must not be defined for the history table.

The encoding scheme and CCSID for the system-period temporal table and identified history table
must be the same.

The system-period temporal table and the identified history table must have the same number and
order of columns. The following attributes of the corresponding columns of the two tables must be the
same:

• name
• data type
• length (excluding inline LOB length), precision, and scale
• subtype and CCSID
• null attribute
• hidden attribute
• field procedure

1284 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If a column of the system-period temporal table is defined as ROWID GENERATED ALWAYS, the
corresponding history column should be defined as ROWID GENERATED ALWAYS.

If a column of the system-period temporal table is defined as GENERATED ALWAYS FOR EACH ROW
ON UPDATE OF ROW CHANGE TIMESTAMP or GENERATED AS IDENTITY, the corresponding column in
the history table cannot be defined with a GENERATED attribute.

ON DELETE ADD EXTRA ROW
Specifies that an additional row is inserted into the associated history table when a row is deleted
from a system-period temporal table. These additional history rows are not returned for a query
with a period specification for a system-period temporal table. The content of the columns of the
additional row in the history table are determined as follows:

• New values are generated for each column that corresponds to a non-deterministic generated
expression column.

• The column that corresponds to the row-begin column is set to the same value as the column
that corresponds to the row-end column.

• The other columns are set to the same value as in the row inserted into the history table for the
delete.

The ON DELETE ADD EXTRA ROW clause is intended to be used when the system-period temporal
table contains a non-deterministic generated expression column. The generated expression
columns in an extra row contain information about the delete operation that resulted in that extra
row in the history table.

For more information, see Temporal tables and data versioning (Db2 Administration Guide).

DROP VERSIONING
DROP VERSIONING

Specifies that the table is no longer a system-period temporal table. table-name must identify a
system-period temporal table. Historical data will no longer be recorded and maintained for the
table. The definition of the columns and data of the table table-name are not changed, but the table
is no longer treated as a system-period temporal table. The SYSTEM_TIME period is retained. The
relationship between the system-period temporal table and history table is removed. The history table
is not dropped, only the relationship between the two tables is removed. Subsequent queries that
reference the table must not specify a SYSTEM_TIME period specification for the table.

Use of this clause or keyword might invalidate packages that depend on the target object, or packages
that depend on related objects through cascading effects. See Changes that invalidate packages (Db2
Application programming and SQL).

Versioning cannot be dropped if there are any views, materialized query table definitions, or SQL table
functions that depend on the SYSTEM_TIME period.

DROP VERSIONING must not be specified with any other clauses on the ALTER TABLE statement.

The privilege set must include the privileges to issue an ALTER TABLE statement for the associated
history table.

ADD MATERIALIZED QUERY
ADD MATERIALIZED QUERY materialized-query-definition

Changes a base table to a materialized query table. Supplies a definition for a regular table to make it
a materialized query table. The table specified by table-name and the result columns of the fullselect
must not have the following characteristics:

• Be already defined as a materialized query table
• Have any primary keys, unique constraints (unique indexes), referential constraints (foreign keys),

check constraints, or triggers defined
• Be referenced in the definition of another materialized query table

Chapter 7. Statements 1285

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_temporaltables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

• Be directly or indirectly referenced in the fullselect
• Be in an incomplete state
• Be a system-period temporal table or a history table
• Be a base table that has been activated for the row access controls or column access controls
• Be a base table for which a row permission or a column mask has been defined
• Be an archive-enabled table or an archive table

If table-name does not meet these criteria, an error occurs.

The fullselect must not contain a period specification.

The object that is specified in the FROM clause of the fullselect cannot be a view with columns of
length 0.

fullselect
Defines the query on which the table is based. The columns of the existing table must meet the
following characteristics:

• Have the same number of columns
• Have exactly the same column definitions
• Have the same column names in the same ordinal positions

The fullselect must not directly or indirectly reference a base table that has been activated for
the row access controls or column access controls or reference a base table for which a row
permission or a column mask has been defined.

The fullselect cannot contain a reference to a created global temporary table, a declared global
temporary table, an accelerator-only table, a directory table, or another materialized query table.

The outermost SELECT clause of fullselect must not result in a column that is an array.

The outermost SELECT list of the fullselect can include result columns that are defined as EBCDIC
columns and result columns that are defined as Unicode columns. In this case, the materialized
query table is an EBCDIC table with one or more Unicode columns.

If fullselect is specified, the owner of the table being altered must have the SELECT privilege on
the tables or views referenced in the fullselect. Having SELECT privilege means that the owner has
at least one of the following authorizations:

• Ownership of the tables or views referenced in the fullselect
• The SELECT privilege on the tables and views referenced in the fullselect
• SYSADM authority
• DBADM authority for the database in which the table of the fullselect reside

Additional privileges might be necessary for accessing other objects that are referenced in the
fullselect.

If the owner of the table does not have the SELECT privilege, the following authorization IDs must
have SYSADM authority or DBADM authority for the database in which the tables of the fullselect
reside:

• For embedded statements, the authorization ID of the owner of the plan or package
• For dynamically prepared statements, the SQL authorization ID of the process

For details about specifying fullselect for a materialized query table, see the definition of fullselect
in the “CREATE TABLE statement” on page 1650 statement.

Use of this clause or keyword might invalidate packages that depend on the target object, or
packages that depend on related objects through cascading effects. See Changes that invalidate
packages (Db2 Application programming and SQL).

1286 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

refreshable-table-options
Specifies the materialized query table options for altering a regular table to a materialized query
table. The ORDER BY clause is allowed, but it is used only by REFRESH. The ORDER BY clause can
improve the locality of reference of data in the materialized query table.
DATA INITIALLY DEFERRED

Specifies that the data in the table is not validated as part of the ALTER TABLE statement. A
REFRESH TABLE statement can be used to make sure the data in the materialized query table
is the same as the result of the query in which the table is based.

REFRESH DEFERRED
Specifies that the data in the table can be refreshed at any time using the REFRESH TABLE
statement. The data in the table only reflects the result of the query as a snapshot at the
time when the REFRESH TABLE statement is processed or as updated by the user for a
user-maintained materialized query table.

MAINTAINED BY SYSTEM or MAINTAINED BY USER
Specifies how the data in the materialized query table is maintained.
MAINTAINED BY SYSTEM

Specifies that the data in the materialized query table table-name is to be maintained by
the system. Only the REFRESH TABLE statement is allowed on the table.

MAINTAINED BY USER
Specifies that the data in materialized query table table-name is to be maintained by
the user, who can use LOAD utility or SQL data change statements and REFRESH TABLE
statements on the table.

ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION
Specifies whether this materialized query table can be used for optimization.
ENABLE QUERY OPTIMIZATION

Specifies that the materialized query table can be used for query optimization. If the
fullselect specified does not satisfy the restrictions for query optimization, an error occurs.
For detailed rules to satisfy query optimization, see materialized-query-definition in the
“CREATE TABLE statement” on page 1650 statement.

DISABLE QUERY OPTIMIZATION
Specifies that the materialized query table cannot be used for query optimization. The
table can still be queried directly.

ALTER MATERIALIZED QUERY
ALTER MATERIALIZED QUERY materialized-query-table-alteration

Changes attributes of a materialized query table. The table-name must identify a materialized query
table.
SET refreshable-table-alteration

Changes how the table is maintained or whether the table can be used in query optimization.
MAINTAINED BY SYSTEM

Specifies that the data in a materialized query table table-name is to be maintained by the
system.

MAINTAINED BY USER
Specifies that the data in the materialized query table table-name is to be maintained by the
user.

ENABLE QUERY OPTIMIZATION
Specifies that materialized query table table-name can be used in query optimization. If
the fullselect specified for the materialized query table does not satisfy the restrictions for
automatic query optimization, an error occurs. For detailed rules to satisfy query optimization,
see “CREATE TABLE statement” on page 1650.

Chapter 7. Statements 1287

DISABLE QUERY OPTIMIZATION
Specifies that materialized query table table-name cannot be used for query optimization. The
table can still be queried directly.

Use of this clause or keyword might invalidate packages that depend on the target object, or packages
that depend on related objects through cascading effects. See Changes that invalidate packages (Db2
Application programming and SQL).

DROP MATERIALIZED QUERY
DROP MATERIALIZED QUERY

Changes a materialized query table so that it is no longer considered a materialized query table.
The table specified by table-name must be defined as a materialized query table. The definition
of columns and data of the name are not changed, but the table can no longer be used for query
optimization and is no longer valid for use with the REFRESH TABLE statement.

Use of this clause or keyword might invalidate packages that depend on the target object, or packages
that depend on related objects through cascading effects. See Changes that invalidate packages (Db2
Application programming and SQL).

DATA CAPTURE
DATA CAPTURE

Specifies whether the logging of the following actions on the table includes additional information to
support data replication processing:

• SQL data change operations
• Adding columns (using the ADD COLUMN clause)
• Changing columns (using the ALTER COLUMN clause)

For more information, see Altering a table to capture changed data (Db2 Administration Guide).

NONE
Do not record additional information to the log.

CHANGES
Write additional data about SQL updates to the log. Information about the values that are
represented by any LOB or XML columns is not available. Do not specify DATA CAPTURE CHANGES
for tables that reside in table spaces that specify NOT LOGGED.

The DATA CAPTURE CHANGES clause can be specified for a table for which row access controls or
column access control are active. However, the access controls do not protect data that is written
to the log.

For details about the recording of additional data for logged updates to catalog tables, see “ALTER
SEQUENCE statement” on page 1224.

VOLATILE
VOLATILE or NOT VOLATILE

Specifies how Db2 is to choose access to the table.
VOLATILE

Specifies that Db2 is to use index access to the table whenever possible for SQL operations.
However, be aware that list prefetch and certain other optimization techniques might be disabled
when VOLATILE is used.

One instance in which you might want to use VOLATILE is for a table whose size can vary greatly.
If statistics are taken when the table is empty or has only a few rows, those statistics might not be
appropriate when the table has many rows.

Another instance in which you might want to use VOLATILE is for a table that contains groups of
rows, as defined by the primary key on the table. All but the last column of the primary key of such

1288 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_altertablefordatacapture.html

a table indicate the group to which a given row belongs. The last column of the primary key is the
sequence number indicating the order in which the rows are to be read from the group. VOLATILE
maximizes concurrency of operations on rows within each group, since rows are usually accessed
in the same order for each operation. For this usage, the primary index must be the only index that
is defined on the table, and list prefetch is disabled to ensure the sequence in which the rows are
locked.

NOT VOLATILE
Specifies that Db2 is to base SQL access to the table on the current statistics.

CARDINALITY
An optional keyword that currently has no effect, but that is provided for Db2 family compatibility.

ADD CLONE
ADD CLONE clone-table-name

Specifies that a clone table, identified by clone-table-name, is created for the table that is being
altered. The name, including any implicit or explicit qualifiers, must not identify a table, view, alias,
or synonym that exists at the current server. The name must not identify a table that exists in the
SYSPENDINGOBJECTS catalog table. The clone table is created in the same table space as the base
table and has the same structure as the base table. This includes, but is not limited to, column names,
data types, null attributes, check constraints, indexes. When ADD CLONE is used to create a clone of
the specified base table, the base table must conform to the following rules:

• Reside in a universal table space that is managed by Db2.
• If the table space or any of its dependent objects (LOBs, XMLs, or indexes) is created with the

DEFINE NO clause, all data sets must already be created
• Be the only table in the table space
• Not be defined with a clone table
• Not be defined to use hash organization.
• Not be involved in any referential constraint
• Not be defined with any after triggers
• Not be a materialized query table
• Not have any pending changes
• Not have more than one table space version or index version in use. For information about how to

remove in-use versions, see Removing in-use table space versions (Db2 Administration Guide) and
Recycling index version numbers (Db2 Administration Guide).

• Not be a created global temporary table or a declared global temporary table
• Not be a system-period temporal table or a history table
• Not be an archive-enabled table or an archive table
• Not be altered to a clone table, if the base table uses relative numbering

The base table and the clone table are considered unrelated with regard to access controls. Row
access control or column access control can be activated independently for the base table, the clone
table, or both. The ownership can be transferred independently for the base table and the clone table.

DROP CLONE
DROP CLONE

Specifies that the clone table that is associated with the specified base table is dropped. table-name
must identify a base table that exists at the current server and the table must have a clone table
defined.

When a clone table is dropped, any row permissions or column masks that are defined for the clone
table are also dropped. If the clone table is referenced in the definition of a row permission or a
column mask, the ALTER statement returns an error

Chapter 7. Statements 1289

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_recycleversions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_recyclingindexversions.html

RESTRICT ON DROP
ADD RESTRICT ON DROP

Restricts dropping the table and the database and table space that contain the table.
DROP RESTRICT ON DROP

Removes the restriction on dropping the table and the database and table space that contain the
table.

ROW ACCESS CONTROL
ACTIVATE ROW ACCESS CONTROL

Specifies that row access control should be activated for the table. If the table is an alias or a
synonym, row access control is activated for the base table.

The table must not be one of the following tables:

• A created temporary table
• A table that is directly or indirectly referenced in the definition of a materialized query table
• A table that has a security label column
• A system-period temporal table
• A history table
• An archive-enabled table
• An archive table
• A table that has been granted federated access to another Db2 for z/OS subsystem in IBM Db2

Analytics Accelerator

If a trigger exists for the table, the trigger must be defined with the SECURED clause.

The table must not be referenced in the definition of a view if the following conditions are true:

• The view is defined with the WITH CHECK OPTION clause
• An INSTEAD OF trigger exists for the view and the trigger is not defined with the SECURED clause.

A default row permission is implicitly created for the table and allows no access to any of the rows
of the table, unless there is another row permission that is enabled and that provides access for
the authorization IDs or roles that are specified in the definition of the row permission. A query that
references the table before such a row permission exists and is enabled will return a warning that
there is no data in the table.

ACTIVATE ROW ACCESS CONTROL must not be specified if a period is defined for the table, because a
default row permission cannot be defined for a table with a period specification.

When the table is referenced in a SELECT, INSERT, UPDATE, DELETE, or MERGE statement, all row
permissions that are enabled for the table, including the default row permission, are applied to control
the set of rows that are accessible for the table. If any row permission that is enable is invalid because
a previous attempt to regenerate the row permission was unsuccessful, row access control cannot be
activated.

ACTIVATE ROW ACCESS CONTROL is ignored if row access control is already activated for the table.

Use of this clause or keyword might invalidate packages that depend on the target object, or packages
that depend on related objects through cascading effects. See Changes that invalidate packages (Db2
Application programming and SQL).

DEACTIVATE ROW ACCESS CONTROL
Specifies that row access control for the table is deactivated. When the table is referenced in a
SELECT, INSERT, UPDATE, DELETE, or MERGE statement, any existing row permissions for the table
that are enable are not applied to control the set of rows that are accessible for the table.

DEACTIVATE ROW ACCESS CONTROL is ignored if row access control is already defined as not
activated for the table.

1290 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

Use of this clause or keyword might invalidate packages that depend on the target object, or packages
that depend on related objects through cascading effects. See Changes that invalidate packages (Db2
Application programming and SQL).

COLUMN ACCESS CONTROL
ACTIVATE COLUMN ACCESS CONTROL

Specifies that column access control should be activated for the table. If the table is an alias or a
synonym, column access control is activated for the base table.

The table must not be one of the following tables:

• A created temporary table
• A table that is directly or indirectly referenced in the definition of a materialized query table
• A system-period temporal table
• A history table
• An archive-enabled table
• An archive table
• A table that has been granted federated access to another Db2 for z/OS subsystem in IBM Db2

Analytics Accelerator

If a trigger exists for the table, the trigger must be defined with the SECURED clause.

The table must not be referenced in the definition of a view if the following conditions are true:

• The view is defined with the WITH CHECK OPTION clause
• An INSTEAD OF trigger exists for the view and the trigger is not defined with the SECURED clause.

When column access control is activated, access to the table is not restricted. However, when the
table is referenced in a SELECT, INSERT, UPDATE, DELETE, or MERGE statement, all column masks
that are enabled for the table are applied to mask the values that are returned for the columns that
are referenced in the final result table or to determine the new values that are used in the SQL data
change statements. If any enabled column mask is invalid because a previous attempt to regenerate it
was unsuccessful, column access control cannot be activated

ACTIVATE COLUMN ACCESS CONTROL is ignored if column access control is already activated for the
table.

Use of this clause or keyword might invalidate packages that depend on the target object, or packages
that depend on related objects through cascading effects. See Changes that invalidate packages (Db2
Application programming and SQL).

DEACTIVATE COLUMN ACCESS CONTROL
Specifies that column access control for the table is deactivated. When the table is referenced in
a SELECT, INSERT, UPDATE, DELETE, or MERGE statement, any existing column masks that are
enabled for the table are not applied to control the values that are returned for the columns that are
referenced in the final result table or to determine if the new values can be used in the SQL data
change statements.

DEACTIVATE COLUMN ACCESS CONTROL is ignored if column access control is already defined as not
activated for the table.

Use of this clause or keyword might invalidate packages that depend on the target object, or packages
that depend on related objects through cascading effects. See Changes that invalidate packages (Db2
Application programming and SQL).

APPEND
APPEND NO or APPEND YES

Specifies whether append processing is used for the table. The APPEND clause must not be specified
for a table in a work file table space.

Chapter 7. Statements 1291

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

If the base table is in a partition-by-range table space, the APPEND option on the LOB table might
be different for each partition (depending if the LOB table space and associated objects for each
partition are created explicitly or implicitly). If the base table is in a partition-by-growth table space,
the APPEND attributes of LOB table will be inherited by each partition.

NO
Specifies that append processing is not used for the table. For insert and LOAD operations, Db2
attempts to place data rows in a well clustered manner with respect to the value in the row's
cluster key columns.

YES
Specifies that data rows are placed into the table without regard to clustering during the insert
and LOAD operations.

AUDIT
AUDIT

Alters the auditing attribute of the table. For information about audit trace classes, see Audit trace
(Db2 Performance).
NONE

Specifies that no auditing is to be done when the table is accessed.
CHANGES

Specifies that auditing is to be done when the table is accessed during the first insert, update, or
delete operation. However, the auditing is done only if the appropriate audit trace class is active.

ALL
Specifies that auditing is to be done when the table is accessed during the first operation of
any kind performed by a utility or application process. However, the auditing is done only if the
appropriate audit trace class is active and the access is not performed with COPY, RECOVER,
REPAIR, or any stand-alone utility.

The ALTER TABLE statement is audited for successful and failed attempts in the following cases, if the
appropriate audit trace class is active:

• AUDIT attribute is changed to NONE, CHANGES, or ALL on an audited or non-audited table.
• AUDIT CHANGES or AUDIT ALL is in effect.

VALIDPROC
VALIDPROC

Names a validation procedure for the table or inhibits the execution of any existing validation
procedure.
program-name

Designates program-name as the new validation exit routine for the table.

The validation procedure can inhibit a data change operation on any row of the table. Before
the operation takes place, the row is passed to the procedure. The values that are represented
by any LOB or XML columns in the table are not passed to the validation procedure. On an
insert or update operation, if the table has a security label column and the user does not have
write-down privilege, the user's security label value is passed to the validation routine as the value
of the column. After examining the row, the procedure returns a value that indicates whether the
operation should proceed. A typical use is to impose restrictions on the values that can appear in
various columns.

A table can have only one validation procedure at a time. When you name a new procedure, any
existing procedure is no longer used. The new procedure is not used to validate existing table
rows. It is used only to validate rows that are loaded, inserted, updated, or deleted after execution
of the ALTER TABLE statement.

For more information, see Validation routines (Db2 Administration Guide).

1292 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_setaudittrace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_setaudittrace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_validationroutine.html

NULL
Discontinues the use of any validation routine for the table.

ENABLE ARCHIVE
ENABLE ARCHIVE

Specifies that the table is an archive-enabled table.

The table must satisfy the following criteria:

• The table must not already be defined as an archive-enabled table or an archive table.
• The table must not contain a period.
• The table must be the only table in the table space.
• The table must not have a column mask or row permission defined.
• The table must not be one of the following tables:

– A materialized query table
– An incomplete table
– An auxiliary table
– A table that is involved in a clone relationship
– A table that was implicitly created for an XML column
– A table that contains a security label column
– A system-period temporal table
– A history table

ENABLE ARCHIVE must not be specified with other clauses on the ALTER TABLE statement.

The privilege set must include the privileges to issue an ALTER TABLE statement for the associated
archive table.

For archive-enabled tables, Db2 retains archived versions of the rows. When data in an archive-
enabled table is deleted, and the SYSIBMADM.MOVE_TO_ARCHIVE built-in global variable is set to Y,
the last version of the row is inserted into the archive table.

The SYSIBMADM.GET_ARCHIVE built-in global variable and the ARCHIVESENSITIVE bind option
determine whether rows in the associated archive table are included when an archive-enabled table is
referenced in a table-reference.

Related information

Archive-enabled tables and archive tables (Introduction to Db2 for z/OS)
“GET_ARCHIVE” on page 330
“MOVE_TO_ARCHIVE” on page 332
ARCHIVESENSITIVE bind option (Db2 Commands)

USE archive-table-name
Specifies an archive table in which to keep archived rows of the archive-enabled table.

archive-table-name must identify a table that exists at the current server. The table must satisfy the
following criteria:

• The table must be the only table in the table space.
• The table must not have an incomplete table definition.
• The table must not be defined as the parent or child in an existing referential constraint.
• The table must not include a period.
• The table must not include a row permission or column mask.
• The table cannot be one of the following tables:

Chapter 7. Statements 1293

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_archivetables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptarchivesensitive.html

– A catalog table.
– An archive-enabled table. The table was defined as an archive-enabled table by a previous

statement, or the current statement defines the table as an archive-enabled table.
– An existing archive table.
– A system-period temporal table.
– A history table.
– A declared global temporary table.
– A created global temporary table.
– A materialized query table.
– A view.
– An auxiliary table.
– A table that was implicitly created for an XML column.
– A clone table.
– A table that has a clone defined on it.

• The table must not contain any of the following columns:

– An identity column
– A row-begin column
– A row-end column
– A transaction-start-ID column
– A generated expression column
– A security label column

The privilege set must include the privileges to issue an ALTER TABLE statement for the associated
archive table.

The archive-enabled table and the associated archive table must have the same number and order of
columns. The following attributes for the corresponding columns of the two tables must be the same:

• Name
• Data type
• Length (excluding inline LOB length or XML length in the base table), precision, and scale
• FOR BIT, SBCS, or MIXED DATA attribute for character string columns
• Null attribute
• Hidden attribute
• CCSID
• Field procedure

If a column of an archive-enabled table is defined as ROWID, the corresponding column of the archive
table must also be defined as ROWID with the GENERATED ALWAYS attribute.

If a column of an archive-enabled table is defined as row change timestamp, the corresponding
column of the archive table must also be defined as row change timestamp with the GENERATED
ALWAYS attribute.

DISABLE ARCHIVE
DISABLE ARCHIVE

Specifies that the table is no longer an archive-enabled table.

table-name must identify an archive-enabled table. The definition of the columns and data of the
table table-name are not changed, but the table is no longer treated as an archive-enabled table.
The relationship between the archive-enabled table and the associated archive table is removed. The

1294 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

archive table is not dropped. However, by removing the relationship between the archive table and the
archive-enabled table, the behavior of the archive-enabled table changes as follows:

• Subsequent queries that reference the table do not consider rows in the archive table regardless
of the setting of the SYSIBMADM.GET_ARCHIVE built-in global variable or the ARCHIVESENSITIVE
bind option.

• Deleted rows are not moved to the archive table regardless of the setting of the
SYSIBMADM.MOVE_TO_ARCHIVE built-in global variable.

Use of this clause or keyword might invalidate packages that depend on the target object, or packages
that depend on related objects through cascading effects. See Changes that invalidate packages (Db2
Application programming and SQL).

DISABLE ARCHIVE must not be specified with any other clauses on the ALTER TABLE statement.

The privilege set must include the privileges to issue an ALTER TABLE statement for the associated
archive table

Notes for ALTER TABLE
Order of processing of clauses

When there is more than one clause, they are processed in the following order:

1. VALIDPROC
2. AUDIT
3. DATA CAPTURE
4. ROTATE
5. VOLATILE clauses
6. APPEND clauses
7. DROP clauses
8. ALTER clauses
9. RENAME clause

10. ADD clauses

Within each of these stages, the order in which the user specifies the clauses is the order in which
they are performed.

Altering the data type, length, precision, or scale of a column
When you change the data type, length, precision, or scale of a column, consider the following
information:
Altering character data

When columns are converted from CHAR to VARCHAR, normal assignment rules apply, which
means that trailing blanks are kept instead of being stripped out. If you want varying length
character strings without trailing blanks, use the STRIP function for data in the column after
changing the data type to VARCHAR.

When a CHAR FOR BIT DATA column is converted to a BINARY data type, the following applies:

• The existing space characters in the table will not be changed to hexadecimal zeros (X'00')
• If the new length attribute is greater than current length attribute of the column, the values in

the table are padded with hexadecimal zeros (X'00')

When a CHAR FOR BIT DATA or VARCHAR FOR BIT DATA column is converted to a BINARY or
VARBINARY data type, the existing default value will be cast as a binary string. The resulting
binary string will be at least twice the original size. The alter will fail if the resulting binary string
length exceeds 1536 UTF-8 bytes.

Chapter 7. Statements 1295

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

Altering fixed-length to varying-length or increasing varying-length column
When you change a column from a fixed to varying length or change the length of a varying-length
column, process the ALTER TABLE statements in the same unit of work or do a reorganization
between the ALTER TABLE statements to avoid anomalies with the lengths and padding of
individual values

Altering DECIMAL(19,0) to BIGINT.

In releases of Db2 prior to DB2 9, use of the DECIMAL(19,0) data type for applications that
work with BIGINT data was encouraged. For performance reasons, columns it is best to alter the
DECIMAL(19,0) columns to BIGINT. Note that altering from DECIMAL(19,0) to BIGINT is provided
only for DECIMAL(19,0) columns that are used for applications that work with BIGINT (thus, the
data in those columns is within the range of the BIGINT).

When altering from DECIMAL(19,0) to BIGINT you should ensure that all values in the
DECIMAL(19,0) column are within the range of BIGINT before the alter. The following query or
a similar query can be run to determine which rows (if any) contain values that are outside of the
range of BIGINT:

SELECT * FROM table_name
 WHERE dec19_0_column > 9223372036854775807
 OR dec19_0_column < -9223372036854775808;

Altering a column in a partitioning key

When a partitioning key column with a numeric data type is altered to a larger numeric data type,
and the limit key value for the original numeric data type of the column is X'FF', the limit key value
for the new numeric data type of the column is left-padded with X'FF'. For example, if a column is
converted from SMALLINT to INTEGER, and a limit key value for the SMALLINT column is 32767
(which is 2 bytes of X'FF'), the limit key for the INTEGER column is 2147483647 (which is 4 bytes
of X'FF').

When a partitioning key column with a character data type is altered to a longer character data
type, and the limit key value for the original character data type of the column (excluding the first
NULL byte if the column is nullable) is neither all X'FF' nor all X'00', the limit key value for the
new character data type of the column is right-padded with blank(s) of the encoding scheme of
the table. For example, if a column is converted from CHAR(1) to VARCHAR(2), and a limit key
value for the CHAR(1) column is 'A' (which is X'C1'), the limit key for the VARCHAR(2) column is
'A ' (which is X'C140' when the encoding scheme of the table is EBCDIC, or is X'C120' when the
encoding scheme of the table is UNICODE or ASCII).

When a partitioning key column with a character data type is altered to a longer character data
type, and the limit key value for the original character data type of the column (excluding the first
NULL byte if the column is nullable) is all X'FF', the limit key value for the new character data type
of the column is right-padded with X'FF' and the table space that contains the table being altered
is left in REORG-pending (REORP) status.

When a partitioning key column with a character data type is altered to a longer character data
type, and the limit key value for the original character data type of the column (excluding the first
NULL byte if the column is nullable) is all X'00', the limit key value for the new character data type
of the column is right-padded with X'00' and the table space that contains the table being altered
is left in REORG-pending (REORP) status.

Statistics for altered columns
New COLUMN statistics should be collected for all altered columns. Even though the COLCARDF
value is valid, the HIGH2KEY and LOW2KEY values are invalid, and any SYSCOLSTATS catalog
entries for the column are removed. Any frequencies or histogram statistics which include this
column should also be collected again.

Considerations for altering an XML column
If altered-data-type is XML, the old data type of the altered column must also be XML:

1296 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• If the old data type has no XML type modifier and the new data type does, you should ensure that
all values in the XML column are valid according to the XML schema that is specified in the type
modifier. The XML table space for the column that is being changed is left in CHECK-pending status.

• If the old data type has the XML type modifier but the new data type has no type modifier, the
existing values do not need to be re-validated. The state of the table space is not changed.

If the XML schemas that are specified in the old XML type modifier are a subset of the XML schemas
that are specified in the new XML type modifier, the existing values do not need to be re-validated.
The state of the XML table space is not changed.

• If the XML schemas that are specified in the old XML type modifier are NOT a subset of the XML
schemas that are specified in the new XML type modifier, the XML table space for the column that is
being changed is left in the CHECK-pending status.

Recovering to a point in time after an alteration
Some alterations might affect subsequent requests to recover to a point in time. For details about
possible restrictions, effects on recovery status, and other considerations, see Point-in-time recovery
(Db2 Utilities).

For example, for an ALTER TABLE statement that includes a DROP COLUMN, ALTER COLUMN, or
ROTATE PARTITION clause, certain considerations or restrictions might apply to subsequent requests
to recover to a point in time.

Referencing columns in ADD, ALTER, and RENAME clauses
A column can only be referenced once in an ADD COLUMN, an ALTER COLUMN, or a RENAME COLUMN
clause in a single ALTER TABLE statement. However, that same column can be referenced multiple
times for adding or dropping constraints in the same ALTER TABLE statement.

Because a distinct type is subject to the same restrictions as its source type, all the syntactic rules
that apply to LOB, ROWID, and DECFLOAT columns apply to distinct type columns that are based on
LOBs, row IDs, and DECFLOATs. For example, if a table has an explicitly created ROWID column, you
cannot add a column with a distinct type that is sourced on a row ID.

Adding a column to table T only changes the description of T. If the catalog description of T is used
to create a table T' and a facility such as DSN1COPY is used to effectively copy T into T', queries that
refer to the added column in T' will fail because the data does not match its description. To avoid this
problem, run the REORG utility against the table space of T before making the copy.

Restrictions on a clone table
Tables that are involved in a clone relationship (base tables and their associated clone tables) have
the following restrictions:

• You cannot use the RUNSTATS utility on a clone table.
• Objects that are involved in a clone relationship do not use the FASTSWITCH data set switching

method when the REORG utility is run and the switch phase happens normally. This includes both
the base table and the clone table objects (data and index), as well as LOB and XML objects.
In addition, specification of FASTSWITCH YES together with CLONE in a REORG utility control
statement is not allowed.

• For a partitioned table, if a mixture of 'I' and 'J' data sets exists when a clone table is created, the
mixture of 'I' and 'J' data sets can be changed only by first dropping the clone table.

• Catalog and directory tables cannot have clone tables.
• Indexes cannot be created on a clone table. When an index is created on a base table that is

involved in a clone relationship, the index on the clone table will be created implicitly and will be put
into rebuild-pending status.

• Implicitly created auxiliary table spaces (table spaces for LOB and XML columns) and auxiliary
indexes for the base table are always created as DEFINE YES.

• Before triggers cannot be created on a clone table. Before triggers that are created on a base table
apply to both the base table and the clone table.

• You cannot rename a base table that has a clone and you cannot rename a clone table.

Chapter 7. Statements 1297

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_pointintimerecovery.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_pointintimerecovery.html

• Real-time statistics tables cannot have clone tables.
• You cannot drop an auxiliary table or an auxiliary index of an object that is involved in a clone

relationship.

If the table is involved in a clone relationship, no other table altering can take place. If a table change
is required, the clone table objects must be dropped so that the base table object attributes can be
modified. After the table and index changes and such are completed, the clone table objects can be
recreated.

Size restriction for the object descriptor of a table
The following cases might result in an error being returned if the ALTER TABLE statement results in a
versioned object descriptor that is larger than 30,000 bytes being added (or updated):

• An ALTER TABLE statement that results in the first version of the object descriptor being generated
for the table

• An ALTER TABLE statement that results in the first version of the object descriptor being generated
for one or more of the indexes that are defined on the table

• An ALTER TABLE ALTER COLUMN SET DATA TYPE statement on an existing decimal column on a
versioned table

You might need to drop and recreate the table if the object descriptor for the table exceeds 30,000
bytes. Alternatively, you can reduce the size of the object descriptor for the table by reducing the
size of the default value for varying-length columns in the table by issuing an ALTER TABLE ALTER
COLUMN SET DEFAULT statement. You can also drop unnecessary column defaults to reduce the size
of the object descriptor for the table.

Altering the attributes of an existing identity column
Existing values for the identity column are unaffected by the ALTER TABLE statement. The changed
identity column attributes affect values generated after the ALTER statement has executed. Db2 does
not validate any of the existing identity column values against the new identity column attributes.
For example, duplicate values might be generated even if NO CYCLE is in effect, such as when an
ascending identity column altered to become a descending identity column.

Any existing values in the cache that have not yet been used might be lost. Loss of cached values can
also occur if the ALTER statement returns an error or is rolled back.

Specifying START or RESTART WITH values outside the range for cycles for identity columns

START or RESTART WITH values for identity columns are not constrained by the values of MINVALUE
and MAXVALUE. That is, if the START WITH or RESTART WITH value for an identity column is greater
than MAXVALUE, it has the following results:

• An ascending identity column generates the RESTART WITH value and then cycles to MINVALUE if
CYCLE is in effect. If NO CYCLE is in effect, the identity column generates the RESTART WITH value
one time, and the next attempt to generate an identity column value returns an error.

• A descending sequence generates the RESTART WITH value and then generates values according
to the INCREMENT BY specification until it reaches MINVALUE. MAXVALUE does not constrain the
generation of values for a descending identity column in this situation, so many values greater than
MAXVALUE can potentially be generated.

Likewise, if the RESTART WITH value is less than MINVALUE, it has the following results:

• A descending identity column generates the RESTART WITH value and then cycles to MAXVALUE if
CYCLE is in effect. If NO CYCLE is in effect, the sequence generates the RESTART WITH value one
time, and the next attempt to generate a sequence value returns an error.

• An ascending identity column generates the RESTART WITH value and then generates values
according to the INCREMENT BY specification until it reaches MAXVALUE. MINVALUE does not
constrain the generation of values for an ascending identity column in this situation, so many values
less than MINVALUE can potentially be generated.

1298 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Pending data definition changes

The following table lists clauses and specific conditions that cause an ALTER TABLE statement to be
processed as a pending definition change, which is not reflected in the definition or data at the time
that the ALTER TABLE statement is issued. Instead, the table space or specific partitions are placed
in an advisory REORG-pending state (AREOR). A subsequent reorganization of the table space, or the
specific affected partitions, applies the pending definition changes to the definition and data of the
table. The definition of the containing table space must not be in an incomplete state.

Clause or option Pending definition change used if...

ALTER COLUMN The statement altering the data type, length, precision, or scale of a
column is a pending change to the definition of the table space if the
data sets of the table space are already created and all of the following
conditions are true:

• The DDL_MATERIALIZATION subsystem parameter is set to
ALWAYS_PENDING.

• The base table space is a universal table space.

DROP COLUMN The data sets of the table space are already created.

ADD PARTITION The data sets are already defined and the new partition is added between
existing logical partitions.

The alteration is normally a pending change, and the added partition
is placed in advisory REORG-pending (AREOR) status. Unless integer
specifies the last logical partition, the next logical partition is also placed in
AREOR status. However, if no other pending definition changes exist on the
affected partitions, an immediate change can sometimes be used, possibly
with a restrictive status.

ALTER PARTITION The statement changes the limit keys for the following types of partitioned
table spaces:

• Partition-by-range table spaces
• Partitioned (non-UTS) table spaces with table-controlled partitioning.

The alteration is normally a pending change, and the altered partition
is placed in advisory REORG-pending (AREOR) status. Unless integer
specifies the last logical partition, the next logical partition is also placed in
AREOR status. However, if no other pending definition changes exist on the
affected partitions, an immediate change can sometimes be used, possibly
with a restrictive status.

The change is immediate with no restrictive status if any of the following
conditions are true:

• The affected partition data sets never contained any data.
• There is no possibility of any data being discarded or moved between

partitions based only on the range of possible data values (not on the
actual data values). This situation can occur if the statement specifies
the same existing values for the limit key, or if the new limit key for the
last logical partition expands the range of possible data values.

The data sets of the
table space are already
created.

For more information, see Pending data definition changes (Db2 Administration Guide).

Chapter 7. Statements 1299

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html

Restrictions for pending data definition changes
The following restrictions apply to ALTER TABLESPACE, ALTER TABLE, and ALTER INDEX statements
that result in pending data definition changes:

• Options that cause pending changes cannot be specified with options that take effect immediately.
• Options that cause pending changes cannot be specified for the Db2 catalog, other system objects,

or objects in a work file database.
• The DROP PENDING CHANGES clause of the ALTER TABLESPACE statement cannot be specified for

a catalog table space.
• If the table space, or any table it contains is in an incomplete state, you cannot specify options that

cause pending changes.
• For ALTER INDEX, options that cause pending changes cannot be specified if the definition of the

table space or table on which the index is defined is not complete.

Also, many alter operations are restricted for a table space that has existing pending data definition
changes for the table space, the table it contains, or indexes on the table. For more information, see
Restrictions for pending data definition changes (Db2 Administration Guide).

Adding a LOB column

Db2 sometimes implicitly creates the LOB table space, auxiliary table, and index on the auxiliary
table for each LOB column in a table or partition. For more information, see LOB table space implicit
creation (Db2 Administration Guide).

If Db2 does not implicitly create the LOB table spaces, auxiliary tables, and indexes on the auxiliary
tables, you must create these objects by issuing CREATE TABLESPACE, CREATE AUXILIARY TABLE,
and CREATE INDEX statements. For more information, see Creating LOB table spaces, auxiliary tables,
and auxiliary indexes explicitly (Db2 Administration Guide).

For partitioned tables, each partition of the base table requires a separate LOB table space, auxiliary
table, and auxiliary index for each LOB column.

If the base table is involved in a clone relationship, implicitly created LOB table spaces and implicitly
created indexes are always created with the DEFINE YES attribute.

Adding an inline LOB column
If the page size is exceeded for a table in a universal table space, Db2 recalculates the record size
using 0 as the inline length for LOB columns that do not specify the INLINE LENGTH clause. A record
size of 0 is used in the recalculation even if the LOB_INLINE_LENGTH subsystem parameter value is
greater than 0. After the recalculation, if the page size is still exceeded, the ALTER TABLE statement
returns an error.

Adding a ROWID column
When you add a ROWID column to an existing table, Db2 ensures that the same, unique row ID value
is returned for a row whenever it is accessed. If the table already has an implicitly hidden ROWID
column, Db2 also ensures that the values in the two ROWID columns are identical.

If the table space that contains the table is implicitly created and you add a ROWID column that
is defined as GENERATED BY DEFAULT to the table, an enforcing index for the ROWID column is
implicitly created. If the table already has an implicitly hidden ROWID column and the ROWID column
that you add is defined as GENERATED BY DEFAULT, Db2 changes the implicitly hidden ROWID
column to have the GENERATED BY DEFAULT attribute and does not implicitly create an enforcing
index for the ROWID column.

When you add a ROWID column that is defined as GENERATED BY DEFAULT and the ROWID index is
implicitly created, the privilege set requires the INDEX privilege on the table and the USE privilege on
the buffer pool and the storage group. The implicitly created ROWID index is owned by the owner of
the table.

Reorganizing a table space has no effect on the values in a ROWID column.

1300 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_restrictpendingchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicittablespacelob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicittablespacelob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createexplicitlobts.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createexplicitlobts.html

Adding an identity column
When you add an identity column to a table that is not empty, Db2 places the table space that
contains the table in the REORG pending (REORP) status. When the REORG utility is subsequently
run, Db2 generates the values for the identity column in all existing rows and then removes the
REORG-pending (REORP) status. These values are guaranteed to be unique, and their order is system-
determined.

Adding a row change timestamp column

When you add a row change timestamp column to an existing table, the initial value for existing rows
is not stored at the time of the ALTER statement.

APPLCOMPAT V13R1M502 or lower: If the ALTER statement was executed in APPLCOMPAT
V13R1M502 or lower, then the LRSN or the RBA derive an implicit ROW CHANGE TIMESTAMP
expression for the row change timestamp column values in existing rows.

Db2 places the table space into an advisory-REORG pending state. For existing rows' row change
timestamp column values, the LRSN or the RBA derives an implicit ROW CHANGE TIMESTAMP
expression. When any row on the page is updated or changed, the implicit ROW CHANGE TIMESTAMP
expression is changed. When the REORG utility is subsequently run, Db2 generates the values for
the row change timestamp column in all existing rows and then removes the REORG pending status.
These values will not change unless the row is updated.

XML version support when adding an XML column
When an XML column is added to a table that is in a universal table space, the XML column and the
associated XML table will support XML versions if it is the first XML column in the table or if all the
other XML columns in the table support XML versions. Similarly, when a clone table is associated with
the base table, any XML columns and associated XML tables will support XML versions if the existing
XML columns in the base table support XML versions.

Effect of adding a column on views
Adding a column to a table has no effect on existing views.

Considerations for implicitly hidden columns
A column that is defined as implicitly hidden can be explicitly referenced on the ALTER statement.
For example, an implicitly hidden column can be altered, can be specified as part of a referential
constraint or a check constraint, or a materialized query table definition.

Cascaded effects of adding or altering a column
Adding a column to a table has no cascaded effects to views that reference the table. For example,
adding a column to a table does not cause the column to be added to any dependent views, even
if those views were created with a SELECT clause. But altering a column can cause other cascaded
effects. The following table lists the cascaded effect of altering the data type, precision, scale, or
length of a column.

Table 183. Cascaded effect of altering a column's data type, precision, scale, or length

Operation Effect

Alter of a column referenced by a view If the data type, length, precision, or scale
for a column is altered, all the views that
are dependent on the altered table are
reevaluated at alter time with the new column
attributes. If errors are encountered during the
view regeneration process, the ALTER TABLE
statement fails. The new internal structure of
each dependent view is not saved at alter time,
and subsequent references to a dependent view
will cause the view to be regenerated again.
Use the ALTER VIEW statement to regenerate
a dependent view and have the new internal
structure saved.

Chapter 7. Statements 1301

Table 183. Cascaded effect of altering a column's data type, precision, scale, or length (continued)

Operation Effect

Alter of a column referenced in the key of an
index or a unique constraint (unique key or
primary key)

The alter is allowed unless DECIMAL with
a fraction is being converted to a floating
value. In this case, the loss of precision can
result in a loss of uniqueness. For numeric
data type conversions, the index is placed in
REBUILD-pending status. For character data
type conversions, the index key columns are
converted on first-write access. The index is not
placed in REBUILD-pending status.

Alter of a column referenced in a package The alter is allowed. All packages dependent on
the table in which the column is being altered are
invalidated.

Alter of a column referenced in the body of a
user-defined function or procedure

Alter is allowed. If there is a package associated
with the function or procedure, it is invalidated.

If the function is an SQL table function, the
function is reevaluated at alter time with the
new column attributes. If errors are encountered
during the reevaluation process, the ALTER
TABLE statement fails.

Alter of a column referenced in the parameter list
of a user-defined function or procedure

Alter is allowed. The attributes of the existing
function or procedure are unchanged. To access
the new definition of the column, the function or
procedure must be dropped and recreated.

If the function is an SQL table function, the
function is reevaluated at alter time with the
new column attributes. If errors are encountered
during the reevaluation process, the ALTER
TABLE statement fails.

Alter of a column referenced by a trigger Alter is allowed.

All trigger packages that are dependent on the
table of the column are invalidated.

If the trigger is an advanced trigger, the trigger
is regenerated, and a rebind occurs for the SQL
control statements, as well as non-SQL control
statements that are included in the trigger body,
at the local server. When a trigger is regenerated,
any unqualified names in the trigger body are
resolved using the name resolution process.

1302 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 183. Cascaded effect of altering a column's data type, precision, scale, or length (continued)

Operation Effect

Alter of a column referenced in a row permission
or column mask

Alter is allowed.

Changing the data type, precision, scale, or
length of a column can affect a row permission
or a column mask that is defined on the table.
If the data type, length, precision, or scale for
the column is changed and a column mask is
defined for this column, or a row permission or
a column mask references this column, these row
permissions and column masks are reevaluated
using the new column attributes of the column.
If an error is encountered during the reevaluation
process, the ALTER statement returns the error.

During the reevaluation of the column mask
or row permission, user-defined functions that
are referenced in the definition of the column
mask or the row permission must be resolved
to the same functions that were resolved during
the creation of the column mask or the row
permission.

If the column that is being changed is part of an index, and the column alteration is executed as
an immediate definition change, an exception state might be set for the index. Possible settings are
shown in Table 184 on page 1303:

Table 184. Informational settings for ALTER COLUMN when the column is in an index

Alteration type Exception state for index

VARCHAR to CHAR • For a NOT PADDED index: PSRBD and
AREO*, or RBDP and AREO*“1” on page 1304

• For a PADDED index: AREO*

VARGRAPHIC to GRAPHIC • For a NOT PADDED index: PSRBD and
AREO*, or RBDP and AREO*“1” on page 1304

• For a PADDED index: AREO*

CHAR to VARCHAR AREO*

GRAPHIC to VARGRAPHIC AREO*

VARCHAR to VARCHAR AREO* (for a PADDED index only)

VARGRAPHIC to VARGRAPHIC AREO* (for a PADDED index only)

CHAR to CHAR AREO*

CHAR FOR BIT DATA or VARCHAR FOR BIT DATA to
BINARY or VARBINARY

RBDP or PSRBD“1” on page 1304

GRAPHIC to GRAPHIC AREO*

Any changed numeric column RBDP or PSRBD“1” on page 1304

TIMESTAMP WITHOUT TIME ZONE to TIMESTAMP
WITHOUT TIME ZONE

AREO*

Chapter 7. Statements 1303

Table 184. Informational settings for ALTER COLUMN when the column is in an index (continued)

Alteration type Exception state for index

TIMESTAMP WITH TIME ZONE to TIMESTAMP WITH
TIME ZONE

AREO*

Notes:

1. An index on a nonpartitioned table, or a partitioned index on a partitioned table is set to RBDP
status. A nonpartitioned index on a partitioned table is set to PSRBD status.

For information about resetting informational or restrictive exception states after schema changes,
see Reorganizing table spaces for schema changes (Db2 Administration Guide).

Adding a partition

When you add a partition to a table, if the boundary for the last partition was not previously enforced,
it is enforced after the partition is added, and the last two logical partitions are left in REORG-pending
(REORP) status. If the last partition before the new one is added was in REORG-pending status, the
added partition is also placed in REORG-pending status.

For more information, see Adding partitions (Db2 Administration Guide).

Adding a partition for a table that has LOB columns

Db2 sometimes implicitly creates the LOB table space, auxiliary table, and index on the auxiliary
table for each LOB column in a table or partition. For more information, see LOB table space implicit
creation (Db2 Administration Guide).

If Db2 does not implicitly create the LOB table spaces, auxiliary tables, and indexes on the auxiliary
tables, you must create these objects by issuing CREATE TABLESPACE, CREATE AUXILIARY TABLE,
and CREATE INDEX statements. For more information, see Creating LOB table spaces, auxiliary tables,
and auxiliary indexes explicitly (Db2 Administration Guide).

Row format for newly added partitions
When the value of the RRF subsystem parameter is ENABLE, newly added partitions that are created
using the ADD PARTITION clause (or partitions that are added because the table space is partition-by-
growth) will be created in re-ordered row format. When the value of the RRF subsystem parameter is
DISABLE, newly added partitions will be created in basic row format, except for the following table
spaces:

• For table spaces that are already using basic row format and that contain tables with edit
procedures, newly created partition will always be in basic row format regardless of value of the
RRF parameter.

• For table spaces that are already using re-ordered row format and that contain tables with edit
procedures, newly created partition will always be in re-ordered row format regardless of value of
the RRF parameter.

• Newly created partitions of an XML table space will always be in re-ordered format.

Rotating a partition from first to last
Running ALTER TABLE to rotate the first logical partition to become the last logical partition can be
very time consuming. During the reset operation, all rows from the partition are deleted. In addition,
the keys for the deleted rows are also deleted from all nonpartitioned indexes, which requires that
each nonpartitioned index must be scanned.

When you rotate partitions, if the boundary for the last partition was not previously enforced, it
is enforced after ROTATE FIRST TO LAST is issued, and the last two logical partitions are left in
REORG-pending (REORP) status. If the last partition before ROTATE FIRST TO LAST was issued was in
REORG-pending status, the last two logical partitions are left in REORG-pending status.

1304 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_reorgtablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_addpartition.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicittablespacelob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicittablespacelob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createexplicitlobts.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createexplicitlobts.html

Effect of changes on applications
Applications might need to be changed to correspond to changes to the columns in a table. For
example, if you increase the length of a column, you need to increase the length of variables into
which that column is fetched. If you change the data type of a column, you also might need to change
the data type of the corresponding variable to avoid performance degradation.

If you rename or drop a column, you need to change any references to that column to avoid
unexpected results.

Invalidation of packages
This statement might invalidate all packages that depend on target objects, and sometimes other
related objects through cascading effects, depending on the clauses and keywords specified
and other factors. For more information, see Changes that invalidate packages (Db2 Application
programming and SQL).

Changes that might require rebinds to take effect for applications:
Some alterations that do not invalidate packages might still require rebinds of dependent packages
for the applications to pick up the changes. For more information, see Changes that might require
package rebinds (Db2 Application programming and SQL).

Dropping constraints and check pending status
If a table space or partition is in check pending status because it contains a table with rows that
violate constraints, dropping the constraints removes the check pending status.

Altering materialized query tables
The ALTER TABLE statement can be used to register an existing table at the current server as a
materialized query table, change the attributes of an existing materialized query table, or change an
existing materialized query table into a base table.

The isolation level at the time when a base table is first altered to become a materialized query table
by the ALTER TABLE statement is the isolation level for the materialized query table.

Altering a table to change it to a materialized query table with query optimization enabled makes the
table eligible for use in query rewrite immediately. Therefore, pay attention to the accuracy of the
data in the table. If necessary, the table should be altered to a materialized query table with query
optimization disabled, and then the table should be refreshed and enabled with query optimization.

When a base table is altered into a materialized query table or a user-maintained query table
is altered into a system-maintained one, the REFRESH_TIME column of the row for the table in
SYSIBM.SYSVIEWS contains the current timestamp. When a system-maintained materialized query
table is altered into a user-maintained materialized query table, the REFRESH_TIME column of the
row for the table in SYSIBM.SYSVIEWS does not change.

The LOAD utility is not allowed on a system-maintained query table, but it is allowed on a user-
maintained materialized query table.

Considerations for running utilities while altering tables
You cannot execute the ALTER TABLE statement while a utility has control of the table space that
contains the table.

Restrictions on field procedures, edit procedures, and validation exit procedures
Field procedures, edit procedures that are defined as WITH ROW ATTRIBUTES, and validation exit
procedures cannot be used on tables that have column names that are larger than 18 EBCDIC bytes.
If you have tables that have field procedures or validation exit procedures and you add a column
where the column name is larger than 18 bytes, the field procedures and validation exit procedures
for the table are invalidated.

Consider using triggers to replace the functionality on field procedures, edit procedures that are
defined as WITH ROW ATTRIBUTES, and validation exit procedures on tables where the column
names are larger than 18 EBCDIC bytes.

Restrictions on SQL data change statements in the same commit scope as ALTER TABLE
SQL data change statements that affect an index cannot be performed in the same commit scope as
ALTER TABLE statements that affect that index.

Chapter 7. Statements 1305

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesmightrequirerebind.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesmightrequirerebind.html

Restrictions on DATA CAPTURE CHANGES
If the table is in advisory REORG-pending state, you cannot alter the table to use the DATA CAPTURE
CHANGES clause.

Capturing changes to the Db2 catalog
To have logged changes to a Db2 catalog table augmented with information for data capture, specify
ALTER TABLE xxx DATA CAPTURE CHANGES where xxx is the name of a catalog table (SYSIBM.xxx).
Data capture of catalog table changes provides the possibility of creating and managing a shadow of
the catalog.

Restrictions for tables with dropped columns
Dropping of table columns is a pending definition change. A table space that contains a table with
dropped columns cannot be recovered to a point in time before dropping of those columns was
materialized.

Row access control that is activated explicitly
The ACTIVATE ROW ACCESS CONTROL clause is used to activate row access control for a table. When
this happens, a default row permission is implicitly created and allows no access to any rows of the
table, unless later another enabled row permission exists that provides access for the authorization
IDs or roles that are specified in the definition of the permission. The default row permission is always
enabled.

When the table is referenced in a data manipulation statement, all enabled row permissions that
have been created for the table, including the default row permission, are implicitly applied by Db2
to control which rows in the table are accessible. A row access control search condition is derived
by application of the logical OR operator to the search condition in each enabled row permission.
This derived search condition acts as a filter to the table before any user specified operations such
as predicates, grouping, ordering, etc. are processed. This derived search condition permits the
authorization IDs or roles that are specified in the permission definitions to access certain rows in
the table. See the description of subselect for information on how the application of enabled row
permissions affects the fetch operation. See the data change statements for information on how the
application of enabled row permissions affects the data change operation.

Row access control remains enforced until the DEACTIVATE ROW ACCESS CONTROL clause is used to
stop enforcing it.

Implicit object that is created when row access control is activated for a table
When the ACTIVATE ROW ACCESS CONTROL clause is used to activate row access control for a table,
Db2 implicitly creates a default row permission for the table. The default row permission prevents all
access to the table. The implicitly created row permission is in the same schema of the base table
and has a name in the form of SYS_DEFAULT_ROW_PERMISSION__table-name ... up to 128 UTF-8
bytes. Notice two underscores after "PERMISSION". If this name is not unique, the last 4 bytes are
reserved for a unique number 'nnnn', where 'nnnn' is a four alphanumeric characters starting at '0000'
and is incremented by 1 value each time until a unique name is found. The owner of the default row
permission is SYSIBM.

The default row permission is always enabled.

The default row permission is dropped when row access control is deactivated or when the table is
dropped.

Activating column access control
The ACTIVATE COLUMN ACCESS CONTROL clause is used to activate column access control for a
table. The access to the table is not restricted but when the table is referenced in a data manipulation
statement, all enabled column masks that have been created for the table are applied to mask the
column values referenced in the final result table of the queries or to determine the new values used
in the data change statements.

When column masks are used to mask the column values, they determine the values in the final
result table. If a column has a column mask and the column (a simple reference to a column name or
embedded in an expression) appears in the outermost select list, the column mask is applied to the
column to produce the values for the final result table. If the column does not appear in the outermost
select list but it participates in the final result table, for example, it appears in a materialized table

1306 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

expression or view, the column mask is applied to the column in such a way that the masked value is
included in the result table of the materialized table expression or view so that it can be used in the
final result table.

The application of column masks does not interfere with the operations of other clauses within the
statement such as the WHERE, GROUP BY, HAVING, SELECT DISTINCT, and ORDER BY. The rows
returned in the final result table remain the same, except that the values in the resultant rows might
have been masked by the column masks. As such, if the masked column also appears in an ORDER
BY sort-key, the order is based on the original column values and the masked values in the final
result table might not reflect that order; similarly, the masked values might not reflect the uniqueness
enforced by SELECT DISTINCT. If the masked column is embedded in an expression, the result of
the expression can become different because the column mask is applied on the column before the
expression evaluation can take place. If the expression in a query is the same as the expression used
to mask the column value in the column mask definition, the result of the expression in the query
might remain unchanged. For example, the expression in the query is 'XXX-XX-' || SUBSTR(SSN, 8, 4)
and the same expression appears in the column mask definition. In this particular example, the user
can replace the expression in the query with column SSN to avoid the same expression gets evaluated
twice.

The following are the contexts where the column masks are used by Db2 to mask the column values
for the result of a query. Certain restrictions might apply to some contexts. Those restrictions are
described in a separate list.

• The outermost SELECT clause of a SELECT or SELECT INTO statement, or if the column does not
appear in the outermost select list but it participates in the final result table, the outermost SELECT
clause of the corresponding materialized table expression or view where the column appears.

• The outermost SELECT clause of a SELECT FROM INSERT, UPDATE, DELETE, or MERGE statement
• The outermost SELECT clause that are used to derive the new values for an INSERT, UPDATE, or

MERGE statement, or a SET transition-variable assignment statement
• The same applies to a scalar-fullselect expression that does not use set operators and appears in

the outermost SELECT clause of the above statements, the right side of a SET variable assignment
statement, the VALUES INTO statement, or the VALUES statement.

• The same applies to the SQL statements or the equivalences such as the assignment statement that
appears in a native SQL procedure or a compiled user-defined SQL scalar function.

If a CASE expression appears in the above contexts, the column masks are not applied in the search
conditions of the WHEN clauses.

A column mask is created as a stand-alone object without knowing all of the contexts in which it might
be used. To mask a column value in the final result table, the column mask definition is merged into
the statement by Db2. When the column mask definition is brought into the context of the statement,
it might conflict with certain SQL semantics in the statement. Therefore, in some situations, the
combination of the statement and the application of a column mask can return an error. The following
describes when the error might be returned:

1. The column masks cannot be applied to the columns in the select lists that derive the final result
table of set operations because one of the set operators that are used to derive the final result
table is EXCEPT ALL, EXCEPT DISTINCT, INTERSECT ALL, or INTERSECT DISTINCT.

2. The column mask cannot be applied to the column in the select lists of a scalar-fullselect
expression if the result of scalar-fullselect expression is derived from set operation EXCEPT or
INTERSECT.

3. If the subselect contains a GROUP BY clause, the column mask cannot be applied to a column in
the corresponding select list if none of the following conditions is satisfied:

• The column must identify a column-name in the GROUP BY clause and the column must not be
referenced in an expression in the GROUP BY clause. Furthermore, its column mask definition
must satisfy the following condition:

Chapter 7. Statements 1307

– any columns that are referenced in the column mask definition that come from the same
table of the column to which the column mask is applied must identify a column-name in the
GROUP BY clause

– the column mask must not be referenced in an expression in the GROUP BY clause
• The column must be specified under an aggregate function and its column mask definition must

satisfy the following conditions:

– The column mask definition must not reference a scalar-fullselect
– The column mask definition must not reference an aggregate function

4. If the subselect contains a GROUP BY clause, and a column in the corresponding select list maps
directly or indirectly to a column name or an expression in a materialized table expression or
view, the column in the subselect where the GROUP BY is specified must be specified under an
aggregate function.

5. If the subselect does not contain a GROUP BY clause, and a column in the corresponding select
list is specified under an aggregate function, the column mask cannot be applied if the column
mask definition references:

• a scalar-fullselect
• an aggregate function

6. If the FROM clause in a subselect references a recursive common table expression, and if the
result of the recursive common table expression is used to derive the final result table, the
column mask cannot be applied to a column that is referenced in the fullselect of the recursive
common table expression.

7. If the FROM clause in a subselect contains a data-change-table-reference, and if an INCLUDE
clause is specified as part of the SQL data change statement, the column mask cannot be applied
to the columns that are used to derive the values for these additional columns in the outermost
select list.

8. If the FROM clause in a subselect references an external table user-defined function or an SQL
table user-defined function, and if the result of the function is used to derive the final result table,
the column mask cannot be applied to the column that is an argument of the function.

9. If an OLAP specification is referenced in a select list that derives the final result table, the column
mask cannot be applied to the column that is referenced in the partitioning expression or the sort
key expression of the OLAP specification.

10. If a user-defined function is defined with the NOT SECURED option, the argument of the function
must not reference a column for which a column mask is enabled and the column access control
is activated for its table. This rule applies to user-defined functions that are referenced anywhere
in the statement.

To avoid the above error situations at bind time, one of the following actions must be taken:

• modify or remove the above contexts from the statement
• disable the column mask
• drop the column mask, modify the definition, and recreate the column mask
• deactivate the column access control for the table

In other situations, if the statement contains a SELECT DISTINCT, and a column mask is applied
to a column that directly or indirectly derives the result of SELECT DISTINCT, the statement might
return a result that is not deterministic. The following examples illustrate when such results might be
returned:

1. If the column mask definition references other columns from the same table of the column to
which the column mask is applied, the result of SELECT DISTINCT can not be deterministic.

2. If the column is referenced in the argument of built-in scalar functions (such as COALESCE,
IFNULL, NULLIF, MAX, MIN, LOCATE, TOTALORDER), the result of SELECT DISTINCT might not be
deterministic.

1308 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

3. If the column is referenced in the argument of an aggregation function, the result of SELECT
DISTINCT might not be deterministic. If DISTINCT is specified, the argument of the function must
not reference a column with a column mask.

4. If the column is embedded in an expression and the expression contains a function that is not
deterministic or has an external action, the result of SELECT DISTINCT might not be deterministic.

With UNION DISTINCT, the elimination of the duplicate rows is based on the unmasked values in R1
and R2. Because all rows are from R1 or R2, the output values in the result table of the union may vary
when one or more of the following conditions occur:

• The expression corresponding to the nth column in R1 references columns with column masks, but
the expression corresponding to the nth column in R2 does not, or vice versa.

• The expressions corresponding to the nth column in R1 and R2 reference columns with different
column masks.

• The column mask definition references columns that are not the same target column for which the
column mask is defined, and those columns are not part of the UNION DISTINCT operation. It is
recommended that the column mask definition does not reference other columns from the target
table.

For example, a row in R1 is derived from the masked value, and a row in R2 is derived from the
unmasked value. If the row in the result table is from R1, the masked value is returned. If the row in
the result table is from R2, the unmasked value is returned.

EXCEPT and INTERSECT can be intermixed with UNION if the rows in R1 and R2 for EXCEPT and
INTERSECT do not reference columns with column masks

If the column is not nullable, most likely its column mask definition will not consider a null value for
the column. After the column access control is activated for the target table, if the target table is the
null-padded table in an outer join operation, the column value in the final result table might be a null.

When the columns are used to derive the new values for an INSERT, UPDATE, MERGE, or a SET
transition-variable assignment statement, the original column values, not the masked values, are
used. If the columns have column masks, those column masks are applied to ensure the evaluation
of the access control rules at run time masks the column to itself, not to a constant or an expression.
This is to ensure the masked values are the same as the original column values. If a column mask
does not mask the column to itself, the existing row is not updated or the new row is not inserted and
an error is returned at run time. The rules that are used to apply column masks in order to derive the
new values follow the same rules described above for the final result table of a query. See the data
change statements for how the column masks are used to affect the insertability and updatability

A column mask can be applied only to a base table column. If a materialized table expression,
materialized view, or common table expression column is involved in the final result table, the above
error situations can occur inside the materialized table expression, materialized view, or common
table expression definition.

Column access control does not affect the XMLTABLE built-in function. If the input to the XMLTABLE
function is a column with a column mask, the column mask is not applied.

Column access control remains activated until the DEACTIVATE COLUMN ACCESS CONTROL clause is
used to stop enforcing it.

Row and column access control are not enforced when EXPLAIN tables are populated by Db2
Row and column access control can be enforced for EXPLAIN tables. However, the enabled row
permissions and column masks are not applied when Db2 inserts rows into those tables.

Stop enforcing row or column access control
The DEACTIVATE ROW ACCESS CONTROL clause is used to stop enforcing row access control for
a table. The default row permission is dropped. Thereafter, when the table is referenced in a data
manipulation statement, explicitly created row permissions are not applied. The table is accessible
based on the granted privileges.

Chapter 7. Statements 1309

The DEACTIVATE COLUMN ACCESS CONTROL clause is used to stop enforcing column access control
for a table. Thereafter, when the table is referenced in a data manipulation statement, the column
masks are not applied. The unmasked column values are used for the final result table.

The explicitly created row permissions or column masks, if any, remain but have no effect.

Secure triggers for row and column access control
Triggers are used for database integrity, and as such a balance between row and column access
control (security) and database integrity is needed. Enabled row permissions and column masks are
not applied to the initial values of transition variables and transition tables. Row and column access
control enforced for the triggering table is also ignored for any transition variables or transition tables
referenced in the trigger body. To ensure there is no security concern for SQL statements in the trigger
action to access sensitive data in transition variables and transition tables, the trigger must be created
or altered with the SECURED option. If a trigger is not secure, row and column access control cannot
be enforced for the triggering table.

Secure user-defined functions for row and column access control
If a row permission or column mask definition references a user-defined function, the function must
be altered with the SECURED option because the sensitive data might be passed as arguments to the
function.

Db2 considers the SECURED option an assertion that declares the user has established a change
control audit procedure for all changes to the user-defined function. It is assumed that such a control
audit procedure is in place for all versions of the user-defined function, and that all subsequent ALTER
FUNCTION statements or changes to external packages are being reviewed by this audit process.

Database operations where row and column access control is not applicable
Row and column access control must not compromise database integrity. Columns involved in primary
keys, unique keys, indexes, check constraints, and referential integrity (RI) must not be subject to row
and column access control. Column masks can be defined for those columns but they are not applied
during the process of key building or constraint or RI enforcement.

Read-only cursors and read-only views
The rules that are used to determine a read-only cursor or a read-only view remain unaffected by row
and column access control because those rules are determined at bind time. The effect of application
of enabled column masks is not known until run time. Therefore, the data change operation on a
writable cursor or a writable view could still fail at run time.

Considerations for adding a column to a system-period temporal table or archive-enabled table

• If the data type of the column is a distinct type:

– The owner of the history table or archive table must implicitly or explicitly have the USAGE
privilege on the distinct type.

– If the distinct type is unqualified, its schema matches the schema for the following objects:

- The implicit schema for the distinct type for the column in the history table is the same as the
implicit schema that is determined for the distinct type in the system-period temporal table.

- The implicit schema for the distinct type for the column in the archive table is the same as the
implicit schema that is determined for the distinct type in the archive-enabled table.

• The syntax LONG VARCHAR or LONG VARGRAPHIC must not be specified when you add a column to
these types of tables. Use VARCHAR or VARGRAPHIC instead.

• If the data type of the column is a LOB and the INLINE LENGTH clause is not specified, Db2
determines the length. The implicit inline length that is used for the column in the system-period
temporal table or archive-enabled table is also used for the corresponding column in the history
table or archive table.

• If the data type of the column is a LOB, auxiliary objects are implicitly created for it in the
system-period temporal table or archive-enabled table. Auxiliary objects are also created for the
corresponding column of the history table or archive table.

1310 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Effect of renaming a column on statistics profiles
When you execute ALTER TABLE with RENAME COLUMN, statistics profiles that refer to that column
are no longer valid. An error occurs when RUNSTATS is run with a profile that contains a renamed
column. After you execute ALTER TABLE with RENAME COLUMN, complete these tasks:

1. Delete any statistics profiles that refer to the renamed column.
2. Create the statistics profiles again.

For more information, see:

RUNSTATS TABLESPACE syntax and options (Db2 Utilities)
Statistics profile syntax (Db2 Utilities)
Deleting statistics profiles (Db2 Performance)
Creating statistics profiles (Db2 Performance)

Key label requirement
To use a key label for encryption, the VSAM data sets for the page sets need to be associated with an
SMS Data Class that has extended format capability (EF enabled).

Determining a key label for base table space and associated objects
When a key label is specified at the table level, Db2 provides the key label to DFSMS to encrypt all
the table spaces and index spaces associated with the table. This includes base table space, auxiliary
table spaces, XML table spaces, index spaces, and clone table space, regardless of whether the base
table space or associated objects are explicitly or implicitly created. Db2 does not enforce any key
label relationship between the base table and an associated history or archive table. The key label for
the archive and the history tables has to be set independent of the base table. If there is no key label
specified at the table level, Db2 will provide the key label to DFSMS specified for the storage group.

When Db2 calls DFSMS to allocate the dataset for table space or index space, DFSMS uses its order of
precedence to determine the key label and can override the key label specified by Db2.

DFSMS order of precedence:

• RACF data set profile
• JCL, dynamic allocation, TSO ALLOCATE
• SMS data class construct

If the security administrator has specified a key label for the RACF data set profile, that key label takes
precedence over the Db2 provided key label. The REPORT utility can be run to determine the key label
used for encryption.

Description of key label in effect in DB2

Table 185. Example scenarios for a partition-by-growth table space, that describe the key label in effect in DB2.
This is the key label provided to DFSMS during allocation of data set for table spaces and index spaces.

Scenarios Catalog key label value Key label provided to DFSMS
during data set allocation

Create storage group, SG01 with key
label, SGKL01.

SYSSTOGROUP record - KEY
LABEL: SGKL01

Create table space, TBSP01 using storage
group, SG01 – Creates Partition 1

SGKL01

Create table, TB01 in table space,
TBSP01 with key label, TBKL01

SYSTABLESPACE record for
TBSP01 / SYSTABLES record for
TBKL01 – KEY LABEL: TBKL01

REORG TABLESPACE TBSP01 – Reorgs
Partition 1

TBKL01

Create index, IX01 on table, TB01 creates
index space

SYSINDEXES record for IX01 –
KEY LABEL: TBKL01

TBKL01

Chapter 7. Statements 1311

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_runstatssyntax.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_runstatsprofile.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_deleterunstatsprofiles.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_setrunstatsprofiles.html

Table 185. Example scenarios for a partition-by-growth table space, that describe the key label in effect in
DB2. This is the key label provided to DFSMS during allocation of data set for table spaces and index spaces.
(continued)

Scenarios Catalog key label value Key label provided to DFSMS
during data set allocation

Insert data into TB01 – Creates Partition
2

TBKL01

Alter table, TB01 to specify NO KEY
LABEL

SYSTABLESPACE record for
TBSP01 / SYSTABLES record for
TBKL01 / SYSINDEXES record
for IX01 – KEY LABEL: Empty
string

Insert data into TB01 – Creates partition
3

SGKL01

REORG TABLESPACE TBSP01 with REUSE
option – Resets and reuses DB2-managed
data sets. No change to key label

Key label considerations

If the last table is dropped from a segmented table space, the table space and its underlying data
set will remain. If key label is in effect, the KEYLABEL column for the table space's SYSTABLESPACE
record will be cleared. If a new table is created in this table space, it will be encrypted with the
previous key label. If the table has to be created as unencrypted, execute the REORG TABLESPACE
utility for the table space.

If a table space is explicitly created with the DEFINE YES option and a table with a key label is
defined in that table space, then the data sets associated with the table space will not be encrypted.
A subsequent REORG is necessary to encrypt the data sets. Users that want immediate encryption of
the data sets associated with the table space must to define table spaces with the DEFINE NO option.

Syntax and descriptions for hash organization (deprecated)

Deprecated function: FL 504 Hash-organized tables are deprecated. Beginning in Db2 12, packages
bound with APPLCOMPAT(V12R1M504) or higher cannot create hash-organized tables or alter
existing tables to use hash-organization. Existing hash organized tables remain supported, but they
are likely to be unsupported in the future.

alter-hash-organization

ADD ORGANIZE BY HASH UNIQUE (

,

column-name)
HASH SPACE 64 M

HASH SPACE integer K

M

G

ALTER ORGANIZATION SET HASH SPACE integer K

M

G

ADD ORGANIZE BY HASH
Specifies that a hash is to be used for the data organization of the table.

ADD ORGANIZE BY HASH must not be specified if the table is already defined with the
APPEND YES clause, or if the table space is defined with the MEMBER CLUSTER clause

1312 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

ALTER TABLE ADD ORGANIZE BY HASH is allowed only if the table is in either a partition-by-
growth table space or a partition-by-range table space.

ALTER TABLE ADD ORGANIZE BY HASH is not allowed for table spaces with relative
numbering.

ADD ORGANIZE BY HASH must not be specified on tables that are using basic row format.

ADD ORGANIZE BY HASH must not be specified if a user specified clustering index exists.

ADD ORGANIZE BY HASH must not be specified for global temporary tables.

After ALTER TABLE with ADD ORGANIZE BY HASH runs:

• All columns that are part of the hash key are no longer updatable. SQL statements that
update a column of the hash key return an error.

• The entire table space that contains the table must be reorganized.

Use of this clause or keyword might invalidate packages that depend on the target object,
or packages that depend on related objects through cascading effects. See Changes that
invalidate packages (Db2 Application programming and SQL).
UNIQUE

Specifies that Db2 enforces uniqueness of the hash key columns, preventing the table
from containing two or more rows with the same value of the hash key.

(column-name,...)
The list of column names defines the hash key that is used to determine where a row will
be placed.

Each column-name must be an unqualified name that identifies a column of the table. The
same column must not be specified more than one time and the specified columns must
be defined as NOT NULL. The number of specified columns must not exceed 64, and the
sum of their length attributes must not exceed 255. A specified column cannot be any of
the following types of columns:

• a LOB column
• a DECFLOAT column
• an XML column
• a distinct type column that is based on one of the preceding data types

All character and graphic string columns in the key must use the same encoding scheme.

If the table is defined as partition by range, the list of column names must specify all of the
column names that are specified in the partition-expression for the table, and must specify
the column names in the same order as partition-expression. If the ORGANIZE BY clause
contains more columns than the partition-expression for the table, partition-expression
determines the partition number.

HASH SPACE integerK|M|G
Specifies the amount of fixed hash space to preallocate for the table. If the table is
partition-by-range, this is the space for each partition.

The default is 64M for a table in a partition-by-growth table space or 64M for each
partition of a partition-by-range table space.

K
Indicates that the integer value is multiplied by 1024 to specify the hash space size in
bytes. The integer value must be in the range 256–268,435,456.

M
Indicates that the integer value is multiplied by 1,048,576 to specify the hash space
size in bytes. The integer value must be in the range 1–262,144.

Chapter 7. Statements 1313

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

G
Indicates that the integer value is to be multiplied by 1,073,741,824 to specify the
hash space size in bytes. The integer value must be in the range 1–256 for a partition
by range table and must be in the range 1–131,072 for a non-partitioned table.

If a value greater than 4G is specified, the data sets for the table space are associated
with a DFSMS data class that has been specified with extended format and extended
addressability.

ALTER ORGANIZATION SET HASH SPACEinteger
Changes the fixed hash space that is used for the data organization for the table. The table
must be defined to use hash organization.

If the table is defined as partition-by-range, the value specified by integer is per partition and
applies to each partition of the table. For tables that are not partition-by-range, integer applies
to the whole table.

The new hash space value will be applied when the table space is reorganized using the
REORG utility.

HASH SPACE integerK|M|G
Specifies the amount of fixed hash space to preallocate for the table. If the table is
partition-by-range, this is the space for each partition.
K

Indicates that the integer value is multiplied by 1024 to specify the hash space size in
bytes. The integer value must be in the range 256–268,435,456.

M
Indicates that the integer value is multiplied by 1,048,576 to specify the hash space
size in bytes. The integer value must be in the range 1–262,144.

G
Indicates that the integer value is to be multiplied by 1,073,741,824 to specify the
hash space size in bytes. The integer value must be in the range 1–256 for a partition
by range table and must be in the range 1–131,072 for a non-partitioned table.

If a value greater than 4G is specified, the data sets for the table space are associated
with a DFSMS data class that has been specified with extended format and extended
addressability.

Be aware that specifying the ALTER ORGANIZATION clause might affect subsequent requests
to recover to a point in time. For information about possible restrictions, effects on recovery
status, and other considerations, see Point-in-time recovery (Db2 Utilities).

DROP ORGANZIATION
See “DROP ORGANIZATION” on page 1283.

partition-hash-space

HASH SPACE integer K

M

G

1

Notes:
1 The HASH SPACE clause can only be specified for the ALTER PARTITION clause.

HASH SPACE integerK|M|G
Specifies the amount of fixed hash space to preallocate for the partition that is associated with
the partition element. If HASH SPACE is omitted from the partition element, the HASH SPACE
value that is specified in the ORGANIZE BY CLAUSE is used.

1314 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_pointintimerecovery.html

The HASH SPACE keyword in the partition-element must only be specified if the table is
defined to use hash organization.

K
Indicates that the integer value is multiplied by 1024 to specify the hash space size in
bytes. The integer value must be in the range 256–268,435,456.

M
Indicates that the integer value is multiplied by 1,048,576 to specify the hash space size in
bytes. The integer value must be in the range 1–262,144.

G
Indicates that the integer value is to be multiplied by 1,073,741,824 to specify the hash
space size in bytes. The integer value must be in the range 1–256 for a partition by range
table and must be in the range 1–131,072 for a non-partitioned table.

If a value greater than 4G is specified, the data sets for the table space are associated with a
DFSMS data class that has been specified with extended format and extended addressability.

Notes for hash organization (deprecated)

Deprecated function: FL 504 Hash-organized tables are deprecated. Beginning in Db2 12, packages
bound with APPLCOMPAT(V12R1M504) or higher cannot create hash-organized tables or alter
existing tables to use hash-organization. Existing hash organized tables remain supported, but they
are likely to be unsupported in the future.

When changes to the hash organization of a table take place
An alter of the table that uses hash organization will take effect immediately in terms of enforcing
the unique hash key. However, the physical organization of the table space is converted to hash
organization after REORG.

In a partition-by-range table space, if individual partitions are altered to specify HASH SPACE, the
new hash space values take effect after the REORG utility is run on the individual partitions.

Buffer pool, DSSIZE, and MAXPARTITIONS considerations for tables using hash organization
Db2 calculates an optimum buffer pool size for hash organization based on the definition of the
table and validate the calculated buffer pool size with the buffer pool of the explicitly created table
space. If the buffer pool sizes are different, Db2 returns an error.

If the table is a partition-by-range table space, the DSSIZE value for the table space must be large
enough to fit the HASH SPACE specification for each partition.

If the table is in a partition-by-growth table space, the total space calculated from the DSSIZE and
MAXPARTITIONS values for the table space must be large enough for the implicitly or explicitly
specified HASH SPACE.

Changing the hash space value
To change the HASH SPACE value for all partitions of a partition-by-range table space or to change
the total HASH SPACE for a partition-by-growth table space, use the ALTER ORGANIZATION
SET HASH SPACE (integer) clause. To change HASH SPACE value for more than one, but not all
partitions of a partition-by-range table space you must specify separate ALTER TABLE statements
for each partition and specify the ALTER PARTITION (integer) and HASH SPACE (integer) clauses.

Hash space and Db2 page size
If the specified hash space is less than or equal to 64 MB (the Db2 default), Db2 will add extra
space for Db2 system pages. If the specified hash space is greater than 64 MB, Db2 will use part
of the hash space for Db2 system pages. The amount of space needed for Db2 system pages
depends on SEGSIZE and PAGESIZE. The larger the SEGSIZE and/or PAGESIZE becomes, the
larger the requirement for Db2 system pages. Db2 can reserve up to 5 MB for system pages for the
highest SEGSIZE value (64) and PAGESIZE value (32K).

Hash space and DSSIZE
Depending on certain table space characteristics, Db2 needs to reserve space for the hash
overflow area. Therefore, the amount of hash space cannot be equal to the DSSIZE value. The
maximum amount of hash space that can be specified is approximately 20% less than the DSSIZE

Chapter 7. Statements 1315

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

value. Db2 returns an error if the amount of hash space is too large. If the amount of hash space is
too large, specify a larger value of DSSIZE, or decrease the amount of hash space.

Specifying APPEND for hash-organized tables
Append processing is not applicable to tables with hash organization since there is no key
clustering in hash organization. For insert operations into tables with hash organization, Db2 will
use the internal hash algorithm to determine the location of the row.

Restrictions for tables with hash organization
Tables that use hash organization are subject to the following restrictions:

• If the table already uses hash organization, Db2 will returns an error.
• A table that is defined to use hash organization cannot be created in a LOB table space or XML

table space.
• The data type of columns that are specified in a hash key cannot be changed.
• Partition level REORG is not allowed after the table is changed using the ALTER ADD HASH

ORGANIZATION clause or the ALTER DROP ORGANIZATION clause.
• The MAXROWS clause is applicable only to the hash overflow area of the table space for tables

with hash organization. The fixed hash area of each page will contain as many rows as it can
hold, up to a maximum of 255.

Alternative syntax and synonyms
To provide compatibility with previous releases of Db2 or other products in the Db2 family, Db2
supports the following clauses:

• NOCACHE (single clause) as a synonym for NO CACHE
• NOCYCLE (single clause) as a synonym for NO CYCLE
• NOMINVALUE (single clause) as a synonym for NO MINVALUE
• NOMAXVALUE (single clause) as a synonym for NO MAXVALUE
• NOORDER (single clause) as a synonym for NO ORDER
• PART integer VALUES can be specified as an alternative to PARTITION integer ENDING AT.
• VALUES as a synonym for ENDING AT
• DEFINITION ONLY as a synonym for WITH NO DATA
• SET MATERIALIZED QUERY AS DEFINITION ONLY as a synonym for DROP MATERIALIZED QUERY
• SET SUMMARY AS DEFINITION ONLY as a synonym for DROP MATERIALIZED QUERY
• SET MATERIALIZED QUERY AS (fullselect) as a synonym for ADD MATERIALIZED QUERY (fullselect)
• SET SUMMARY AS (fullselect) as a synonym for ADD MATERIALIZED QUERY (fullselect)
• TIMEZONE can be specified as an alternative to TIME ZONE.

Examples for ALTER TABLE

Example 1
Column DEPTNAME in table DSN8C10.DEPT was created as a VARCHAR(36). Increase its length to
50 bytes. Also, add the column BLDG to the table DSN8C10.DEPT. Describe the new column as a
character string column that holds SBCS data.

 ALTER TABLE DSN8C10.DEPT
 ALTER COLUMN DEPTNAME SET DATA TYPE VARCHAR(50)
 ADD BLDG CHAR(3) FOR SBCS DATA;

Example 2
Assign a validation procedure named DSN8EAEM to the table DSN8C10.EMP.

 ALTER TABLE DSN8C10.EMP
 VALIDPROC DSN8EAEM;

1316 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 3
Disassociate the current validation procedure from the table DSN8C10.EMP. After the statement is
executed, the table no longer has a validation procedure.

 ALTER TABLE DSN8C10.EMP
 VALIDPROC NULL;

Example 4
Define ADMRDEPT as the foreign key of a self-referencing constraint on DSN8C10.DEPT.

 ALTER TABLE DSN8C10.DEPT
 FOREIGN KEY(ADMRDEPT) REFERENCES DSN8C10.DEPT ON DELETE CASCADE;

Example 5
Add a check constraint to the table DSN8C10.EMP which checks that the minimum salary an
employee can have is $10,000.

 ALTER TABLE DSN8C10.EMP
 ADD CHECK (SALARY >= 10000);

Example 6
Alter the PRODINFO table to define a foreign key that references a non-primary unique key in the
product version table (PRODVER_1). The columns of the unique key are VERNAME, RELNO.

 ALTER TABLE PRODINFO
 FOREIGN KEY (PRODNAME,PRODVERNO)
 REFERENCES PRODVER_1 (VERNAME,RELNO) ON DELETE RESTRICT;

Example 7
Assume that table DEPT has a unique index defined on column DEPTNAME. Add a unique key
constraint named KEY_DEPTNAME consisting of column DEPTNAME to the DEPT table:

 ALTER TABLE DSN8C10.DEPT
 ADD CONSTRAINT KEY_DEPTNAME UNIQUE(DEPTNAME);

Example 8
Register the base table TRANSCOUNT as a materialized query table. The result of the fullselect must
provide a set of columns that match the columns in the existing table (same number of columns, same
column definitions, and same names). So that you can maintain the table with insert, update, and
delete operations as well as the REFRESH TABLE statement, define the materialized query table as
user-maintained.

 ALTER TABLE TRANSCOUNT ADD MATERIALIZED QUERY
 (SELECT ACCTID, LOCID, YEAR, COUNT(*) as cnt
 FROM TRANSadd
 GROUP BY ACCTID, LOCID, YEAR)
 DATA INITIALLY DEFERRED
 REFRESH DEFERRED
 MAINTAINED BY USER;

Example 9
Assume that table TB1 has a column, COL1 that is defined as CHAR(4) FOR BIT DATA WITH DEFAULT
'AB'. The value that is stored in the table will be X'C1C24040'. After the following ALTER TABLE
statement is run, the resulting value that is stored in the table will be BX'C1C240400000':

 ALTER TABLE TB1
 ALTER COLUMN COL1
 SET DATA TYPE BINARY(6);

Example 10
Add a key label to the table space, DSN8C10.EMP to encrypt all the table spaces and index spaces
associated with the table.

 ALTER TABLE DSN8C10.EMP
 KEY LABEL SECUREKEY01;

Chapter 7. Statements 1317

Examples for column access controls
Example 1

Based on the data in the CUSTOMER table, the SELECT DISTINCT statement returns one row with
the SALARY value 100,000. A column mask, SALARY_MASK, is created to mask the salary value.
After column access control is activated for the CUSTOMER table, the column mask is applied to
SALARY column. A user with the 'MGR' ID (or role) issues a SELECT DISTINCT statement. The
SELECT DISTINCT statement still returns one row because the removal of duplicates is based on
the unmasked value of the SALARY column, but the value that is returned in that row is based on the
masked SALARY value, which can be either 125,000 or 110,000.

The table CUSTOMER contains:

SALARY COMMISSION EMPID

100,000 25,000 123456

100,000 10,000 654321

CREATE MASK SALARY_MASK ON CUSTOMER
 FOR COLUMN SALARY RETURN
 CASE WHEN(SESSION_USER = 'MGR')
 THEN SALARY + COMMISSION
 ELSE SALARY
 END
 ENABLE;

COMMIT;

ALTER TABLE CUSTOMER
 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT DISTINCT SALARY FROM CUSTOMER;

Example 2
Based on the data in T1 abd T2 tables, the SELECT DISTINCT statement using the COALESCE function
returns one row with the T1.C1 value of 1. A column mask, C1_MASK, is created to mask the
value of T1.C1. After column access control is activated for table T1, the column mask is applied
to column C1 of table T1. A user with the 'EMP' ID (or role) issues a SELECT DISTINCT statement. The
SELECT DISTINCT statement still returns one row because the removal of duplicates is based on the
unmasked value of T1.C1 from the COALESCE function, but the value that is returned in that row is
based on the masked value of T1.C1 from the COALESCE function. The returned value can be either 2
or 3.

INSERT INTO T1(C1) VALUES(1);
INSERT INTO T1(C1) VALUES(1);
INSERT INTO T2(C1) VALUES(2);
INSERT INTO T2(C1) VALUES(3);

CREATE MASK C1_MASK ON T1
 FOR COLUMN C1 RETURN
 CASE WHEN(SESSION_USER = 'EMP')
 THEN NULL
 ELSE C1
 END
 ENABLE;

COMMIT;

ALTER TABLE T1
 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT DISTINCT COALESCE(T1.C1, T2.C1) FROM T1, T2;

1318 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 3
Based on the data in the CUSTOMER table, the maximum income is the same in the states CA and IL,
50,000, thus, the SELECT DISTINCT statement returns one row. A column mask, INCOME_MASK, is
created to mask the income value. After column access control is activated for the CUSTOMER table,
the column mask is applied to the INCOME column before the MAX aggregate function is evaluated.
However, the INCOME_ MASK column mask, masks the income value of 0 as 100,000 in state IL.
As a result, the maximum income becomes 100,000 for state IL, but the maximum income is still
50,000 for state CA. X.B is used in a predicate in the SELECT DISTINCT statement, therefore, the
original INCOME values and the original results of the MAX(INCOME) function must be preserved.
So the SELECT DISTINCT statement still returns one row, but the value in that row might not be
deterministic, that is, the value might be 50,000 from the 'CA' row or might be 100,000 from the 'IL'
row.

The CUSTOMER table contains:

STATE INCOME

CA 40,000

CA 50,000

IL 0

IL 10,000

IL 50,000

CREATE MASK INCOME_MASK ON CUSTOMER
 FOR COLUMN INCOME RETURN
 CASE WHEN(INCOME = 0)
 THEN 100000
 ELSE INCOME
 END
 ENABLE;

COMMIT;

ALTER TABLE CUSTOMER
 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT DISTINCT B FROM
 (SELECT STATE, MAX(INCOME) FROM CUSTOMER
 GROUP BY STATE)
 X(A, B)
 WHERE B > 10000;

Example 4
The expression INCOME + RAND() is not deterministic because the RAND function is not
deterministic. Based on the data in the CUSTOMER table, the SELECT DISTINCT statement will,
most likely, return two distinct rows. However, it could return only one row. A column mask,
INCOME_MASK, is created to mask the income value. After column access control is activated
for the CUSTOMER table, the column mask is applied to the INCOME column, which causes the
masked value for both rows to be the same. Because the RAND function is not deterministic, the
SELECT DISTINCT statement will, most likely, still return two distinct rows, but it could return only
one row.The uncertainty caused by the RAND function causes the result of the SELECT DISTINCT
statement to not be deterministic.

The CUSTOMER table contains:

STATE INCOME

CA 40,000

Chapter 7. Statements 1319

STATE INCOME

CA 50,000

CREATE MASK INCOME_MASK ON CUSTOMER
 FOR COLUMN INCOME RETURN
 CASE WHEN(INCOME = 40,000)
 THEN 50000
 ELSE INCOME
 END
 ENABLE;

COMMIT;

ALTER TABLE CUSTOMER
 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT DISTINCT A FROM
 (SELECT INCOME + RAND() FROM CUSTOMER)
 X(A)
 WHERE A > 10000;

Example 5
A column mask, STATE_MASK, is created for the STATE column of the CUSTOMER table to return a
value that shows the city name with the state if the city is SJ, SFO, or OKLD. Otherwise the city is not
returned, just the state. After column access control is activated for the CUSTOMER table, a SELECT
statement which groups results using the STATE column is issued. However, because the CITY column
that is referenced in the STATE_MASK column mask is not a grouping column, a bind time error is
returned to signify that the STATE_MASK column mask is not appropriate for this statement.

The CUSTOMER table contains:

STATE CITY INCOME

CA SJ 40,000

CA SC 30,000

CA SB 60,000

CA SFO 80,000

CA OKLD 50,000

CA SJ 70,000

NY NY 50,000

CREATE MASK STATE_MASK ON CUSTOMER
 FOR COLUMN STATE RETURN
 CASE WHEN(CITY = 'SJ')
 THEN CITY||', '||STATE
 WHEN(CITY = 'SFO')
 THEN CITY||', '||STATE
 WHEN(CITY = 'OKLD')
 THEN CITY||', '||STATE
 ELSE ' , '||STATE
 END
 ENABLE;

COMMIT;

ALTER TABLE CUSTOMER
 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT STATE, AVG(INCOME) FROM CUSTOMER

1320 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 GROUP BY STATE
 HAVING STATE = 'CA';

Related concepts
Unicode columns in EBCDIC tables
A single encoding scheme is used for all character and character string data in a table. An exception is
that an EBCDIC table can contain one or more Unicode columns in addition to EBCDIC string columns.

ALTER TABLESPACE statement
The ALTER TABLESPACE statement changes the description of a table space at the current server.

Invocation for ALTER TABLESPACE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for ALTER TABLESPACE
The privilege set that is defined below must include at least one of the following:

• Ownership of the table space
• DBADM authority for its database
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

If BUFFERPOOL or USING STOGROUP is specified, additional privileges might be required, as explained in
the description of those clauses.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the package. If the statement is dynamically prepared, the privilege set is
the union of the privilege sets that are held by each authorization ID and role of the process.

Chapter 7. Statements 1321

ALTER TABLESPACE

database-name .

 table-space-name

1

BUFFERPOOL bpname

CCSID ccsid-value

CLOSE YES

CLOSE NO

COMPRESS YES

COMPRESS YES FIXEDLENGTH

COMPRESS YES HUFFMAN

COMPRESS NO

DROP PENDING CHANGES

DSSIZE integer G

INSERT ALGORITHM level

LOCKMAX SYSTEM

LOCKMAX  integer

LOCKSIZE ANY

LOCKSIZE TABLESPACE

LOCKSIZE TABLE

LOCKSIZE PAGE

LOCKSIZE ROW

LOCKSIZE LOB

LOGGED

NOT LOGGED

MAXROWS integer

MAXPARTITIONS integer

MEMBER CLUSTER YES

MEMBER CLUSTER NO

SEGSIZE integer

TRACKMOD YES

TRACKMOD NO

using-block

free-block

gbpcache-block

PAGENUM RELATIVE

ALTER PARTITION integer using-block

free-block

gbpcache-block

COMPRESS YES

COMPRESS YES FIXEDLENGTH

COMPRESS YES HUFFMAN

COMPRESS NO

DSSIZE integer G
3 4

TRACKMOD YES

TRACKMOD NO

move-table-clause

Notes:
1 FL 508 If you specify DROP PENDING CHANGES, DSSIZE, SEGSIZE, PAGENUM, or MOVE TABLE, no other
clauses can be specified in the same ALTER TABLESPACE statement.

1322 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m508.html

2 The same clause must not be specified more than one time in a single ALTER TABLESPACE statement.
3 DSSIZE can be specified at the partition level only for a table space with relative page numbering
(PAGENUM RELATIVE).
4 The specified DSSIZE value must be greater than or equal to the current DSSIZE value for the partition.

using-block:

USING VCAT catalog-name

USING STOGROUP stogroup-name

PRIQTY integer

SECQTY integer

ERASE YES

ERASE NO

free-block:

FREEPAGE integer

PCTFREE 5

PCTFREE smallint

smallint

FOR UPDATE smallint

gbpcache-block:

GBPCACHE CHANGED

GBPCACHE ALL

GBPCACHE SYSTEM

GBPCACHE NONE

move-table-clause:

MOVE TABLE table-name TO TABLESPACE

dbname .

new-tsname

Description for ALTER TABLESPACE
database-name.table-space-name

Identifies the table space that is to be altered. The name must identify a table space that exists at the
current server. Omission of database-name is an implicit specification of DSNDB04.

If you identify a partitioned table space, you can use the ALTER PARTITION clause.

Chapter 7. Statements 1323

A table space cannot be altered if it is associated with an accelerator-only table or a directory table.

BUFFERPOOL bpname
Identifies the buffer pool that is to be used for the table space. bpname must identify an activated
buffer pool.

The privilege set must include SYSADM or SYSCTRL authority or the USE privilege for the buffer pool.

If bpname specifies a buffer pool with a smaller page size than the current page size, the maximum
record size of all tables in the table space must fit in the smaller page size.

If bpname specifies a buffer pool with a different page size, the table space must be one of the
following types:

• A universal table space (excluding XML table spaces)
• A table space for which a pending definition change will convert the table space to a universal table

space
• A LOB table space

If the table space is a partition-by-growth table space, the page size must be valid depending on the
values that are in effect for the MAXPARTITIONS and DSSIZE options of the table space. If the table
space is a partition-by-range table space, the page size must be valid depending on the values that
are in effect for the current number of partitions and the DSSIZE option of the table space. For more
information about the relationship between DSSIZE, MAXPARTITIONS, buffer pool page size and table
space size, see “Maximum number of partitions and table space size ” on page 1340.

Depending on the situation when this clause is specified, Db2 might process the ALTER statement as
a pending data definition change, which means the current object definition and data do not reflect
the alteration at the time that the statement is issued. Instead, the altered object is placed in an
advisory REORG-pending (AREOR) state, and a subsequent reorganization of the altered object with
an appropriate utility materializes the changes to the catalog and data. For more information, see
Pending data definition changes (Db2 Administration Guide).

When pending definition changes are specified for the BUFFERPOOL, DSSIZE, MAXPARTITIONS, or
SEGSIZE attributes of partition-by-growth (PBG) table spaces, the number of partitions is determined
based on the amount of existing data at the time the pending change is applied, and partition growth
can occur. If LOB columns exist, additional LOB table spaces and auxiliary objects are implicitly
created for the newly-created partitions independent of whether SQLRULES (DB2) or SQLRULES (STD)
is in effect or whether the table space was explicitly or implicitly created. The new LOB objects inherit
the buffer pool attribute and authorization from the existing LOB objects.

For an immediate change for which the page size of both buffer pools is the same, the table space and
all data sets are immediately available. The data sets do not need to be closed and reopened for the
table space to be available. In addition, Db2 automatically closes required data sets. The description
of the table space takes effect the next time the data sets of the table space are opened.

CCSID ccsid-value
Identifies the CCSID value to be used for the table space. ccsid-value must identify a CCSID value
that is compatible with the current value of the CCSID for the table space. See “ALTER DATABASE
statement” on page 1095 for a list that shows the CCSID to which a given CCSID can be changed and
details about changing it.

Do not specify CCSID for a LOB table space, a table space that is implicitly created for an XML column,
or a table space in a work file database.

The CCSID of a table space cannot be changed if any of the following conditions are true:

• The table space contains any table that has an index that contains expressions.
• The table space contains a system-period temporal table or a history table.
• The table space contains an archive-enabled table or an archive table.

1324 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html

CLOSE
When the limit on the number of open data sets is reached, specifies the priority in which data sets
are closed.
YES

Eligible for closing before CLOSE NO data sets. This is the default unless the table space is in a
work file database.

NO
Eligible for closing after all eligible CLOSE YES data sets are closed.

For a table space in a work file database, Db2 uses CLOSE NO regardless of the value specified
COMPRESS

Specifies whether data compression applies to the rows of the table space or a partition in the table
space.

Do not specify COMPRESS for a table space in a work file database.

YES
FL 509 Specifies that data compression is used for the table space or partition. The rows are not
compressed until the LOAD or REORG utility is run on a table in the table space or partition, or
until the total row data size reaches the compression data threshold while an insert operation is
performed.

If a keyword for the compression algorithm is not specified, the default compression algorithm is
used:

• The data compression algorithm is determined by the TS_COMPRESSION_TYPE subsystem
parameter.

• If the table space is a LOB table space, the following requirements must also be met:

– Db2 12 must be at function level 500 or higher.
– The zEDC hardware and software must be available and configured in the z/OS system. For

more information, see Requirements for zEnterprise Data Compression.

In data sharing, system performance can degrade dramatically if a member accesses
compressed LOB data and the zEDC hardware and software are not configured in z/OS.

– The LOB table space must be associated with a base table that is in a universal table space.
– The total length of the entire LOB must be larger than the defined data page size, otherwise

the LOB is not compressed.

FIXEDLENGTH
FL 509 Specifies the fixed-length data compression algorithm.

FIXEDLENGTH must not be specified for LOB table spaces. Any LOB table spaces that are
implicitly created for LOB columns in this table space are defined as if COMPRESS YES had
been specified without a compression algorithm. LOB compression is managed by zEnterprise®

data compression (zEDC) hardware, which must be available on the z/OS system.

HUFFMAN
FL 509 Specifies the Huffman data compression algorithm. See Using Huffman compression to
compress your data (Db2 Performance) for requirements to enable Huffman compression.

HUFFMAN must be specified only for universal table spaces and must not be specified for
table spaces that contain tables defined with ORGANIZE BY HASH.

HUFFMAN must not be specified for LOB table spaces. Any LOB table spaces that are implicitly
created for LOB columns in this table space are defined as if COMPRESS YES had been
specified without a compression algorithm. LOB compression is managed by zEnterprise data
compression (zEDC) hardware, which must be available on the z/OS system.

NO
Specifies no data compression. Inserted rows are not compressed. Updated rows are
decompressed. The dictionary used for data compression is erased when the LOAD REPLACE,

Chapter 7. Statements 1325

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieac100/RequirementsForZEnterpriseDataCompr.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_compressdatahuffman.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_compressdatahuffman.html

LOAD RESUME NO, or REORG utility is run. For more information about the dictionary and data
compression, see Compressing your data (Db2 Performance).

DROP PENDING CHANGES
Drops pending changes to the definition of the table space and any objects within the table space.
Pending changes to the definition of the table space or any object within the table space must exist.

When the DROP PENDING CHANGES clause is specified, no other options are allowed in the same
ALTER TABLESPACE statement.

The DROP PENDING CHANGES clause also resets advisory REORG-pending (AREOR) status except for
tables that are converting to hash access.

DSSIZE integer G

Specifies the maximum data set size in gigabytes. DSSIZE can be specified only for these types of
table spaces:

• A partition-by-growth or partition-by-range table space
• A table space for which a pending definition change will convert the table space to a universal table

space
• A LOB table space

Therefore, the DSSIZE value specifies the maximum size of a partition of a universal table space or the
maximum size of any data set in a LOB table space. When DSSIZE is specified, no other options are
allowed in the same ALTER TABLESPACE statement.

To specify a value greater than 4G, the data sets for the table space must be associated with a DFSMS
data class that has been specified with extended format and extended addressability.

DSSIZE that is specified at the table space level is applied to each of the partitions of the table space.

integer can be separated from G by 0 or more spaces.

The accepted values that you can specify depend on the type of table space.

Partition-by-growth
Specify a power-of-two value in the range 1–256 G.

Partition-by-range with relative page numbers
Specify any value 1–1024 G. The following values determine the DSSIZE value for each partition,
in the order of precedence shown:

1. The DSSIZE value in the PARTITION clause for that partition.
2. The DSSIZE value specified at the table space level, not inside a PARTITION clause.
3. The default value 4G.

Partition-by-range with absolute page numbers
Specify a power-of-two value 1–256 G.

Depending on the situation when this clause is specified, Db2 might process the ALTER statement as
a pending data definition change, which means the current object definition and data do not reflect
the alteration at the time that the statement is issued. Instead, the altered object is placed in an
advisory REORG-pending (AREOR) state, and a subsequent reorganization of the altered object with
an appropriate utility materializes the changes to the catalog and data. For more information, see
Pending data definition changes (Db2 Administration Guide).

When pending definition changes are specified for the BUFFERPOOL, DSSIZE, MAXPARTITIONS, or
SEGSIZE attributes of partition-by-growth (PBG) table spaces, the number of partitions is determined
based on the amount of existing data at the time the pending change is applied, and partition growth
can occur. If LOB columns exist, additional LOB table spaces and auxiliary objects are implicitly
created for the newly-created partitions independent of whether SQLRULES (DB2) or SQLRULES (STD)
is in effect or whether the table space was explicitly or implicitly created. The new LOB objects inherit
the buffer pool attribute and authorization from the existing LOB objects.

1326 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_compressdataperf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html

INSERT ALGORITHM level
Specifies the algorithm that is used when rows are inserted into tables in this table space. The insert
algorithm level is used only where applicable (MEMBER CLUSTER UTS). Altering the insert algorithm
for a table space occurs immediately.
1

Specifies the basic insert algorithm is used.
2

Specifies that insert algorithm 2 is used.

Important: The insert algorithm level can be changed only to level 1 or 2. Level 0, which is supported
by CREATE TABLESPACE, is not supported by ALTER TABLESPACE.

LOCKMAX
Specifies the maximum number of page, row, or LOB locks an application process can hold
simultaneously in the table space. If a program requests more than that number, locks are escalated.
The page, row, or LOB locks are released and the intent lock on the table space or segmented
(non-UTS) table is promoted to S or X mode. If you specify LOCKMAX a for table space in a work file
database, Db2 ignores the value because these types of locks are not used.
integer

Specifies the number of locks allowed before escalating, in the range 0–2147483647.

Zero (0) indicates that the number of locks on the table or table space are not counted and
escalation does not occur.

SYSTEM
FL 507 Specifies that Db2 determines the maximum number of locks that a program can hold
simultaneously in the table space from the SYSIBMADM.MAX_LOCKS_PER_TABLESPACE built-in
global variable.

For related information see SYSIBMADM.MAX_LOCKS_PER_TABLESPACE.

If you change LOCKSIZE and omit LOCKMAX, the following results occur:

LOCKSIZE Resultant LOCKMAX

TABLESPACE or TABLE 0

PAGE, ROW, or LOB Unchanged

ANY SYSTEM

If the lock size is TABLESPACE or TABLE, LOCKMAX must be omitted, or its operand must be 0.

LOCKSIZE
Specifies the size of locks used within the table space and, in some cases, also the threshold at which
lock escalation occurs. Do not specify LOCKSIZE for a table space in a work file database.
ANY

Specifies that Db2 can use any lock size.

In most cases, Db2 uses LOCKSIZE PAGE LOCKMAX SYSTEM for non-LOB table spaces and
LOCKSIZE LOB LOCKMAX SYSTEM for LOB table spaces. However, when the number of locks
acquired for the table space exceeds the maximum number of locks allowed for a table space (an
installation parameter), the page or LOB locks are released and locking is set at the next higher
level. If the table space is segmented, the next higher level is the table. If the table space is not
segmented, the next higher level is the table space.

TABLESPACE
Specifies table space locks.

TABLE
Specifies table locks. Use TABLE only for a segmented (non-UTS) table space. Do not use TABLE
for a universal table space.

Chapter 7. Statements 1327

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html

PAGE
Specifies page locks. Do not use PAGE for a LOB table space.

ROW
Specifies row locks. Do not use ROW for a LOB table space.

LOB
Specifies LOB locks. Use LOB only for a LOB table space.

The LOCKSIZE change affects a dynamic SQL statement if the statement is prepared and executed
after the change. The LOCKSIZE change affects a static SQL statement if the statement is executed
after the change.

LOGGED or NOT LOGGED
Specifies whether changes that are made to the data in the specified table space are recorded in the
log.
LOGGED

Specifies that changes that are made to the data in the specified table space are recorded in
the log. This applies to all tables in the specified table space and to all indexes of those tables.
Table spaces and indexes that are created for XML columns inherit the logging attribute from the
associated base table space. Auxiliary indexes inherit the logging attribute from the associated
base table space. This can affect the logging attribute of associated LOB table spaces. For more
information. see “Altering the logging attribute of a table space” on page 1337.

If the base table space is in informational copy-pending status (meaning updates have been made
to the table space) when you change from NOT LOGGED to LOGGED, the base table space is
placed in copy-pending status. All indexes of tables in the table space are unchanged from their
current state; that is, if an index is currently in informational copy-pending status, it will remain in
information copy-pending status.

Specifying LOGGED for a LOB table space requires that the base table space also specifies the
LOGGED parameter.

LOGGED cannot be specified for XML table spaces. The logging attribute of an XML table space is
inherited from its base table space.

LOGGED cannot be specified for table spaces in DSNDB06 (the Db2 catalog) or in a work file
database.

NOT LOGGED
Specifies that changes that are made to data in the specified table space are not recorded in
the log. This applies to all tables in the specified table space and to all indexes of those tables.
Table spaces and indexes that are created for XML columns inherit the logging attribute from the
associated base table space. Auxiliary indexes inherit the logging attribute from the associated
base table space. This parameter can affect the logging attribute of associated LOB table spaces.
For more information, see “Altering the logging attribute of a table space” on page 1337.

NOT LOGGED prevents undo and redo information from being recorded in the log for the base
table space; however, control information for the specified base table space will continue to be
recorded in the log. For a LOB table space, changes to system pages and to auxiliary indexes are
logged.

NOT LOGGED is mutually exclusive with the DATA CAPTURE CHANGES parameter of CREATE
TABLE and ALTER TABLE. NOT LOGGED will not be applied to the table space if any table in the
table space specifies DATA CAPTURE CHANGES.

NOT LOGGED cannot be specified for XML table spaces.

NOT LOGGED cannot be specified for table spaces in the following databases:

• DSNDB06 (the Db2 catalog)
• a work file database

1328 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

MAXROWS integer
Specifies the maximum number of rows that Db2 will consider placing on each data page. The integer
can range from 1 through 255.

The change takes effect immediately for new rows added. However, the space class settings for some
pages might be incorrect and could cause unproductive page visits. It is highly recommended to
reorganize the table space after altering MAXROWS.

After ALTER TABLESPACE with MAXROWS is run, the table space is placed into an advisory REORG-
pending status. Run the REORG TABLESPACE utility to remove the status.

Do not specify MAXROWS for a LOB table space, a table space that is implicitly created for an XML
column, a table space in a work file database, or the Db2 catalog table spaces that are listed under
“SQL statements allowed on the catalog” on page 2739.

MAXPARTITIONS integer
Specifies that the table space is partition-by-growth. integer specifies the maximum number of
partitions to which the table space can grow or shrink. integer must be in the range of 1 to 4096,
depending on the value that is in effect for DSSIZE and the page size of the table space, and must not
be less than the number of physical partitions that are already allocated for the table space. For more
information about the relationship between DSSIZE, MAXPARTITIONS, buffer pool page size and table
space size, see “Maximum number of partitions and table space size ” on page 1340.

MAXPARTITIONS can be specified only for a simple table space that contains only one table, a
segmented (non-UTS) table space that contains only one table, or a partitioned-by-growth table
space. The table space must have Db2-managed data sets.

Depending on the situation when this clause is specified, Db2 might process the ALTER statement as
a pending data definition change, which means the current object definition and data do not reflect
the alteration at the time that the statement is issued. Instead, the altered object is placed in an
advisory REORG-pending (AREOR) state, and a subsequent reorganization of the altered object with
an appropriate utility materializes the changes to the catalog and data. For more information, see
Pending data definition changes (Db2 Administration Guide).

Although physical data sets are not defined when the MAXPARTITIONS value is issued, there can
be storage and CPU overhead. If an increase in the number of partitions is expected by using the
MAXPARTITONS clause, be aware that specifying a value larger than necessary, such as 4096 (the
maximum value), as a default for all of your partition-by-growth table spaces can cause larger than
expected storage requests.

FL 508If MAXPARTITIONS is specified on a simple or segmented (non-UTS) table space, the table
space is converted to a partition-by-growth table space that can grow to a maximum number of
integer partitions. If pending definition changes to move tables from the table space exist, integer
must be 1. The SEGSIZE is set to the default of 32 if the SEGSIZE prior to conversion is less than 32.
Otherwise, the value of SEGSIZE is inherited from the original table space. The DSSIZE is set to the
default 4 gigabytes.

If the data sets of the table space are not defined, the number of partitions is set to 1 during the
conversion to a partition-by-growth table space from a simple or segmented (non-UTS) table space.

When pending definition changes are specified for the BUFFERPOOL, DSSIZE, MAXPARTITIONS, or
SEGSIZE attributes of partition-by-growth (PBG) table spaces, the number of partitions is determined
based on the amount of existing data at the time the pending change is applied, and partition growth
can occur. If LOB columns exist, additional LOB table spaces and auxiliary objects are implicitly
created for the newly-created partitions independent of whether SQLRULES (DB2) or SQLRULES (STD)
is in effect or whether the table space was explicitly or implicitly created. The new LOB objects inherit
the buffer pool attribute and authorization from the existing LOB objects.

If the table space is defined with LOCKSIZE TABLE, the lock size will be reset to LOCKSIZE
TABLESPACE during conversion to a partition-by-growth table space.

MEMBER CLUSTER YES or MEMBER CLUSTER NO
Specifies whether the table space uses the MEMBER CLUSTER page set structure. The MEMBER
CLUSTER clause can be specified only for a partition-by-growth or partition-by-range table space, or

Chapter 7. Statements 1329

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m508.html

for a table space for which a pending definition change will convert the table space to a universal table
space.

Depending on the situation when this clause is specified, Db2 might process the ALTER statement as
a pending data definition change, which means the current object definition and data do not reflect
the alteration at the time that the statement is issued. Instead, the altered object is placed in an
advisory REORG-pending (AREOR) state, and a subsequent reorganization of the altered object with
an appropriate utility materializes the changes to the catalog and data. For more information, see
Pending data definition changes (Db2 Administration Guide).

MEMBER CLUSTER YES
Specifies that the MEMBER CLUSTER page set structure is to be used for the specified table
space when the table space is already defined as a partition-by-growth or partition-by-range table
space.

MEMBER CLUSTER YES cannot be specified for LOB, workfile, or XML table spaces, or for table
spaces that are organized for hash access.

MEMBER CLUSTER NO
Specifies that the table space does not use the MEMBER CLUSTER page set structure when
the table space is already defined as a partition-by-growth or partition-by-range table space. If
the universal table space is already defined to use the MEMBER CLUSTER page set structure,
specifying MEMBER CLUSTER NO on the ALTER TABLESPACE statement removes the MEMBER
CLUSTER page set structure from the table space.

SEGSIZE integer
Specifies that the table space is a universal table space, where integer specifies the number of pages
that are to be assigned to each segment of the table space. integer must be a multiple of 4 in the
range 4–64 (inclusive). When SEGSIZE is specified, no other options are allowed in the same ALTER
TABLESPACE statement.

SEGSIZE can be specified only for a universal table space or a partitioned table space that uses
table-controlled partitioning.

Depending on the situation when this clause is specified, Db2 might process the ALTER statement as
a pending data definition change, which means the current object definition and data do not reflect
the alteration at the time that the statement is issued. Instead, the altered object is placed in an
advisory REORG-pending (AREOR) state, and a subsequent reorganization of the altered object with
an appropriate utility materializes the changes to the catalog and data. For more information, see
Pending data definition changes (Db2 Administration Guide).

When pending definition changes are specified for the BUFFERPOOL, DSSIZE, MAXPARTITIONS, or
SEGSIZE attributes of partition-by-growth (PBG) table spaces, the number of partitions is determined
based on the amount of existing data at the time the pending change is applied, and partition growth
can occur. If LOB columns exist, additional LOB table spaces and auxiliary objects are implicitly
created for the newly-created partitions independent of whether SQLRULES (DB2) or SQLRULES (STD)
is in effect or whether the table space was explicitly or implicitly created. The new LOB objects inherit
the buffer pool attribute and authorization from the existing LOB objects.

If the existing FREEPAGE value (the number of pages to be left free) is greater than or equal to the
new SEGSIZE value, the number of pages is adjusted to be one less than the new SEGSIZE value.

If the table space is a partitioned table space, the partitioned table space is converted to a partition-
by-range (UTS) table space with a segment size specified by integer. The MEMBER CLUSTER attribute
is inherited from the original table space. The number of partitions is inherited from the original table
space. If the original DSSIZE attribute has a value of 0, the DSSIZE is set to the original maximum
partition size. Otherwise, the DSSIZE attribute is inherited from the original table space.

TRACKMOD
Specifies whether Db2 tracks modified pages in the space map pages of the table space or partition.
Do not specify TRACKMOD for a LOB table space or a table space in a work file database.

For the changed TRACKMOD option to take effect, the table space or partition needs to be stopped
and restarted. The table space or partition can be stopped and restarted by running the STOP

1330 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html

DATABASE command followed by the START DATABASE command, or by running the REORG utility
on the table space or partition. For more information, see -STOP DATABASE command (Db2) (Db2
Commands), -START DATABASE command (Db2) (Db2 Commands).

YES
Db2 tracks changed pages in the space map pages to improve the performance of incremental
image copy. For data sharing, changing TRACKMOD to YES causes additional SCA (shared
communication area) storage to be used until after the next full or incremental image copy is
taken or until TRACKMOD is set back to NO.

NO
Db2 does not track changed pages in the space map pages. It uses the LRSN value in each page to
determine whether a page has been changed.

FREEPAGE integer
Specifies how often to leave a page of free space when the table space is loaded or reorganized. One
free page is left after every integer pages; integer can range 0–255. FREEPAGE 0 leaves no free pages.
Do not specify FREEPAGE for a LOB table space, a table space that is implicitly created for an XML
column, or a table space in a work file database.

If the table space is segmented, the number of pages left free must be less than the SEGSIZE value. If
the number of pages to be left free is greater than or equal to the SEGSIZE value, then the number of
pages is adjusted downward to one less than the SEGSIZE value.

This change to the description of the table space or partition has no effect until data in the table space
or partition is loaded or reorganized.

For more information, see “CURRENT TEMPORAL SYSTEM_TIME special register” on page 210.

Reserving free space in table spaces (Db2 Performance)
Reserving free spaces for indexes (Db2 Performance)

PCTFREE smallint
Specifies what percentage of each page to leave as free space when the table space is loaded or
reorganized. The default value is PCTFREE 5, which specifies that 5% of the space on each data page
is reserved as free space. The first record on each page is loaded without restriction. When additional
records are loaded, at least integer percent of free space is left on each page. integer can range 0–99.
Do not specify PCTFREE for a LOB table space, a table space that is implicitly created for an XML
column, or a table space in a work file database.
FOR UPDATE smallint

Specifies the percentage of space to reserve as free space on each page, for use by subsequent
UPDATE operations. The smallint value is an integer in the range -1 to 99. FOR UPDATE -1
specifies that 5% of free space is reserved initially, and the amount of free spaces is calculated
automatically based on certain real-time statistics values. The first record on each page is always
loaded without restriction.

If this value is not specified, the value of the PCTFREE_UPD subsystem parameter is used.

The value is recorded in the PCTFREE_UPD column of the SYSIBM.SYSTABLEPART catalog table.

The FOR UPDATE smallint values do not apply to LOB table spaces, XML table spaces, or table
spaces that use hash organization.

The sum of the values for PCTFREE smallint and FOR UPDATE smallint must be less than or equal to
99.

If FOR UPDATE smallint is not specified and the sum of PCTFREE smallint and the PCTFREE_UPD
subsystem parameter value is greater than or equal to 99, Db2 uses a smaller value for
PCTFREE_UPD.

This change to the description of the table space or partition has no effect until data in the table space
or partition is loaded or reorganized.

For more information, see “CURRENT TEMPORAL SYSTEM_TIME special register” on page 210.

Chapter 7. Statements 1331

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_stopdatabase.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_stopdatabase.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_startdatabase.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_reservefreespacetable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_reservefreespaceindex.html

Reserving free space in table spaces (Db2 Performance)
Reserving free spaces for indexes (Db2 Performance)

USING
Specifies whether a data set for the table space or partition is managed by the user or is managed by
the Db2 system. If the table space is partitioned, USING applies to the data set for the partition that
is identified in the ALTER PARTITION clause. If the table space is a partition-by-growth table space,
USING can be specified only at the table space level. If the table space is not partitioned, USING
applies to every data set that is eligible for the table space. (A nonpartitioned table space can have
more than one data set if PRIQTY+118 × SECQTY is at least 2 gigabytes.)

If the USING clause is specified, the table space or partition must be in the stopped state when
the ALTER TABLESPACE statement is executed. See Altering storage attributes to determine how
and when changes take effect. Do not specify the USING clause if the table space is in a work file
database.
VCAT catalog-name

Specifies user-managed data sets for the table space.

The data sets are VSAM linear data sets cataloged in the integrated catalog facility catalog
that catalog-name identifies. For more information about catalog-name values, see “Naming
conventions in SQL” on page 79.

More than one Db2 subsystem can share the integrated catalog facility catalogs with the current
server. To avoid the chance of those subsystems attempting to assign the same name to different
data sets, specify a catalog-name value that is not used by the other Db2 subsystems.

The VCAT clause must not be specified if the table space is a partition-by-growth table space.

STOGROUP stogroup-name
Specifies a Db2-managed data set that resides on a volume of the identified storage group.
stogroup-name must identify a storage group that exists at the current server and the privilege
set must include SYSADM authority, SYSCTRL authority, or the USE privilege for the storage group.
When the new description of the table space is applied, the description of the storage group must
include at least one volume serial number, each volume serial number must identify a volume that
is accessible to z/OS for dynamic allocation of the data set, and all identified volumes must be
of the same device type. Furthermore, the integrated catalog facility catalog used for the storage
group must not contain an entry for the data set.

If you specify USING STOGROUP and the current data set for the table space or partition is
managed by Db2:

• Omission of the PRIQTY clause is an implicit specification of the current PRIQTY value.
• Omission of the SECQTY clause is an implicit specification of the current SECQTY value.
• Omission of the ERASE clause is an implicit specification of the current ERASE rule.

If you specify USING STOGROUP to convert from user-managed data sets to Db2-managed data
sets:

• Omission of the PRIQTY clause is an implicit specification of the default value.
• Omission of the SECQTY clause is an implicit specification of the default value.
• Omission of the ERASE clause is an implicit specification of ERASE NO.

For more information, see “Rules for primary and secondary space allocation” on page 1337.

PRIQTY integer
Specifies the minimum primary space allocation for a Db2-managed data set of the table space or
partition. integer must be a positive integer, or -1. This clause can be specified only if the data set is
managed by Db2, and if one of the following is true:

• USING STOGROUP is specified.
• A USING clause is not specified.

1332 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_reservefreespacetable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_reservefreespaceindex.html

In general, when you specify PRIQTY with a positive integer value, the primary space allocation is at
least n kilobytes, where n is the value of integer. However, the following exceptions exist:

For non-LOB table spaces, the exceptions are:

• For 4KB page sizes, if integer is greater than 0 and less than 12, n is 12.
• For 8KB page sizes, if integer is greater than 0 and less than 24, n is 24.
• For 16KB page sizes, if integer is greater than 0 and less than 48, n is 48.
• For 32KB page sizes, if integer is greater than 0 and less than 96, n is 96.
• For any page size, if integer is greater than 67108864, n is 67108864.

For LOB table spaces, the exceptions are:

• For 4KB page sizes, if integer is greater than 0 and less than 200, n is 200.
• For 8KB page sizes, if integer is greater than 0 and less than 400, n is 400.
• For 16KB page sizes, if integer is greater than 0 and less than 800, n is 800.
• For 32KB page sizes, if integer is greater than 0 and less than 1600, n is 1600.
• For any page size, if integer is greater than 67108864, n is 67108864.

The maximum value allowed for PRIQTY is 64GB (67108864 kilobytes).

If you specify PRIQTY with a value of -1, Db2 uses a default value for the primary space allocation.
For information on how Db2 determines the default value for primary space allocation, see Rules for
primary and secondary space allocation.

If PRIQTY is omitted and USING STOGROUP is specified, the value of PRIQTY is its current value.
(However, if the current data set is being changed from being user-managed to Db2-managed, the
value is its default value. See the description of USING STOGROUP.)

If you specify PRIQTY, and do not specify a value of -1, Db2 specifies the primary space allocation
to access method services using the smallest multiple of p KB not less than n, where p is the page
size of the table space. The allocated space can be greater than the amount of space requested by
Db2. For example, it could be the smallest number of tracks that will accommodate the request. To
more closely estimate the actual amount of storage, see DEFINE CLUSTER command (DFSMS Access
Method Services for Catalogs).

At least one of the volumes of the identified storage group must have enough available space for the
primary quantity. Otherwise, the primary space allocation will fail.

To determine how and when changes to PRIQTY take effect, see “Altering storage attributes” on page
1337.

SECQTY integer
Specifies the minimum secondary space allocation for a Db2-managed data set of the table space or
partition. integer must be a positive integer, 0, or -1. This clause can be specified only if the data set is
managed by Db2, and if one of the following is true:

• USING STOGROUP is specified.
• A USING clause is not specified.

If you specify SECQTY with a value of -1, Db2 uses a default value for the secondary space allocation.

If USING STOGROUP is specified and SECQTY is omitted, the value of SECQTY is its current value.
(However, if the current data set is being changed from being user-managed to Db2-managed, the
value is its default value. See the description of USING STOGROUP.)

For information on the actual value that is used for secondary space allocation, whether you specify
a value or Db2 uses a default value, see “Rules for primary and secondary space allocation” on page
1337.

If you specify SECQTY, and do not specify a value of -1, Db2 specifies the secondary space allocation
to access method services using the smallest multiple of p KB not less than integer, where p is the
page size of the table space. The allocated space can be greater than the amount of space requested

Chapter 7. Statements 1333

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/defclu.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/defclu.htm

by Db2. For example, it could be the smallest number of tracks that will accommodate the request.
To more closely estimate the actual amount of storage, see the description of the DEFINE CLUSTER
command (DFSMS Access Method Services for Catalogs) for z/OS DFSMS Access Method Services for
catalogs.

To determine how and when changes to SECQTY take effect, see “Altering storage attributes” on page
1337.

ERASE
Indicates whether the Db2-managed data sets for the table space or partition are to be erased before
they are deleted during the execution of a utility or an SQL statement that drops the table space.
NO

Does not erase the data sets. Operations involving data set deletion will perform better than
ERASE YES. However, the data is still accessible, though not through Db2.

YES
Erases the data sets. As a security measure, Db2 overwrites all data in the data sets with zeros
before they are deleted.

This clause can be specified only if the data set is managed by Db2, and if one of the following is true:

• USING STOGROUP is specified.
• A USING clause is not specified.

If you specify ERASE, the table space or partition must be in the stopped state when the ALTER
TABLESPACE statement is executed. If you specify ERASE for a partitioned table space, you must
also specify the ALTER PARTITION clause. See Altering storage attributes to determine how and when
changes take effect.

GBPCACHE
In a data sharing environment, specifies what pages of the table space or partition are written to the
group buffer pool in a data sharing environment. In a non-data-sharing environment, you can specify
GBPCACHE for a table space other than one in a work file database, but it is ignored. Do not specify
GBPCACHE for a table space in a work file database in either environment (data sharing or not). In
addition, you cannot alter the GBPCACHE value of some Db2 catalog table spaces; for a list of these
table spaces, see “SQL statements allowed on the catalog” on page 2739.
CHANGED

When there is inter-Db2 R/W interest on the table space or partition, updated pages are written
to the group buffer pool. When there is no inter-Db2 R/W interest, the group buffer pool is not
used. Inter-Db2 R/W interest exists when more than one member in the data sharing group has
the table space or partition open, and at least one member has it open for update.

If the table space is in a group buffer pool that is defined to be used only for cross-invalidation
(GBPCACHE NO), CHANGED is ignored and no pages are cached to the group buffer pool.

ALL
Indicates that pages are to be cached in the group buffer pool as they are read in from DASD.

Exception: In the case of a single updating Db2 when no other Db2 subsystems have any interest
in the page set, no pages are cached in the group buffer pool.

If the table space is in a group buffer pool that is defined to be used only for cross-invalidation
(GBPCACHE NO), ALL is ignored and no pages are cached to the group buffer pool.

SYSTEM
Indicates that only changed system pages within the LOB table space are to be cached to the
group buffer pool. A system page is a space map page or any other page that does not contain
actual data values.

Use SYSTEM only for a LOB table space.

NONE
Indicates that no pages are to be cached to the group buffer pool. Db2 uses the group buffer pool
only for cross-invalidation.

1334 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/defclu.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/defclu.htm

If you specify NONE, the table space or partition must not be in recover pending status when the
ALTER TABLESPACE statement is executed.

If you specify GBPCACHE in a data sharing environment, the table space or partition must be in the
stopped state when the ALTER TABLESPACE statement is executed.

PAGENUM
Specifies the type of page numbering that is used when you alter a partition-by-range table space.
RELATIVE

Indicates that internal page numbering is kept as a 4-byte value without a partition number. The
page number is a relative page from the start of the partition, and the partition number is kept only
in the header page.

The table space cannot be altered to relative page numbering if the table has truncated limit key
values.

Depending on the situation when this clause is specified, Db2 might process the ALTER statement as
a pending data definition change, which means the current object definition and data do not reflect
the alteration at the time that the statement is issued. Instead, the altered object is placed in an
advisory REORG-pending (AREOR) state, and a subsequent reorganization of the altered object with
an appropriate utility materializes the changes to the catalog and data. For more information, see
Pending data definition changes (Db2 Administration Guide).

ALTER PARTITION integer
Specifies that the identified partition of the table space is to be changed. For a table space that has
n partitions, you must specify an integer in the range 1 to n. You must not use this clause for a
nonpartitioned table space, for a LOB table space, or a partition-by-growth table space. At least one of
the following clauses must be specified:

• COMPRESS
• DSSIZE
• ERASE
• FREEPAGE
• GBPCACHE
• PCTFREE
• PRIQTY
• SECQTY
• TRACKMOD
• USING

The changes specified by these clauses affect only the identified partition.

Do not specify the following clauses for ALTER PARTITION for partitions of a table space that is
implicitly created for an XML column.

• CCSID
• FREEPAGE
• MAXROWS
• PCTFREE

MOVE TABLE table-name TO TABLESPACE dbname.new-tsname
FL 508 Specifies that the table that is specified by table-name is to be moved to another table space.
new-tsname specifies the target table space to which the table is to be moved, and dbname specifies
the database that contains the target table space. Omission of dbname is an implicit specification of
DSNDB04. The privilege set must include SYSADM or SYSCTRL authority or the USE privilege for the
buffer pool and storage group that are used by the target table space.

The table that is specified by table-name must meet the following requirements:

Chapter 7. Statements 1335

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m508.html

• Exist at the current server
• Be defined in the source table space
• Not specify a view
• If the alteration is a pending change, be in a complete state
• Not have an OBID value of 1

The source table space that is specified in database-name.table-space-name must meet the following
requirements:

• Not be a catalog or directory table space
• Not be a table space in the work file database
• Be a simple or segmented (non-UTS) table space

The target table space that is specified in dbname.new-tsname must meet the following requirements:

• Not be a catalog or directory table space
• Exist in the same database as the source table space
• Be a universal partition-by-growth table space
• Not already have data sets created
• Be defined with MAXPARTITIONS 1
• Have the same encoding scheme and CCSID triplet as the source table space
• Be defined with a buffer pool that has a page size that can accommodate the record length of the

moved table
• Be defined with the same LOGGED attribute as the source table space

Depending on the situation when this clause is specified, Db2 might process the ALTER statement as
a pending data definition change, which means the current object definition and data do not reflect
the alteration at the time that the statement is issued. Instead, the altered object is placed in an
advisory REORG-pending (AREOR) state, and a subsequent reorganization of the altered object with
an appropriate utility materializes the changes to the catalog and data. For more information, see
Pending data definition changes (Db2 Administration Guide).

Taking either of the following actions before you run the REORG utility to apply a pending MOVE TABLE
operation will cause the REORG job to fail:

• Altering the target table space so that its attributes become invalid for a MOVE TABLE operation
• Dropping and re-creating the target table space, regardless of whether the table space attributes

are valid

For information on moving tables from deprecated table spaces, see Moving tables from multi-table
table spaces to partition-by-growth table spaces (Db2 Administration Guide).

Notes for ALTER TABLESPACE
ALTER TABLESPACE and insert operations in the same commit scope

You might encounter problems when an ALTER TABLESPACE statement is followed by an insert
operation in the same commit scope. If that happens, add a COMMIT statement between the ALTER
TABLESPACE and insert operations.

Running utilities
You cannot execute the ALTER TABLESPACE statement while a Db2 utility has control of the table
space.

Altering more than one partition
To change FREEPAGE, PCTFREE, USING, PRIQTY, SECQTY, ERASE, or GBPCACHE for more than one
partition, you must use separate ALTER TABLESPACE statements.

1336 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_movetablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_movetablespace.html

Rules for primary and secondary space allocation
You can specify the primary and secondary space allocation or let Db2 choose them. Having Db2
choose the values, especially the secondary space quantity, increases the possibility of reaching the
maximum data set size before running out of extents. For more information, see Rules for primary and
secondary space allocation (Introduction to Db2 for z/OS).

Altering storage attributes
The USING, PRIQTY, SECQTY, and ERASE clauses define the storage attributes of the table space or
partition. If you specify USING or ERASE when altering storage attributes, the table space or partition
must be in the stopped state when the ALTER TABLESPACE statement is executed. You can use a
STOP DATABASE…SPACENAM… command to stop the table space or partition.

If the catalog name changes, the changes take effect after you move the data and start the table
space or partition using the START DATABASE…SPACENAM… command. The catalog name can be
implicitly or explicitly changed by the ALTER TABLESPACE statement. The catalog name also changes
when you move the data to a different device. See the procedures in Tools for moving Db2 data (Db2
Administration Guide).

Changes to the secondary space allocation (SECQTY) take effect the next time Db2 extends the
data set; however, the new value is not reflected in the integrated catalog until you use the REORG,
RECOVER, or LOAD REPLACE utility on the table space or partition. The changes to the other storage
attributes take effect the next time the page set is reset. For a non-LOB table space, the page set is
reset when you use the REORG, RECOVER, or LOAD REPLACE utilities on the table space or partition.
For a LOB table space, the page set is reset when RECOVER is run on the LOB table space or LOAD
REPLACE is run on its associated base table space. If there is not enough storage to satisfy the
primary space allocation, a REORG might fail. If you change the primary space allocation parameters
or erase rule, you can have the changes take effect earlier if you move the data before you start the
table space or partition.

Recommended GBPCACHE setting for LOB table spaces
For LOB table spaces, use the GBPCACHE CHANGED option instead of the GBPCACHE SYSTEM option.
Due to the usage patterns of LOBs, the use of GBPCACHE CHANGED can help avoid excessive and
synchronous writes to disk and the group buffer pool.

Increasing the size of a partitioned table space
Depending on the needs of your applications, you might need to increase the size of a partitioned
table space by taking one of the following actions:

• Adding partitions (Db2 Administration Guide)
• Increasing partition size (Db2 Administration Guide)

Altering table spaces for tables that use hash organization
Certain attributes of the table space, such as buffer pool and page size, might affect performance of
tables that use hash organization. Changes related to the hash organization of a table will be validated
and might generate error messages as described in “CREATE TABLE statement” on page 1650 and
“ALTER TABLE statement” on page 1232.

Deprecated function: FL 504 Hash-organized tables are deprecated. Beginning in Db2 12, packages
bound with APPLCOMPAT(V12R1M504) or higher cannot create hash-organized tables or alter
existing tables to use hash-organization. Existing hash organized tables remain supported, but they
are likely to be unsupported in the future.

Altering the logging attribute of a table space
If the logging attribute (specified with the LOGGED or NOT LOGGED parameter) of a table space is
altered frequently, the size of SYSIBM.SYSCOPY might need to be increased.

The logging attribute of the table space cannot be altered if the table space has been updated in the
same unit of recovery.

A full image copy of the table space should be taken:

• Before altering a table space to NOT LOGGED
• After altering a table space to LOGGED

Chapter 7. Statements 1337

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_primaryspaceallocation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_primaryspaceallocation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_toolstomovedata.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_toolstomovedata.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_addpartition.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_increasingpartsize.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

If a table space has data changes after an image copy is taken (the table space is in informational
COPY-pending state), and the table space is altered from NOT LOGGED to LOGGED, the table space is
marked COPY-pending and a full image copy of the table space must be taken.

An XML table space with the LOGGED logging attribute has its logging attribute altered to NOT
LOGGED when the logging attribute of the associated base table space is altered from LOGGED to NOT
LOGGED. When this happens, the logging attribute of the XML table space is said to be linked to the
logging attribute of the base table space. When the logging attribute of the base table space is altered
back to LOGGED, all logging attributes that are linked for the associated XML table spaces are altered
back to LOGGED, and all of these links are dissolved.

A LOB table space with the LOGGED logging attribute has its logging attribute altered to NOT LOGGED
when the logging attribute of the associated base table space is altered from LOGGED to NOT
LOGGED. When this happens, the logging attribute of the LOB table space is said to be linked to
the logging attribute of the base table space. When the logging attribute of the base table space is
altered back to LOGGED, all logging attributes that are linked for the associated LOB table spaces are
altered back to LOGGED, and all of these links are dissolved.

You can dissolve the link between these logging attributes by altering the logging attribute of the LOB
table space to NOT LOGGED, even though it has already been implicitly given this logging attribute.
After such an alter, the logging attribute of the LOB table space is unaffected when the logging
attribute of the base table is altered back to LOGGED. A LOB table space with the NOT LOGGED
logging attribute does not have this attribute changed in any way if the logging attribute of the
associated base table space is altered from LOGGED to NOT LOGGED. When altered in this way, the
logging attributes of the LOB table space and the base table space are not linked. If the base table
space is altered back to LOGGED, the logging attribute of any LOB table spaces that are not linked to
the logging attribute of the base table space remain unchanged.

Altering table spaces for Db2 catalog tables
For details on altering options on catalog tables, see “SQL statements allowed on the catalog” on
page 2739.

Invalidation of packages:
This statement might invalidate all packages that depend on target objects, and sometimes other
related objects through cascading effects, depending on the clauses and keywords specified
and other factors. For more information, see Changes that invalidate packages (Db2 Application
programming and SQL).

Pending data definition changes

The following table lists clauses and specific conditions that cause an ALTER TABLESPACE statement
to be processed as a pending definition change. The changes are not reflected in the definition or
data at the time the ALTER TABLESPACE statement is issued. Instead, the entire table space is placed
in an advisory REORG-pending state (AREOR). A subsequent reorganization of the entire table space
applies the pending definition changes to the definition and data of the table space. The definition of
the table space must not be in an incomplete state.

Clause or option Pending definition change used if...

BUFFERPOOL The data sets of the table space are already created, and any of the
following conditions are true:

• Pending definition changes already exist for the table space or any
objects within the base table space.

• The specified buffer pool has a different page size than the buffer pool
that is currently being used for the table space.

DSSIZE The data sets of the table space are already created, and any of the
following conditions are true:

• Pending definition changes already exist for the table space or for any
objects in the table space.

1338 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

Clause or option Pending definition change used if...

• The table space uses relative page numbering, and the DSSIZE value
that is specified at the table space level is smaller than the value that is
currently being used for one or more of the partitions in the table space.

• The table space uses absolute page numbering, and the specified
DSSIZE value is different than the value that is currently being used for
the table space.

MAXPARTITIONS If the data sets of the table space are already created and the table space
is not a PBG table space.

MEMBER CLUSTER If the data sets of the table space are already created and any of the
following conditions are true:

• Pending definition changes already exist for the table space or any
objects in the table space.

• The MEMBER CLUSTER attribute is changed to a different value.

FL 508 MOVE TABLE The data sets of the altered table space are already created.

PAGENUM The change to the PAGENUM attribute is a pending change to the definition
of the table space if the data sets of the table space are already created
and if one of the following conditions is true:

• Pending definition changes already exist for the table space or any
associated indexes.

• The specified PAGENUM attribute is different from the value that is
currently being used for the table space.

SEGSIZE The data sets of the table space are already created, and any of the
following conditions are true:

• Pending definition changes already exist for the definition of the table
space or any objects in the table space.

• The specified SEGSIZE value for a universal table space is different than
the existing value.

• The table space is converted from a partitioned (non-UTS) table space to
a partition-by-range table space.

When pending definition changes are specified for the BUFFERPOOL, DSSIZE, MAXPARTITIONS, or
SEGSIZE attributes of partition-by-growth (PBG) table spaces, the number of partitions is determined
based on the amount of existing data at the time the pending change is applied, and partition growth
can occur. If LOB columns exist, additional LOB table spaces and auxiliary objects are implicitly
created for the newly-created partitions independent of whether SQLRULES (DB2) or SQLRULES (STD)
is in effect or whether the table space was explicitly or implicitly created. The new LOB objects inherit
the buffer pool attribute and authorization from the existing LOB objects.

For more information, see Pending data definition changes (Db2 Administration Guide).

Restrictions for pending data definition changes
The following restrictions apply to ALTER TABLESPACE, ALTER TABLE, and ALTER INDEX statements
that result in pending data definition changes:

• Options that cause pending changes cannot be specified with options that take effect immediately.
• Options that cause pending changes cannot be specified for the Db2 catalog, other system objects,

or objects in a work file database.
• The DROP PENDING CHANGES clause of the ALTER TABLESPACE statement cannot be specified for

a catalog table space.

Chapter 7. Statements 1339

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m508.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html

• If the table space, or any table it contains is in an incomplete state, you cannot specify options that
cause pending changes.

• For ALTER INDEX, options that cause pending changes cannot be specified if the definition of the
table space or table on which the index is defined is not complete.

Also, many alter operations are restricted for a table space that has existing pending data definition
changes for the table space, the table it contains, or indexes on the table. For more information, see
Restrictions for pending data definition changes (Db2 Administration Guide).

Maximum number of partitions and table space size
For partition-by-range table spaces created with relative page numbering, the maximum number of
partitions is 4096. For partition-by-range table spaces with absolute page numbering or partition-by
growth table spaces, the following tables show how the maximum number of partitions and the
total table space size depend on the buffer pool page size and DSSIZE value, with 5-byte extended
addressability (EA) storage.“1” on page 1341

4 KB page size

Table 186. Maximum number of partitions and table space size by DSSIZE, with 4 KB page size

DSSIZE Maximum number of
partitions

Total table space size

1G 4096 4 TB

2G 4096 8 TB

4G 4096 16 TB

8G 2048 16 TB

16G 1024 16 TB

32G 512 16 TB

64G 256 16 TB

128G 128 16 TB

256G 64 16 TB

8 KB page size

Table 187. Maximum number of partitions and table space size by DSSIZE, with 8 KB page size

DSSIZE Maximum number of
partitions

Total table space size

1G 4096 4TB

2G 4096 8TB

4G 4096 16TB

8G 4096 32TB

16G 2048 32TB

32G 1024 32TB

64G 512 32TB

128G 256 32TB

256G 128 32TB

1340 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_restrictpendingchanges.html

16 KB page size

Table 188. Maximum number of partitions and table space size by DSSIZE, with 16 KB page size

DSSIZE Maximum number of
partitions

Total table space size

1G 4096 4 TB

2G 4096 8 TB

4G 4096 16 TB

8G 4096 32 TB

16G 4096 64 TB

32G 2048 64 TB

64G 1024 64 TB

128G 512 64 TB

256G 256 64 TB

32 KB page size

Table 189. Maximum number of partitions and table space size by DSSIZE, with 32 KB page size

DSSIZE Maximum number of
partitions

Total table space size

1G 4096 4 TB

2G 4096 8 TB

4G 4096 16 TB

8G 4096 32 TB

16G 4096 64 TB

32G 4096 128 TB

64G 2048 128 TB

128G 1024 128 TB

256G 512 128 TB

Notes:

1. For 5-byte non-EA storage, the maximum values for 4 KB page size are DSSIZE 4 G, 4096
partitions, and 16 TB for total table space.

Alternative syntax and synonyms
For compatibility with previous releases of Db2, the following keywords are supported:

• You can specify the LOCKPART clause, but it has no effect. Db2 treats all partitioned table spaces
as if they were defined as LOCKPART YES. LOCKPART YES specifies the use of selective partition
locking. When all the conditions for selective partition locking are met, Db2 locks only the partitions
that are accessed. When the conditions for selective partition locking are not met, Db2 locks every
partition of the table space.

• When altering the partitions of a partitioned table space, the ALTER keyword that precedes the
PARTITION keyword is optional and if the ALTER keyword is omitted, then you can specify PART as a
synonym for PARTITION.

• You can specify LOG YES as a synonym for LOGGED and LOG NO as a synonym for NOT LOGGED.

Chapter 7. Statements 1341

Examples for ALTER TABLESPACE

Example 1
Alter table space DSN8S12D in database DSN8D12A. BP2 is the buffer pool associated with the table
space. PAGE is the level at which locking is to take place.

 ALTER TABLESPACE DSN8D12A.DSN8S12D
 BUFFERPOOL BP2
 LOCKSIZE PAGE;

Example 2
Alter table space DSN8S12E in database DSN8D12A. The table space is partitioned. Indicate that the
data sets of the table space are not to be closed when there are no current users of the table space.
Also, change all of the partitions so that Db2 will use a formula to determine any secondary space
allocations, and change partition 1 to use a PCTFREE value of 20.

 ALTER TABLESPACE DSN8D12A.DSN8S12E
 CLOSE NO
 SECQTY -1
 ALTER PARTITION 1 PCTFREE 20;

Example 3
The following statement changes the maximum number of partitions in a partition-by-growth table
space:

ALTER TABLESPACE TS01DB.TS01TS
 MAXPARTITIONS 30;

ALTER TRIGGER statement (advanced trigger)
The ALTER TRIGGER (advanced) statement changes the description of an advanced trigger at the current
server.

For a description of the differences between basic and advanced triggers, see Triggers (Introduction to
Db2 for z/OS).

Invocation for ALTER TRIGGER (advanced)
This statement can be issued interactively. It is an executable statement that can be dynamically
prepared only if DYNAMICRULES RUN behavior is in effect. For more information, see “Authorization
IDs and dynamic SQL” on page 94.

Authorization for ALTER TRIGGER (advanced)
The privilege set that is defined below must include at least one of the following:

• Ownership of the trigger
• The ALTERIN privilege on the schema
• System DBADM authority
• SYSCTRL authority
• SYSADM authority
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The authorization ID that matches the schema name implicitly has the ALTERIN privilege on the schema.

Additional privileges might be required in the following situations:

• If trigger-specification is specified:

– The privilege set must include at least one of the following:

1342 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_triggers.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_triggers.html

- Ownership of the trigger
- DATAACCESS authority
- SYSADM authority

– The owner of the trigger must have SYSADM authority or each one of the following:

- The SELECT privilege on the table or view on which the trigger is defined.
- The SELECT privilege on any table or view in the search-condition of the triggered-action.
- The privileges that are required to execute the statements in SQL-trigger-body

• If the SECURED option is specified, the privilege set must include SECADM authority or the
CREATE_SECURE_OBJECT privilege.

• If the WLM ENVIRONMENT FOR DEBUG MODE clause is specified, RACF or an external security product
is invoked to check the required authority for defining programs in the WLM environment. If the WLM
environment access is protected in RACF, the user that issued the ALTER statement must have the
required authority.

Additional authorization may be required on the SYSDUMMYx tables depending on the content of the
trigger definition. See SYSDUMMYx tables.

Privilege set: The privilege set is the set of privileges that are held by the SQL authorization ID of the
process. The specified trigger name can include a schema name (a qualifier). However, if the schema
name is not the same as one of the authorization ID of the process, one of the following conditions must
be met:

• The privilege set includes SYSADM authority, SYSCTRL authority, or system DBADM authority.
• The authorization ID of the process has the ALTERIN privilege on the schema.

Note: If the SEPARATE SECURITY subsystem parameter is set to NO, SYSADM authority has implicit
SECADM authority.

Syntax for ALTER TRIGGER (advanced)

ALTER TRIGGER trigger-name

ALTER ACTIVE VERSION

VERSION trigger-version-id

option-list

REPLACE
1

ACTIVE VERSION

VERSION trigger-version-id

trigger-specification

ADD VERSION trigger-version-id trigger-specification
1

ACTIVATE VERSION trigger-version-id

REGENERATE
ACTIVE VERSION

VERSION trigger-version-id USING APPLICATION COMPATIBILITY applcompat-level

DROP VERSION trigger-version-id

Notes:
1 An ALTER TRIGGER statement with an ADD VERSION or REPLACE clause is not allowed in an SQL-trigger-
body.

trigger-specification:

Chapter 7. Statements 1343

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sysdummy.html

trigger-activation-time trigger-event ON table-name

view-name

REFERENCING OLD
ROW AS

correlation-name

NEW
ROW AS

correlation-name

OLD_TABLE
AS

table-identifier

NEW_TABLE
AS

table-identifier

trigger-granularity

option-list

triggered-action

trigger-activation-time

NO CASCADE
BEFORE

AFTER

INSTEAD OF

trigger-event

INSERT

DELETE

UPDATE

OF

,

column-name

trigger-granularity

FOR EACH STATEMENT

FOR EACH ROW

option-list: (The options can be specified in any order, but each one can only be specified one time.)

1344 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

DISALLOW DEBUG MODE

ALLOW DEBUG MODE

DISABLE DEBUG MODE

QUALIFIER schema-name

ASUTIME NO LIMIT

ASUTIME LIMIT integer

WLM ENVIRONMENT FOR DEBUG MODE name CURRENT DATA NO

CURRENT DATA YES

CONCURRENT ACCESS RESOLUTION USE CURRENTLY COMMITTED

CONCURRENT ACCESS RESOLUTION WAIT FOR OUTCOME

DYNAMICRULES RUN

DYNAMICRULES BIND

APPLICATION ENCODING SCHEME ASCII

APPLICATION ENCODING SCHEME EBCDIC

APPLICATION ENCODING SCHEME UNICODE

WITHOUT EXPLAIN

WITH EXPLAIN

WITHOUT IMMEDIATE WRITE

WITH IMMEDIATE WRITE

ISOLATION LEVEL CS

ISOLATION LEVEL RS

ISOLATION LEVEL RR

ISOLATION LEVEL UR

OPTHINT ''

OPTHINT string-constant

SQL PATH

,

schema-name

SYSTEM PATH

SESSION USER

USER

RELEASE AT COMMIT

RELEASE AT DEALLOCATE

ROUNDING DEC_ROUND_CEILING

ROUNDING DEC_ROUND_DOWN

ROUNDING DEC_ROUND_FLOOR

ROUNDING DEC_ROUND_HALF_DOWN

ROUNDING DEC_ROUND_HALF_EVEN

ROUNDING DEC_ROUND_HALF_UP

ROUNDING DEC_ROUND_UP

DATE FORMAT ISO

DATE FORMAT EUR

DATE FORMAT USA

DATE FORMAT JIS

DATE FORMAT LOCAL

DECIMAL(15)

DECIMAL(31)

DECIMAL(15,  s)

DECIMAL(31,  s)

TIME FORMAT ISO

TIME FORMAT EUR

TIME FORMAT USA

TIME FORMAT JIS

TIME FORMAT LOCAL

FOR UPDATE CLAUSE REQUIRED

FOR UPDATE CLAUSE OPTIONAL

NOT SECURED

SECURED

BUSINESS_TIME SENSITIVE YES

BUSINESS_TIME SENSITIVE NO

SYSTEM_TIME SENSITIVE YES

SYSTEM_TIME SENSITIVE NO

ARCHIVE SENSITIVE YES

ARCHIVE SENSITIVE NO

APPLCOMPAT applcompat-level

CONCENTRATE STATEMENTS OFF

CONCENTRATE STATEMENTS WITH LITERALS

triggered-action

Chapter 7. Statements 1345

WHEN ( search-condition)

SQL-trigger-body

SQL-trigger-body

SQL-control-statement

triggered-SQL-statement

Description for ALTER TRIGGER (advanced)
trigger-name

Identifies the trigger that is to be changed. The name, including the implicit or explicit schema name,
must exist at the current server. The name must identify an advanced trigger.

The trigger must not be obfuscated.

ACTIVE VERSION or VERSION trigger-version-id
Identifies the version of the trigger that is to be changed, replaced, or regenerated depending on
whether the ALTER, REPLACE, or REGENERATE keyword is specified.
ACTIVE VERSION

Specifies that the currently active version of the trigger is to be changed, replaced, or regenerated.
VERSION trigger-version-id

Identifies the version of the trigger that is to be changed, replaced, or regenerated. trigger-version-
id is the version identifier that is assigned when the version is defined. trigger-version-id must
identify a version of the specified trigger that exists at the current server.

USING APPLICATION COMPATIBILITY applcompat-level
Specifies the application compatibility level used to regenerate the version of the trigger. The ALTER
statement returns an error if the existing definition of the version includes syntax, semantics, or
options that require a higher application compatibility level. This situation can occur when the version
was most recently defined or regenerated while running at a higher application compatibility level
than applcompat-level.

The following values can be specified:

VvvRrMmmm

Compatibility with the behavior of the identified Db2 function level. For example, V12R1M510
specifies compatibility with the highest available Db2 12 function level. The equivalent function
level or higher must be activated.

For the new capabilities that become available in each application compatibility level, see:

• SQL changes in Db2 13 application compatibility levels
• SQL changes in Db2 12 application compatibility levels

Tip: Extra program preparation steps might be required to increase the application compatibility
level for applications that use data server clients or drivers to access Db2 for z/OS. For more
information, see Setting application compatibility levels for data server clients and drivers (Db2
Application programming and SQL).

V12R1
Compatibility with the behavior of Db2 12 function level 500. This value has the same result as
specifying V12R1M500.

1346 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/wnew/src/tpc/db2z_13_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html

ALTER
Specifies that the trigger is to be changed. When you change one or more trigger options, any option
that is not explicitly specified uses the existing value from the trigger that is being changed.

REPLACE
Specifies that a version of the trigger is to be replaced.

When you replace a trigger, the following trigger attributes must be the same as the corresponding
attributes for the currently active version of the trigger: trigger-activation-time, trigger-event, table or
view name, and trigger-granularity.

The content of the REFERENCING clause can differ from the other versions of the trigger. For options
that are not explicitly specified, the system default values for those options are used, even if those
options were explicitly specified for the version of the trigger that is being replaced. This is not the
case for versions of the trigger that specified DISABLE DEBUG MODE. If DISABLE DEBUG MODE is
specified for a version of a trigger, the option cannot be changed using the REPLACE clause. When a
trigger definition is replaced, any existing comments in the catalog for that definition of the trigger are
removed.

Binding the replaced version of the trigger might result in a new access path even if the trigger body is
not changed.

ADD VERSION trigger-version-id
Specifies that a new version of the trigger is to be created. trigger-version-id is the version identifier for
the new version of the trigger. trigger-version-id must not identify a version of the specified trigger that
already exists at the current server.

When you add a new version of a trigger, the following trigger attributes must be the same as the
corresponding attributes for the currently active version of the trigger: trigger-activation-time, trigger-
event, table or view name, and trigger-granularity. The content of the REFERENCING clause can differ
from the other versions of the trigger. For options that are not explicitly specified, the system default
values are used.

ACTIVATE VERSION trigger-version-id
Specifies the version of the trigger that is to be the currently active version of the trigger. trigger-
version- id is the version identifier that is assigned when the version of the trigger is defined. The
version that is specified with trigger-version-id is the version that will be invoked when the trigger
is activated. trigger-version-id must identify a version of the trigger that already exists at the current
server.

REGENERATE
Specifies that the trigger package is to be regenerated.

The REGENERATE keyword on the ALTER TRIGGER statement is used to rebind the SQL control
statements, as well as non-SQL-control statements that are included in the trigger body, at the local
server. When a trigger is regenerated, any unqualified names in the trigger body are resolved using the
name resolution process.

Using an ALTER TRIGGER statement with the REGENERATE keyword is different from a REBIND
PACKAGE command. The REBIND PACKAGE command rebinds only the non-SQL-control statements
to generate better access paths for those statements, using the statement text from the
SYSIBM.SYSPACKSTMTS catalog table.

When a trigger definition is regenerated, any existing comments in the catalog for that definition of the
trigger are not removed.

Generally, the REGENERATE keyword is used only for specific situations, such as when implicit
regeneration fails for routines or objects, or Db2 maintenance requires objects or routines to be
regenerated. For more information, see When to regenerate Db2 database objects and routines (Db2
Administration Guide).

DROP VERSION trigger-version-id
Drops the version of the trigger that is identified with trigger-version-id. trigger-version-id is the
version identifier that is assigned when the version is defined. trigger-version-id must identify a

Chapter 7. Statements 1347

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_whenalterregenerate.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_whenalterregenerate.html

version of the trigger that already exists at the current server and must not identify the currently
active version of the trigger. Only the identified version of the trigger is dropped.

When only a single version of the trigger exists at the current server, use the DROP TRIGGER
statement to drop the trigger.

trigger-event
Specifies that the triggered action that is associated with the trigger is to be executed when the trigger
event is applied to the subject table or view.
INSERT

Specifies that the trigger is an insert trigger. Db2 executes the triggered action whenever there is
an insert operation on the subject table. However, if the insert trigger is defined on any explain
table, and the insert operation was caused by Db2 adding a row to the table, the triggered action is
not executed.

DELETE
Specifies that the trigger is a delete trigger. Db2 executes the triggered action whenever there is a
delete operation on the subject table.

UPDATE
Specifies that the trigger is an update trigger. Db2 executes the triggered action whenever there is
an update operation on the subject table.

If you do not specify a list of column names, an update operation on any column of the subject
table, including columns that are subsequently added with the ALTER TABLE statement, activates
the triggered action.

OF column-name,...
Each column-name that you specify must be a column of the subject table and must appear
in the list only once. An update operation on any of the listed columns activates the triggered
action.

UPDATE OF column-name cannot be specified for an INSTEAD OF trigger.

trigger-activation-time
NO CASCADE

NO CASCADE is allowed for compatibility with prior releases and other products.
BEFORE

Specifies that the trigger is a before trigger. Db2 executes the triggered action before it applies
any changes caused by an insert, delete, or update operation on the subject table. It also specifies
that the triggered action does not activate other triggers because the triggered action of a before
trigger cannot contain any updates, REFRESH TABLE, or TRUNCATE SQL statements.

BEFORE must not be specified when view-name is also specified. FOR EACH ROW must be
specified for a BEFORE trigger.

AFTER
Specifies that the trigger is an after trigger. Db2 executes the triggered action after it applies any
changes caused by an insert, delete, or update operation on the subject table. AFTER must not be
specified if view-name is also specified.

INSTEAD OF
Specifies that the trigger is an instead of trigger. The associated triggered action replaces the
action against the subject view. Only one INSTEAD OF trigger is allowed for each type of operation
on a given subject view. Db2 executes the triggered-action instead of the insert, update, or delete
operation on the subject view.

INSTEAD OF must not be specified when table-name is also specified. The WHEN clause can not
be specified for an INSTEAD OF trigger. FOR EACH ROW must be specified for an INSTEAD OF
trigger.

1348 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

REFERENCING
Specifies the correlation names for the transition variables and the table names for the transition
tables. For the rows in the subject table that are modified by the triggering SQL operation (insert,
delete, or update), a correlation name identifies the columns of a specific row. table-identifiers identify
the complete set of affected rows. Transition variables with XML types cannot be referenced inside of
a trigger. If the column of a transition table is referenced, the data type of the column cannot be XML.

Each row that is affected by the triggering SQL operation is available to the triggered action by
qualifying column names with correlation-names that are specified as follows:

OLD ROW AS correlation-name
Specifies the correlation name that identifies the transition variables containing the values in the
row prior to the triggering SQL operation.

NEW ROW AS correlation-name
Specifies the correlation name that identifies the transition variables containing the values in the
row as modified by the triggering SQL operation and by any assignment statement in a before
trigger that has already been executed.

If OLD and NEW are both specified, a reference to a transition variable must be qualified with the
associated correlation name.

The complete set of rows that are affected by the triggering operation is available as a transition table
to the triggered action. Specify a table-identifier to refer to the transition table as follows:

OLD_TABLE AS table-identifier
Specifies the name of a temporary table that identifies the values in the complete set of rows that
are modified rows by the triggering SQL operation prior to any actual changes.

NEW_TABLE AS table-identifier
Specifies the name of a temporary table that identifies the values in the complete set of rows as
modified by the triggering SQL operation and by any assignment statement in a before trigger that
has already been executed.

Only one OLD and one NEW correlation-name can be specified for a trigger. Only one OLD_TABLE
and one NEW_TABLE table-identifier can be specified for a trigger. All of the correlation-names and
table-identifiers must be unique from one another.

Table 190 on page 1350 summarizes the allowable combinations of transition variables and
transition tables that you can specify for the various trigger types. The OLD correlation-name and
the OLD_TABLE table-identifier are valid only if the triggering event is either a delete operation or
an update operation. For a delete operation, the OLD correlation-name captures the values of the
columns in the deleted row, and the OLD_TABLE table-identifier captures the values in the set of
deleted rows. For an update operation, the OLD correlation-name captures the values of the columns
of a row before the update operation, and the OLD_TABLE table-identifier captures the values in the
set of rows before the update operation.

The NEW correlation-name and the NEW_TABLE table-identifier are valid only if the triggering event
is either an insert operation or an update operation. For both operations, the NEW correlation-name
captures the values of the columns in the inserted or updated row and the NEW_TABLE table-identifier
captures the values in the set of inserted or updated rows. For BEFORE triggers, the values of the
updated rows include the changes from any assignment statements in the triggered action of BEFORE
triggers.

Chapter 7. Statements 1349

Table 190. Allowable combinations of attributes in a trigger definition

Granularity
Activation
time

Triggering SQL
operation

Transition
variables
allowed“1” on
page 1350

Transition tables
allowed“1” on
page 1350

FOR EACH ROW

BEFORE

DELETE OLD None

INSERT NEW None

UPDATE OLD, NEW None

AFTER

DELETE OLD OLD_TABLE

INSERT NEW NEW_TABLE

UPDATE OLD, NEW OLD_TABLE,
NEW_TABLE

INSTEAD OF

DELETE OLD OLD_TABLE

INSERT NEW NEW_TABLE

UPDATE OLD, NEW OLD_TABLE,
NEW_TABLE

FOR EACH STATEMENT AFTER

DELETE None OLD_TABLE

INSERT None NEW_TABLE

UPDATE None OLD_TABLE,
NEW_TABLE

Note:

1. If a transition table or variable is referenced where it is not allowed, an error is returned.

A transition variable that has a character data type inherits the subtype and CCSID of the column
of the subject table. During the execution of the triggered action, the transition variables are treated
like host variables. Therefore, character conversion might occur. However, unlike a host variable, a
transition variable can have the bit data attribute, and character conversion never occurs for bit data.
A transition variable is considered to be bit data if the column of the table to which it corresponds is
bit data.

You cannot modify a transition table; transition tables are read-only. Although a transition table does
not inherit any edit or validation procedures from the subject table, it does inherit the encoding
scheme and field procedures of the subject table.

The scope of each correlation-name and each table-identifier is the entire trigger definition.

trigger-granularity
FOR EACH ROW or FOR EACH STATEMENT

Specifies the conditions for which Db2 executes the triggered action.
FOR EACH ROW

Specifies that Db2 executes the triggered action for each row of the subject table that the
triggering SQL operation modifies. If the triggering SQL operation does not modify any rows, the
triggered action is not executed..

FOR EACH STATEMENT
Specifies that Db2 executes the triggered action only one time for the triggering operation. Even if
the triggering operation does not modify or delete any rows, the triggered action is executed one
time.

FOR EACH STATEMENT must not be specified for a BEFORE or INSTEAD OF trigger.

1350 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

ALLOW DEBUG MODE, DISALLOW DEBUG MODE, or DISABLE DEBUG MODE
Specifies whether this version of the trigger can be run in debugging mode. The default is determined
using the value of the CURRENT DEBUG MODE special register.
ALLOW DEBUG MODE

Specifies that this version of the trigger can be run in debugging mode. When ALLOW
DEBUG MODE is in effect, a WLM environment must be available. If you do not specify WLM
ENVIRONMENT FOR DEBUG MODE, Db2 uses the default WLM-established stored procedure
address space specified at installation time.

DISALLOW DEBUG MODE
Specifies that this version of the trigger cannot be run in debugging mode. You can use an ALTER
statement to change this option to ALLOW DEBUG MODE. When DISALLOW DEBUG MODE is in
effect, a WLM environment must be available. If you do not specify WLM ENVIRONMENT FOR
DEBUG MODE, Db2 uses the default WLM-established stored procedure address space specified
at installation time.

DISABLE DEBUG MODE
Specifies that this version of the trigger can never be run in debugging mode.

This version of the trigger cannot be changed to specify ALLOW DEBUG MODE or DISALLOW
DEBUG MODE after this version of the trigger has been created or altered to use DISABLE DEBUG
MODE. To change this option, drop the trigger, and create it again using the option that you want.
An alternative to dropping and recreating the trigger is to create a version of the trigger that uses
the option that you want, and making that version the active version.

When DISABLE DEBUG MODE is in effect, the WLM ENVIRONMENT FOR DEBUG MODE is ignored.

QUALIFIER schema-name
Specifies the implicit qualifier that is used for unqualified object names that are referenced in the
trigger body. For information about how the default for this option is determined, see “Unqualified
alias, index, JAR file, mask, permission, sequence, table, trigger, and view names” on page 86.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single invocation of this
version of the trigger can run. The value is unrelated to the ASUTIME column of the resource limit
specification table.

When you are debugging a trigger, setting a limit can be helpful in case the trigger gets caught in a
loop. For information on service units, see z/OS MVS Initialization and Tuning Guide.

NO LIMIT
Specifies that there is no limit on the service units.

NO LIMIT is the default.

LIMIT integer
The limit on the number of CPU service units is a positive integer in the range 1–2147483647.
If the trigger uses more service units than the specified value, Db2 cancels the trigger. The CPU
cycles that are consumed by parallel tasks in a trigger do not contribute towards the specified
ASUTIME LIMIT.

WLM ENVIRONMENT FOR DEBUG MODE name
Specifies the WLM (workload manager) application environment that is used by Db2 when debugging
the trigger. The name of the WLM environment is an SQL identifier.

If you do not specify WLM ENVIRONMENT FOR DEBUG MODE, Db2 uses the default WLM-established
stored procedure address space specified at installation time.

You must have the appropriate authority for the WLM application environment.

The WLM ENVIRONMENT FOR DEBUG MODE value is ignored when DISABLE DEBUG MODE is in
effect.

Chapter 7. Statements 1351

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae100/abstract.htm

CURRENT DATA YES or CURRENT DATA NO
Specifies whether to require data currency for read-only and ambiguous cursors when the isolation
level of cursor stability is in effect. CURRENT DATA also determines whether block fetch can be used
for distributed, ambiguous cursors.
CURRENT DATA YES

Specifies that data currency is required for read-only and ambiguous cursors. Db2 acquires page
or row locks to ensure data currency. Block fetch is ignored for distributed, ambiguous cursors.

CURRENT DATA NO
Specifies that data currency is not required for read-only and ambiguous cursors. Block fetch is
allowed for distributed, ambiguous cursors. Use of CURRENT DATA NO is not recommended if the
trigger attempts to dynamically prepare and execute a DELETE WHERE CURRENT OF statement
against an ambiguous cursor after that cursor is opened. You receive an error if your trigger
attempts to use a DELETE WHERE CURRENT OF statement for any of the following cursors:

• A cursor that is using block fetch
• A cursor that is using query parallelism
• A cursor that is positioned on a row that is modified by this or another application process

CURRENT DATA NO is the default.

CONCURRENT ACCESS RESOLUTION
Specifies the whether processing uses only committed data or whether it will wait for commit or
rollback of data that is in the process of being updated.
WAIT FOR OUTCOME

Specifies that processing will wait for the commit or rollback of data that is in the process of being
updated.

USE CURRENTLY COMMITTED
Specifies that processing use the currently committed version of the data when data that is in the
process of being updated is encountered. USE CURRENTLY COMMITTED is applicable on scans
that access tables that are defined in universal table spaces with row or page level lock size.

When there is lock contention between a read transaction and an insert transaction, USE
CURRENTLY COMMITTED is applicable to scans with isolation level CS or RS. Applicable scans
include intent read scans for read-only and ambiguous queries and for updatable cursors. USE
CURRENTLY COMMITTED is also applicable to scans initiated from WHERE predicates of UPDATE
or DELETE statements and the subselect of INSERT statements.

When there is lock contention is between a read transaction and a delete transaction, USE
CURRENTLY COMMITTED is applicable to scans with isolation level CS and when CURRENT DATA
NO is specified.

DYNAMICRULES
Specifies the values that apply, at run time, for the following dynamic SQL attributes:

• The authorization ID that is used to check authorization
• The qualifier that is used for unqualified objects
• The source for application programming options that Db2 uses to parse and semantically verify

dynamic SQL statements

In the context of a trigger, DYNAMICRULES also specifies whether dynamic SQL statements can
include ALTER, CREATE, and DROP statements.

In addition to the value of the DYNAMICRULES clause, the run time environment of a trigger controls
how dynamic SQL statements behave at run time. The combination of the DYNAMICRULES value and
the run time environment determines the value for the dynamic SQL attributes. That set of attribute
values is called the dynamic SQL statement behavior. The following values can be specified:
RUN

Specifies that dynamic SQL statements are to be processed using run behavior.

1352 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

RUN is the default.

BIND
Specifies that dynamic SQL statements are to be processed using bind behavior.

See “Authorization IDs and dynamic SQL” on page 94 for information on the effects of these options.

APPLICATION ENCODING SCHEME
Specifies the default encoding scheme for SQL variables in static SQL statements in the trigger body.
The value is used for defining an SQL variable in a compound statement if the CCSID clause is not
specified as part of the data type.
ASCII

Specifies that the data is encoded using the ASCII CCSIDs of the server.
EBCDIC

Specifies that the data is encoded using the EBCDIC CCSIDs of the server.
UNICODE

Specifies that the data is encoded using the Unicode CCSIDs of the server.

See ENCODING bind option (Db2 Commands) for information about how the default for this option is
determined.

WITH EXPLAIN or WITHOUT EXPLAIN
Specifies whether information will be provided about how SQL statements in the trigger will execute.
WITHOUT EXPLAIN

Specifies that information will not be provided about how SQL statements in the trigger will
execute.

You can get EXPLAIN output for a statement that is embedded in a trigger that is specified using
WITHOUT EXPLAIN by embedding the SQL statement EXPLAIN in the trigger body. Otherwise, the
value of the EXPLAIN option applies to all explainable SQL statements in the trigger body, and to
the fullselect portion of any DECLARE CURSOR statements.

WITHOUT EXPLAIN is the default.

WITH EXPLAIN
Specifies that information will be provided about how SQL statements in the trigger will execute.
Information is inserted into the table owner. PLAN_TABLE. owner is the authorization ID of the
owner of the trigger. Alternatively, the authorization ID of the owner of the trigger can have an
alias as owner.PLAN_TABLE that points to the base table, PLAN_TABLE. owner must also have the
appropriate SELECT and INSERT privileges on that table. PLAN_TABLE must have a base table
and can have multiple aliases with the same table name, PLAN_TABLE, but have different schema
qualifiers. It cannot be a view or a synonym and should exist before the CREATE statement is
processed. In all inserts to owner.PLAN_TABLE, the value of QUERYNO is the statement number
that is assigned by Db2.

The WITH EXPLAIN option also populates two optional tables, if they exist:
DSN_STATEMNT_TABLE and DSN_FUNCTION_TABLE. DSN_STATEMNT_TABLE contains an
estimate of the processing cost for an SQL statement. See Estimating the cost of SQL statements
(Db2 Performance) for more information. DSN_FUNCTION_TABLE contains information about
function resolution. See Checking how Db2 resolves functions by using DSN_FUNCTION_TABLE
(Db2 Application programming and SQL) for more information.

For more information about the EXPLAIN statement, including a description of the tables that are
populated by the WITH EXPLAIN option, see “EXPLAIN statement” on page 1917.

WITH IMMEDIATE WRITE or WITHOUT IMMEDIATE WRITE
Specifies whether immediate writes are to be done for updates that are made to group buffer pool
dependent page sets or partitions. This option is only applicable for data sharing environments. The
IMMEDWRITE subsystem parameter has no affect of this option. IMMEDWRITE bind option (Db2
Commands) shows the implied hierarchy of the IMMEDWRITE bind option (which is similar to this
trigger option) as it affects run time.

Chapter 7. Statements 1353

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptencoding.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_estimatecostsqlstatement.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_estimatecostsqlstatement.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_checkfunctionresolution.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_checkfunctionresolution.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptimmedwrite.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptimmedwrite.html

WITHOUT IMMEDIATE WRITE
Specifies that normal write activity is performed. Updated pages that are group buffer pool
dependent are written at or before phase one of commit or at the end of abort for transactions
that have been rolled back.

WITHOUT IMMEDIATE WRITE is the default.

WITH IMMEDIATE WRITE
Specifies that updated pages that are group buffer pool dependent are immediately written as
soon as the buffer update completes. Updated pages are written immediately even if the buffer is
updated during forward progress or during the rollback of a transaction. WITH IMMEDIATE WRITE
might impact performance.

ISOLATION LEVEL RR, RS, CS, or UR
Specifies how far to isolate the trigger from the effects of other running applications. For information
about isolation levels, see Choosing an ISOLATION option (Db2 Performance).
RR

Specifies repeatable read.
RS

Specifies read stability.
CS

Specifies cursor stability. CS is the default.
UR

Specifies uncommitted read.
OPTHINT string-constant

Specifies whether query optimization hints are used for static SQL statements that are contained
within the body of the trigger.

string-constant is a character string of up to 128 bytes in length, which is used by the Db2 subsystem
when searching the PLAN_TABLE for rows to use as input. The default value is an empty string, which
indicates that the Db2 subsystem does not use optimization hints for static SQL statements.

Optimization hints are only used if optimization hints are enabled for your system. See Preparing to
influence access paths (Db2 Performance) for information about enabling optimization hints.

SQL PATH
Specifies the SQL path that Db2 uses to resolve unqualified user-defined types, functions, and
procedure names in the body of the trigger. The default value is "SYSIBM", "SYSFUN", "SYSPROC",
"SYSIBMADM", and the value of the QUALIFIER option.

Schemas "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM" do not need to be explicitly specified. If
any of these schemas is not explicitly specified, it is implicitly assumed at the beginning the SQL path,
in the order listed.

Db2 calculates the length by taking each schema-name specified and removing any trailing blanks
from it, adding two delimiters around it, and adding one comma after each schema name, except for
the last one. The length of the resulting string cannot exceed the length of the CURRENT SCHEMA
special register. If you do not specify the "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM", schemas,
they are not included in the length of the SQL path. If the total length of the SQL path exceeds the
length of the CURRENT PATH special register, Db2 returns an error.

For more information, see:

“SQL path” on page 85
“CURRENT SCHEMA special register” on page 206
“CURRENT PATH special register” on page 200

schema-name
Identifies a schema. Db2 does not verify that the schema exists when the ALTER statement is
processed. The same schema name should not appear more than once in the list of schema
names.

1354 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_chooseisolationoption.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_enablehints.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_enablehints.html

SYSPUBLIC must not be specified for the SQL path.

SYSTEM PATH
Specifies the schema names "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM".

SESSION_USER or USER
Specifies the value of the SESSION_USER or USER special register, which represents a maximum
8-byte (in EBCDIC) schema-name. At the time the ALTER statement is processed, this length is
included in the total length of the list of schema names that is specified for the SQL PATH option.

If you specify SESSION_USER (or USER) in a list of schema names, do not use delimiters around
the SESSION_USER (or USER) keyword.

RELEASE AT
Specifies when to release resources that the trigger uses: either at each commit point or when the
trigger terminates.
COMMIT

Specifies that resources will be released at each commit point.

COMMIT is the default.

DEALLOCATE
Specifies that resources will be released only when the thread terminates. DEALLOCATE has no
effect on dynamic SQL statements, which always use RELEASE AT COMMIT, with this exception:
When you use the RELEASE AT DEALLOCATE clause and the WITH KEEP DYNAMIC clause, and the
subsystem is installed with a value of YES for the field CACHE DYNAMIC SQL on installation panel
DSNTIP8, the RELEASE AT DEALLOCATE option is honored for dynamic SELECT and data change
statements.

Locks that are acquired for dynamic statements are held unit one of the following events occurs:

• The application process ends.
• The application process issues a PREPARE statement with the same statement identifier. (Locks

are released at the next commit point).
• The statement is removed from the dynamic statement cache because the statement has not

been used. (Locks are released at the next commit point.)
• An object that the statement is dependent on is dropped or altered, or a privilege that the

statement needs is revoked. (Locks are released at the next commit point.)

RELEASE AT DEALLOCATE can increase the package or plan size because additional items become
resident in the package or plan.

For more information, see Choosing a RELEASE option (Db2 Performance).

ROUNDING
Specifies the rounding mode for manipulation of DECFLOAT data. The default value is taken from
the DEFAULT DECIMAL FLOATING POINT ROUNDING MODE in the application programming defaults
module.
DEC_ROUND_CEILING

Specifies numbers are rounded towards positive infinity.
DEC_ROUND_DOWN

Specifies numbers are rounded towards 0 (truncation).
DEC_ROUND_FLOOR

Specifies numbers are rounded towards negative infinity.
DEC_ROUND_HALF_DOWN

Specifies numbers are rounded to nearest; if equidistant, round down.
DEC_ROUND_HALF_EVEN

Specifies numbers are rounded to nearest; if equidistant, round so that the final digit is even.
DEC_ROUND_HALF_UP

Specifies numbers are rounded to nearest; if equidistant, round up.

Chapter 7. Statements 1355

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_choosereleaseoption.html

DEC_ROUND_UP
Specifies numbers are rounded away from 0.

DATE FORMAT ISO, EUR, USA, JIS, or LOCAL
Specifies the date format for result values that are string representations of date or time values. See
“String representations of datetime values” on page 120 for more information.

The default format is specified in the DATE FORMAT field of installation panel DSNTIP4 of the system
where the routine is defined. You cannot use the LOCAL option unless you have a date exit routine.

DECIMAL(15), DECIMAL(31), DECIMAL(15,s), or DECIMAL(31,s)
Specifies the maximum precision that is to be used for decimal arithmetic operations. See “Arithmetic
with two decimal operands” on page 251 for more information. The default format is specified in the
DECIMAL ARITHMETIC field of installation panel DSNTIPF of the system where the routine is defined.
If the form pp.s is specified, s must be a number in the range 1–9. s represents the minimum scale
that is to be used for division.

TIME FORMAT ISO, EUR, USA, JIS, or LOCAL
Specifies the time format for result values that are string representations of date or time values. See
“String representations of datetime values” on page 120 for more information.

The default format is specified in the TIME FORMAT field of installation panel DSNTIP4 of the system
where the routine is defined. You cannot use the LOCAL option unless you have a date exit routine.

FOR UPDATE CLAUSE OPTIONAL or FOR UPDATE CLAUSE REQUIRED
Specifies whether the FOR UPDATE clause is required for a DECLARE CURSOR statement if the cursor
is to be used to perform positioned updates.
FOR UPDATE CLAUSE REQUIRED

Specifies that a FOR UPDATE clause must be specified as part of the cursor definition if the cursor
will be used to make positioned updates.

FOR UPDATE CLAUSE REQUIRED is the default.

FOR UPDATE CLAUSE OPTIONAL
Specifies that the FOR UPDATE clause does not need to be specified in order for a cursor to be
used for positioned updates. The trigger body can include positioned UPDATE statements that
update columns that the user is authorized to update.

The FOR UPDATE clause with no column list applies to static or dynamic SQL statements. Even if you
do not use this clause, you can specify FOR UPDATE OF with a column list to restrict updates to only
the columns that are identified in the FOR UPDATE clause and to specify the acquisition of update
locks.

SECURED or NOT SECURED
Specifies that the trigger is to be changed to be secure or not secure. Changing a trigger between
SECURED and NOT SECURED causes an implicit rebind of the trigger package. If an error is
encountered during the implicit rebind of the trigger package, the ALTER TRIGGER statement returns
the error.
SECURED

Specifies the trigger is considered secure.

SECURED must be specified for a trigger if its subject table is using row access control or column
access control. SECURED must also be specified for a trigger that is created for a view and one or
more of the underlying tables in the view definition is using row access control or column access
control.

NOT SECURED
Specifies the trigger is considered not secure.

NOT SECURED must not be specified for a trigger whose subject table is using row access control
or column access control. NOT SECURED must also not be specified for a trigger that is created for
a view and one or more of the underlying tables in the view definition is using row access control
or column access control.

1356 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

BUSINESS_TIME SENSITIVE
Determines whether references to application-period temporal tables in both static and dynamic SQL
statements are affected by the value of the CURRENT TEMPORAL BUSINESS_TIME special register.
YES

References to application-period temporal tables are affected by the value of the CURRENT
TEMPORAL BUSINESS_TIME special register. YES is the default value.

NO
References to application-period temporal tables are not affected by the value of the CURRENT
TEMPORAL BUSINESS_TIME special register.

For more information, see “CURRENT TEMPORAL BUSINESS_TIME special register” on page 208.

SYSTEM_TIME SENSITIVE
Determines whether references to system-period temporal tables in both static and dynamic SQL
statements are affected by the value of the CURRENT TEMPORAL SYSTEM_TIME special register.
YES

References to system-period temporal tables are affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register. YES is the default value.

NO
References to system-period temporal tables are not affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

For more information, see “CURRENT TEMPORAL SYSTEM_TIME special register” on page 210.

ARCHIVE SENSITIVE
Determines whether references to archive-enabled tables in SQL statements are affected by the value
of the SYSIBMADM.GET_ARCHIVE built-in global variable.
YES

References to archive-enabled tables are affected by the value of the SYSIBMADM.GET_ARCHIVE
built-in global variable. YES is the default value.

NO
References to archive-enabled tables are not affected by the value of the
SYSIBMADM.GET_ARCHIVE built-in global variable.

For related information, see “GET_ARCHIVE” on page 330.

APPLCOMPAT
Specifies the application compatibility level behavior for static SQL statements in the trigger body. The
following Db2 function level values can be specified:
VvvRrMmmm

Compatibility with the behavior of the identified Db2 function level. For example, V12R1M510
specifies compatibility with the highest available Db2 12 function level. The equivalent function
level or higher must be activated.

For the new capabilities that become available in each application compatibility level, see:

• SQL changes in Db2 13 application compatibility levels
• SQL changes in Db2 12 application compatibility levels

Tip: Extra program preparation steps might be required to increase the application compatibility
level for applications that use data server clients or drivers to access Db2 for z/OS. For more
information, see Setting application compatibility levels for data server clients and drivers (Db2
Application programming and SQL).

V12R1
Compatibility with the behavior of Db2 12 function level 500. This value has the same result as
specifying V12R1M500.

Chapter 7. Statements 1357

https://www.ibm.com/docs/en/SSEPEK_13.0.0/wnew/src/tpc/db2z_13_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html

Values such as V11R1 and V10R1 for compatibility with previous Db2 releases are not supported for
triggers.

CONCENTRATE STATEMENTS OFF or CONCENTRATE STATEMENTS WITH LITERALS
Specifies whether a dynamic SQL statement that specifies literal constants will be cached as a
separate unique statement entry in the dynamic statement cache instead of sharing an existing
statement in the cache. Dynamic SQL statements are eligible to share an existing statement in the
cache if the new statement meets all of the conditions for sharing a cached version of the same
dynamic statement except that the new statement specifies one or more literal constants that are
different than the cached statement.
CONCENTRATE STATEMENTS OFF

Specifies that the dynamic SQL statement that specifies literal constants will be cached as a
unique statement entry if it specifies one or more constants that are different than the cached
version of the same dynamic statement. CONCENTRATE STATEMENTS OFF is the default dynamic
statement caching behavior.

CONCENTRATE STATEMENTS WITH LITERALS
Specifies that the dynamic SQL statement that specifies literal constants will share a cached
version of the same dynamic statement that is also prepared using the CONCENTRATE
STATEMENTS WITH LITERALS option if the new dynamic statement meets all of the conditions
for sharing the cached statement and the constants that are specified can be reused in place of
the constants in the cached statement.

triggered-action
Specifies the action to be performed when the trigger is activated. The triggered-action is composed
of one or more SQL statements and an optional condition that controls whether the statements are
executed.
WHEN (search-condition)

Specifies a condition that evaluates to true, false, or unknown. The triggered SQL statements
are executed only if the search-condition evaluates to true. If the WHEN clause is omitted, the
associated SQL statements are always executed.

The WHEN clause must not be specified for an INSTEAD OF trigger.

SQL-trigger-body
Specifies a single SQL-control-statement, including a compound statement, or triggered-SQL-
statement that is to be executed for the triggered-action. See Chapter 8, “SQL procedural language
(SQL PL),” on page 2207 for more information about defining SQL triggers.
SQL-control-statement

Specifies an SQL control statement, which can include nested control statements and other
SQL statements specified in the syntax diagram for “SQL-procedure-statement (SQL PL)” on
page 2212. The statements that can be specified for SQL-procedure-statement are subject to
the syntax notes relating to triggers.

triggered-SQL-statement

Specifies an SQL statement that is the only statement in a trigger body.

.

Only certain SQL statements can be specified in the SQL-trigger-body.

The trigger body must not contain a statement that is not supported.

• A statement in the trigger body must not refer to host variables, undefined transition variables,
or declared temporary tables.

• A statement in the trigger body must only refer to a table or view that is at the current server.
• A statement in the trigger body must only invoke a stored procedure or user-defined function

that is at the current server. An invoked routine can, however, access a server other than the
current server.

1358 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• A statement in the trigger body must not modify a column that is part of a BUSINESS_TIME
period.

• The trigger body must not, directly or indirectly, issue a CALL statement for a procedure that
contains one of the following statements:

– COMMIT
– CONNECT
– RELEASE connection
– RELEASE SAVEPOINT
– ROLLBACK (without TO SAVEPOINT)
– SAVEPOINT
– SET CONNECTION

• The trigger body must not, directly or indirectly, issue a CALL statement for a procedure that is
defined with the COMMIT ON RETURN option.

• If the trigger is a before trigger:

– The trigger body must not contain a DELETE, INSERT, MERGE, REFRESH TABLE, TRUNCATE,
UPDATE statement, or SELECT FROM data-change-statement.

– The trigger body must not, directly or indirectly, invoke a routine containing one of the
following statements:

- ALTER
- COMMENT
- CREATE
- DECLARE GLOBAL TEMPORARY TABLE
- DELETE
- DROP
- EXCHANGE
- GRANT
- INSERT
- LABEL
- LOCK TABLE
- MERGE
- REFRESH TABLE
- RENAME
- REVOKE
- TRUNCATE
- UPDATE

A CREATE TRIGGER statement (or ALTER TRIGGER statement) cannot contain a hexadecimal
graphic string (GX) constant.

The triggered action can refer to the values in the set of affected rows. This action is supported
through the use of transition variables and transition tables.

All tables, views, aliases, sequences, roles, user-defined data types, user-defined functions, and
procedures referenced in the triggered-action must exist at the current server when the trigger is
created, or the version of the trigger is defined. The table or view that an alias refers to must also
exist when the trigger is created, or the version of the trigger is defined.

Chapter 7. Statements 1359

Notes for ALTER TRIGGER (advanced)
Changing to an advanced trigger:

You cannot use an ALTER TRIGGER statement to change a basic trigger into an advanced trigger.
You can drop the existing trigger you want to change using the DROP statement and then create an
advanced trigger with a similar definition using the CREATE TRIGGER statement in Db2 12 with new
function activated, or you can use the CREATE TRIGGER statement with the OR REPLACE clause.
Alternatively, you can create an advanced trigger using a different schema. To define an advanced
trigger, omit the MODE DB2SQL clause in the CREATE TRIGGER statement.

Changes are immediate:
Any changes that the ALTER TRIGGER statement causes to the definition of a trigger take effect
immediately. The changed definition is used the next time that the trigger is activated.

Identifier resolution:
See Chapter 8, “SQL procedural language (SQL PL),” on page 2207 for information on how names are
resolved to columns, SQL variables, transition variables, or global variables within a trigger body.

If non-unique names are used for columns, SQL variables, transition variables, or global variables,
qualify the non-unique names by using the table designator for columns, the label name for SQL
variables, correlation name for transition variables, and schema for global variables.

Transition variables and transition tables:
The triggered action can refer to the values in the set of affected rows. This action is supported
through the use of transition variables and transition tables.

A transition variable has the same name and data type as the corresponding column of the table
that the trigger is defined on, and is nullable. A transition variable contains the value of a column in
an affected row. A transition variable is qualified by a correlation name that identifies whether the
reference is to the old value (before the update) or the new value (after the update). A transition
variable can be referenced in the search condition, or in an SQL statement in the trigger body
wherever a table would be allowed if the reference was made outside the body of a trigger. A new
transition variable can be assigned a value in a before update or insert trigger. The values of the
updated rows include the changes from any assignments to transition variables in the triggered action
of a before trigger.

A transition table contains the complete set of affected rows with either the old values (before the
update) or the new values (after the update). Transition tables are read only and can be referenced in
the triggered action of an after or instead of trigger. Transition tables also use the name of columns
of the subject table but have an associated table identifier that allows the complete set of affected
rows to be treated as a table. Separate table identifiers can be specified for the old and new transition
tables. Transition tables can be referenced in the triggered action in a search condition, or in an SQL
statement in the trigger body wherever a variable would be allowed if the reference was made outside
the body of a trigger. In addition, a transition table can be passed as an argument to a user-defined
function or procedure specifying the TABLE keyword before the table identifier for the transition table.
When the function or procedure is invoked, a table locator is passed for the transition table.

Altering a trigger from NOT SECURED to SECURED:
Typically, the security administrator will examine the data that is accessed by a trigger, ensure that
it is secure, and grant the CREATE_SECURE_OBJECT privilege to the owner of the trigger. After the
trigger is changed to SECURED, the security administrator will revoke the CREATE_SECURE_OBJECT
privilege from the owner of the trigger.

The trigger is considered secure after the ALTER TRIGGER statement is executed. Db2 treats the
SECURED attribute as an assertion that declares that the user has established an audit procedure for
all activities in the trigger body. If a secure trigger references user-defined functions, Db2 assumes
those functions are secure without validation. If those functions can access sensitive data, the user
with SECADM authority needs to ensure that those functions are allowed to access that data and
that an audit procedure is in place for all versions of those functions, and that all subsequent ALTER
FUNCTION statements or changes to external packages are being reviewed by this audit process.

1360 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

A trigger must be secure if its subject table is using row access control or column access control.
SECURED must also be specified for a trigger that is created for a view and one or more of the
underlying tables in the view definition is using row access control or column access control.

Altering a trigger from SECURED to NOT SECURED:
The ALTER TRIGGER statement returns an error if the subject table of the trigger is using row access
control or column access control, or if the trigger is for a view and one or more of the underlying tables
in the view definition is using row access control or column access control.

Altering obfuscated triggers:
Obfuscated triggers cannot be altered in any way.

Row access control and column access control that is not enforced for transition variables and
transition tables:

If row access control or column access control is enforced for the subject table of the trigger,
row permissions and column masks are not applied to the initial values of transition variables and
transition tables. Row access control and column access control is enforced for the triggering table,
but is ignored for transition variables and transition tables that are referenced in the body of the
trigger body or are passed as arguments to user-defined functions that are invoked in the body of the
trigger. To ensure that there are no security concerns for SQL statements accessing sensitive data in
transition variables and transition tables in the trigger action, the trigger must be changed to use the
SECURED option. If a trigger is not secure, row access control and column access control cannot be
enforced for the triggering table.

Correspondence of trigger options to bind options
The following table lists options for CREATE TRIGGER and ALTER TRIGGER, and the corresponding
options for the bind commands. See BIND and REBIND options for packages, plans, and services (Db2
Commands) for more information about the effects of the bind options.

Table 191. Correspondence of trigger options to bind options

CREATE TRIGGER (advanced) or
ALTER TRIGGER (advanced) option bind commands option

APPLCOMPAT APPLCOMPAT(V12R1)

APPLICATION ENCODING SCHEME ENCODING(ASCII)
ENCODING(EBCDIC)
ENCODING(UNICODE)

ARCHIVE SENSITIVE ARCHIVESENSITIVE(YES)
ARCHIVESENSITIVE(NO)

BUSINESS_TIME SENSITIVE BUSTIMESENSITIVE(YES)
BUSTIMESENSITIVE(NO)

CURRENT DATA CURRENTDATA(NO)
CURRENTDATA(YES)

CONCENTRATE STATEMENTS OFF
CONCENTRATE STATEMENTS
WITH LITERALS

CONCENTRATESTMT(NO)
CONCENTRATESTMT(YES)

CONCURRENT ACCESS RESOLUTION CONCURRENTACCESSRESOLUTION (USECURRENTLYCOMMITTED)
CONCURRENTACCESSRESOLUTION (WAITFOROUTCOME)

DYNAMICRULES DYNAMICRULES(BIND)
DYNAMICRULES(RUN)

Chapter 7. Statements 1361

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html

Table 191. Correspondence of trigger options to bind options (continued)

CREATE TRIGGER (advanced) or
ALTER TRIGGER (advanced) option bind commands option

ISOLATION LEVEL ISOLATION(RR)
ISOLATION(RS)
ISOLATION(CS)
ISOLATION(UR)

OPTHINT OPTHINT

QUALIFIER QUALIFIER

RELEASE RELEASE(COMMIT)
RELEASE(DEALLOCATE)

ROUNDING ROUNDING(CEILING)
ROUNDING(DOWN)
ROUNDING(FLOOR)
ROUNDING(HALFDOWN)
ROUNDING(HALFEVEN)
ROUNDING(HALFUP)
ROUNDING(UP)

SQL PATH PATH

SYSTEM_TIME SENSITIVE SYSTEMTIMESENSITIVE(YES)
SYSTEMTIMESENSITIVE(NO)

WITH OR WITHOUT EXPLAIN EXPLAIN(YES)
EXPLAIN(NO)

WITH OR WITHOUT IMMEDIATE
WRITE

IMMEDWRITE(YES)
IMMEDWRITE(NO)

Considerations for packages:
When certain attributes of a trigger are changed, the body of the trigger might be rebound or
regenerated. However, there is no impact to existing packages that might cause the activation of
the trigger, and such packages are not invalidated. No additional bind-related privileges are required
for an implicit rebind or regeneration of the trigger body.

If an error is encountered during an implicit rebind, the ALTER TRIGGER statement fails and returns
the error.

When execution of a package causes the activation of the trigger, the rebound or regenerated trigger
package executes.

Table 192 on page 1363 summarizes when implicit rebind and regeneration occurs when specific
options are changed. A value of Y in a row indicates that a rebind or regeneration will occur if the
option is changed for a trigger.

1362 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 192. ALTER TRIGGER (advanced) options that result in rebind or regeneration when changed

ALTER TRIGGER (advanced) option

Change results in implicit
rebind of the non-control
statements of the body of the
trigger ?

Change results in implicit
regeneration of the entire
body of the trigger ?

ALLOW DEBUG MODE, DISALLOW DEBUG
MODE, or DISABLE DEBUG MODE

Y2 Y

APPLCOMPAT N N

APPLICATION ENCODING SCHEME Y Y

ARCHIVE SENSITIVE YES or NO Y Y

ASUTIME N N

BUSINESS_TIME SENSITIVE YES or NO Y Y

CONCENTRATE STATEMENTS OFF or WITH
LITERALS

Y N

CONCURRENT ACCESS RESOLUTION Y N

CURRENT DATA Y N

DATE FORMAT Y Y

DECIMAL Y Y

DYNAMICRULES BIND OR RUN Y N

FOR UPDATE CLAUSE OPTIONAL or FOR
UPDATE CLAUSE REQUIRED

Y N

ISOLATION LEVEL Y N

OPTHINT Y N

QUALIFIER Y N

RELEASE Y N

ROUNDING Y Y

SECURED OR NOT SECURED Y N

SQL PATH Y Y

SYSTEM_TIME SENSITIVE Y Y

TIME FORMAT Y Y

WITH EXPLAIN OR WITHOUT EXPLAIN Y N

WITH IMMEDIATE WRITE OR WITHOUT
IMMEDIATE WRITE

Y N

WLM ENVIRONMENT FOR DEBUG MODE N N

Note:

1. When an implicit rebind of the non-control statements in the body of the trigger occurs, the QUALIFIER and
SQL PATH options are not re-evaluated.

2. The trigger package is rebound and regenerated if a value of ALLOW DEBUG MODE is changed to DISALLOW
DEBUG MODE.

Chapter 7. Statements 1363

Application compatibility level considerations for trigger objects
The application compatibility level controls the adoption and use of new capabilities and
enhancements. When an object is created or altered, two separate application compatibility levels
are used: one to process the definition of the object, and the other for processing the SQL statements
in the object body:

Object definition The CURRENT APPLICATION COMPATIBILITY special register value is
used to process the object definition, except for statements in the object
body

This application compatibility level is stored in the
SYSENVIRONMENT.APPLCOMPAT column. You can use the environment
ID value in the catalog definition of the object to locate the
SYSENVIRONMENT row with the matching ENVID value.

This application compatibility level can be changed when the object is
regenerated.

Statements in the
object body

The application compatibility level that is implicitly or explicitly specified
with the APPLCOMPAT option of the CREATE or ALTER statement is used to
process statements in the object body.

This application compatibility level is stored in the
SYSPACKAGE.APPLCOMPAT column for the package associated with the
object definition.

Altering a trigger definition using a lower application compatibility level than the current definition
If the CURRENT APPLICATION COMPATIBILITY special register value is lower than the application
compatibility level of the existing object definition, altering an object might result in an error even
if the content of the ALTER statement is valid at the current level. The errors can occur when the
existing object definition contains some functionality that requires a higher level than the CURRENT
APPLICATION COMPATIBILITY special register setting.

Application compatibility levels for regenerating trigger objects

For ALTER statements that regenerate objects, the object definition is reprocessed using the
application compatibility setting that is specified implicitly or explicitly by the USING APPLICATION
COMPATIBILITY clause that follows the REGENERATE keyword. This application compatibility value
replaces the existing value in the SYSENVIRONMENT.APPLCOMPAT column for the environment
settings associated with the object definition.

If the USING APPLICATION COMPATIBILITY clause is not specified, the existing application
compatibility value in the SYSENVIRONMENT.APPLCOMPAT column for the object definition is used to
reprocess the text associated with the object definition.

The behavior of the statements in the body remains controlled by the value the existing APPLCOMPAT
option of the object.

Considerations for the SYSENVIRONMENTS catalog table:
An ALTER statement that specifies new environment settings will result in a new row being added to
the SYSENVIRONMENTS catalog table. The new row will be added even if an error is subsequently
encountered during processing of the ALTER statement. Thus, a new SYSENVIRONMENTS row might
be added even for an ALTER statement that fails.

Dependent objects:
A trigger is dependent on the triggering table and objects that are referenced in the trigger body.

Error handling in triggers:
A trigger can return errors like other SQL statements. Applications should be aware of the possible
errors that can be expected when a trigger is invoked. Any exception SQLSTATE that is not handled
within the trigger body (using a handler), results in the exception SQLSTATE being returned to the
statement that caused the trigger to be activated. For example, if a SIGNAL statement (RESIGNAL

1364 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

statement or RAISE_ERROR function) raises a non-severe error in the SQL-trigger-body and the
condition is not handled within the trigger body, SQLCODE -438 and the specified SQLSTATE will
be returned. Other non-severe errors are returned with SQLCODE -723 and SQLSTATE 09000. Severe
errors that occur during the execution of triggered SQL statements are returned with SQLCODE -901,
-906, -911, and -913 and the corresponding SQLSTATE. Warnings are not returned.

Examples for ALTER TRIGGER (advanced)

Example 1: Change the definition of trigger TRIGGER1 to secured

ALTER TRIGGER TRIGGER1
 SECURED;

Example 2: Alter the definition of trigger TRIGGER1 to allow it to be run in debugging mode

ALTER TRIGGER TRIGGER1
 ALTER ALLOW DEBUG MODE;

Example 3: Use the ACTIVATE VERSION clause to make a new version of the trigger the currently
active version

ALTER TRIGGER TRIGGER1
ACTIVATE VERSION V3;

Exmaple 4: Regenerate the currently active version of a trigger

ALTER TRIGGER TRIGGER1
REGENERATE ACTIVE VERSION;

ALTER TRIGGER statement (basic trigger)
The ALTER TRIGGER (basic) statement changes the description of a basic trigger at the current server.

For a description of the differences between basic and advanced triggers, see Triggers (Introduction to
Db2 for z/OS).

Invocation for ALTER TRIGGER (basic)
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for ALTER TRIGGER (basic)
The privilege set that is defined below must include at least one of the following:

• Ownership of the trigger
• The ALTERIN privilege on the schema
• SYSADM authority
• SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The authorization ID that matches the schema name implicitly has the ALTERIN privilege on the schema.

Privilege set: If the statement is embedded in an application program, the privilege set is the set of
privileges that are held by the owner of the plan or package. If the statement is dynamically prepared, the
privilege set is the set of privileges that are held by the SQL authorization ID of the process. The specified

Chapter 7. Statements 1365

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_triggers.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_triggers.html

trigger name can include a schema name (a qualifier). However, if the schema name is not the same as
one of the authorization ID of the process, one of the following conditions must be met:

• The privilege set includes SYSADM authority, SYSCTRL authority, or system DBADM authority.
• The authorization ID of the process has the ALTERIN privilege on the schema.

If the SECURED option is specified, at least one of the following privileges is required:

• SECADM authority
• CREATE_SECURE_OBJECT privilege

Note: If the SEPARATE SECURITY subsystem parameter is set to NO, SYSADM authority has implicit
SECADM authority.

Syntax for ALTER TRIGGER (basic)

ALTER TRIGGER trigger-name option-list

option-list:

NOT SECURED

SECURED

Description for ALTER TRIGGER (basic)
trigger-name

Identifies the trigger that is to be changed. The name, including the implicit or explicit schema name,
must exist at the current server. The name must identify a basic trigger.

The trigger must not be obfuscated.

SECURED or NOT SECURED
Specifies that the trigger is to be changed to be secure or not secure. Changing a trigger between
SECURED and NOT SECURED causes an implicit rebind of the trigger package. If an error is
encountered during the implicit rebind of the trigger package, the ALTER TRIGGER statement returns
the error.
SECURED

Specifies the trigger is considered secure.

SECURED must be specified for a trigger if its subject table is using row access control or column
access control. SECURED must also be specified for a trigger that is created for a view and one or
more of the underlying tables in the view definition is using row access control or column access
control.

NOT SECURED
Specifies the trigger is considered not secure.

NOT SECURED must not be specified for a trigger whose subject table is using row access control
or column access control. NOT SECURED must also not be specified for a trigger that is created for
a view and one or more of the underlying tables in the view definition is using row access control
or column access control.

Notes for ALTER TRIGGER (basic)
Changing an existing trigger into an advanced trigger:

To change a basic trigger or a trigger defined prior to Db2 12 with new function activated into an
advanced trigger, use one of the following methods:

1366 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• issue a DROP TRIGGER statement followed by a CREATE TRIGGER (advanced) statement, specifying
the desired definition of the advanced trigger to redefine it. The existing trigger is effectively
dropped, and a new advanced trigger is defined. This affects the trigger activation order for the
table on which the trigger is defined.

• issue a CREATE TRIGGER (advanced) statement with the OR REPLACE clause, and specify the
desired definition of the advanced trigger. The existing trigger is effectively dropped, and a new
advanced trigger is defined. This affects the trigger activation order for the table on which the trigger
is defined.

Changes are immediate:
Any changes that the ALTER TRIGGER statement causes to the definition of a trigger take effect
immediately. The changed definition is used the next time that the trigger is activated.

Altering a trigger from NOT SECURED to SECURED:
Typically, the security administrator will examine the data that is accessed by a trigger, ensure that
it is secure, and grant the CREATE_SECURE_OBJECT privilege to the owner of the trigger. After the
trigger is changed to SECURED, the security administrator will revoke the CREATE_SECURE_OBJECT
privilege from the owner of the trigger.

The trigger is considered secure after the ALTER TRIGGER statement is executed. Db2 treats the
SECURED attribute as an assertion that declares that the user has established an audit procedure for
all activities in the trigger body. If a secure trigger references user-defined functions, Db2 assumes
those functions are secure without validation. If those functions can access sensitive data, the user
with SECADM authority needs to ensure that those functions are allowed to access that data and
that an audit procedure is in place for all versions of those functions, and that all subsequent ALTER
FUNCTION statements or changes to external packages are being reviewed by this audit process.

A trigger must be secure if its subject table is using row access control or column access control.
SECURED must also be specified for a trigger that is created for a view and one or more of the
underlying tables in the view definition is using row access control or column access control.

Altering a trigger from SECURED to NOT SECURED:
The ALTER TRIGGER statement returns an error if the subject table of the trigger is using row access
control or column access control, or if the trigger is for a view and one or more of the underlying tables
in the view definition is using row access control or column access control.

Altering obfuscated triggers:
Obfuscated triggers cannot be altered in any way.

Row access control and column access control that is not enforced for transition variables and
transition tables:

If row access control or column access control is enforced for the subject table of the trigger,
row permissions and column masks are not applied to the initial values of transition variables and
transition tables. Row access control and column access control is enforced for the triggering table,
but is ignored for transition variables and transition tables that are referenced in the body of the
trigger body or are passed as arguments to user-defined functions that are invoked in the body of the
trigger. To ensure that there are no security concerns for SQL statements accessing sensitive data in
transition variables and transition tables in the trigger action, the trigger must be changed to use the
SECURED option. If a trigger is not secure, row access control and column access control cannot be
enforced for the triggering table.

Examples for ALTER TRIGGER (basic)

Example 1: Change the definition of trigger TRIGGER1 to secured:

ALTER TRIGGER TRIGGER1
 SECURED;

Chapter 7. Statements 1367

ALTER TRUSTED CONTEXT statement
The ALTER TRUSTED CONTEXT statement modifies the definition of a trusted context at the current
server.

Invocation for ALTER TRUSTED CONTEXT
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for ALTER TRUSTED CONTEXT
The privilege set that is defined below must include at least one of the following:

• SYSADM authority
• SECADM authority

Privilege set: If the statement is embedded in an application program, the privilege set is the set of
privileges that are held by the owner of the plan or package.

If the statement is dynamically prepared, the privilege set is the union of the set of privileges that are
held by each authorization ID of the process. If the statement is run in a trusted context with a role,
the privilege set is the union of the set of privileges that are held by the role that is associated with the
primary authorization ID and the set of privileges that are held by each authorization ID of the process.

1368 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Syntax for ALTER TRUSTED CONTEXT

ALTER TRUSTED CONTEXT context-name

1

ALTER SYSTEM AUTHID authorization-name

NO DEFAULT ROLE

DEFAULT ROLE role-name
WITHOUT ROLE AS OBJECT OWNER

WITH ROLE AS OBJECT OWNER AND QUALIFIER

ENABLE

DISABLE

NO DEFAULT SECURITY LABEL

DEFAULT SECURITY LABEL seclabel-name

ATTRIBUTES
2

(

,

ADDRESS address-value

ENCRYPTION encryption-value
3

SERVAUTH servauth-value

JOBNAME jobname-value
4

5
)

ADD ATTRIBUTES (

,

ADDRESS address-value

SERVAUTH servauth-value

JOBNAME jobname-value
4

5
)

DROP ATTRIBUTES (

,

ADDRESS

address-value

SERVAUTH

servauth-value

JOBNAME

jobname-value
4

5
)

user-clause

Notes:
1 These clauses can be specified in any order. Each clause must not be specified more than one time.
2 This clause and the clauses that follow can be specified in any order. Each clause must not be specified
more than one time.
3 ENCRYPTION must not be specified more than one time.
4 JOBNAME must not be specified with ADDRESS, ENCRYPTION, or SERVAUTH.
5 Each pair of attribute name and corresponding value must be unique.

user-clause:

Chapter 7. Statements 1369

ADD USE FOR

,

authorization-name

use-options

EXTERNAL SECURITY PROFILE profile-name

use-options

PUBLIC
WITHOUT AUTHENTICATION

WITH AUTHENTICATION

REPLACE USE FOR

,

authorization-name

use-options

EXTERNAL SECURITY PROFILE profile-name

use-options

PUBLIC
WITHOUT AUTHENTICATION

WITH AUTHENTICATION

DROP USE FOR

,

authorization-name

EXTERNAL SECURITY PROFILE profile-name

PUBLIC

use-options:

ROLE role-name SECURITY LABEL seclabel-name

WITHOUT AUTHENTICATION

WITH AUTHENTICATION

Description for ALTER TRUSTED CONTEXT
context-name

Identifies the trusted context to alter. context-name must refer to a trusted context that exists at the
current server.

ALTER
Specifies that changes are to be made to the definition of an existing trusted context.

SYSTEM AUTHID authorization-name
Specifies that authorization-name is the system authorization ID for the trusted context. The system
authorization ID is the primary authorization ID of the Db2 system that establishes the connection.
For a remote connection, the authorization ID is derived from the system used ID that is provided by
the external entity, such as a middleware server. For a local connection, the system authorization ID is
derived depending on the sources, as specified in Table 193 on page 1371.

1370 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 193. System authorization ID for a local connection

Source of local connection System authorization ID

Started task (RRSAF) USER parameter on JOB statement or RACF
USER.

TSO TSO logon ID

BATCH USER parameter on JOB statement

authorization-name must not be associated with an existing trusted context.
NO DEFAULT ROLE or DEFAULT ROLE role-name

Specifies whether a default role is associated with a trusted connection that is based on the specified
trusted context. If a trusted connection for the specified context is active, the change goes into effect
at the next connection reuse attempt or when a new connection is requested.
NO DEFAULT ROLE

Specifies that the trusted context does not have a default role. The authorization ID of the process
is the owner of any object that is created using a trusted connection that is based on this trusted
context. That authorization ID must possess all of the privileges that are necessary to create that
object.

DEFAULT ROLE role-name
Specifies that role-name is the role for the trusted context. role-name must identify a role that
exists at the current server. This role is used with the user in a trusted connection that is based on
the specified trusted context when the user does not have a user-specified role that is defined as
part of the definition of this trusted context.

WITHOUT ROLE AS OBJECT OWNER or WITH ROLE AS OBJECT OWNER AND QUALIFIER
Specifies whether a role is used as the owner of objects that are created using a trusted connection
that is based on the specified trusted context. If a trusted connection for the specified context is
active, the change goes into effect at the next connection reuse attempt or when a new connection is
requested.
WITHOUT ROLE AS OBJECT OWNER

Specifies that a role is not used as the owner of the objects that are created using a trusted
connection that is based on the specified trusted context. The authorization ID of the process is
the owner of any object that is the created using a trusted connection that is based on this trusted
context. That authorization ID must possess all of the privileges that are necessary to create the
object.

WITHOUT ROLE AS OBJECT OWNER is the default.

WITH ROLE AS OBJECT OWNER AND QUALIFIER
Specifies that the context assigned role is the owner of the objects that are created using a trusted
connection that is based on this trusted context. That role must possess all of the privileges
that are necessary to create the object. The context assigned role is the role that is defined
for the user within this trusted context, if one is defined. Otherwise, the role is the default role
that is associated with the trusted context. The role is also used as the grantor for any GRANT
statements that are issued, and the revoker for any REVOKE statement that are issued using a
trusted connection that is based on this trusted context.
AND QUALIFIER

Specifies that the role-name will be used as the default for the CURRENT SCHEMA special
register. The role-name will also be included in the SQL PATH (in place of CURRENT SQLID).

When WITH ROLE AS OBJECT OWNER AND QUALIFIER is not specified, there is no change
to the default of the CURRENT SCHEMA special register and SQL PATH.

DISABLE or ENABLE
Specifies whether the trusted context is in the enabled or disabled state.

Chapter 7. Statements 1371

DISABLE
Specified that the trusted context is disabled. A trusted context that is disabled is not considered
when a trusted connection is established.

ENABLE
Specifies that the trusted context is enabled.

NO DEFAULT SECURITY LABEL or DEFAULT SECURITY LABELseclabel-name
Specifies whether a default security label is associated with a trusted connection that is based on this
trusted context. If a trusted connection for the specified context is active, the change goes into effect
at the next connection reuse attempt or when a new connection is requested.
NO DEFAULT SECURITY LABEL

Specifies that the trusted context does not have a default security label.
DEFAULT SECURITY LABEL seclabel-name

Specifies that seclabel-name is the default security label for the trusted context. seclabel-name
is the security label that is used for multilevel security verification. seclabel-name must identify
one of the RACF SECLABEL values that is defined for the SYSTEM AUTHID. This security label is
used in a trusted connection that is based on the specified trusted context when the user does not
have a specific security label defined as part of the definition of this trusted context. In this case,
seclabel-name must also identify one of the RACF SECLABEL values that is defined for the user.

ALTER ATTRIBUTES or ADD ATTRIBUTES
Specifies a list of one or more connection trust attributes to change or add to the definition of a
trusted context. The connection trust attributes are used to define the trusted context. If ALTER
ATTRIBUTES is specified and the attribute is not currently part of the definition of the specified
trusted context, an error is returned. Existing specifications for the specified attributes are changed
to the new value if ALTER is specified. Attributes that are not specified retain the previously specified
values.
ADDRESS address-value

Specifies the actual communication address that is used by the connection to communicate
with the database manager. The protocol supported is only for TCP/IP. Previously specified
ADDRESS values are removed when ALTER ATTRIBUTES is specified. The ADDRESS attribute can
be specified multiple times, but each address-value must be unique.

When establishing a trusted connection, if multiple values are defined for the ADDRESS attribute
for a trusted context, a candidate connection is considered to match this attribute if the address
that is used by a connection matches any of the values that are defined for the ADDRESS attribute
of the trusted context.

address-value specifies a string constant that contains the value that is associated with the
ADDRESS trust attribute. address-value must be an IPv4 address, an IPv6 address, or a secure
domain name with a length no greater than 254 bytes. No validation of address-value is done
at the time the ALTER TRUSTED CONTEXT statement is processed. address-value must be left
justified within the string constant.

• An IPv4 address is represented as a dotted decimal address. An example of an IPv4 address is
9.112.46.111.

• An IPv6 address is represented as a colon hexadecimal address. An example of an IPv6
address is 2001:0DB8:0000:0000:0008:0800:200C:417A. This address can also be express
in a compressed form as 2001:DB8::8:800:200C:417A.

• A domain name is converted to an IP address by the domain name server where a resulting
IPv4 or IPv6 address is determined. An example of a domain name is www.ibm.com. The
gethostbyname socket call is used to resolve the domain name.

ENCRYPTION encryption-value
Specifies the minimum level of encryption of the data stream (network encryption) for the
connection.

encryption-value specifies a string constant that contains the value that is associated with the
ENCRYPTION trust attribute. encryption-value must be left justified within the string constant.

1372 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

ENCRYPTION must not be specified more than one time in the statement. encryption-value must
be one of the following:

• NONE, which specifies that no specific level of encryption is required.
• LOW, which specifies that a minimum of light encryption is required. LOW corresponds to 64-bit

DRDA encryption.
• HIGH, which specifies that strong encryption is required. HIGH corresponds to SSL encryption.

ENCRYPTION cannot be specified if ADD ATTRIBUTES is specified. See “CREATE TRUSTED
CONTEXT statement” on page 1787 for more information about the ENCRYPTION attribute.

JOBNAME jobname-value
Specifies the z/OS job name or started task name (depending on the source of the address
space) for local applications. Previously specified values for JOBNAME are removed when ALTER
ATTRIBUTES is specified. The JOBNAME attribute can be specified multiple times, but each
jobname-value must be unique.

jobname-value specifies a string constant that contains the value that is associated with the
JOBNAME trust attribute. jobname-value is an EBCDIC 8 byte job name or started task name.
jobname-value must be left justified within the string constant. The last character in the name can
be a wildcard character (*) if the first character is an alphabetic character. If the job name ends
with a wildcard, any job names that match the specified characters are considered for establishing
the trusted connection.

The following table lists possible values for the job name depending on the source of the address
space).

Table 194. Job name for local connection

Source of the address space Job name

RRSAF Job name or started task name

TSO TSO logon ID

BATCH Job name on JOB statement

SERVAUTH servauth-value
Specifies the name of a resource in the RACF SERVAUTH class. This resource is the network
access security zone name that contains the IP address of the connection that is used to
communicate with Db2. Previously specified values for SERVAUTH are removed when ALTER
ATTRIBUTES is specified. The SERVAUTH attribute can be specified multiple times but each
servauth-value must be unique.

servauth-value specifies a string constant that contains the value that is associated with the
SERVAUTH trust attribute. servauth-value is an EBCDIC 64 byte RACF SERVAUTH CLASS resource
name. servauth-value must be left justified in the string constant. No validation of servauth-value
is done at the time the ALTER TRUSTED CONTEXT statement is processed.

DROP ATTRIBUTES
Specifies that one or more attributes are dropped from the definition of a trusted context. If the
attribute is not currently specified as part of the definition of a trusted context, an error is returned.
The specification of DROP ATTRIBUTES must not attempt to drop all of the existing attributes for a
trusted context.
ADDRESS address-value

Specifies that the identified communication address is removed from the definition of the trusted
context. address-value specifies a string constant that contains the value of an existing ADDRESS
trust attribute.

Chapter 7. Statements 1373

JOBNAME jobname-value
Specifies that the identified job name is removed from the definition of the trusted context.
jobname-value specifies a string constant that contains the value of an existing JOBNAME trust
attribute.

SERVAUTH servauth-value
Specifies that the identified servauth that is removed from the definition of the trusted context.
servauth-value specifies a string constant that contains the value of an existing SERVAUTH trust
attribute.

ADD USE FOR
Specifies additional users who can use a trusted connection that is based on the specified trusted
context.
authorization-name

Specifies that the trusted connection can be used by the specified authorization-name. This is the
Db2 primary authorization ID. The authorization-name must not identify an authorization ID that is
already defined to use the trusted context, and must not be specified more than one time in the
ADD USE FOR clause.
ROLE role-name

Specifies that role-name is the role that is used when a trusted connection is used by the
specified authorization-name. The role-name must identify a role that exists at the current
server. The role that is explicitly specified for the user overrides any default role that is
associated with the trusted context.

SECURITY LABEL seclabel-name
Specifies that seclabel-name is the security label to use for multilevel security verification
when the trusted connection is used by the specified authorization-name. The seclabel-name
must be one of the RACF SECLABEL values that is defined for the user. The security label that
is explicitly specified for the user overrides any default security label that is associated with
the trusted context.

EXTERNAL SECURITY PROFILE profile-name
Specifies that the trusted connection can be used by the Db2 primary authorization IDs that
are permitted to use the specified profile-name in RACF. profile-name must not already be
defined to use the trusted context, and must not be specified more than one time in the ADD
USE FOR clause. If an authorization ID is permitted to use more than one specified profile-
name, the role that is specified for profile-name can be associated with the process if the user
authentication satisfies the AUTHENTICATION definition. This role can hold additional privileges
that are available to the process.

After you specify an external security profile, any user who is permitted access to the RACF profile
can use the trusted context in addition to any users that are specified using the ADD USE FOR
authorization-name clause.

ROLE role-name
Specifies that role-name is the role that is used when a trusted connection is used by any
authorization ID that is permitted to use the specified profile-name in RACF. The role-name
must identify a role that exists at the current server. The role that is explicitly specified for the
profile overrides any default role that is associated with the trusted context.

SECURITY LABEL seclabel-name
Specifies that seclabel-name is the security label to use for multilevel security verification
when the trusted connection is used by any authorization ID that is permitted to use the
specified profile-name in RACF. The seclabel-name must be one of the RACF SECLABEL
values that is defined for the user. The security label that is explicitly specified for the profile
overrides any default security label that is associated with the trusted context.

PUBLIC
Specifies that a trusted connection that is based on the specified trusted context can be used
by any user. PUBLIC must not already be defined to use the trusted context and must not be
specified more than one time in the ADD USE FOR clause.

1374 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

All users that are using a trusted connection that is defined with PUBLIC use the privileges that
are associated with the default role for the associated trusted context. If the default role is not
defined for the trusted context, there is no role associated with the users that use a trusted
connection that is based on the specified trusted context.

If the default security label for the trusted context is defined, all users that are using the trusted
context must have the security label defined as one of the RACF SECLABEL values for the user.
The default security label is used for multilevel security verification with all users that are using
the trusted context.

The specifications for a user are determined in the following order of precedence:

• authorization-name
• EXTERNAL SECURITY PROFILE profile-name
• PUBLIC

For example, assume that a trusted context is defined with use for JOE WITH AUTHENTICATION,
EXTERNAL SECURITY PROFILE SPROFILE WITHOUT AUTHENTICATION (with JOE and SAM
permitted to use the RACF PROFILE SPROFILE), and PUBLIC WITH AUTHENTICATION. If the
trusted connection is used by JOE, authentication is required. If the trusted connection is used
by SAM, authentication is not required. However, if the trusted connection is used by SALLY,
authentication is required.

REPLACE USE FOR
Specifies a change to the specified user or PUBLIC for who can use the trusted context.
authorization-name

Specifies the authorization-name that is changed for use of the trusted context. The trusted
context must already be defined to allow use by authorization-name, and authorization-name
must not be specified more than one time in the REPLACE USE FOR clause. The information that is
associated with authorization-name is changed as indicated.
ROLE role-name

Specifies that role-name is the role that is used when a trusted connection is using the
specified trusted context. The role-name must identify a role that exists at the current server.
The role that is explicitly specified for the user overrides any default role that is associated
with the trusted context.

SECURITY LABEL seclabel-name
Specifies that seclabel-name is the security label to use for multilevel security verification
when the trusted connection is used by the specified authorization-name. The seclabel-name
must be one of the RACF SECLABEL values that is defined for the user. The security label that
is explicitly specified for the user overrides any default security label that is associated with
the trusted context.

EXTERNAL SECURITY PROFILE profile-name
Specifies the profile-name to change attributes for use of the trusted connection. The trusted
context must already be defined to allow the use of profile-name. profile-name must not be
specified more than one time in the REPLACE USE FOR clause. The information that is associated
with the profile name is changed as indicated.
ROLE role-name

Specifies that role-name is the role that is used when a trusted connection is used by any
authorization ID that is permitted to use the specified profile-name in RACF. The role name
must identify a role that exists at the current server. The role that is explicitly specified for the
profile overrides any default role that is associated with the trusted context.

SECURITY LABEL seclabel-name
Specifies that seclabel-name is the security label to use for multilevel security verification
when the trusted connection is used by any authorization ID that is permitted to use the
specified profile-name in RACF. The seclabel-name must be one of the RACF SECLABEL values
that is defined for the user. The security label that is explicitly specified for the user overrides
any default security label that is associated with the trusted context.

Chapter 7. Statements 1375

PUBLIC
Specifies that the attributes for use of the trusted connection by PUBLIC are to be changed.
PUBLIC must already be defined to use the trusted context, and PUBLIC must not be specified
more than one time in the REPLACE USE FOR clause.

All users that are using a trusted connection that is defined with PUBLIC use the privileges that
are associated with the default role for the associated trusted context. If the default role is not
defined for the trusted context, there is no role associated with the users that use a trusted
connection that is based on the specified trusted context.

If the default security label for the trusted context is defined, all users that are using the trusted
context must have the security label defined as one of the RACF SECLABEL values for the user.
The default security label is used for multilevel security verification with all users that are using
the trusted context.

WITHOUT AUTHENTICATION or WITH AUTHENTICATION
Specifies whether use of the trusted connection requires authentication of the user.
WITHOUT AUTHENTICATION

Specifies that use of a trusted connection by the user does not require authentication. WITHOUT
AUTHENTICATION is the default.

WITH AUTHENTICATION
Specifies that use of a trusted connection requires the authentication token with the authorization
ID to authenticate the user.

DROP USE FOR
Specifies who can no longer use the trusted context. The users that are removed from the definition
of the trusted context are the specified users (or PUBLIC) that are currently allowed to use the trusted
context. If multiple users are specified to be dropped, and one or more of those users cannot be
dropped, those users that can be dropped are dropped and a warning is returned. If none of the
specified users can be removed from the definition of the trusted context, an error is returned.
authorization-name

Specifies the authorization-name that will no longer be able to use this trusted context.
EXTERNAL SECURITY PROFILE profile-name

Removes the ability for the specified profile-name to use the trusted context.
PUBLIC

Specifies that PUBLIC users will no longer be able to use this trusted context. The system
authorization ID and individual authorization IDs that have been explicitly enabled can still use
the trusted context.

Notes for ALTER TRUSTED CONTEXT

Precedence for authorization-name and authentication requirements: If the authorization-name that is
specified in the SYSTEM AUTHID clause is the same authorization name that is specified in the ADD
or REPLACE USE FOR authorization-name clauses, the role or the security label that is specified for
the authorization-name takes precedence over the default value and the value that is specified for
the EXTERNAL SECURITY PROFILE profile-name (if one is specified). If the authorization name that is
specified in the SYSTEM AUTHID clause is permitted to use one of the specified profile names and is not
specified in ADD or REPLACE USE for authorization-name, the role or the security label that is specified
for that profile-name takes precedence over the default value.

Authentication is required for SYSTEM AUTHID if the AUTHENTICATION clause is specified in the ADD
or REPLACE USE FOR clauses, or if the subsystem parameter TCP/IP Already Verified is set to NO.
For example, if authorization-name is the same as the authorization name that is specified in the
SYSTEM AUTHID clause and the WITHOUT AUTHENTICATION clause is specified, but the TCP/IP Already
Verified subsystem parameter is set to NO, authentication is required for SYSTEM AUTHID when the
remote trusted connection is established. If authorization-name is the SYSTEM AUTHID and the WITH

1376 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

AUTHENTICATION clause is specified, but the TCP/IP Already Verified subsystem parameter is set to YES,
authentication is still required for SYSTEM AUTHID.

Order of precedence for users of a trusted connection: The specifications for a user are determined in the
following order of precedence:

• authorization-name
• EXTERNAL SECURITY PROFILE profile-name
• PUBLIC

For example, assume that a trusted context is defined with use for JOE WITH AUTHENTICATION,
EXTERNAL SECURITY PROFILE SPROFILE WITHOUT AUTHENTICATION, and PUBLIC WITH
AUTHENTICATION. Users JOE and SAM are permitted to use the RACF PROFILE SPROFILE. If the
trusted connection is used by JOE, authentication is required. If the trusted connection is used by SAM,
authentication is not required. However, if user SALLY uses the trusted connection, authentication is
required.

User-clause SYSTEM AUTHID considerations: If the authorization-name that is specified in the SYSTEM
AUTHID clause is the same as the authorization-name that is specified in the user-clause authorization-
name, the role or the security label that is specified for authorization-name takes precedence over the
default value. The value that is specified for the profile-name, is permitted to use the profile. If the
authorization name that is specified in the SYSTEM AUTHID clause is permitted to use one of the profile
names and is not defined in authorization-name, the role or the security label that is specified for that
profile-name takes precedence over the default value.

If authentication is required for SYSTEM AUTHID, either by specification of the AUTHENTICATION clause
in the user-clause or by setting the value of the TCP/IP Already Verified subsystem parameter to NO,
the authentication requirement takes precedence when establishing a remote trusted connection. For
example, if authorization-name is the same as the authorization name that is specified for SYSTEM
AUTHID and the WITHOUT AUTHENTICATION clause is specified, but the TCP/IP Already Verified
subsystem parameter is set to NO, an authentication token is required for SYSTEM AUTHID when the
remote trusted connection is established. If authorization-name is the SYSTEM AUTHID and the WITH
AUTHENTICATION clause is specified, but the TCP/IP Already Verified subsystem parameter is set to YES,
an authentication token is still required for SYSTEM AUTHID.

Order of operations: The order in which the clauses of the ALTER TRUSTED CONTEXT statement are
applied are as follows:

• DROP ATTRIBUTES
• DROP USE FOR
• ALTER
• ADD ATTRIBUTES
• ADD USE FOR
• REPLACE USE FOR

Effect of changes on existing trusted connections: If trusted connections exist for the trusted context
that is changed, the connections continue to use the unchanged definition of the trusted context until the
connection is terminated or an attempt at reuse is made. If the trusted context is disabled while there are
active trusted connections that are based on this trusted context, the connections continue to be used
until terminated or an attempt at reuse is made. If the trust attributes are changed, trusted connections
that exist at the time that the trusted context is changed will continue to be used.

When changes to a trusted context take place: The changes to the definition of a trusted context take
effect after the ALTER TRUSTED CONTEXT statement is committed. If the ALTER TRUSTED CONTEXT
statement results in an error or is rolled back, the trusted context is not changed.

Role privileges: If no role is associated with the user or the trusted context, only the privileges that are
associated with the user are applicable. This is the same as not using a trusted context.

Chapter 7. Statements 1377

Examples for ALTER TRUSTED CONTEXT

Example 1: The following statement updates the default role of the trusted context CTX1:

 ALTER TRUSTED CONTEXT CTX1
 ALTER DEFAULT ROLE CTXROLE2;

Example 2: The following statement changes the CTX3 trusted context to allow use for BILL, and it also
puts the trusted context into the disabled state:

 ALTER TRUSTED CONTEXT CTX3
 DISABLE
 ADD USE FOR BILL;

Example 3: The following statement changes the CTX4 trusted context to allow the previously defined
user JOE to use the trusted context without authentication. The statement also adds use for PUBLIC with
authentication and TOM with a role of SPLROLE:

 ALTER TRUSTED CONTEXT CTX4
 REPLACE USE FOR JOE WITHOUT AUTHENTICATION
 ADD USE FOR PUBLIC WITH AUTHENTICATION,
 TOM ROLE SPLROLE;

Example 4: The following statement changes the REMOTECTX to use a different IPv4 address than it
was originally defined to use. It also changes the encryption settings from NONE to LOW. After the
ALTER statement is processed, the connection will be considered trusted only when it is established from
9.12.155.200 with low encryption. The connection will no longer be considered trusted if it is established
from the previously defined addresses:

 ALTER TRUSTED CONTEXT REMOTECTX
 ALTER ATTRIBUTES (ADDRESS '9.12.155.200',
 ENCRYPTION 'LOW');

ALTER VIEW statement
The ALTER VIEW statement regenerates a view using an existing view definition at the current server.
ALTER VIEW is primarily used during Db2 migration or when Db2 maintenance is applied. To change a
view definition (for example, to add additional columns), you must drop the view and create a new view
using the CREATE VIEW statement.

Invocation for ALTER VIEW
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for ALTER VIEW
The privilege set that is defined below must include at least one of the following:

• Ownership of the view
• SYSADM authority
• SYSCTRL authority
• System DBADM

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the package. If the statement is dynamically prepared, the privilege set is
the union of the privilege sets that are held by each authorization ID and role of the process.

1378 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Syntax for ALTER VIEW

ALTER VIEW view-name REGENERATE

USING APPLICATION COMPATIBILITY applcompat-level

Description for ALTER VIEW
view-name

Identifies the view to be regenerated. The name must identify a view that exists at the current server.
REGENERATE

Specifies that the view is to be regenerated. The view definition in the catalog is used, and existing
authorizations and dependent views are retained. The catalog is updated with the regenerated view
definition. If the view cannot be successfully regenerated, an error is returned.

Generally, the REGENERATE keyword is used only for specific situations, such as when implicit
regeneration fails for routines or objects, or Db2 maintenance requires objects or routines to be
regenerated. For more information, see When to regenerate Db2 database objects and routines (Db2
Administration Guide).

USING APPLICATION COMPATIBILITY applcompat-level
Specifies that the object is regenerated under applcompat-level application compatibility rules. The
ALTER statement fails if it includes any syntax, semantics, or options that require a higher application
compatibility level.

If USING APPLICATION COMAPTIBILITY is omitted, the regeneration uses the APPLCOMPAT value of
the applicable SYSIBM.SYSENVIRONMENT catalog table row.

The following applcompat-level values can be specified:
VvvRrMmmm

Compatibility with the behavior of the identified Db2 function level. For example, V12R1M510
specifies compatibility with the highest available Db2 12 function level. The equivalent function
level or higher must be activated.

For the new capabilities that become available in each application compatibility level, see:

• SQL changes in Db2 13 application compatibility levels
• SQL changes in Db2 12 application compatibility levels

Tip: Extra program preparation steps might be required to increase the application compatibility
level for applications that use data server clients or drivers to access Db2 for z/OS. For more
information, see Setting application compatibility levels for data server clients and drivers (Db2
Application programming and SQL).

V12R1
Compatibility with the behavior of Db2 12 function level 500. This value has the same result as
specifying V12R1M500.

V11R1
Compatibility with the behavior of Db2 11 new-function mode. After migration to Db2 12, this
value has the same result as specifying V12R1M100. For more information, see V11R1 application
compatibility level (Db2 Application programming and SQL)

V10R1
Compatibility with the behavior of DB2 10 new-function mode. For more information, see V10R1
application compatibility level (Db2 Application programming and SQL).

Chapter 7. Statements 1379

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_whenalterregenerate.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_whenalterregenerate.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/wnew/src/tpc/db2z_13_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html

Examples for ALTER VIEW

Check the catalog to find any views that were marked with view regeneration errors during catalog
migration:

 SELECT CREATOR,NAME FROM SYSIBM.SYSTABLES
 WHERE TYPE = 'V' AND STATUS = 'R' AND TABLESTATUS = 'V';

Assume that the query returned MYVIEW as the name of a view with a regeneration error. Issue an ALTER
VIEW statement to regenerate the view:

 ALTER VIEW MYVIEW REGENERATE;

ASSOCIATE LOCATORS statement
The ASSOCIATE LOCATORS statement gets the result set locator value for each result set returned by a
stored procedure.

Invocation for ASSOCIATE LOCATORS
This statement can be embedded in an application program. It is an executable statement that can be
dynamically prepared. It cannot be issued interactively.

Authorization for ASSOCIATE LOCATORS
None required.

Syntax for ASSOCIATE LOCATORS

ASSOCIATE
RESULT SET

LOCATOR

LOCATORS

(

,

rs-locator-variable)

WITH PROCEDURE procedure-name

host-variable

Description for ASSOCIATE LOCATORS
rs-locator-variable

Identifies a result set locator variable that has been declared according to the rules for declaring
result set locator variables.

WITH PROCEDURE procedure-name or host-variable
Identifies the stored procedure that returned one or more result sets. When the ASSOCIATE
LOCATORS statement is executed, the procedure name must identify a stored procedure that the
requester has already invoked using the SQL CALL statement. The procedure name can be specified
as a one-part, two-part, or three-part name. The procedure name in the ASSOCIATE LOCATORS
statement must be specified the same way that it was specified on the CALL statement. For example,
if a two-part procedure name was specified on the CALL statement, you must specify a two-part
procedure name in the ASSOCIATE LOCATORS statement.

If a host variable is used to specify the name:

• It must be a character string variable with a length attribute that is not greater than 255.
• It must not be followed by an indicator variable.

1380 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• The value of the host variable is a specification that depends on the server. Regardless of the server,
the specification must:

– Be left justified within the host variable
– Not contain embedded blanks
– Be padded on the right with blanks if its length is less than that of the host variable

Notes for ASSOCIATE LOCATORS
Assignment of locator values: If the ASSOCIATE LOCATORS statement specifies multiple locator
variables, locator values are assigned to the locator variables in the order that the associated cursors
are opened regardless of whether they are still open or not at run time. Locator values are assigned to the
locator variables in the same order that they would be placed in the SQLVAR entries in the SQLDA as a
result of a DESCRIBE PROCEDURE statement.

Locator values are not provided for cursors that are closed when control is returned to the invoking
application. If a cursor was closed and later opened again before returning to the invoking application,
the most recently executed OPEN CURSOR statement for the cursor is used to determine the order in
which the locator values are returned for the procedure result sets. For example, assume procedure P1
opens three cursors A, B, C, closes cursor B and then issues another OPEN CURSOR statement for cursor
B before returning to the invoking application. The locator values assigned for the following ASSOCIATE
LOCATORS statement will be in the order A, C, B:

ASSOCIATE RESULT SET LOCATORS (:loc1, :loc2, :loc3) WITH PROCEDURE P1;
 -- assigns locators for result set cursors A, C, and B

More than one locator can be associated with a result set. You can issue multiple ASSOCIATE LOCATORS
statements for the same stored procedure with different result set locator variables to associate multiple
locators with each result set.

• If the number of result set locator variables specified in the ASSOCIATE LOCATORS statement is less
than the number of result sets returned by the stored procedure, all locator variables specified in the
statement are assigned a value, and a warning is issued. For example, assume procedure P1 exists and
returns four result sets. Each of the following ASSOCIATE LOCATORS statement returns information on
the first result set along with a warning that not enough locators were provided to obtain information
about all the result sets.

CALL P1;
ASSOCIATE RESULT SET LOCATORS (:loc1) WITH PROCEDURE P1;
 -- :loc1 is assigned a value for first result set, and a warning is returned
ASSOCIATE RESULT SET LOCATORS (:loc2) WITH PROCEDURE P1;
 -- :loc2 is assigned a value for first result set, and a warning is returned
ASSOCIATE RESULT SET LOCATORS (:loc3) WITH PROCEDURE P1;
 -- :loc3 is assigned a value for first result set, and a warning is returned
ASSOCIATE RESULT SET LOCATORS (:loc4) WITH PROCEDURE P1;
 -- :loc4 is assigned a value for first result set, and a warning is returned

• If the number of result set locator variables that are listed in the ASSOCIATE LOCATORS statement is
greater than the number of locators returned by the stored procedure, the extra locator variables are
assigned a value of 0.

Accessing result sets from multiple CALL statements: An application can access to result sets created
by multiple CALL statements. The result sets can be created by different procedure or by the same
procedure invoked multiple times.

• Invoking different procedures: Invoking different procedures with the same name can be done either
explicitly by specifying the different collections or implicitly with the use of the PACKAGE PATH.
For example, to identify the different collections explicitly, specify qualified names on the CALL
statement. Although both procedures are named P2, they are different procedures. After the second
CALL statement, result sets from both procedures are accessible to the application.

CALL X.P2;
CALL Y.P2;

Chapter 7. Statements 1381

The collections for the two different procedures can also be determined implicitly from the PACKAGE
PATH when unqualified procedure names are specified as part of the CALL statement. For example,
assume that procedure P4 exists in collections X and Z. An application contains two CALL statements
to invoke procedure P4. The references to procedure P4 in the CALL statements are unqualified. So, the
PACKAGE PATH special register is used to resolve the procedure name. Procedure X.P4 is invoked for
the first CALL statement and procedure Z.P4 is invoked by the second CALL statement. Following the
second CALL statement, result sets from both procedures are accessible to the application.

SET CURRENT PACKAGE PATH = X, Y, Z;
CALL P4;
SET CURRENT PACKAGE PATH = PATH Z, Y, X;
CALL P4;

• Invoking the same procedure multiple times: If the server and requester are both the same version of
Db2, you can call a stored procedure multiple times within an application and at the same nesting level.
Each call to the same stored procedure causes a unique instance of the stored procedure to run. If the
stored procedure returns result sets, each instance of the stored procedure opens its own set of result
set cursors. For more information on this situation, see Multiple calls to the same stored procedure.

When a procedure is invoked multiple times in an application and there is a need to process the result
sets from the different instances at the same time, be sure to use the ASSOCIATE LOCATORS statement
after each CALL statement to capture the locator values returned from each invocation of the procedure.
For example, assume that procedure P exists in collection Z and that an application contains two
CALL statements to invoke procedure P. The PACKAGE PATH is used to determine the collection for
the procedure in the first CALL statement, and the collection is explicitly specified in the second CALL
statement. Result sets from both procedures can be accessible to the application following both CALL
statements if the locators for the result sets produced by the first CALL statement are captured with an
ASSOCIATE LOCATOR statement before invoking the procedure the second time.

SET CURRENT PACKAGE PATH = X, Y, Z;
CALL P3;
ASSOCIATE LOCATORS ...
CALL Z.P3;
ASSOCIATE LOCATORS ...
-- process the result sets using the locators

Using host variables: If the ASSOCIATE LOCATORS statement contains host variables, the following
conditions apply:

• If the statement is executed statically, the contents of the host variables are assumed to be in the
encoding scheme that was specified in the ENCODING parameter when the package or plan that
contains the statement was bound.

• If the statement is executed dynamically, the contents of the host variables are assumed to be in the
encoding scheme that is specified in the APPLICATION ENCODING bind option.

Examples for ASSOCIATE LOCATORS

The statements in the following examples are assumed to be in PL/I programs.

Example 1: Use result set locator variables LOC1 and LOC2 to get the result set locator values for the two
result sets returned by stored procedure P1. Assume that the stored procedure is called with a one-part
name from current server SITE2.

 EXEC SQL CONNECT TO SITE2;
 EXEC SQL CALL P1;
 EXEC SQL ASSOCIATE RESULT SET LOCATORS (:LOC1, :LOC2)
 WITH PROCEDURE P1;

Example 2: Repeat the scenario in Example 1, but use a two-part name to specify an explicit schema
name for the stored procedure to ensure that stored procedure P1 in schema MYSCHEMA is used.

 EXEC SQL CONNECT TO SITE2;
 EXEC SQL CALL MYSCHEMA.P1;

1382 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 EXEC SQL ASSOCIATE RESULT SET LOCATORS (:LOC1, :LOC2)
 WITH PROCEDURE MYSCHEMA.P1;

Example 3: Use result set locator variables LOC1 and LOC2 to get the result set locator values for the
two result sets that are returned by the stored procedure named by host variable HV1. Assume that
host variable HV1 contains the value SITE2.MYSCHEMA.P1 and the stored procedure is called with a
three-part name.

 EXEC SQL CALL SITE2.MYSCHEMA.P1;
 EXEC SQL ASSOCIATE LOCATORS (:LOC1, :LOC2)
 WITH PROCEDURE :HV1;

The preceding example would be invalid if host variable HV1 had contained the value MYSCHEMA.P1, a
two-part name. For the example to be valid with that two-part name in host variable HV1, the current
server must be the same as the location name that is specified on the CALL statement as the following
statements demonstrate. This is the only condition under which the names do not have to be specified
the same way and a three-part name on the CALL statement can be used with a two-part name on the
ASSOCIATE LOCATORS statement.

 EXEC SQL CONNECT TO SITE2;
 EXEC SQL CALL SITE2.MYSCHEMA.P1;
 EXEC SQL ASSOCIATE LOCATORS (:LOC1, :LOC2)
 WITH PROCEDURE :HV1;

BEGIN DECLARE SECTION statement
The BEGIN DECLARE SECTION statement marks the beginning of an SQL declare section. An SQL declare
section contains declarations of host variables that are eligible to be used as host variables in SQL
statements in a program.

Invocation for BEGIN DECLARE SECTION
This statement can only be embedded in an application program. It is not an executable statement. It
must not be specified in Java or REXX.

Authorization for BEGIN DECLARE SECTION
None required.

Syntax for BEGIN DECLARE SECTION

BEGIN DECLARE SECTION

Description for BEGIN DECLARE SECTION
The BEGIN DECLARE SECTION statement can be coded in the application program wherever variable
declarations can appear in accordance with the rules of the host language. It is used to indicate the
beginning of a host variable declaration section. A host variable section ends with an END DECLARE
SECTION statement, described in “END DECLARE SECTION statement” on page 1907.

The following rules are enforced by the precompiler only if the host language is C or the STDSQL(YES) SQL
processing option is specified:

• A variable referred to in an SQL statement must be declared within a host variable declaration section
of the source program in all host languages, other than Java and REXX. Furthermore, the declaration of
each variable must appear before the first reference to the variable. Host variables are declared without
the use of these statements in Java, and they are not declared at all in REXX.

• BEGIN DECLARE SECTION and END DECLARE SECTION statements must be paired and must not be
nested.

Chapter 7. Statements 1383

• Host variable declaration sections can contain only host variable declarations, SQL INCLUDE statements
that include host variable declarations, or DECLARE VARIABLE statements.

Notes for BEGIN DECLARE SECTION
Host variable declaration sections are only required if the STDSQL(YES) option is specified or the host
language is C. However, declare sections can be specified for any host language so that the source
program can conform to IBM SQL. If declare sections are used, but not required, variables declared
outside a declare section must not have the same name as variables declared within a declare section.

Example for BEGIN DECLARE SECTION

 EXEC SQL BEGIN DECLARE SECTION;

 -- host variable declarations

 EXEC SQL END DECLARE SECTION;

CALL statement
The CALL statement invokes a stored procedure.

Invocation for CALL
This statement can be embedded in an application program. This statement can be executed interactively
using the command line processor. Refer to Command line processor CALL statement (Db2 Application
programming and SQL) for information about using the command line processor with the CALL statement.
This statement can also be dynamically prepared, but only from an ODBC or CLI driver that supports
dynamic CALL statements. IBM's ODBC and CLI drivers provide this capability.

Authorization for CALL
Invoking a stored procedure requires the EXECUTE privilege on the following:

• The stored procedure

You do not need the EXECUTE privilege on a stored procedure that was created prior to Version 6 of Db2
for z/OS.

• Additional authority is needed for the stored procedure package and most packages that run in the
stored procedure.

The authorization that is required for which packages is explained in detail in Authorization to execute
packages under the stored procedure.

Authorization to execute the stored procedure

The authorization ID or role that must have the EXECUTE privilege on the stored procedure depends on
the form of the CALL statement:

• For static SQL programs that use the syntax CALL procedure, the owner of the plan or package that
contains the CALL statement must have one of the following:

– The EXECUTE privilege on the stored procedure
– Ownership of the stored procedure
– DATAACCESS authority
– SYSADM authority

• For static SQL programs that use the syntax CALL variable, the authorization ID or role of the plan or
package that contains the CALL statement must have one of the following:

1384 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_clpcallstmt.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_clpcallstmt.html

– The EXECUTE privilege on the stored procedure
– Ownership of the stored procedure
– DATAACCESS authority
– SYSADM authority

The DYNAMICRULES behavior for the plan or package that contains the CALL statement determines
both the authorization ID or role and the privilege set that is held by that authorization ID or role:
Run behavior

The privilege set is the union of the set of privileges that are held by the SQL authorization ID and
each authorization ID or role of the process.

Bind behavior
The privilege set is the privileges that are held by the primary authorization ID of the owner of the
package or plan.

Define behavior
The privilege set is the privileges that are held by the authorization ID or role of the owner (definer)
of the stored procedure or user-defined function that issued the CALL statement.

Invoke behavior
The privilege set is the privileges that are held by the authorization ID or role of the invoker of the
stored procedure or user-defined function that issued the CALL statement. However, if the invoker
is the primary authorization ID of the process or the CURRENT SQLID value, the privilege set is the
union of the set of privileges that are held by each authorization ID or role.

For a list of the DYNAMICRULES values that specify run, bind, define, or invoke behavior, see Table 14
on page 94.

Authorization to execute packages under the stored procedure (including nested stored procedures)

The authorization that is required to run the stored procedure package and any packages that are used
under the stored procedure (including nested stored procedures) apply to any form of the CALL statement
as follows:

• Stored procedure package: One of the authorization IDs or roles that are defined in Set of authorization
IDs must have at least one of the following privileges or authorities on the stored procedure package:

– The EXECUTE privilege
– Ownership of the package
– PACKADM authority for the package's collection
– SYSADM authority

A PKLIST entry is not required for the stored procedure package.
• User-defined function packages and trigger packages: If a stored procedure or any application under

the stored procedure invokes a user-defined function, Db2 requires only the owner (the definer), and
not the invoker of the user-defined function, to have EXECUTE authority on the user-defined function
package. However, the authorization ID or role of the SQL statement that invokes the user-defined
function must have EXECUTE authority on the function.

Similarly, if a trigger is used under a stored procedure, Db2 does not require EXECUTE authority on the
trigger package; however, the authorization ID or role of the SQL statement that activates the trigger
must have EXECUTE authority on the trigger.

PKLIST entries are not required for any user-defined function packages or trigger packages that are
used under the stored procedure.

• Packages other than user-defined function, trigger, and stored procedure packages: One of the
authorization IDs or roles that is defined below under Set of authorization IDs must have at least one
of the following privileges or authorities on any packages other than user-defined function and trigger
packages that are used under the stored procedure:

– The EXECUTE privilege

Chapter 7. Statements 1385

– Ownership of the package
– PACKADM authority for the package's collection
– SYSADM authority

PKLIST entries are required for any of these packages that are used under the stored procedure.

For improved performance and simplicity, consider granting the EXECUTE ON PACKAGE privilege for the
stored procedure package, and for any packages that run under the stored procedure, to the owner of the
stored procedure.

Set of authorization IDs: Db2 checks the following authorization IDs, in the order in which they are listed,
for the required authorization to execute the stored procedure package and any packages that run under
the stored procedure other than user-defined function and trigger packages as described previously.
Authorization checking ends after the first authorization ID that has EXECUTE ON PACKAGE privileges for
the target package is found.

• The owner (the definer) of the stored procedure.
• The owner of the plan that contains the CALL statement that invokes the stored procedure if either of

the following conditions is true:

– The calling application (a package or a DBRM that is bound directly to the plan) is local.
– The calling application is distributed, the Db2 subsystem is both the requester and the server, and the

PRIVATE_PROTOCOL subsystem parameter is not set to NO.
• The owner of the package that contains the CALL statement that invokes the stored procedure if the

calling application is distributed and either of the following conditions is true:

– The Db2 subsystem is the server but not the requester.
– The Db2 subsystem is both the server and the requester and the PRIVATE_PROTOCOL subsystem

parameter is set to NO.
– The calling application uses Recoverable Resources Management Services attachment facility

(RRSAF) and has no plan.
• The authorization ID as determined by the value of the DYNAMICRULES bind option for the plan or

package that contains the CALL statement if the CALL statement is in the form of CALL variable.

– If the calling application is bound with the DYNAMICRULES(RUN) option, Db2 checks either the
authorization ID of the process at run time and its secondary authorization IDs or the single
authorization ID that is determined by the other DYNAMICRULES bind option values.

– If the calling application is bound with a value other than DYNAMICRULES(RUN), Db2 checks only a
single authorization ID, even if that ID fails the EXECUTE ON PACKAGE authorization check.

– If the calling application is a package and is bound with DYNAMICRULES(BIND), Db2 checks the
authorization ID of the package owner. Db2 does not check the authorization ID of the plan owner.

Authorization to execute packages for remote statements in a stored procedure: Remotely executed
SQL statements in a stored procedure follow the same authorization rules as remotely executed SQL
statements in a stand-alone application. If a stored procedure connects to a remote Db2 server and
executes SQL statements at that server, the setting of the PRIVATE_PROTOCOL subsystem parameter
at the server determines the IDs to which the EXECUTE privilege for the package that includes the SQL
statements must be granted.

See “DRDA access with Db2 for z/OS only” on page 96 for more information.

1386 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Syntax for CALL

CALL procedure-name

variable

(
,

expression

NULL

TABLE transition-table-name

)

USING DESCRIPTOR descriptor-name

Description for CALL
procedure-name or variable

Identifies the procedure to call by the specified procedure-name or the procedure name contained in
the variable. The identified procedure must exist at the current server.

If procedure-name specifies any of the three special characters that are alphabetic extenders for
national languages, $#@, specify the procedure name with a variable.

If a variable is used:

• It must be a CHAR or VARCHAR variable with a length attribute that is not greater than 254.
• It must not be followed by an indicator variable.
• The value of the variable is a specification that depends on the server. Regardless of the server, the
specification must:

– Be left justified within the variable
– Not contain embedded blanks
– Be padded on the right with blanks if its length is less than that of the variable

In addition, the specification can:

– Contain upper and lowercase characters. Lowercase characters are not folded to uppercase.
– Use a delimited identifier for any part of a three-part procedure name.

If the server is Db2 for z/OS, the specification must be a procedure name as defined above.

When the CALL statement is executed, the procedure name or specification must identify a stored
procedure that exists at the server.

When the package that contains the CALL statement is bound, the stored procedure that is invoked
must be created if VALIDATE(BIND) is specified. Although the stored procedure does not need to be
created at bind time if VALIDATE(RUN) is specified, it must be created when the CALL statement is
executed.

expression, NULL, or TABLE transition-table-name
Identifies a list of values to be passed as arguments to the stored procedure. The nth value
corresponds to the nth parameter in the procedure. Each parameter that is defined using CREATE
PROCEDURE as OUT or INOUT must be specified as a variable.

The number of arguments that are specified must be the same as the number of parameters of a
procedure that is defined at the current server with the specified procedure name.

If USING DESCRIPTOR is specified, each variable described by the identified SQLDA is an argument,
or part of an expression that is an argument of the CALL statement. If host structures are not specified

Chapter 7. Statements 1387

in the CALL statement, the nth argument of the CALL statement corresponds to the nth parameter in
the stored procedure, and the number in each must be the same. Otherwise, each reference to a host
structure is replaced by a reference to each of the variables contained in that host structure, and the
resulting number of arguments must be the same as the number of parameters defined for the stored
procedure.

However, a character FOR BIT DATA argument cannot be passed as input for a parameter that is not
defined as character FOR BIT DATA. Likewise, a character argument that is not FOR BIT DATA cannot
be passed as input for a parameter that is defined as character FOR BIT DATA.

The attributes of the parameters are determined by the current server. In addition to attributes such
as data type and length, the description of each parameter indicates how the stored procedure uses it:

• IN means as an input value
• OUT means as an output value
• INOUT means both as an input and an output value

All parameters that are not variables are assumed to be input parameters (IN).

expression
The argument is the result of the specified expression, which is evaluated before the stored
procedure is invoked.

If expression is a single variable, the corresponding parameter of the procedure can be defined as
IN, INOUT, or OUT. Otherwise, the corresponding parameter of the procedure must be defined as
IN. An expression can contain any of the following items:

• Variable
• Constant
• Special register
• Session global variable
• Cast function with a variable or constant argument

A variable can identify a structure. Any variable or structure that is specified must be described
in the application program according to the rules for declaring host structures and variables. A
reference to a host structure is replaced by a reference to each of the variables contained in the
host structure.

If the result of the expression can be the null value, either the description of the procedure must
allow for null parameters or the corresponding parameter of the stored procedure must be defined
as OUT.

expression must not reference an associative array value as an argument to a function if the
procedure is remote.

The following additional rules apply depending on how the corresponding parameter was defined
in the CREATE PROCEDURE statement for the procedure:

• IN expression can contain references to multiple variables. In addition to the rules stated in
“Expressions” on page 245 for expression, expression cannot include a column name, a scalar
subselect, a file reference variable, an aggregate function, or a user-defined function that is
sourced on an aggregate function.

• INOUT or OUT expression can only be a single variable. expression cannot include a file
reference variable or an array element.

NULL
The parameter is a null value. The corresponding parameter of the procedure must be defined as
IN and the description of the procedure must allow for null parameters.

TABLE transition-table-name
The parameter is a transition table, and it is passed to the procedure as a table locator. You
can use the CALL statement with the TABLE clause only within the definition of the triggered

1388 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

action of a trigger. The name of a transition table must be specified in the CALL statement if
the corresponding parameter of the procedure was defined in the TABLE LIKE clause of the
CREATE PROCEDURE statement. For information about creating a trigger, see “CREATE TRIGGER
statement (basic trigger)” on page 1769 and Creating a trigger (Db2 Application programming and
SQL).

There is no effect on the transition table on the return from the procedure regardless of whether
the parameter was defined as IN, INOUT, or OUT, because transition tables are read-only.

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that contains a valid description of the variables that are to be passed as
parameters to the stored procedure. If the stored procedure has no parameters, an SQLDA is
ignored.

Before the CALL statement is processed, the user must set the following fields in the SQLDA:

• SQLN to indicate the number of SQLVAR occurrences provided in the SQLDA. This number must
not be less than SQLD. This field is not part of the REXX SQLDA and therefore does not need to
be set for REXX programs.

• SQLDABC to indicate the number of bytes of storage allocated for the SQLDA. This number must
be not be less than SQLN*44+16. This field is not part of the REXX SQLDA and therefore does
not need to be set for REXX programs.

• SQLD to indicate the number of variables used in the SQLDA when processing the statement.
This number must be the same as the number of parameters of the stored procedure.

• SQLVAR occurrences to indicate the attributes of the variables.

There are additional considerations for setting the fields of the SQLDA when a variable that is
passed as a parameter to the stored procedure has a LOB data type or is a LOB locator. For more
information, see Appendix G, “SQL descriptor area (SQLDA),” on page 2313.

The SQL CALL statement ignores distinct type information in the SQLDA. Only the base SQL type
information is used to process the input and output parameters described by the SQLDA.

In REXX, only variables USING DESCRIPTOR is supported. Since global variables are not
supported within the SQLDA, global variable are not supported in REXX.

See “Identifying an SQLDA in C or C++” on page 2329 for how to represent descriptor-name in C.

Notes for CALL
Parameter assignments: When the CALL statement is executed, the value of each of its arguments
is assigned with storage assignment rules to the corresponding IN or INOUT parameter of the stored
procedure. In cases where the arguments of the CALL statement are not an exact match to the data types
of the parameters of the stored procedure, each argument specified in the CALL statement is converted
to the data type of the corresponding parameter of the stored procedure at execution. The conversion
occurs according to the same rules as assignment to columns.

Control is passed to the stored procedure according to the calling conventions of the host language.

When execution of the stored procedure is complete, the value of each parameter of the stored procedure
defined as OUT or INOUT is assigned to the corresponding argument of the CALL statement. If an error is
returned by the procedure, OUT arguments are undefined, and INOUT arguments are unchanged.

A timestamp without time zone value must not be assigned to a timestamp with time zone target.

The following rules apply when the value of an array argument is assigned to the corresponding array
parameter:

• For a local procedure call: The argument and the parameter must be defined as the same array type.
• For a remote procedure call: The data type of the elements of the array argument must be the same as

the data type of the elements of the array parameter. In addition, for IN or OUT parameters, all of the
relevant conditions in one of the rows in the following table must be true. For INOUT parameters, all of

Chapter 7. Statements 1389

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createtrigger.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createtrigger.html

the relevant conditions in row 1 of the following table must be true, or all of the relevant conditions in
rows 2 and 3 must be true. A relevant condition is indicated with Y.

Relationship of argument to
associated parameter

Relationship
applies to IN
parameter

Relationship
applies to OUT
parameter

Relationship
applies to INOUT
parameter

The argument is an ordinary array,
the parameter is an ordinary array,
and the argument and parameter are
defined with the same data type for
the array indexes.

Y Y Y

The argument is an ordinary array,
the parameter is an associative array
type, the parameter is an IN or
INOUT parameter, and the data type
of the array indexes is INTEGER.
The associative array parameter is
assigned an associative array value
that is derived from the ordinary
array argument value. The values of
the array elements in the ordinary
array are assigned to the target
associative array parameter, in the
same order as their order in the
ordinary array argument. The index
values in the target associative array
parameter are assigned from 1 to
the cardinality of the ordinary array
argument value.

Y Y

The argument is an ordinary array
type, the parameter is an associative
array type, and the parameter is
an INOUT or OUT parameter. The
argument is assigned an ordinary
array value that is derived from the
associative array parameter value.
The values of the array elements
in the associative array value are
assigned to the target ordinary array,
in an order determined by Db2. The
index values in the target ordinary
array argument are assigned from 1
to the cardinality of the associative
array parameter value. The index
values from the associative array
parameter value are ignored.

Y Y

For details on the rules used to assign parameters, see “Assignment and comparison” on page 143.

Conversion can occur when precision, scale, length, encoding scheme, or CCSID differ between the
argument specified in the CALL statement and the data type of the corresponding parameter of the
stored procedure. Conversion might occur for a character string argument specified in the CALL statement
when the corresponding parameter of the stored procedure has a different encoding scheme or CCSID.
For example, an error occurs when the CALL statement passes an argument of mixed data that actually
contains DBCS characters as input for a parameter of the stored procedure that is defined as FOR SBCS
DATA. Likewise, an error occurs when the stored procedure returns mixed data that actually contains
DBCS characters for an argument of the CALL statement that is defined as FOR SBCS DATA.

1390 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Procedure signatures: A procedure is identified by its schema, a procedure name, and its number of
parameters. This is called a procedure signature, which must be unique within the database. Db2 for z/OS
does not support overloaded procedure names (procedures with the same schema and procedure name,
but with different numbers of parameters).

SQL path: A procedure can be invoked by referring to a qualified name (schema and procedure name),
followed by an optional list of arguments that are enclosed in parentheses. A procedure can also be
invoked without the schema name, which results in a choice of possible procedures in different schemas
that have the same procedure name and same number of parameters. In this case, the SQL path is
used to assist in procedure resolution. The SQL path is a list of schemas that is searched to identify
a procedure with the same name and number of parameters as the procedure in the CALL statement.
For CALL statements that explicitly specify a procedure name, the SQL path is specified by using the
platform-specific bind option. For CALL variable statements, the SQL path is the value of the CURRENT
PATH special register when the procedure is invoked.

Procedure resolution: Given a procedure invocation, the database manager must decide which of the
possible procedures that has the same name to call.

A procedure name is a qualified or unqualified name. Each part of the name must be composed of SBCS
characters:

• A fully qualified procedure name is a three-part name. The first part is an SQL identifier that contains
the location name that identifies the DBMS at which the procedure is stored. The second part is an SQL
identifier that contains the schema name of the stored procedure. The last part is an SQL identifier that
contains the name of the stored procedure. A period must separate each of the parts. Any or all of the
parts can be a delimited identifier.

• A two-part procedure name has one implicit qualifier. The implicit qualifier is the location name of the
current server. The two parts identify the schema name and the name of the stored procedure. A period
must separate the two parts.

• An unqualified procedure name is a one-part name with two implicit qualifiers. The first implicit qualifier
is the location name of the current server. The second implicit qualifier depends on the server. If the
server is Db2 for z/OS, the implicit qualifier is the schema name. Db2 uses the SQL path to determine
the value of the schema name.

– If the procedure name is specified as a string constant on the CALL statement (CALL procedure-
name), the SQL path is the value of the PATH bind option that is associated with the calling package
or plan.

– If a variable is specified for the procedure name on the CALL statement (CALL variable), the SQL path
is the value of the CURRENT PATH special register.

Db2 searches the schema names in the SQL path from left to right until a stored procedure with the
specified schema name is found in the Db2 catalog. When a matching schema.procedure-name is found,
the search stops only if the following conditions are true:

– The user is authorized to call the stored procedure.
– The number of parameters in the definition of the stored procedure matches the number of

parameters specified on the CALL statement.

If the list of schemas in the SQL path is exhausted before the procedure name is resolved, an error is
returned.

When the procedure is resolved depends on how the procedure name is specified. For a CALL statement
that specifies the procedure name using a variable, procedure resolution occurs at run time. For a CALL
statement that contains the name of the procedure as an identifier, procedure resolution occurs when the
CALL statement is bound.

Procedure resolution is done by the database manager using the following steps:

1. Find all procedures from the catalog where all of the following conditions are true:

• For invocations where the schema name is specified (qualified references), the schema name and
the procedure name match the invocation name.

Chapter 7. Statements 1391

For invocations where the schema name is not specified (unqualified references), the procedure
name matches the invocation name, and the procedure has a schema name that matches one of the
schemas in the SQL path.

• The number of defined parameters matches the number of arguments that are specified in the
invocation.

• The invoker has the EXECUTE privilege on the procedure.
2. Of the candidate procedures that remain from step 1, choose the procedure whose schema is first in

the SQL path. If no candidate procedures remain after step 1, an error is returned.
3. For CALL statements that use a variable to specify the procedure name, the CURRENT ROUTINE

VERSION special register can affect which version of the native SQL procedure is invoked. If the
CURRENT ROUTINE VERSION special register is set, check if there is a version of the procedure with
that version name. If not, choose the currently active version of the procedure.

For CALL statements that do not use a variable to specify the procedure name, choose the currently
active version of the procedure.

Version resolution: Normally, the currently active version of a native SQL procedure will be used on a
CALL statement. However, if the CALL statement is a recursive call inside the body of the same stored
procedure, and the original CALL statement uses a version that is different from the currently active
version, the active version will not be used. The version from the original CALL statement will be used
for any recursive CALL statements until the entire stored procedure finishes executing. This preserves
the semantics of the version that is used by the original CALL statement. This includes the case where
the recursive call is indirect. For example, assume that procedure SP1 call procedure SP2, which in turn
recursively calls SP1. The second invocation of procedure SP1 will use the version of the procedure that is
active at the time of the original CALL statement that invoked procedure SP1.

Since the currently active version can be used at the next CALL statement, it is possible that two or more
versions of the same procedure can run at the same time. There could be different versions of an SQL
procedure loaded by a given thread. For example, a CALL SP1 statement in an application will cause the
currently active version, SP1_V1, to load and execute. After this CALL statement has completed, an ALTER
PROCEDURE ALTER ACTIVE VERSION could execute and change the active version of the procedure SP1
to version SP1_V2. Subsequent CALL SP1 statements from the same thread will load the currently active
version of the procedure, SP1_V2, and execute it.

Parameter assignments: When the CALL statement is executed, the value of each of its parameters
is assigned with storage assignment rules to the corresponding parameter of the procedure. Control is
passed to the procedure according to the calling conventions of the host language. When execution of the
procedure is complete, the value of each parameter of the procedure is assigned with storage assignment
rules to the corresponding parameter of the CALL statement defined as OUT or INOUT. If an error is
returned by the procedure, OUT arguments are undefined and INOUT arguments are unchanged. For
details on the assignment rules, see “Assignment and comparison” on page 143.

Cursors and prepared statements in procedures: All cursors opened in the called procedure that are not
result set cursors are closed and all statements prepared in the called procedure are destroyed when the
procedure ends.

Result sets from procedures: Any cursors specified using the WITH RETURN clause that the procedure
leaves open when it returns identifies a result set. In a procedure written in Java, all cursors are implicitly
defined WITH RETURN.

Results sets are returned only when the procedure is called from CLI, JDBC, or SQLJ. If the procedure was
invoked from CLI or Java, and more than one cursor is left open, the result sets can only be processed in
the order in which the cursors were opened. Only unread rows are available to be fetched. For example,
if the result set of a cursor has 500 rows, and 150 of those rows have been read by the procedure at the
time the procedure is terminated, then rows 151–500 will be returned to the procedure.

Errors from procedures: A procedure can return errors or warnings using an SQLSTATE like other SQL
statements. Applications should be aware of the possible SQLSTATEs that can be expected when a
procedure is invoked. The possible SQLSTATEs depend on how the procedure is coded. Procedures might
also return SQLSTATEs such as those that begin with '38' or '39' if Db2 encounters problems executing

1392 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

the procedure. Applications should therefore be prepared to handle any error SQLSTATE that can result
from issuing a CALL statement.

Improving performance: The capability of calling stored procedures is provided to improve the
performance of DRDA distributed access. The capability is also useful for local operations. The server
can be the local Db2. In which case, packages are still required.

All values of all parameters are passed from the requester to the server. To improve the performance of
this operation, variables that correspond to OUT parameters and have lengths of more than a few bytes
should be set to null before the CALL statement is executed.

Using the CALL statement in a trigger: When a trigger issues a CALL statement to invoke a stored
procedure, the parameters that are specified in the CALL statement cannot be variables and the USING
DESCRIPTOR clause cannot be specified.

Nesting CALL statements: A program that is executing as a stored procedure, a user-defined function, or
a trigger can issue a CALL statement. When a stored procedure, user-defined function, or trigger calls a
stored procedure, user-defined function, or trigger, the call is considered to be nested. Stored procedures,
user-defined functions, and triggers can be nested up to 64 levels deep on a single system. Nesting can
occur within a single Db2 subsystem or when a stored procedure or user-defined function is invoked at a
remote server.

If a stored procedure returns any query result sets, the result sets are returned to the caller of the stored
procedure. If the SQL CALL statement is nested, the result sets are visible only to the program that is at
the previous nesting level. For example, Figure 31 on page 1393 illustrates a scenario in which a client
program calls stored procedure PROCA, which in turn calls stored procedure PROCB. Only PROCA can
access any result sets that PROCB returns; the client program has no access to the query result sets. The
number of query result sets that PROCB returns does not count toward the maximum number of query
results that PROCA can return.
Client program:
 EXEC SQL
 CALL PROCA;

PROCA:
 EXEC SQL
 CALL PROCB;

PROCB:
 EXEC SQL
 OPEN C1;

Figure 31. Nested CALL statements

Some stored procedures cannot be nested. A stored procedure, user-defined function, or trigger cannot
call a stored procedure that is defined with the COMMIT ON RETURN attribute. Procedures that
are defined with the AUTONOMOUS attribute cannot call other procedures that are defined with the
AUTONOMOUS attribute.

Multiple calls to the same stored procedure: You can call a stored procedure multiple times within an
application and at the same nesting level. Each call to the same stored procedure causes a unique
instance of the stored procedure to run. If the stored procedure returns result sets, each instance of the
stored procedure opens its own set of result set cursors.

The application might receive a "resource unavailable message" if the CALL statement causes the values
of the maximum number of active stored procedures or maximum number open cursors to be exceeded.
The value of field MAX STORED PROCEDURES (on installation panel DSNTIPX) defines the maximum
number of active stored procedures that are allowed per thread. The value of field MAX OPEN CURSORS
(on installation panel DSNTIPX) defines the maximum number of open cursors (both result set cursors
and regular cursors) that are allowed per thread.

If you make multiple calls to the same stored procedure within an application, be aware of the following
considerations:

• A DESCRIBE PROCEDURE statement describes the last instance of the stored procedure.
• The ASSOCIATE LOCATORS statement works on the last instance of the stored procedure.

Chapter 7. Statements 1393

• The ALLOCATE CURSOR statement must specify a unique cursor name for a result set returned from an
instance of the stored procedure. Otherwise, you will lose the data from the result sets that are returned
from prior instances or calls to the stored procedure.

You should issue an ASSOCIATE LOCATORS statement (or DESCRIBE PROCEDURE statement) after each
call to the stored procedure to get a unique locator value for each result set.

Using variables: If the CALL statement contains variables, the contents of the variables are assumed to
be in the encoding scheme that was specified in the ENCODING parameter when the package or plan that
contains the statement was bound.

Examples for CALL

Example 1: A PL/I application has been precompiled on Db2 ALPHA and a package was created at Db2
BETA with the BIND subcommand. A CREATE PROCEDURE statement was issued at BETA to define the
procedure SUMARIZE, which allows nulls and has two parameters. The first parameter is defined as IN
and the second parameter is defined as OUT. Some of the statements that the application that runs at
Db2 ALPHA might use to call stored procedure SUMARIZE include:

EXEC SQL CONNECT TO BETA;
V1 = 528671;
IV = -1;
EXEC SQL CALL SUMARIZE(:V1,:V2 INDICATOR :IV);

Example 2: Suppose that stored procedure MYPROC exists and produces several result sets. An
application might include statements like the following to access the result sets produced by MYPROC:

-- Invoke stored procedure MYPROC that returns several result sets
EXEC SQL CALL MYPROC (....);
-- Copy the locator values for the result sets into result set locator variables
EXEC SQL ASSOCIATE RESULT SET LOCATORS (:RS1, :RS2, :RS3) WITH PROCEDURE MYPROC;
-- Allocate cursors for the result set cursors
EXEC SQL ALLOCATE CSR1 CURSOR FOR RESULT SET :RS1;
EXEC SQL ALLOCATE CSR2 CURSOR FOR RESULT SET :RS2;
EXEC SQL ALLOCATE CSR3 CURSOR FOR RESULT SET :RS3;
-- Process data returned with the result set cursors
DO WHILE (SQLCODE = 0);
EXEC SQL FETCH CSR1 INTO
END;
EXEC SQL CLOSE CSR1;
-- do similar processing with other result sets
...

Example 3: Suppose that procedure FIND_CUSTOMERS has the following parameters:

• An IN parameter that is an array of phone numbers
• An IN parameter that is a prefix value to search for a match
• An OUT parameter that returns an array of phone numbers

FIND_CUSTOMERS searches the input array variable for phone numbers that match the prefix value, and
returns an array that contains the phone numbers that match the prefix value.

The input and output array variables are defined as follows:

CREATE TYPE PHONENUMBERS AS VARCHAR(20) CCSID UNICODE ARRAY[10];
 -- Create an array type
CREATE VARIABLE PNUMBER_ARRAY PHONENUMBERS; -- Create input array variable
CREATE VARIABLE PNUMBER_ARRAY_OUT PHONENUMBERS;
 -- Create output array variable

FIND_CUSTOMERS looks like this:

-- Create an SQL procedure with array parameters. The array parameters are
-- defined with the PHONENUMBERS array type. The procedure searches for

1394 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

-- numbers in IN_PHONENUMBERS that begin with the given prefix, and returns
-- the phone numbers in the NUMBERS_OUT parameter.

CREATE PROCEDURE FIND_CUSTOMERS(
 IN NUMBERS_IN PHONENUMBERS,
 IN PREFIX CHAR(3),
 OUT NUMBERS_OUT PHONENUMBERS)
BEGIN
 DECLARE I, J INTEGER;

 SET I = 1;
 SET J = 1;

-- Initialize NUMBERS_OUT to an empty array using an array constructor
-- with no elements
 SET NUMBERS_OUT = ARRAY[];
 WHILE i < CARDINALITY(NUMBERS_IN) DO
 IF SUBSTR(NUMBERS_IN[I], 1, 3) = PREFIX THEN
 SET NUMBERS_OUT[J] = NUMBERS_IN[I];
 SET J = J + 1;
 END IF;
 SET I = I + 1;
 END WHILE;
END %

In the client program, initialize the input array with values from an array constructor, and then invoke the
procedure:

SET PNUMBER_ARRAY = ARRAY['416-305-3745',
 '905-414-4565',
 '416-305-3746'];
CALL FIND_CUSTOMERS(PNUMBER_ARRAY, -- NUMBERS_IN parameter (IN parm)
 ‘416’, -- PREFIX parameter (IN parm)
 PNUMBER_ARRAY_OUT); -- NUMBERS_OUT parameter (OUT parm)

The CALL statement returns an array value with the following information in the argument corresponding
to the NUMBERS_OUT parameter, which sets the PNUMBER_ARRAY_OUT variable:

[‘416-305-3745’,
 ‘416-305-3746’]

CLOSE statement
The CLOSE statement closes a cursor. If a temporary copy of a result table was created when the cursor
was opened, that table is destroyed.

Invocation for CLOSE
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared. It must not be specified in Java.

Authorization for CLOSE
See “DECLARE CURSOR statement” on page 1819 for the authorization required to use a cursor.

Syntax for CLOSE

CLOSE cursor-name

Description for CLOSE
cursor-name

Identifies the cursor to be closed. The cursor name must identify a declared cursor as explained in
“DECLARE CURSOR statement” on page 1819. When the CLOSE statement is executed, the cursor
must be in the open state.

Chapter 7. Statements 1395

Notes for CLOSE
Implicit cursor close: At the end of a unit of work, all open cursors declared without the WITH HOLD
option that belong to an application process are implicitly closed.

Close cursors for performance: Explicitly closing cursors as soon as possible can improve performance.

Procedure considerations: Special rules apply to cursors within procedures that have not been closed
before returning to the calling program. For more information, see “CALL statement” on page 1384.

Allocated cursors: The cursor could have been allocated. See “ALLOCATE CURSOR statement” on page
1093.

Example for CLOSE

A cursor is used to fetch one row at a time into the application program variables DNUM, DNAME, and
MNUM. Finally, the cursor is closed. If the cursor is reopened, it is again located at the beginning of the
rows to be fetched.

 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT DEPTNO, DEPTNAME, MGRNO
 FROM DSN8C10.DEPT
 WHERE ADMRDEPT = 'A00'
 END-EXEC.

 EXEC SQL OPEN C1 END-EXEC.

 EXEC SQL FETCH C1 INTO :DNUM, :DNAME, :MNUM END-EXEC.

 IF SQLCODE = 100
 PERFORM DATA-NOT-FOUND
 ELSE
 PERFORM GET-REST-OF-DEPT
 UNTIL SQLCODE IS NOT EQUAL TO ZERO.

 EXEC SQL CLOSE C1 END-EXEC.

 GET-REST-OF-DEPT.
 EXEC SQL FETCH C1 INTO :DNUM, :DNAME, :MNUM END-EXEC.

COMMENT statement
The COMMENT statement adds or replaces comments in the descriptions of various objects in the Db2
catalog at the current server.

Invocation for COMMENT
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for COMMENT
For a comment on the following objects, the privilege set must include at least one of the listed authorities
or privileges:

Table, view, index, column, or alias for a table or view:

• Ownership of the table, view, alias, or index
• DBADM authority for its database (tables and indexes only)
• SYSADM or SYSCTRL authority
• System DBADM
• SECADM authority (if the table has an activated row permission or column access control)

1396 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

User-defined type, global variable, stored procedure, trigger, or user-defined function:

• Ownership of the object
• The ALTERIN privilege on the schema (for the addition of comments)
• SYSADM or SYSCTRL authority
• System DBADM

Secure trigger or secure user-defined function:

• SECADM authority
• CREATE_SECURE_OBJECT privilege

Package:

• Ownership of the package
• The BINDAGENT privilege granted from the package owner
• PACKADM authority for the collection or for all collections
• SYSADM or SYSCTRL authority
• System DBADM

Role or a trusted context:

• Ownership of the object
• SYSADM or SYSCTRL authority
• SECADM

If the installation parameter SEPARATE SECURITY is NO, SYSADM authority has implicit SECADM and
SYSCTRL authority and can drop a role or trusted context.

Sequence or alias for a sequence:

• Ownership of the sequence
• The ALTER privilege for the sequence if the target is a sequence
• The ALTERIN privilege on the schema
• SYSADM or SYSCTRL authority
• System DBADM

The authorization ID that matches the schema name implicitly has the ALTERIN privilege on the
schema.

Row permission or column mask:
SECADM authority

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the statement is dynamically prepared, the
privilege set is determined by the DYNAMICRULES behavior in effect (run, bind, define, or invoke)
and is summarized in “Dynamic preparation and execution” on page 1088. (For more information on
these behaviors, including a list of the DYNAMICRULES bind option values that determine them, see
“Authorization IDs and dynamic SQL” on page 94.)

Chapter 7. Statements 1397

Syntax for COMMENT

COMMENT ON

alias-designator

COLUMN table-name

view-name

. column-name

function-designator
ACTIVE VERSION

VERSION routine-version-id

INDEX index-name

PACKAGE collection-id . package-name
VERSION

version-id

PLAN plan-name

PROCEDURE procedure-name
ACTIVE VERSION

VERSION routine-version-id

ROLE role-name

SEQUENCE sequence-name

TABLE table-name

view-name

TRIGGER trigger-name
ACTIVE VERSION

VERSION trigger-version-id

TRUSTED CONTEXT context-name

TYPE type-name

MASK mask-name

PERMISSION permission-name

VARIABLE variable-name

IS string-constant

multiple-column-list

alias-designator

PUBLIC
1

ALIAS alias-name
FOR TABLE

FOR SEQUENCE

Notes:
1 If PUBLIC is specified, FOR SEQUENCE must also be specified.

multiple-column-list

1398 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

table-name

view-name

(

,

column-name IS string-constant)

function-designator

FUNCTION function-name

(

,

parameter-type

)

SPECIFIC FUNCTION specific-name

parameter-type

data-type

AS LOCATOR
1

Notes:
1 AS LOCATOR can be specified only for a LOB data type or a distinct type that is based on a LOB data type.

data-type

built-in-type

distinct-type-name

array-type-name

built-in-type

Chapter 7. Statements 1399

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

BIT

DATA

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID ASCII

EBCDIC

UNICODE

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

ROWID

1400 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Description for COMMENT
alias-designator

ALIAS alias-name
Indicates a comment will be added or replaced for an alias. The name must identify an alias that
exists at the current server.

If the PUBLIC keyword is specified, alias-name must identify a public alias that exists at the
current server. The comment is applied to a public alias.

FOR TABLE
Specifies that the alias is for a table or a view. The comment replaces the value of the REMARKS
column of the SYSIBM.SYSTABLES catalog table for the row that describes the alias.

FOR SEQUENCE
Specifies that the alias is for a sequence. The comment replaces the value of the REMARKS
column of the SYSIBM.SYSSEQUENCES catalog table for the row that describes the alias.

COLUMN table-name.column-name or view-name.column-name
Identifies the column to which the comment applies. The name must identify a column of a table or
view that exists at the current server. The name must not identify a column of a declared temporary
table. The comment is placed into the REMARKS column of the SYSIBM.SYSCOLUMNS catalog table,
for the row that describes the column.

Do not use TABLE or COLUMN to comment on more than one column in a table or view. Give the
table or view name and then, in parentheses, a list in the form:

 column-name IS string-constant,
 column-name IS string-constant,…

The column names must not be qualified, each name must identify a column of the specified table or
view, and that table or view must exist at the current server.

FUNCTION or SPECIFIC FUNCTION
Identifies the function to which the comment applies. The function must exist at the current server,
and it must be a function that was defined with the CREATE FUNCTION statement or a cast function
that was generated by a CREATE TYPE statement. The comment is placed in the REMARKS column of
the SYSIBM.SYSROUTINES catalog table for the row that describes the function.

The function can be identified by its name, function signature, or specific name. If the function was
defined with a table parameter (the LIKE TABLE was specified in the CREATE FUNCTION statement to
indicate that one of the input parameters is a transition table), you must identify the function with its
function name, if it is unique, or with its specific name.

FUNCTION function-name
Identifies the function by its function name. There must be exactly one function with function-
name in the schema. The function can have any number of input parameters. If the schema does
not contain a function with function-name, or if the schema contains more than one function with
this name, and error is returned.

FUNCTION function-name (parameter-type,...)
Identifies the SQL function by its function signature, which uniquely identifies the function. A
function with the function signature must exist in the explicitly or implicitly specified schema.

If function-name() is specified, the function that is identified must have zero parameters.

function-name
Identifies the name of the function. If the function was defined with a table parameter (the
LIKE TABLE name AS LOCATOR clause was specified in the CREATE FUNCTION statement to
indicate that one of the input parameters is a transition table), the function signature cannot
be used to uniquely identify the function. Instead, use one of the other syntax variations to
identify the function with its function name, if unique, or with its specific name.

Chapter 7. Statements 1401

(parameter-type,...)
Specifies the number of input parameters of the function and the name and data type of each
parameter.

(data-type,...)
Identifies the number of input parameters of the function and the data type of each parameter.
The data type of each parameter must match the data type that was specified in the CREATE
FUNCTION statement for the parameter in the corresponding position. The number of data
types and the logical concatenation of the data types are used to uniquely identify the
function.

For data types that have a length, precision, or scale attribute, you can use a set of empty
parentheses, specify a value, or accept the default values:

• Empty parentheses indicate that Db2 is to ignore the attribute when determining whether
the data types match.

For example, DEC() will be considered a match for a parameter of a function defined with a
data type of DEC(7,2). Similarly DECFLOAT() will be considered a match for DECFLOAT(16) or
DECFLOAT(34).

FLOAT cannot be specified with empty parentheses because its parameter value indicates
different data types (REAL or DOUBLE).

• If you use a specific value for a length, precision, or scale attribute, the value must exactly
match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

The specific value for FLOAT(n) does not have to exactly match the defined value of the
source function because 1<=n<= 21 indicates REAL and 22<=n<=53 indicates DOUBLE.
Matching is based on whether the data type is REAL or DOUBLE.

• If length, precision, or scale is not explicitly specified and empty parentheses are not
specified, the default length of the data type is implied. The implicit length must exactly
match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

For data types with a subtype or encoding scheme attribute, specifying the FOR subtype
DATA clause or the CCSID clause is optional. Omission of either clause indicates that Db2
is to ignore the attribute when determining whether the data types match. If you specify
either clause, it must match the value that was implicitly or explicitly specified in the CREATE
FUNCTION statement.

AS LOCATOR
Specifies that the function is defined to receive a locator for this parameter. If AS LOCATOR is
specified, the data type must be a LOB or a distinct type based on a LOB.

SPECIFIC FUNCTION specific-name
Identifies a particular user-defined function by its specific name. The name is implicitly or
explicitly qualified with a schema name. A function with the specific name must exist in the
schema. If the specific name is not qualified, it is implicitly qualified with a schema name as
described in the description for FUNCTION function-name.

ACTIVE VERSION
Specifies that the comment applies to the currently active version of the routine that is specified
by function-name.

ACTIVE VERSION is the default.

VERSION routine-version-id
Specifies that the comment applies only to the version of the routine that is identified by routine-
version-id. routine-version-id must identify a version of the specified routine that already exists at
the current server.

1402 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

INDEX index-name
Identifies the index to which the comment applies. index-name must identify an index that exists
at the current server. The comment is placed in the REMARKS column of the SYSIBM.SYSINDEXES
catalog table for the row that describes the index.

MASK mask-name
Identifies the column mask to which the comment applies. mask-name must identify a column
mask that exists at the current server. The comment is placed in the REMARKS column of the
SYSIBM.SYSCONTROLS catalog table for the row that describes the column mask.

PACKAGE collection-id.package-name
Identifies the package to which the comment applies. You must qualify the package name with a
collection ID. collection-id.package-name must identify a package that exists at the current server.
The name plus the implicitly or explicitly specified version-id must identify a package that exists at the
current server. Omission of the version-id is an implicit specification of the null version.

The name must not identify a trigger package or a package that is associated with an SQL routine.
Specify this clause to comment on a package that was created as the result of a BIND COPY command
used to deploy a version of a native SQL procedure.

VERSION version-id
version-id is the version identifier that was assigned to the package's DBRM when the DBRM was
created. If version-id is not specified, a null version is used as the version identifier.

Delimit the version identifier when it:

• Is generated by the VERSION(AUTO) precompiler option
• Begins with a digit
• Contains lowercase or mixed-case letters

For more on version identifiers, see the information on preparing an application program for
execution in Creating a package version (Db2 Application programming and SQL).

PERMISSION permission-name
Identifies the row permission to which the comment applies. permission-name must identify a row
permission that exists at the current server. The comment is placed in the REMARKS column of the
SYSIBM.SYSCONTROLS catalog table for the row that describes the row permission.

PLAN plan-name
Identifies the plan to which the comment applies. plan-name must identify a plan that exists at the
current server.

PROCEDURE procedure-name
Identifies the procedure to which the comment applies. procedure-name must identify a procedure
that exists at the current server.
ACTIVE VERSION

Specifies that the comment applies to the currently active version of the routine that is specified
by procedure-name.

ACTIVE VERSION is the default.

VERSION routine-version-id
Specifies that the comment applies only to the version of the routine that is identified by routine-
version-id. routine-version-id must identify a version of the specified routine that already exists at
the current server.

ROLE role-name
Identifies the role to which the comment applies. role-name must identify a role that exists at the
current server. The comment is placed in the REMARKS column of the SYSIBM.SYSROLES catalog
table for the row that describes the role.

SEQUENCE sequence-name
Identifies the sequence to which the comment applies.

Chapter 7. Statements 1403

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createpackageversion.html

sequence-name must identify a sequence that exists at the current server. sequence-name must
not be the name of an internal sequence object that is used by Db2. The comment is placed in
the REMARKS column of the SYSIBM.SYSSEQUENCES catalog table for the row that describes the
sequence.

TABLE table-name or view-name
Identifies the table or view to which the comment applies. table-name or view-name must identify a
table, auxiliary table, or view that exists at the current server. table-name must not identify a declared
temporary table. The comment is placed in the REMARKS column of the SYSIBM.SYSTABLES catalog
table for the row that describes the table or view.

TRIGGER trigger-name
Identifies the trigger to which the comment applies. trigger-name must identify a trigger that exists
at the current server. The comment is placed in the REMARKS column of the SYSIBM.SYSTRIGGERS
catalog table for the row that describes the trigger or version of the trigger.
ACTIVE VERSION

Specifies that the comment applies to the currently active version of the trigger that is specified by
trigger-name.

ACTIVE VERSION is the default.

ACTIVE VERSION must only be specified for an advanced trigger.

VERSION trigger-version-id
Specifies that the comment applies only to the version of the trigger that is identified by trigger-
version- id. trigger-version-id must identify a version of the specified trigger that already exists at
the current server.

VERSION must only be specified for an advanced trigger.

TRUSTED CONTEXT context-name
Identifies the trusted context to which the comment applies. context-name must identify a trusted
context that exists at the current server. The comment is placed in the REMARKS column of the
SYSIBM.SYSCONTEXT catalog table for the row that describes the trusted context.

TYPE type-name
Identifies the user-defined type to which the comment applies. type-name must identify a user-
defined type that exists at the current server. The comment is placed in the REMARKS column of the
SYSIBM.SYSDATATYPES catalog table for the row that describes the user-defined type.

VARIABLE variable-name
Identifies the global variable to which the comment applies. variable-name must identify a global
variable that exists at the current server. variable-name must not identify a built-in global variable.

IS string-constant
Introduces the comment that you want to make. string-constant can be any SQL character string
constant of up to 762 bytes.

multiple-column-list
To comment on more than one column in a table or view with a single COMMENT statement, specify
the table or view name, followed by a list in parentheses of the form:

(column-name IS string-constant,
 column-name IS string-constant,
 ...)

Each column name must not be qualified, and must identify a column of the specified table or view
that exists at the current server.

Notes for COMMENT
Alternative syntax and synonyms:

To provide compatibility with previous releases of Db2 or other products in the Db2 family, Db2
supports the following syntax alternatives:

1404 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• DATA TYPE or DISTINCT TYPE as a synonym for TYPE
• COMMENT ON ALIAS SYSPUBLIC.name can be specified as an alternative to COMMENT ON PUBLIC

ALIAS SYSPUBLIC.name

Examples for COMMENT

Example 1: Enter a comment on table DSN8C10.EMP.

 COMMENT ON TABLE DSN8C10.EMP
 IS 'REFLECTS 1ST QTR 81 REORG';

Example 2: Enter a comment on view DSN8C10.VDEPT.

 COMMENT ON TABLE DSN8C10.VDEPT
 IS 'VIEW OF TABLE DSN8C10.DEPT';

Example 3: Enter a comment on the DEPTNO column of table DSN8C10.DEPT.

 COMMENT ON COLUMN DSN8C10.DEPT.DEPTNO
 IS 'DEPARTMENT ID - UNIQUE';

Example 4: Enter comments on the two columns in table DSN8C10.DEPT.

 COMMENT ON DSN8C10.DEPT
 (MGRNO IS 'EMPLOYEE NUMBER OF DEPARTMENT MANAGER',
 ADMRDEPT IS 'DEPARTMENT NUMBER OF ADMINISTERING DEPARTMENT');

Example 5: Assume that you are SMITH and that you created the distinct type DOCUMENT in schema
SMITH. Enter comments on DOCUMENT.

 COMMENT ON TYPE DOCUMENT
 IS 'CONTAINS DATE, TABLE OF CONTENTS, BODY, INDEX, and GLOSSARY';

Example 6: Assume that you are SMITH and you know that ATOMIC_WEIGHT is the only function with that
name in schema CHEM. Enter comments on ATOMIC_WEIGHT.

 COMMENT ON FUNCTION CHEM.ATOMIC_WEIGHT
 IS 'TAKES ATOMIC NUMBER AND GIVES ATOMIC WEIGHT';

Example 7: Assume that you are SMITH and that you created the function CENTER in schema SMITH.
Enter comments on CENTER, using the signature to uniquely identify the function instance.

 COMMENT ON FUNCTION CENTER (INTEGER, FLOAT)
 IS 'USES THE CHEBYCHEV METHOD';

Example 8: Assume that you are SMITH and that you created another function named CENTER in schema
JOHNSON. You gave the function the specific name FOCUS97. Enter comments on CENTER, using the
specific name to identify the function instance.

 COMMENT ON SPECIFIC FUNCTION JOHNSON.FOCUS97
 IS 'USES THE SQUARING TECHNIQUE';

Example 9: Assume that you are SMITH and that procedure OSMOSIS is in schema BIOLOGY. Enter
comments on OSMOSIS. Your comments will apply to the currently active version of the procedure
OSMOSIS.

 COMMENT ON PROCEDURE BIOLOGY.OSMOSIS
 IS 'CALCULATIONS THAT MODEL OSMOSIS';

Chapter 7. Statements 1405

Example 11: Assume that you are SMITH and that trigger BONUS is in your schema. Enter comments on
BONUS.

 COMMENT ON TRIGGER BONUS
 IS 'LIMITS BONUSES TO 10% OF SALARY';

Example 12: Provide a comment for package MYPKG, which is in collection COLLIDA.

 COMMENT ON COLLIDA.MYPKG
 IS 'THIS IS MY PACKAGE';

Example 14: Provide a comment on role ROLE1:

 COMMENT ON ROLE ROLE1
 IS 'Role defined for trusted context, ctx1';

Example 15: Provide a comment on trusted context CTX1:

 COMMENT ON TRUSTED CONTEXT CTX1
 IS 'WEBSPHERE SERVER';

Example 15: Provide a comment on column mask M1:

 COMMENT ON MASK M1
 IS 'Column mask for column EMP.SALARY';

COMMIT statement
The COMMIT statement ends the unit of recovery in which it is executed and a new unit of recovery is
started for the process. The statement commits all changes made by SQL schema statements and SQL
data change statements during the unit of work.

Invocation for COMMIT
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared. It cannot be used in the IMS or CICS environment.

Authorization for COMMIT
None required.

Syntax for COMMIT

COMMIT
WORK

Description for COMMIT
The COMMIT statement ends the unit of recovery in which it is executed and a new unit of recovery is
started for the process. The statement commits all changes made by SQL schema statements and SQL
data change statements during the unit of work. For more information see Chapter 7, “Statements,” on
page 1079.

Notes for COMMIT
Recommended coding practices: Code an explicit COMMIT or ROLLBACK statement at the end of an
application process. Either an implicit commit or rollback operation will be performed at the end of
an application process depending on the application environment. Thus, a portable application should

1406 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

explicitly execute a COMMIT or ROLLBACK statement before execution ends in those environments where
explicit COMMIT or ROLLBACK is permitted.

Effect of COMMIT: All savepoints that are set within the unit of recovery are released, and all changes are
committed for the following statements that are executed during the unit of recovery:

• ALTER
• COMMENT
• CREATE
• DELETE
• DROP
• EXPLAIN
• GRANT
• INSERT
• LABEL
• MERGE
• RENAME
• REVOKE
• UPDATE
• SELECT INTO with an SQL data change statement
• subselect with an SQL data change statement

SQL connections are ended when any of the following conditions apply:

• The connection is in the release pending status
• The connection is not in the release pending status but it is a remote connection and:

– The DISCONNECT(AUTOMATIC) bind option is in effect, or
– The DISCONNECT(CONDITIONAL) bind option is in effect and an open WITH HOLD cursor is not

associated with the connection.

For existing connections, all LOB locators are disassociated, except for those locators for which a HOLD
LOCATOR statement has been issued without a corresponding FREE LOCATOR statement. All open cursors
that were declared without the WITH HOLD option are closed. All open cursors that were declared with
the WITH HOLD option are preserved, along with any SELECT statements that were prepared for those
cursors.

Static and dynamic INSERT, UPDATE, DELETE, and MERGE statements that reference declared global
temporary tables that were defined without ON COMMIT DROP TABLE and are bound with or use the
RELEASE(DEALLOCATE) option are kept past commit points. The statement is not kept across the commit
point if one of the following conditions is true:

• The declared global temporary table is defined with the ON COMMIT DROP TABLE option.
• The statement uses the RELEASE(COMMIT) bind option.
• The statement also references a Db2 base object (for example, a table or view), and one of the following

statements is true:

– The base object reference is for a Db2 catalog table.
– At the commit point, Db2 determines that another Db2 thread is waiting for an X-lock on the base

object's database descriptor (DBD).
– The statement references an XML function or operation, and at the commit point Db2 determines that

the base object DBD S-lock for the XML operation must be released.
– At the commit point, Db2 determines that a base object DBD S-lock that is used by the statement

must be released and cannot be maintained across the commit point.

Chapter 7. Statements 1407

• Db2 determines that another Db2 thread is waiting for an X-lock on the Db2 package that contains the
statement.

Prepared dynamic statements are kept past commit points if one of the following conditions is true:

• Dynamic caching is enabled for your system. In that case, all prepared SELECT and data change
statements that are bound with KEEPDYNAMIC(YES) are kept past the commit point.

• The statements reference a declared global temporary table that was defined without ON COMMIT
DROP TABLE, and the package was bound with or uses the RELEASE(DEALLOCATE) option. In that
case, all prepared INSERT, UPDATE, DELETE, and MERGE statements that reference the declared global
temporary table are kept across the commit point.

Prepared statements cannot be kept past a commit if any of the following conditions is true:

• SQL RELEASE has been issued for that site.
• Bind option DISCONNECT(AUTOMATIC) was used.
• Bind option DISCONNECT(CONDITIONAL) was used and there are no open WITH HOLD cursors for that

site.
• The statement references a declared global temporary table, has no open WITH HOLD cursor, and is in a

package that is bound with the RELEASE(COMMIT) option.
• The statement references a declared global temporary table that was defined with the ON COMMIT

DROP TABLE option. The statement also has no open WITH HOLD cursor, and the statement’s package
is bound with or uses the RELEASE(DEALLOCATE) option.

All implicitly acquired locks are released, except for the following locks:

• Locks that are required for the cursors that were not closed
• Table and table space locks when the RELEASE parameter on the bind command was not

RELEASE(COMMIT)
• LOB locks and LOB table space locks that are required for held LOB locators

For an explanation of the duration of explicitly acquired locks, see The duration of a lock (Db2
Performance).

All rows of every created temporary table of the application process are deleted with the exception that
the rows of a created temporary table are not deleted if any program in the application process has an
open WITH HOLD cursor that is dependent on that table. In addition, if RELEASE(COMMIT) is in effect, the
logical work files for the created temporary tables whose rows are deleted are also deleted.

All rows of every declared temporary table of the application process are deleted with these exceptions:

• The rows of a declared temporary table that is defined with the ON COMMIT PRESERVE ROWS attribute
are not deleted.

• The rows of a declared temporary table that is defined with the ON COMMIT DELETE ROWS attribute are
not deleted if any program in the application process has an open WITH HOLD cursor that is dependent
on that table.

Implicit commit operations: In all Db2 environments, the normal termination of a process is an implicit
commit operation.

Restrictions on the use of COMMIT: The COMMIT statement cannot be used in the IMS or CICS
environment. To cause a commit operation in these environments, SQL programs must use the call
prescribed by their transaction manager. The effect of these commit operations on Db2 data is the same
as that of the SQL COMMIT statement.

The COMMIT statement cannot be used in a stored procedure if the procedure is in the calling chain of a
user-defined function or a trigger or Db2 is not the commit coordinator.

Effect of commit on special registers: Issuing a COMMIT statement may cause special registers to be
re-initialized. Whether one of these special registers is affected by a commit depends on whether the
special register has been explicitly set within the application process. For example, assume that the PATH
special register has not been explicitly set with a SET PATH statement in the application process. After a

1408 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_lockduration.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_lockduration.html

commit, the value of PATH is re-initialized. For information on the initialization of PATH, which can take
the current value of CURRENT SQLID into consideration, see “CURRENT PATH special register” on page
200.

Effect of commit on global variables: Global variables are not controlled at the transaction level. Issuing a
COMMIT statement does not effect the contents of a global variable.

Example for COMMIT

Commit all Db2 database changes made since the unit of recovery was started.

 COMMIT WORK;

CONNECT statement
The CONNECT statement connects an application process to a database server. This server becomes the
current server for the process. The CONNECT statement of Db2 for z/OS is equivalent to CONNECT (Type 2)

in SQL Reference for Cross-Platform Development - Version 6.

For more information about connections, the current server, commit processing, and distributed and
remote units of work, see Distributed relational databases (Introduction to Db2 for z/OS).

Invocation for CONNECT
This statement can only be embedded within an application program. It is an executable statement that
cannot be dynamically prepared. It must not be specified in Java.

Authorization for CONNECT
The primary authorization ID of the process or the authorization ID that is specified in this statement
must be authorized to connect to the specified server. The server checks the authorization when the
statement is executed, and determines the specific authorization that is required. For more information,
see Authorization IDs (Managing Security).

Syntax for CONNECT

CONNECT

TO location-name

host-variable authorization

RESET

authorization

authorization:

USER host-variable USING host-variable

Description for CONNECT
TO location-name or host-variable

Identifies the server by the specified location name or by the location name that is contained in the
host variable. If a host variable is specified:

Chapter 7. Statements 1409

https://www.ibm.com/docs/en/SSEPEK_12.0.0/pdf/cpsqlrv6.pdf
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_distributeddatasql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_authorizationid.html

• It must be a CHAR or VARCHAR variable with a length attribute that is not greater than 16. (A C
NUL-terminated character string can be up to 17 bytes long.)

• It must not be followed by an indicator variable.
• The location name must be left-aligned within the host variable and must conform to the rules for

forming an ordinary identifier.
• If the length of the location name is less than the length of the host variable, it must be padded on

the right with blanks.
• It must not contain lowercase characters.
• If used with an SQL procedure language application, host variable must be a qualified SQL-variable

name or a qualified SQL-parameter name.

When the CONNECT statement is executed:

• The location name must identify a server that is known to the local Db2 subsystem. Hence, the
location name must be the location name of the local Db2 subsystem or it must appear in the
LOCATION column of the SYSIBM.LOCATIONS table.

• The application process must not have an existing connection to the specified server, if the
SQLRULES(STD) bind option is in effect.

• The application process must be in a connectable state, if the transaction is participating in a remote
unit of work.

RESET
CONNECT RESET is equivalent to CONNECT TO x where x is the location name of the local Db2
subsystem.

• If the SQLRULES(DB2) bind option is in effect, CONNECT RESET establishes the local Db2
subsystem as the current SQL connection.

• If the SQLRULES(STD) bind option is in effect, CONNECT RESET establishes the local Db2
subsystem as the current SQL connection only if the connection does not exist.

authorization
Specifies an authorization ID and a password that is used to verify that the authorization ID is
authorized to connect to the server. Authorization cannot be specified when the connection type is
IMS or CICS for a connection to the local Db2 subsystem. An attempt to do so causes an SQL error.
USER host-variable

Identifies the authorization name to use for connecting to the server. The value of host-variable
must satisfy the following rules:

• The value must be a CHAR or VARCHAR variable with a length attribute that is not greater than
128.

• The value must be left-aligned within the host variable and must conform to the rules for
forming an authorization name.

• The value must not be followed by an indicator variable.
• The value must be padded on the right with blanks if the length of the authorization name is less

than the length of the host variable.

For a connection to the local Db2 subsystem, a user ID that is longer than 8 characters causes an
SQL error.

USING host-variable
Identifies the password of the authorization name to use for connecting to the server. The value of
host-variable must satisfy the following rules:

• The value must be a CHAR or VARCHAR variable with a length attribute that is not greater than
128.

• The value must be left-aligned.
• The value must not include an indicator variable.

1410 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• The value must be padded on the right with blanks if the length of the password is less than the
length of the host variable.

• The value must not contain lowercase characters.

For a connection to the local Db2 subsystem, a user ID that is longer than 100 characters causes
an SQL error.

For more information, see PASSWORD or PHRASE (Specify user password or password phrase)
(Security Server RACF Command Language Reference).

CONNECT USER/USING is equivalent to CONNECT TO x USER/USING where x is the location name of
the local Db2 subsystem (which has the semantic of CONNECT RESET).

CONNECT with no operand
This form of the CONNECT statement returns information about the current server in the SQLERRP
field of the SQLCA. SQLERRP returns blanks if the application process is in the unconnected state.

Executing a CONNECT with no operand has no effect on connection states.

In a remote unit of work, this form of CONNECT does not require the application process to be in a
connectable state.

Notes for CONNECT
Successful connections

Except for a CONNECT with no operand statement, if execution of the CONNECT statement is
successful the actions depend on the unit of work type:

Distributed units of work
One of the following scenarios takes place in a distributed unit of work:

• If the location name does not identify a server that the application process is already connected
to, an SQL connection to the server is created and placed in the current and held state. The
previously current SQL connection, if any, is placed in the dormant state.

• If the location name identifies a server that application process is already connected to, the
associated SQL connection is dormant, and the SQLRULES(DB2) option is in effect, the SQL
connection is placed in the current state. The previously current SQL connection, if any, is placed
in the dormant state.

• If the location name identifies a server that the application process is already connected to, the
associated SQL connection is current, and the SQLRULES(DB2) option is in effect, the states of
all SQL connections of the application process are unchanged.

Remote units of work
The following actions occur in a remote unit of work:

• The application process is connected to the specified server.
• An existing SQL connection of the application process is ended. As a result, all cursors of that

SQL connection are closed, all prepared statements of that connection are destroyed, and so on.

• The location name is placed in the CURRENT SERVER special register.
• When CONNECT is used to connect back to the local Db2 subsystem, the CURRENT SQLID special

register is reinitialized if the USER/USING clause is specified.
• Information about the server is placed in the SQLERRP field of the SQLCA. If the server is a Db2

product, the information has the form pppvvrrm.

The product identifier (PRDID) value is an 8-byte character value in pppvvrrm format, where: ppp is
a 3-letter product code; vv is the version;rr is the release; and m is the modification level. In Db2 12
for z/OS, the modification level indicates a range of function levels:

DSN12015 for V12R1M500 or higher.
DSN12010 for V12R1M100.

Chapter 7. Statements 1411

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.icha400/passwrd.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.icha400/passwrd.htm

For more information, see Product identifier (PRDID) values in Db2 for z/OS (Db2 Administration
Guide).

• Additional information about the connection is placed in the SQLERRMC field of the SQLCA. The
contents are product-specific.

Tip: Use the GET DIAGNOSTICS statement to get detailed diagnostic information about the last SQL
statement that was executed.

Unsuccessful connections

Except for a CONNECT with no operand statement, if execution of the CONNECT statement is
unsuccessful:

Distributed units of work
In a distributed unit of work, the connection state of the application process and the states of its
SQL connections are unchanged unless the failure was because an authorization check failed. If
this is the case, the connection is placed in the connectable and unconnected state.

Remote units of work
In a remote unit of work, the SQLERRP field of the SQLCA is set to the name of the Db2 requester
module that detected the error.

If execution of the CONNECT statement is unsuccessful because the application process is not in
the connectable state, the connection state of the application process is unchanged. If execution
of the CONNECT statement is unsuccessful for any other reason, CURRENT SERVER is set to
blanks and the application process is placed in the connectable and unconnected state.

Authorization

If the server is a Db2 subsystem, a user is authenticated in the following way:

• Db2 invokes RACF via the RACROUTE macro with REQUEST=VERIFY to verify the password.
• If the password is verified, Db2 then invokes RACF again via the RACROUTE macro with

REQUEST=AUTH, to check whether the authorization ID is allowed to use Db2 resources that are
defined to RACF.

• Db2 then invokes the connection exit routine if one is defined.
• The connection then has a primary authorization ID, possibly one or more secondary IDs, and an

SQL ID.

If the server is a remote Db2 subsystem, the requester generates authentication tokens and sends
them to the remote site in the following way:

• The SECURITY_OUT column in SYSIBM.LUNAMES for SNA or the SECURITY_OUT column in
SYSIBM.IPNAMES for TCP/IP must have one of the following values:

– 'A' (already verified)
– 'D' (user ID and security-sensitive data encryption; TCP/IP only)
– 'E' (user ID, password, and security-sensitive data encryption; TCP/IP only)
– 'P' (password)

When the value is 'A', the user ID and password that is specified on the CONNECT is still sent.

When the value is 'D', 'E', 'or 'P', the requester encrypts the user ID and password that is specified
on the CONNECT for TCP/IP. However, if the Integrated Cryptographic Service Facility (ICSF) is not
configured at the requester or if the server does not support encryption, one of the following actions
occurs:

– If the value of SECURITY_OUT in SYSIBM.IPNAMES is 'D' or 'E', SQLCODE -904 is returned if ICSF
is not configured at the requester, and SQLCODE -30082 is returned if the server does not support
encryption.

– If the value of SECURITY_OUT in SYSIBM.IPNAMES is 'P', the requester does not encrypt the user
ID and password and flows the tokens in clear text.

1412 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_prdidvalues.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_prdidvalues.html

• For SNA, the ENCRYPTPSWDS column in SYSIBM.SYSLUNAMES must be not contain 'Y'.
• The authorization ID and password are verified at the server.
• In all cases, outbound translation—as specified in SYSIBM.USERNAMES—is not done.

Distributed unit of work

In general, the following are true:

• A CONNECT statement with the TO clause and the USER/USING clause can be executed only if no
current or dormant connection to the named server exists. However, if the named server is the local
Db2 subsystem and the CONNECT statement is the first SQL statement that is executed after the
Db2 thread is created, the CONNECT statement executes successfully.

• A CONNECT statement without the TO clause but with the USER/USING clause can be executed only
if no current or dormant connection to the local Db2 subsystem exists. However, if the CONNECT
statement is the first SQL statement that is executed after the Db2 thread is created, the CONNECT
statement executes successfully.

Remote unit of work
If the authorization check fails, the connection is placed in the connectable and unconnected state.

Precompiler options

Regardless of whether a program is precompiled with the CONNECT(1) or CONNECT(2) option,
Db2 for z/OS negotiates with the remote server during the connection process to determine how
to perform commits. If the remote server does not support the two-phase commit protocol, Db2
downgrades to perform one-phase commits.

Programs containing CONNECT statements that are precompiled with different CONNECT precompiler
options cannot execute as part of the same application process. An error occurs when an attempt is
made to execute the invalid CONNECT statement.

Host variables

If a CONNECT statement contains host variables, the contents of the host variables are assumed to
be in the encoding scheme that was specified in the ENCODING parameter when the package or plan
that contains the statement was bound.

Error processing

A CONNECT statement can return and indicate a successful execution even when no physical
connection yet exists. Db2 delays the physical connection process, when possible, to economize on
the number of messages it sends to a server. Therefore, errors in CONNECT statement processing can
be reported following the next executable SQL statement, not immediately following the CONNECT
statement.

Restrictions on array types and array variables

In any SQL statement other than a CALL statement, array types and array variables must not be
referenced after a connection at a remote server is established. This restriction includes an SQL
statement that executes at a remote server as a result of a three-part name or alias that resolves
to an object at a remote server. An exception is that an array element can be the target of a FETCH,
SELECT INTO, SET assignment-statement, or VALUES INTO statement in an SQL routine even when the
statement is executed at a remote server.

Examples for CONNECT
Example 1: Connect an application to a DBMS

The location name is in the character-string variable LOCNAME, the authorization identifier is in the
character-string variable AUTHID, and the password is in the character-string variable PASSWORD.

 EXEC SQL CONNECT TO :LOCNAME USER :AUTHID USING :PASSWORD;

Chapter 7. Statements 1413

Example 2: Obtain information about the current server

 EXEC SQL CONNECT;

Example 3: Execute SQL statements in a distributed unit of work
The first CONNECT statement creates a connection to the EASTDB server. The second CONNECT
statement creates a connection to the WESTDB server, and places the SQL connection to EASTDB in
the dormant state.

 EXEC SQL CONNECT TO EASTDB;
 -- execute statements referencing objects at EASTDB
 EXEC SQL CONNECT TO WESTDB;
 -- execute statements referencing objects at WESTDB

Example 4: Connect the application to a DBMS whose location identifier is in the character-string
variable LOC using the authorization identifier in the character-string variable AUTHID and the
password in the character-string variable PASSWORD. Perform work for the user, and then release
the connection and connect again using a different user ID and password.

 EXEC SQL CONNECT TO :LOC USER :AUTHID USING :PASSWORD;
 -- execute SQL statements accessing data on the server
 RELEASE :LOC;
 EXEC SQL COMMIT;
 -- set AUTHID and PASSWORD to new values
 EXEC SQL CONNECT TO :LOC USER :AUTHID USING :PASSWORD;
 -- execute SQL statements accessing data on the server

Example 5: Change servers in a remote unit of work.
Assume that the application connected to a remote Db2 server, opened a cursor, and fetched rows
from the cursor's result table. Later, to connect to the local Db2 subsystem, the application executes
the following statements:

 EXEC SQL COMMIT WORK;
 EXEC SQL CONNECT RESET;

The COMMIT is required because opening the cursor caused the application to enter the
unconnectable and connected state. The unconnectable state means that the connection has started
a transaction and cannot connect to another server until the transaction completes. Issuing a
COMMIT statement ends the transaction. Issuing a CONNECT statement with the RESET option
reconnects the application to the local server and returns the application to the unconnectable and
connected state.

If the cursor was declared with the WITH HOLD clause and was not closed with a CLOSE statement, it
would still be open even after execution of the COMMIT statement. However, it would be closed with
the execution of the CONNECT statement.

Related concepts
Explicit CONNECT statements (Introduction to Db2 for z/OS)
Distributed relational databases (Introduction to Db2 for z/OS)
Related tasks
Accessing distributed data by using explicit CONNECT statements (Db2 Application programming and
SQL)
Reusing a local trusted connection through the SQL CONNECT statement (Managing Security)

1414 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_explicitconnectstatements.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_distributeddatasql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_accessconnectstmts.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_accessconnectstmts.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_reuselocaltrustedusql.html

CREATE ALIAS statement
The CREATE ALIAS statement defines an alias for a table, a view, or a sequence. The definition is recorded
in the Db2 catalog at the current server.

Invocation for CREATE ALIAS
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for CREATE ALIAS
To create an alias, the privilege set must include at least one of the listed authorities or privileges:

To create an alias for a table or a view:

• For a table or a view:

– The CREATEALIAS privilege
– SYSADM or SYSCTRL authority
– System DBADM authority
– Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

• For a table only:

– DBADM or DBCTRL authority on the database that contains the table, if the value of field DBADM
CREATE AUTH on installation panel DSNTIPP is YES

To create an alias for a sequence:

• The CREATEIN privilege on the schema
• SYSADM or SYSCTRL authority
• System DBADM authority
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the owner of the plan or package is a role, this role
must hold the privileges for the privilege set. If the specified alias name includes a qualifier that is not the
same as this authorization ID, the privilege set must include one of the following authorities:

• SYSADM or SYSCTRL authority
• System DBADM authority
• DBADM or DBCTRL authority on the database that contains the table, if the alias is for a table and the

value of field DBADM CREATE AUTH on installation panel DSNTIPP is YES

If ROLE AS OBJECT OWNER is in effect, the schema qualifier must be the same as the role, unless the
role has the CREATEIN privilege on the schema, SYSADM authority, SYSCTRL authority, or system DBADM
authority.

If ROLE AS OBJECT OWNER is not in effect, one of the following rules applies:

• If the privilege set lacks the CREATEIN privilege on the schema, SYSADM authority, SYSCTRL authority,
or system DBADM authority, the schema qualifier (implicit or explicit) must be the same as one of the
authorization ids of the process.

• If the privilege set includes SYSADM authority, SYSCTRL authority, or system DBADM authority, the
schema qualifier can be any valid schema name.

Chapter 7. Statements 1415

If the statement is dynamically prepared, the privilege set is the privileges that are held by the SQL
authorization ID of the process unless the process is within a trusted context and the ROLE AS OBJECT
OWNER clause is specified. If the process is not running in a trusted context that is defined with the ROLE
AS OBJECT OWNER clause and the specified alias name includes a qualifier that is not the same as this
authorization ID:

• The privilege set must include SYSADM, SYSCTRL, or system DBADM authority.
• The privilege set must include DBADM or DBCTRL authority on the database that contains the table, if

the alias is for a table and the value of field DBADM CREATE AUTH on installation panel DSNTIPP is YES.
• The qualifier must be the same as one of the authorization IDs of the process and the privileges that are

held by that authorization ID must include the CREATEALIAS privilege. This is an exception to the rule
that the privilege set is the privileges that are held by the SQL authorization ID of the process.

Syntax for CREATE ALIAS

CREATE

PUBLIC

ALIAS table-alias

sequence-alias

table-alias

alias-name FOR
TABLE

table-name

view-name

alias-name2
1

Notes:
1 If alias-name2 is specified, it must not resolve to the fully-qualified form of alias-name, and alias-name2
must not be an alias that exists at the current server.

sequence-alias
alias-name FOR SEQUENCE sequence-name

Description for CREATE ALIAS
PUBLIC

Specifies that the alias is an object in the system schema SYSPUBLIC.

The PUBLIC keyword is used to create a public alias. If the keyword PUBLIC is not specified, the alias
that is created is a private alias.

PUBLIC can be specified only for a sequence.

alias-name
Names the alias.

For a table alias, the name, including the implicit or explicit qualifier, must not identify a table, view, or
table alias that exists at the current server, or a table that exists in the SYSIBM.SYSPENDINGOBJECTS
catalog table.

For a sequence alias, the name, including the implicit or explicit qualifier, must not identify a sequence
or sequence alias that exists at the current server.

If a two-part name is specified, the schema name cannot begin with 'SYS', except if PUBLIC is
specified, in which case the schema name must be SYSPUBLIC. The unqualified name must not be the
same as an existing synonym.

1416 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If the name is qualified, the name can be a two-part or three-part name. If a three-part name is used,
the first part must match the value of the field Db2 LOCATION NAME on installation panel DSNTIPR at
the current server. (If the current server is not the local Db2, this name is not necessarily the name in
the CURRENT SERVER special register.)

When an application uses three-part name aliases for remote objects and DRDA access, the
application program must be bound at each location that is specified in the three-part names.

FOR TABLE table-name, view-name, or alias-name2
Identifies the table, view, or alias for which alias-name is defined. The table, view or alias need not
exist at the time the alias is defined. If it does not exist when the alias is created, a warning is
returned. However, the referenced object must exist when a SQL statement that contains the alias is
used, otherwise an error is returned. If the table or view does exist, the referenced object can be at
the current server or at another server.

If alias-name2 is specified it must be a three-part name. The first part of the three-part name must
be the location name for a remote server. If the alias exists, the alias must exist at the remote server
identified by the location name.

If a table is identified, it must not be an auxiliary table, a declared temporary table, or a table that is
implicitly created for an XML column.

If alias-name2 is specified, it must not resolve to the fully-qualified form of alias-name, and alias-
name2 must not be an alias that exists at the current server.

FOR SEQUENCE sequence-name
Identifies the sequence for which alias-name is defined. The sequence-name must not be a sequence
that is generated by the Db2 subsystem for an identity column or a DOCID column. The schema
name must not begin with 'SYS' unless the schema name is 'SYSADM'. sequence-name must not be an
existing alias for a sequence.

The sequence need not exist at the time the alias is defined. If sequence-name does not exist when
the alias is created, a warning is returned. However, the referenced object must exist when a SQL
statement that contains the alias is used, otherwise an error is returned.

Notes for CREATE ALIAS
Owner privileges:

There are no specific privileges on an alias. For more information about ownership of an object, see
“Authorization, privileges, permissions, masks, and object ownership” on page 90.

PUBLIC aliases:
If the PUBLIC keyword is specified or if SYSPUBLIC is explicitly specified as the schema qualifier for
alias-name, a public alias is created.

Resolving an unqualified name:
When an unqualified name is resolved, private aliases are considered before public aliases.

Examples for CREATE ALIAS

Example 1
Create an alias for a catalog table at a Db2 with location name DB2USCALABOA5281.

 CREATE ALIAS LATABLES FOR DB2USCALABOA5281.SYSIBM.SYSTABLES;

Example 2
Create a public alias called SEQS for a sequence named JOE.JOESSEQ.

 CREATE PUBLIC ALIAS SEQS FOR SEQUENCE JOE.JOESSEQ;

The alias can be referenced as SYSPUBLIC.SEQS, or simply as SEQS if a private sequence or alias
named SEQS does not exist.

Chapter 7. Statements 1417

Related concepts
Aliases
An alias is an alternative name for an object such as a table, view, sequence, or another alias. It can be
used to reference an object wherever that object can be referenced directly.
Naming conventions
The rules for forming a name depend on the type of the object designated by the name.
Aliases (Introduction to Db2 for z/OS)

CREATE AUXILIARY TABLE statement
The CREATE AUXILIARY TABLE statement creates an auxiliary table at the current server for storing LOB
data.

Invocation for CREATE AUXILIARY TABLE
This statement can be embedded in an application program or issued interactively if the value of special
register CURRENT RULES is 'DB2' and the table space is explicitly created when the statement is
executed. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is implicitly or explicitly specified.

Do not use this statement if Db2 implicitly creates the auxiliary table. For more information, see LOB table
space implicit creation (Db2 Administration Guide).

Authorization for CREATE AUXILIARY TABLE
The privilege set that is defined below must include at least one of the following:

• The CREATETAB privilege for the database implicitly or explicitly specified by the IN clause
• DBADM, DBCTRL, or DBMAINT authority for the database
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the application is bound in a trusted context with
the ROLE AS OBJECT OWNER clause specifies, a role is the owner. Otherwise, an authorization ID is the
owner. If the specified table name includes a qualifier that is not the same as this authorization ID, the
privilege set must include SYSADM or SYSCTRL authority, DBADM authority for the database, or DBCTRL
authority for the database.

If ROLE AS OBJECT OWNER is in effect, the schema qualifier must be the same as the role, unless the role
has the CREATEIN privilege on the schema, SYSADM authority, or SYSCTRL authority.

If ROLE AS OBJECT OWNER is not in effect, one of the following rules applies:

• If the privilege set lacks the CREATIN privilege on the schema, SYSADM authority, or SYSCTRL authority,
the schema qualifier (implicit or explicit) must be the same as one of the authorization ids of the
process.

• If the privilege set includes SYSADM authority or SYSCTRL authority, the schema qualifier can be any
valid schema name.

If the statement is dynamically prepared, the privilege set is the privileges that are held by the SQL
authorization ID of the process unless the process is within a trusted context and the ROLE AS OBJECT
OWNER clause is specified. In that case, the privilege set is the set of privileges that are held by the role
that is associated with the primary authorization ID of the process. If the process is in a trusted context,
any authorization ID can be the qualifier. However, if the process is not in a trusted context and if the
specified table name includes a qualifier that is not the same as the SQL authorization ID of the process,
the following rules apply:

1418 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_aliases.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicittablespacelob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicittablespacelob.html

• If the privilege set includes SYSADM or SYSCTRL authority (or DBADM authority for the database, or
DBCTRL authority for the database when creating a table), the schema qualifier can be any valid schema
name.

• If the privilege set lacks SYSADM or SYSCTRL authority (or DBADM authority for the database, or
DBCTRL authority for the database when creating a table), the schema qualifier is valid only if it is
the same as one of the authorization IDs of the process and the privilege set that are held by that
authorization ID includes all26 privileges needed to create the table.

Syntax for CREATE AUXILIARY TABLE

CREATE AUXILIARY

AUX

TABLE aux-table-name IN

database-name .

table-space-name STORES table-name
APPEND NO

APPEND YES

COLUMN

column-name

PART integer

Description for CREATE AUXILIARY TABLE
AUXILIARY or AUX

Specifies a table that is used to store the LOB data for a LOB column (or a column with a distinct type
that is based on a LOB data type).

aux-table-name
Names the auxiliary table. The name, including the implicit or explicit qualifiers, must not identify
a table, view, alias, or synonym that exists at the current server, or a table that exists in the
SYSIBM.SYSPENDINGOBJECTS catalog table.

IN database-name.table-space-name or IN table-space-name
Identifies the table space in which the auxiliary table is created. The name must identify an empty
LOB table space that currently exists at the current server. The LOB table space must be in the same
database as the associated base table.

If you specify a database and a table space, the table space must belong to the specified database. If
you specify only a table space, it must belong to the database that contains the specified table space.
If you specify only a table space, this table space must belong to DSNDB04. This type of table space is
only created when SET CURRENT RULES='DB2' is specified.

STORES table-name COLUMN column-name
Identifies the base table and the column of that table that is to be stored in the auxiliary table. If
the base table is nonpartitioned, an auxiliary table must not already exist for the specified column. If
the base table is partitioned, an auxiliary table must not already exist for the specified column and
specified partition.

The encoding scheme for the LOB data stored in the auxiliary table is the same as the encoding
scheme for the base table. It is either ASCII, EBCDIC, or UNICODE depending on the value of the
CCSID clause when the base table was created.

APPEND NO or APPEND YES
Specifies whether append processing is used for the table. The APPEND clause must not be specified
for a table in a work file table space.

26 Exception: The CREATETAB privilege is checked on the SQL authorization ID of the process.

Chapter 7. Statements 1419

If the base table is in a partition-by-range table space, the APPEND option on the LOB table might
be different for each partition (depending if the LOB table space and associated objects for each
partition are created explicitly or implicitly). If the base table is in a partition-by-growth table space,
the APPEND attributes of LOB table will be inherited by each partition.

APPEND NO
Specifies that append processing is not used for the table. For insert and LOAD operations, Db2
will attempt to place data rows in a well clustered manner with respect to the value in the row's
cluster key columns.

APPEND NO is the default

APPEND YES
Specifies that data rows are placed into the table without regard to clustering during the insert
and LOAD operations.

PART integer
Specifies the partition of the base table for which the auxiliary table is to store the specified column.
You can specify PART only if the base table is defined in a partitioned table space, and no other
auxiliary table exists for the same LOB column of the base table.

Notes for CREATE AUXILIARY TABLE
Owner privileges

There are no specific privileges on an auxiliary table. For more information about ownership of an
object, see “Authorization, privileges, permissions, masks, and object ownership” on page 90.

Determining the number of auxiliary tables to create

For partitioned tables, each partition of the base table requires a separate LOB table space, auxiliary
table, and auxiliary index for each LOB column.

Auxiliary tables in LOB table spaces that are logged
When you create an auxiliary table in a LOB table space that is LOGGED, and the associated base
table space is NOT LOGGED, the logging attribute of the LOB table space is implicitly changed to NOT
LOGGED and the logging attributes of the base table space and the LOB table space are linked.

Append processing and unused free space in a table
An update or delete of LOB data creates some free space in the LOB table that can be used by the next
insert. If the table uses append processing, any free space that is not at the end of the table space
will not be reused during the insert operation. Any unused free space in the table can be reclaimed
by running the REORG utility with either the SHRELEVL REFERENCE or SHRLEVEL CHANGE keywords.
The REORG utility is not influenced by the APPEND option.

Example for CREATE AUXILIARY TABLE

Assume that a column named EMP_PHOTO with a data type of BLOB(110K) has been added to sample
employee table DSN8C10.EMP for each employee's photo. Create auxiliary table EMP_PHOTO_ATAB to
store the BLOB data for the BLOB column in LOB table space DSN8D12A.PHOTOLTS.

 CREATE AUX TABLE EMP_PHOTO_ATAB
 IN DSN8D12A.PHOTOLTS
 STORES DSN8C10.EMP
 COLUMN EMP_PHOTO;

Related concepts
LOB table spaces (Db2 Administration Guide)
Naming conventions
The rules for forming a name depend on the type of the object designated by the name.
Related tasks
Creating large objects (Introduction to Db2 for z/OS)

1420 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_largeobjecttablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationoflargeobjects.html

Storing LOB data in Db2 tables (Db2 Application programming and SQL)
Related reference
CREATE LOB TABLESPACE
The CREATE LOB TABLESPACE statement defines a large object (LOB) table space at the current server.
If your data for a table does not fit entirely within a data page, you can define one or more columns as
LOB columns. Each LOB column must have an associated auxiliary table in a LOB table space. If the table
space for the base table is partitioned, an associated auxiliary table in a LOB table space is required for
each LOB column, for each partition of the table space for the base table.
CREATE TABLE statement
The CREATE TABLE statement defines a table. The definition must include its name and the names and
attributes of its columns. The definition can include other attributes of the table, such as its primary key
and its table space.

CREATE DATABASE statement
The CREATE DATABASE statement defines a Db2 database at the current server.

Invocation for CREATE DATABASE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for CREATE DATABASE
The privilege set that is defined below must include at least one of the following:

• The CREATEDBA privilege
• The CREATEDBC privilege
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

If the database is created as a workfile database, the privilege set that is defined below must include
SYSADM authority.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package.

If the statement is dynamically prepared, the privilege set is the privileges that are held by the SQL
authorization ID of the process unless the process is within a trusted context and the ROLE AS OBJECT
OWNER clause is specified. In that case, the privilege set is the set of privileges that are held by the role
that is associated with the primary authorization ID of the process.

See “Notes for CREATE DATABASE” on page 1423 for the authorization effect of a successful CREATE
DATABASE statement.

Chapter 7. Statements 1421

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_storelobdatatable.html

Syntax for CREATE DATABASE

CREATE DATABASE database-name

1

BUFFERPOOL bpname

INDEXBP bpname

AS WORKFILE

FOR member-name

STOGROUP

SYSDEFLT

stogroup-name

CCSID ASCII

EBCDIC

UNICODE

Notes:
1 The same clause must not be specified more than one time.

Description for CREATE DATABASE
database-name

Names the database. The name must not start with DSNDB and must not identify a database that
exists at the current server. database-name must not be in the form of eight characters that start with
DSN followed by exactly five digits. If the database is to be a work file database in a data sharing
environment, DSNDB07 is an acceptable work file database name. However, only one member of a
data sharing group can use DSNDB07 as the name of its work file database.

BUFFERPOOL bpname
Specifies the default buffer pool name to be used for table spaces created within the database. If
the database is a work file database, 8KB and 16KB buffer pools cannot be specified. See “Naming
conventions in SQL” on page 79 for more details about bpname.

If you omit the BUFFERPOOL clause, the buffer pool for the TBSBPOOL subsystem parameter value
is used. If the table space is implicitly created, Db2 selects the buffer pool as described in Implicitly
defined table spaces (Db2 Administration Guide).

INDEXBP bpname
Specifies the default buffer pool name to be used for the indexes created within the database. The
name can identify a 4KB, 8KB, 16KB, or 32KB buffer pool. See “Naming conventions in SQL” on page
79 for more details about bpname.

If you omit the INDEXBP clause, the buffer pool specified for user indexes on installation panel
DSNTIP1 is used. The default value for the user indexes field on that panel is BP0.

AS WORKFILE
Specifies the database is a work file database. AS WORKFILE can be specified only in a data sharing
environment. Only one work file database can be created for each Db2 subsystem. The work file
database is used for work files, created global temporary table, declared temporary tables, and
sensitive static scrollable cursors.

PUBLIC implicitly receives the CREATETAB privilege (without GRANT authority) to define a declared
temporary table in the work file database. This implicit privilege is not recorded in the Db2 catalog and
cannot be revoked.

1422 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicitlydefinedtablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicitlydefinedtablespaces.html

The CCSID clause is not supported for a work file database. If you specify AS WORKFILE, do not use
the CCSID clause.

FOR member-name
Specifies the member for which this database is to be created. Specify FOR member-name only in
a data sharing environment.

If FOR member-name is not specified, the member is the Db2 subsystem on which the CREATE
DATABASE statement is executed.

STOGROUP stogroup-name
Specifies the storage group to be used, as required, as a default storage group to support DASD space
requirements for table spaces and indexes within the database. The default is SYSDEFLT.

CCSID encoding-scheme
Specifies the default encoding scheme for data stored in the database. The default applies to table
spaces created in the database. All tables stored within a table space must use the same encoding
scheme.
ASCII

Specifies that the data must be encoded using the ASCII CCSIDs of the server.
EBCDIC

Specifies that the data must be encoded using the EBCDIC CCSIDs of the server.
UNICODE

Specifies that the data must be encoded using the UNICODE CCSIDs of the server.

Usually, each encoding scheme requires only a single CCSID. Additional CCSIDs are needed when
mixed, graphic, or UNICODE data is used.

The option defaults to the value of field DEF ENCODING SCHEME on installation panel DSNTIPF.

Do not use the CCSID clause if you specify the AS WORKFILE clause.

Notes for CREATE DATABASE
If the statement is embedded in an application program, the owner of the plan or package is the owner
of the database. If the statement is dynamically prepared, the SQL authorization ID of the process is the
owner of the database.

If the owner of the database has the CREATEDBA, SYSADM, or SYSCTRL authority, the owner acquires
DBADM authority for the database. DBADM authority for a database includes table privileges on all tables
in that database. Thus, if a user with SYSCTRL authority creates a database, that user has table privileges
on all tables in that database. This is an exception to the rule that SYSCTRL authority does not include
table privileges.

If the owner of the database has the CREATEDBC privilege, but not the CREATEDBA privilege, the owner
acquires DBCTRL authority for the database. In this case, no authorization ID has DBADM authority for the
database until it is granted by an authorization ID with SYSADM authority.

Examples for CREATE DATABASE

Example 1

Create database DSN8D12P. Specify DSN8G120 as the default storage group to be used for the table
spaces and indexes in the database. Specify 8KB buffer pool BP8K1 as the default buffer pool to be
used for table spaces in the database, and BP2 as the default buffer pool to be used for indexes in the
database.

 CREATE DATABASE DSN8D12P
 STOGROUP DSN8G120
 BUFFERPOOL BP8K1
 INDEXBP BP2;

Chapter 7. Statements 1423

Example 2

Create database DSN8TEMP. Use the defaults for the default storage group and default buffer pool
names. Specify ASCII as the default encoding scheme for data stored in the database.

 CREATE DATABASE DSN8TEMP
 CCSID ASCII;

Related concepts
Db2 databases (Introduction to Db2 for z/OS)
Naming conventions
The rules for forming a name depend on the type of the object designated by the name.
Related tasks
Creating Db2 databases (Db2 Administration Guide)

CREATE FUNCTION statement (overview)
The CREATE FUNCTION statement registers a user-defined function with a database server. Each type of
function that you can register with this statement is described separately.

External scalar
The function is written in a programming language and returns a scalar value. The external executable
routine (package) is registered with a database server along with various attributes of the function.
Each time that the function is invoked, the package executes one or more times. See “CREATE
FUNCTION statement (external scalar function)” on page 1453.

External table
The function is written in a programming language. It returns a table to the subselect from which
it was started by returning one row at a time, each time that the function is started. The external
executable routine (package) is registered with a database server along with various attributes of
the function. Each time that the function is invoked, the package executes one or more times. See
“CREATE FUNCTION statement (external table function)” on page 1472.

Sourced
The function is implemented by invoking another function (either built-in, external, SQL, or sourced)
that exists at the server. The function inherits the attributes of the underlying source function. A
sourced function does not have an associated package. See “CREATE FUNCTION statement (sourced
function)” on page 1498.

SQL scalar
The function is written exclusively in SQL statements and returns a scalar value. The body of an SQL
scalar function is written in the SQL procedural language (SQL PL). The function is defined at the
current server along with various attributes of the function.

Db2 supports two types of SQL scalar functions, inlined and compiled:

• Inlined SQL scalar functions contain a single RETURN statement, which returns the value of a
simple expression. The function is not invoked as part of a query; instead, the expression in the
RETURN statement of the function is copied (inlined) into the query itself. Therefore, a package is
not generated for an inlined SQL scalar function.

• Compiled SQL scalar functions support a larger set of functionality, including all of the SQL PL
statements. A package is generated for a compiled SQL scalar function. It contains the body of the
function, including control statements. It might also contain statements generated by Db2. Each
time that the function is invoked, the package executes one or more times.

When a CREATE FUNCTION statement for an SQL scalar function is processed, Db2 attempts to create
an inlined SQL scalar function. If the function cannot be created as an inlined function, Db2 attempts
to create a compiled SQL scalar function. For more information on the syntax and rules for these
types of functions, see “CREATE FUNCTION statement (inlined SQL scalar function)” on page 1489
and “CREATE FUNCTION statement (compiled SQL scalar function)” on page 1428.

1424 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_databases.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createdatabases.html

To determine what type of SQL scalar function is created, refer to the INLINE column of the
SYSIBM.SYSROUTINES catalog table.

SQL table
The function is written exclusively as an SQL RETURN statement and returns a set of rows. The body
of an SQL table function is written in the SQL procedural language. The function is defined at the
current server along with various attributes. The function is not invoked as part of a query. Instead,
the expression in the RETURN statement of the function is copied (inlined) into the query itself.
Therefore, a package is not generated for an SQL table function. See “CREATE FUNCTION statement
(SQL table function)” on page 1510.

Notes for all CREATE FUNCTION types
The following considerations apply for creating all types of functions:

Owner privileges:
For all functions except for sourced functions, the owner is authorized to execute the function
(EXECUTE privilege) and has the ability to grant these privileges to others. For more information,
see “GRANT statement (function or procedure privileges)” on page 1970. For more information about
ownership of the object, see “Authorization, privileges, permissions, masks, and object ownership” on
page 90.

Choosing the schema and function name:

The combination of name, schema name, the number of parameters, and the data type of each
parameter (without regard for any length, precision, scale, subtype or encoding scheme attributes
of the data type) must not identify a user-defined function that exists at the current server. If the
function has more than 30 parameters, only the first 30 parameters are used to determine whether
the function is unique.

You can use the same name for more than one function if the function signature of each function is
unique.

• The unqualified form of function-name must not be any of the following system-reserved keywords
even if you specify them as delimited identifiers:

ALL LIKE UNIQUE
AND MATCH UNKNOWN
ANY NOT =
BETWEEN NULL ¬=
DISTINCT ONLY <
EXCEPT OR <=
EXISTS OVERLAPS ¬<
FALSE SIMILAR >
FOR SOME >=
FROM TABLE ¬>
IN TRUE <>
IS TYPE

The schema name can be 'SYSTOOLS' or 'SYSFUN' if the privilege set includes the SYSADM or
SYSCTRL privilege. Otherwise, the schema name must not begin with 'SYS' unless the schema name is
'SYSADM'.

Defining the parameters
The input parameters for the function are specified as a list within parentheses.

A function can have no input parameters. In this case, an empty set of parentheses must be specified,
for example:

CREATE FUNCTION WOOFER()

The data type of the result of the function is specified in the RETURNS clause for the function.

Choosing data types for parameters:
When you choose the data types of the input and output parameters for your function, consider
the rules of promotion that can affect the values of the parameters. (See “Promotion of data

Chapter 7. Statements 1425

types” on page 129). For example, a constant that is one of the input arguments to the function
might have a built-in data type that is different from the data type that the function expects, and
more significantly, might not be promotable to that expected data type. Based on the rules of
promotion, consider using the following data types for parameters:

• INTEGER instead of SMALLINT
• DOUBLE instead of REAL
• VARCHAR instead of CHAR
• VARGRAPHIC instead of GRAPHIC
• VARBINARY instead of BINARY

For portability of functions across platforms that are not Db2 for z/OS, do not use the following
data types, which might have different representations on different platforms:

• FLOAT. Use DOUBLE or REAL instead.
• NUMERIC. Use DECIMAL instead.

Specifying AS LOCATOR for a parameter:
Passing a locator instead of a value can result in fewer bytes being passed in or out of the function.
This can be useful when the value of the parameter is very large. The AS LOCATOR clause specifies
that a locator to the value of the parameter is passed instead of the actual value. Specify AS
LOCATOR only for parameters that have a LOB data type or a distinct type that is based on a LOB
data type and only when LANGUAGE JAVA is not in effect.

The AS LOCATOR clause has no effect on determining whether data types can be promoted, nor
does it affect the function signature, which is used in function resolution.

AS LOCATOR must not be specified for a sourced or SQL function.

AS LOCATOR must not be specified if the function is defined with NO SQL.

Considerations for a function that is defined using a TABLE LIKE name AS LOCATOR clause:
If a function is defined with a table parameter (the TABLE LIKE name AS LOCATOR clause was
specified in the CREATE FUNCTION statement to indicate that one of the input parameters is a
transition table), no ALTER FUNCTION statement that specifies a parameter list as part of the
alteration can change the function. For example, a parameter list is required as part of the routine
specification when adding or replacing a version of a function. In such cases, the function must be
dropped a re-created..

Determining the uniqueness of functions in a schema:
At the current server, the function signature of each function, which is the qualified function name
combined with the number and data types of the input parameters, must be unique. If the function
has more than 30 input parameters, only the data types of the first 30 are used to determine
uniqueness. This means that two different schemas can each contain a function with the same name
that have the same data types for all of their corresponding data types. However, a single schema
must not contain multiple functions with the same name that have the same data types for all of their
corresponding data types.

When determining whether corresponding data types match, Db2 does not consider any length,
precision, or scale attributes in the comparison. Db2 considers the synonyms of data types as a
match. For example, REAL and FLOAT, and DOUBLE and FLOAT are considered a match. Therefore,
CHAR(8) and CHAR(35) are considered to be the same, as are DECIMAL(11,2), DECIMAL(4,3),
DECFLOAT(16) and DECFLOAT(34), TIMESTAMP(6) and TIMESTAMP(9), TIMESTAMP(6) WITH TIME
ZONE and TIMESTAMP(9) WITH TIME ZONE. Furthermore, the character and graphic types, and the
timestamp types are considered to be the same. For example, the following are considered to be
the same type: CHAR and GRAPHIC, VARCHAR and VARGRAPHIC, CLOB and DBCLOB, TIMESTAMP
WITHOUT TIME ZONE and TIMESTAMP WITH TIME ZONE. CHAR(13) and GRAPHIC(8) are considered
to be the same type. An error is returned if the signature of the function being created is a duplicate of
a signature for an existing user-defined function with the same name and schema.

1426 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Assume that the following statements are executed to create four functions in the same schema. The
second and fourth statements fail because they create functions that are duplicates of the functions
that the first and third statements created.

 CREATE FUNCTION PART (INT, CHAR(15)) …
 CREATE FUNCTION PART (INTEGER, CHAR(40)) …
 CREATE FUNCTION ANGLE (DECIMAL(12,2)) …
 CREATE FUNCTION ANGLE (DEC(10,7)) …

Specifying a specific name for a function:
When defining multiple functions with the same name and schema (with different parameter lists), it
is recommended that a specific name also be specified.

The specific name can be used to uniquely identify the function such as when sourcing on this
function, dropping the function, or commenting on the function. However, the function cannot be
invoked by its specific name.

The specific name is implicitly or explicitly qualified with a schema name. If a schema name is not
specified on CREATE FUNCTION, it is the same as the explicit or implicit schema name of the function
name (function-name). If a schema name is specified, it must be the same as the explicit or implicit
schema name of the function name. The name, including the schema name must not identify the
specific name of another function or procedure that exists at the current server.

If the SPECIFIC clause is not specified, a specific name is generated.

Extending or overriding a built-in function
Giving a user-defined external function the same name as a built-in function is not a recommended
practice unless the functionality of the built-in function needs to be extended or overridden.

If you do intend to create a function with the same name as a built-in function, be careful to maintain
the uniqueness of its function signature. If your function has the same name and data types of
the corresponding parameters of the built-in function but implements different logic, Db2 might
choose the wrong function when the function is invoked with an unqualified function name. For
example, If the schema for the new function appears in the SQL path before the system schemas, Db2
might choose a user-defined function rather than the built-in function. An application that uses the
unqualified name and was previously successful using the built-in function of that name might fail. It
might also appear to run successfully but provide a different result if Db2 chooses the built-in function
instead of the built-in function. This situation can occur with dynamic SQL statements, or when static
SQL statements are rebound.

Extending the functionality of existing built-in functions
Create the new user-defined function with the same name as the built-in function, and a unique
function signature. For example, a user-defined function similar to the built-in function ROUND
that accepts the distinct type MONEY as input rather than the built-in numeric types might be
necessary. In this case, the signature for the new user-defined function named ROUND is different
from all the function signatures supported by the built-in ROUND function.

Overriding a built-in function:
Create the new user-defined function with the same name and signature as a built-in function. The
new function has the same name and data type as the corresponding parameters of the built-in
function but implements different logic.

For example, it might be useful to use different rules for rounding that the built-in ROUND
function. In this case, the signature for the new user-defined function named ROUND will be
the same as a signature that is supported by the built-in ROUND function.

Another case for overriding a built-in function is to use its functionality when an argument is not
a built-in data type. Instead of explicitly casting the argument to a built-in data type, you can
define a sourced function that accepts the user-defined data type argument and passes it to the
underlying built-in function. A sourced function is defined with a reference to a built-in function
or another user-defined function. For more information about sourced functions, see “CREATE
FUNCTION statement (sourced function)” on page 1498.

Chapter 7. Statements 1427

The DISTINCT keyword can be passed on the invocation of a user-defined function that is sourced
on one of the built-in aggregate functions. For example, assume that MY_AVG is a user-defined
function that is sourced on built-in AVG function. The user-defined function could be invoked with
'MY_AVG (DISTINCT expression)' This results in the underlying built-in AVG function being invoked
with the DISTINCT keyword.

Special registers in functions
The settings of the special registers of the invoker are inherited by the function on invocation and
restored upon return to the invoker. Special registers may be changed in a function that can execute
SQL statements, but these changes do not affect the caller.

Global variables in functions:
The content of global variables that are referenced in a function are inherited from the invoking
environment.

Scrollable cursors specified with user-defined functions:
A row can be fetched more than once with a scrollable cursor. Therefore, if a SELECT statement of a
scrollable cursor invokes a function that is not deterministic in the select list, a row can be fetched
multiple times with different results for each fetch. Similarly, if the SELECT statement of a scrollable
cursor invokes a user-defined function defined with external action, the action is executed with every
fetch.

Considerations for secure functions:
To create a secure function, the security administrator usually examines the data that is accessed by a
function, ensures that it is secure, and grants the CREATE_SECURE_OBJECT privilege to someone who
currently requires the privileges to create a secure user-defined function. After the function is created,
they revoke the CREATE_SECURE_OBJECT privilege from the function owner.

A sourced function cannot be created as a secure function.

If a row permission or a column mask definition references a user-defined function, the user-defined
function must be secure because the sensitive data might be passed as arguments to the function.
The SECURE column in the DSN_FUNCTION_TABLE indicates whether a user-defined function is
considered secure.

If a secure user-defined function invokes other user-defined functions, Db2 does not validate whether
those nested user-defined functions have the SECURED attribute. If those nested functions can
access sensitive data, the security administrator must ensure that those functions are allowed to
access the sensitive data and should ensure that a change control audit procedure is established for
all changes to those functions.

Related concepts
Functions
A function is an operation denoted by a function name followed by zero or more operands that are
enclosed in parentheses. It represents a relationship between a set of input values and a set of result
values.
Sample user-defined functions
Some sample user-defined functions are provided with Db2. You can use the functions in your
applications just as you would use other user-defined functions, or as examples to help you define your
own user-defined functions.
Related tasks
Creating a user-defined function (Db2 Application programming and SQL)

CREATE FUNCTION statement (compiled SQL scalar function)
The CREATE FUNCTION (compiled SQL scalar) statement defines a compiled SQL scalar function at the
current server and specifies the source statements for the function. The body of the function is written in
the SQL procedural language. The function returns a single value each time it is invoked.

A package is created for a compiled SQL scalar function.

1428 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_defineudf.html

For compiled SQL scalar functions, you can define multiple versions of the function. Use CREATE
FUNCTION (compiled SQL scalar) to define the initial version, and ALTER FUNCTION to define subsequent
versions. For information about the SQL statements that are supported in SQL functions, refer to “SQL-
procedure-statement (SQL PL)” on page 2212.

Invocation for CREATE FUNCTION (compiled SQL scalar)
For a compiled SQL function, this statement can only be dynamically prepared but the DYNAMICRULES
run behavior must be specified implicitly or explicitly.

Authorization for CREATE FUNCTION (compiled SQL scalar)
The privilege set defined below must include at least one of the following:

• The CREATEIN privilege on the schema and the required authorization to add a new package or a new
version of an existing package, depending on the value of the BIND NEW PACKAGE field on installation
panel DSNTIPP

• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The authorization ID that matches the schema name implicitly has the CREATEIN privilege on the
schema.

If the authorization ID that is used to create the function has the installation SYSADM authority or the
installation SYSOPR authority and if the current SQLID is set to SYSINSTL, the function is identified as
system-defined function.

If a user-defined type is referenced (as the data type of a parameter or an SQL variable), the privilege set
must also include at least one of the following:

• Ownership of the user-defined type
• The USAGE privilege on the user-defined type
• SYSTEM DBADM authority
• DATAACCESS AUTHORITY
• SYSADM authority

If the function uses a table as a parameter, the privilege set must also include at least one of the
following:

• Ownership of the table
• The SELECT privilege on the table
• DATAACCESS authority
• SYSADM authority

Additional authorization may be required on the SYSDUMMYx tables depending on the content of the
function definition. See SYSDUMMYx tables.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the package owner is a role, the implicit schema
match does not apply and this role needs to include one of the previously listed conditions.

If the statement is dynamically prepared and is not running in a trusted context for which the ROLE AS
OBJECT OWNER clause is specified, the privilege set is the set of privileges that are held by the SQL
authorization ID of the process. If the schema name is not the same as the SQL authorization ID of the
process, one of the following conditions must be met:

• The privilege set includes SYSADM or SYSCTRL authority.
• The SQL authorization ID of the process has the CREATEIN privilege on the schema.

Chapter 7. Statements 1429

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sysdummy.html

When CREATE FUNCTION is issued in a trusted context that has the ROLE AS OBJECT OWNER clause, the
package owner is determined as follows:

• If the PACKAGE OWNER option is not specified, the role associated with the binder becomes the
package owner.

• If the PACKAGE OWNER option is specified, the role specified in the PACKAGE OWNER option becomes
the package owner. In a trusted context, the PACKAGE OWNER specified must be a role.

If you specify the WLM ENVIRONMENT FOR DEBUG MODE clause, RACF or an external security product
is invoked to check the required authority for defining programs in the WLM environment. If the WLM
environment access is protected in RACF, the privilege set must include the required authority.

At least one of the following additional privileges is required if the SECURED option is specified

• SECADM authority
• CREATE_SECURE_OBJECT privilege

Syntax for CREATE FUNCTION (compiled SQL scalar)

CREATE FUNCTION function-name (
,

parameter-declaration

)

function-definition

WRAPPED obfuscated-statement-text

parameter-declaration:

parameter-name parameter-type

parameter-type:

data-type

TABLE LIKE table-name

view-name

AS LOCATOR

data-type:

built-in-type

distinct-type-name

array-type-name

built-in-type:

1430 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

built-in-type:
SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

BIT

DATA

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID ASCII

EBCDIC

UNICODE

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

ROWID

XML

function-definition

Chapter 7. Statements 1431

RETURNS data-type2
VERSION V1

VERSION routine-version-id option-list

SQL-routine-body

SQL-routine-body:

SQL-control-statement

option-list: (The options in the option-list can be specified in any order, but each one can only be specified one
time)

1432 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

LANGUAGE SQL

SPECIFIC specific-name

NOT DETERMINISTIC

DETERMINISTIC

EXTERNAL ACTION

NO EXTERNAL ACTION

READS SQL DATA

CONTAINS SQL

MODIFIES SQL DATA

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

STATIC DISPATCH

ALLOW PARALLEL

DISALLOW PARALLEL

DISALLOW DEBUG MODE

ALLOW DEBUG MODE

DISABLE DEBUG MODE

PARAMETER CCSID ASCII

PARAMETER CCSID EBCDIC

PARAMETER CCSID UNICODE

QUALIFIER schema-name

PACKAGE OWNER authorization-name

ASUTIME NO LIMIT

ASUTIME LIMIT integer

INHERIT SPECIAL REGISTERS

DEFAULT SPECIAL REGISTERS

WLM ENVIRONMENT FOR DEBUG MODE name

CURRENT DATA NO

CURRENT DATA YES

DEGREE 1

DEGREE ANY

CONCURRENT ACCESS RESOLUTION USE CURRENTLY COMMITTED

CONCURRENT ACCESS RESOLUTION WAIT FOR OUTCOME

DYNAMICRULES RUN

DYNAMICRULES BIND

DYNAMICRULES DEFINEBIND

DYNAMICRULES DEFINERUN

DYNAMICRULES INVOKEBIND

DYNAMICRULES INVOKERUN

APPLICATION ENCODING SCHEME ASCII

APPLICATION ENCODING SCHEME EBCDIC

APPLICATION ENCODING SCHEME UNICODE

WITHOUT EXPLAIN

WITH EXPLAIN

WITHOUT IMMEDIATE WRITE

WITH IMMEDIATE WRITE

ISOLATION LEVEL CS

ISOLATION LEVEL RS

ISOLATION LEVEL RR

ISOLATION LEVEL UR

OPTHINT ''

OPTHINT string-constant

QUERY ACCELERATION NONE

QUERY ACCELERATION ENABLE

QUERY ACCELERATION ENABLE WITH FAILBACK

QUERY ACCELERATION ELIGIBLE

QUERY ACCELERATION ALL

GET_ACCEL_ARCHIVE NO

GET_ACCEL_ARCHIVE YES

ACCELERATION WAITFORDATA nnnn.m

ACCELERATOR accelerator-name

SQL PATH

,

schema-name

SYSTEM PATH

SESSION USER

USER

REOPT NONE

REOPT ALWAYS

REOPT ONCE

VALIDATE RUN

VALIDATE BIND ROUNDING DEC_ROUND_CEILING

ROUNDING DEC_ROUND_DOWN

ROUNDING DEC_ROUND_FLOOR

ROUNDING DEC_ROUND_HALF_DOWN

ROUNDING DEC_ROUND_HALF_EVEN

ROUNDING DEC_ROUND_HALF_UP

ROUNDING DEC_ROUND_UP

DATE FORMAT ISO

DATE FORMAT EUR

DATE FORMAT USA

DATE FORMAT JIS

DATE FORMAT LOCAL

DECIMAL(15)

DECIMAL(31)

DECIMAL(15,  s)

DECIMAL(31,  s)

FOR UPDATE CLAUSE REQUIRED

FOR UPDATE CLAUSE OPTIONAL TIME FORMAT ISO

TIME FORMAT EUR

TIME FORMAT USA

TIME FORMAT JIS

TIME FORMAT LOCAL

NOT SECURED

SECURED

BUSINESS_TIME SENSITIVE YES

BUSINESS_TIME SENSITIVE NO

SYSTEM_TIME SENSITIVE YES

SYSTEM_TIME SENSITIVE NO

ARCHIVE SENSITIVE YES

ARCHIVE SENSITIVE NO

APPLCOMPAT applcompat-level

CONCENTRATE STATEMENTS OFF

CONCENTRATE STATEMENTS WITH LITERALS

Chapter 7. Statements 1433

Description for CREATE FUNCTION (compiled SQL scalar)
function-name

Names the function. If function-name already exists with the specified signature, an error is returned
even if VERSION is specified with a routine-version-id that is different from any existing version
identifier for the function that is specified in function-name. For more information, see "Choosing the
schema and function names" and "Determining the uniqueness of functions in a schema" in “CREATE
FUNCTION statement (overview)” on page 1424.

(parameter-declaration,…)

Specifies the number of input parameters of the function and the name and data type of each
parameter. Each parameter-declaration specifies an input parameter for the function. A function can
have zero or more input parameters. There must be one entry in the list for each parameter that the
function expects to receive. All of the parameters for a function are input parameters and are nullable.
If the function has more than 30 parameters, only the first 30 parameters are used to determine if the
function is unique.

parameter-name
Specifies the name of the input parameter. The name is an SQL identifier, and each name in the
parameter list must not be the same as any other name.

data-type
Specifies the data type of the input parameter. The data type can be a built-in data type or a
user-defined type.
built-in-type

The data type of the input parameter is a built-in data type.

For information on the data types, see “built-in-type ” on page 1663.

For parameters with a character or graphic data type, the PARAMETER CCSID clause or CCSID
clause indicates the encoding scheme of the parameter. If you do not specify either of these
clauses, the encoding scheme is the value of field DEF ENCODING SCHEME on installation
panel DSNTIPF.

distinct-type-name
The data type of the input parameter is a distinct type. Any length, precision, scale, subtype, or
encoding scheme attributes for the parameter are those of the source type of the distinct type.
The distinct type must not be based on a LOB data type.

If you specify the name of the distinct type without a schema name, Db2 resolves the distinct
type by searching the schemas in the SQL path.

TABLE LIKE table-name AS LOCATOR
Specifies that the parameter is a transition table. However, when the function is invoked, the
actual values in the transition table are not passed to the function. A single value is passed
instead. This value is a locator for the table, which the function uses to access the columns
of the transition table. The table that is identified can contain XML columns; however, the
function cannot reference those XML columns.

A function with a table parameter can only be invoked from the triggered action of a trigger.

array-type-name
The data type of the input parameter is a user-defined array type.

If you specify array-type-name without a schema name, Db2 resolves the array type by
searching the schemas in the SQL path.

The implicitly or explicitly specified encoding scheme of all of the parameters with a character or
graphic string data type must be the same—either all ASCII, all EBCDIC, or all UNICODE.

Although parameters with a character data type have an implicitly or explicitly specified subtype
(BIT, SBCS, or MIXED), the function program can receive character data of any subtype. Therefore,
conversion of the input data to the subtype of the parameter might occur when the function is

1434 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

invoked. An error occurs if mixed data that actually contains DBCS characters is used as the value
for an input parameter that is declared with an SBCS subtype.

Parameters with a datetime data type or a distinct type are passed to the function as a different
data type:

• A datetime type parameter is passed as a character data type, and the data is passed in ISO
format.

The encoding scheme for a datetime type parameter is the same as the implicitly or explicitly
specified encoding scheme of any character or graphic string parameters. If no character or
graphic string parameters are passed, the encoding scheme is the value of field DEF ENCODING
SCHEME on installation panel DSNTIPF.

• A distinct type parameter is passed as the source type of the distinct type.

RETURNS
Identifies the output of the function.
data-type2

Specifies the data type of the output. The output is nullable.

The same considerations that apply to the data type of input parameter, as described under
data-type, apply to the data type of the output of the function.

VERSION routine-version-id
Specifies the version identifier for the first version of the function that is to be generated. You can
use an ALTER FUNCTION statement with the ADD VERSION clause or the BIND DEPLOY command to
create additional versions of the function.
routine-version-id

An SQL identifier of up to 64 EBCDIC bytes that designates a version of a routine. The UTF-8
representation of the identifier must not exceed 122 bytes.

V1 is the default version identifier.

LANGUAGE SQL
Specifies that the function is written exclusively in SQL.

SPECIFIC specific-name
Specifies a unique name for the function. The name is implicitly or explicitly qualified with a schema
name. The name, including the schema name, must not identify the specific name of another function
that exists at the current server.

The unqualified form of specific-name is an SQL identifier. The qualified form is an SQL identifier (the
schema name) followed by a period and an SQL identifier.

If you do not specify a schema name, it is the same as the explicit or implicit schema name of the
function name (function-name). If you specify a schema name, it must be the same as the explicit or
implicit schema name of the function name.

If you do not specify the SPECIFIC clause, the default specific name is the name of the function.
However, if the function name does not provide a unique specific name or if the function name is a
single asterisk, Db2 generates a specific name in the form of:

SQLxxxxxxxxxxxx

where 'xxxxxxxxxxxx' is a string of 12 characters that make the name unique.

The specific name is stored in the SPECIFIC column of the SYSROUTINES catalog table. The specific
name can be used to uniquely identify the function in several SQL statements (such as ALTER
FUNCTION, COMMENT, DROP, GRANT, and REVOKE) and must be used in Db2 commands (START
FUNCTION, STOP FUNCTION, and DISPLAY FUNCTION). However, the function cannot be invoked by
its specific name.

Chapter 7. Statements 1435

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results each time that the function is invoked with
the same input arguments.
NOT DETERMINISTIC

The function might not return the same result each time that the function is invoked with the same
input arguments. The function depends on some state values that affect the results. Db2 uses
this information to disable the merging of views and table expressions when processing SELECT
and SQL data change statements that refer to this function. An example of a function that is not
deterministic is one that generates random numbers.

NOT DETERMINISTIC must be specified explicitly or implicitly if the function program accesses a
special register or invokes another function that is not deterministic. NOT DETERMINISTIC is the
default.

DETERMINISTIC
The function always returns the same result function each time that the function is invoked
with the same input arguments. An example of a deterministic function is a function that
calculates the square root of the input. Db2 uses this information to enable the merging of views
and table expressions for SELECT and SQL data change statements that refer to this function.
DETERMINISTIC is not the default. If applicable, specify DETERMINISTIC to prevent non-optimal
access paths from being chosen for SQL statements that refer to this function.

Db2 does not verify that the function program is consistent with the specification of DETERMINISTIC
or NOT DETERMINISTIC.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an object that Db2 does not
manage. An example of an external action is sending a message or writing a record to a file.
EXTERNAL ACTION

The function can take an action that changes the state of an object that Db2 does not manage.

Some SQL statements that invoke functions with external actions can result in incorrect results if
parallel tasks execute the function. For example, if the function sends a note for each initial call to
it, one note is sent for each parallel task instead of once for the function. Specify the DISALLOW
PARALLEL clause for functions that do not work correctly with parallelism.

If you specify EXTERNAL ACTION, then Db2:

• Materializes the views and table expressions in SELECT and SQL data change statements that
refer to the function. This materialization can adversely affect the access paths that are chosen
for the SQL statements that refer to this function. Do not specify EXTERNAL ACTION if the
function does not have an external action.

• Does not move the function from one task control block (TCB) to another between FETCH
operations.

• Does not allow another function or stored procedure to use the TCB until the cursor is closed.
This is also applicable for cursors declared WITH HOLD.

The only changes to resources made outside of Db2 that are under the control of commit and
rollback operations are those changes made under RRS control.

EXTERNAL ACTION must be specified implicitly or explicitly specified if the SQL routine body
invokes a function that is defined with EXTERNAL ACTION. EXTERNAL ACTION is the default.

NO EXTERNAL ACTION
The function does not take any action that changes the state of an object that Db2 does not
manage. Db2 uses this information to enable the merging of views and table expressions for
SELECT and SQL data change statements that refer to this function. If applicable, specify NO
EXTERNAL ACTION to prevent non-optimal access paths from being chosen for SQL statements
that refer to this function.

Although the scope of global variables are beyond the scope of the routine, global variables can be
set in the routine body when NO EXTERNAL ACTION is specified.

1436 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Db2 does not verify that the function program is consistent with the specification of EXTERNAL
ACTION or NO EXTERNAL ACTION.

MODIFIES SQL DATA, READS SQL DATA, or CONTAINS SQL
Specifies the classification of SQL statements and nested routines that this routine can execute
or invoke. The database manager verifies that the SQL statements issued by the function, and all
routines locally invoked by the routine, are consistent with this specification; the verification is not
performed when nested remote routines are invoked. For the classification of each statement, see
Appendix D, “SQL statement data access classification for routines,” on page 2275.
MODIFIES SQL DATA

Specifies that the function can execute any SQL statement except the statements that are not
supported in functions. Do not specify MODIFIES SQL DATA when ALLOW PARALLEL is in effect.

If a function that is defined with MODIFIES SQL DATA is invoked anywhere except the select-
clause of the outermost SELECT statement, the results are unpredictable because the function
can be invoked multiple times depending on the access plan that is used.

Recommendation: If a SELECT statement invokes a function that is defined with the MODIFIES
SQL DATA option, ensure that statements nested inside the function do not modify objects that
are referenced in any SQL statement at a higher level of nesting. Otherwise, unpredictable results
are likely to occur.

READS SQL DATA
Specifies that the function can execute statements with a data access classification of READS SQL
DATA, CONTAINS SQL, or NO SQL. The function cannot execute SQL statements that modify data.

READS SQL DATA is the default.

CONTAINS SQL
Specifies that the function can execute only SQL statements with a data access classification of
CONTAINS SQL or NO SQL. The function cannot execute SQL statements that read or modify data.

CALLED ON NULL INPUT or RETURNS NULL ON NULL INPUT
Specifies whether the function is invoked if any of the input arguments is null at execution time.
CALLED ON NULL INPUT

Specifies that the function is to be invoked if any, or if all, of the argument values are null.
Specifying CALLED ON NULL INPUT means that the body of the function must be coded to test for
null argument values.

CALLED ON NULL INPUT is the default.

RETURNS NULL ON NULL INPUT
Specifies that the function is not invoked and returns the null value if any of the input argument
values is null.

STATIC DISPATCH
At function resolution time, Db2 chooses a function based on the static (or declared) types of the
function parameters. STATIC DISPATCH is the default.

ALLOW PARALLEL or DISALLOW PARALLEL
Specifies if the function can be run in parallel. The default is DISALLOW PARALLEL, if you specify one
or more of the following clauses:

• NOT DETERMINISTIC
• EXTERNAL ACTION
• MODIFIES SQL DATA

Otherwise, ALLOW PARALLEL is the default.

ALLOW PARALLEL
Specifies that the function can be run in parallel.

DISALLOW PARALLEL
Specifies that the function cannot be run in parallel.

Chapter 7. Statements 1437

ALLOW DEBUG MODE, DISALLOW DEBUG MODE, or DISABLE DEBUG MODE
Specifies whether this version of the routine can be run in debugging mode. The default is determined
using the value of the CURRENT DEBUG MODE special register.
ALLOW DEBUG MODE

Specifies that this version of the routine can be run in debugging mode. When this version of the
routine is invoked and debugging is attempted, a WLM environment must be available.

DISALLOW DEBUG MODE
Specifies that this version of the routine cannot be run in debugging mode.

You can use an ALTER statement to change this option to ALLOW DEBUG MODE for this initial
version of the routine.

DISABLE DEBUG MODE
Specifies that this version of the routine can never be run in debugging mode.

This version of the routine cannot be changed to specify ALLOW DEBUG MODE or DISALLOW
DEBUG MODE after this version of the routine has been created or altered to use DISABLE DEBUG
MODE. To change this option, drop the routine and create it again using the option that you want.
An alternative to dropping and recreating the routine is to create a version of the routine that uses
the option that you want and making that version the active version.

When DISABLE DEBUG MODE is in effect, the WLM ENVIRONMENT FOR DEBUG MODE is ignored.

PARAMETER CCSID
Specifies that the encoding scheme for character or graphic string parameters is ASCII, EBCDIC,
or UNICODE. The default encoding scheme is the value that is specified in the CCSID clauses of
the parameter list or RETURNS clause, or in the DEF ENCODING SCHEME field on installation panel
DSNTIPF.

This clause provides a convenient way to specify the encoding scheme for character or graphic string
parameters. If individual CCSID clauses are specified for individual parameters in addition to this
PARAMETER CCSID clause, the value that is specified in all of the CCSID clauses must be the same
value that is specified in this clause. This clause also specifies the encoding scheme that is used for
system-generated parameters of the routine, such as message tokens and DBINFO.

If the data type for a parameter is a user-defined distinct type that is defined as a character or graphic
type string, the CCSID of the distinct type must be the same as the value that is specified in this
clause.

If the data type for a parameter is a user-defined array type that is defined with character or graphic
string array elements, or a character string array index, the CCSID of these array attributes must be
the same as the value that is specified in this clause.

This clause also specifies the encoding scheme that will be used for system-generated parameters of
the routine.

QUALIFIER schema-name
Specifies the implicit qualifier that is used for unqualified object names that are referenced in the
procedure body. For information about how the default for this option is determined, see “Unqualified
alias, index, JAR file, mask, permission, sequence, table, trigger, and view names” on page 86.

PACKAGE OWNER authorization-name
Specifies the owner of the package that is associated with the version of the routine. The SQL
authorization ID of the process is the default value.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single invocation of a routine
can run. The value is unrelated to the ASUTIME column of the resource limit specification table.

When you are debugging a routine, setting a limit can be helpful in case the routine gets caught in a
loop. For information on service units, see z/OS MVS Initialization and Tuning Guide.

NO LIMIT
Specifies that there is no limit on the service units.

1438 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae100/abstract.htm

NO LIMIT is the default.

LIMIT integer
The limit on the number of CPU service units is a positive integer in the range 1–2 147 483 647.
If the procedure uses more service units than the specified value, Db2 cancels the procedure.
The CPU cycles that are consumed by parallel tasks in a procedure do not contribute towards the
specified ASUTIME LIMIT.

INHERIT SPECIAL REGISTERS or DEFAULT SPECIAL REGISTERS
Specifies how special registers are set on entry to the routine.
INHERIT SPECIAL REGISTERS

Specifies that the values of special registers are inherited, according to the rules that are listed in
the table for characteristics of special registers in a routine in Table 47 on page 215.

INHERIT SPECIAL REGISTERS is the default.

DEFAULT SPECIAL REGISTERS
Specifies that special registers are initialized to the default values, as indicated by the rules in the
table for characteristics of special registers in a routine in Table 47 on page 215.

WLM ENVIRONMENT FOR DEBUG MODE name
Specifies the WLM (workload manager) application environment that is used by Db2 when debugging
the routine. The name of the WLM environment is an SQL identifier.

If you do not specify WLM ENVIRONMENT FOR DEBUG MODE, Db2 uses the default WLM-established
stored procedure address space specified at installation time.

You must have the appropriate authority for the WLM application environment.

The WLM ENVIRONMENT FOR DEBUG MODE value is ignored when DISABLE DEBUG MODE is in
effect.

CURRENT DATA YES or CURRENT DATA NO
Specifies whether to require data currency for read-only and ambiguous cursors when the isolation
level of cursor stability is in effect. CURRENT DATA also determines whether block fetch can be used
for distributed, ambiguous cursors.
CURRENT DATA YES

Specifies that data currency is required for read-only and ambiguous cursors. Db2 acquired page
or row locks to ensure data currency. Block fetch is ignored for distributed, ambiguous cursors.

CURRENT DATA NO
Specifies that data currency is not required for read-only and ambiguous cursors. Block fetch is
allowed for distributed, ambiguous cursors. Use of CURRENT DATA NO is not recommended if the
routine attempts to dynamically prepare and execute a DELETE WHERE CURRENT OF statement
against an ambiguous cursor after that cursor is opened. You receive a negative SQLCODE if your
routine attempts to use a DELETE WHERE CURRENT OF statement for any of the following cursors:

• A cursor that is using block fetch
• A cursor that is using query parallelism
• A cursor that is positioned on a row that is modified by this or another application process

CURRENT DATA NO is the default.

DEGREE
Specifies whether to attempt to run a query using parallel processing to maximize performance.
1

Specifies that parallel processing should not be used.

1 is the default.

ANY
Specifies that parallel processing can be used.

Chapter 7. Statements 1439

CONCURRENT ACCESS RESOLUTION
Specifies the whether processing uses only committed data or whether it will wait for commit or
rollback of data that is in the process of being updated.
WAIT FOR OUTCOME

Specifies that processing will wait for the commit or rollback of data that is in the process of being
updated.

USE CURRENTLY COMMITTED
Specifies that processing use the currently committed version of the data when data that is in the
process of being updated is encountered. USE CURRENTLY COMMITTED is applicable on scans
that access tables that are defined in universal table spaces with row or page level lock size.

When there is lock contention between a read transaction and an insert transaction, USE
CURRENTLY COMMITTED is applicable to scans with isolation level CS or RS. Applicable scans
include intent read scans for read-only and ambiguous queries and for updatable cursors. USE
CURRENTLY COMMITTED is also applicable to scans initiated from WHERE predicates of UPDATE
or DELETE statements and the subselect of INSERT statements.

When there is lock contention is between a read transaction and a delete transaction, USE
CURRENTLY COMMITTED is applicable to scans with isolation level CS and when CURRENT DATA
NO is specified.

DYNAMICRULES
Specifies the values that apply, at run time, for the following dynamic SQL attributes:

• The authorization ID that is used to check authorization
• The qualifier that is used for unqualified objects
• The source for application programming options that Db2 uses to parse and semantically verify

dynamic SQL statements

DYNAMICRULES also specifies whether dynamic SQL statements can include GRANT, REVOKE, ALTER,
CREATE, DROP, and RENAME statements.

In addition to the value of the DYNAMICRULES clause, the run time environment of a routine controls
how dynamic SQL statements behave at run time. The combination of the DYNAMICRULES value and
the run time environment determines the value for the dynamic SQL attributes. That set of attribute
values is called the dynamic SQL statement behavior. The following values can be specified:
RUN

Specifies that dynamic SQL statements are to be processed using run behavior.

RUN is the default.

BIND
Specifies that dynamic SQL statements are to be processed using bind behavior.

DEFINEBIND
Specifies that dynamic SQL statements are to be processed using either define behavior or bind
behavior.

DEFINERUN
Specifies that dynamic SQL statements are to be processed using either define behavior or run
behavior.

INVOKEBIND
Specifies that dynamic SQL statements are to be processed using either invoke behavior or bind
behavior.

INVOKERUN
Specifies that dynamic SQL statements are to be processed using either invoke behavior or run
behavior.

See For information on the effects of these options, see “Authorization IDs and dynamic SQL” on page
94.

1440 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

APPLICATION ENCODING SCHEME
Specifies the default encoding scheme for SQL variables in static SQL statements in the routine body.
The value is used for defining an SQL variable in a compound statement if the CCSID clause is not
specified as part of the data type, and the PARAMETER CCSID routine option is not specified.
ASCII

Specifies that the data is encoded using the ASCII CCSIDs of the server.
EBCDIC

Specifies that the data is encoded using the EBCDIC CCSIDs of the server.
UNICODE

Specifies that the data is encoded using the Unicode CCSIDs of the server.

See the ENCODING bind option in ENCODING bind option (Db2 Commands) for information about how
the default for this option is determined.

WITH EXPLAIN or WITHOUT EXPLAIN
Specifies whether information will be provided about how SQL statements in the routine will execute.
WITHOUT EXPLAIN

Specifies that information will not be provided about how SQL statements in the routine will
execute.

You can get EXPLAIN output for a statement that is embedded in a routine that is specified using
WITHOUT EXPLAIN by embedding the SQL statement EXPLAIN in the routine body. Otherwise, the
value of the EXPLAIN option applies to all explainable SQL statements in the routine body, and to
the fullselect portion of any DECLARE CURSOR statements.

WITHOUT EXPLAIN is the default.

WITH EXPLAIN
Specifies that information will be provided about how SQL statements in the routine will execute.
Information is inserted into the table owner.PLAN_TABLE. owner is the authorization ID of the
owner of the routine. Alternatively, the authorization ID of the owner of the routine can have an
alias as owner.PLAN_TABLE that points to the base table, PLAN_TABLE. owner must also have
the appropriate SELECT and INSERT privileges on that table. WITH EXPLAIN does not obtain
information for statements that access remote objects. PLAN_TABLE must have a base table and
can have multiple aliases with the same table name, PLAN_TABLE, but have different schema
qualifiers. It cannot be a view or a synonym and should exist before the CREATE statement is
processed. In all inserts to owner.PLAN_TABLE, the value of QUERYNO is the statement number
that is assigned by Db2.

The WITH EXPLAIN option also populates two optional tables, if they exist:
DSN_STATEMNT_TABLE and DSN_FUNCTION_TABLE. DSN_STATEMNT_TABLE contains an
estimate of the processing cost for an SQL statement and DSN_FUNCTION_TABLE contains
information about function resolution. For more information, see EXPLAIN tables (Db2
Performance).

For more information about the EXPLAIN statement, including a description of the tables that are
populated by the WITH EXPLAIN option, see “EXPLAIN statement” on page 1917.

WITH IMMEDIATE WRITE or WITHOUT IMMEDIATE WRITE
Specifies whether immediate writes are to be done for updates that are made to group buffer pool
dependent page sets or partitions. This option is only applicable for data sharing environments. The
IMMEDWRITE subsystem parameter has no affect of this option. IMMEDWRITE bind option (Db2
Commands) shows the implied hierarchy of the IMMEDWRITE bind option (which is similar to this
routine option) as it affects run time.
WITHOUT IMMEDIATE WRITE

Specifies that normal write activity is performed. Updated pages that are group buffer pool
dependent are written at or before phase one of commit or at the end of abort for transactions
that have been rolled back.

WITHOUT IMMEDIATE WRITE is the default.

Chapter 7. Statements 1441

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptencoding.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_explaintables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_explaintables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptimmedwrite.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptimmedwrite.html

WITH IMMEDIATE WRITE
Specifies that updated pages that are group buffer pool dependent are immediately written as
soon as the buffer update completes. Updated pages are written immediately even if the buffer
is updated during forward progress or during the rollback of a transaction. WITH IMMEDIATE
WRITE might impact performance.

ISOLATION LEVEL RR, RS, CS, or UR
Specifies how far to isolate the routine from the effects of other running applications. For information
about isolation levels, see Choosing an ISOLATION option (Db2 Performance).
RR

Specifies repeatable read.
RS

Specifies read stability.
CS

Specifies cursor stability. CS is the default.
UR

Specifies uncommitted read.
OPTHINT 'hint-id'

Specifies whether query optimization hints are used for static SQL statements that are contained
within the body of the routine.

hint-id is a character string of up to 128 bytes in length, which is used by the Db2 subsystem when
searching the PLAN_TABLE for rows to use as input. The default value is an empty string (''), which
indicates that the Db2 subsystem does not use optimization hints for static SQL statements.

Optimization hints are only used if optimization hints are enabled for your system. For more
information, see OPTIMIZATION HINTS field (OPTHINTS subsystem parameter) (Db2 Installation and
Migration).

SQL PATH
Specifies the SQL path that the Db2 subsystem uses to resolve unqualified user-defined data types,
functions, and procedure names (in CALL statements) in the body of the routine. The default value
is "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM", and the value of the QUALIFIER option, which is
the qualifier for the trigger that is the target of the statement. The maximum length of the SQL path
is 2048 bytes. Db2 calculates the length by taking each schema-name that is specified and removing
any trailing blanks from it, adding a delimiter on the left and right sides, and adding one comma after
each schema name except for the last name. The length of the resulting string cannot exceed 2048
bytes.
schema-name

Identifies a schema. Db2 does not verify that the schema exists when the CREATE statement is
processed. The same schema name should not appear more than one time in the list of schema
names.

SYSPUBLIC must not be specified for the SQL path.

SYSTEM PATH
Specifies the schema names "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM".

SESSION_USER or USER
Specifies the value of the SESSION_USER (or USER) special register. At the time the CREATE
statement is processed, the actual length is included in the total length of the list of schema
names that is specified for the SQL PATH option.

REOPT
Specifies if Db2 will determine the access path at run time by using the values of SQL variables or SQL
parameters, parameter markers, and special registers.
NONE

Specifies that Db2 does not determine the access path at run time by using the values of SQL
variables or SQL parameters, parameter markers, and special registers.

1442 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_chooseisolationoption.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_opthints.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_opthints.html

NONE is the default.

ALWAYS
Specifies that Db2 always determines the access path at run time each time an SQL statement is
run. Do not specify REOPT ALWAYS with the WITH KEEP DYNAMIC or NODEFER PREPARE clauses.

ONCE
Specifies that Db2 determine the access path for any dynamic SQL statements only once, at
the first time the statement is opened. This access path is used until the prepared statement is
invalidated or removed from the dynamic statement cache and need to be prepared again.

QUERY ACCELERATION
Specifies whether a static SQL query is bound for acceleration, and if so, with what behavior.
NONE

Specifies that no static SQL query in the application is bound for acceleration or will be
accelerated when the application is run.

ENABLE
Specifies that a static SQL query is bound for acceleration if it satisfies the acceleration criteria,
including the cost and heuristics criteria. The query is routed to an accelerator when the
application runs. Otherwise, if the static query does not satisfy the acceleration criteria, the query
is bound for execution in Db2.

If an error condition, such as one of the following examples, occurs while executing the
accelerated static query when the application is run, Db2 fails the static query and returns a
negative SQL code to the application:

• A failure occurs while running the static query on the accelerator.
• The accelerator returns an error for the query.
• The accelerator is not started and Db2 cannot route the static query to the accelerator for

execution.

ENABLE WITH FAILBACK
Results in the same behavior as ENABLE, except if one of the error conditions occurs on the first
OPEN of the accelerated static query when the application is run. In this case, instead of failing
the static query and returning a negative SQL code to the application, Db2 performs a temporary
statement-level incremental bind of the query and runs the query in Db2. The application does not
see the acceleration failure. Failback to Db2 is not possible after the application does a successful
OPEN for the query on the accelerator.

ELIGIBLE
Specifies that a static SQL query is bound for acceleration if the query meets the basic
acceleration criteria, regardless of the cost or heuristics criteria. The query is routed to the
accelerator when the application runs.

Like the behavior for ENABLE, if an error condition occurs while executing the accelerated static
query when the application is run, Db2 fails the static query and returns a negative SQL code to
the application.

ALL
Specifies that all of the static SQL queries in the application are to be bound for acceleration and
routed to the accelerator when the application runs. If Db2 determines that a static query cannot
be bound to run on the accelerator and the query references a user base table or view, the BIND
or REBIND PACKAGE operation fails with an error message for that query. (A failure exception
is made for declared global temporary tables (DGTTs) and created global temporary tables and
(CGTTs) because these tables cannot be accelerated.)

Like the behavior for ENABLE, if an error condition occurs while executing the accelerated static
query when the application is run, Db2 fails the static query and returns a negative SQL code to
the application.

Chapter 7. Statements 1443

This bind option does not apply to a fullselect or WITH common-table-expression that is specified in
a RETURN statement for the routine, or in a SET host-variable-assignment that is used in the routine.
The queries that are specified in these cases cannot be accelerated.

GET_ACCEL_ARCHIVE
Specifies whether a static SQL query that is bound for acceleration retrieves archived data on the
accelerator, instead of active data.
NO

Specifies that no static SQL query is bound to retrieve archived data from the accelerator. If the
static query also is not bound for acceleration, the query is bound to run in Db2.

If the static query is bound for acceleration because the QUERYACCELERATION bind option was
specified, the query is routed to the accelerator when the application runs; however, the query
does not retrieve any archived data.

YES
Specifies that if all of the following criteria are met, the query is bound for acceleration and
retrieves the archived data on the accelerator when the application runs:

• The QUERYACCELERATION bind option is also specified.
• The static SQL query references an accelerated table that has partitioned data archived on an

accelerator.
• The static query satisfies the acceleration criteria that is specified by the QUERYACCELERATION

bind option.

If the static query does not satisfy the acceleration criteria that is specified by the
QUERYACCELERATION bind option, the BIND or REBIND PACKAGE operation fails with an error
message for that query.

This bind option does not apply to a fullselect or WITH common-table-expression that is specified in
a RETURN statement for the routine, or in a SET host-variable-assignment that is used in the routine.
The queries that are specified in these cases cannot be accelerated.

ACCELERATION WAITFORDATA
Specifies the maximum amount of time, if any, that an accelerator will delay a query while the
accelerator waits for the replication of committed Db2 data changes that occurred prior to Db2
running the query.

For static accelerated queries, you must also set the QUERYACCELERATION bind option for this
function or procedure to a valid value other than NONE to request that static queries be accelerated. If
the QUERYACCELERATION bind option value is set to NONE, the ACCELERATIONWAITFORDATA bind
option is accepted and the package is bound with the option value; however, the option will not apply
to static SQL queries because no static queries will be accelerated.

For dynamic accelerated queries, specifying the ACCELERATION WAITFORDATA bind option also
initializes the CURRENT QUERY ACCELERATION WAITFORDATA special register, which is used for
the dynamic queries in the Db2 function or procedure if the function or procedure option DEFAULT
SPECIAL REGISTERS is also used. Initializing CURRENT QUERY ACCELERATION WAITFORDATA to a
value greater than 0 specifies that Db2 and the accelerator will apply WAITFORDATA delay behavior
and restrictions to all dynamic SQL queries to be accelerated from the Db2 function or procedure. The
CURRENT QUERY ACCELERATION special register must also have a valid value other than NONE to
request that dynamic queries be accelerated.

nnnn.m
Specifies a DECIMAL(5,1) numeric-constant value that specifies the maximum number of seconds
that the accelerator will delay a query while the accelerator waits for the replication of committed
Db2 data changes that occurred prior to Db2 running the query.

You can specify a value in the range of 0.0–3600.0 seconds. For example, a value of 20.0
represents 20.0 seconds (or 20000 milliseconds), and a value of 30.5 represents 30.5 seconds
(or 30500 milliseconds). The maximum value of 3600.0 means they the query is delayed for 3600
seconds.

1444 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

You can also specify the value as an INTEGER numeric-constant value ranging 0–3600 seconds,
which Db2 will convert to a DECIMAL(5,1) value.

Important: When a non-zero value is specified for the ACCELERATIONWAITFORDATA bind
option, Db2 and the accelerator will apply other WAITFORDATA delay behaviors, restrictions, and
requirements to all queries that will be accelerated from the application package. These behaviors,
restrictions, and requirements can cause queries that were formerly accelerated successfully to
no longer be accelerated or to fail. See “SET CURRENT QUERY ACCELERATION WAITFORDATA
statement” on page 2150 for more information about WAITFORDATA behaviors, restrictions, and
requirements.

ACCELERATOR
Specifies an accelerator server that, if enabled and available, Db2 will consider as the preferred
accelerator for eligible SQL queries before sending the queries to other accelerator servers. If the
specified accelerator server is not enabled or available, Db2 will send the queries to other available
accelerator servers.

VALIDATE RUN or VALIDATE BIND
Specifies whether to recheck, at run time, errors of the type "OBJECT NOT FOUND" and "NOT
AUTHORIZED" that are found during bind or rebind. The option has no effect if all objects and needed
privileges exist.
VALIDATE RUN

Specifies that if needed objects or privileges do not exist when the CREATE statement is
processed, warning messages are returned, but the CREATE statement succeeds. The Db2
subsystem rechecks for the objects and privileges at run time for those SQL statements that
failed the checks during processing of the CREATE statement. The authorization checks the use of
the authorization ID of the owner of the routine.

VALIDATE RUN is the default.

VALIDATE BIND
Specifies that if needed objects or privileges do not exist at the time the CREATE statement is
processed, an error is issued and the CREATE statement fails.

ROUNDING
Specifies the rounding mode for manipulation of DECFLOAT data. The default value is taken from the
DEFAULT DECIMAL FLOATING POINT ROUNDING MODE in DECP.
DEC_ROUND_CEILING

Specifies numbers are rounded towards positive infinity.
DEC_ROUND_DOWN

Specifies numbers are rounded towards 0 (truncation).
DEC_ROUND_FLOOR

Specifies numbers are rounded towards negative infinity.
DEC_ROUND_HALF_DOWN

Specifies numbers are rounded to nearest; if equidistant, round down.
DEC_ROUND_HALF_EVEN

Specifies numbers are rounded to nearest; if equidistant, round so that the final digit is even.
DEC_ROUND_HALF_UP

Specifies numbers are rounded to nearest; if equidistant, round up.
DEC_ROUND_UP

Specifies numbers are rounded away from 0.
DATE FORMAT ISO, EUR, USA, JIS, or LOCAL

Specifies the date format for result values that are string representations of date or time values. For
more information, see “String representations of datetime values” on page 120.

The default format is specified in the DATE FORMAT field of installation panel DSNTIP4 of the system
where the routine is defined. You cannot use the LOCAL option unless you have a date exit routine.

Chapter 7. Statements 1445

DECIMAL(15), DECIMAL(31), DECIMAL(15,s), or DECIMAL(31,s)
Specifies the maximum precision that is to be used for decimal arithmetic operations. For more
information see “Arithmetic with two decimal operands” on page 251. The default format is specified
in the DECIMAL ARITHMETIC field of installation panel DSNTIPF of the system where the routine is
defined. If the form pp.s is specified, s must be a number in the range 1–9. s represents the minimum
scale that is to be used for division.

FOR UPDATE CLAUSE OPTIONAL or FOR UPDATE CLAUSE REQUIRED
Specifies whether the FOR UPDATE clause is required for a DECLARE CURSOR statement if the cursor
is to be used to perform positioned updates.
FOR UPDATE CLAUSE REQUIRED

Specifies that a FOR UPDATE clause must be specified as part of the cursor definition if the cursor
will be used to make positioned updates.

FOR UPDATE CLAUSE REQUIRED is the default.

FOR UPDATE CLAUSE OPTIONAL
Specifies that the FOR UPDATE clause does not need to be specified in order for a cursor to be
used for positioned updates. The routine body can include positioned UPDATE statements that
update columns that the user is authorized to update.

The FOR UPDATE clause with no column list applies to static or dynamic SQL statements. Even if you
do not use this clause, you can specify FOR UPDATE OF with a column list to restrict updates to only
the columns that are identified in the FOR UPDATE clause and to specify the acquisition of update
locks.

TIME FORMAT ISO, EUR, USA, JIS, or LOCAL
Specifies the time format for result values that are string representations of date or time values. For
more information, see “String representations of datetime values” on page 120.

The default format is specified in the TIME FORMAT field of installation panel DSNTIP4 of the system
where the routine is defined. You cannot use the LOCAL option unless you have a date exit routine.

NOT SECURED or SECURED
Specifies if the function is considered secure for row access control and column access control. The
SECURED or NOT SECURED option applies to all future versions of the function.
NOT SECURED

Specifies that the function is not considered secure for row access control and column access
control.

NOT SECURED is the default.

When the function is invoked, the arguments of the function must not reference a column for
which a column mask is enabled when the table is using active column access control.

SECURED
Specifies that the function is considered secure for row access control and column access control.

The function must be secure when it is referenced in a row permission or a column mask.

BUSINESS_TIME SENSITIVE
Determines whether references to application-period temporal tables in both static and dynamic SQL
statements are affected by the value of the CURRENT TEMPORAL BUSINESS_TIME special register.
YES

References to application-period temporal tables are affected by the value of the CURRENT
TEMPORAL BUSINESS_TIME special register. YES is the default value.

NO
References to application-period temporal tables are not affected by the value of the CURRENT
TEMPORAL BUSINESS_TIME special register.

For more information, see “CURRENT TEMPORAL BUSINESS_TIME special register” on page 208.

1446 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SYSTEM_TIME SENSITIVE
Determines whether references to system-period temporal tables in both static and dynamic SQL
statements are affected by the value of the CURRENT TEMPORAL SYSTEM_TIME special register.
YES

References to system-period temporal tables are affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register. YES is the default value.

NO
References to system-period temporal tables are not affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

For more information, see “CURRENT TEMPORAL SYSTEM_TIME special register” on page 210.

ARCHIVE SENSITIVE
Determines whether references to archive-enabled tables in SQL statements are affected by the value
of the SYSIBMADM.GET_ARCHIVE built-in global variable.
YES

References to archive-enabled tables are affected by the value of the SYSIBMADM.GET_ARCHIVE
built-in global variable. YES is the default value.

NO
References to archive-enabled tables are not affected by the value of the
SYSIBMADM.GET_ARCHIVE built-in global variable.

For related information, see “GET_ARCHIVE” on page 330

APPLCOMPAT applcompat-level
Specifies the application compatibility level behavior for static SQL statements in the package. If this
option is not specified, the behavior is determined by the APPLCOMPAT subsystem parameter. The
following applcompat-level values can be specified:
VvvRrMmmm

Compatibility with the behavior of the identified Db2 function level. For example, V12R1M510
specifies compatibility with the highest available Db2 12 function level. The equivalent function
level or higher must be activated.

For the new capabilities that become available in each application compatibility level, see:

• SQL changes in Db2 13 application compatibility levels
• SQL changes in Db2 12 application compatibility levels

Tip: Extra program preparation steps might be required to increase the application compatibility
level for applications that use data server clients or drivers to access Db2 for z/OS. For more
information, see Setting application compatibility levels for data server clients and drivers (Db2
Application programming and SQL).

V12R1
Compatibility with the behavior of Db2 12 function level 500. This value has the same result as
specifying V12R1M500.

V11R1
Compatibility with the behavior of Db2 11 new-function mode. After migration to Db2 12, this
value has the same result as specifying V12R1M100. For more information, see V11R1 application
compatibility level (Db2 Application programming and SQL)

V10R1
Compatibility with the behavior of DB2 10 new-function mode. For more information, see V10R1
application compatibility level (Db2 Application programming and SQL).

CONCENTRATE STATEMENTS OFF or CONCENTRATE STATEMENTS WITH LITERALS
Specifies whether each dynamic SQL statement in the routine that specifies literal constants will be
cached as a separate unique statement entry in the dynamic statement cache, instead of sharing an

Chapter 7. Statements 1447

https://www.ibm.com/docs/en/SSEPEK_13.0.0/wnew/src/tpc/db2z_13_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html

existing statement in the cache. Dynamic SQL statements are eligible to share an existing statement
in the cache if the new statement meets all of the conditions for sharing a cached version of the same
dynamic statement, except that the new statement specifies one or more literal constants that are
different than the cached statement.
CONCENTRATE STATEMENTS OFF

Specifies that each dynamic SQL statement that specifies literal constants will be cached as a
unique statement entry if it specifies one or more constants that are different than the cached
version of the same dynamic statement. CONCENTRATE STATEMENTS OFF is the default dynamic
statement caching behavior.

CONCENTRATE STATEMENTS WITH LITERALS

Specifies that each dynamic SQL statement that specifies literal constants will share a cached
version of the same dynamic statement that is also prepared using the CONCENTRATE
STATEMENTS WITH LITERALS option, if the new dynamic statement meets all of the conditions for
sharing the cached statement, and the constants that are specified can be reused in place of the
constants in the cached statement.

SQL-routine-body
Specifies a single SQL control statement, including a compound-statement. See Chapter 8, “SQL
procedural language (SQL PL),” on page 2207 for more information about defining SQL functions.

An error is issued if an SQL function calls a procedure and the procedure issues a COMMIT,
ROLLBACK, CONNECT, RELEASE, or SET CONNECTION statement.

If the SQL-routine-body is a compound statement, it must contain at least one RETURN statement and
a RETURN statement must be executed when the function is invoked.

SQL-routine-body must not contain a period specification or period clause.

An ALTER FUNCTION (compiled SQL scalar) statement or an ALTER PROCEDURE (SQL native)
statement with an ADD VERSION clause or a REPLACE clause is not allowed in an SQL-routine-body.

WRAPPED obfuscated-statement-text
Specifies the encoded definition of the function. A CREATE FUNCTION statement can be encoded
using the WRAP scalar function.

WRAPPED must not be specified on a static CREATE statement.

Notes for CREATE FUNCTION (compiled SQL scalar)
Considerations for all types of user-defined functions:

For considerations that apply to all types of user-defined functions, see “CREATE FUNCTION
statement (overview)” on page 1424.

Types of SQL scalar functions:
If the syntax of the CREATE FUNCTION statement conforms to the syntax diagrams and descriptions
for CREATE FUNCTION (inlined SQL scalar), Db2 defines an inlined function, and a package is not
created. When an inlined SQL scalar function is invoked, the expression in the RETURN statement
of the function is copied (inlined) into the query itself; the function is not invoked. The attributes of
an inlined SQL scalar function are described in “CREATE FUNCTION statement (inlined SQL scalar
function)” on page 1489.

Otherwise, Db2 attempts to define a compiled function with an associated package. For example,
if the RETURN statement contains a scalar fullselect, Db2 attempts to define a compiled function.
The attributes of a compiled SQL scalar function are described in “CREATE FUNCTION statement
(compiled SQL scalar function)” on page 1428.

To determine what type of SQL scalar function is created, refer to the INLINE column of the
SYSIBM.SYSROUTINES catalog table. In the INLINE column, a value of Y indicates that the function is
an inlined function, and a value of N indicates that the function is a compiled function.

1448 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Considerations for functions defined with MODIFIES SQL DATA:
If a function is specified in a subselect, and the function is defined as MODIFIES SQL DATA, the
number of times the function is invoked is invoked will vary depending on the access plan used.

Self-referencing function:
The body of an SQL function (that is, the expression or NULL in the RETURN statement in the body
of the CREATE FUNCTION statement) cannot contain a recursive invocation of itself or to another
function that invokes it, because such a function would not exist to be referenced.

Dependent objects:
An SQL routine is dependent on objects that are referenced in the routine body.

Obfuscated statements:
A CREATE FUNCTION statement can be executed in obfuscated form. In an obfuscated statement,
only the function name, parameters, and the WRAPPED keyword are readable. The rest of the
statement is encoded in such a way that it is not readable but can be decoded by a database server
that supports obfuscated statements. The WRAP scalar function produces obfuscated statements.
Any debug options that are specified when the function is created from an obfuscated statement are
ignored.

Identifier resolution:
See Chapter 8, “SQL procedural language (SQL PL),” on page 2207 for information on how names are
resolved to columns, variables, or SQL parameters within an SQL routine.

If duplicate names are used for columns, variables, and parameters, qualify the duplicate names by
using the table designator for columns, the routine name for parameters, the label name for SQL
variables, and the schema name for global variables.

Error handling in SQL functions:
You should consider the possible exceptions that can occur for each SQL statement in the body of
a compiled SQL function. Any exception SQLSTATE that is not handled within the function (using a
handler), results in the exception SQLSTATE being returned for the SQL statement that caused the
function to be invoked.

Lines within the SQL function definition:
When a compiled SQL function is created, information is retained on lines in the CREATE statement.
Lines are determined by the presence of the new line control character.

In a compiled SQL scalar function, a new line control character is a special character that is used for a
new line. The new line control characters for a compiled SQL scalar function include:

• Line feed
• New line
• Carriage return
• Carriage return, followed by a line feed
• Carriage return, followed by a new line

For more information about control characters, see “Characters and tokens in SQL” on page 75.

Considerations for SQL processor programs:
SQL processor programs, such as SPUFI, the command line processor, and DSNTEP2, might not
correctly parse SQL statements in the routine body that end with semicolons. These processor
programs accept multiple SQL statements as input, with each statement separated with a terminator
character. Processor programs that use a semicolon as the SQL statement terminator can truncate
a CREATE FUNCTION statement with embedded semicolons and pass only a portion of it to Db2.
Therefore, you might need to change the SQL terminator character for these processor programs.
For information on changing the terminator character for SPUFI and DSNTEP2, see Setting the SQL
terminator character in a SPUFI input data set (Db2 Application programming and SQL).

Considerations for packages:
A package is generated for compiled SQL scalar functions. The package that is associated with the
first version of a function is named as follows:

• location is set to the value of the CURRENT SERVER special register.

Chapter 7. Statements 1449

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_setsqlterminator.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_setsqlterminator.html

• collection-id (schema) for the package is the same as the schema qualifier of the function.
• package-id is the same as the specific name of the function.
• version-id is the same as the version identifier for the initial version of the function.

The package is generated using the bind options that correspond to the implicitly or explicitly
specified function options. In addition to the corresponding bind options, the package is generated
using the following bind options:

• FLAG(I)
• SQLERROR(NOPACKAGE)
• ENABLE(*)

Correspondence of function options to bind command options:
The following table lists options for CREATE FUNCTION and ALTER FUNCTION and the corresponding
bind command option. See BIND and REBIND options for packages, plans, and services (Db2
Commands) for information about the BIND command options.

Table 195. Correspondence of function options to bind options

CREATE FUNCTION or ALTER FUNCTION option bind command option

ACCELERATION WAITFORDATA nnnn.m ACCELERATIONWAITFORDATA(nnnn.m)

ACCELERATOR accelerator-name ACCELERATOR(accelerator-name)

APPLICATION ENCODING SCHEME ASCII ENCODING(ASCII)

APPLICATION ENCODING SCHEME EBCDIC ENCODING(EBCDIC)

APPLICATION ENCODING SCHEME UNICODE ENCODING(UNICODE)

ARCHIVE SENSITIVE NO ARCHIVESENSITIVE(NO)

ARCHIVE SENSITIVE YES ARCHIVESENSITIVE(YES)

BUSINESS_TIME SENSITIVE NO BUSTIMESENSITIVE(NO)

BUSINESS_TIME SENSITIVE YES BUSTIMESENSITIVE(YES)

CURRENT DATA NO CURRENTDATA(NO)

CURRENT DATA YES CURRENTDATA(YES)

DYNAMICRULES RUN DYNAMICRULES(RUN)

DYNAMICRULES BIND DYNAMICRULES(BIND)

DYNAMICRULES DEFINEBIND DYNAMICRULES(DEFINEBIND)

DYNAMICRULES DEFINERUN DYNAMICRULES(DEFINERUN)

DYNAMICRULES INVOKEBIND DYNAMICRULES(INVOKEBIND)

DYNAMICRULES INVOKERUN DYNAMICRULES(INVOKERUN)

GET_ACCEL_ARCHIVE NO GETACCELARCHIVE(NO)

GET_ACCEL_ARCHIVE YES GETACCELARCHIVE(YES)

ISOLATION LEVEL CS ISOLATION(CS)

ISOLATION LEVEL RS ISOLATION(RS)

ISOLATION LEVEL RR ISOLATION(RR)

ISOLATION LEVEL UR ISOLATION(UR)

OPTHINT string-constant OPTHINT(hint-id)

1450 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html

Table 195. Correspondence of function options to bind options (continued)

CREATE FUNCTION or ALTER FUNCTION option bind command option

PACKAGE OWNER authorization-name OWNER(authorization-id)

QUALIFIER schema-name QUALIFIER(qualifier-name)

QUERY ACCELERATION NONE QUERYACCELERATION(NONE)

QUERY ACCELERATION ENABLE QUERYACCELERATION(ENABLE)

QUERY ACCELERATION ENABLE WITH FAILBACK QUERYACCELERATION(ENABLE WITH
FAILBACK)

QUERY ACCELERATION ELIGIBLE QUERYACCELERATION(ELIGIBLE)

QUERY ACCELERATION ALL QUERYACCELERATION(ALL)

REOPT ALWAYS REOPT(ALWAYS)

REOPT NONE REOPT(NONE)

REOPT ONCE REOPT(ONCE)

ROUNDING DEC_ROUND_CEILING ROUNDING(CEILING)

ROUNDING DEC_ROUND_DOWN ROUNDING(DOWN)

ROUNDING DEC_ROUND_FLOOR ROUNDING(FLOOR)

ROUNDING DEC_ROUND_HALF_DOWN ROUNDING(HALFDOWN)

ROUNDING DEC_ROUND_HALF_EVEN ROUNDING(HALFEVEN)

ROUNDING DEC_ROUND_HALF_UP ROUNDING(HALFUP)

ROUNDING DEC_ROUND_UP ROUNDING(UP)

SQL PATH path-specification PATH(path-specification)

SYSTEM_TIME SENSITIVE NO SYSTIMESENSITIVE(NO)

SYSTEM_TIME SENSITIVE YES SYSTIMESENSITIVE(YES)

VALIDATE BIND VALIDATE(BIND)

VALIDATE RUN VALIDATE(RUN)

WITH EXPLAIN EXPLAIN(YES)

WITHOUT EXPLAIN EXPLAIN(NO)

WITH IMMEDIATE WRITE IMMEDWRITE(YES)

WITHOUT IMMEDIATE WRITE IMMEDWRITE(NO)

Application compatibility level considerations for function objects
The application compatibility level controls the adoption and use of new capabilities and
enhancements. When an object is created or altered, two separate application compatibility levels
are used: one to process the definition of the object, and the other for processing the SQL statements
in the object body:

Object definition The CURRENT APPLICATION COMPATIBILITY special register value is
used to process the object definition, except for statements in the object
body

Chapter 7. Statements 1451

This application compatibility level is stored in the
SYSENVIRONMENT.APPLCOMPAT column. You can use the environment
ID value in the catalog definition of the object to locate the
SYSENVIRONMENT row with the matching ENVID value.

This application compatibility level can be changed when the object is
regenerated.

Statements in the
object body

The application compatibility level that is implicitly or explicitly specified
with the APPLCOMPAT option of the CREATE or ALTER statement is used to
process statements in the object body.

This application compatibility level is stored in the
SYSPACKAGE.APPLCOMPAT column for the package associated with the
object definition.

Deploying a compiled SQL scalar function:
When a BIND DEPLOY command is issued to deploy a compiled SQL scalar function to a target
location, the SECURED and NOT SECURED options are included in the deployment process.

When deploying a compiled SQL scalar function, if a function with the same target name does not
exist at the target location, the deployed function is created as a new function at the target location
with the same SECURED or NOT SECURED option that is specified (or the default of NOT SECURED is
used) in the source of the deployment.

When deploying a compiled SQL scalar function, if a function with the same target name already
exists at the target location, the deployed function is either added as a new version of the function,
or the deployed function is used to replace an existing version of the function. The SECURED or NOT
SECURED option of the deployed function must be the same as that of the existing function at the
target location.

Versions of a function:
The CREATE FUNCTION statement for an SQL function defines the initial version of the function. You
can define additional versions using the ADD VERSION clause of the ALTER FUNCTION statement. All
versions of a function share the same function signature and the same specific name. However, the
parameters names can differ between versions of a functions. Only one version of the function can be
considered to be the active version of the function.

Alternative syntax and synonyms:
To provide compatibility with previously releases of Db2 or other products in the Db2 family, Db2
supports the following alternative syntax:

• VARIANT as a synonym for NOT DETERMINISTIC
• NOT VARIANT as a synonym for DETERMINISTIC
• NOT NULL CALL as a synonym for RETURNS NULL ON NULL INPUT
• NULL CALL as a synonym for CALLED ON NULL INPUT
• TIMEZONE can be specified as an alternative to TIME ZONE.

Example for CREATE FUNCTION (compiled SQL scalar)

Define a scalar function that returns the text of an input string, in reverse order:

 CREATE FUNCTION REVERSE(INSTR VARCHAR(4000))
 RETURNS VARCHAR(4000)
 DETERMINISTIC NO EXTERNAL ACTION CONTAINS SQL
 BEGIN
 DECLARE REVSTR, RESTSTR VARCHAR(4000) DEFAULT '';
 DECLARE LEN INT;
 IF INSTR IS NULL THEN
 RETURN NULL;

1452 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 END IF;
 SET (RESTSTR, LEN) = (INSTR, LENGTH(INSTR));
 WHILE LEN > 0 DO
 SET (REVSTR, RESTSTR, LEN)
 = (SUBSTR(RESTSTR, 1, 1) CONCAT REVSTR,
 SUBSTR(RESTSTR, 2, LEN - 1),
 LEN - 1);
 END WHILE;
 RETURN REVSTR;
 END#

Related concepts
SQL scalar functions (Db2 Application programming and SQL)
Naming conventions
The rules for forming a name depend on the type of the object designated by the name.
Related tasks
Creating a user-defined function (Db2 Application programming and SQL)

CREATE FUNCTION statement (external scalar function)
This CREATE FUNCTION statement registers a user-defined external scalar function with a database
server. A scalar function returns a single value each time it is invoked.

Invocation for CREATE FUNCTION (external scalar)
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for CREATE FUNCTION (external scalar)
The privilege set defined below must include at least one of the following:

• The CREATEIN privilege on the schema
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The authorization ID that matches the schema name implicitly has the CREATEIN privilege on the
schema.

If the authorization ID that is used to create the function has the installation SYSADM authority or the
installation SYSOPR authority and if the current SQLID is set to SYSINSTL, the function is identified as
system-defined function.

Additional privileges are required if the function uses a table as a parameter, refers to a distinct type, or is
to run in a WLM (workload manager) environment. These privileges are:

• The SELECT privilege on any table that is an input parameter to the function.
• The USAGE privilege on each distinct type that the function references.
• Authority to create programs in the specified WLM environment. This authorization is obtained from an

external security product, such as RACF. For more information, see Managing authorizations for creation
of stored procedures in WLM environments (Managing Security).

At least one of the following additional privileges is required if the SECURED option is specified

• SECADM authority
• CREATE_SECURE_OBJECT privilege

When LANGUAGE is JAVA and a jar-name is specified in the EXTERNAL NAME clause, the privilege set
must include USAGE on the JAR file.

Chapter 7. Statements 1453

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_sqlscalarfn.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_defineudf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_manageaccess2wlmenv.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_manageaccess2wlmenv.html

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the owner is a role, the implicit schema match does
not apply and this role needs to include one of the previously listed conditions.

If the statement is dynamically prepared and is not running in a trusted context for which the ROLE AS
OBJECT OWNER clause is specified, the privilege set is the set of privileges that are held by the SQL
authorization ID of the process. If the schema name is not the same as the SQL authorization ID of the
process, one of the following conditions must be met:

• The privilege set includes SYSADM or SYSCTRL authority.
• The SQL authorization ID of the process has the CREATEIN privilege on the schema.

Syntax for CREATE FUNCTION (external scalar)

CREATE FUNCTION function-name (
,

parameter-declaration

)

RETURNS
1

data-type2

AS LOCATOR
2

data-type3 CAST FROM data-type4

AS LOCATOR
2

option-list

Notes:
1 This clause and the clauses that follow in the option-list can be specified in any order.
2 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data type.

parameter-declaration:

parameter-name

data-type

AS LOCATOR
1

TABLE LIKE table-name

view-name

AS LOCATOR

Notes:
1 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data type.

data-type:

built-in-type

distinct-type-name

built-in-type:

1454 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

BIT

DATA

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID ASCII

EBCDIC

UNICODE

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

ROWID

option-list: (The clauses in the option list can be specified in any order)

Chapter 7. Statements 1455

SPECIFIC specific-name

PARAMETER CCSID ASCII

EBCDIC

UNICODE

VARCHAR NULTERM

STRUCTURE

1

EXTERNAL

NAME external-program-name

identifier

LANGUAGE ASSEMBLE

C

COBOL

JAVA

PLI

PARAMETER STYLE SQL

PARAMETER STYLE JAVA

NOT DETERMINISTIC

DETERMINISTIC

FENCED

RETURNS NULL ON NULL INPUT

CALLED ON NULL INPUT

READS SQL DATA

MODIFIES SQL DATA

CONTAINS SQL

NO SQL

EXTERNAL ACTION

NO EXTERNAL ACTION

NO PACKAGE PATH

PACKAGE PATH package-path

NO SCRATCHPAD

SCRATCHPAD
100

length

NO FINAL CALL

FINAL CALL

ALLOW PARALLEL

DISALLOW PARALLEL
2

NO DBINFO

DBINFO

NO COLLID

COLLID collection-id

WLM ENVIRONMENT name

( name)

ASUTIME NO LIMIT

ASUTIME LIMIT integer

STAY RESIDENT NO

STAY RESIDENT YES

PROGRAM TYPE SUB

PROGRAM TYPE MAIN

SECURITY DB2

SECURITY USER

DEFINER

STOP AFTER SYSTEM DEFAULT FAILURES

STOP AFTER integer FAILURES

CONTINUE AFTER FAILURE

RUN OPTIONS runtime-options

INHERIT SPECIAL REGISTERS

DEFAULT SPECIAL REGISTERS

STATIC DISPATCH NOT SECURED

SECURED

Notes:
1 The same clause must not be specified more than one time.
2 If NOT DETERMINISTIC, EXTERNAL ACTION, SCRATCHPAD, or FINAL CALL is specified, DISALLOW
PARALLEL is the default.

1456 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

external-java-routine-name

jar-name :

method-name

method-signature

jar-name

schema-name .

jar-id

method-name

 package-id .

/
1

class-id .

!
2

method-id

method-signature

(
,

 java-datatype

)

Notes:
1 The slash (/) is supported for compatibility with previous release of Db2 for z/OS.
2 The exclamation point (!) is supported for compatibility with other products in the Db2 family.

Description for CREATE FUNCTION (external scalar)
function-name

Names the user-defined function. The name is implicitly or explicitly qualified by a schema name. For
more information, see "Choosing the schema and function names" and "Determining the uniqueness
of functions in a schema" in “CREATE FUNCTION statement (overview)” on page 1424.

(parameter-declaration,…)
Identifies the number of input parameters of the function, and specifies the data type of each
parameter. All of the parameters for a function are input parameters and are nullable. There must
be one entry in the list for each parameter that the function expects to receive. Although not required,
you can give each parameter a name.

A function can have no parameters. In this case, you must code an empty set of parentheses, for
example:

 CREATE FUNCTION WOOFER()

parameter-name
Specifies the name of the input parameter. The name is an SQL identifier, and each name in the
parameter list must not be the same as any other name.

data-type
Specifies the data type of the input parameter. The data type can be a built-in data type or a
distinct type.
built-in-type

The data type of the input parameter is a built-in data type.

Chapter 7. Statements 1457

For information on the data types, see built-in-type.

For parameters with a character or graphic data type, the PARAMETER CCSID clause or CCSID
clause indicates the encoding scheme of the parameter. If you do not specify either of these
clauses, the encoding scheme is the value of field DEF ENCODING SCHEME on installation
panel DSNTIPF.

distinct-type-name
The data type of the input parameter is a distinct type. Any length, precision, scale, subtype, or
encoding scheme attributes for the parameter are those of the source type of the distinct type.

If you specify the name of the distinct type without a schema name, Db2 resolves the schema
name by searching the schemas in the SQL path.

The implicitly or explicitly specified encoding scheme of all of the parameters with a character or
graphic string data type must be the same—either all ASCII, all EBCDIC, or all UNICODE.

Although parameters with a character data type have an implicitly or explicitly specified subtype
(BIT, SBCS, or MIXED), the function program can receive character data of any subtype. Therefore,
conversion of the input data to the subtype of the parameter might occur when the function is
invoked. An error occurs if mixed data that actually contains DBCS characters is used as the value
for an input parameter that is declared with an SBCS subtype.

Parameters with a datetime data type or a distinct type are passed to the function as a different
data type:

• A datetime type parameter is passed as a character data type, and the data is passed in ISO
format.

The encoding scheme for a datetime type parameter is the same as the implicitly or explicitly
specified encoding scheme of any character or graphic string parameters. If no character or
graphic string parameters are passed, the encoding scheme is the value of field DEF ENCODING
SCHEME on installation panel DSNTIPF.

• A distinct type parameter is passed as the source type of the distinct type.

AS LOCATOR
Specifies that a locator to the value of the parameter is passed to the function instead of the
actual value. Specify AS LOCATOR only for parameters with a LOB data type or a distinct type
based on a LOB data type. Passing locators instead of values can result in fewer bytes being
passed to the function, especially when the value of the parameter is very large.

The AS LOCATOR clause has no effect on determining whether data types can be promoted,
nor does it affect the function signature, which is used in function resolution.

TABLE LIKE table-name or view-name AS LOCATOR
Specifies that the parameter is a transition table. However, when the function is invoked, the
actual values in the transition table are not passed to the function. A single value is passed
instead. This single value is a locator to the table, which the function uses to access the columns
of the transition table. A function with a table parameter can only be invoked from the triggered
action of a trigger.

The use of TABLE LIKE provides an implicit definition of the transition table. It specifies that
the transition table has the same number of columns as the identified table or view. If a table
is specified, the transition table includes columns that are defined as implicitly hidden in the
table. The columns have the same data type, length, precision, scale, subtype, and encoding
scheme as the identified table or view, as they are described in catalog tables SYSCOLUMNS and
SYSTABLESPACE. The number of columns and the attributes of those columns are determined at
the time the CREATE FUNCTION statement is processed. Any subsequent changes to the number
of columns in the table or the attributes of those columns do not affect the parameters of the
function.

table-name or view-name must identify a table or view that exists at the current server. A view
cannot have columns of length 0. The name must not identify a declared temporary table. The
table that is identified can contain XML columns; however, the function cannot reference those

1458 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

XML columns. The name does not have to be the same name as the table that is associated
with the transition table for the trigger. An unqualified table or view name is implicitly qualified
according to the following rules:

• If the CREATE FUNCTION statement is embedded in a program, the implicit qualifier is the
authorization ID in the QUALIFIER bind option when the plan or package was created or last
rebound. If QUALIFIER was not used, the implicit qualifier is the owner of the plan or package.

• If the CREATE FUNCTION statement is dynamically prepared, the implicit qualifier is the SQL
authorization ID in the CURRENT SCHEMA special register.

When the function is invoked, the corresponding columns of the transition table identified by
the table locator and the table or view identified in the TABLE LIKE clause must have the same
definition. The data type, length, precision, scale, and encoding scheme of these columns must
match exactly. The description of the table or view at the time the CREATE FUNCTION statement
was executed is used.

Additionally, a character FOR BIT DATA column of the transition table cannot be passed as
input for a table parameter for which the corresponding column of the table specified at the
definition is not defined as character FOR BIT DATA. (The definition occurs with the CREATE
FUNCTION statement.) Likewise, a character column of the transition table that is not FOR BIT
DATA cannot be passed as input for a table parameter for which the corresponding column of the
table specified at the definition is defined as character FOR BIT DATA.

For more information about using table locators, see Accessing transition tables in a user-defined
function or stored procedure (Db2 Application programming and SQL).

RETURNS
Specifies the data type for the result of the function. Consider this clause in conjunction with the
optional CAST FROM clause.
data-type2

Specifies the data type of the output. The output parameter is nullable.

The same considerations that apply to the data type and nullability of input parameter, as
described under data-type, apply to the data type of the result of the function.

AS LOCATOR
Specifies that the function returns a locator to the value rather than the actual value. You can
specify AS LOCATOR only if the output from the function has a LOB data type or a distinct type
based on a LOB data type.

data-type3 CAST FROM data-type4
Specifies the data type of the output of the function (data-type4) and the data type in which that
output is returned to the invoking statement (data-type3). The two data types can be different. For
example, for the following definition, the function returns a DOUBLE value, which Db2 converts to
a DECIMAL value and then passes to the statement that invoked the function:

 CREATE FUNCTION SQRT(DECIMAL(15,0))
 RETURNS DECIMAL(15,0) CAST FROM DOUBLE
 ...

The value of data-type4 can be any built-in data type and must be castable to data-type3. The
value for data-type3 can be any built-in data type. (For information on casting data types, see
“Casting between data types” on page 130.) The encoding scheme of the parameters, if they are
string data types, must be the same.

If the PARAMETER VARCHAR clause is specified, data-type3 and data-type4 should be specified
as VARCHAR.

AS LOCATOR
Specifies that the function returns a locator to the value rather than the value. You can specify
AS LOCATOR only if data-type4 is a LOB data type or a distinct type based on a LOB data type.

Chapter 7. Statements 1459

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_accesstansitiontable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_accesstansitiontable.html

SPECIFIC specific-name
Specifies a unique name for the function. The name is implicitly or explicitly qualified with a schema
name. The name, including the schema name, must not identify the specific name of another function
that exists at the current server.

The unqualified form of specific-name is an SQL identifier. The qualified form is an SQL identifier (the
schema name) followed by a period and an SQL identifier.

If you do not specify a schema name, it is the same as the explicit or implicit schema name of the
function name (function-name). If you specify a schema name, it must be the same as the explicit or
implicit schema name of the function name.

If you do not specify the SPECIFIC clause, the default specific name is the name of the function.
However, if the function name does not provide a unique specific name or if the function name is a
single asterisk, Db2 generates a specific name in the form of:

SQLxxxxxxxxxxxx

where 'xxxxxxxxxxxx' is a string of 12 characters that make the name unique.

The specific name is stored in the SPECIFIC column of the SYSROUTINES catalog table. The specific
name can be used to uniquely identify the function in several SQL statements (such as ALTER
FUNCTION, COMMENT, DROP, GRANT, and REVOKE) and must be used in Db2 commands (START
FUNCTION, STOP FUNCTION, and DISPLAY FUNCTION). However, the function cannot be invoked by
its specific name.

PARAMETER CCSID or VARCHAR
Specifies the encoding scheme for character and graphic string parameters, and in the case of
LANGUAGE C, specifies that representation of variable length string parameters.
CCSID

Indicates whether the encoding scheme for character and graphic string parameters is ASCII,
EBCDIC, or UNICODE. The default encoding scheme is the value specified in the CCSID clauses
of the parameter list or RETURNS clause, or in the field DEF ENCODING SCHEME on installation
panel DSNTIPF.

This clause provides a convenient way to specify the encoding scheme for all string parameters.
If individual CCSID clauses are specified for individual parameters in addition to this PARAMETER
CCSID clause, the value specified in all of the CCSID clauses must be the same value that is
specified in this clause.

This clause also specifies the encoding scheme to be used for system-generated parameters of
the routine such as message tokens and DBINFO.

VARCHAR
Specifies that the representation of the values of varying length character string-parameters,
including, if applicable, the output of the function, for functions which specify LANGUAGE C.

This option can only be specified if LANGUAGE C is also specified.

NULTERM
Specifies that variable length character string parameters are represented in a NUL-
terminated string form.

STRUCTURE
Specifies that variable length character string parameters are represented in a VARCHAR
structure form.

Using the PARAMETER VARCHAR clause, there is no way to specify the VARCHAR form of an
individual parameter as there is with the PARAMETER CCSID clause. The PARAMETER VARCHAR
clause only applies to parameters in the parameter list of a function and in the RETURNS clause.
It does not apply to system-generated parameters of the routine such as message tokens and
DBINFO.

1460 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

In a data sharing environment, you should not specify the PARAMETER VARCHAR clause until
all members of the data sharing group support the clause. If some group members support this
clause and others do not, and PARAMETER VARCHAR is specified in an external routine, the
routine will encounter different parameter forms depending on which group member invokes the
routine.

EXTERNAL
Specifies that the CREATE FUNCTION statement is being used to define a new function that is based
on code that is written in an external programming language.

Db2 loads the load module when the function is invoked. The load module is created when the
program that contains the function body is compiled and link-edited. The load module does not need
to exist when the CREATE FUNCTION statement is executed. However, it must exist and be accessible
by the current server when the function is invoked.

You can specify the EXTERNAL clause in one of the following ways:

 EXTERNAL
 EXTERNAL NAME PKJVSP1
 EXTERNAL NAME 'PKJVSP1'

If you specify an external program name, you must use the NAME keyword. For example, this syntax is
not valid:

 EXTERNAL PKJVSP1

NAME external-program-name or identifier
Identifies the user-written code that implements the user-defined function.

If LANGUAGE is JAVA, external-program-name must be specified and enclosed in single quotation
marks, with no extraneous blanks within the single quotation marks. It must specify a valid
external-java-routine-name. If multiple external-program-names are specified, the total length of
all of them must not be greater than 1305 bytes and they must be separated by a space or a line
break. Do not specify a JAR file for a JAVA function for which NO SQL is also specified.

An external-java-routine-name contains the following parts:
jar-name

Identifies the name given to the JAR file when it was installed in the database. The name
contains jar-id, which can optionally be qualified with a schema. Examples are "myJar" and
"mySchema.myJar." The unqualified jar-id is implicitly qualified with a schema name according
to the following rules:

• If the statement is embedded in a program, the schema name is the authorization ID in
the QUALIFIER bind option when the package or plan was created or last rebound. If the
QUALIFIER was not specified, the schema name is the owner of the package or plan.

• If the statement is dynamically prepared, the schema name is the SQL authorization ID in
the CURRENT SCHEMA special register.

If jar-name is specified, it must exist when the CREATE FUNCTION statement is processed.

If jar-name is not specified, the function is loaded from the class file directly instead of
being loaded from a JAR file. Db2 searches the directories in the CLASSPATH associated
with the WLM Environment. Environmental variables for Java routines are specified in a data
set identified in a JAVAENV DD card on the JCL used to start the address space for a WLM-
managed function.

method-name
Identifies the name of the method and must not be longer than 254 bytes. Its package, class,
and method ID's are specific to Java and as such are not limited to 18 bytes. In addition, the
rules for what these can contain are not necessarily the same as the rules for an SQL ordinary
identifier.

Chapter 7. Statements 1461

package-id
Identifies a package. The concatenated list of package-ids identifies the package that the
class identifier is part of. If the class is part of a package, the method name must include
the complete package prefix, such as "myPacks.UserFuncs." The Java virtual machine
looks in the directory "/myPacks/UserFuncs/" for the classes.

class-id
Identifies the class identifier of the Java object.

method-id
Identifies the method identifier with the Java class to be invoked.

method-signature
Identifies a list of zero or more Java data types for the parameter list and must not be
longer than 1024 bytes. Specify the method-signature if the user-defined function involves any
input or output parameters that can be NULL. When the function being created is called, Db2
searches for a Java method with the exact method-signature. The number of java-datatype
elements specified indicates how many parameters that the Java method must have.

A Java procedure can have no parameters. In this case, you code an empty set of parentheses
for method-signature. If a Java method-signature is not specified, Db2 searches for a Java
method with a signature derived from the default JDBC types associated with the SQL types
specified in the parameter list of the CREATE FUNCTION statement.

For other values of LANGUAGE, the name can be a string constant that is no longer than 8
characters. It must conform to the naming conventions for load modules. Alphabetical extenders
for national languages can be used as the first character and as subsequent characters in the load
module name.

If you do not specify the NAME clause, 'NAME function-name' is implicit. In this case, function-
name must not be longer than 8 characters.

LANGUAGE
Specifies the language interface convention to which the body of the function is written. All programs
must be designed to run in IBM's Language Environment environment.
ASSEMBLE

The function is written in Assembler.
C

The function is written in C or C++.
COBOL

The function is written in COBOL, including the object-oriented language extensions.
JAVA

The user-defined function is written in Java and is executed in the Java Virtual Machine. When
LANGUAGE JAVA is specified, the EXTERNAL NAME clause must also be specified with a valid
external-java-routine-name and PARAMETER STYLE must be specified with JAVA.

Do not specify LANGUAGE JAVA when SCRATCHPAD, FINAL CALL, DBINFO, PROGRAM TYPE
MAIN, or RUN OPTIONS is in effect.

PLI
The function is written in PL/I.

PARAMETER STYLE
Specifies the conventions for passing parameters to and returning a value from the function.
SQL

Specifies the parameter passing convention that supports passing null values both as input and
for output. The parameters that are passed between the invoking SQL statement and the function
include:

• n parameters for the input parameters that are specified for the function
• A parameter for the result of the function

1462 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• n parameters for the indicator variables for the input parameters
• A parameter for the indicator variable for the result
• The SQLSTATE to be returned to Db2
• The qualified name of the function
• The specific name of the function
• The SQL diagnostic string to be returned to Db2
• The function can also pass from zero to three additional parameters:

– The scratchpad, if SCRATCHPAD is specified
– The call type, if FINAL CALL is specified
– The DBINFO structure, if DBINFO is specified

JAVA
Indicates that the user-defined function uses a convention for passing parameters that conforms
to the Java and SQLJ specifications. PARAMETER STYLE JAVA can be specified only if LANGUAGE
is specified as JAVA. JAVA must be specified for PARAMETER STYLE when LANGUAGE JAVA is
specified.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results each time that the function is invoked with
the same input arguments.
NOT DETERMINISTIC

The function might not return the same result each time that the function is invoked with the
same input arguments. The function depends on some state values that affect the results. Db2
uses this information to disable the merging of views and table expressions when processing
SELECT or SQL data change statements that refer to this function. An example of a function that
is not deterministic is one that generates random numbers, or any function that contains SQL
statements.

NOT DETERMINISTIC is the default.

Some functions that are not deterministic can receive incorrect results if the function is executed
by parallel tasks. Specify the DISALLOW PARALLEL clause for these functions.

DETERMINISTIC
The function always returns the same result each time that the function is invoked with the same
input arguments. An example of a deterministic function is a function that calculates the square
root of the input. Db2 uses this information to enable the merging of views and table expressions
for SELECT or SQL data change statements that refer to this function. DETERMINISTIC is not the
default. If applicable, specify DETERMINISTIC to prevent non-optimal access paths from being
chosen for SQL statements that refer to this function.

Db2 does not verify that the function program is consistent with the specification of DETERMINISTIC
or NOT DETERMINISTIC.

FENCED
Specifies that the external function runs in an external address space to prevent the function from
corrupting Db2 storage.

FENCED is the default.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
Specifies whether the function is called if any of the input arguments is null at execution time.
RETURNS NULL ON NULL INPUT

The function is not called if any of the input arguments is null. The result is the null value.
RETURNS NULL ON INPUT is the default.

Chapter 7. Statements 1463

CALLED ON NULL INPUT
The function is called regardless of whether any of the input arguments are null, making the
function responsible for testing for null argument values. The function can return a null or nonnull
value.

MODIFIES SQL DATA, READS SQL DATA, CONTAINS SQL, or NO SQL
Specifies the classification of SQL statements and nested routines that this routine can execute
or invoke. The database manager verifies that the SQL statements issued by the function, and all
routines locally invoked by the routine, are consistent with this specification; the verification is not
performed when nested remote routines are invoked. For the classification of each statement, see
Appendix D, “SQL statement data access classification for routines,” on page 2275.
MODIFIES SQL DATA

Specifies that the function can execute any SQL statement except the statements that are not
supported in functions. Do not specify MODIFIES SQL DATA when ALLOW PARALLEL is in effect.

If a function that is defined with MODIFIES SQL DATA is invoked anywhere except the select-
clause of the outermost SELECT statement, the results are unpredictable because the function
can be invoked multiple times depending on the access plan that is used.

Recommendation: If a SELECT statement invokes a function that is defined with the MODIFIES
SQL DATA option, ensure that statements nested inside the function do not modify objects that
are referenced in any SQL statement at a higher level of nesting. Otherwise, unpredictable results
are likely to occur.

READS SQL DATA
Specifies that the function can execute statements with a data access indication of READS SQL
DATA, CONTAINS SQL, or NO SQL. The function cannot execute SQL statements that modify data.
The default is READS SQL DATA.

CONTAINS SQL
Specifies that the function can execute only SQL statements with an access indication of
CONTAINS SQL or NO SQL. The function cannot execute statements that read or modify data.

NO SQL
Specifies that the function can execute only SQL statements with a data access classification of
NO SQL. Do not specify NO SQL for a JAVA function that uses a JAR file.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an object that Db2 does not
manage. An example of an external action is sending a message or writing a record to a file.

Because Db2 uses the RRS attachment for external functions, Db2 can participate in two-phase
commit with any other resource manager that uses RRS. For resource managers that do not use RRS,
there is no coordination of commit or rollback operations on non-Db2 resources.

EXTERNAL ACTION
Specifies that the function can take an action that changes the state of an object that Db2 does
not manage.

Some SQL statements that invoke functions with external actions can result in incorrect results if
parallel tasks execute the function. For example, if the function sends a note for each initial call to
it, one note is sent for each parallel task instead of once for the function. Specify the DISALLOW
PARALLEL clause for functions that do not work correctly with parallelism.

If you specify EXTERNAL ACTION, Db2:

• Materializes the views and table expressions in SELECT or data change statements statements
that refer to the function. This materialization can adversely affect the access paths that are
chosen for the SQL statements that refer to this function. Do not specify EXTERNAL ACTION if
the function does not have an external action.

• Does not move the function from one task control block (TCB) to another between FETCH
operations.

1464 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• Does not allow another function or stored procedure to use the TCB until the cursor is closed.
This is also applicable for cursors declared WITH HOLD.

The only changes to resources made outside of Db2 that are under the control of commit and
rollback operations are those changes made under RRS control.

EXTERNAL ACTION is the default.

NO EXTERNAL ACTION
Specifies that the function does not take any action that changes the state of an object that Db2
does not manage. Db2 uses this information to enable the merging of views and table expressions
for SELECT and data change statements that refer to this function. If applicable, specify NO
EXTERNAL ACTION to prevent non-optimal access paths from being chosen for SQL statements
that refer to this function.

Although the scope of global variables are beyond the scope of the routine, global variables can be
set in the routine body when NO EXTERNAL ACTION is specified.

Db2 does not verify that the function program is consistent with the specification of EXTERNAL
ACTION or NO EXTERNAL ACTION.

NO PACKAGE PATH or PACKAGE PATH package-path
Specifies the package path to use when the function is run. This is the list of the possible package
collections into which the DBRM this is associated with the function is bound.
NO PACKAGE PATH

Specifies that the list of package collections for the function is the same as the list of package
collection IDs for the program that invokes the function. If the program that invokes the function
does not use a package, Db2 resolves the package by using the CURRENT PACKAGE PATH special
register, the CURRENT PACKAGESET special register, or the PKLIST bind option (in this order).
For information about how Db2 uses these three items, see Binding an application plan (Db2
Application programming and SQL).

PACKAGE PATH package-path
Specifies a list of package collections, in the same format as the SET CURRENT PACKAGE PATH
special register.

If the COLLID clause is specified with PACKAGE PATH, the COLLID clause is ignored when the
function is invoked.

The package-path value that is provided when the function is created is checked when the
function is invoked. If package-path contains SESSION_USER (or USER), PATH, or PACKAGE PATH,
an error is returned when the package-path value is checked.

NO SCRATCHPAD or SCRATCHPAD
Specifies whether Db2 is to provide a scratchpad for the function. It is strongly recommended
that external functions be reentrant, and a scratchpad provides an area for the function to save
information from one invocation to the next.
NO SCRATCHPAD

Specifies that a scratchpad is not allocated and passed to the function. NO SCRATCHPAD is the
default.

SCRATCHPAD length
Specifies that when the function is invoked for the first time, Db2 allocates memory for a
scratchpad. A scratchpad has the following characteristics:

• length must be in the range 1–32767. The default value is 100 bytes.
• Db2 initializes the scratchpad to all binary zeros (X'00''s).
• The scope of a scratchpad is the SQL statement. For each reference to the function in an SQL

statement, there is one scratchpad. For example, assuming that function UDFX was defined with
the SCRATCHPAD keyword, three scratchpads are allocated for the three references to UDFX in
the following SQL statement:

Chapter 7. Statements 1465

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_bindplan.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_bindplan.html

 SELECT A, UDFX(A) FROM TABLEB
 WHERE UDFX(A) > 103 OR UDFX(A) < 19;

If the function is run under parallel tasks, one scratchpad is allocated for each parallel task of
each reference to the function in the SQL statement. This can lead to unpredictable results. For
example, if a function uses the scratchpad to count the number of times that it is invoked,
the count reflects the number of invocations done by the parallel task and not the SQL
statement. Specify the DISALLOW PARALLEL clause for functions that will not work correctly
with parallelism.

• The scratchpad is persistent. Db2 preserves its content from one invocation of the function to
the next. Any changes that the function makes to the scratchpad on one call are still there on the
next call. Db2 initializes the scratchpads when it begins to execute an SQL statement. Db2 does
not reset scratchpads when a correlated subquery begins to execute.

• The scratchpad can be a central point for the system resources that the function acquires. If the
function acquires system resources, specify FINAL CALL to ensure that Db2 calls the function
one more time so that the function can free those system resources.

Each time the function invoked, Db2 passes an additional argument to the function that contains
the address of the scratchpad.

If you specify SCRATCHPAD, Db2:

• Does not move the function from one task control block (TCB) to another between FETCH
operations.

• Does not allow another function or stored procedure to use the TCB until the cursor is closed.
This is also applicable for cursors declared WITH HOLD.

Do not specify SCRATCHPAD when LANGUAGE JAVA is in effect.

NO FINAL CALL or FINAL CALL
Specifies whether a final call is made to the function. A final call enables the function to free any
system resources that it has acquired. A final call is useful when the function has been defined
with the SCRATCHPAD keyword and the function acquires system resource and anchors them in the
scratchpad.
NO FINAL CALL

Specifies that a final call is not made to the function. The function does not receive an additional
argument that specifies the type of call. NO FINAL CALL is the default.

FINAL CALL
Specifies that a final call is made to the function. To differentiate between final calls and other
calls, the function receives an additional argument that specifies the type of call. The types of calls
are:
First call

Specifies that the first call to the function for this reference to the function in this SQL
statement. A first call is a normal call—SQL arguments are passed and the function is expected
to return a result.

Normal call
Specifies that SQL arguments are passed and the function is expected to return a result.

Final call
Specifies that the last call to the function to enable the function to free resources. A final call
is not a normal call. If an error occurs, Db2 attempts to make the final call unless the function
abended. A final call occurs at these times:

• End of statement: When the cursor is closed for cursor-oriented statements, or the execution
of the statement has completed.

• End of a parallel task: When the function is executed by parallel tasks.
• End of transaction: When normal end of statement processing does not occur. For example,

the logic of an application, for some reason, bypasses closing the cursor.

1466 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If a commit operation occurs while a cursor defined as WITH HOLD is open, a final call is made
when the cursor is closed or the application ends. If a commit occurs at the end of a parallel
task, a final call is made regardless of whether a cursor defined as WITH HOLD is open.

If a commit, rollback, or abort operation causes the final call, the function cannot issue any SQL
statements when it is invoked.

Some functions that use a final call can receive incorrect results if parallel tasks execute the
function. For example, if a function sends a note for each final call to it, one note is sent for
each parallel task instead of once for the function. Specify the DISALLOW PARALLEL clause for
functions that have inappropriate actions when executed in parallel.

Do not specify FINAL CALL when LANGUAGE JAVA is in effect.

ALLOW or DISALLOW PARALLEL
For a single reference to the function, specifies whether parallelism can be used when the function
is invoked. Although parallelism can be used for most scalar functions, some functions such as those
that depend on a single copy of the scratchpad cannot be invoked with parallel tasks.

Consider these characteristics when determining which clause to use:

• If all invocations of the function are completely independent from one another, specify ALLOW
PARALLEL.

• If each invocation of the function updates the scratchpad, providing values that are of interest to the
next invocation, such as incrementing a counter, specify DISALLOW PARALLEL.

• If the scratchpad is used only so that some expensive initialization processing is performed a
minimal number of times, specify ALLOW PARALLEL.

• If the function performs some external action that should apply to only one partition, specify
DISALLOW PARALLEL.

• If the function is defined with MODIFIES SQL DATA, specify DISALLOW PARALLEL, not ALLOW
PARALLEL.

ALLOW PARALLEL is the default unless NOT DETERMINISTIC, EXTERNAL ACTION, SCRATCHPAD, or
FINAL CALL is specified, in which case, DISALLOW PARALLEL is the default.

ALLOW PARALLEL
Specifies that Db2 can consider parallelism for the function. Parallelism is not forced on the SQL
statement that invokes the function or on any SQL statement in the function. Existing restrictions
on parallelism apply.

DISALLOW PARALLEL
Specifies that Db2 does not consider parallelism for the function.

NO DBINFO or DBINFO
Specifies whether additional status information is passed to the function when it is invoked.
NO DBINFO

No additional information is passed. NO DBINFO is the default.
DBINFO

An additional argument is passed when the function is invoked. The argument is a structure that
contains information such as the application runtime authorization ID, the schema name, the
name of a table or column that the function might be inserting into or updating, and identification
of the database server that invoked the function. For details about the argument and its structure,
see DBINFO structure (Db2 Application programming and SQL).

Do not specify DBINFO when LANGUAGE JAVA is in effect.

NO COLLID or COLLID collection-id
Identifies the package collection that is to be used when the function is executed. This is the package
collection into which the DBRM that is associated with the function program is bound.

Chapter 7. Statements 1467

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_dbinfo.html

NO COLLID
The package collection for the function is the same as the package collection of the program
that invokes the function. If a trigger invokes the function, the collection of the trigger package
is used. If the invoking program does not use a package, Db2 resolves the package by using the
CURRENT PACKAGE PATH special register, the CURRENT PACKAGESET special register, or the
PKLIST bind option (in this order). For details about how Db2 uses these three items, see the
information on package resolution in Overriding the values that Db2 uses to resolve package lists
(Db2 Application programming and SQL).

NO COLLID is the default.

COLLID collection-id
The name of the package collection that is to be used when the function is executed.

WLM ENVIRONMENT
Identifies the WLM (workload manager) application environment in which the function is to run. The
name of the WLM environment is an SQL identifier.

If you do not specify WLM ENVIRONMENT, the function runs in the WLM-established stored procedure
address space that is specified at installation time. When LANGUAGE is JAVA, you must specify WLM
ENVIRONMENT, and the WLM environment in which the function is to run must be Java-enabled.

name
The WLM environment in which the function must run. If another user-defined function or a stored
procedure calls the function and that calling routine is running in an address space that is not
associated with the WLM environment, Db2 routes the function request to a different address
space.

(name,*)
When an SQL application program directly invokes the function, the WLM environment in which
the function runs.

If another user-defined function or a stored procedure calls the function, the function runs in
same environment that the calling routine uses. In this case, authorization to run the function in
the WLM environment is not checked because the authorization of the calling routine suffices.

Users must have the appropriate authorization to execute functions in the specified WLM
environment.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single invocation of the
function can run. The value is unrelated to the ASUTIME column of the resource limit specification
table. This option is ignored if LANGUAGE JAVA is specified.

When you are debugging a function, setting a limit can be helpful if the function gets caught in a loop.
For information on service units, see z/OS MVS Initialization and Tuning Guide.

NO LIMIT
There is no limit on the service units. NO LIMIT is the default.

LIMIT integer
The limit on the number of CPU service units is a positive integer in the range 1–2147483647.
If the procedure uses more service units than the specified value, Db2 cancels the procedure.
The CPU cycles that are consumed by parallel tasks in a procedure do not contribute towards the
specified ASUTIME LIMIT.

STAY RESIDENT
Specifies whether the load module for the function is to remain resident in memory when the function
ends. This option is ignored if LANGUAGE JAVA is specified.
NO

The load module is deleted from memory after the function ends. Use NO for non-reentrant
functions. NO is the default.

1468 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_overridevaluespackagelist.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_overridevaluespackagelist.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae100/abstract.htm

YES
The load module remains resident in memory after the function ends. Use YES for reentrant
functions.

PROGRAM TYPE
Specifies whether the function program runs as a main routine or a subroutine.
SUB

The function runs as a subroutine. With LANGUAGE JAVA, PROGRAM TYPE SUB is the only valid
option. SUB is the default.

MAIN
The function runs as a main routine.

SECURITY
Specifies how the function interacts with an external security product, such as RACF, to control access
to non-SQL resources.
Db2

The function does not require an external security environment. If the function accesses
resources that an external security product protects, the access is performed using the
authorization ID that is associated with the WLM-established stored procedure address space.

Db2 is the default.

USER
An external security environment should be established for the function. If the function accesses
resources that the external security product protects, the access is performed using the primary
authorization ID of the process that invoked the function.

DEFINER
An external security environment should be established for the function. If the function accesses
resources that the external security product protects, the access is performed using the
authorization ID of the owner of the function.

STOP AFTER SYSTEM DEFAULT FAILURES, STOP AFTER nn FAILURES, or CONTINUE AFTER FAILURE
Specifies whether the routine is to be put in a stopped state after some number of failures.
STOP AFTER SYSTEM DEFAULT FAILURES

Specifies that this routine should be placed in a stopped state after the number of failures
indicated by the value of field MAX ABEND COUNT on installation panel DSNTIPX. This is the
default.

STOP AFTER nn FAILURES
Specifies that this routine should be placed in a stopped state after nn failures. The value nn can
be an integer 1–32767.

CONTINUE AFTER FAILURE
Specifies that this routine should not be placed in a stopped state after any failure.

RUN OPTIONS runtime-options
Specifies the Language Environment runtime options to be used for the function. You must specify
runtime-options as a character string that is no longer than 254 bytes. If you do not specify
RUN OPTIONS or pass an empty string, Db2 does not pass any runtime options to Language
Environment, and Language Environment uses its installation defaults. For a description of the
Language Environment runtime options, see Language Environment Programming Reference (z/OS
Language Environment Programming Reference).

Do not specify RUN OPTIONS when LANGUAGE JAVA is in effect.

INHERIT SPECIAL REGISTERS or DEFAULT SPECIAL REGISTERS
Specifies how special registers are set on entry to the routine.
INHERIT SPECIAL REGISTERS

Specifies that the values of special registers are inherited according to the rules listed in the
table for characteristics of special registers in a user-defined function in “Special registers in a
user-defined function or a stored procedure” on page 215.

Chapter 7. Statements 1469

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ceea300/abstract.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ceea300/abstract.htm

DEFAULT SPECIAL REGISTERS
Specifies that special registers are initialized to the default values, as indicated by the rules in the
table for characteristics of special registers in a user-defined function in “Special registers in a
user-defined function or a stored procedure” on page 215.

STATIC DISPATCH
At function resolution time, Db2 chooses a function based on the static (or declared) types of the
function parameters. STATIC DISPATCH is the default.

NOT SECURED or SECURED
Specifies if the function is considered secure for row access control and column access control.
NOT SECURED

Specifies that the function is not considered as secure for row access control and column access
control.

NOT SECURED is the default.

When the function is invoked, the arguments of the function must not reference a column for
which a column mask is enabled when the table is using active column access control.

SECURED
Specifies that the function is considered secure for row access control and column access control.

The function must be defined with SECURED when it is referenced in a row permission or a column
mask.

Notes for CREATE FUNCTION (external scalar)
Considerations for all types of user-defined functions:

For considerations that apply to all types of user-defined functions, see “CREATE FUNCTION
statement (overview)” on page 1424.

Character string representation considerations:
The PARAMETER VARCHAR clause is specific to LANGUAGE C functions because of the native use of
NUL-terminated strings in C. VARCHAR structure representation is useful when character string data
is known to contain embedded NUL-terminators. It is also useful when it cannot be guaranteed that
character string data does not contain embedded NUL-terminators.

PARAMETER VARCHAR does not apply to fixed length character strings, VARCHAR FOR BIT DATA,
CLOB, DBCLOB, or implicitly generated parameters. The clause does not apply to VARCHAR FOR BIT
DATA because BIT DATA can contain X'00' characters, and its value representation starts with length
information. It does not apply to LOB data because a LOB value representation starts with length
information.

PARAMETER VARCHAR does not apply to optional parameters that are implicitly provided to
an external function. For example, a CREATE FUNCTION statement for LANGUAGE C must also
specify PARAMETER STYLE SQL, which returns an SQLSTATE NULL-terminated character string; that
SQLSTATE will not be represented in VARCHAR structured form. Likewise, none of the parameters that
represent the qualified name of the function, the specific name of the function, or the SQL diagnostic
string that is returned to the database manager will be represented in VARCHAR structured form.

Running external functions in WLM environments:
You can use the WLM ENVIRONMENT clause to identify the address space in which a function or is
to run. Using different WLM environments lets you isolate one group of programs from another. For
example, you might choose to isolate programs based on security requirements and place all payroll
applications in one WLM environment because those applications deal with data, such as employee
salaries.

To prevent a user from defining functions in sensitive WLM environments, Db2 invokes the external
security manager to determine whether the user has authorization to issue CREATE FUNCTION
statements that refer to the specified WLM environment. The following example shows the RACF

1470 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

command that authorizes Db2 user DB2USER1 to register a function on Db2 subsystem DB2A that
runs in the WLM environment named PAYROLL.

 PERMIT DB2A.WLMENV.PAYROLL CLASS(DSNR) ID(DB2USER1) ACCESS(READ)

For more information, see Managing authorizations for creation of stored procedures in WLM
environments (Managing Security).

Considerations for accessing message tokens and DBINFO:
Db2 returns system-generated parameters from a routine, such as message tokens and DBINFO.
The message tokens and DBINFO are character string data. The CCSID for system-generated string
parameters is determined from the CCSID that is in effect for string parameters that are defined
for the routine. If the parameter list for the routine does not include any character or graphic string
parameters, the CCSID for system-generated string parameters is determined from the PARAMETER
CCSID option that is in effect for the routine. For example, with a Unicode database, you can specify
PARAMETER CCSID EBCDIC to have the system-generated string parameters returned to the invoking
application in EBCDIC.

Alternative syntax and synonyms:
To provide compatibility with previously releases of Db2 or other products in the Db2 family, Db2
supports the following alternative syntax:

• VARIANT as a synonym for NOT DETERMINISTIC
• NOT VARIANT as a synonym for DETERMINISTIC
• NOT NULL CALL as a synonym for RETURNS NULL ON NULL INPUT
• NULL CALL as a synonym for CALLED ON NULL INPUT
• PARAMETER STYLE DB2SQL as a synonym for PARAMETER STYLE SQL
• TIMEZONE can be specified as an alternative to TIME ZONE.

Examples for CREATE FUNCTION (external scalar)

Example 1
Assume that you want to write an external function program in C that implements the following logic:

 output = 2 * input - 4

The function should return a null value if and only if one of the input arguments is null. The simplest
way to avoid a function call and get a null result when an input value is null is to specify RETURNS
NULL ON NULL INPUT on the CREATE FUNCTION statement or allow it to be the default. Write the
statement needed to register the function, using the specific name MINENULL1.

 CREATE FUNCTION NTEST1 (SMALLINT)
 RETURNS SMALLINT
 EXTERNAL NAME 'NTESTMOD'
 SPECIFIC MINENULL1
 LANGUAGE C
 DETERMINISTIC
 NO SQL
 FENCED
 PARAMETER STYLE SQL
 RETURNS NULL ON NULL INPUT
 NO EXTERNAL ACTION;

Example 2
Assume that user Smith wants to register an external function named CENTER in schema SMITH. The
function program will be written in C and will be reentrant. Write the statement that Smith needs to
register the function, letting Db2 generate a specific name for the function.

 CREATE FUNCTION CENTER (INTEGER, FLOAT)
 RETURNS FLOAT
 EXTERNAL NAME 'MIDDLE'
 LANGUAGE C

Chapter 7. Statements 1471

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_manageaccess2wlmenv.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_manageaccess2wlmenv.html

 DETERMINISTIC
 NO SQL
 FENCED
 PARAMETER STYLE SQL
 NO EXTERNAL ACTION
 STAY RESIDENT YES;

Example 3
Assume that user McBride (who has administrative authority) wants to register an external function
named CENTER in the SMITH schema. McBride plans to give the function specific name FOCUS98.
The function program uses a scratchpad to perform some one-time only initialization and save the
results. The function program returns a value with a FLOAT data type. Write the statement McBride
needs to register the function and ensure that when the function is invoked, it returns a value with a
data type of DECIMAL(8,4).

 CREATE FUNCTION SMITH.CENTER (FLOAT, FLOAT, FLOAT)
 RETURNS DECIMAL(8,4) CAST FROM FLOAT
 EXTERNAL NAME 'CMOD'
 SPECIFIC FOCUS98
 LANGUAGE C
 DETERMINISTIC
 NO SQL
 FENCED
 PARAMETER STYLE SQL
 NO EXTERNAL ACTION
 SCRATCHPAD
 NO FINAL CALL;

Example 4
The following example registers a Java user-defined function that returns the position of the first
vowel in a string. The user-defined function is written in Java, is to be run fenced, and is the FINDVWL
method of class JAVAUDFS.

 CREATE FUNCTION FINDV (CLOB(100K))
 RETURNS INTEGER
 FENCED
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 EXTERNAL NAME 'JAVAUDFS.FINDVWL'
 NO EXTERNAL ACTION
 CALLED ON NULL INPUT
 DETERMINISTIC
 NO SQL;

Related concepts
External functions (Db2 Application programming and SQL)
Naming conventions
The rules for forming a name depend on the type of the object designated by the name.
Related tasks
Creating a user-defined function (Db2 Application programming and SQL)
Writing an external user-defined function (Db2 Application programming and SQL)

CREATE FUNCTION statement (external table function)
This CREATE FUNCTION statement registers a user-defined external table function with a database
server. A user-defined external table function can be used in the FROM clause of a subselect. It returns a
table to the subselect by returning one row at a time each time it is invoked.

Invocation for CREATE FUNCTION (external table)
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

1472 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_externaludf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_defineudf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_writeexternaludf.html

Authorization for CREATE FUNCTION (external table)
The privilege set defined below must include at least one of the following:

• The CREATEIN privilege on the schema
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The authorization ID that matches the schema name implicitly has the CREATEIN privilege on the
schema.

If the authorization ID that is used to create the function has the installation SYSADM authority or the
installation SYSOPR authority and if the current SQLID is set to SYSINSTL, the function is identified as
system-defined function.

Additional privileges are required if the function uses a table as a parameter, refers to a distinct type, or is
to run in a WLM (workload manager) environment. These privileges are:

• The SELECT privilege on any table that is an input parameter to the function.
• The USAGE privilege on each distinct type that the function references.
• Authority to create programs in the specified WLM environment. This authorization is obtained from an

external security product, such as RACF.

At least one of the following additional privileges is required if the SECURED option is specified

• SECADM authority
• CREATE_SECURE_OBJECT privilege

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the owner is a role, the implicit schema match does
not apply and this role needs to include one of the previously listed conditions.

If the statement is dynamically prepared and is not running in a trusted context for which the ROLE AS
OBJECT OWNER clause is specified, the privilege set is the set of privileges that are held by the SQL
authorization ID of the process. If the schema name is not the same as the SQL authorization ID of the
process, one of the following conditions must be met:

• The privilege set includes SYSADM or SYSCTRL authority.
• The SQL authorization ID of the process has the CREATEIN privilege on the schema.

Syntax for CREATE FUNCTION (external table)

CREATE FUNCTION function-name (
,

parameter-declaration

)

RETURNS

TABLE(

,

column-name data-type

AS LOCATOR
1

)

GENERIC TABLE

2

option-list

Notes:

Chapter 7. Statements 1473

1 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data type.
2 This clause and the clauses that follow in the option-list can be specified in any order.

parameter-declaration:

parameter-name

parameter-type

parameter-type:

data-type

AS LOCATOR
1

TABLE LIKE table-name

view-name

AS LOCATOR

Notes:
1 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data type.

data-type:

built-in-type

distinct-type-name

built-in-type:

1474 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

BIT

DATA

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID ASCII

EBCDIC

UNICODE

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

ROWID

option-list: (The clauses in the option-list can be specified in any order.)

Chapter 7. Statements 1475

SPECIFIC specific-name

PARAMETER
1

CCSID ASCII

EBCDIC

UNICODE

VARCHAR NULTERM

STRUCTURE

EXTERNAL

NAME string

identifier

LANGUAGE ASSEMBLE

C

COBOL

PLI

PARAMETER STYLE SQL
NOT DETERMINISTIC

DETERMINISTIC

FENCED

RETURNS NULL ON NULL INPUT

CALLED ON NULL INPUT

READS SQL DATA

CONTAINS SQL

NO SQL

EXTERNAL ACTION

NO EXTERNAL ACTION

NO PACKAGE PATH

PACKAGE PATH package-path

NO SCRATCHPAD

SCRATCHPAD
100

length

NO FINAL CALL

FINAL CALL

DISALLOW PARALLEL

NO DBINFO

DBINFO CARDINALITY integer

NO COLLID

COLLID collection-id

WLM ENVIRONMENT name

( name)

ASUTIME NO LIMIT

ASUTIME LIMIT integer

STAY RESIDENT NO

STAY RESIDENT YES

PROGRAM TYPE SUB

PROGRAM TYPE MAIN

SECURITY DB2

SECURITY USER

DEFINER

RUN OPTIONS runtime-options

INHERIT SPECIAL REGISTERS

DEFAULT SPECIAL REGISTERS

STATIC DISPATCH

STOP AFTER SYSTEM DEFAULT FAILURES

STOP AFTER integer FAILURES

CONTINUE AFTER FAILURE

NOT SECURED

SECURED

Notes:
1 The same clause must not be specified more than one time.

1476 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Description for CREATE FUNCTION (external table)
function-name

Names the user-defined function. The name is implicitly or explicitly qualified by a schema name. For
more information, see "Choosing the schema and function names" and "Determining the uniqueness
of functions in a schema" in “CREATE FUNCTION statement (overview)” on page 1424.

(parameter-declaration,…)
Identifies the number of input parameters of the function, and specifies the data type of each
parameter. All of the parameters for a function are input parameters and are nullable. There must
be one entry in the list for each parameter that the function expects to receive. Although not required,
you can give each parameter a name.

A function can have no parameters. In this case, you must code an empty set of parentheses, for
example:

 CREATE FUNCTION WOOFER()

parameter-name
Specifies the name of the input parameter. The name is an SQL identifier, and each name in the
parameter list must not be the same as any other name. The same name cannot be used for a
parameter name and a column name.

data-type
Specifies the data type of the input parameter. The data type can be a built-in data type or a
user-defined type.
built-in-type

The data type of the input parameter is a built-in data type.

For information on the data types, see built-in-type.

For parameters with a character or graphic data type, the PARAMETER CCSID clause or CCSID
clause indicates the encoding scheme of the parameter. If you do not specify either of these
clauses, the encoding scheme is the value of field DEF ENCODING SCHEME on installation
panel DSNTIPF.

distinct-type-name
The data type of the input parameter is a distinct type. Any length, precision, scale, subtype, or
encoding scheme attributes for the parameter are those of the source type of the distinct type.

If you specify the name of the distinct type without a schema name, Db2 resolves the schema
name by searching the schemas in the SQL path.

Although parameters with a character data type have an implicitly or explicitly specified subtype
(BIT, SBCS, or MIXED), the function program can receive character data of any subtype. Therefore,
conversion of the input data to the subtype of the parameter might occur when the function is
invoked. An error occurs if mixed data that actually contains DBCS characters is used as the value
for an input parameter that is declared with an SBCS subtype.

Parameters with a datetime data type or a distinct type are passed to the function as a different
data type:

• A datetime type parameter is passed as a character data type, and the data is passed in ISO
format.

The encoding scheme for a datetime type parameter is the same as the implicitly or explicitly
specified encoding scheme of any character or graphic string parameters. If no character or
graphic string parameters are passed, the encoding scheme is the value of field DEF ENCODING
SCHEME on installation panel DSNTIPF.

• A distinct type parameter is passed as the source type of the distinct type.

AS LOCATOR
Specifies that a locator to the value of the parameter is passed to the function instead of the
actual value. Specify AS LOCATOR only for parameters with a LOB data type or a distinct type

Chapter 7. Statements 1477

that is based on a LOB data type. Passing locators instead of values can result in fewer bytes
being passed to the function, especially when the value of the parameter is very large.

The AS LOCATOR clause has no effect on determining whether data types can be promoted,
nor does it affect the function signature, which is used in function resolution.

TABLE LIKE table-name or view-name AS LOCATOR
Specifies that the parameter is a transition table. However, when the function is invoked, the
actual values in the transition table are not passed to the function. A single value is passed
instead. This single value is a locator to the table, which the function uses to access the columns
of the transition table. A function with a table parameter can only be invoked from the triggered
action of a trigger.

The use of TABLE LIKE provides an implicit definition of the transition table. It specifies that
the transition table has the same number of columns as the identified table or view. If a table
is specified, the transition table includes columns that are defined as implicitly hidden in the
table. The columns have the same data type, length, precision, scale, subtype, and encoding
scheme as the identified table or view, as they are described in catalog tables SYSCOLUMNS and
SYSTABLESPACE. The number of columns and the attributes of those columns are determined at
the time the CREATE FUNCTION statement is processed. Any subsequent changes to the number
of columns in the table or the attributes of those columns do not affect the parameters of the
function.

table-name or view-name must identify a table or view that exists at the current server. A view
cannot have columns of length 0. The name must not identify a declared temporary table. The
table that is identified can contain XML columns; however, the function cannot reference those
XML columns. The name does not have to be the same name as the table that is associated
with the transition table for the trigger. An unqualified table or view name is implicitly qualified
according to the following rules:

• If the CREATE FUNCTION statement is embedded in a program, the implicit qualifier is the
authorization ID in the QUALIFIER bind option when the plan or package was created or last
rebound. If QUALIFIER was not used, the implicit qualifier is the owner of the plan or package.

• If the CREATE FUNCTION statement is dynamically prepared, the implicit qualifier is the SQL
authorization ID in the CURRENT SCHEMA special register.

When the function is invoked, the corresponding columns of the transition table identified by
the table locator and the table or view identified in the TABLE LIKE clause must have the same
definition. The data type, length, precision, scale, and encoding scheme of these columns must
match exactly. The description of the table or view at the time the CREATE FUNCTION statement
was executed is used.

Additionally, a character FOR BIT DATA column of the transition table cannot be passed as
input for a table parameter for which the corresponding column of the table specified at the
definition is not defined as character FOR BIT DATA. (The definition occurs with the CREATE
FUNCTION statement.) Likewise, a character column of the transition table that is not FOR BIT
DATA cannot be passed as input for a table parameter for which the corresponding column of the
table specified at the definition is defined as character FOR BIT DATA.

For more information about using table locators, see Accessing transition tables in a user-defined
function or stored procedure (Db2 Application programming and SQL).

RETURNS TABLE(column-name data-type ...)
Identifies that the output of the function is a table. The parentheses that follow the keyword enclose
the list of names and data types of the columns of the table.
column-name

Specifies the name of the column. The name is an SQL identifier and must be unique within the
RETURNS TABLE clause for the function.

data-type
Specifies the data type of the column. The column is nullable.

1478 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_accesstansitiontable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_accesstansitiontable.html

AS LOCATOR
Specifies that the function returns a locator to the value rather than the actual value. You can
specify AS LOCATOR only for a LOB data type or a distinct type based on a LOB data type.

RETURNS GENERIC TABLE
Specifies that the output of the function is a generic table. This option can only be specified if
LANGUAGE C is also specified.

The names and data types of the columns must be declared when the table function is references
using the typed-correlation-clause of the subselect.

For more information, see “typed-correlation-clause” on page 1029.

SPECIFIC specific-name
Specifies a unique name for the function. The name is implicitly or explicitly qualified with a schema
name. The name, including the schema name, must not identify the specific name of another function
that exists at the current server.

The unqualified form of specific-name is an SQL identifier. The qualified form is an SQL identifier (the
schema name) followed by a period and an SQL identifier.

If you do not specify a schema name, it is the same as the explicit or implicit schema name of the
function name (function-name). If you specify a schema name, it must be the same as the explicit or
implicit schema name of the function name.

If you do not specify the SPECIFIC clause, the default specific name is the name of the function.
However, if the function name does not provide a unique specific name or if the function name is a
single asterisk, Db2 generates a specific name in the form of:

SQLxxxxxxxxxxxx

where 'xxxxxxxxxxxx' is a string of 12 characters that make the name unique.

The specific name is stored in the SPECIFIC column of the SYSROUTINES catalog table. The specific
name can be used to uniquely identify the function in several SQL statements (such as ALTER
FUNCTION, COMMENT, DROP, GRANT, and REVOKE) and in Db2 commands (START FUNCTION, STOP
FUNCTION, and DISPLAY FUNCTION). However, the function cannot be invoked by its specific name.

PARAMETER CCSID or VARCHAR

CCSID
Indicates whether the encoding scheme for character or graphic string parameters is ASCII,
EBCDIC, or UNICODE. The default encoding scheme is the value specified in the CCSID clauses
of the parameter list or RETURNS TABLE clause, or in the field DEF ENCODING SCHEME on
installation panel DSNTIPF.

This clause provides a convenient way to specify the encoding scheme for character or graphic
string parameters. If individual CCSID clauses are specified for individual parameters in addition
to this PARAMETER CCSID clause, the value specified in all of the CCSID clauses must be the
same value that is specified in this clause.

This clause also specifies the encoding scheme to be used for system-generated parameters of
the routine such as message tokens and DBINFO.

VARCHAR
Specifies that the representation of the values of varying length character string-parameters,
including, if applicable, the output of the function, for functions which specify LANGUAGE C.

This option can only be specified if LANGUAGE C is also specified.

NULTERM
Specifies that variable length character string parameters are represented in a NUL-
terminated string form.

Chapter 7. Statements 1479

STRUCTURE
Specifies that variable length character string parameters are represented in a VARCHAR
structure form.

Using the PARAMETER VARCHAR clause, there is no way to specify the VARCHAR form of an
individual parameter as these is with PARAMETER CCSID. The PARAMETER VARCHAR clause only
applies to parameters in the parameter list of a function and in the RETURNS TABLE clause.
It does not apply to system-generated parameters of the routine such as message tokens and
DBINFO.

In a data sharing environment, you should not specify the PARAMETER VARCHAR clause until
all members of the data sharing group support the clause. If some group members support this
clause and others do not, and PARAMETER VARCHAR is specified in an external routine, the
routine will encounter different parameter forms depending on which group member invokes the
routine.

EXTERNAL
Specifies that the function being registered is based on code that is written in an external
programming language and adheres to the documented linkage conventions and interface of that
language.

If you do not specify the NAME clause, 'NAME function-name' is implicit. In this case, function-name
must not be longer than 8 characters.

NAME string or identifier
Identifies the name of the load module that contains the user-written code that implements the
logic of the function.

For other values of LANGUAGE, the name can be a string constant that is no longer than 8
characters. It must conform to the naming conventions for load modules. Alphabetical extenders
for national languages can be used as the first character and as subsequent characters in the load
module name.

Db2 loads the load module when the function is invoked. The load module is created when the
program that contains the function body is compiled and link-edited. The load module does not need
to exist when the CREATE FUNCTION statement is executed. However, it must exist and be accessible
by the current server when the function is invoked.

You can specify the EXTERNAL clause in one of the following ways:

 EXTERNAL
 EXTERNAL NAME PKJVSP1
 EXTERNAL NAME 'PKJVSP1'

If you specify an external program name, you must use the NAME keyword. For example, this syntax is
not valid:

 EXTERNAL PKJVSP1

LANGUAGE
Specifies the application programming language in which the function program is written. All
programs must be designed to run in IBM's Language Environment environment.
ASSEMBLE

The function is written in Assembler.
C

The function is written in C or C++. The VARCHAR clause can only be specified is LANGUAGE C is
specified.

COBOL
The function is written in COBOL, including the object-oriented language extensions.

PLI
The function is written in PL/I.

1480 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

PARAMETER STYLE SQL
Specifies the linkage convention that the function program uses to receive input parameters from and
pass return values to the invoking SQL statement.

PARAMETER STYLE SQL specifies the parameter passing convention that supports passing null values
both as input and for output.

If the RETURNS TABLE clause is specified, the parameters that are passed between the invoking SQL
statement and the function include:

• n parameters for the input parameters that are specified for the function
• m parameters for the result columns of the function that are specified on the RETURNS TABLE

clause
• n parameters for the indicator variables for the input parameters
• m parameters for the indicator variables of the result columns of the function that are specified on

the RETURNS TABLE clause
• The SQLSTATE to be returned to Db2
• The qualified name of the function
• The specific name of the function
• The SQL diagnostic string to be returned to Db2
• The scratchpad, if SCRATCHPAD is specified
• The call type
• The DBINFO structure, if DBINFO is specified

If the RETURNS GENERIC TABLE clause is specified, the parameters that are passed between the
invoking SQL statement and the function include:

• n parameters for the input parameters that are specified for the function
• n parameters for the indicator variables for the input parameters
• m parameters for the result columns of the function that are specified on the RETURNS GENERIC

TABLE clause
• A result table descriptor that contains the following:

– m result columns of the function that are specified in the typed-correlation-clause of the table-
function-reference in a SELECT statement

– An array of m, 4-byte addresses to the values of the result columns
– An array of m, null indicators of the result columns

• The SQLSTATE to be returned to Db2
• The qualified name of the function
• The specific name of the function
• The SQL diagnostic string to be returned to Db2
• The scratchpad, if SCRATCHPAD is specified
• The call type
• The DBINFO structure, if DBINFO is specified

For complete details about the structure of the parameter list that is passed, see DBINFO structure
(Db2 Application programming and SQL).

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns function returns the same results each time that the function is
invoked with the same input arguments.
NOT DETERMINISTIC

The function might not return the same results each time that the function is invoked with the
same input arguments. The function depends on some state values that affect the results. Db2

Chapter 7. Statements 1481

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_dbinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_dbinfo.html

uses this information to disable the merging of views and table expressions when processing
SELECT and SQL data change statements that refer to this function. An example of a function
that is not deterministic is one that generates random numbers, or any function that contains SQL
statements.

NOT DETERMINISTIC is the default.

DETERMINISTIC
The function always returns the same result each time that the function is invoked with the same
input arguments. An example of a deterministic function is a function that calculates the square
root of the input. Db2 uses this information to enable the merging of views and table expressions
for SELECT and SQL data change statements that refer to this function. DETERMINISTIC is not the
default. If applicable, specify DETERMINISTIC to prevent non-optimal access paths from being
chosen for SQL statements that refer to this function.

Db2 does not verify that the function program is consistent with the specification of DETERMINISTIC
or NOT DETERMINISTIC.

FENCED
Specifies that the function runs in an external address space to prevent the function from corrupting
Db2 storage.

FENCED is the default.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
Specifies whether the function is called if any of the input arguments is null at execution time.
RETURNS NULL ON NULL INPUT

The function is not called if any of the input arguments is null. The result is an empty table, which
is a table with no rows. RETURNS NULL ON INPUT is the default.

CALLED ON NULL INPUT
The function is called regardless of whether any of the input arguments are null, making the
function responsible for testing for null argument values. The function can return an empty table,
depending on its logic.

READS SQL DATA, CONTAINS SQL, or NO SQL
Specifies the classification of SQL statements and nested routines that this routine can execute
or invoke. The database manager verifies that the SQL statements issued by the function, and all
routines locally invoked by the routine, are consistent with this specification; the verification is not
performed when nested remote routines are invoked. For the classification of each statement, see
Appendix D, “SQL statement data access classification for routines,” on page 2275.
READS SQL DATA

Specifies that the function can execute statements with a data access indication of READS SQL
DATA, CONTAINS SQL, or NO SQL. The function cannot execute SQL statements that modify data.

CONTAINS SQL
Specifies that the function can execute only SQL statements with an access indication of
CONTAINS SQL or NO SQL. The function cannot execute statements that read or modify data.

NO SQL
Specifies that the function can execute only SQL statements with a data access classification of
NO SQL.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an object that Db2 does not
manage. An example of an external action is sending a message or writing a record to a file.

Because Db2 uses the RRS attachment for functions, Db2 can participate in two-phase commit with
any other resource manager that uses RRS. For resource managers that do not use RRS, there is no
coordination of commit or rollback operations on non-Db2 resources.

EXTERNAL ACTION
The function can take an action that changes the state of an object that Db2 does not manage.

1482 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If you specify EXTERNAL ACTION, Db2:

• Materializes the views and table expressions in SELECT and SQL data change statements that
refer to the function. This materialization can adversely affect the access paths that are chosen
for the SQL statements that refer to this function. Do not specify EXTERNAL ACTION if the
function does not have an external action.

• Does not move the function from one task control block (TCB) to another between FETCH
operations.

• Does not allow another function or stored procedure to use the TCB until the cursor is closed.
This is also applicable for cursors declared WITH HOLD.

The only changes to resources made outside of Db2 that are under the control of commit and
rollback operations are those changes made under RRS control.

EXTERNAL ACTION is the default.

NO EXTERNAL ACTION
The function does not take any action that changes the state of an object that Db2 does not
manage. Db2 uses this information to enable the merging of views and table expressions for
SELECT and SQL data change statements that refer to this function. If applicable, specify NO
EXTERNAL ACTION to prevent non-optimal access paths from being chosen for SQL statements
that refer to this function.

Although the scope of global variables are beyond the scope of the routine, global variables can be
set in the routine body when NO EXTERNAL ACTION is specified.

NO PACKAGE PATH or PACKAGE PATH package-path
Specifies the packagecpath to use when the function is run. This is the list of the possible package
collections into which the DBRM this is associated with the function is bound.
NO PACKAGE PATH

Specifies that the list of package collections for the function is the same as the list of package
collection IDs for the program that invokes the function. If the program that invokes the function
does not use a package, Db2 resolves the package by using the CURRENT PACKAGE PATH special
register, the CURRENT PACKAGESET special register, or the PKLIST bind option (in this order).
For information about how Db2 uses these three items, see Binding an application plan (Db2
Application programming and SQL).

PACKAGE PATH package-path
Specifies a list of package collections, in the same format as the SET CURRENT PACKAGE PATH
special register.

If the COLLID clause is specified with PACKAGE PATH, the COLLID clause is ignored when the
function is invoked.

The package-path value that is provided when the function is created is checked when the
function is invoked. If package-path contains SESSION_USER (or USER), PATH, or PACKAGE PATH,
an error is returned when the package-path value is checked.

NO SCRATCHPAD or SCRATCHPAD
Specifies whether Db2 provides a scratchpad for the function. It is strongly recommended that
functions be reentrant, and a scratchpad provides an area for the function to save information from
one invocation to the next.
NO SCRATCHPAD

Specifies that a scratchpad is not allocated and passed to the function. NO SCRATCHPAD is the
default.

SCRATCHPAD length
Specifies that when the function is invoked for the first time, Db2 allocates memory for a
scratchpad. A scratchpad has the following characteristics:

• length must be in the range 1–32767. The default value is 100 bytes.
• Db2 initializes the scratchpad to all binary zeros (X'00''s).

Chapter 7. Statements 1483

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_bindplan.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_bindplan.html

• The scope of a scratchpad is the SQL statement. Each reference to the function in an SQL
statement has a scratchpad. For example, assuming that function UDFX was defined with the
SCRATCHPAD keyword, two scratchpads are allocated for the two references to UDFX in the
following SQL statement:

 SELECT *
 FROM TABLE (UDFX(A)), TABLE (UDFX(B));

• The scratchpad is persistent. Db2 preserves its content from one invocation of the function to
the next. Any changes that the function makes to the scratchpad on one call are still there on the
next call. Db2 initializes the scratchpads when it begins to execute an SQL statement. Db2 does
not reset scratchpads when a correlated subquery begins to execute.

• The scratchpad can be a central point for the system resources that the function acquires. If the
function acquires system resources, specify FINAL CALL to ensure that Db2 calls the function
one more time so that the function can free those system resources.

Each time the function invoked, Db2 passes an additional argument to the function that contains
the address of the scratchpad.

If you specify SCRATCHPAD, Db2:

• Does not move the function from one task control block (TCB) to another between FETCH
operations.

• Does not allow another function or stored procedure to use the TCB until the cursor is closed. This is
also applicable for cursors declared WITH HOLD.

NO FINAL CALL or FINAL CALL
Specifies whether a first call and a final call are made to the function.
NO FINAL CALL

A first call and final call are not made to the function. NO FINAL CALL is the default.
FINAL CALL

A first call and final call are made to the function in addition to one or more open, fetch, or close
calls.

The types of calls are:
First call

A first call occurs only if the function was defined with FINAL CALL. Before a first call, the
scratchpad is set to binary zeros. Argument values are passed to the function, and the function
might acquire memory or perform other one-time only resource initialization. However, the
function should not return any data to Db2, but it can set return values for the SQL-state and
diagnostic-message arguments.

Open call
An open call occurs unless the function returns an error. The scratchpad is set to binary zeros
only if the function was defined with NO FINAL CALL. Argument values are passed to the function,
and the function might perform any one-time initialization actions that are required. However, the
function should not return any data to Db2.

Fetch call
A fetch call occurs unless the function returns an error during the first call or open call. Argument
values are passed to the function, and Db2 expects the function to return a row of data or the
end-of-table condition. If a scratchpad is also passed to the function, it remains untouched from
the previous call.

Close call
A close call occurs unless the function returns an error during the first call, open call, or fetch
call. No SQL-argument or SQL-argument-ind values are passed to the function, and if the function
attempts to examine these values, unpredictable results might occur. If a scratchpad is also
passed to the function, it remains untouched from the previous call.

The function should not return any data to Db2, but it can set return values for the SQL-state and
diagnostic-message arguments. Also on close call, a function that is defined with NO FINAL CALL

1484 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

should release any system resources that it acquired. (A function that is defined with FINAL CALL
should release any acquired resources on the final call.)

Final
The final call balances the first call, and like the first call, occurs only if the function was defined
with FINAL CALL. The function can set return values for the SQL-state and diagnostic-message
arguments. The function should also release any system resources that it acquired. A final call
occurs at these times:

• End of statement: When the cursor is closed for cursor-oriented statements, or the execution of
the statement has completed.

• End of transaction: When normal end of statement processing does not occur. For example, the
logic of an application, for some reason, bypasses closing the cursor.

If a commit, rollback, or abort operation causes the final call, the function cannot issue any SQL
statements when it is invoked.

DISALLOW PARALLEL
Specifies that Db2 does not consider parallelism for the function.

NO DBINFO or DBINFO
Specifies whether additional status information is passed to the function when it is invoked.
NO DBINFO

No additional information is passed. NO DBINFO is the default.
DBINFO

An additional argument is passed when the function is invoked. The argument is a structure that
contains information such as the application run time authorization ID, the schema name, the
name of a table or column that the function might be inserting into or updating, and identification
of the database server that invoked the function. For details about the argument and its structure,
see DBINFO structure (Db2 Application programming and SQL).

CARDINALITY integer
Specifies an estimate of the expected number of rows that the function returns. The number is used
for optimization purposes. The value of integer must range 0–2147483647.

If you do not specify CARDINALITY, Db2 assumes a finite value. The finite value is the same value that
Db2 assumes for tables for which the RUNSTATS utility has not gathered statistics.

If a function has an infinite cardinality—the function never returns the "end-of-table" condition and
always returns a row, then a query that requires the "end-of-table" to work correctly will need to be
interrupted. Thus, avoid using such functions in queries that involve GROUP BY and ORDER BY.

NO COLLID or COLLID collection-id
Identifies the package collection that is to be used when the function is executed. This is the package
collection into which the DBRM that is associated with the function program is bound.
NO COLLID

The package collection for the function is the same as the package collection of the program
that invokes the function. If a trigger invokes the function, the collection of the trigger package
is used. If the invoking program does not use a package, Db2 resolves the package by using the
CURRENT PACKAGE PATH special register, the CURRENT PACKAGESET special register, or the
PKLIST bind option (in this order). For details about how Db2 uses these three items, see the
information on package resolution in Overriding the values that Db2 uses to resolve package lists
(Db2 Application programming and SQL).

NO COLLID is the default.

COLLID collection-id
The name of the package collection that is to be used when the external is executed.

WLM ENVIRONMENT
Identifies the WLM (workload manager) application environment in which the function is to run. The
name of the WLM environment is an SQL identifier.

Chapter 7. Statements 1485

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_dbinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_overridevaluespackagelist.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_overridevaluespackagelist.html

If you do not specify WLM ENVIRONMENT, the function runs in the WLM-established stored procedure
address space that is specified at installation time.

name
The WLM environment in which the function must run. If another user-defined function or a stored
procedure calls the function and that calling routine is running in an address space that is not
associated with the WLM environment, Db2 routes the function request to a different address
space.

(name,*)
When an SQL application program directly invokes the function, the WLM environment in which
the function runs.

If another user-defined function or a stored procedure calls the function, the function runs in
same environment that the calling routine uses. In this case, authorization to run the function in
the WLM environment is not checked because the authorization of the calling routine suffices.

Users must have the appropriate authorization to execute functions in the specified WLM
environment.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single invocation of the
function can run. The value is unrelated to the ASUTIME column of the resource limit specification
table.

When you are debugging a function, setting a limit can be helpful if the function gets caught in a loop.
For information on service units, see z/OS MVS Initialization and Tuning Guide.

NO LIMIT
There is no limit on the service units. NO LIMIT is the default.

LIMIT integer
The limit on the number of CPU service units is a positive integer in the range 1–2147483647.
If the procedure uses more service units than the specified value, Db2 cancels the procedure.
The CPU cycles that are consumed by parallel tasks in a procedure do not contribute towards the
specified ASUTIME LIMIT.

STAY RESIDENT
Specifies whether the load module for the function is to remain resident in memory when the function
ends.
NO

The load module is deleted from memory after the function ends. Use NO for non-reentrant
functions. NO is the default.

YES
The load module remains resident in memory after the function ends. Use YES for reentrant
functions.

PROGRAM TYPE
Specifies whether the function program runs as a main routine or a subroutine.
SUB

The function runs as a subroutine. SUB is the default.
MAIN

The function runs as a main routine.
SECURITY

Specifies how the function interacts with an external security product, such as RACF, to control access
to non-SQL resources.
Db2

The function does not require an external security environment. If the function accesses
resources that an external security product protects, the access is performed using the
authorization ID that is associated with the WLM-established stored procedure address space.

1486 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae100/abstract.htm

Db2 is the default.

USER
An external security environment should be established for the function. If the function accesses
resources that the external security product protects, the access is performed using the primary
authorization ID of the process that invoked the function.

DEFINER
An external security environment should be established for the function. If the function accesses
resources that the external security product protects, the access is performed using the
authorization ID of the owner of the function.

RUN OPTIONS runtime-options
Specifies the Language Environment run time options to be used for the function. You must specify
runtime-options as a character string that is no longer than 254 bytes. If you do not specify RUN
OPTIONS or pass an empty string, Db2 does not pass any run time options to Language Environment,
and Language Environment uses its installation defaults.

For a description of the Language Environment run time options, see Language Environment
Programming Reference (z/OS Language Environment Programming Reference).

INHERIT SPECIAL REGISTERS or DEFAULT SPECIAL REGISTERS
Specifies how special registers are set on entry to the routine.
INHERIT SPECIAL REGISTERS

Specifies that the values of special registers are inherited according to the rules listed in the
table for characteristics of special registers in a user-defined function in “Special registers in a
user-defined function or a stored procedure” on page 215.

DEFAULT SPECIAL REGISTERS
Specifies that special registers are initialized to the default values, as indicated by the rules in the
table for characteristics of special registers in a user-defined function in “Special registers in a
user-defined function or a stored procedure” on page 215.

STATIC DISPATCH
At function resolution time, Db2 chooses a function based on the static (or declared) types of the
function parameters. STATIC DISPATCH is the default.

STOP AFTER SYSTEM DEFAULT FAILURES, STOP AFTER nn FAILURES, or CONTINUE AFTER FAILURE
Specifies whether the routine is to be put in a stopped state after some number of failures.
STOP AFTER SYSTEM DEFAULT FAILURES

Specifies that this routine should be placed in a stopped state after the number of failures
indicated by the value of field MAX ABEND COUNT on installation panel DSNTIPX. This is the
default.

STOP AFTER nn FAILURES
Specifies that this routine should be placed in a stopped state after nn failures. The value nn can
be an integer 1–32767.

CONTINUE AFTER FAILURE
Specifies that this routine should not be placed in a stopped state after any failure.

NOT SECURED or SECURED
Specifies if the function is considered secure for row access control and column access control.
NOT SECURED

Specifies that the function is not considered as secure for row access control and column access
control.

NOT SECURED is the default.

When the function is invoked, the arguments of the function must not reference a column for
which a column mask is enabled when the table is using active column access control.

SECURED
Specifies that the function is considered secure for row access control and column access control.

Chapter 7. Statements 1487

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ceea300/abstract.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ceea300/abstract.htm

The function must be defined with SECURED when it is referenced in a row permission or a column
mask.

Notes for CREATE FUNCTION (external table)
Considerations for all types of user-defined functions:

For considerations that apply to all types of user-defined functions, see “CREATE FUNCTION
statement (overview)” on page 1424.

Character string representation considerations:
The PARAMETER VARCHAR clause is specific to LANGUAGE C functions because of the native use of
NUL-terminated strings in C. VARCHAR structure representation is useful when character string data
is known to contain embedded NUL-terminators. It is also useful when it cannot be guaranteed that
character string data does not contain embedded NUL-terminators.

PARAMETER VARCHAR does not apply to fixed length character strings, VARCHAR FOR BIT DATA,
CLOB, DBCLOB, or implicitly generated parameters. The clause does not apply to VARCHAR FOR BIT
DATA because BIT DATA can contain X'00' characters, and its value representation starts with length
information. It does not apply to LOB data because a LOB value representation starts with length
information.

PARAMETER VARCHAR does not apply to optional parameters that are implicitly provided to
an external function. For example, a CREATE FUNCTION statement for LANGUAGE C must also
specify PARAMETER STYLE SQL, which returns an SQLSTATE NULL-terminated character string; that
SQLSTATE will not be represented in VARCHAR structured form. Likewise, none of the parameters that
represent the qualified name of the function, the specific name of the function, or the SQL diagnostic
string that is returned to the database manager will be represented in VARCHAR structured form.

Running external functions in WLM environments:
You can use the WLM ENVIRONMENT clause to identify the address space in which a function or is
to run. Using different WLM environments lets you isolate one group of programs from another. For
example, you might choose to isolate programs based on security requirements and place all payroll
applications in one WLM environment because those applications deal with data, such as employee
salaries.

To prevent a user from defining functions in sensitive WLM environments, Db2 invokes the external
security manager to determine whether the user has authorization to issue CREATE FUNCTION
statements that refer to the specified WLM environment. The following example shows the RACF
command that authorizes Db2 user DB2USER1 to register a function on Db2 subsystem DB2A that
runs in the WLM environment named PAYROLL.

 PERMIT DB2A.WLMENV.PAYROLL CLASS(DSNR) ID(DB2USER1) ACCESS(READ)

For more information, see Managing authorizations for creation of stored procedures in WLM
environments (Managing Security).

Determining if a table function is a generic table function:
To identify if a table function is a generic table function, you can query the SYSIBM.SYSROUTINES
catalog table. The function is a generic table function if the value of the RESULT_COLS column is 0
(zero) when the value of the ROUTINETYPE column if 'F' and the value of the FUNCTIONTYPE column
is 'T'.

Alternative syntax and synonyms:
To provide compatibility with previously releases of Db2 or other products in the Db2 family, Db2
supports the following alternative syntax:

• VARIANT as a synonym for NOT DETERMINISTIC
• NOT VARIANT as a synonym for DETERMINISTIC
• NOT NULL CALL as a synonym for RETURNS NULL ON NULL INPUT
• NULL CALL as a synonym for CALLED ON NULL INPUT
• PARAMETER STYLE DB2SQL as a synonym for PARAMETER STYLE SQL

1488 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_manageaccess2wlmenv.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_manageaccess2wlmenv.html

• TIMEZONE can be specified as an alternative to TIME ZONE.

Example for CREATE FUNCTION (external table)

The following example registers a table function written to return a row consisting of a single document
identifier column for each known document in a text management system. The first parameter matches a
given subject area and the second parameter contains a given string.

Within the context of a single session, the table function always returns the same table; therefore, it
is defined as DETERMINISTIC. In addition, the DISALLOW PARALLEL keyword is added because table
functions cannot operate in parallel.

Although the size of the output for DOCMATCH is highly variable, CARDINALITY 20 is a representative
value and is specified to help Db2.

 CREATE FUNCTION DOCMATCH (VARCHAR(30), VARCHAR(255))
 RETURNS TABLE (DOC_ID CHAR(16))
 EXTERNAL NAME ABC
 LANGUAGE C
 PARAMETER STYLE SQL
 NO SQL
 DETERMINISTIC
 NO EXTERNAL ACTION
 FENCED
 SCRATCHPAD
 FINAL CALL
 DISALLOW PARALLEL
 CARDINALITY 20;

Example 2: The following example registers a generic table function:

CREATE FUNCTION tf6(p1 VARCHAR(10))
 RETURNS GENERIC TABLE
 EXTERNAL NAME 'tf6'
 LANGUAGE C
 PARAMETER STYLE SQL
 DETERMINISTIC
 NO EXTERNAL ACTION
 FENCED
 SCRATCHPAD
 FINAL CALL;

Note that LANGUAGE C must be specified, and the names and data type of the result columns must be
declared when the table function is referenced in the SELECT clause.

Related concepts
SQL table functions (Db2 Application programming and SQL)
Naming conventions
The rules for forming a name depend on the type of the object designated by the name.
Related tasks
Creating a user-defined function (Db2 Application programming and SQL)

CREATE FUNCTION statement (inlined SQL scalar function)
The CREATE FUNCTION (inlined SQL scalar) statement defines an SQL scalar function at the current
server and specifies an SQL procedural language RETURN statement for the body of the function. The
function returns a single value each time it is invoked.

A package is not created for an inlined SQL scalar function. The function is not invoked as part of a query;
instead, the expression in the RETURN statement of the function is copied (inlined) into the query itself.

Chapter 7. Statements 1489

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_sqltablefn.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_defineudf.html

Invocation for CREATE FUNCTION (inlined SQL scalar)
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for CREATE FUNCTION (inlined SQL scalar)
The privilege set defined below must include at least one of the following:

• The CREATEIN privilege on the schema
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The authorization ID that matches the schema name implicitly has the CREATEIN privilege on the
schema.

If the authorization ID that is used to create the function has the installation SYSADM authority or the
installation SYSOPR authority and if the current SQLID is set to SYSINSTL, the function is identified as
system-defined function.

If a user-defined type is referenced (as the data type of a parameter), the privilege set must also include
at least one of the following:

• Ownership of the user-defined type
• The USAGE privilege on the user-defined type
• SYSADM authority

At least one of the following additional privileges is required if the SECURED option is specified:

• SECADM authority
• CREATE_SECURE_OBJECT privilege

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the owner is a role, the implicit schema match does
not apply and this role needs to include one of the previously listed conditions.

If the statement is dynamically prepared and is not running in a trusted context for which the ROLE AS
OBJECT OWNER clause is specified, the privilege set is the set of privileges that are held by the SQL
authorization ID of the process. If the schema name is not the same as the SQL authorization ID of the
process, one of the following conditions must be met:

• The privilege set includes SYSADM or SYSCTRL authority.
• The SQL authorization ID of the process has the CREATEIN privilege on the schema.

Syntax for CREATE FUNCTION (inlined SQL scalar)

CREATE FUNCTION function-name (
,

parameter-declaration

)

function-definition

WRAPPED obfuscated-statement-text

parameter-declaration:

1490 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

parameter-name
1

data-type

Notes:
1 Note that the parameter-name is required for SQL functions.

data-type:

built-in-type

distinct-type-name

Chapter 7. Statements 1491

built-in-type:
SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

BIT

DATA

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID ASCII

EBCDIC

UNICODE

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

ROWID

XML

option-list:

1492 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SPECIFIC specific-name

1

PARAMETER CCSID ASCII

EBCDIC

UNICODE

NOT DETERMINISTIC

DETERMINISTIC

EXTERNAL ACTION

NO EXTERNAL ACTION

READS SQL DATA

CONTAINS SQL

STATIC DISPATCH CALLED ON NULL INPUT NOT SECURED

SECURED

Notes:
1 This clause and the other clauses in the option-list can be specified in any order. However, the same
clause cannot be specified more than one time.

function-defintion

RETURNS data-type2
1

LANGUAGE SQL

option-list SQL-routine-body

Notes:
1 The RETURNS clause, the RETURN-statement, and the clauses in the option-list can be specified in any
order. However, the same clause cannot be specified more than one time.

SQL-routine-body

RETURN statement

Description for CREATE FUNCTION (inlined SQL scalar)
function-name

Names the user-defined function. The name is implicitly or explicitly qualified by a schema name. For
more information, see "Choosing the schema and function names" and "Determining the uniqueness
of functions in a schema" in “CREATE FUNCTION statement (overview)” on page 1424.

(parameter-declaration,…)

Specifies the number of input parameters of the function and the name and data type of each
parameter. Each parameter-declaration specifies an input parameter for the function. A function can
have zero or more input parameters. There must be one entry in the list for each parameter that the
function expects to receive. All of the parameters for a function are input parameters and are nullable.
If the function has more than 30 parameters, only the first 30 parameters are used to determine if the
function is unique.

parameter-name
Specifies the name of the input parameter. The name is an SQL identifier, and each name in the
parameter list must not be the same as any other name.

data-type
Specifies the data type of the input parameter. The data type can be a built-in data type or a
user-defined type.

Chapter 7. Statements 1493

built-in-type
The data type of the input parameter is a built-in data type.

For information on the data types, see “built-in-type ” on page 1663.

For parameters with a character or graphic data type, the PARAMETER CCSID clause or CCSID
clause indicates the encoding scheme of the parameter. If you do not specify either of these
clauses, the encoding scheme is the value of field DEF ENCODING SCHEME on installation
panel DSNTIPF.

distinct-type-name
The data type of the input parameter is a distinct type. Any length, precision, scale, subtype, or
encoding scheme attributes for the parameter are those of the source type of the distinct type.
The distinct type must not be based on a LOB data type.

If you specify the name of the distinct type without a schema name, Db2 resolves the distinct
type by searching the schemas in the SQL path.

The implicitly or explicitly specified encoding scheme of all of the parameters with a character or
graphic string data type must be the same—either all ASCII, all EBCDIC, or all UNICODE.

Although parameters with a character data type have an implicitly or explicitly specified subtype
(BIT, SBCS, or MIXED), the function program can receive character data of any subtype. Therefore,
conversion of the input data to the subtype of the parameter might occur when the function is
invoked. An error occurs if mixed data that actually contains DBCS characters is used as the value
for an input parameter that is declared with an SBCS subtype.

Parameters with a datetime data type or a distinct type are passed to the function as a different
data type:

• A datetime type parameter is passed as a character data type, and the data is passed in ISO
format.

The encoding scheme for a datetime type parameter is the same as the implicitly or explicitly
specified encoding scheme of any character or graphic string parameters. If no character or
graphic string parameters are passed, the encoding scheme is the value of field DEF ENCODING
SCHEME on installation panel DSNTIPF.

• A distinct type parameter is passed as the source type of the distinct type.

RETURNS
Identifies the output of the function.
data-type2

Specifies the data type of the output. The output is nullable.

The same considerations that apply to the data type of input parameter, as described under
"data-type" in “data-type” on page 1493, apply to the data type of the output of the function.

LANGUAGE SQL
Specifies that the function is written exclusively in SQL.

SPECIFIC specific-name
Specifies a unique name for the function. The name is implicitly or explicitly qualified with a schema
name. The name, including the schema name, must not identify the specific name of another function
that exists at the current server.

The unqualified form of specific-name is an SQL identifier. The qualified form is an SQL identifier (the
schema name) followed by a period and an SQL identifier.

If you do not specify a schema name, it is the same as the explicit or implicit schema name of the
function name (function-name). If you specify a schema name, it must be the same as the explicit or
implicit schema name of the function name.

1494 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If you do not specify the SPECIFIC clause, the default specific name is the name of the function.
However, if the function name does not provide a unique specific name or if the function name is a
single asterisk, Db2 generates a specific name in the form of:

SQLxxxxxxxxxxxx

where 'xxxxxxxxxxxx' is a string of 12 characters that make the name unique.

The specific name is stored in the SPECIFIC column of the SYSROUTINES catalog table. The specific
name can be used to uniquely identify the function in several SQL statements (such as ALTER
FUNCTION, COMMENT, DROP, GRANT, and REVOKE) and must be used in Db2 commands (START
FUNCTION, STOP FUNCTION, and DISPLAY FUNCTION). However, the function cannot be invoked by
its specific name.

PARAMETER CCSID
Indicates whether the encoding scheme for character and graphic string parameters is ASCII,
EBCDIC, or UNICODE. The default encoding scheme is the value specified in the CCSID clauses of
the parameter list or RETURNS clause, or in the field DEF ENCODING SCHEME on installation panel
DSNTIPF.

This clause provides a convenient way to specify the encoding scheme for character and graphic
string parameters. If individual CCSID clauses are specified for individual parameters in addition to
this PARAMETER CCSID clause, the value specified in all of the CCSID clauses must be the same value
that is specified in this clause.

This clause also specifies the encoding scheme to be used for system-generated parameters of the
routine such as message tokens and DBINFO.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results each time that the function is invoked with
the same input arguments.
NOT DETERMINISTIC

The function might not return the same result each time that the function is invoked with the same
input arguments. The function depends on some state values that affect the results. Db2 uses
this information to disable the merging of views and table expressions when processing SELECT
and SQL data change statements that refer to this function. An example of a function that is not
deterministic is one that generates random numbers.

NOT DETERMINISTIC must be specified explicitly or implicitly if the function program accesses a
special register or invokes another function that is not deterministic. NOT DETERMINISTIC is the
default.

DETERMINISTIC
The function always returns the same result function each time that the function is invoked
with the same input arguments. An example of a deterministic function is a function that
calculates the square root of the input. Db2 uses this information to enable the merging of views
and table expressions for SELECT and SQL data change statements that refer to this function.
DETERMINISTIC is not the default. If applicable, specify DETERMINISTIC to prevent non-optimal
access paths from being chosen for SQL statements that refer to this function.

Db2 does not verify that the function program is consistent with the specification of DETERMINISTIC
or NOT DETERMINISTIC.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an object that Db2 does not
manage. An example of an external action is sending a message or writing a record to a file.
EXTERNAL ACTION

The function can take an action that changes the state of an object that Db2 does not manage.

Some SQL statements that invoke functions with external actions can result in incorrect results if
parallel tasks execute the function. For example, if the function sends a note for each initial call to

Chapter 7. Statements 1495

it, one note is sent for each parallel task instead of once for the function. Specify the DISALLOW
PARALLEL clause for functions that do not work correctly with parallelism.

If you specify EXTERNAL ACTION, then Db2:

• Materializes the views and table expressions in SELECT and SQL data change statements that
refer to the function. This materialization can adversely affect the access paths that are chosen
for the SQL statements that refer to this function. Do not specify EXTERNAL ACTION if the
function does not have an external action.

• Does not move the function from one task control block (TCB) to another between FETCH
operations.

• Does not allow another function or stored procedure to use the TCB until the cursor is closed.
This is also applicable for cursors declared WITH HOLD.

The only changes to resources made outside of Db2 that are under the control of commit and
rollback operations are those changes made under RRS control.

EXTERNAL ACTION must be specified implicitly or explicitly specified if the SQL routine body
invokes a function that is defined with EXTERNAL ACTION. EXTERNAL ACTION is the default.

NO EXTERNAL ACTION
The function does not take any action that changes the state of an object that Db2 does not
manage. Db2 uses this information to enable the merging of views and table expressions for
SELECT and SQL data change statements that refer to this function. If applicable, specify NO
EXTERNAL ACTION to prevent non-optimal access paths from being chosen for SQL statements
that refer to this function.

Although the scope of global variables are beyond the scope of the routine, global variables can be
set in the routine body when NO EXTERNAL ACTION is specified.

Db2 does not verify that the function program is consistent with the specification of EXTERNAL
ACTION or NO EXTERNAL ACTION.

READS SQL DATA or CONTAINS SQL
Specifies the classification of SQL statements and nested routines that this routine can execute
or invoke. The database manager verifies that the SQL statements issued by the function, and all
routines locally invoked by the routine, are consistent with this specification; the verification is not
performed when nested remote routines are invoked. For the classification of each statement, see
Appendix D, “SQL statement data access classification for routines,” on page 2275.
READS SQL DATA

Specifies that the function can execute statements with a data access classification of READS SQL
DATA, CONTAINS SQL, or NO SQL. The function cannot execute SQL statements that modify data.

READS SQL DATA is the default.

CONTAINS SQL
Specifies that the function can execute only SQL statements with a data access classification of
CONTAINS SQL or NO SQL. The function cannot execute SQL statements that read or modify data.

STATIC DISPATCH
At function resolution time, Db2 chooses a function based on the static (or declared) types of the
function parameters. STATIC DISPATCH is the default.

CALLED ON NULL INPUT
Specifies that the function is to be invoked if any, or if all, of the argument values are null. Specifying
CALLED ON NULL INPUT means that the body of the function must be coded to test for null argument
values.

CALLED ON NULL INPUT is the default.

NOT SECURED or SECURED
Specifies if the function is considered secure for row access control and column access control. The
SECURED or NOT SECURED option applies to all future versions of the function.

1496 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

NOT SECURED
Specifies that the function is not considered secure for row access control and column access
control.

NOT SECURED is the default.

When the function is invoked, the arguments of the function must not reference a column for
which a column mask is enabled when the table is using active column access control.

SECURED
Specifies that the function is considered secure for row access control and column access control.

The function must be secure when it is referenced in a row permission or a column mask.

SQL-routine-body
Specifies a single RETURN statement. For more information, see “RETURN statement” on page 2240.

If the RETURN statement includes a scalar fullselect, Db2 attempts to define a compiled function. For
more information, see “CREATE FUNCTION statement (compiled SQL scalar function)” on page 1428.

To determine what type of SQL scalar function is created, refer to the INLINE column of the
SYSIBM.SYSROUTINES catalog table.

WRAPPED obfuscated-statement-text
Specifies the encoded definition of the function. A CREATE FUNCTION statement can be encoded
using the WRAP scalar function.

WRAPPED must not be specified on a static CREATE statement.

Notes for CREATE FUNCTION (inlined SQL scalar)
Considerations for all types of user-defined functions:

For considerations that apply to all types of user-defined functions, see “CREATE FUNCTION
statement (overview)” on page 1424.

Types of SQL scalar functions:
If the syntax of the CREATE FUNCTION statement conforms to the syntax diagrams and descriptions
for CREATE FUNCTION (inlined SQL scalar), Db2 defines an inlined function, and a package is not
created. When an inlined SQL scalar function is invoked, the expression in the RETURN statement
of the function is copied (inlined) into the query itself; the function is not invoked. The attributes of
an inlined SQL scalar function are described in “CREATE FUNCTION statement (inlined SQL scalar
function)” on page 1489.

Otherwise, Db2 attempts to define a compiled function with an associated package. For example,
if the RETURN statement contains a scalar fullselect, Db2 attempts to define a compiled function.
The attributes of a compiled SQL scalar function are described in “CREATE FUNCTION statement
(compiled SQL scalar function)” on page 1428.

To determine what type of SQL scalar function is created, refer to the INLINE column of the
SYSIBM.SYSROUTINES catalog table. In the INLINE column, a value of Y indicates that the function is
an inlined function, and a value of N indicates that the function is a compiled function.

Considerations for functions defined with MODIFIES SQL DATA:
If a function is specified in a subselect, and the function is defined as MODIFIES SQL DATA, the
number of times the function is invoked is invoked will vary depending on the access plan used.

Self-referencing function:
The body of an SQL function (that is, the expression or NULL in the RETURN statement in the body
of the CREATE FUNCTION statement) cannot contain a recursive invocation of itself or to another
function that invokes it, because such a function would not exist to be referenced.

Dependent objects:
An SQL routine is dependent on objects that are referenced in the routine body.

Chapter 7. Statements 1497

Obfuscated statements:
A CREATE FUNCTION statement can be executed in obfuscated form. In an obfuscated statement,
only the function name, parameters, and the WRAPPED keyword are readable. The rest of the
statement is encoded in such a way that it is not readable but can be decoded by a database server
that supports obfuscated statements. The WRAP scalar function produces obfuscated statements.
Any debug options that are specified when the function is created from an obfuscated statement are
ignored.

Resolution of object names:
Db2 resolves object names inside the body of the function according to the rules in “Unqualified
object name resolution” on page 86 and the type of the object. The name resolution occurs when the
function is created.

Referencing date and time special registers:
If an SQL function contains multiple references to any of the date or time special registers, all
references return the same value. In addition, this value is the same value that is returned by the
retrieving value of the special register in the statement that invoked the function.

Self-referencing function:
The body of an SQL function (that is, the expression or NULL in the RETURN clause of the CREATE
FUNCTION (inlined SQL scalar) statement) cannot contain a recursive invocation of itself or to another
function that invokes it, because such a function would not exist to be referenced.

Dependent objects:
An SQL routine is dependent on objects that are referenced in the routine body.

Alternative syntax and synonyms:
To provide compatibility with previously releases of Db2 or other products in the Db2 family, Db2
supports the following alternative syntax:

• VARIANT as a synonym for NOT DETERMINISTIC
• NOT VARIANT as a synonym for DETERMINISTIC
• NULL CALL as a synonym for CALLED ON NULL INPUT
• TIMEZONE can be specified as an alternative to TIME ZONE.

For an inlined SQL scalar function, the RETURNS clause and the clauses in the option-list can be
specified in any order.

Examples for CREATE FUNCTION (inlined SQL scalar)

Example 1: Define a scalar function that returns the tangent of a value using existing SIN and COS built-in
functions:

 CREATE FUNCTION TAN (X DOUBLE)
 RETURNS DOUBLE
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
 RETURN SIN(X)/COS(X);

CREATE FUNCTION statement (sourced function)
This CREATE FUNCTION statement registers a user-defined function that is based on an existing scalar or
aggregate function with a database server.

Invocation for CREATE FUNCTION (sourced)
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

1498 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Authorization for CREATE FUNCTION (sourced)
The privilege set defined below must include at least one of the following:

• The CREATEIN privilege on the schema
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The authorization ID that matches the schema name implicitly has the CREATEIN privilege on the
schema.

If the authorization ID that is used to create the function has the installation SYSADM authority or the
installation SYSOPR authority and if the current SQLID is set to SYSINSTL, the function is identified as
system-defined function.

Additional privileges are required for the source function, and other privileges are also needed if the
function uses a table as a parameter, or refers to a distinct type. These privileges are:

• The EXECUTE privilege for the function that the SOURCE clause references.
• The SELECT privilege on any table that is an input parameter to the function.
• The USAGE privilege on each distinct type that the function references.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the owner is a role, the implicit schema match does
not apply and this role needs to include one of the previously listed conditions.

If the statement is dynamically prepared and is not running in a trusted context for which the ROLE AS
OBJECT OWNER clause is specified, the privilege set is the set of privileges that are held by the SQL
authorization ID of the process. If the schema name is not the same as the SQL authorization ID of the
process, one of the following conditions must be met:

• The privilege set includes SYSADM or SYSCTRL authority.
• The SQL authorization ID of the process has the CREATEIN privilege on the schema.

Syntax for CREATE FUNCTION (sourced)

CREATE FUNCTION function-name (
,

parameter-declaration

)
1

RETURNS data-type2

AS LOCATOR
2 SPECIFIC specific-name

PARAMETER CCSID ASCII

EBCDIC

UNICODE

SOURCE function-name

(

,

parameter-type)

SPECIFIC specific-name

Notes:

Chapter 7. Statements 1499

1 RETURNS, SPECIFIC, and SOURCE can be specified in any order.
2 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data type.

parameter-declaration:

parameter-name

parameter-type

parameter-type:

data-type

AS LOCATOR
1

TABLE LIKE table-name

view-name

AS LOCATOR
2

Notes:
1 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data type.
2 The TABLE LIKE name AS LOCATOR clause can only be specified for the parameter list of the function
that is being defined.

data-type:

built-in-type

distinct-type-name

built-in-type:

1500 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

BIT

DATA

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID ASCII

EBCDIC

UNICODE

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

ROWID

Chapter 7. Statements 1501

Description for CREATE FUNCTION (sourced)
function-name

Names the user-defined function. The name is implicitly or explicitly qualified by a schema name. For
more information, see "Choosing the schema and function names" and "Determining the uniqueness
of functions in a schema" in “CREATE FUNCTION statement (overview)” on page 1424.

(parameter-declaration,…)
Specifies the number of input parameters of the function and the data type of each parameter. All of
the parameters for a function are input parameters and are nullable. There must be one entry in the
list for each parameter that the function expects to receive. Although not required, you can give each
parameter a name.

A function can have no parameters. In this case, you must code an empty set of parentheses, for
example:

 CREATE FUNCTION WOOFER()

parameter-name
Specifies the name of the input parameter. The name is an SQL identifier, and each name in the
parameter list must not be the same as any other name.

data-type
Specifies the data type of the input parameter. The data type can be a built-in data type or a
distinct type.
built-in-type

The data type of the input parameter is a built-in data type.

For information on the data types, see built-in-type.

For parameters with a character or graphic data type, the PARAMETER CCSID clause or CCSID
clause indicates the encoding scheme of the parameter. If you do not specify either of these
clauses, the encoding scheme is the value of field DEF ENCODING SCHEME on installation
panel DSNTIPF.

distinct-type-name
The data type of the input parameter is a distinct type. Any length, precision, scale, subtype, or
encoding scheme attributes for the parameter are those of the source type of the distinct type.

The implicitly or explicitly specified encoding scheme of all of the parameters with a character or
graphic string data type must be the same—either all ASCII, all EBCDIC, or all UNICODE.

Although parameters with a character data type have an implicitly or explicitly specified subtype
(BIT, SBCS, or MIXED), the function program can receive character data of any subtype. Therefore,
conversion of the input data to the subtype of the parameter might occur when the function is
invoked.

Parameters with a datetime data type or a distinct type are passed to the function as a different
data type:

• A datetime type parameter is passed as a character data type, and the data is passed in ISO
format.

The encoding scheme for a datetime type parameter is the same as the implicitly or explicitly
specified encoding scheme of any character or graphic string parameters. If no character or
graphic string parameters are passed, the encoding scheme is the value of field DEF ENCODING
SCHEME on installation panel DSNTIPF.

• A distinct type parameter is passed as the source type of the distinct type.

You can specify any built-in data type or distinct type that matches or can be cast to the data
type of the corresponding parameter of the source function (the function that is identified in the
SOURCE clause). (For information on casting data types, see “Casting between data types” on
page 130.) Length, precision, or scale attributes do not have be specified for data types with these
attributes. When specifying data types with these attributes, follow these rules:

1502 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• An empty set of parentheses can be used to indicate that the length, precision, or scale is the
same as the source function.

• If length, precision, or scale is not explicitly specified, and empty parentheses are not specified,
the default values are used.

AS LOCATOR
Specifies that a locator to the value of the parameter is passed to the function instead of the
actual value. Specify AS LOCATOR only for parameters with a LOB data type or a distinct type
based on a LOB data type. Passing locators instead of values can result in fewer bytes being
passed to the function, especially when the value of the parameter is very large.

The AS LOCATOR clause has no effect on determining whether data types can be promoted,
nor does it affect the function signature, which is used in function resolution.

TABLE LIKE table-name or view-name AS LOCATOR
Specifies that the parameter is a transition table. However, when the function is invoked, the
actual values in the transition table are not passed to the function. A single value is passed
instead. This single value is a locator to the table, which the function uses to access the columns
of the transition table. A function with a table parameter can only be invoked from the triggered
action of a trigger.

The use of TABLE LIKE provides an implicit definition of the transition table. It specifies that
the transition table has the same number of columns as the identified table or view. If a table
is specified, the transition table includes columns that are defined as implicitly hidden in the
table. The columns have the same data type, length, precision, scale, subtype, and encoding
scheme as the identified table or view, as they are described in catalog tables SYSCOLUMNS and
SYSTABLESPACE. The number of columns and the attributes of those columns are determined at
the time the CREATE FUNCTION statement is processed. Any subsequent changes to the number
of columns in the table or the attributes of those columns do not affect the parameters of the
function.

table-name or view-name must identify a table or view that exists at the current server. A view
cannot have columns of length 0. The name must not identify a declared temporary table. The
table that is identified can contain XML columns; however, the function cannot reference those
XML columns. The name does not have to be the same name as the table that is associated
with the transition table for the trigger. An unqualified table or view name is implicitly qualified
according to the following rules:

• If the CREATE FUNCTION statement is embedded in a program, the implicit qualifier is the
authorization ID in the QUALIFIER bind option when the plan or package was created or last
rebound. If QUALIFIER was not used, the implicit qualifier is the owner of the plan or package.

• If the CREATE FUNCTION statement is dynamically prepared, the implicit qualifier is the SQL
authorization ID in the CURRENT SCHEMA special register.

When the function is invoked, the corresponding columns of the transition table identified by
the table locator and the table or view identified in the TABLE LIKE clause must have the same
definition. The data type, length, precision, scale, and encoding scheme of these columns must
match exactly. The description of the table or view at the time the CREATE FUNCTION statement
was executed is used.

Additionally, a character FOR BIT DATA column of the transition table cannot be passed as
input for a table parameter for which the corresponding column of the table specified at the
definition is not defined as character FOR BIT DATA. (The definition occurs with the CREATE
FUNCTION statement.) Likewise, a character column of the transition table that is not FOR BIT
DATA cannot be passed as input for a table parameter for which the corresponding column of the
table specified at the definition is defined as character FOR BIT DATA.

For more information about using table locators, see Accessing transition tables in a user-defined
function or stored procedure (Db2 Application programming and SQL).

RETURNS
Identifies the output of the function.

Chapter 7. Statements 1503

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_accesstansitiontable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_accesstansitiontable.html

data-type2
Specifies the data type of the output. The output is nullable.

You can specify any built-in data type or distinct type that can be cast from the data type of the
result of the source function. (For information on casting data types, see “Casting between data
types” on page 130.)

AS LOCATOR
Specifies that the function returns a locator to the value rather than the actual value. You can
specify AS LOCATOR only if the output from the function has a LOB data type or a distinct type
based on a LOB data type.

SPECIFIC specific-name
Provides a unique name for the function. The name is implicitly or explicitly qualified with a schema
name. The name, including the schema name, must not identify the specific name of another function
that exists at the current server.

The unqualified form of specific-name is an SQL identifier. The qualified form is an SQL identifier (the
schema name) followed by a period and an SQL identifier.

If you do not specify a schema name, it is the same as the explicit or implicit schema name of the
function name (function-name). If you specify a schema name, it must be the same as the explicit or
implicit schema name of the function name.

If you do not specify the SPECIFIC clause, the default specific name is the name of the function.
However, if the function name does not provide a unique specific name or if the function name is a
single asterisk, Db2 generates a specific name in the form of:

SQLxxxxxxxxxxxx

where 'xxxxxxxxxxxx' is a string of 12 characters that make the name unique.

The specific name is stored in the SPECIFIC column of the SYSROUTINES catalog table. The specific
name can be used to uniquely identify the function in several SQL statements (such as ALTER
FUNCTION, COMMENT, DROP, GRANT, and REVOKE) and in Db2 commands (START FUNCTION, STOP
FUNCTION, and DISPLAY FUNCTION). However, the function cannot be invoked by its specific name.

PARAMETER CCSID
Indicates whether the encoding scheme for character and graphic string parameters is ASCII,
EBCDIC, or UNICODE. The default encoding scheme is the value specified in the CCSID clauses of
the parameter list or RETURNS clause, or in the field DEF ENCODING SCHEME on installation panel
DSNTIPF.

This clause provides a convenient way to specify the encoding scheme for character and graphic
string parameters. If individual CCSID clauses are specified for individual parameters in addition to
this PARAMETER CCSID clause, the value specified in all of the CCSID clauses must be the same value
that is specified in this clause.

This clause also specifies the encoding scheme to be used for system-generated parameters of the
routine such as message tokens and DBINFO.

SOURCE
Specifies that the new function is being defined as a sourced function. A sourced function is
implemented by another function (the source function). The source function must be a scalar or
aggregate function that exists at the current server, and it must be one of the following types of
functions:

• A function that was defined with a CREATE FUNCTION statement
• A cast function that was generated by a CREATE TYPE statement for a distinct type
• A built-in function

If the source function is not a built-in function, the particular function can be identified by its name,
function signature, or specific name.

1504 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If the source function is a built-in function, the SOURCE clause must include a function signature for
the built-in function.

The source function must not be any of the built-in functions (if a particular syntax is shown, only the
indicated form cannot be specified):

• ARRAY_AGG
• ARRAY_DELETE
• ARRAY_FIRST
• ARRAY_LAST
• ARRAY_NEXT
• ARRAY_PRIOR
• CARDINALITY
• CHAR(datetime-expression, second-argument) where second-argument is ISO, USA, EUR, JIS, or

LOCAL or if CHAR is specified with OCTETS, CODEUNITS16, or CODEUNITS32.
• CHARACTER_LENGTH
• CLOB if OCTETS, CODEUNITS16, or CODEUNITS32 is specified
• COALESCE if a parameter is an array
• COUNT(*)
• COUNT_BIG(*)
• FL 504 CUME_DIST
• FL 504 CUME_DIST (aggregate)
• DBCLOB if OCTETS, CODEUNITS16, or CODEUNITS32 is specified
• DECODE
• DECRYPT_BIT where the second argument is DEFAULT
• DECRYPT_CHAR where the second argument is DEFAULT
• DECRYPT_DB where the second argument is DEFAULT
• DECRYPT_DATAKEY_BIGINT
• DECRYPT_DATAKEY_BIT
• DECRYPT_DATAKEY_CLOB
• DECRYPT_DATAKEY_DBCLOB
• DECRYPT_DATAKEY_DECIMAL
• DECRYPT_DATAKEY_INTEGER
• DECRYPT_DATAKEY_VARCHAR
• DECRYPT_DATAKEY_VARGRAPHIC
• ENCRYPT_DATAKEY
• EXTRACT
• FL 504 FIRST_VALUE
• GETVARIABLE where the second argument is DEFAULT
• FL 502 GRAPHIC if OCTETS, CODEUNITS16, or CODEUNITS32 is specified, or if the first argument is

numeric
• IFNULL if a parameter is an array
• INSERT if OCTETS, CODEUNITS16, or CODEUNITS32 is specified
• FL 504 LAG
• FL 504 LAST_VALUE
• FL 504 LEAD

Chapter 7. Statements 1505

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

• LEFT if OCTETS, CODEUNITS16, or CODEUNITS32 is specified
• FL 501 LISTAGG
• LOCAL
• LOCATE if OCTETS, CODEUNITS16, or CODEUNITS32 is specified
• MAX
• MAX_CARDINALITY
• MIN
• FL 504 NTH_VALUE
• FL 504 NTILE
• NULLIF
• FL 504 PERCENT_RANK
• FL 504 PERCENT_RANK (aggregate)
• POSITION
• FL 504 RATIO_TO_REPORT
• FL 504 REGEXP_COUNT
• FL 504 REGEXP_INSTR
• FL 504 REGEXP_LIKE
• FL 504 REGEXP_REPLACE
• FL 504 REGEXP_SUBSTR
• RID
• RIGHT if OCTETS, CODEUNITS16, or CODEUNITS32 is specified
• STRIP where multiple arguments are specified
• SUBSTRING
• TRIM where the first argument is BOTH, B, LEADING, L, TRAILING, T, or the first or second argument

is FROM
• TRIM_ARRAY
• VARCHAR if OCTETS, CODEUNITS16, or CODEUNITS32 is specified
• FL 502 VARGRAPHIC if OCTETS, CODEUNITS16, or CODEUNITS32 is specified, or if the first

argument is numeric.
• XMLAGG
• XMLCONCAT
• XMLELEMENT
• XMLFOREST
• XMLNAMESPACES

If you base the sourced function directly or indirectly on an external scalar function, the sourced
function inherits the attributes of the external scalar function. This can involve several layers of
sourced functions. For example, assume that function A is sourced on function B, which in turn is
sourced on function C. Function C is an external scalar function. Functions A and B inherit all of
the attributes that are specified on the EXTERNAL clause of the CREATE FUNCTION statement for
function C.

function-name
Identifies the function that is to be used as the source function. The source function can be
defined with any number of parameters. If more than one function is defined with the specified
name in the specified or implicit schema, an error is returned.

1506 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m501.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html

If you specify an unqualified function-name, Db2 searches the schemas of the SQL path. Db2
selects the first schema that has only one function with this name on which the user has EXECUTE
authority. An error is returned if a function is not found or a schema has more than one function
with this name.

function-name (parameter-type,...)
Identifies the function that is to be used as the source function by its function signature,
which uniquely identifies the function. Thefunction-name (parameter-type,...) must identify a
function with the specified signature. The specified parameters must match the data types in the
corresponding position that were specified when the function was created. Db2 uses the number
of data types and the logical concatenation of the data types to identify the specific function
instance. Synonyms for data types are considered a match.

If the function was defined with a table parameter (the LIKE TABLE name AS LOCATOR clause was
specified in the CREATE FUNCTION statement to indicate that one of the input parameters is a
transition table), the function signature cannot be used to uniquely identify the function. Instead,
use one of the other syntax variations to identify the function with its function name, if unique, or
its specific name.

If function-name() is specified, the identified function must have zero parameters.

function-name
Identifies the function name of the source function. If you specify an unqualified name, Db2
searches the schemas of the SQL path. Otherwise, Db2 searches for the function in the
specified schema.

parameter-type,...
Identifies the parameters of the function.

If an unqualified distinct type name is specified, Db2 searches the SQL path to resolve the
schema name for the distinct type.

Empty parentheses are allowed for some data types that are specified in this context. For data
types that have a length, precision, or scale attribute, use one of the following specifications:

• Empty parentheses indicate that Db2 ignores the attribute when determining whether the
data types match. For example, DEC() is considered a match for a parameter of a function
that is defined with a data type of DEC(7,2). However, FLOAT cannot be specified with empty
parentheses because its parameter value indicates a specific data type (REAL or DOUBLE).

• If a specific value for a length, precision, or scale attribute is specified, the value must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement. If the data type is FLOAT, the precision does not need to exactly match the value
that was specified because matching is based on the data type (REAL or DOUBLE).

• If length, precision, or scale is not explicitly specified, and empty parentheses are not
specified, the default attributes of the data type are implied. The implicit length must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

If you omit the FOR subtype DATA clause or the CCSID clause for data types with a subtype
or encoding scheme attribute, Db2 is to ignore the attribute when determining whether the
data types match. An exception to ignoring the attribute is FOR BIT DATA. A character FOR BIT
DATA parameter of the new function cannot correspond to a parameter of the source function
that is not defined as character FOR BIT DATA. Likewise, a character parameter of the new
function that is not FOR BIT DATA cannot correspond to a parameter of the source function
that is defined as character FOR BIT DATA.

The number of input parameters in the function that is being created must be the same as
the number of parameters in the source function. If the data type of each input parameter is
not the same as or castable to the corresponding parameter of the source function, an error
occurs. The data type of the final result of the source function must match or be castable to
the result of the sourced function.

Chapter 7. Statements 1507

AS LOCATOR
Specifies that the function is defined to receive a locator for this parameter. If AS LOCATOR is
specified, the data type must be a LOB or distinct type that is based on a LOB.

SPECIFIC specific-name
Identifies the function to be used as the source function by its specific name.

If you specify an unqualified specific-name, Db2 searches the SQL path to locate the schema. Db2
selects the first schema that contains a function with this specific name for which the user has
EXECUTE authority. Db2 returns an error if it cannot find a function with the specific name in one
of the schemas in the SQL path.

If you specify a qualified specific-name, Db2 searches the named schema for the function. Db2
returns an error if it cannot find a function with the specific name.

Notes for CREATE FUNCTION (sourced)
Considerations for all types of user-defined functions:

For considerations that apply to all types of user-defined functions, see “CREATE FUNCTION
statement (overview)” on page 1424.

Owner privileges for sourced functions:
For sourced functions, the owner is authorized to execute the function (EXECUTE privilege) in the
following cases:

• If the underlying function is a user-defined function, and the owner is authorized with the grant
option to execute the underlying function, the privilege on the new function includes the grant
option. Otherwise, the owner can execute the new function but cannot grant others the privilege to
do so.

• If the underlying function is a built-in function, the owner is authorized with the grant option to
execute the underlying built-in function and the privilege on the new function includes the grant
option.

For more information, see “GRANT statement (function or procedure privileges)” on page 1970. For
more information about ownership of the object, see “Authorization, privileges, permissions, masks,
and object ownership” on page 90.

Rules for creating sourced functions:
Assume that the function that is being created is named NEWF and the source function is named
SOURCEF. Consider the following rules when creating a sourced function:

• The unqualified names of the sourced function and source function can be different (NEWF and
SOURCEF).

• The number of input parameters for NEWF and SOURCEF must be the same.
• When specifying the input parameters and output for NEWF, you can specify a value for the

precision, scale, subtype, or encoding scheme for a data type with any of these attributes or use
empty parentheses.

Empty parentheses, such as VARCHAR(), indicate that the value of the attribute is the same
as the attribute for the corresponding parameter of SOURCEF, or that is determined by data
type promotion. If you specify any values for the attributes, Db2 checks the values against the
corresponding input parameters and returned output of SOURCEF as described next.

• When the CREATE FUNCTION statement is executed, Db2 checks the input parameters of NEWF
against those of SOURCEF. The data type of each input parameter of NEWF function must be either
the same as, or promotable to, the data type of the corresponding parameter of SOURCEF. (For
information on the promotion of data types, see “Casting between data types” on page 130.)

This checking does not guarantee that an error will not occur when NEWF is invoked. For example,
an argument that matches the data type and length or precision attributes of a NEWF parameter
might not be promotable if the corresponding SOURCEF parameter has a shorter length or less
precision. In general, do not define the parameters of a sourced function with length or precision

1508 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

attributes that are greater than the attributes of the corresponding parameters of the source
function.

• When the CREATE FUNCTION statement is executed, Db2 checks the data type identified in the
RETURNS clause of NEWF against the data type that SOURCEF returns. The data type that SOURCEF
returns must be either the same as, or promotable to, the RETURNS data type of NEWF.

This checking does not guarantee that an error will not occur when NEWF is invoked. For example,
the value of a result that matches the data type and length or precision attributes of those specified
for the SOURCEF result might not be promotable if the RETURNS data type of NEWF has a shorter
length or less precision. Consider the possible effects of defining the RETURNS data type of a
sourced function with length or precision attributes that are less than the attributes defined for the
data type returned by source function.

Secure functions:
The sourced user-defined function inherits the SECURED or NOT SECURED attribute from the source
function in which only the topmost user-defined function is considered. If the topmost user-defined
function is secure, any nested user-defined functions are also considered secure. Db2 does not
validate whether those nested user-defined functions are secure. If those nested functions can
access sensitive data, the security administrator needs to ensure that those functions are allowed to
access sensitive data and should ensure that a change control audit procedure has been established
for all changes to those functions.

If the sourced function is defined with the VERIFY_GROUP_FOR_USER or VERIFY_ ROLE_FOR_USER
function as its source, the sourced function must specify only two input parameters.

Examples for CREATE FUNCTION (sourced)
Example 1

Assume that you created a distinct type HATSIZE, which you based on the built-in data type INTEGER.
You want to have an AVG function to compute the average hat size of different departments. Create a
sourced function that is based on built-in function AVG.

 CREATE FUNCTION AVE (HATSIZE) RETURNS HATSIZE
 SOURCE SYSIBM.AVG (INTEGER);

When you created distinct type HATSIZE, two cast functions were generated, which allow HATSIZE
to be cast to INTEGER for the argument and INTEGER to be cast to HATSIZE for the result of the
function.

Example 2
After Smith registered the external scalar function CENTER in his schema, you decide that you want
to use this function, but you want it to accept two INTEGER arguments instead of one INTEGER
argument and one FLOAT argument. Create a sourced function that is based on CENTER.

 CREATE FUNCTION MYCENTER (INTEGER, INTEGER)
 RETURNS FLOAT
 SOURCE SMITH.CENTER (INTEGER, FLOAT);

Related concepts
Sourced functions (Db2 Application programming and SQL)
Naming conventions
The rules for forming a name depend on the type of the object designated by the name.
Related tasks
Creating a user-defined function (Db2 Application programming and SQL)

Chapter 7. Statements 1509

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_sourcedfn.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_defineudf.html

CREATE FUNCTION statement (SQL table function)
The CREATE FUNCTION (SQL table) statement creates an SQL table function at the current server. The
function returns a set of rows.

Invocation for CREATE FUNCTION (SQL table)
This statement can only be dynamically prepared only if dynamic rules run behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for CREATE FUNCTION (SQL table)
The privilege set that is defined below must include at least one of the following privileges or authorities:

• The CREATEIN privilege on the schema
• SYSADM authority
• SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The authorization ID that matches the schema name implicitly has the CREATEIN privilege on the
schema.

If the authorization ID that is used to create the function has the installation SYSADM authority or the
installation SYSOPR authority and if the current SQLID is set to SYSINSTL, the function is identified as
system-defined function.

If a distinct type is referenced (i.e. as the data type of a parameter or SQL variable), the privilege set must
also include at least one of the following:

• Ownership of the distinct type
• The USAGE privilege on the distinct type
• SYSADM authority
• SYSDBADM authority

If the function uses a table as a parameter, the privilege set must also include at least one of the
following:

• Ownership of the table
• The SELECT privilege on the table
• SYSADM authority

At least one of the following additional privileges is required if the SECURED option is specified

• SECADM authority
• CREATE_SECURE_OBJECT privilege

Privilege set: If the statement is embedded in an application program, the privilege set is the set of
privileges that are held by the owner of the plan or package. If the owner is a role, matching of the
implicit schema name does not apply and the role must include one of the previously listed privileges or
authorities.

If the statement is dynamically prepared and is not running in a trusted context for which the ROLE AS
OBJECT OWNER clause is specified, the privilege set is the set of privileges that are held by the SQL
authorization ID of the process. If the schema name is not the same as the SQL authorization ID of the
process, one of the following conditions must be met:

• The privilege set includes SYSADM authority
• The privilege set includes SYSCTRL authority
• The SQL authorization ID of the process has the CREATEIN privilege on the schema

1510 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Syntax for CREATE FUNCTION (SQL table)

CREATE FUNCTION function-name (
,

parameter-declaration

)

function-definition

WRAPPED obfuscated-statement-text

parameter-declaration:
parameter-name parameter-type

parameter-type:
data-type1

TABLE LIKE table-name

view-name

AS LOCATOR

data-type1, data-type2:
built-in-type

distinct-type-name

Chapter 7. Statements 1511

built-in-type:
SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

BIT

DATA

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID ASCII

EBCDIC

UNICODE

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

ROWID

XML

1512 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

option-list:

1
LANGUAGE SQL

SPECIFIC specific-name

NOT DETERMINISTIC

DETERMINISTIC

EXTERNAL ACTION

NO EXTERNAL ACTION

READS SQL DATA

CONTAINS SQL

CALLED ON NULL INPUT INHERIT SPECIAL REGISTERS

STATIC DISPATCH

CARDINALITY integer

PARAMETER CCSID ASCII

EBCDIC

UNICODE

NOT SECURED

SECURED

Notes:
1 The options in the option-list can be specified in any order. However, the same clause cannot be
specified more than one time.

function-definition

RETURNS TABLE (

,

column-name data-type2) option-list

SQL-routine-body

SQL-routine-body:
RETURN statement

BEGIN ATOMIC RETURN statement END

Description for CREATE FUNCTION (SQL table)
function-name

Names the user-defined function. The name is implicitly or explicitly qualified by a schema name. The
combination of the name, the schema name, the number of parameters, and the data type of each
parameter (without regard to any length, precision, scale, subtype, or encoding scheme attribute of
the data type) must not identify a user-defined function that exists at the current server. For more
information, see "Choosing the schema and function names" and "Determining the uniqueness of
functions in a schema" in “CREATE FUNCTION statement (overview)” on page 1424.

(parameter-declaration,...)
Identifies the number of input parameters of the function, and specifies the name and data type of
each parameter. All of the parameters for a function are input parameters and are nullable. There
must be one entry in the list for each parameter that the function expects to receive.

Chapter 7. Statements 1513

parameter-name
Specifies the name of the input parameter. Each name in the parameter list must not be the same
as any other name.

data-type1
Specifies the data type of the input parameter. The data type can be a built-in data type or a
distinct type.
built-in-type

The data type of the parameter is a built-in data type.

For more information on the data types, including the subtype of character data types (the
FOR subtype DATA clause), see built-in types. However, the varying length string data types
have different maximum lengths for this statement than for the CREATE TABLE statement. The
maximum lengths for parameters (and SQL variables) are as follows:

• VARCHAR or VARBINARY: 32704
• VARGRAPHIC: 16352

For parameters with a character or graphic data type, the PARAMETER CCSID clause or the
CCSID clause indicates the encoding scheme of the parameter. If you do not specify either of
the CCSID clauses, the encoding scheme is the value of the DEF ENCODING SCHEME field on
installation panel DSNTIPF.

Although an input parameter with a character data type has an implicitly or explicitly specified
subtype (BIT, SBCS, or MIXED), the value that is actually passed in the input parameter can
have any subtype. Therefore, conversion of the input data to the subtype of the parameter
might occur when the function is invoked. With ASCII or EBCDIC, an error occurs if mixed
data that actually contains DBCS characters is used as the value for an input parameter that is
declared with an SBCS subtype.

distinct-type-name
The data type of the parameter is a distinct type. Any length, precision, scale, subtype, or
encoding scheme attributes for the parameter are those of the source type for the distinct
type.

TABLE LIKE table-name AS LOCATOR
Specifies that the parameter is a transition table. However, when the function is invoked, the
actual values in the transition table are not passed to the function. A single value is passed
instead. This value is a locator for the table, which the function uses to access the columns
of the transition table. The table that is identified can contain XML columns; however, the
function cannot reference those XML columns.

A function with a table parameter can only be invoked from the triggered action of a trigger.

RETURNS TABLE
Specifies that the output of the function is a table. The RETURN statement in an SQL table function
must return a table result. The parentheses that follow the RETURNS TABLE keyword delimit a list
of name and data type pairs of the columns of the output table. All columns of the output table are
nullable.
column-name

Specifies the name of the column. The name cannot be qualified, and must be unique within the
RETURNS TABLE clause for the function.

data-type2
Specifies the data type and attributes of the column of the output table.

For SQL table functions, the result table of the function might include multiple encoding schemes
– similar to what a view definition can include.

LANGUAGE SQL
Specifies that the function is written exclusively in SQL.

SPECIFIC specific-name
Specifies a unique name for the function.

1514 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results each time that the function is invoked with
the same input arguments. Db2 does not verify that the function program is consistent with the
specification of NOT DETERMINISTIC or DETERMINISTIC.
NOT DETERMINISTIC

Specifies that the function might not return the same result table each time that the function
is invoked with the same input arguments, even when the referenced data in the database has
not changed. The function depends on some state values that might affect the results. When the
MATERIALIZE_NODET_SQLTUDF subsystem parameter is set to YES, Db2 disables the merging of
SQL table functions that are defined with this option. An example of a table function that is not
deterministic is one which references special registers, other functions that are not deterministic,
or a sequence in a way that affects the table function's result table. NOT DETERMINISTIC is the
default.

DETERMINISTIC
Specifies that the function always returns the same result table each time that the function is
invoked with the same input arguments (provided that the referenced data in the database has not
changed). Db2 enables the merging of SQL table functions that are defined with this option.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function contains an external action. Db2 does not verify that the function
program is consistent with the specification of EXTERNAL ACTION or NO EXTERNAL ACTION.
EXTERNAL ACTION

The function performs some external action (outside the scope of the function program). Thus, the
function must be invoked with each successive function invocation. EXTERNAL ACTION must be
specified if the function invokes another function that has external actions. EXTERNAL ACTION is
the default.

NO EXTERNAL ACTION
The function does not perform any external action. It need not be called with each successive
function invocation. Functions that are defined with NO EXTERNAL ACTION might perform better
than functions that are defined with EXTERNAL ACTION because the function might not be
invoked for each successive function invocation.

Although the scope of global variables are beyond the scope of the routine, global variables can be
set in the routine body when NO EXTERNAL ACTION is specified.

READS SQL DATA or CONTAINS SQL
Specifies the classification of SQL statements and nested routines that this routine can execute
or invoke. The database manager verifies that the SQL statements issued by the function, and all
routines locally invoked by the routine, are consistent with this specification; the verification is not
performed when nested remote routines are invoked. For the classification of each statement, see
Appendix D, “SQL statement data access classification for routines,” on page 2275.
READS SQL DATA

Specifies that the function can execute statements with a data access indication of READS SQL
DATA or CONTAINS SQL. The function cannot execute SQL statements that modify data.

READS SQL DATA is the default.

CONTAINS SQL
Specifies that the function can execute only SQL statements with a data access indication of
CONTAINS SQL. The function cannot execute statements that read or modify data.

CALLED ON NULL INPUT
Specifies that the function is called regardless of whether any of the input arguments are null, making
the function responsible for testing for null argument values. The function can return an empty table,
depending on its logic.

CALLED ON NULL INPUT is the default.

Chapter 7. Statements 1515

INHERIT SPECIAL REGISTERS
Specifies that existing values of special registers are inherited upon entry to the function. INHERIT
SPECIAL REGISTERS is the default.

STATIC DISPATCH
At function resolution time, Db2 chooses a function based on the static (or declared) types of the
function parameters. STATIC DISPATCH is the default.

CARDINALITY integer
Specifies an estimate of the expected number of rows that the function returns. The number is used
for optimization purposes. The value of integer must be between 0 and 2147483647.

If you do not specify CARDINALITY, Db2 assumes a finite value. The finite value is the same value that
Db2 assumes for tables for which the RUNSTATS utility has not gathered statistics.

If a function has an infinite cardinality (the function never returns the end-of-table condition and
always returns a row), a query that requires the end-of-table condition to work correctly will need to
be interrupted.

PARAMETER CCSID
Specifies the encoding scheme for character and graphic string parameters is ASCII, EBCDIC, or
UNICODE. The default encoding scheme is the value that is specifies in the CCSID clauses of the
parameter list or RETURNS clause, or in the DEF ENCODING SCHEME field on installation panel
DSNTIPF. This clause provides a convenient way to specify the encoding scheme for character and
graphic string parameters. If individual CCSID clauses are specified for individual parameters in
addition to this PARAMETER CCSID clause, the value specified in all of the CCSID clauses must be the
same value that is specified in this clause. This clause also specifies the encoding scheme that is used
for system-generated parameters of the routine such as message tokens and DBINFO.

NOT SECURED or SECURED
Specifies if the function is considered secure for row access control and column access control. The
SECURED or NOT SECURED option applies to all future versions of the function.
NOT SECURED

Specifies that the function is not considered secure for row access control and column access
control.

NOT SECURED is the default.

When the function is invoked, the arguments of the function must not reference a column for
which a column mask is enabled when the table is using active column access control.

SECURED
Specifies that the function is considered secure for row access control and column access control.

The function must be secure when it is referenced in a row permission or a column mask.

SQL-routine-body

RETURN-statement
Specifies the return value of the function. A RETURN statement must be specified for an SQL table
function.

WRAPPED obfuscated-statement-text
Specifies the encoded definition of the function. A CREATE FUNCTION statement can be encoded
using the WRAP scalar function.

WRAPPED must not be specified on a static CREATE statement.

ATOMIC
ATOMIC indicates that an unhandled exception condition within the RETURN statement causes the
statement to be rolled back.

1516 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Notes for CREATE FUNCTION (SQL table)
Considerations for all types of user-defined functions:

For considerations that apply to all types of user-defined functions, see “CREATE FUNCTION
statement (overview)” on page 1424.

Self-referencing function:
The body of an SQL function (that is, the expression or NULL in the RETURN statement in the body
of the CREATE FUNCTION statement) cannot contain a recursive invocation of itself or to another
function that invokes it, because such a function would not exist to be referenced.

Dependent objects:
An SQL routine is dependent on objects that are referenced in the routine body.

Obfuscated statements:
A CREATE FUNCTION statement can be executed in obfuscated form. In an obfuscated statement,
only the function name, parameters, and the WRAPPED keyword are readable. The rest of the
statement is encoded in such a way that it is not readable but can be decoded by a database server
that supports obfuscated statements. The WRAP scalar function produces obfuscated statements.
Any debug options that are specified when the function is created from an obfuscated statement are
ignored.

Resolution of object names:
Db2 resolves object names inside the body of the function according to the rules in “Unqualified
object name resolution” on page 86 and the type of the object. The name resolution occurs when the
function is created.

Referencing date and time special registers:
If an SQL function contains multiple references to any of the date or time special registers, all
references return the same value. In addition, this value is the same value that is returned by the
retrieving value of the special register in the statement that invoked the function.

Considerations for columns that are defined with a field procedure:
The body of an SQL table function must not reference a column that is defined with a field procedure,
and the RETURNS clause of an SQL table function must not reference a column that is defined with a
field procedure. An SQL table function must not be invoked with an expression that is derived from a
column that is defined with a field procedure.

Restrictions involving pending definition changes:
The body of an SQL table function must not reference a table that has pending definition changes.

Alternative syntax and synonyms:
To provide compatibility with previously releases of Db2 or other products in the Db2 family, Db2
supports the following alternative syntax:

• VARIANT as a synonym for NOT DETERMINISTIC
• NOT VARIANT as a synonym for DETERMINISTIC
• NULL CALL as a synonym for CALLED ON NULL INPUT

Examples for CREATE FUNCTION (SQL table)

Example 1

Define a table function, JTABLE, to return a table with 3 columns:

CREATE FUNCTION JTABLE (COLD_VALUE CHAR(9), T2_FLAG CHAR(1))
 RETURNS TABLE (COLA INT, COLB INT, COLC INT)
 LANGUAGE SQL
 SPECIFIC DEPTINFO
 NOT DETERMINISTIC
 READS SQL DATA
 RETURN
 SELECT A.COLA, B.COLB, B.COLC
 FROM TABLE1 AS A
 LEFT OUTER JOIN

Chapter 7. Statements 1517

 TABLE2 AS B
 ON A.COL1 = B.COL1 AND T2_FLAG = 'Y'
 WHERE A.COLD = COLD_VALUE;

Example 2

Define a table function that returns the employees in a specified department number. The function
simply returns the employees for the requested department:

CREATE FUNCTION DEPTEMPLOYEES (DEPTNO CHAR(3))
 RETURNS TABLE (EMPNO CHAR(6), LASTNAME VARCHAR(15), FIRSTNAME VARCHAR(12))
 LANGUAGE SQL
 READS SQL DATA
 NO EXTERNAL ACTION
 DETERMINISTIC
 RETURN
 SELECT EMPNO, LASTNAME, FIRSTNME
 FROM YEMP
 WHERE YEMP.WORKDEPT = DEPTEMPLOYEES.DEPTNO;

Related concepts
SQL table functions (Db2 Application programming and SQL)
Naming conventions
The rules for forming a name depend on the type of the object designated by the name.
Related tasks
Creating a user-defined function (Db2 Application programming and SQL)

CREATE GLOBAL TEMPORARY TABLE statement
The CREATE GLOBAL TEMPORARY TABLE statement creates a description of a temporary table at the
current server.

Invocation for CREATE GLOBAL TEMPORARY TABLE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for CREATE GLOBAL TEMPORARY TABLE
The privilege set that is defined below must include at least one of the following:

• The CREATETMTAB system privilege
• The CREATETAB database privilege for any database
• DBADM, DBCTRL, or DBMAINT authority for any database
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

However, DBADM, DBCTRL, or DBMAINT authority is not sufficient authority if you are creating a
temporary table for someone else and the table qualifier is not your authorization ID.

Additional privileges might be required when the data type of a column is a distinct type or the LIKE
clause is specified. See the description of distinct-type and LIKE for the details.

Privilege set: The privilege set is the same as the privilege set for the CREATE TABLE statement. See
information about CREATE TABLE Authorization for details.

1518 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_sqltablefn.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_defineudf.html

Syntax for CREATE GLOBAL TEMPORARY TABLE

CREATE GLOBAL TEMPORARY TABLE table-name (

,

column-definition)

LIKE table-name

view-name

CCSID ASCII

EBCDIC

UNICODE

column-definition:

column-name data-type

NOT NULL

data-type:

built-in-type

distinct-type-name

built-in-type:

Chapter 7. Statements 1519

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

VARCHAR

CHARACTER

CHAR

VARYING

( integer)

FOR SBCS

MIXED

BIT

DATA

CCSID 1208
1

GRAPHIC

(1)

( integer)

VARGRAPHIC ( integer)

CCSID 1200
1

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

Notes:
1 The CCSID clause must only be specified for a character string or a graphic string column in an EBCDIC
created global temporary table.

1520 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Description for CREATE GLOBAL TEMPORARY TABLE
table-name

Names the temporary table. The name, including the implicit or explicit qualifier, must not identify a
table, view, alias, synonym, or temporary table that exists at the database server, or a table that exists
in the SYSIBM.SYSPENDINGOBJECTS catalog table.

The qualification rules for a temporary table are the same as for other tables.

The owner acquires ALL PRIVILEGES on the table WITH GRANT OPTION and the authority to drop the
table.

For more information, see Guidelines for table names (Db2 Administration Guide).

column-definition
Defines the attributes of a column for each instance of the table. The number of columns defined must
not exceed 750. The maximum record size must not exceed 32714 bytes. The maximum row size
must not exceed 32706 bytes (8 bytes less than the maximum record size).

column-name
Names the column. The name must not be qualified and must not be the same as the name of another
column in the table.

data-type
Specifies the data type of the column. The data type can be a built-in data type or a distinct type.
built-in-type

The data type of the column is a built-in data type.

For more information on and the rules that apply to the data types, see built-in-type.

distinct-type
Any distinct type except one that is based on a LOB or ROWID data type. The privilege set must
implicitly or explicitly include the USAGE privilege on the distinct type.

NOT NULL
Specifies that the column cannot contain nulls. Omission of NOT NULL indicates that the column can
contain nulls.

LIKE table-name or view-name
Specifies that the columns of the table have exactly the same name and description as the columns
of the identified table or view. The name specified after LIKE must identify a table, view, or temporary
table that exists at the current server. The identified table must not be an accelerator-only table. A
view cannot contain columns of length 0.

The privilege set must implicitly or explicitly include the SELECT privilege on the identified table or
view.

This clause is similar to the LIKE clause on CREATE TABLE, but it has the following differences:

• If any column of the identified table or view has an attribute value that is not allowed for a column in
a temporary table, that attribute value is ignored. The corresponding column in the new temporary
table has the default value for that attribute unless otherwise indicated.

• If any column of the identified table or view allows a default value other than null, that default value
is ignored and the corresponding column in the new temporary table has no default value. A default
value other than null is not allowed for any column in a temporary table.

CCSID encoding-scheme
Specifies the encoding scheme for string data stored in the table.
ASCII

Specifies that the data must be encoded by using the ASCII CCSIDs of the server.

An error occurs if a valid ASCII CCSID has not been specified for the installation.

EBCDIC
Specifies that data must be encoded by using the EBCDIC CCSIDs of the server.

Chapter 7. Statements 1521

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_guidelinesfortablenames.html

An error occurs if a valid EBCDIC CCSID has not been specified for the installation.

UNICODE
Specifies that data must be encoded by using the CCSIDs of the server for Unicode.

An error occurs if a valid CCSID for Unicode has not been specified for the installation.

Usually, each encoding scheme requires only a single CCSID. Additional CCSIDs are needed when
mixed, graphic, or Unicode data is used. An error occurs if CCSIDs have not been defined.

The CCSID clause can be specified for the created temporary table, or for individual columns in
the created temporary table. If a CCSID clause is specified for the table, that CCSID specifies the
encoding scheme for the table, regardless of whether the LIKE clause is also specified. If a CCSID
clause is not specified for the table, the encoding scheme for the table is EBCDIC.

If a CCSID clause is specified for a column, the encoding scheme for the created temporary table
must be EBCDIC. If a CCSID clause is not specified for a column, and the LIKE clause is not specified
for the table, the CCSID of the column is the same as the CCSID of the table. If the LIKE clause is
specified, and the source table that is specified in the LIKE clause is an EBCDIC table with Unicode
columns, the columns in the created temporary table that correspond to the Unicode columns in the
source table are also Unicode.

Notes for CREATE GLOBAL TEMPORARY TABLE
Owner privileges

The owner of the table has all table privileges (see “GRANT statement (table or view privileges)” on
page 1988) with the ability to grant these privileges to others. For more information about ownership
of the object, see “Authorization, privileges, permissions, masks, and object ownership” on page 90.

Instantiation and termination
Let T be a temporary table defined at the current server and let P denote an application process:

• An empty instance of T is created as a result of the first implicit or explicit reference to T in an OPEN,
SELECT INTO or SQL data change operation that is executed by any program in P.

• Any program in P can reference T and any reference to T by a program in P is a reference to that
instance of T.

When a commit operation terminates a unit of work in P and no program in P has an open WITH
HOLD cursor that is dependent on T, the commit includes the operation DELETE FROM T.

• When a rollback operation terminates a unit of work in P, the rollback includes the operation DELETE
FROM T.

• When the connection to the database server at which an instance of T was created terminates, the
instance of T is destroyed. However, the definition of T remains. A DROP TABLE statement must be
executed to drop the definition of T.

Restrictions and extensions
Let T denote a temporary table:

• Columns of T cannot have default values other than null.
• A column of T cannot have a LOB or ROWID data type (or a distinct type based on one).
• T cannot have unique constraints, referential constraints, or check constraints.
• T cannot be defined as the parent in a referential constraint.
• T cannot be referenced in:

– A CREATE INDEX statement.
– A LOCK TABLE statement.
– As the object of an UPDATE statement in which the object is T or a view of T. However, you can

reference T in the WHERE clause of an UPDATE statement (including the update operation of the
MERGE statement).

1522 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

– Db2 utility commands.
• If T is referenced in the fullselect of a CREATE VIEW statement, you cannot specify a WITH CHECK

OPTION clause in the CREATE VIEW statement.
• ALTER TABLE T is valid only if the statement is used to add a column to T. Any column that you add

to T must have a default value of null.

When you alter T, any packages that refer to the table are invalidated, and Db2 automatically
rebinds the packages the next time they are run.

• DELETE FROM T or a view of T is valid only if the statement does not include a WHERE or WHERE
CURRENT OF clause. In addition, DELETE FROM view of T is valid only if the view was created
(CREATE VIEW) without the WHERE clause. A DELETE FROM statement deletes all the rows from the
table or view.

• You can refer to T in the FROM clause of any subselect. If you refer to T in the first FROM clause of a
select-statement, you cannot specify a FOR UPDATE clause.

• You cannot use a DROP DATABASE statement to implicitly drop T. To drop T, reference T in a DROP
TABLE statement.

• A temporary table instantiated by an SQL statement using a three-part table name can be accessed
by another SQL statement using the same name in the same application process for as long as the
Db2 connection which established the instantiation is not terminated.

• GRANT ALL PRIVILEGES ON T is valid, but you cannot grant specific privileges on T.

Of the ALL privileges, only the ALTER, INSERT, DELETE, and SELECT privileges can actually be used
on T.

• REVOKE ALL PRIVILEGES ON T is valid, but you cannot revoke specific privileges from T.
• A COMMIT operation deletes all rows of every temporary table of the application process, but the

rows of T are not deleted if any program in the application process has an open WITH HOLD cursor
that is dependent on T. In addition, if RELEASE(COMMIT) is in effect and no open WITH HOLD
cursors are dependent on T, all logical work files for T are also deleted.

• A ROLLBACK operation deletes all rows and all logical work files of every temporary table of the
application process.

• You can reuse threads when using a temporary table, and a logical work file for a temporary table
name remains available until deallocation. A new logical work file is not allocated for that temporary
table name when the thread is reused.

• You can refer to T in the following statements:

Statement Statement Statement

ALTER FUNCTION
ALTER PROCEDURE
COMMENT
CREATE ALIAS
CREATE FUNCTION

CREATE PROCEDURE
CREATE SYNONYM
CREATE TABLE LIKE
CREATE VIEW
DESCRIBE TABLE

DECLARE TABLE
DELETE (if it does not
include a WHERE clause)
DROP TABLE
INSERT
LABEL
SELECT INTO

Alternative syntax and synonyms: For compatibility with previous releases of Db2, you can specify
LONG VARCHAR as a synonym for VARCHAR(integer) and LONG VARGRAPHIC as a synonym for
VARGRAPHIC(integer) when defining the data type of a column. However, the use of these synonyms
is not encouraged because after the statement is processed, Db2 considers a LONG VARCHAR column to
be VARCHAR and a LONG VARGRAPHIC column to be VARGRAPHIC.

Examples for CREATE GLOBAL TEMPORARY TABLE

Chapter 7. Statements 1523

Example 1: Create a temporary table, CURRENTMAP. Name two columns, CODE and MEANING, both of
which cannot contain nulls. CODE contains numeric data and MEANING has character data. Assuming a
value of NO for the field MIXED DATA on installation panel DSNTIPF, column MEANING has a subtype of
SBCS:

CREATE GLOBAL TEMPORARY TABLE CURRENTMAP
 (CODE INTEGER NOT NULL, MEANING VARCHAR(254) NOT NULL);

Example 2: Create a temporary table, EMP:

CREATE GLOBAL TEMPORARY TABLE EMP
 (TMPDEPTNO CHAR(3) NOT NULL,
 TMPDEPTNAME VARCHAR(36) NOT NULL,
 TMPMGRNO CHAR(6) ,
 TMPLOCATION CHAR(16));

CREATE INDEX statement
The CREATE INDEX statement creates a partitioning index or a secondary index and an index space at the
current server. The columns included in the key of the index are columns of a table at the current server.

Invocation for CREATE INDEX
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for CREATE INDEX
The privilege set that is defined below must include at least one of the following:

• The INDEX privilege on the table
• Ownership of the table
• DBADM authority for the database that contains the table
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

If the index is created using an expression, the EXECUTE privilege is required on any user-defined
function that is invoked in the index expression.

Additional privileges might be required, as explained in the description of the BUFFERPOOL and USING
STOGROUP clauses.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the specified index name includes a qualifier that is
not the same as this owner, the privilege set must include SYSADM or SYSCTRL authority, or DBADM or
DBCTRL authority for the database.

If ROLE AS OBJECT OWNER is in effect, the schema qualifier must be the same as the role, unless the role
has the CREATEIN privilege on the schema, SYSADM authority, or SYSCTRL authority.

If ROLE AS OBJECT OWNER is not in effect, one of the following rules applies:

• If the privilege set lacks the CREATIN privilege on the schema, SYSADM authority, or SYSCTRL authority,
the schema qualifier (implicit or explicit) must be the same as one of the authorization ids of the
process.

1524 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• If the privilege set includes SYSADM authority or SYSCTRL authority, the schema qualifier can be any
valid schema name.

If the statement is dynamically prepared, the privilege set is the privileges that are held by the SQL
authorization ID of the process unless the process is within a trusted context and the ROLE AS OBJECT
OWNER clause is specified. In that case, the privilege set is the set of privileges that are held by the role
that is associated with the primary authorization ID of the process. However, if the specified index name
includes a qualifier that is not the same as this authorization ID, the following rules apply:

• If the privilege set includes SYSADM or SYSCTRL authority (or DBADM authority for the database, or
DBCTRL authority for the database when creating a table), the schema qualifier can be any valid schema
name.

• If the privilege set lacks SYSADM or SYSCTRL authority (or DBADM authority for the database, or
DBCTRL authority for the database when creating a table), the schema qualifier is valid only if it is
the same as one of the authorization IDs of the process and the privilege set that are held by that
authorization ID includes all privileges needed to create the index. This is an exception to the rule that
the privilege set is the privileges that are held by the SQL authorization ID of the process.

Syntax for CREATE INDEX

CREATE

UNIQUE

WHERE NOT NULL

INDEX index-name ON

table-name (

,

column-name

key-expression

ASC

DESC

RANDOM

, BUSINESS_TIME WITHOUT OVERLAPS

WITH OVERLAPS

)

aux-table-name

other-options

other-options:

Chapter 7. Statements 1525

XML-index-specification

INCLUDE (

,

column-name)

NOT CLUSTER

CLUSTER

PARTITIONED

NOT PADDED

PADDED

2

using-specification

free-specification

gbpcache-specification

DEFINE YES

DEFINE NO

COMPRESS NO

COMPRESS YES

INCLUDE NULL KEYS

EXCLUDE NULL KEYS

PARTITION BY
RANGE

(

,

partition-element
1

using-specification

free-specification

gbpcache-specification

DSSIZE integer G

)

BUFFERPOOL bpname

CLOSE YES

CLOSE NO

DEFER NO

DEFER YES

DSSIZE integer G

PIECESIZE integer K

M

G

COPY NO

COPY YES

Notes:
1 The same clause must not be specified more than one time.

1526 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

2 The value of field PAD INDEXES BY DEFAULT (on installation panel DSNTIPE) determines the default.
When the value is NO, NOT PADDED is the default. When the value is YES, PADDED is the default. For more
information, see the description of the PADDED or NOT PADDED options.

XML-index-specification:

GENERATE KEY USING

GENERATE KEYS USING

XMLPATTERN XML-pattern-clause AS SQL-data-type

XML-pattern-clause:

prolog

pattern-expression

prolog:

declare namespace NCName = StringLiteral ;

declare default element namespace StringLiteral ;

pattern-expression:

/

//

forward-axis element-name

*

nsprefix :*

*: NCName
.

/

//

@ attribute-name

attribute::  attribute-name

@ *

attribute::  *

forward-axis text()

function-step

1

Notes:
1 pattern-expression cannot be an empty string.

forward-axis:

Chapter 7. Statements 1527

child::

descendant::

self::

descendant-or-self::

function-step:

fn::upper-case(.)

fn::exists (element-name

*

nsprefix :*

*: NCName

child:: element-name

child::*

child:: nsprefix :*

child::*: NCName

@ attribute-name

attribute::  attribute-name

@ *

attribute::  *

)

SQL-data-type:

SQL VARCHAR (integer)

DECFLOAT

(34)

DATE

TIMESTAMP

(12)

using-specification:

1528 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

USING VCAT catalog-name

STOGROUP stogroup-name
1

PRIQTY -1

PRIQTY integer

SECQTY -1

SECQTY integer

ERASE NO

ERASE YES

Notes:
1 The same clause must not be specified more than once.

free-specification:

FREEPAGE 0

FREEPAGE integer

PCTFREE 10

PCTFREE integer

1

Notes:
1 The same clause must not be specified more than one time.

gbpcache-specification:

GBPCACHE CHANGED

GBPCACHE ALL

NONE

partition-element:

Chapter 7. Statements 1529

PARTITION integer

ENDING
AT

(

,

constant

MAXVALUE

MINVALUE

)
INCLUSIVE

Description for CREATE INDEX
UNIQUE

Prevents the table from containing two or more rows with the same value of the index key. When
UNIQUE is used, all null values for a column are considered equal. For example, if the key is a single
column that can contain null values, that column can contain only one null value. The constraint is
enforced when rows of the table are updated or new rows are inserted.

The constraint is also checked during the execution of the CREATE INDEX statement. If the table
already contains rows with duplicate key values, the index is not created.

UNIQUE WHERE NOT NULL
Prevents the table from containing two or more rows with the same value of the index key where all
null values for a column are not considered equal. Multiple null values are allowed. Otherwise, this is
identical to UNIQUE.

INDEX index-name
Names the index. The name must not identify an index that exists at the current server, or is listed in
the SYSIBM.SYSPENDINGOBJECTS catalog table, or is in an accelerator-only table.

The associated index space also has a name. That name appears as a qualifier in the names of data
sets defined for the index. If the data sets are managed by the user, the name is the same as the
second (or only) part of index-name. If this identifier consists of more than eight characters, only the
first eight are used. The name of the index space must be unique among the names of the index
spaces and table spaces of the database for the identified table. If the data sets are defined by Db2,
Db2 derives a unique name.

If the index is an index on a declared temporary table, the qualifier, if explicitly specified, must be
SESSION. If the index name is unqualified, Db2 uses SESSION as the implicit qualifier.

For more information, see Index names and guidelines (Db2 Administration Guide).

ON table-name or aux-table-name
Identifies the table on which the index is created. The name can identify a base table, a materialized
query table, a declared temporary table, or an auxiliary table.
table-name

Identifies the base table, materialized query table, or declared temporary table on which the
index is created. The name must identify a table that exists at the current server. (The name of a
declared temporary table must be qualified with SESSION.)

The name must not identify a clone table. The name must not identify a created temporary table
or a table that is implicitly created for an XML column. If the index that is being created is for
XML values, the table can contain an XML column, otherwise, the table must not contain an XML
column. The name must not identify a catalog table or declared temporary table if the index is
created using expressions. The name must not identify an accelerator-only table or a directory
table.

If the table has enforced row or column access controls, the row permissions and column masks
are not applied during key generation.

1530 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_guidelinesfordefiningindexes.html

column-name,…
Specifies the columns of the index key.

Each column-name must identify a column of the table. Do not specify more than 64 columns
or the same column more than one time. Do not qualify column-name.

Do not specify a column for column-name that is defined as follows:

• a LOB column (or a column with a distinct type that is based on a LOB data type)
• a BINARY or VARBINARY column (or a column with a distinct type that is based on a BINARY

or VARBINARY data type) when the PARTITION BY RANGE clause is also specified
• a VARBINARY column (or a column with a distinct type that is based on a VARBINARY data

type) when the PADDED clause is also specified
• a row change timestamp column when the PARTITION BY RANGE or PARTITIONED clause is

also specified.
• a timestamp with time zone column (or a column with a distinct type that is based on the

timestamp with time zone data type) when the PARTITION or PARTITION BY RANGE clause
is also specified.

A column with an XML type can only be specified if the XMLPATTERN clause is also specified.
If the XMLPATTERN clause is specified, only one column can be identified and the column
must be an XML type. The resulting index is an XML index.

If the table is an EBCDIC table with Unicode columns, character and graphic columns that are
specified for the index key must be all EBCDIC or all Unicode.

The sum of the length attributes of the columns must not be greater than the following
limits, where n is the number of columns that can contain null values, m is the number of
varying-length columns, and d is the number of DECFLOAT columns in the key:

• 2000 - n for a padded, nonpartitioning index
• 2000 - n - 2m - 3d for a nonpadded, nonpartitioning index
• 255 - n for a partitioning index (padded or nonpadded)
• 255 - n - 2m- 3d for a nonpadded, partitioning index

key-expression
Specifies an expression that returns a scalar value. An index with a key that includes one or
more expressions consisting of more than just a column name is an expression-based index.
key-expression cannot be specified with the GENERATE KEY USING clause or the INCLUDE
clause. key-expression has the following restrictions:

• Each key-expression must contain as least one reference to a column of table-name.

All references to columns of table-name must be unqualified. Referenced columns cannot
include any FIELDPROCs or a SECURITY LABEL. Referenced columns cannot be implicitly
hidden (that is, defined with the IMPLICITLY HIDDEN attribute).

• key-expression must not include any of the following:

– A subquery
– An aggregate function
– A function that is not deterministic function
– A function that has an external action
– A user-defined function
– The VERIFY_GROUP_FOR_USER or VERIFY_ROLE_FOR_USER functions
– A sequence reference
– A host variable
– A parameter marker

Chapter 7. Statements 1531

– A global variable
– A special register
– An expression for which implicit time zone value apply (or example, cast a timestamp to a

timestamp with time zone)
– A CASE expression
– An OLAP specification

• If key-expression invokes a cast function, the privilege set must implicitly include EXECUTE
authority on the generated cast functions for the distinct type.

• If key-expression invokes the LOWER or UPPER functions, the input string-expression cannot
be FOR BIT DATA, and the function invocation must contain the locale-name argument.

• If key-expression invokes the TRANSLATE function, the function invocation must contain the
to-string argument.

• key-expression must not invoke a built-in function with an argument that references a LOB
column, unless the function is SUBSTR or JSON_VAL.

• If key-expression invokes the SUBSTR function, an argument to the function that references
a LOB column can reference only the inline portion of the LOB column.

• If key-expression invokes the JSON_VAL function and the first argument is a LOB column, the
column must be defined as an inline LOB.

• If key-expression invokes the JSON_VAL function, the function invocation must meet the
following conditions:

– The invocation of the JSON_VAL function must be the outermost expression for key-
expression.

– If the first argument is a column, that column must be contained in a table in a partition-
by-growth table space.

– The third argument must end with the string ':na', to indicate that the first argument does
not contain a JSON array.

• If key-expression invokes the JSON_VAL built-in function, the CREATE INDEX statement
must not reference any LOB columns other than the LOB column that is the argument to the
JSON_VAL function. Such a CREATE INDEX statement can refer only to a single LOB column.

• The same expression cannot be used more than one time in the same index.
• The data type of the result of the expression cannot be a LOB, XML, DECFLOAT, or array

value. However, the data type of an intermediate result can be a LOB or DECFLOAT value (or
a distinct type that is based on one of these data types), but not an XML value. For an index
with a DECFLOAT intermediate result, the rounding mode that was in effect when the index
was created should also be in effect when the index is used.

• If a Unicode column in an EBCDIC table is referenced in a key-expression, the encoding
scheme of the index keys must either be all Unicode or all EBCDIC. Otherwise, the encoding
scheme of the result of a key-expression must be the same encoding scheme as the table.

The maximum length of the text string of each key-expression is 4000 bytes after conversion
to UTF-8. The maximum number of key-expression in an extended index is 64.

ASC
Puts the index entries in ascending order by the column. ASC cannot be specified with the
GENERATE KEY USING clause.

ASC is the default.

DESC
Puts the index entries in descending order by the column. DESC cannot be specified with the
GENERATE KEY USING clause or if the ON clause contains key-expression.

1532 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

RANDOM
Index entries are put in a random order by the column. RANDOM cannot be specified in the
following cases:

• A varying length column is part of the index key and the index is defined with the NOT
PADDED option

• A column of the index key is defined as TIMESTAMP WITH TIME ZONE or DECFLOAT
• The index is an XML index. An XML index is defined with the GENERATE KEY USING clause
• The index is part of the partitioning key
• The index is an expression-based index

BUSINESS_TIME

Specifies that the columns of the BUSINESS_TIME period are automatically added to the end
of the index key in the following order:

• The end column of the BUSINESS_TIME period in ascending order
• The start column of the BUSINESS_TIME period in ascending order

BUSINESS_TIME can be specified as the last item in the list. The list must also include at
least one column-name or key-expression. When BUSINESS_TIME is specified, the columns of
the BUSINESS_TIME period must not be specified as column-name or a key-expression, or as
columns in the partitioning key.

WITH OR WITHOUT OVERLAPS
Indicates whether multiple rows may exist with the same values for the non-period
columns and expressions of the index key for a row, with overlapping time periods.
WITH OVERLAPS

Indicates that multiple rows may exist with the same values for the non-period
columns and expressions of the index key for a row, with overlapping time periods.
The BUSINESS_TIME WITH OVERLAPS clause is intended for use in defining an index
for the foreign key of a temporal referential constraint.

BUSINESS_TIME WITH OVERLAPS must not be specified when UNIQUE is specified for
the index definition.

BUSINESS_TIME WITHOUT OVERLAPS must not be specified if the table is defined
with a partitioning key that includes any columns of the BUSINESS_TIME period.

WITHOUT OVERLAPS

Indicates that the values for the non-period columns and expressions of the index key
for a row must be unique with respect to the time represented by the BUSINESS_TIME
period for the row. Db2 enforces that multiple rows do not exist with the same key
values for the columns or expressions of the index, with overlapping time periods. The
BUSINESS_TIME WITHOUT OVERLAPS clause is intended for use in defining a unique
index to enforce a primary key or unique constraint.

BUSINESS_TIME WITHOUT OVERLAPS can only be specified for an index that is
defined as UNIQUE.

aux-table-name
Identifies the auxiliary table on which the index is created. The name must identify an auxiliary
table that exists at the current server. If the auxiliary table already has an index, do not create
another one. An auxiliary table can only have one index.

Do not specify any columns for the index key. The key value is implicitly defined as a unique 19
byte value that is system generated.

If qualified, table-name or aux-table-name can be a two-part or three-part name. If a three-part name
is used, the first part must match the value of the field Db2 LOCATION NAME of installation panel
DSNTIPR at the current server. (If the current server is not the local Db2, this name is not necessarily

Chapter 7. Statements 1533

the name in the CURRENT SERVER special register.) Whether the name is two-part or three-part, the
authorization ID that qualifies the name is the owner of the index.

The table space that contains the named table must be available to Db2 so that its data sets can be
opened. If the table space is EA-enabled, the data sets for the index must be defined to belong to a
DFSMS data class that has the extended format and addressability attributes.

GENERATE KEY USING
Along with XMLPATTERN, GENERATE KEY USING is required to generate an XML index.

XMLPATTERN
When an XML column is indexed, only parts of the documents will be indexed. To identify those
parts, a path expression that follows the XMLPATTERN clause is specified. Only values of those
element, attribute, or text nodes which match the specified pattern are indexed. An XML pattern
can be specified using an optional namespace declaration where namespace prefixes are mapped
to namespace URIs and by providing a path expression. The path expression is similar to a path
expression in XQuery except that the paths that are specified for the XML index can support child
axis, self-or-descendant axis, wildcard expressions, or attribute only. The maximum length of an XML
pattern text is 4000 bytes after being converted to UTF-8. For more information about XQuery, see
Overview of pureXML (Db2 Programming for XML).

prolog
To use qualified names in the pattern-expression, namespace prefixes need to be declared. A default
namespace can also be declared for use with unqualified names.
declare namespace NCName=StringLiteral

The namespace prefix, NCName, is mapped to a namespace URI that is identified in StringLiteral.
Multiple namespaces can be declared, but each namespace prefix must be unique within
the list of namespace declarations. NCName is an XML name as defined by the XML 1.0
standard. NCName cannot include a colon character. The namespace URI cannot be http://
www.w3.org/XML/1998/namespace or http://w3.org/2000/xmlns/.

declare default element namespace StringLiteral
Specifies the default namespace URI for unqualified names of elements and types. StringLiteral
is a namespace URI. If no default element namespace is declared, unqualified names of element
and types are in no namespace. Only one default namespace can be declared.

pattern-expression
Pattern-expression is used to identify those nodes in an XML document that are indexed. Pattern-
expression cannot be an empty or invalid string, and the XQuery expression cannot be nested more
than 50 levels. pattern-expression cannot be an XQuery updating expression.
/ (forward slash)

Separates path expression steps.
// (double forward slash)

Abbreviated syntax for /descendant-or-self::node()/
. (dot)

Abbreviated syntax for /self::node()/
child::

Specifies children of the context node. child:: is the default if no forward axis is specified.
descendant::

Specifies the descendants of the context node.
self::

Specifies the current context node.
descendant-or-self::

Specifies the context node and the descendents of the context node.
element-name

Identifies an element in an XML document. element-name is an XML QName that can have one of
the following forms:

1534 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/xml/src/tpc/db2z_xmldb2.html

nsprefix:NCName
nsprefix explicitly specifies a namespace prefix that must be declared.

NCName
An unqualified XML name that uses the default namespace.

* (an asterisk)
Indicates any element name. If * is prefixed by attribute:: or @, * indicates any attribute name.

nsprefix:*
Indicates any NCName within the specified namespace.

*:NCName
Indicates a specific XML name in any of the currently declared namespaces.

attribute:: or @
Specifies attributes of the context node.

attribute-name
Identifies an attribute in an XML document. attribute-name is an XML QName that can have one of
the following forms:
nsprefix:NCName

nsprefix explicitly specifies a namespace prefix that must be declared.
NCName

An unqualified XML name that uses the default namespace.
text()

Matches any text node.
fn:upper-case(.)

Specifies an element node or an attribute node that identifies the key value for the index for each
node that is specified by the context step (the part of pattern-expression that is specified prior to
fn:upper-case).

The context step of fn:upper-case() must specify an element node or an attribute node. The
argument of fn:upper-case() must be a self step. The key values of an XML value index must be
specified as the SQL data type VARCHAR. The length of the VARCHAR value can be any value that
is allowed in Db2.

fn:exists()
Specifies an element node that identifies the key value for the index for each node that is specified
by the context step (the part of pattern-expression that is specified prior to fn:exists).

The context step of fn:exists() must specify an element node. The argument of fn:exists() must
be either a single step of a child element node or an attribute node. The name test part can be a
wildcard character for either the namespace prefix or NCName. The key values of an XML value
index for an XPath expression that ends with fn:exists() must be specified as the SQL data type
VARCHAR(1). The key value will be "T" or "F". "T" implies that fn:exists() evaluates to true and "F"
implies that fn:exists() evaluates to false.

AS SQL data-type
Specifies that indexed values are stored as an instance of the specified SQL data type. Casting to the
specified data type can result in a loss of precision of the values. For example, a loss of precision can
occur when an XML integer value is cast to the SQL data type DECFLOAT. If the cast causes a loss of
precision, the result will be rounded to the approximate value when it is stored in the index. The cast
result cannot be outside of the range that is supported by the SQL data type. If the value cannot be
cast to the specified data type, the document is still inserted into the table, but the index entry for that
value is not created. No error or warning code is returned.

If the index is unique, the uniqueness is enforced on the value after it is cast to the specified type.
Because rounding can occur during the cast to the SQL data type, if a value is cast to the same key
value as a document that the table already contains, Db2 will return duplicate key errors at insert
time, or fail to create the index.

Chapter 7. Statements 1535

VARCHAR (integer)
The length integer is a value in the range 1–1000 bytes. If VARCHAR is specified with a length, the
specified length is treated as a constraint. If documents are inserted into a table (or exist in the
table at create index time) that have nodes with values that are longer than the specified length,
the insert or index creation will fail.

DECFLOAT
DECFLOAT can be specified to index numeric values. For the cast to succeed, the string must be a
valid XML numeric type. Otherwise the value will be ignored and no insert to the index will occur.
The result of the cast cannot be outside of the range that DECFLOAT can represent. Because the
XML Schema data type for numeric values allows greater precision than the SQL data type, the
result might be rounded to fit into the SQL data type. The DECFLOAT values that are stored in the
index are the normalized numeric values.

DATE
The SQL DATE data type values will be normalized to UTC (Coordinated Universal Time) before
being stored in the index. For invalid xs:date values, the value will be ignored without being
inserted into the index. The XML schema data type for DATE allows for greater precision than the
SQL data type. If an out-of-range value is encountered, an error is returned.

TIMESTAMP (12)
The SQL TIMESTAMP data type values will be normalized to UTC (Coordinated Universal Time)
before being stored in the index. If the value that is specified in the document does not specify
the time zone, Db2 will use the implicit time zone to normalize the value to UTC. For invalid
xs:dateTime values, the value will be ignored without being inserted into the index. The XML
schema data type for timestamps allows for greater precision than the SQL data type. If an out-of
range value is encountered, an error is returned. Only a precision of 12 fractional digits is allowed
for an SQL TIMESTAMP index key.

INCLUDE (column-name)
Specifies additional columns to append to the set of index key columns of a unique index. Any column
that is specified using INCLUDE column-name is not used to enforce uniqueness. The included
columns might improve performance for some queries using index only access.

The UNIQUE clause must be specified when INCLUDE is specified. Columns that are specified in the
INCLUDE clause count towards the limits for the number of columns and the limits on the sum of the
length attributes of the columns that are specified in the index. The total number of columns for the
index cannot exceed 64.

column-name must be distinct from the columns that are used to enforce uniqueness and from other
columns specified in the INCLUDE clause. column-name must be unqualified, must identify a column
of the specified table, and must not be one of the existing columns of the index. column-name must
not identify a LOB or DECFLOAT column (or a distinct type that is based on one of those types).

The INCLUDE clause cannot be specified for the following types of indexes:

• A non-unique index
• A partitioning index when index-controlled partitioning is used
• An auxiliary index
• An XML index
• An extended index
• An expression-based index

Columns in the INCLUDE list that are defined as character or graphic string data types must be
defined with the same encoding scheme as other key columns with character or graphic string data
types.

CLUSTER or NOT CLUSTER
Specifies whether the index is the clustering index for the table. This clause must not be specified for
an index on an auxiliary table, or on a table that is defined to use hash organization.

1536 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

CLUSTER
The index is to be used as the clustering index of the table. CLUSTER cannot be specified if
XMLPATTERN or key-expression is specified.

NOT CLUSTER
The index is not to be used as the clustering index of the table.

PARTITIONED
Specifies that the index is data partitioned (that is, partitioned according to the partitioning scheme
of the underlying data). A partitioned index can be created only on a partitioned table space, not on a
partition-by-growth table space. PARTITIONED cannot be specified if XMLPATTERN is specified. The
types of partitioned indexes are partitioning and secondary.

An index is considered a partitioning index if the specified index key columns match or comprise a
superset of the columns specified in the partitioning key, are in the same order, and have the same
ascending or descending attributes.

If PARTITION BY was not specified when the table was created, the CREATE INDEX statement
must have the ENDING AT clause specified to define a partitioning index and use index-controlled
partitioning. This index is created as a partitioned index even if the PARTITIONED keyword is not
specified. When a partitioning index is created, if both the PARTITIONED and ENDING AT keywords
are omitted, the index will be non-partitioned. If PARTITIONED is specified, the USING specification
with PRIQTY and SECQTY specifications are optional. If these space parameters are not specified,
default values are used.

A secondary index is any index defined on a partitioned table space that does not meet the definition
of the partitioning index. For partitioned secondary indexes (data-partitioned secondary indexes), the
ENDING AT clause is not allowed because the partitioning scheme of the index is predetermined by
that of the underlying data. UNIQUE and UNIQUE WHERE NOT NULL are allowed only if the columns
in the index are a superset of the partitioning columns. All of the index columns must be specified
in a table-name(column-name) clause, and not in an INCLUDE clause. If a partitioned secondary
index is created on a table that uses index-controlled partitioning, the table is converted to use
table-controlled partitioning.

Index-controlled partitioning cannot be used if the PREVENT_NEW_IXCTRL_PART subsystem
parameter is set to YES.

For more information, see PREVENT_NEW_IXCTRL_PART in macro DSN6SPRM (Db2 Installation and
Migration).

NOT PADDED or PADDED
Specifies how varying-length string columns are to be stored in the index. If the index contains no
varying-length columns, this option is ignored, and a warning message is returned. Indexes that do
not have varying-length string columns are always created as physically padded indexes.
NOT PADDED

Specifies that varying-length string columns are not to be padded to their maximum length in the
index. The length information for a varying-length column is stored with the key.

NOT PADDED is ignored and has no effect if the index is being created on an auxiliary table.
Indexes on auxiliary tables are always padded.

PADDED
Specifies that varying-length string columns within the index are always padded with the default
pad character to their maximum length. PADDED cannot be specified if XMLPATTERN is specified.
PADDED cannot be specified for indexes that are defined on VARBINARY columns.

When the index contains at least one varying-length column, the default for the option depends on the
value of field PAD INDEXES BY DEFAULT on installation panel DSNTIPE:

• When the value of this field is NO, new indexes are not padded unless PADDED is specified.
• When the value of this field is YES, new indexes are padded unless NOT PADDED is specified.

Chapter 7. Statements 1537

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_preventnewixctrlpart.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_preventnewixctrlpart.html

USING (for non-partitioned indexes)
For non-partitioned indexes, the USING clause indicates whether the data sets for the index are to be
managed by the user or managed by Db2. If Db2 definition is specified, the clause also gives space
allocation parameters (PRIQTY and SECQTY) and an erase rule (ERASE).

If you omit USING, the data sets Db2 manages on volumes listed in the default storage group of the
database that is associated with the table. The default storage group for the database must exist. With
no USING clause, PRIQTY, SECQTY, and ERASE assume their default values.

VCAT catalog-name
Specifies that the first data set for the index is managed by the user, and that following data sets,
if needed, are also managed by the user.

The data sets are VSAM linear data sets cataloged in the integrated catalog facility catalog
that catalog-name identifies. For more information about catalog-name values, see “Naming
conventions in SQL” on page 79.

More than one Db2 subsystem can share the integrated catalog facility catalogs with the current
server. To avoid the chance of those subsystems attempting to assign the same name to different
data sets, specify a catalog-name value that is not used by the other Db2 subsystems.

Do not specify VCAT in any of the following circumstances:

• For an index on a declared temporary table.
• If the table space is partition-by-growth, and the table space is not part of the Db2 catalog.

STOGROUP stogroup-name
Specifies that Db2 will define and manage the data sets for the index. Each data set will be
defined on a volume listed in the identified storage group. The values specified (or the defaults)
for PRIQTY and SECQTY determine the primary and secondary allocations for the data set. If
PRIQTY+118×SECQTY is 2 gigabytes or greater, more than one data set could eventually be used,
but only the first is defined during execution of this statement.

To use USING STOGROUP, the privilege set must include one of the following, except when
creating an index on a declare global temporary table if stogroup-name matches the default
storage group of the work file database:

• SYSADM authority
• SYSCTRL authority
• The USE privilege for that storage group

Moreover, stogroup-name must identify a storage group that exists at the current server and
includes in its description at least one volume serial number. The description can indicate that the
choice of volumes will be left to Storage Management Subsystem (SMS). Each volume specified in
the storage group must be accessible to z/OS for dynamic allocation of the data set, and all these
volumes must be of the same device type.

The integrated catalog facility catalog used for the storage group must not contain an entry for
the first data set of the index. If the catalog is password protected, the description of the storage
group must include a valid password.

The storage group supplies the data set name. The first level qualifier is also the name of, or
an alias for, the integrated catalog facility catalog on which the data set is to be cataloged. The
naming convention for the data set is the same as if the data set is managed by the user.

PRIQTY integer
Specifies the minimum primary space allocation for a Db2-managed data set. integer must be
a positive integer, or -1. When you specify PRIQTY with a positive integer value, the primary
space allocation is at least n kilobytes, where n is:
 12

If integer is greater than 0 and less than 12.

1538 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 integer
If integer is in the range 12–4194304.

 2097152
If both of the following conditions are true:

• integer is greater than 2097152.
• The index is a non-partitioned index on a table space that is not defined with the LARGE

or DSSIZE attribute.

 4194304
If integer is greater than 4194304.

If you do not specify PRIQTY, or you specify a PRIQTY value of -1, Db2 uses a default value for
the primary space allocation. For information on how Db2 determines the default value, see
Rules for primary and secondary space allocation.

If you specify PRIQTY, and do not specify a value of -1, Db2 specifies the primary space
allocation to access method services using the smallest multiple of 4KB not less than n. The
allocated space can be greater than the amount of space requested by Db2. For example,
it could be the smallest number of tracks that will accommodate the space requested. To
more closely estimate the actual amount of storage, see DEFINE CLUSTER command (DFSMS
Access Method Services for Catalogs).

When determining a suitable value for PRIQTY, be aware that two of the pages of the primary
space could be used by Db2 for purposes other than storing index entries.

SECQTY integer
Specifies the minimum secondary space allocation for a Db2-managed data set. integer must
be a positive integer, 0, or -1. If you do not specify SECQTY, or specify a SECQTY value of
-1, Db2 uses a formula to determine a value. For information on the actual value that is used
for secondary space allocation, whether you specify a value or not, see Rules for primary and
secondary space allocation.

If you specify SECQTY, and do not specify a value of -1, Db2 specifies the secondary space
allocation to access method services using the smallest multiple of 4KB not less than integer.
The allocated space can be greater than the amount of space requested by Db2. For example,
it could be the smallest number of tracks that will accommodate the space requested. To
more closely estimate the actual amount of storage, see DEFINE CLUSTER command (DFSMS
Access Method Services for Catalogs).

ERASE
Indicates whether the Db2-managed data sets are to be erased when they are deleted during
the execution of a utility or an SQL statement that drops the index.
NO

Does not erase the data sets. Operations involving data set deletion will perform better
than ERASE YES. However, the data is still accessible, though not through Db2. This is the
default.

YES
Erases the data sets. As a security measure, Db2 overwrites all data in the data sets with
zeros before they are deleted.

USING (partitioned indexes)
If the index is partitioned, there is a PARTITION clause for each partition. Within a PARTITION clause,
a USING clause is optional. If a USING clause is present, it applies to that partition in the same way
that a USING clause for a secondary index applies to the entire index.

When a USING specification is absent from a PARTITION clause, the USING clause parameters for the
partition depend on whether a USING clause is specified before the PARTITION clauses.

• If the USING clause is specified, it applies to every PARTITION clause that does not include a
USING clause.

Chapter 7. Statements 1539

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/defclu.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/defclu.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/defclu.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/defclu.htm

• If the USING clause is not specified, the following defaults apply to the partition:

– Data sets are managed by Db2.
– The default storage group for the database is used. If the USING clause for the index space is

omitted, the default storage group for database must exist.
– Default values of -1 are used for both PRIQTY and SECQTY.
– A value of NO is used for ERASE.

VCAT catalog-name
Specifies a user-managed data set with a name that starts with the specified catalog name. The
identified integrated catalog facility catalog must already contain an entry for the nth data set of
the index, where n is the partition number.

The data sets are VSAM linear data sets cataloged in the integrated catalog facility catalog
that catalog-name identifies. For more information about catalog-name values, see “Naming
conventions in SQL” on page 79.

More than one Db2 subsystem can share the integrated catalog facility catalogs with the current
server. To avoid the chance of those subsystems attempting to assign the same name to different
data sets, specify a catalog-name value that is not used by the other Db2 subsystems.

Db2 assumes one and only one data set for each partition.

STOGROUP stogroup-name
If USING STOGROUP is used, explicitly or by default, for a partition n, Db2 defines the data set for
the partition during the execution of the CREATE INDEX statement, using space from the named
storage group. The privilege set must include SYSADM authority, SYSCTRL authority, or the USE
privilege for that storage group. The integrated catalog facility catalog used for the storage group
must NOT contain an entry for the nth data set of the index.

stogroup-name must identify a storage group that exists at the current server and the privilege
set must include one of the following privileges or authorities, except when creating an index on
a declare global temporary table if stogroup-name matches the default storage group of the work
file database:

• SYSADM authority
• SYSCTRL authority
• USE privilege for the storage group

If you omit PRIQTY, SECQTY, or ERASE from a USING STOGROUP clause for some partition, their
values are given by the next USING STOGROUP clause that governs that partition: either a USING
clause that is not in any PARTITION clause, or a default USING clause. Db2 assumes one and only
one data set for each partition.

FREEPAGE integer
Specifies how often to leave a page of free space when index entries are created as the result of
executing a Db2 utility or when creating an index for a table with existing rows. One free page is left
for every integer pages. The value of integer can range 0–255. The default is 0, leaving no free pages.

Do not specify FREEPAGE for an index on a declared temporary table.

PCTFREE integer
Determines the percentage of free space to leave in each nonleaf page and leaf page when entries are
added to the index or index partition as the result of executing a Db2 utility or when creating an index
for a table with existing rows. The first entry in a page is loaded without restriction. When additional
entries are placed in a nonleaf or leaf page, the percentage of free space is at least as great as integer.

The value of integer can range from 0 to 99, however, if a value greater than 10 is specified, only 10
percent of free space will be left in nonleaf pages. The default is 10.

Do not specify PCTFREE for an index on a declared temporary table.

1540 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If the index is partitioned , the values of FREEPAGE and PCTFREE for a particular partition are given
by the first of these choices that applies:

• The values of FREEPAGE and PCTFREE given in the PARTITION clause for that partition. Do not use
more than one free-specification in any PARTITION clause.

• The values given in a free-specification that is not in any PARTITION clause.
• The default values FREEPAGE 0 and PCTFREE 10.

GBPCACHE
In a data sharing environment, specifies what index pages are written to the group buffer pool. In
a non-data-sharing environment, the option is ignored unless the index is on a declared temporary
table. Do not specify GBPCACHE for an index on a declared temporary table in either environment
(data sharing or non-data-sharing).
CHANGED

Specifies that updated pages are written to the group buffer pool, when there is inter-Db2 R/W
interest on the index or partition. When there is no inter-Db2 R/W interest, the group buffer pool
is not used. Inter-Db2 R/W interest exists when more than one member in the data sharing group
has the index or partition open, and at least one member has it open for update. GBPCACHE
CHANGED is the default.

If the index is in a group buffer pool that is defined as GBPCACHE(NO), CHANGED is ignored and
no pages are written to the group buffer pool.

ALL
Indicates that pages are written to the group buffer pool as they are read in from DASD.

Exception: In the case of a single updating Db2 subsystem when no other Db2 subsystems have
any interest in the page set, no pages are written to the group buffer pool.

If the index is in a group buffer pool that is defined as GBPCACHE(NO), ALL is ignored and no
pages are written to the group buffer pool.

NONE
Indicates that no pages are written to the group buffer pool. Db2 uses the group buffer pool only
for cross-invalidation.

If the index is partitioned, the value of GBPCACHE for a particular partition is given by the first of
these choices that applies:

1. The value of GBPCACHE given in the PARTITION clause for that partition. Do not use more than
one gbpcache-specification in any PARTITION clause.

2. The value given in a gbpcache-specification that is not in any PARTITION clause.
3. GBPCACHE CHANGED is the default value.

DEFINE
Specifies when the underlying data sets for the index are physically created. The SPACE column in
catalog table SYSINDEXPART is used to record the status of the data sets (undefined or allocated).
If the DEFINE keyword is not specified, the define attribute is inherited from the current state of the
base table space.
YES

The data sets are created when the index is created (the CREATE INDEX statement is executed).
NO

The data sets are not created until data is inserted into the index.

DEFINE NO is applicable only for Db2-managed data sets (USING STOGROUP is specified). Use
DEFINE NO especially when performance of the CREATE INDEX statement is important or DASD
resource is constrained.

Do not use DEFINE NO on an index if you use a program outside of Db2 to propagate data into a
table on which that index is defined. If you use DEFINE NO on an index of a table and data is then
propagated into the table from a program that is outside of Db2, the index space data sets are

Chapter 7. Statements 1541

allocated, but the Db2 catalog will not reflect this fact. As a result, Db2 treats the data sets for the
index space as if they have not yet been allocated. The resulting inconsistency causes Db2 to deny
application programs access to the data until the inconsistency is resolved.

DEFINE NO is ignored for user-managed data sets (USING VCAT is specified). DEFINE NO is also
ignored if the index is being created on a table that is not empty.

Do not specify DEFINE NO if the index is created on a base table that is involved in a clone
relationship.

Do not specify DEFINE NO for an index on a declared temporary table.

COMPRESS NO or COMPRESS YES
Specifies whether compression for index data will be used. If the index is partitioned, the clause will
apply to all partitions.
COMPRESS NO

Specifies that no index compression will be used.

COMPRESS NO is the default.

COMPRESS YES
Specifies that index compression will be used. The buffer pool that is used to create the index
must be 8K, 16K, or 32K in size. The physical page size on disk will be 4K. The index compression
will take place immediately.

Index compression is recommended for applications that do sequential insert operations with few
or no delete operations. Random inserts and deletes can adversely effect compression. Index
compress is also recommended for applications where the indexes are created primarily for scan
operations.

INCLUDE NULL KEYS or EXCLUDE NULL KEYS
Specifies whether an index entry will be created when every key column contains the NULL value.
INCLUDE NULL KEYS

Specifies that an index entry will be created when every key column contains the NULL value.

INCLUDE NULL KEYS is the default.

EXCLUDE NULL KEYS
Specifies that no index entry will be created when every key column contains the NULL value. If
any key column is not null the index entry will be created.

EXCLUDE NULL KEYS must not be specified with the following:

• UNIQUE
• BUSINESS_TIME WITHOUT OVERLAPS
• XML-index-specification
• key-expression
• INCLUDE (column-name)

EXCLUDE NULL KEYS must also not be specified if any of the columns that are identified by
column-name are defined as NOT NULL, or if the index is defined as a partitioning index for use
with index-controlled partitioning.

PARTITION BY RANGE
Specifies the partitioning index for the table, which determines the partitioning scheme for the data in
the table.

PARTITION BY RANGE should only be specified if the table space is partitioned and the partitioning
schema has not already been established.

PARTITION BY RANGE must not be specified if the index is an extended index, is defined with the
BUSINESS_TIME WITHOUT OVERLAPS, or if the table is in a universal table space (ranged-partitioned
or partition-by-growth table space).

1542 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

partition-element
Specifies the range for each partition.
PARTITION integer

A PARTITION clause specifies the highest value of the index key in one partition of a
partitioning index. In this context, highest means highest in the sorting sequences of the
index columns. In a column defined as ascending (ASC), highest and lowest have their usual
meanings. In a column defined as descending (DESC), the lowest actual value is highest in the
sorting sequence.

If you use CLUSTER, and the table is contained in a partitioned table space, you must
use exactly one PARTITION clause for each partition (defined with NUMPARTS on CREATE
TABLESPACE). If there are p partitions, the value of integer must range from 1 through p.

The length of the highest value of a partition (also called the limit key) is the same as the
length of the partitioning index.

ENDING AT(constant, MAXVALUE, or MINVALUE...)
Specifies that this is the partitioning index and indicates how the data will be partitioned. The
table space is marked complete after this partitioning index is created. You must use at least
one value (constant, MAXVALUE, or MINVALUE) after ENDING AT in each PARTITION clause.
You can use as many as there are columns in the key. The concatenation of all the values is
the highest value of the key in the corresponding partition of the index unless the VALUES
statement was already specified when the table or previous index was created.
constant

Specifies a constant value with a data type that must conform to the rules for assigning
that value to the column. If a string constant is longer or shorter than required by the
length attribute of its column, the constant is either truncated or padded on the right
to the required length. If the column is ascending, the padding character is X'FF'. If the
column is descending, the padding character is X'00'. The precision and scale of a decimal
constant must not be greater than the precision and scale of its corresponding column. A
hexadecimal string constant (GX) cannot be specified.

MAXVALUE
Specifies a value greater than the maximum value for the limit key of a partition boundary
(that is, all X'FF' regardless of whether the column is ascending or descending). If all of the
columns in the partitioning key are ascending, a constant or the MINVALUE clause cannot
be specified following MAXVALUE. After MAXVALUE is specified, all subsequent columns
must be MAXVALUE.

MINVALUE
Specifies a value that is smaller than the minimum value for the limit key of a
partition boundary (that is, all X'00' regardless of whether the column is ascending or
descending). If all of the columns in the partitioning key are descending, a constant or the
MAXVALUE clause cannot be specified following MAXVALUE. After MINVALUE is specified,
all subsequent columns must be MINVALUE.

The key values are subject to the following rules:

• The first value corresponds to the first column of the key, the second value to the second
column, and so on. Using fewer values than there are columns in the key has the same effect
as using the highest or lowest values for the omitted columns, depending on whether they
are ascending or descending.

• If a key includes a ROWID column or a column with a distinct type that is based on a ROWID
data type, 17 bytes of the constant that is specified for the corresponding ROWID column
are considered.

• The highest value of the key in any partition must be lower than the highest value of the key
in the next partition.

• If the concatenation of all the values exceeds 255 bytes, only the first 255 bytes are
considered.

Chapter 7. Statements 1543

• The highest value of the key in the last partition depends on how the table space is defined.
For table spaces that are created without the LARGE or DSSIZE options, the values that you
specify after VALUES are not enforced. The highest value of the key that can be placed in the
table is the highest possible value of the key.

For large partitioned table space, the values you specify are enforced. The value specified
for the last partition is the highest value of the key that can be placed in the table. Any key
values greater than the value that is specified for the last partition are out of range.

ENDING AT can be specified only if the ENDING AT clause was not specified on a previous
CREATE or ALTER TABLE statement for the underlying table.

INCLUSIVE
Specifies that the specified range values are included in the data partition.

BUFFERPOOL bpname
Identifies the buffer pool that is to be used for the index. The privilege set must include SYSADM or
SYSCTRL authority or the USE privilege for the buffer pool, except when creating an index on a declare
global temporary table and bpname matches the default index buffer pool of the work file database.
The bpname must identify an activated 4KB, 8KB, 16KB, or 32KB buffer pool.

A buffer pool with a smaller size should be chosen for indexes with random insert patterns. A buffer
pool with a larger size should be chosen for indexes with sequential insert patterns.

For more details about bpname, see “Naming conventions in SQL” on page 79. For a description of
active and inactive buffer pools, see Controlling Db2 databases and buffer pools (Db2 Administration
Guide).

CLOSE
Specifies whether or not the data set is eligible to be closed when the index is not being used and the
limit on the number of open data sets is reached.
YES

Eligible for closing. This is the default unless the index is on a declared temporary table.
NO

Not eligible for closing.

If the limit on the number of open data sets is reached and there are no page sets that specify
CLOSE YES to close, page sets that specify CLOSE NO will be closed.

For an index on a declared temporary table, Db2 uses CLOSE NO regardless of the value specified.

DEFER
Indicates whether the index is built during the execution of the CREATE INDEX statement. Regardless
of the option specified, the description of the index and its index space is added to the catalog. If the
table is determined to be empty and DEFER YES is specified, the index is neither built nor placed in
a rebuild-pending status. For more information about using DEFER, see Index names and guidelines
(Db2 Administration Guide). Do not specify DEFER for an index on a declared temporary table or an
auxiliary table.
NO

The index is built. This is the default.
YES

The index is not built. If the table is populated, the index is placed in a rebuild-pending status and
a warning message is issued; the index must be rebuilt by the REBUILD INDEX utility.

DSSIZE integer G
Specifies the maximum size for each partition of a partitioned index. Any integer 1–1024 can be
specified (for example, 1 G or 1024 G). This keyword is not valid on nonpartitioned secondary
indexes. You can only specify DSSIZE on CREATE INDEX if the index is on a table space with relative
page numbers.

To specify a value greater than 4G, the data sets for the table space must be associated with a DFSMS
data class that has been specified with extended format and extended addressability.

1544 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_controldatabaseandbuffer.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_controldatabaseandbuffer.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_guidelinesfordefiningindexes.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_guidelinesfordefiningindexes.html

If the index is a partitioned index using relative page numbering, the value of DSSIZE for a particular
partition is given by the first of these choices that applies:

• The value of DSSIZE given in the PARTITION clause for that partition.
• The value given by a DSSIZE keyword that is not in any PARTITION clause.
• The default value is inherited from the base table space.

integer can be separated from G by 0 or more spaces.

PIECESIZE integer
Specifies the maximum addressability of each data set for a non-partitioned index. The subsequent
keyword K, M, or G, indicates the units of the value that is specified in integer.
K

Indicates that the integer value is to be multiplied by 1024 to specify the maximum data set size in
bytes. integer must be a power of two in the range 1–268435456.

M
Indicates that the integer value is to be multiplied by 1048576 to specify the maximum data set
size in bytes. integer must be a power of two in the range 1–262144.

G
Indicates that the integer value is to be multiplied by 1073741824 to specify the maximum data
set size in bytes. integer must be a power of two in the range 1–256.

integer can be separated from K, M, or G by 0 or more spaces.integer

The following table shows the valid values for the data set size, which depend on the size of the table
space.

Table 196. Valid values of PIECESIZE clause

K units M units G units Size attribute of table space

256K

512 K

1024 K 1 M

2048 K 2 M

4096 K 4 M

8192 K 8 M

16384 K 16 M

32768 K 32 M

65536 K 64 M

131072 K 128 M

262144 K 256 M

524288 K 512 M

1048576 K 1024 M 1 G

2097152 K 2048 M 2 G

4194304 K 4096 M 4 G LARGE, DSSIZE 4 G (or greater)

8388608 K 8192 M 8 G DSSIZE 8 G (or greater)

16777216 K 16384 M 16 G DSSIZE 16 G (or greater)

33554432 K 32768 M 32 G DSSIZE 32 G (or greater)

Chapter 7. Statements 1545

Table 196. Valid values of PIECESIZE clause (continued)

K units M units G units Size attribute of table space

67108864 K 65536 M 64 G DSSIZE 64 G (or greater)

134217728 K 131072 M 128 G DSSIZE 128 G (or greater)

268435456 K 262144 M 256 G DSSIZE 256 G

PIECESIZE has no effect on primary and secondary space allocation as it is only a specification of the
maximum amount of data that a data set can hold and not the actual allocation of storage.

If you change the PIECESIZE value with the ALTER INDEX statement, the index is put into REBUILD-
pending status.

See the following for additional information:

• Number of pieces and maximum piece size for non-partitioned indexes and data-partitioned
secondary indexes

• Choosing a value for PIECESIZE

COPY
Indicates whether the COPY utility is allowed for the index. Do not specify COPY for an index on a
declared temporary table.
NO

Does not allow full image or concurrent copies or the use of the RECOVER utility on the index. NO
is the default.

YES
Allows full image or concurrent copies and the use of the RECOVER utility on the index.

Notes for CREATE INDEX
Owner privileges:

The owner of the table has all table privileges (see “GRANT statement (table or view privileges)” on
page 1988) with the ability to grant these privileges to others. For more information about ownership
of the object, see “Authorization, privileges, permissions, masks, and object ownership” on page 90.

Effects of the DEFER clause:
If DEFER NO is implicitly or explicitly specified, the CREATE INDEX statement cannot be executed
while a Db2 utility has control of the table space that contains the identified table.

If the identified table already contains data and if the index build is not deferred, CREATE INDEX
creates the index entries for it. If the table does not yet contain data, CREATE INDEX creates a
description of the index; the index entries are created when data is inserted into the table.

Errors evaluating the expressions for an index:
Errors that occur during the evaluation of an expression for an index are returned when the expression
is evaluated. This can occur on an SQL data change statement, SELECT from an SQL data change
statement, or the REBUILD INDEX utility. For example, the evaluation of the expression 10 /
column_1 returns an error if the value in column_1 is 0. The error is returned during CREATE INDEX
processing if the table is not empty and contains a row with a value of zero in column_1, otherwise the
error is returned during the processing of the insert or update operation when a row with a value of
zero in column_1 is inserted or updated.

Result length of expressions that return a string type:
If the result data type of key-expression is a string type and the result length cannot be calculated at
bind time, the length is set to the maximum allowable length of that data type or the largest length
that Db2 can estimate. In this case, the CREATE INDEX statement can fail because the total key length
might exceed the limit of an index key.

For example, the result length of the expression REPEAT('A', CEIL(1.1)) is VARCHAR(32767)
and the result length of the expression SUBSTR(DESCRIPTION,1,INTEGER(1.2)) is the length of

1546 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

the DESCRIPTION column. Therefore, a CREATE INDEX statement that uses any of these expressions
as a key-expression might not be created because the total key length might exceed the limit of an
index key.

Use of ASC or DESC on key columns:
There are no restrictions on the use of ASC or DESC for the columns of a parent key or foreign key.
An index on a foreign key does not have to have the same ascending and descending attributes as the
index of the corresponding parent key.

EBCDIC, ASCII, and UNICODE encoding schemes for an index:
In general, an index has the same encoding scheme as its associated table. However, if an index on an
EBCDIC table consists of only Unicode columns, the encoding scheme of the index is Unicode.

Maximum partition size of a partitioned index
The size of a partitioned index depends on whether the corresponding partitioned table space is
created with or without the LARGE or DSSIZE keywords, and on the number of partitions.

The following table provides information about partitioned indexes on table spaces that are created
without the LARGE or DSSIZE keywords and with 64 or fewer partitions.

Table 197. Maximum number of pieces and the default size of a partitioned index on a partitioned table space
that is created without the LARGE or DSSIZE clauses and with a NUMPARTS value of less than or equal to 64

Definition of partitioned table
space (non-large)

Maximum number of pieces for a
partitioned index

Default size of a partitioned index,
per data set

NUMPARTS <= 16 16 4G

NUMPARTS >= 17
but
NUMPARTS <= 32

32 2G

NUMPARTS >= 33 64 1G

The following table shows information about partitioned indexes on table spaces that are created with
the LARGE or DSSIZE keywords and with more than 64 partitions.

Table 198. Maximum number of pieces and the default partitioned index size for a partitioned table space that is
created with the LARGE or DSSIZE clauses or with a NUMPARTS value of greater than 64

Definition of partitioned table
space (large)

Maximum number of pieces for a
partitioned index

Default index piece size for a
partitioned index

One or more of the following
conditions are true:

• LARGE clause - specified
• NUMPARTS greater than 64 but

less than 256

Maximum number of partitions in
the partitioned table space

4G

One or more of the following
conditions are true:

• DSSIZE clause - specified
• NUMPARTS greater than or

equal to 256

Maximum number of partitions in
the partitioned table space

MIN(table space DSSIZE,
2^32/
(Maximum number of
partitions
 in the table space) *
index
 page size)

To calculate the maximum data set size for a partitioned index, you need to first calculate the
maximum number of partitions in the table space by using the following formula:

MIN(4096, 2^32/ (table space DSSIZE / table space page size))

Chapter 7. Statements 1547

After you calculate the maximum number of partitions in the table space, you can calculate the
maximum data set size for a partitioned index with the following formula, using the number of
partitions that you calculated above:

MIN(table space DSSIZE, 2^32/
(Maximum number of partitions in the table space) * index page size)

For an index that is defined with COMPRESS YES, index page size is always 4096 (4KB).

For example, suppose that a table space and an index on that table space have the following
characteristics:

• DSSIZE: 64 GB
• Page size: 32 KB
• Index page size: 4 KB
• Maximum number of partitions: 2048

Given those characteristics, you can begin by calculating the maximum number of partitions in the
table space:

MIN(4096, 2^32/ (64GB / 32KB)) = 2048

You can then use the value of 2048 to calculate the maximum data set size for the partitioned index:

MIN(64 GB, 2^32/ 2048 * 4KB)
= MIN(64GB, 8GB)
= 8GB

Number of pieces and maximum piece size for non-partitioned indexes
The largest amount of data that an index can hold is the maximum number of pieces for the index
times the maximum amount of data that a piece can hold.

For a non-partitioned index, the maximum amount of data that an index can hold is defined by using
the PIECESIZE parameter.

The default piece size for an index is as follows:

• 2 GB (PIECESIZE 2 G) for indexes of table spaces created without the LARGE or DSSIZE option
• 4 GB (PIECESIZE 4 G) for indexes of table spaces created with the LARGE or DSSIZE option
• 4 GB (PIECESIZE 4 G) for auxiliary indexes

The following tables list the maximum number of pieces and the default index piece size for various
table spaces.

Table 199. Maximum number of pieces and the default index piece size for a partitioned table space that is
created without the LARGE or DSSIZE clauses and has a NUMPART value of less than or equal to 64

Definition of partitioned table
space (non-large), NUMPART
value

Maximum number of pieces in a
non-partitioned index

Default index piece size for a non-
partitioned index

NUMPARTS <= 16 32 2G

NUMPARTS >= 17
but
NUMPARTS <= 32

32 2G

NUMPARTS >= 33 32 2G

1548 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 200. Maximum number of pieces and the default index piece size for a partitioned table space that is
created with the LARGE or DSSIZE clauses or has a NUMPARTS value of greater than or equal to 65

Definition of partitioned table
space (large)

Maximum number of pieces for a
non-partitioned index

Default index piece size for a non-
partitioned index

• LARGE clause - specified
• DSSIZE clause - not specified

MIN(4096, 2^32/
(x/y))
- see “1” on page 1549

4G

• LARGE clause - not specified
• DSSIZE clause - not specified
• NUMPARTS clause - greater than

64 but less than 256

MIN(4096, 2^32/
(x/y))
- see “1” on page 1549

4G

• LARGE clause - not specified
• DSSIZE clause - specified or

NUMPARTS clause - greater than
or equal to 256

MIN(4096, 2^32/
(x/y))
- see “1” on page 1549

4G

Note:

1. For a non-partitioned index, the formula MIN(4096, 2^32 / (x / y)), determines the
maximum number of pieces for the non-partitioned index, where x and y have the following values:

x is the piece size of the index (stored in the PIECESIZE column of the SYSIBM.SYSINDEXES
catalog table)
y is the page size of the index (stored in the PGSIZE column of the SYSIBM.SYSINDEXES catalog
table)

Table 201. Maximum number of pieces and the default index piece size for a non-partitioned table
space

Type of non-partitioned table
space Maximum number of pieces Default index piece size

non-segmented table space 32 2G

segmented table space 32 2G

LOB, auxiliary, or XML table
space

32 4G

Choosing a value for PIECESIZE:
To choose a value for PIECESIZE, divide the size of the non-partitioned index by the number of data
sets that you want. For example, to ensure that you have five data sets for the non-partitioned index,
and your index is 10MB (and not likely to grow much), specify PIECESIZE 2 M. If your non-partitioned
index is likely to grow, choose a larger value.

Remember that 32 data sets is the limit if the underlying table space is not defined as LARGE or
with a DSSIZE parameter and that the limit is 4096 for objects with greater than 254 parts. For a
non-partitioned index on a table space that is defined as LARGE or with a DSSIZE parameter, the
maximum is MIN(4096, 232 / (index piece size/index page size)).

Keep the PIECESIZE value in mind when you are choosing values for primary and secondary
quantities. Ideally, the value of your primary quantity plus the secondary quantities should be evenly
divisible into PIECESIZE.

Chapter 7. Statements 1549

Dropping an index:
Partitioning indexes can be dropped. If the table space is using index-controlled partitioning, the
table space is converted to table-controlled partitioning. Secondary indexes that are not indexes on
auxiliary tables can be dropped simply by dropping the indexes. An empty index on an auxiliary table
can be explicitly dropped; a populated index can be dropped only by dropping other objects. For
details, see Dropping an index on an auxiliary table and an auxiliary table"Dropping an index on a base
table and auxiliary table" in “DROP statement” on page 1886.

If the index is a unique index that enforces a primary key, unique key, or referential constraint, the
constraint must be dropped before the index is dropped. See “DROP statement” on page 1886.

Unique indexes and enforcement of UNIQUE or PRIMARY KEY specifications for a table:
A table requires a unique index (that is not defined as UNIQUE WHERE NOT NULL) if you use the
UNIQUE or PRIMARY KEY clause in the CREATE or ALTER TABLE statements, or if there is a ROWID
column that is defined as GENERATED BY DEFAULT. Db2 implicitly creates those unique indexes if
the table space is explicitly created and the CREATE or ALTER TABLE statement is processed by the
schema processor or if the table space is implicitly created; otherwise, you must explicitly create
them. If any of the unique indexes that must be explicitly defined do not exist, the definition of the
table is incomplete, and the following rules apply:

• Let K denote a key for which a required unique index does not exist and let n denote the number of
unique indexes that remain to be created before the definition of the table is complete. (For a new
table that has no indexes, K is its primary key or any of the keys defined in the CREATE or ALTER
TABLE statement as UNIQUE and n is the number of such keys. After the definition of a table is
complete, an index cannot be dropped if it is enforcing a primary key or unique key.)

• The creation of the unique index reduces n by one if the index key is identical to K. The keys are
identical only if they have the same columns in the same order.

• If n is now zero, the creation of the index completes the definition of the table.
• If K is a primary key, the description of the index indicates that it is a primary index. If K is not a

primary key, the description of the index indicates that it enforces the uniqueness of a key defined
as UNIQUE in the CREATE or ALTER TABLE statement.

A unique index cannot be created on a materialized query table.

Unique indexes and XML columns:
If the index is an XML index on a unique XML column, the uniqueness applies to values of the
specified pattern across all documents of that column, and the uniqueness is enforced on the value
after the value is cast to the specified SQL data type. Because the data type conversion might result in
a loss of precision and normalization, multiple values that appear unique in the XML document might
still result in duplicate errors. If the index is defined using an expression, the uniqueness is enforced
against the values that are stored in the index, not against the original values of the columns. The
WHERE NOT NULL specification is ignored with a warning if XMLPATTERN is also specified, and the
index is treated as if UNIQUE had been specified.

Defining an XML index using an XPath pattern-expression that includes functions:
An XPath pattern-expression that includes functions (including fn:exists() or fn:upper-case()) will have
two parts. The first part is referred to as the context step and specifies the XPath of the element node
or attribute node for which an index entry will be created (the element or attributes NodeID will be
included in the index). The context step follows the same syntax as the XPath pattern-expression for
an XML index, except that for fn:exists() it has to specify an element node, and for fn:upper-case() it
has to specify an element node or an attribute node.

The second part is referred to as the function expression step and specifies the fn:exists() or fn:upper-
case() XPath function. The function expression step is the right-most part of an XPath pattern-
expression. For each node specified by the context step, the function expression step specifies the key
value for the index. For example, in the XPath pattern-expression /purchaseOrder/items/item/
fn:exists(shipDate), the context step is /purchaseOrder/items/item, and the function
expression step is fn:exists(shipDate).

1550 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Use of PARTITIONED keyword:
When a partitioned index is created and no additional keywords are specified, the index is non-
partitioned. If the keyword PARTITIONED is specified, the index is partitioned. If PARTITION BY
RANGE is specified, the index is both data-partitioned and key-partitioned because it is defined on
the partitioning columns of the table. Any index on a partitioned table space that does not meet
the definition of a partitioning index is a secondary index. When a secondary index is created and
no additional keywords are specified, the secondary index is non-partitioned (NPSI). If the keyword
PARTITIONED is specified, the index is a data-partitioned secondary index (DPSI).

Creating a partitioning index for a table created without partition boundaries:
When a table is created without specifying partition boundaries using the ENDING AT clause, the
table is incomplete until a partitioning index is created. The first index that is created for a table must
specify both the PARTITION and the ENDING AT clauses.

When the PARTITION clause is specified while creating an index, either the PARTITIONED clause, or
the ENDING AT clause must also be specified.

Considerations for tables that are involved in a clone relationship:
If an index is created on a base table that is involved in a clone relationship, an index with the same
name is also created on the clone table. The index on the clone table will be placed in rebuild-pending
status unless the clone table is empty when the index is created.

Considerations for tables that contain a row change timestamp column:
To create an index that refers to a row change timestamp column in the table, values must already
exist in the column for all rows. Values are stored in row change timestamp columns whenever a row
is inserted or updated in the table. If the row change timestamp column is added to an existing table
that contains rows, the values for the row change timestamp column is not materialized and stored
at the time of the ALTER TABLE statement. Values are materialized for these rows when they are
updated, or when a REORG or a LOAD REPLACE utility is run on the table or table space.

Restriction on table spaces when there are pending changes to the definition:
A CREATE INDEX statement is not allowed if there are pending changes to the definition of the table
space or to any objects in the table space. In addition, an index that references an expression cannot
be created on a table where the inline length of a LOB column has been changed and the table space
has not been reorganized.

Effects of DEFINE NO and INCLUDE NULL KEYS or EXCLUDE NULL KEYS:
When INCLUDE NULL KEYS is specified (implicitly or explicitly) with DEFINE NO and the table that is
being indexed is populated, a warning is returned, the index is created, and the data set is defined.
When EXCLUDE NULL KEYS is specified, it is possible that the data set will not be defined if the all
rows for the table that is being indexed contain the NULL value for all key columns. The index will be
empty after the CREATE INDEX statement. However, if DEFINE NO is specified with EXCLUDE NULL
KEYS a warning is returned.

Creating indexes on Db2 catalog tables:

For details on creating indexes on catalog tables, see “SQL statements allowed on the catalog” on
page 2739.

EA-enabled index data sets:
If an index is created for an EA-enabled table space, the data sets for the index must be set up to
belong to a DFSMS data class that has the extended format and extended addressability attributes.

Alternative syntax and synonyms:
To provide compatibility with previous releases of Db2 or other products in the Db2 family, Db2
supports the following keywords when creating a partitioned index:

• PART integer VALUES as an alternative syntax for PARTITION integer ENDING. The PARTITION BY
RANGE keyword that precedes the partition-element clause is optional.

Although these keywords are supported as alternatives, they are not the preferred syntax.

Chapter 7. Statements 1551

User-defined indexes on catalog tables:
If you issue CREATE INDEX for an index on a catalog table, and you specify the USING clause, Db2
ignores that clause. Instead, Db2 defines and manages the index data sets. The data sets are defined
in the same SMS environment that is used for the catalog data sets with default space attributes.

Temporal referential constraints:
An index is required for the foreign key of a temporal referential constraint. The index must be defined
in one of the following ways:

• Specify the BUSINESS_TIME WITH OVERLAPS clause after the columns and key expressions.
• Specify the end column of the BUSINESS_TIME period, followed by the begin column of the

BUSINESS_TIME period as the last two keys of the index. ASC must be used for each of these
columns.

When a temporal referential constraint is defined for a table, the first index that is created that meets
the criteria for an index on the foreign key, is recorded as a dependency for the constraint. An index
used for the foreign key of a temporal referential constraint cannot be dropped. A column cannot be
added to an index used for a temporal referential constraint.

Examples for CREATE INDEX

Example 1

Create a unique index, named DSN8C10.XDEPT1, on table DSN8C10.DEPT. Index entries are to be
in ascending order by the single column DEPTNO. Db2 is to define the data sets for the index, using
storage group DSN8G120. Each data set should hold 1 megabyte of data at most. Use 512 kilobytes
as the primary space allocation for each data set and 64 kilobytes as the secondary space allocation.
These specifications enable each data set to be extended up to 8 times before a new data set is
used—512KB + (8*64KB)= 1024KB. Make the index padded.

The data sets can be closed when no one is using the index and do not need to be erased if the index
is dropped.

 CREATE UNIQUE INDEX DSN8C10.XDEPT1
 ON DSN8C10.DEPT
 (DEPTNO ASC)
 PADDED
 USING STOGROUP DSN8G120
 PRIQTY 512
 SECQTY 64
 ERASE NO
 BUFFERPOOL BP1
 CLOSE YES
 PIECESIZE 1 M;

For the above example, the underlying data sets for the index will be created immediately, which
is the default (DEFINE YES). Assuming that table DSN8C10.DEPT is empty, if you wanted to defer
the creation of the data sets until data is first inserted into the index, you would specify DEFINE
NO instead of accepting the default behavior. Specifying PADDED ensures that the varying-length
character string columns in the index are padded with blanks.

Example 2

Create a cluster index, named XEMP2, on table EMP in database DSN8C10. Put the entries in
ascending order by column EMPNO. Let Db2 define the data sets for each partition using storage
group DSN8G120. Make the primary space allocation be 36 kilobytes, and allow Db2 to use the
default value for SECQTY, which for this example is 12 kilobytes (3 times 4KB). If the index is dropped,
the data sets need not be erased.

There are to be 4 partitions, with index entries divided among them as follows:

Partition 1: entries up to H99
Partition 2: entries above H99 up to P99
Partition 3: entries above P99 up to Z99

1552 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Partition 4: entries above Z99

Associate the index with buffer pool BP1 and allow the data sets to be closed when no one is using
the index. Enable the use of the COPY utility for full image or concurrent copies and the RECOVER
utility.

 CREATE INDEX DSN8C10.XEMP2
 ON DSN8C10.EMP
 (EMPNO ASC)
 USING STOGROUP DSN8G120
 PRIQTY 36
 ERASE NO
 CLUSTER
 PARTITION BY RANGE
 (PARTITION 1 ENDING AT('H99'),
 PARTITION 2 ENDING AT('P99'),
 PARTITION 3 ENDING AT('Z99'),
 PARTITION 4 ENDING AT('999'))
 BUFFERPOOL BP1
 CLOSE YES
 COPY YES;

Example 3

Create a secondary index, named DSN8C10.XDEPT1, on table DSN8C10.DEPT. Put the entries in
ascending order by column DEPTNO. Assume that the data sets are managed by the user with catalog
name DSNCAT and each data set is to hold 1GB of data, at most, before the next data set is used.

 CREATE UNIQUE INDEX DSN8C10.XDEPT1
 ON DSN8C10.DEPT
 (DEPTNO ASC)
 USING VCAT DSNCAT
 PIECESIZE 1048576 K;

Example 4

Assume that a column named EMP_PHOTO with a data type of BLOB(110K) was added to the sample
employee table for each employee's photo and auxiliary table EMP_PHOTO_ATAB was created in LOB
table space DSN8D12A.PHOTOLTS to store the BLOB data for the column. Create an index named
XPHOTO on the auxiliary table. The data sets are to be user-managed with catalog name DSNCAT.

 CREATE UNIQUE INDEX DSN8C10.XPHOTO
 ON DSN8C10.EMP_PHOTO_ATAB
 USING VCAT DSNCAT
 COPY YES;

In this example, no columns are specified for the key because auxiliary indexes have implicitly
generated keys.

Related concepts
Implementing Db2 indexes (Db2 Administration Guide)
Naming conventions
The rules for forming a name depend on the type of the object designated by the name.

CREATE LOB TABLESPACE
The CREATE LOB TABLESPACE statement defines a large object (LOB) table space at the current server.
If your data for a table does not fit entirely within a data page, you can define one or more columns as
LOB columns. Each LOB column must have an associated auxiliary table in a LOB table space. If the table
space for the base table is partitioned, an associated auxiliary table in a LOB table space is required for
each LOB column, for each partition of the table space for the base table.

Do not use this statement if Db2 implicitly creates the LOB table space. For more information, see LOB
table space implicit creation (Db2 Administration Guide).

Chapter 7. Statements 1553

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_indeximplementation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicittablespacelob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicittablespacelob.html

For information about explicitly creating an auxiliary table, which defines the relationship between the
LOB column of the base table and a LOB table space, see “CREATE AUXILIARY TABLE statement” on page
1418.

For information about creating table spaces other than LOB table spaces, see “CREATE TABLESPACE
statement” on page 1718.

Invocation for CREATE LOB TABLESPACE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for CREATE LOB TABLESPACE
The privilege set that is defined below must include at least one of the following:

• The CREATETS privilege for the database
• DBADM, DBCTRL, or DBMAINT authority for the database
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

Additional privileges might be required, as explained in the description of the BUFFERPOOL and USING
STOGROUP clauses.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the application is bound in a trusted context with
the ROLE AS OBJECT OWNER clause specified, a role is the owner. Otherwise, an authorization ID is the
owner.

If the statement is dynamically prepared, the privilege set is the privileges that are held by the SQL
authorization ID of the process unless the process is within a trusted context and the ROLE AS OBJECT
OWNER clause is specified. In that case, the privileges set is the privileges that are held by the role that is
associated with the primary authorization ID of the process.

1554 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Syntax for CREATE LOB TABLESPACE

CREATE LOB TABLESPACE table-space-name

1

IN DSNDB04

IN database-name

BUFFERPOOL bpname

CLOSE YES

CLOSE NO

COMPRESS NO

COMPRESS YES

DEFINE YES

DEFINE NO

DSSIZE 4 G

DSSIZE integer G

gbpcache-block

LOCKMAX SYSTEM

integer

locksize-block

LOGGED

NOT LOGGED

using-block

Notes:
1 The same clause must not be specified more than one time.

gbpcache-block:

GBPCACHE CHANGED

GBPCACHE ALL

GBPCACHE SYSTEM

GBPCACHE NONE

locksize-block:

LOCKSIZE ANY

LOCKSIZE LOB

Chapter 7. Statements 1555

using-block:

USING VCAT catalog-name

STOGROUP stogroup-name

PRIQTY integer

SECQTY integer

ERASE NO

ERASE YES

1

Notes:
1 The same clause must not be specified more than one time.

table-space-name
Names the table space. The name, qualified with the database-name implicitly or explicitly specified
by the IN clause, must not identify a table space, index space, or LOB table space that exists at the
current server, or that exists in the SYSPENDINGOBJECTS catalog table.

IN database-name
Specifies the database in which the table space is created. The LOB table space must be in the same
database as its associated base table space. database-name must identify a database that exists at
the current server and must not specify the following:

• DSNDB06
• A work file database
• A TEMP database
• An implicitly created database

DSNDB04 is the default.

BUFFERPOOL bpname
Identifies the buffer pool to be used for the table space and determines the page size of the table
space. For 4KB, 8KB, 16KB and 32KB page buffer pools, the page sizes are 4 KB, 8 KB, 16 KB, and
32 KB, respectively. The bpname must identify an activated buffer pool, and the privilege set must
include SYSADM or SYSCTRL authority, or the USE privilege on the buffer pool.

If you do not specify the BUFFERPOOL clause, the default buffer pool is the buffer pool that is
specified in the DEFAULT BUFFER POOL FOR USER LOB DATA field on installation panel DSNTIP1.

See “Naming conventions in SQL” on page 79 for more details about bpname. See -ALTER
BUFFERPOOL command (Db2) (Db2 Commands) for a description of active and inactive buffer pools.

CLOSE
When the limit on the number of open data sets is reached, specifies the priority in which data sets
are closed.
YES

Eligible for closing before CLOSE NO data sets. CLOSE YES is the default value.
NO

Eligible for closing after all eligible CLOSE YES data sets are closed.
COMPRESS

Specifies whether data compression applies to the LOB data in the table space.

The following conditions are required for LOB compression in Db2 for z/OS:

• Db2 12 must be at function level 500 or higher.

1556 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_alterbufferpool.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_alterbufferpool.html

• The zEDC hardware and software must be available and configured in the z/OS system. For more
information, see Requirements for zEnterprise Data Compression.

In data sharing, system performance can degrade dramatically if a member accesses compressed
LOB data and the zEDC hardware and software are not configured in z/OS.

• The LOB table space must be associated with a base table that is in a universal table space.
• The total length of the entire LOB must be larger than the defined data page size, otherwise the LOB

is not compressed.

For more information, see Compressing LOB data (Db2 Performance).

YES
Specifies data compression. The LOB data is not compressed until the LOAD or REORG utility is
run on the table in the table space, or until an insert operation is performed through the insert
operation.

NO
Specifies no data compression for the table space.

DEFINE
Specifies when the underlying data sets for the table space are physically created.
YES

The data sets are allocated when the table space is created (when the CREATE LOB TABLESPACE
statement is executed). YES is the default.

NO
The data sets are not allocated until data is inserted into the table space. DEFINE NO is applicable
only for Db2-managed data sets (USING STOGROUP is specified). DEFINE NO is ignored for
user-managed data sets (USING VCAT is specified). Db2 uses the SPACE column in catalog table
SYSTABLEPART to record the status of the data sets (undefined or allocated).

DEFINE NO is not recommended if you intend to use any tools outside of Db2 to manipulate data,
such as to load data, because data sets might then exist when Db2 does not expect them to exist.
When Db2 encounters this inconsistent state, applications will receive an error.

For table spaces that are created with DEFINE NO, point-in-time recover will not work before data
sets exist and before a recovery copy exists.

DSSIZE integer G

Specifies the maximum size of each data set in integer gigabytes for each data set in the LOB table
space.

If DSSIZE is not specified, the default value is 4 G. The maximum number of data sets is 254.

To specify a value greater than 4 G, the data sets for the table space must be associated with a DFSMS
data class that has been specified with extended format and extended addressability.

For a description of the maximum size of a LOB table space (or the maximum size of LOB data for each
column of a base table), see LOB table spaces (Db2 Administration Guide).

GBPCACHE
In a data sharing environment, specifies what pages of the table space are written to the group buffer
pool. In a non-data-sharing environment, you can specify GBPCACHE, but it is ignored.
CHANGED

When there is inter-Db2 R/W interest on the table space, updated pages are written to the group
buffer pool. When there is no inter-Db2 R/W interest, the group buffer pool is not used. Inter-Db2
R/W interest exists when more than one member in the data sharing group has the table space
open, and at least one member has it open for update. GBPCACHE CHANGED is the default.

Recommendation: Use the GBPCACHE CHANGED option. Due to the usage patterns of LOBs, the
use of GBPCACHE CHANGED can help avoid excessive and synchronous writes to disk and to the
group buffer pool.

Chapter 7. Statements 1557

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieac100/RequirementsForZEnterpriseDataCompr.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_lobcompression.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_largeobjecttablespaces.html

If the table space is in a group buffer pool that is defined to be used only for cross-invalidation
(GBPCACHE NO), CHANGED is ignored and no pages are cached to the group buffer pool.

ALL
Indicates that pages are to be cached in the group buffer pool as they are read in from DASD.

Exception: In the case of a single updating Db2 member when no other Db2 member has any
interest in the page set, no pages are cached in the group buffer pool.

If the table space is in a group buffer pool that is defined to be used only for cross-invalidation
(GBPCACHE NO), ALL is ignored and no pages are cached to the group buffer pool.

SYSTEM
Indicates that only changed system pages within the LOB table space are to be cached to the
group buffer pool. A system page is a space map page or any other page that does not contain
actual data values.

NONE
Indicates that no pages are to be cached to the group buffer pool. Db2 uses the group buffer pool
only for cross-invalidation.

LOCKMAX
Specifies the maximum number of locks an application process can hold simultaneously in the table
space. If a program requests more than that number, locks are escalated. The locks are released and
the intent lock on the table space is promoted to S or X mode.
integer

Specifies the number of locks allowed before escalating, in the range 0–2147483647.

Zero (0) indicates that the number of locks on the table space are not counted and escalation does
not occur.

SYSTEM
FL 507 Specifies that Db2 determines the maximum number of locks that a program can hold
simultaneously in the table space from the SYSIBMADM.MAX_LOCKS_PER_TABLESPACE built-in
global variable.

For more information see “MAX_LOCKS_PER_TABLESPACE” on page 331.

The following table summarizes the results of specifying a LOCKSIZE value while omitting LOCKMAX.

LOCKSIZE Resultant LOCKMAX

ANY SYSTEM

TABLESPACE, LOB 0

If the lock size is TABLESPACE, LOCKMAX must be omitted, or its value must be 0.

LOCKSIZE
Specifies the size of locks used within the table space and, in some cases, also the threshold at which
lock escalation occurs.
ANY

Specifies that Db2 can use any lock size.

FL 507 In most cases, Db2 uses LOCKSIZE LOB LOCKMAX SYSTEM for LOB table spaces. However,
when the number of locks acquired for the table space exceeds the maximum number of locks
allowed for a table space (the value of the SYSIBMADM.MAX_LOCKS_PER_TABLESPACE built-in
global variable), the LOB locks are released and locking is set at the next higher level. For more
information, see “MAX_LOCKS_PER_TABLESPACE” on page 331.

If the table space is implicitly created, Db2 uses LOCKSIZE ANY.

TABLESPACE
Specifies table space locks.

1558 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html

LOB
Specifies LOB locks.

LOGGED or NOT LOGGED
Specifies whether changes that are made to the data in the specified table space are recorded in the
log. This setting applies to all indexes of the table. Auxiliary indexes inherit the logging attribute from
the associated base table space.
LOGGED

Specifies that changes that are made to the data in the specified table space are recorded in the
log.

LOGGED is the default.

NOT LOGGED
Specifies that changes that are made to data in the specified table space are not recorded in the
log.

NOT LOGGED prevents undo and redo information from being recorded in the log; however, control
information for the specified table space will continue to be recorded in the log.

USING block
If you omit USING, the default storage group of the database must exist. The USING clause indicates
whether the data set for the table space is defined by you or by Db2. If Db2 is to define the data set,
the clause also gives space allocation parameters and an erase rule.

If you omit USING, Db2 defines the data sets using the default storage group of the database and the
defaults for PRIQTY, SECQTY, and ERASE.

VCAT catalog-name
Specifies that the first data set for the table space is managed by the user, and following data sets,
if needed, are also managed by the user.

The data sets are VSAM linear data sets cataloged in the integrated catalog facility catalog
that catalog-name identifies. For more information about catalog-name values, see “Naming
conventions in SQL” on page 79.

More than one Db2 subsystem can share the integrated catalog facility catalogs with the current
server. To avoid the chance of those subsystems attempting to assign the same name to different
data sets, specify a catalog-name value that is not used by the other Db2 subsystems.

STOGROUP stogroup-name
Specifies that Db2 will define and manage the data sets for the table space. Each data set will
be defined on a volume of the identified storage group. The values specified (or the defaults)
for PRIQTY and SECQTY determine the primary and secondary allocations for the data set. The
storage group supplies the name of a volume for the data set and the first-level qualifier for the
data set name. The first-level qualifier is also the name of, or an alias31 for, the integrated catalog
facility catalog on which the data set is to be cataloged. The naming conventions for the data
set are the same as if the data set is managed by the user. As was mentioned above for VCAT,
the first-level qualifier could cause naming conflicts if the local Db2 can share integrated catalog
facility catalogs with other Db2 subsystems.

stogroup-name must identify a storage group that exists at the current server. SYSADM or
SYSCTRL authority, or the USE privilege on the storage group, is required.

The description of the storage group must include at least one volume serial number, or it must
indicate that the choice of volumes is left to Storage Management Subsystem (SMS). If volume
serial numbers appear in the description, each must identify a volume that is accessible to z/OS
for dynamic allocation of the data set, and all identified volumes must be of the same device type.

The integrated catalog facility catalog used for the storage group must not contain an entry for the
first data set of the table space. If the integrated catalog facility catalog is password protected, the
description of the storage group must include a valid password.

31 The alias of an integrated catalog facility catalog.

Chapter 7. Statements 1559

PRIQTY integer
Specifies the minimum primary space allocation for a Db2-managed data set. integer must be
a positive integer, or -1. In general, when you specify PRIQTY with a positive integer value, the
primary space allocation is at least n kilobytes, where n is the value of integer. However, the
following exceptions exist:

• For 4KB page sizes, if integer is greater than 0 and less than 200, n is 200.
• For 8KB page sizes, if integer is greater than 0 and less than 400, n is 400.
• For 16KB page sizes, if integer is greater than 0 and less than 800, n is 800.
• For 32KB page sizes, if integer is greater than 0 and less than 1600, n is 1600.
• For any page size, if integer is greater than 67108864, n is 67108864.

If you do not specify PRIQTY, or specify PRIQTY with a value of -1, Db2 uses a default value
for the primary space allocation; for information on how Db2 determines the default value, see
Rules for primary and secondary space allocation (Introduction to Db2 for z/OS).

If you specify PRIQTY, and do not specify a value of -1, Db2 specifies the primary space
allocation to access method services using the smallest multiple of p KB not less than n,
where p is the page size of the table space. The allocated space can be greater than the
amount of space requested by Db2. For example, it could be the smallest number of tracks
that will accommodate the request. The amount of storage space requested must be available
on some volume in the storage group based on VSAM space allocation restrictions. Otherwise,
the primary space allocation will fail. To more closely estimate the actual amount of storage,
see DEFINE CLUSTER command (DFSMS Access Method Services for Catalogs).

Executing this statement causes only one data set to be created. However, you might have
more data than this one data set can hold. Db2 automatically defines more data sets when
they are needed. Regardless of the value in PRIQTY, when a data set reaches its maximum
size, Db2 creates a new one. To enable a data set to reach its maximum size without running
out of extents, it is recommended that you allow Db2 to automatically choose the value of the
secondary space allocations for extents.

If you do choose to explicitly specify SECQTY, to avoid wasting space, use the following
formula to make sure that PRIQTY and its associated secondary extent values do not exceed
the maximum size of the data set:

PRIQTY + (number of extents * SECQTY) <= DSSIZE (implicit or explicit)

SECQTY integer
Specifies the minimum secondary space allocation for a Db2-managed data set. integer must
be a positive integer, 0, or -1. If you do not specify SECQTY, or specify SECQTY with a value of
-1, Db2 uses a formula to determine a value. For information on the actual value that is used
for secondary space allocation, whether you specify a value or not, see Rules for primary and
secondary space allocation (Introduction to Db2 for z/OS).

If you specify SECQTY, and do not specify a value of -1, Db2 specifies the secondary space
allocation to access method services using the smallest multiple of p KB not less than integer,
where p is the page size of the table space. The allocated space can be greater than the
amount of space requested by Db2. For example, it could be the smallest number of tracks
that will accommodate the request. To more closely estimate the actual amount of storage,
see DEFINE CLUSTER command (DFSMS Access Method Services for Catalogs).

ERASE
Indicates whether the Db2-managed data sets for the table space are to be erased when they
are deleted during the execution of a utility or an SQL statement that drops the table space.
NO

Does not erase the data sets. Operations involving data set deletion will perform better
than ERASE YES. However, the data is still accessible, though not through Db2. This is the
default.

1560 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_primaryspaceallocation.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/defclu.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_primaryspaceallocation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_primaryspaceallocation.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/defclu.htm

YES
Erases the data sets. As a security measure, Db2 overwrites all data in the data sets with
zeros before they are deleted.

Notes for CREATE LOB TABLESPACE
Rules for primary and secondary space allocation

You can specify the primary and secondary space allocation or let Db2 choose them. Having Db2
choose the values, especially the secondary space quantity, increases the possibility of reaching the
maximum data set size before running out of extents. For more information, see Rules for primary and
secondary space allocation (Introduction to Db2 for z/OS).

Determining the number of LOB table spaces to create

For partitioned tables, each partition of the base table requires a separate LOB table space, auxiliary
table, and auxiliary index for each LOB column.

Alternative syntax and synonyms

db2z_addpartition

For compatibility with previous Db2 releases or function levels, the following keywords are supported:

• When specifying the logging attributes for a table space, you can specify LOG YES as a synonym for
LOGGED, and you can specify LOG NO as a synonym for NOT LOGGED.

Although these keywords are supported as alternatives, they are not the preferred syntax.

Example for CREATE LOB TABLESPACE

Assume that a column named EMP_PHOTO with a data type of BLOB(110K) has been added to the sample
employee table for each employee's photo. Create LOB table space PHOTOLTS in database DSN8D12A for
the auxiliary table that will hold the BLOB data.

Let Db2 define the data sets for the table space, using storage group DSN8G120. For each data set, the
primary space allocation is 3200 kilobytes, and the secondary space allocation is 1600 kilobytes. The
data sets do not need to be erased before they are deleted. (Because ERASE NO is the default, the clause
does not have to be explicitly specified to get that behavior.)

 CREATE LOB TABLESPACE PHOTOLTS
 IN DSN8D12A
 USING STOGROUP DSN8G120
 PRIQTY 3200
 SECQTY 1600
 LOCKSIZE LOB
 BUFFERPOOL BP16K0
 GBPCACHE SYSTEM
 NOT LOGGED
 CLOSE NO;

Related concepts
LOB table spaces (Db2 Administration Guide)
Related tasks
Storing LOB data in Db2 tables (Db2 Application programming and SQL)
Creating large objects (Introduction to Db2 for z/OS)
Related reference
CREATE AUXILIARY TABLE statement

Chapter 7. Statements 1561

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_primaryspaceallocation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_primaryspaceallocation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_largeobjecttablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_storelobdatatable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_creationoflargeobjects.html

The CREATE AUXILIARY TABLE statement creates an auxiliary table at the current server for storing LOB
data.

CREATE MASK statement
The CREATE MASK statement creates a column mask at the current server. A column mask is used for
column access control and specifies the value that should be returned for a specified column.

Invocation for CREATE MASK
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for CREATE MASK
The privilege set that is defined below must include the following authority:

SECADM authority

SECADM authority can create a column mask in any schema. Additional privileges are not needed to
reference other objects in the mask definition. For example, the SELECT privilege is not needed query a
table, and the EXECUTE privilege is not needed to invoke a user-defined function.

Privilege set: If the statement is embedded in an application program, the privilege set is the set of
privileges that are held by the owner of the package. If the statement is dynamically prepared, the
privilege set is the set of privileges that are held by the SQL authorization ID of the process. However,
if the process is running in a trusted context that is defined with the ROLE AS OBJECT OWNER AND
QUALIFIER clause, the privilege set is the set of privileges that are held by the role that is in effect.

Syntax for CREATE MASK

CREATE MASK mask-name ON table-name

AS
correlation-name

FOR COLUMN column-name RETURN case-expression
DISABLE

ENABLE

Description for CREATE MASK
mask-name

Specifies the names the column mask. The name, including the implicit or explicit qualifier, must not
identify a column mask or a row permission that already exists at the current server.

ON table-name
Identifies the table for which the column mask is created. The name must identify a table that exists
at the current server. It must not identify any of the following objects:

• An auxiliary table
• A created or declared temporary table
• A view
• A catalog table
• An alias
• A synonym

1562 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• A materialized query table or table that is directly or indirectly referenced in the definition of a
materialized query table

• A table that was implicitly created for an XML column
• A table that contains a period
• A history table
• An accelerator-only table
• An archive-enabled table
• An archive table

correlation-name
Specifies a correlation name that can be used within case-expression to designate the table. For
information about correlation-name, see “Correlation names” on page 220.

FOR COLUMN column-name
Identifies the column to which the mask applies. column-name must be an unqualified name that
identifies a column of the specified table. A mask must not already exist for the column. The column
must not be:

• a LOB column or a distinct type column that is based on a LOB
• an XML column
• defined with a FIELDPROC

RETURN case-expression
Specifies a CASE expression that determines the value that is returned for the column. The result
of the CASE expression is returned in place of the column value in a row. The result data type,
null attribute, data length, subtype, encoding scheme, and CCSID of the CASE expression must be
identical to those attributes of the column that is specified by column-name. If the data type of
column-name is a user-defined data type, the result data type of the CASE expression must be the
same user-defined type. The CASE expression must not reference any of the following objects:

• A remote object
• The table for which the column mask is being defined
• A created global temporary table or a declared global temporary table
• An auxiliary table
• A table that was implicitly created for an XML column
• A column that is defined with a FIELDPROC
• A LOB column or a distinct type column that is based on a LOB
• An XML column
• A select list notation * or name.* in the SELECT clause
• A table function
• A collection-derived table (UNNEST)
• A user-defined function that is defined as not secure
• A function that is not deterministic or that has an external action or is defined with the MODIFIES

SQL DATA option
• An aggregate function, unless it is specified in a subquery
• A built-in table function
• An XMLTABLE table function
• An XMLEXISTS predicate
• An OLAP specification
• A ROW CHANGE expression
• A sequence reference

Chapter 7. Statements 1563

• A host variable, SQL variable, SQL parameter, or trigger transition variable
• A parameter marker
• A table reference that contains a period specification
• A view that includes any of the preceding restrictions in its definition
• An accelerator-only table

The encoding scheme of the table is used to evaluate the CASE expression. Tables and language
elements that require multiple encoding scheme evaluation, other than EBCDIC tables with Unicode
columns, must not be referenced in the CASE expression. See Determining the encoding scheme
and CCSID of a string (Introduction to Db2 for z/OS) for language elements that require multiple
evaluation.

If the CASE expression references tables for which row or column access control is active, access
controls for those tables are not cascaded.

DISABLE or ENABLE
Specifies that the column mask is to be enabled or disabled for column access control.
DISABLE

Specifies that the column mask is to be disabled for column access control. The column mask will
remain disabled regardless of whether column access control is activated for the table.

DISABLE is the default.

ENABLE
Specifies that the column mask is to be enabled for column access control. If column access
control is not currently active for the table, the column mask will become enabled when column
access control is activated for the table. If column access control is currently active for the table,
the column mask becomes enabled immediately and all packages and statements in the dynamic
statement cache that reference the table are invalidated. For more information, see Changes that
invalidate packages (Db2 Application programming and SQL).

Notes for CREATE MASK
How column masks affect queries:

The application of enabled column masks does not interfere with the operations of other clauses
within the statement such as the WHERE, GROUP BY, HAVING, SELECT DISTINCT, or ORDER BY.
The rows that are returned in the final result table remain the same, except that the values in the
resulting rows might have been masked by the column masks. As such, if the masked column also
appears in an ORDER BY clause with a sort-key expression, the order is based on the original values
of the column and the masked values in the final result table might not reflect that order. Similarly,
the masked values might not reflect the uniqueness enforced by a SELECT DISTINCT statement.
If the masked column is embedded in an expression, the result of the expression might become
different because the column mask is applied on the column before the expression evaluation can
take place. For example, a column mask on column SSN might change the result of the aggregate
function COUNT(DISTINCT SSN) because the DISTINCT operation is performed on the unmasked
values.

Conflicts between the definition of a column mask and SQL:
A column mask is created as a stand alone object, without knowing all of the contexts in which it
might be used. To mask the value of a column in the final result table, the definition of the column
mask is merged into a query by Db2. When the definition of the column mask is brought into the
context of the statement, it might conflict with certain SQL semantics in the statement. Therefore, in
some situations, the combination of the statement and the application of the column mask can return
an error. When this happens, either the statement needs to be modified or the column mask must
be dropped or re-created with a different definition. See “ALTER TABLE statement” on page 1232 for
those situations in which a bind time error might be issued for the statement.

Column masks and null columns:
If the column is not nullable, the definition of its column mask will not, most likely, consider a null
value for the column. After the column access control is activated for the table, if the table is the

1564 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

null-padded table in an outer join, the value of he column in the final result table might be a null.
To ensure that the column mask can mask a null value, if the table is the null-padded table in an
outer join, Db2 will add "WHEN target-column IS NULL THEN NULL" as the first WHEN clause to the
column mask definition. This forces a null value to always be masked as a null value. For a nullable
column, this removes the ability to mask a null value as something else. Example 5 shows this added
WHEN clause.

Column mask values for SQL data change statements
When columns are used to derive new values for an INSERT, UPDATE, MERGE, or a SET transition-
variable assignment statement, the original values of the column, not the masked values, are used to
derive the new values. If the columns have column masks, those column masks are applied to ensure
that the evaluation of the access control rules at run time masks the column to itself, not to a constant
or an expression. This is to ensure that the masked values are the same as the original column values.
If a column mask does not mask the column to itself, the existing row is not updated or the new row
is not inserted and an error is returned at run time. The rules that are used to apply column masks in
order to derive the new values follow the same rules for the final result table of a query.

Column masks that are created before column access control is activated:
The CREATE MASK statement is an independent statement that can be used to create a column
access control mask before column access control is activated for a table. The only requirement
is that the table and the columns exist before the mask is created. Multiple column masks can be
created for a table but a column can have one mask only.

The definition of a mask is stored in the Db2 catalog. Dependency on the table for which the mask
is being created and dependencies on other objects referenced in the definition are recorded. No
package or dynamic cached statement is invalidated. A column mask can be created as enabled or
disabled for column access control. An enabled column mask does not take effect until the ALTER
TABLE statement with the ACTIVATE COLUMN ACCESS CONTROL clause is used to activate column
access control for the table. SECADM authority is required to issue such an ALTER TABLE statement. A
disabled column mask remains ineffective even when column access control is activated for the table.
The ALTER MASK statement can be used to alter between ENABLE and DISABLE.

After column access control is activated for a table, when the table is referenced in a data
manipulation statement, all enabled column masks that have been created for the table are implicitly
applied by Db2 to mask the values returned for the columns referenced in the final result table of the
queries or to determine the new values used in the data change statements.

Tip: To avoid multiple invalidations of packages and dynamic cached statements that reference the
table, creating column masks before activating column access control for a table .

Column masks that are created after column access control is activated:
The enabled column masks become effective as soon as they are committed. All the packages and
dynamic cached statements that reference the table are invalidated. Thereafter, when the table is
referenced in a data manipulation statement, all enabled column masks are implicitly applied by Db2
to the statement. Any disabled column mask remains ineffective even when column access control is
activated for the table.

No cascaded effect when column or row access control enforced tables are referenced in column
mask definitions:

A column mask definition may reference tables and columns that are currently enforced by row or
column access control. Access control from those tables and columns are ignored when the table for
which the column mask is being created is referenced in a data manipulation statement.

Multiple column masks and row permissions sharing the same environment variables:
Multiple column masks and row permissions can be created for a table. They must use the same set of
environment variables. The set of environment variables is determined when the first column mask or
row permission is created for the table.

The catalog table SYSENVIRONMENT contains the list of environment variables. The following table
shows which environment variable must be the same among the multiple column masks and row
permissions.

Chapter 7. Statements 1565

Table 202. Environment Variables in SYSIBM.SYSENVIRONMENT

Environment
variables shown as
SYSENVIRONMENT
columns Description

Static create
statement

Dynamic create
statement

Must be the same
among multiple
column masks and
row permissions?

ENVID Internal identifier of
the environment

Assigned by Db2 Assigned by Db2 Yes

CURRENT_SCHEMA The qualifier used
to qualify unqualified
objects such as
tables, views. etc.

Package owner Value of
CURRENT_SCHEMA
special register

Yes

PATHSCHEMAS The schema path
used to qualify
unqualified object
such as user-defined
functions and CAST
functions for user-
defined data types.

PATH bind option Value of
CURRENT_PATH
special register

Yes

APPLICATION_
ENCODING_
CCSID

The CCSID of
the application
environment

ENCODING bind
option

CURRENT
APPLICATION
ENCODING SCHEME
special register

Yes

ORIGINAL_
ENCODING_
CCSID

The original CCSID
of the statement text
string

CCSID(n) pre-
compiler option or
EBCDIC CCSID on
DSNTIPF installation
panel

CCSID based on DEF
ENCODING SCHEME
on DSNTIPF
installation panel

Yes

DECIMAL_POINT The decimal point
indicator

COMMA or PERIOD
precompiler option
or DECIMAL POINT
IS on DSNTIPF
installation panelv

DECIMAL POINT
IS on DSNTIPF
installation panel

Yes

MIN_DIVIDE_SCALE The minimum divide
scale

MINIMUM DIVIDE
SCALE on DSNTIP4
installation panel

MINIMUM DIVIDE
SCALE on DSNTIP4
installation panelv

Yesv

STRING_DELIMITER The string delimiter
that is used
in COBOL string
constants

APOST precompiler
option or STRING
DELIMITER on
DSNTIPF installation
panel

STRING DELIMITER
on DSNTIPF
installation panel

No

SQL_
STRING_
DELIMITER

The SQL string
delimiter that is used
in constants

APOSTSQL pre-
compiler option
or SQL STRING
DELIMITER on
DSNTIPF installation
panel

SQL STRING
DELIMITER on
DSNTIPF installation
panel

Yes

MIXED_DATA Uses mixed DBCS
data

MIXED DATA on
DSNTIPF installation
panel

MIXED DATA on
DSNTIPF installation
panel

Yes

1566 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 202. Environment Variables in SYSIBM.SYSENVIRONMENT (continued)

Environment
variables shown as
SYSENVIRONMENT
columns Description

Static create
statement

Dynamic create
statement

Must be the same
among multiple
column masks and
row permissions?

DECIMAL_
ARITHMETIC

The rules that
are to be used
for CURRENT
PRECISION and
when both operands
in a decimal
operation have a
precision of 15 or
less.

DEC(15) or DEC(31)
precompiler option
or DECIMAL
ARITHMETIC on
DSNTIP4 installation
panel

DECIMAL
ARITHMETIC on
DSNTIP4 installation
panel

Yes

DATE_FORMAT The date format DATE pre-compiler
option or DATE
FORMAT on
DSNTIP4 installation
panel

DATE FORMAT on
DSNTIP4 installation
panel

Yes

TIME_FORMAT The time format TIME pre-compiler
option or TIME
FORMAT on
DSNTIP4 installation
panel

TIME FORMAT on
DSNTIP4 installation
panel

Yes

FLOAT_FORMAT The floating point
format

FLOAT (S390 | IEEE)
pre-compiler option
or default of FLOAT
S390

Default of FLOAT
S390

No

HOST_LANGUAGE The host language HOST pre-compiler
option or LANGUAGE
DEFAULT on
DSNTIPF installation
panel

LANGUAGE DEFAULT
on DSNTIPF
installation panel

No

CHARSET The character set CCSID(n) pre-
compiler option or
EBCDIC CCSID on
DSNTIPF installation
panel

EBCDIC CCSID on
DSNTIPF installation
panel

No

FOLD FOLD is only
applicable when
HOST_LANGUAGE is
C or CPP. Otherwise
FOLD is blank.

HOST(C(FOL D)
precompiler option
or default of NO
FOLD

default of NO FOLD No

ROUNDING The rounding mode
that is used
when arithmetic and
casting operations
are performed on
DECFLOAT data.

ROUNDING bind
option

CURRENT DECFLOAT
ROUNDING MODE
special register

Yes

Chapter 7. Statements 1567

Table 202. Environment Variables in SYSIBM.SYSENVIRONMENT (continued)

Environment
variables shown as
SYSENVIRONMENT
columns Description

Static create
statement

Dynamic create
statement

Must be the same
among multiple
column masks and
row permissions?

Note: In a data sharing environment, if a separate DSNHDECP module is provided for each member of the
group, the DSNHDECP settings for each environment variable should be the same in all members of the
data sharing group, otherwise an error might be issued when multiple column masks or row permissions are
created.

Ordinary SQL identifiers specified in a static CREATE MASK statement in a COBOL application:
If the CREATE MASK statement is a static statement in a COBOL application, the ordinary SQL
identifiers used in the column mask definition must not follow the rules for naming COBOL words.
They must follow the rules for naming “Identifiers in SQL” on page 77. For example, the COBOL
word 1ST-TIME is not allowed as an ordinary SQL identifier in a column mask definition; change it to
FIRST_TIME or put it in the delimiters.

Encoding scheme and CCSIDs of the data manipulation statement after column masks are applied:
The encoding scheme and CCSIDs of the data manipulation statement are not affected by the column
masks that are implicitly applied by Db2 for the column access control. For a target table or a
referenced table that is not an EBCDIC table with Unicode columns, the column mask definition is
evaluated using its table's encoding scheme and CCSIDs. For a target table or a referenced table that
is an EBCDIC table with Unicode columns, the column mask definition is evaluated using the rules for
multiple encoding schemes.

Consideration for Db2 limits:
If the data manipulation statement already approaches some Db2 limits in the statement, it should
be noted that the more enabled column masks and enabled row permissions are created, the more
likely they would impact some limits. For example, they may cause the statement to exceed the
maximum total length (32600 bytes) of columns of a query operation requiring sort and evaluating
aggregate functions (MULTIPLE DISTINCT and GROUP BY). This is because the enabled column mask
and enabled row permission definitions are implicitly merged into the statement when the table is
referenced in a data manipulation statement. See "Limits in Db2 for z/OS" in SQL Reference for the
limits of a statement.

Restrictions involving pending definition changes:
CREATE MASK is not allowed if the mask is defined on a table or references a table that has pending
definition changes.

Examples for CREATE MASK

In the following examples, the data type of column SSN is VARCHAR(11).

Example 1
After column access control is activated for table EMPLOYEE, Paul from the payroll department can
see the social security number of the employee whose employee number is 123456. Mary who is
a manager can see the last four characters only of the social security number. Peter who is neither
cannot see the social security number.

CREATE MASK SSN_MASK ON EMPLOYEE
 FOR COLUMN SSN RETURN
 CASE
 WHEN (VERIFY_GROUP_FOR_USER(SESSION_USER,'PAYROLL') = 1)
 THEN SSN
 WHEN (VERIFY_GROUP_FOR_USER(SESSION_USER,'MGR') = 1)
 THEN 'XXX-XX-' || SUBSTR(SSN,8,4)
 ELSE NULL
 END
 ENABLE;

1568 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

COMMIT;

ALTER TABLE EMPLOYEE
 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT SSN FROM EMPLOYEE
 WHERE EMPNO = 123456;

Example 2
In the SELECT statement, column SSN is embedded in an expression that is the same as the
expression used in the column mask SSN_MASK. After column access control is activated for table
EMPLOYEE, the column mask SSN_MASK is applied to column SSN in the SELECT statement. For
this particular expression, the SELECT statement produces the same result as before column access
control is activated for all users. The user can replace the expression in the SELECT statement with
column SSN to avoid the same expression gets evaluated twice.

CREATE MASK SSN_MASK ON EMPLOYEE
 FOR COLUMN SSN RETURN
 CASE
 WHEN (1 = 1)
 THEN 'XXX-XX-' || SUBSTR(SSN,8,4)
 ELSE NULL
 END
 ENABLE;

COMMIT;

ALTER TABLE EMPLOYEE
 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT 'XXX-XX-' || SUBSTR(SSN,8,4) FROM EMPLOYEE
 WHERE EMPNO = 123456;

Example 3
A state government conducted a survey for the library usage of the households in each city. Fifty
households in each city were sampled in the survey. Each household was given an option, opt-in or
opt-out, whether to show their usage in any reports generated from the result of the survey.

A SELECT statement is used to generate a report to show the average hours used by households in
each city. Column mask CITY_MASK is created to mask the city name based on the opt-in or opt-out
information chosen by the sampled households. However, after column access control is activated
for table LIBRARY_ USAGE, the SELECT statement receives a bind time error. This is because column
mask CITY_MASK references another column LIBRARY_OPT and LIBRARY_OPT does not identify a
grouping column.

CREATE MASK CITY_MASK ON LIBRARY_USAGE
 FOR COLUMN CITY RETURN
 CASE
 WHEN (LIBRARY_OPT = 'OPT-IN')
 THEN CITY
 ELSE ' '
 END
 ENABLE;

COMMIT;

ALTER TABLE LIBRARY_USAGE
 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT CITY, AVG(LIBRARY_TIME) FROM LIBRARY_USAGE
 GROUP BY CITY;

Example 4
Employee with EMPNO 123456 earns bonus $8000 and salary $80000 in May. When the manager
retrieves his salary, the manager receives his salary, not the null value. This is because of no

Chapter 7. Statements 1569

cascaded effect when column mask SALARY_MASK references column BONUS for which column
mask BONUS_MASK is defined.

CREATE MASK SALARY_MASK ON EMPLOYEE
 FOR COLUMN SALARY RETURN
 CASE
 WHEN (BONUS < 10000)
 THEN SALARY
 ELSE NULL
 END
 ENABLE;

COMMIT;

CREATE MASK BONUS_MASK ON EMPLOYEE
 FOR COLUMN BONUS RETURN
 CASE
 WHEN (BONUS > 5000)
 THEN NULL
 ELSE BONUS
 END
 ENABLE;

COMMIT;

ALTER TABLE EMPLOYEE
 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT SALARY FROM EMPLOYEE
 WHERE EMPNO = 123456;

Example 5
This example shows Db2 adds "WHEN target-column IS NULL THEN NULL" as the first WHEN clause
to the column mask definition then merges the column mask definition into the statement.

CREATE EMPLOYEE (EMPID INT,
 DEPTID CHAR(8),
 SALARY DEC(9,2) NOT NULL,
 BONUS DEC(9,2));

CREATE MASK SALARY_MASK ON EMPLOYEE
 FOR COLUMN SALARY RETURN
 CASE
 WHEN SALARY < 10000
 THEN CAST(SALARY*2 AS DEC(9,2))
 ELSE COALESCE(CAST(SALARY/2 AS DEC(9,2)), BONUS)
 END
 ENABLE;

COMMIT;

CREATE MASK BONUS_MASK ON EMPLOYEE
 FOR COLUMN BONUS RETURN
 CASE
 WHEN BONUS > 1000
 THEN BONUS
 ELSE NULL
 END
 ENABLE;

COMMIT;

ALTER TABLE EMPLOYEE
 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT SALARY FROM DEPT
 LEFT JOIN EMPLOYEE ON DEPTNO = DEPTID;

/* When SALARY_MASK is merged into the above statement,
 * 'WHEN SALARY IS NULL THEN NULL' is added as the
 * first WHEN clause, as follows:
 */

SELECT CASE WHEN SALARY IS NULL THEN NULL
 WHEN SALARY < 10000 THEN CAST(SALARY*2 AS DEC(9,2))

1570 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 ELSE COALESCE(CAST(SALARY/2 AS DEC(9,2)), BONUS)
 END SALARY
 FROM DEPT
 LEFT JOIN EMPLOYEE ON DEPTNO = DEPTID;

Related concepts
Column mask (Managing Security)
Naming conventions
The rules for forming a name depend on the type of the object designated by the name.
Related tasks
Creating column masks (Managing Security)

CREATE PERMISSION statement
The CREATE PERMISSION statement creates a row permission for row access control at the current
server.

Invocation for CREATE PERMISSION
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for CREATE PERMISSION
The privilege set that is defined below must include the following authority:

• SECADM authority

SECADM authority can create a row permission in any schema. Additional privileges are not needed to
reference other objects in the permission definition. For example, the SELECT privilege is not needed to
retrieve from a table, and the EXECUTE privilege is not needed to invoke a user-defined function.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the package. If the statement is dynamically prepared, the privilege set is
the set of privileges that are held by the SQL authorization ID of the process. However, if it is running in a
trusted context defined with the ROLE AS OBJECT OWNER AND QUALIFIER clause, the privilege set is the
set of privileges that are held by the role in effect.

Syntax for CREATE PERMISSION

CREATE PERMISSION permission-name ON table-name

AS
correlation-name

FOR ROWS WHERE search-condition

ENFORCED FOR ALL ACCESS
DISABLE

ENABLE

Description for CREATE PERMISSION
permission-name

Names the row permission for row access control. The name, including the implicit or explicit qualifier,
must not identify a row permission or a column mask that already exists at the current server

Chapter 7. Statements 1571

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_columnmask.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_createcolumnmask.html

ON table-name
Identifies the table on which the row permission is created. The name must identify a table that exists
at the current server. It must not identify any of the following objects:

• An auxiliary table
• A created or declared temporary table
• A view
• A catalog table
• An alias
• A synonym
• A materialized query table or table that is directly or indirectly referenced in the definition of a

materialized query table
• A table that was implicitly created for an XML column
• A table that contains a period
• A history table
• An accelerator-only table
• An archive-enabled table
• An archive table
• A table that has a security label column.

correlation-name
Can be used within search-condition to designate the table. For the explanation of correlation-name,
see “Correlation names” on page 220.

FOR ROWS WHERE
Indicates that a row permission is created. A row permission specifies a search condition under which
rows of the table can be accessed.

search-condition
Specifies a condition that can be true, false, or unknown for a row of the table. search-condition
follows the same rules that are used by the search condition in a WHERE clause of a subselect. In
addition, the search condition must not reference any of the following objects:

• A remote object
• The table for which the row permission is being defined
• A table that has a security label column
• A created global temporary table or a declared global temporary table
• An auxiliary table
• A table that was implicitly created for an XML column
• A collection-derived table (UNNEST)
• A table function
• A host variable, SQL variable, SQL parameter, or trigger transition variable
• A user-defined function that is defined as not secure
• A function that is not deterministic or that has an external action or is defined with the MODIFIES

SQL DATA option
• A parameter marker
• A column that is defined with a FIELDPROC
• A LOB column or a distinct type column that is based on a LOB
• An XML column
• An XMLEXISTS predicate
• An OLAP specification

1572 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• A ROW CHANGE expression
• A sequence reference
• A select list notation * or name.* in the SELECT clause
• A table reference that contains a period specification
• A view that includes any of the preceding restrictions in its definition

The encoding scheme of the table is used to evaluate the search-condition. Tables and language
elements that require multiple encoding scheme evaluation, other than EBCDIC tables with Unicode
columns, must not be referenced in the search-condition. See Determining the encoding scheme and
CCSID of a string (Introduction to Db2 for z/OS) for those language elements.

If the search-condition references tables for which row or column access control is activated, access
control from those tables is not cascaded.

ENFORCED FOR ALL ACCESS
Specifies that the row permission applies to all references of the table. If row access control is
activated for the table, when the table is referenced in a data manipulation statement, Db2 implicitly
applies the row permission to control the access of the table. If the reference of the table is for a fetch
operation such as SELECT, the application of the row permission determines what set of rows can be
retrieved by the user who requested the fetch operation. If the reference of the table is for a data
change operation such as INSERT, the application of the row permission determines whether all rows
to be changed are insertable or updatable by the user who requested the data change operation.

DISABLE or ENABLE
Specifies that the row permission is to be enabled or disabled for row access control.
DISABLE

Specifies that the row permission is to be disabled for row access control. The row permission will
remain ineffective regardless the row access control is activated for the table or not.

DISABLE is the default.

ENABLE
Specifies that the row permission is to be enabled for row access control. If row access control is
not currently activated for the table, the row permission will become effective when row access
control is activated for the table. If row access control is currently activated for the table, the row
permission becomes effective immediately and all packages and dynamic cached statements that
reference the table are invalidated. For more information, see Changes that invalidate packages
(Db2 Application programming and SQL).

Notes for CREATE PERMISSION
How row permission are applied and how they affect certain statements:

See the ALTER TABLE statement with the ACTIVATE ROW ACCESS CONTROL clause for information
on how to activate row access control and how row permissions are applied. See the description of
subselect for information on how the application of row permissions affects the fetch operation. See
the data change statements for information on how the application of row permissions affects the
data change operation.

Row permissions that are created before row access control is activated for a table:
The CREATE PERMISSION statement is an independent statement that can be used to create a row
permission before row access control is activated for a table. The only requirement is that the table
and the columns exist before the permission is created. Multiple row permissions can be created for a
table.

The definition of the row permission is stored in the Db2 catalog. Dependency on the table for which
the permission is being created and dependencies on other objects referenced in the definition are
recorded. No package or dynamic cached statement is invalidated. A row permission can be created
as enabled or disabled for row access control. An enabled row permission does not take effect until
the ALTER TABLE statement with the ACTIVATE ROW ACCESS CONTROL clause is used to activate
row access control for the table. A disabled row permission remains ineffective even when row access

Chapter 7. Statements 1573

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_determineencodingschemeandccsid.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

control is activated for the table. The ALTER PERMISSION statement can be used to alter between
ENABLE and DISABLE.

After row access control is activated for a table, when the table is referenced in a data manipulation
statement, all enabled row permissions that are defined for the table are implicitly applied by Db2 to
control access to the table.

Tip: Create row permissions before activating row access control for a table to avoid multiple
invalidations of packages and dynamic cached statements that reference the table.

Row permissions that are created after row access control is activated for a table:
An enabled row permission becomes effective as soon as it is committed. All the packages and
dynamic cached statements that reference the table are invalidated. Thereafter, when the table is
referenced in a data manipulation statement, all enabled row permissions are implicitly applied to
the statement. Any disabled row permission remains ineffective even when row access control is
activated for the table.

No cascaded effect when row or column access control enforced tables are referenced in row
permission definitions:

A row permission definition may reference tables and columns that are currently enforced by row or
column access control. Access control from those tables are ignored when the table for which the row
permission is being created is referenced in a data manipulation statement.

Multiple column masks and row permissions sharing the same environment variables:
Multiple column masks and row permissions can be created for a table. They must use the same set of
environment variables. The set of environment variables is determined when the first column mask or
row permission is created for the table.

The catalog table SYSENVIRONMENT contains the list of environment variables. The following table
shows which environment variable must be the same among the multiple column masks and row
permissions.

Table 203. Environment Variables in SYSIBM.SYSENVIRONMENT

Environment
variables shown as
SYSENVIRONMENT
columns Description

Static create
statement

Dynamic create
statement

Must be the same
among multiple
column masks and
row permissions?

ENVID Internal identifier of
the environment

Assigned by Db2 Assigned by Db2 Yes

CURRENT_SCHEMA The qualifier used
to qualify unqualified
objects such as
tables, views. etc.

Package owner Value of
CURRENT_SCHEMA
special register

Yes

PATHSCHEMAS The schema path
used to qualify
unqualified object
such as user-defined
functions and CAST
functions for user-
defined data types.

PATH bind option Value of
CURRENT_PATH
special register

Yes

APPLICATION_
ENCODING_
CCSID

The CCSID of
the application
environment

ENCODING bind
option

CURRENT
APPLICATION
ENCODING SCHEME
special register

Yes

1574 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 203. Environment Variables in SYSIBM.SYSENVIRONMENT (continued)

Environment
variables shown as
SYSENVIRONMENT
columns Description

Static create
statement

Dynamic create
statement

Must be the same
among multiple
column masks and
row permissions?

ORIGINAL_
ENCODING_
CCSID

The original CCSID
of the statement text
string

CCSID(n) pre-
compiler option or
EBCDIC CCSID on
DSNTIPF installation
panel

CCSID based on DEF
ENCODING SCHEME
on DSNTIPF
installation panel

Yes

DECIMAL_POINT The decimal point
indicator

COMMA or PERIOD
precompiler option
or DECIMAL POINT
IS on DSNTIPF
installation panelv

DECIMAL POINT
IS on DSNTIPF
installation panel

Yes

MIN_DIVIDE_SCALE The minimum divide
scale

MINIMUM DIVIDE
SCALE on DSNTIP4
installation panel

MINIMUM DIVIDE
SCALE on DSNTIP4
installation panelv

Yesv

STRING_DELIMITER The string delimiter
that is used
in COBOL string
constants

APOST precompiler
option or STRING
DELIMITER on
DSNTIPF installation
panel

STRING DELIMITER
on DSNTIPF
installation panel

No

SQL_
STRING_
DELIMITER

The SQL string
delimiter that is used
in constants

APOSTSQL pre-
compiler option
or SQL STRING
DELIMITER on
DSNTIPF installation
panel

SQL STRING
DELIMITER on
DSNTIPF installation
panel

Yes

MIXED_DATA Uses mixed DBCS
data

MIXED DATA on
DSNTIPF installation
panel

MIXED DATA on
DSNTIPF installation
panel

Yes

DECIMAL_
ARITHMETIC

The rules that
are to be used
for CURRENT
PRECISION and
when both operands
in a decimal
operation have a
precision of 15 or
less.

DEC(15) or DEC(31)
precompiler option
or DECIMAL
ARITHMETIC on
DSNTIP4 installation
panel

DECIMAL
ARITHMETIC on
DSNTIP4 installation
panel

Yes

DATE_FORMAT The date format DATE pre-compiler
option or DATE
FORMAT on
DSNTIP4 installation
panel

DATE FORMAT on
DSNTIP4 installation
panel

Yes

TIME_FORMAT The time format TIME pre-compiler
option or TIME
FORMAT on
DSNTIP4 installation
panel

TIME FORMAT on
DSNTIP4 installation
panel

Yes

Chapter 7. Statements 1575

Table 203. Environment Variables in SYSIBM.SYSENVIRONMENT (continued)

Environment
variables shown as
SYSENVIRONMENT
columns Description

Static create
statement

Dynamic create
statement

Must be the same
among multiple
column masks and
row permissions?

FLOAT_FORMAT The floating point
format

FLOAT (S390 | IEEE)
pre-compiler option
or default of FLOAT
S390

Default of FLOAT
S390

No

HOST_LANGUAGE The host language HOST pre-compiler
option or LANGUAGE
DEFAULT on
DSNTIPF installation
panel

LANGUAGE DEFAULT
on DSNTIPF
installation panel

No

CHARSET The character set CCSID(n) pre-
compiler option or
EBCDIC CCSID on
DSNTIPF installation
panel

EBCDIC CCSID on
DSNTIPF installation
panel

No

FOLD FOLD is only
applicable when
HOST_LANGUAGE is
C or CPP. Otherwise
FOLD is blank.

HOST(C(FOL D)
precompiler option
or default of NO
FOLD

default of NO FOLD No

ROUNDING The rounding mode
that is used
when arithmetic and
casting operations
are performed on
DECFLOAT data.

ROUNDING bind
option

CURRENT DECFLOAT
ROUNDING MODE
special register

Yes

Note: In a data sharing environment, if a separate DSNHDECP module is provided for each member of the
group, the DSNHDECP settings for each environment variable should be the same in all members of the
data sharing group, otherwise an error might be issued when multiple column masks or row permissions are
created.

Ordinary SQL identifiers specified in a static CREATE PERMISSION statement in a COBOL
application:

If the CREATE PERMISSION statement is a static statement in a COBOL application, the ordinary SQL
identifiers used in the row permission definition must not follow the rules for naming COBOL words
(DSNH20474, reason code 14). They must follow the rules for naming SQL identifiers as described
in the topic “SQL identifiers” in Db2 SQL Reference. For example, the COBOL word 1ST-TIME is not
allowed as an ordinary SQL identifier in a row permission definition; change it to FIRST_TIME or put it
in the delimiters.

Encoding scheme and CCSIDs of the data manipulation statement after row permissions are applied:
The encoding scheme and CCSIDs of the data manipulation statement are not affected by the row
permissions that are implicitly applied by Db2 for the row access control. For a target table or a
referenced table that is not an EBCDIC table with Unicode columns, the row permission definition is
evaluated using its table's encoding scheme and CCSIDs. For a target table or a referenced table that
is an EBCDIC table with Unicode columns, the row permission definition is evaluated using the rules
for multiple encoding schemes.

1576 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Consideration for Db2 limits:
If the data manipulation statement already approaches some Db2 limits in the statement, it should
be noted that the more enabled row permissions and enabled column masks are created, the more
likely they would impact some limits. For example, they may cause the statement to exceed the
maximum total length (32600 bytes) of columns of a query operation requiring sort and evaluating
aggregate functions (MULTIPLE DISTINCT and GROUP BY). This is because the enabled column mask
and enabled row permission definitions are implicitly merged into the statement when the table is
referenced in a data manipulation statement. See "Limits in Db2 for z/OS" in SQL Reference for the
limits of a statement.

Restrictions involving pending definition changes:
CREATE PERMISSION is not allowed if the permission is defined on a table or references a table that
has pending definition changes.

Examples for CREATE PERMISSION

Example 1
Secure user-defined function ACCOUNTING_UDF in row permission SALARY_ROW_ACCESS processes
the sensitive data in column SALARY. After row access control is activated for table EMPLOYEE,
Accountant Paul retrieves the salary of employee with EMPNO 123456 who is making $100,000 a
year. Paul may or may not see the row depending on the output value from user-defined function
ACCOUNTING_UDF.

CREATE PERMISSION SALARY_ROW_ACCESS ON EMPLOYEE
 FOR ROWS WHERE VERIFY_GROUP_FOR_USER(SESSION_USER,'MGR','ACCOUNTING') = 1
 AND
 ACCOUNTING_UDF(SALARY) < 120000
 ENFORCED FOR ALL ACCESS
 ENABLE;

COMMIT;

ALTER TABLE EMPLOYEE
 ACTIVATE ROW ACCESS CONTROL;

COMMIT;

SELECT SALARY FROM EMPLOYEE
 WHERE EMPNO = 123456;

Example 2
The tellers in a bank can only access customers from their branch. All tellers have secondary
authorization ID TELLER. The customer service representatives are allowed to access all customers
of the bank. All customer service representatives have secondary authorization ID CSR. A row
permission is created for each group of personnel in the bank accordingly to the access rule defined
by SECADM authority. After row access control is activated for table CUSTOMER, in the SELECT
statement the search conditions of both row permissions are merged into the statement and they are
combined with the logic OR operator to control the set of rows accessible by each group.

CREATE PERMISSION TELLER_ROW_ACCESS ON CUSTOMER
 FOR ROWS WHERE VERIFY_GROUP_FOR_USER(SESSION_USER,'TELLER') = 1
 AND
 BRANCH = (SELECT HOME_BRANCH FROM INTERNAL_INFO
 WHERE EMP_ID = SESSION_USER)
 ENFORCED FOR ALL ACCESS
 ENABLE;

COMMIT;

CREATE PERMISSION CSR_ROW_ACCESS ON CUSTOMER
 FOR ROWS WHERE VERIFY_GROUP_FOR_USER(SESSION_USER,'CSR') = 1
 ENFORCED FOR ALL ACCESS
 ENABLE;

COMMIT;

ALTER TABLE CUSTOMER
 ACTIVATE ROW ACCESS CONTROL;

Chapter 7. Statements 1577

COMMIT;

SELECT * FROM CUSTOMER;

Related concepts
Row permission (Managing Security)
Naming conventions
The rules for forming a name depend on the type of the object designated by the name.
Related tasks
Creating row permissions (Managing Security)

CREATE PROCEDURE statement (overview)
The CREATE PROCEDURE statement registers a stored procedure with a database server. You can register
the following types of procedures with this statement, each of which is described separately.

You can create the following types of stored procedures:
Native SQL procedures

The procedure body is written exclusively in SQL statements, including SQL procedural language (SQL
PL) statements. The procedure body is contained and specified in the procedure definition along with
various attributes of the procedure. A package is generated for a native SQL procedure. It contains the
procedure body, including control statements. It might sometimes also include statements generated
by Db2. Each time that the procedure is invoked, the package executes one or more times.

All SQL procedures that are created with a CREATE PROCEDURE statement that does not specify
the FENCED or EXTERNAL options are native SQL procedures. More capabilities are supported for
native SQL procedures, they usually perform better than external SQL procedures, and no associated
C program is generated for them.

See “CREATE PROCEDURE statement (SQL - native procedure)” on page 1607.

External stored procedures
The procedure body is an external program that is written in a programming language such as C,
C++, COBOL, or Java and it can contain SQL statements. The source code for an external stored
procedure is separate from the procedure definition and is bound into a package. The name of the
external executable is specified as part of the procedure definition along with various attributes of
the procedure. All programs must be designed to run using Language Environment. Your COBOL and
C++ stored procedures can contain object-oriented extensions. Each time that the stored procedure is
invoked, the logic in the procedure controls whether the package executes and how many times.

For more information, see Creating external stored procedures (Db2 Application programming and
SQL).

See “CREATE PROCEDURE statement (external procedure)” on page 1580.

External SQL procedures (deprecated)
The procedure body is written exclusively in SQL statements, including SQL procedural language
(SQL PL) statements. The procedure body is specified in the procedure definition along with various
attributes of the procedure. A C program and an associated package are generated for an external
SQL procedure. It contains the procedure body, including control statements. It might sometimes also
include statements generated by Db2.Each time that the procedure is invoked, the package executes
one or more times.

Native SQL procedures are more fully supported, easier to maintain, and typically perform better than
external SQL procedures, which are deprecated.

See “CREATE PROCEDURE statement (SQL - external procedure) (deprecated)” on page 1597.

1578 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_rowpermission.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_createrowpermission.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createexternalsp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createexternalsp.html

Notes for ALL procedure types
Owner privileges

The owner is authorized to call the procedure (EXECUTE privilege) and grant others the privilege to
call the procedure. See “GRANT statement (function or procedure privileges)” on page 1970. For more
information about ownership of the object, see “Authorization, privileges, permissions, masks, and
object ownership” on page 90.

Defining the parameters
The input parameters for the procedure are specified as a list within parentheses.

A procedure can have no input parameters. In this case, an empty set of parentheses can be specified
or omitted, for example:

CREATE PROCEDURE ASSEMBLY_PARTS()

or

CREATE PROCEDURE ASSEMBLY_PARTS

Choosing data types for parameters:

When you choose the data types of the parameters for your stored procedure, consider the rules
of promotion that can affect the values of the parameters. (See “Promotion of data types” on
page 129). For example, a constant that is one of the input arguments to the stored procedure
might have a built-in data type that is different from the data type that the procedure expects,
and more significantly, might not be promotable to that expected data type. Based on the rules of
promotion, using the following data types for parameters is recommended:

• INTEGER instead of SMALLINT
• DOUBLE instead of REAL
• VARCHAR instead of CHAR
• VARGRAPHIC instead of GRAPHIC
• VARBINARY instead of BINARY

For portability of functions across platforms that are not Db2 for z/OS, do not use the following
data types, which might have different representations on different platforms:

• FLOAT. Use DOUBLE or REAL instead.
• NUMERIC. Use DECIMAL instead.

Specifying the encoding scheme for parameters
The encoding scheme of all of the parameters with a character or graphic string data type (both
input and output parameters) must be the same—either all ASCII, all EBCDIC, or all UNICODE. If you
specify the encoding scheme on the individual parameters, instead of using the PARAMETER CCSID to
specify it for all parameters at once or allowing the encoding scheme to default to the system value,
ensure that they all agree.

Specifying AS LOCATOR for a parameter
Passing a locator instead of a value can result in fewer bytes being passed in or out of the procedure.
This can be useful when the value of the parameter is very large. The AS LOCATOR clause specifies
that a locator to the value of the parameter is passed instead of the actual value. Specify AS LOCATOR
only for parameters with a LOB data type or a distinct type that is based on a LOB data type.

AS LOCATOR cannot be specified for SQL procedures.

Accessing result sets from nested stored procedures
A stored procedure, user-defined function, or trigger cannot call a stored procedure that is defined
with the COMMIT ON RETURN clause.

Chapter 7. Statements 1579

Special registers in procedures
The settings of the special registers of the caller are inherited by the procedure when called and
restored upon return to the caller. Special registers may be changed within a procedure, but these
changes do not affect the caller.

Global variables in procedures
The content of global variables that are referenced in routines is inherited from the caller. Global
variables can be modified in stored procedures, except when the stored procedure is called by a
trigger or a function.

If the procedure contains references to global variables, the level of SQL data access must be at least
CONTAINS SQL. If the procedure contains SQL statements that modify global variables, the level of
SQL data access must be MODIFIES SQL DATA.

Related concepts
Routines in Db2 for z/OS: functions and procedures (Introduction to Db2 for z/OS)
Related tasks
Creating stored procedures (Db2 Application programming and SQL)

CREATE PROCEDURE statement (external procedure)
The CREATE PROCEDURE statement defines an external stored procedure at the current server.

Invocation for CREATE PROCEDURE (external)
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for CREATE PROCEDURE (external)
To create a new procedure in the implicit or explicit schema, the privilege set that is defined below must
include at least one of the following:

• The CREATEIN privilege on the schema
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The authorization ID that matches the schema name implicitly has the CREATEIN privilege on the
schema.

FL 507To replace a procedure, the privilege set that is defined below must include at least one of the
following:

• Ownership of the procedure
• Both the DROPIN and CREATEIN privileges on the schema
• System DBADM authority
• SYSCTRL authority
• SYSADM authority
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

If the authorization ID that is used to create the procedure has the installation SYSADM authority or the
installation SYSOPR authority and if the current SQLID is set to SYSINSTL, the procedure is identified as
system-defined procedure.

When LANGUAGE is JAVA and a jar-name is specified in the EXTERNAL NAME clause, the privilege set
must include USAGE on the JAR file, the Java archive file.

1580 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_routinesintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createsp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the owner is a role, the implicit schema match does
not apply and this role needs to include one of the previously listed conditions.

If the statement is dynamically prepared and is not running in a trusted context for which the ROLE AS
OBJECT OWNER clause is specified, the privilege set is the set of privileges that are held by the SQL
authorization ID of the process. If the schema name is not the same as the SQL authorization ID of the
process, one of the following conditions must be met:

• The privilege set includes SYSADM or SYSCTRL authority.
• The SQL authorization ID of the process has the CREATEIN privilege on the schema.

The authorization ID that is used to create the stored procedure must have authority to define programs
that run in the specified WLM environment. For more information, see Managing authorizations for
creation of stored procedures in WLM environments (Managing Security).

Also, if the stored procedure uses a user-defined type as a parameter, this authorization ID must have the
USAGE privilege on each parameter that is defined as a user-defined type.

Syntax for CREATE PROCEDURE (external)

CREATE

OR REPLACE

PROCEDURE procedure-name

(
,

parameter-declaration

)

option-list

parameter-declaration:

IN

OUT

INOUT
1

parameter-name

parameter-type

Notes:
1 For a REXX stored procedure, only one parameter can have type OUT or INOUT. That parameter must be
declared last.

parameter-type:

data-type

AS LOCATOR
1

TABLE LIKE table-name

view-name

AS LOCATOR

Notes:
1 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data type.

data-type:

Chapter 7. Statements 1581

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_manageaccess2wlmenv.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_manageaccess2wlmenv.html

built-in-type

distinct-type-name

built-in-type:

1582 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

BIT

DATA

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID ASCII

EBCDIC

UNICODE

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

ROWID

option-list: (The options can be specified in any order.)

Chapter 7. Statements 1583

SPECIFIC procedure-name DYNAMIC RESULT SETS 0

DYNAMIC RESULT SETS integer

PARAMETER
1

CCSID ASCII

EBCDIC

UNICODE

VARCHAR
2

NULTERM

STRUCTURE

EXTERNAL

NAME string
3

identifier

LANGUAGE ASSEMBLE

C

COBOL

JAVA

PLI

REXX

MODIFIES SQL DATA

READS SQL DATA

CONTAINS SQL

NO SQL

PARAMETER STYLE SQL

PARAMETER STYLE GENERAL

GENERAL WITH NULLS

JAVA

NOT DETERMINISTIC

DETERMINISTIC

NO PACKAGE PATH

PACKAGE PATH package-path

FENCED

NO DBINFO

DBINFO

NO COLLID

COLLID collection-id

WLM ENVIRONMENT name

(name , *)

ASUTIME NO LIMIT

ASUTIME LIMIT integer

STAY RESIDENT NO

STAY RESIDENT YES

PROGRAM TYPE SUB

MAIN

SECURITY DB2

SECURITY USER

DEFINER

STOP AFTER SYSTEM DEFAULT FAILURES

STOP AFTER integer FAILURES

CONTINUE AFTER FAILURE

RUN OPTIONS runtime-options

COMMIT ON RETURN NO

COMMIT ON RETURN YES

INHERIT SPECIAL REGISTERS

DEFAULT SPECIAL REGISTERS

CALLED ON NULL INPUT

DISALLOW DEBUG MODE

ALLOW DEBUG MODE

DISABLE DEBUG MODE

Notes:
1 The same clause must not be specified more than one time.
2 The VARCHAR clause can only be specified is LANGUAGE C is specified.

1584 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

3 With LANGUAGE JAVA, use a valid external-java-routine-name.

external-java-routine-name

jar-name :

method-name

method-signature

jar-name

schema-name .

jar-id

method-name

 package-id .

/
1

class-id .

!
2

method-id

method-signature

(
,

 java-datatype

)

Notes:
1 The slash (/) is supported for compatibility with previous releases of Db2 for z/OS.
2 The exclamation point (!) is supported for compatibility with other products in the Db2 family.

Description for CREATE PROCEDURE (external)
OR REPLACE

FL 507Specifies that if the procedure exists at the current server, the existing definition is replaced.
This option is ignored if a definition for the procedure does not exist at the current server. If a
procedure exists with the specified name, the existing procedure must be an external procedure.

If the procedure exists, the procedure is replaced. The existing definition is dropped before the new
definition is replaced in the catalog, with the exception that privileges that were granted on the
procedure are not affected. The procedure is recreated as follows:

• Any existing comment is discarded
• The definition of the procedure can change
• The timestamp that is associated with the procedure definition is updated
• The owner of the procedure can change
• System default values are used for options that are not explicitly specified, even if those options

were explicitly specified when the procedure that is being replaced was originally defined

To replace an existing procedure, one of the following conditions must be met:

• the SPECIFIC clause must be specified with the procedure name
• the signature of the new procedure definition must match the signature of the existing procedure
definition, except for parameter names

Chapter 7. Statements 1585

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html

procedure-name

Names the stored procedure. The name, including the implicit or explicit qualifier, must not identify an
existing stored procedure at the current server unless the OR REPLACE clause is specified.

The name cannot be a single asterisk, even if you specify it as a delimited identifier ("*").

The schema name can be 'SYSTOOLS' or 'SYSFUN' if the privilege set includes the SYSADM or
SYSCTRL privilege. Otherwise, the schema name must not begin with 'SYS' unless the schema name is
'SYSADM', 'SYSIBMADM', or 'SYSPROC'.

(parameter-declaration,…)
Specifies the number of parameters of the stored procedure and the data type of each parameter,
and optionally, the name of each parameter. A parameter for a stored procedure can be used only
for input, only for output, or for both input and output. If an error is returned by the procedure, OUT
parameters are undefined and INOUT parameters are unchanged.

All parameters are nullable except for numeric parameters in Java procedures, where numeric
parameters, other than the DECIMAL types are not nullable in order to conform to the SQL/JRT
standard.

IN
Identifies the parameter as an input parameter to the procedure. The value of the parameter on
entry to the procedure is the value that is returned to the calling SQL application, even if changes
are made to the parameter within the procedure.

IN is the default.

OUT
Identifies the parameter as an output parameter that is returned by the stored procedure.

INOUT
Identifies the parameter as both an input and output parameter for the stored procedure.

parameter-name
Names the parameter for use as an SQL variable. The name cannot be the same as any other
parameter-name for the procedure.

data-type
Specifies the data type of the parameter. The data type can be a built-in data type or a user-
defined type.

If you specify the name of a user-defined type without a schema name, Db2 resolves the user-
defined type by searching the schemas in the SQL path.

built-in-type
The data type of the parameter is a built-in data type.

For more information on the data types, see built-in-type.

For parameters with a character or graphic data type, the PARAMETER CCSID clause or CCSID
clause indicates the encoding scheme of the parameter. If you do not specify either of these
clauses, the encoding scheme is the value of field DEF ENCODING SCHEME on installation
panel DSNTIPF.

distinct-type-name
The data type of the input parameter is a distinct type. Any length, precision, scale, subtype, or
encoding scheme attributes for the parameter are those of the source type of the distinct type.

Although an input parameter with a character data type has an implicitly or explicitly specified
subtype (BIT, SBCS, or MIXED), the value that is actually passed in the input argument on the
CALL statement can have any subtype. Therefore, conversion of the input data to the subtype of
the parameter might occur when the procedure is called. With ASCII or EBCDIC, an error occurs if
mixed data that actually contains DBCS characters is used as the value for an input parameter that
is declared with an SBCS subtype.

1586 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Parameters with a datetime data type or a distinct type are passed to the function as a different
data type:

• A datetime type parameter is passed as a character data type, and the data is passed in ISO
format.

The encoding scheme for a datetime type parameter is the same as the implicitly or explicitly
specified encoding scheme of any character or graphic string parameters. If no character or
graphic string parameters are passed, the encoding scheme is the value of field DEF ENCODING
SCHEME on installation panel DSNTIPF.

• A distinct type parameter is passed as the source type of the distinct type.

AS LOCATOR
Specifies that a locator to the value of the parameter is passed to the procedure instead of the
actual value. Specify AS LOCATOR only for parameters with a LOB data type or a distinct type
based on a LOB data type. Passing locators instead of values can result in fewer bytes being
passed to the procedure, especially when the value of the parameter is very large.

The AS LOCATOR clause has no effect on determining whether data types can be promoted.

TABLE LIKE table-name or view-name AS LOCATOR
Specifies that the parameter is a transition table. However, when the procedure is called, the actual
values in the transition table are not passed to the stored procedure. A single value is passed instead.
This single value is a locator to the table, which the procedure uses to access the columns of the
transition table. A procedure with a table parameter can only be invoked from the triggered action of a
trigger.

The use of TABLE LIKE provides an implicit definition of the transition table. It specifies that the
transition table has the same number of columns as the identified table or view. If a table is specified,
the transition table includes columns that are defined as implicitly hidden in the table. The columns
have the same data type, length, precision, scale, subtype, and encoding scheme as the identified
table or view, as they are described in catalog tables SYSCOLUMNS and SYSTABLESPACES. The
number of columns and the attributes of those columns are determined at the time the CREATE
PROCEDURE statement is processed. Any subsequent changes to the number of columns in the table
or the attributes of those columns do not affect the parameters of the procedure.

table-name or view-name must identify a table or view that exists at the current server. The name
must not identify a declared temporary table. The table that is identified can contain XML columns;
however, the procedure cannot reference those XML columns. The name does not have to be the
same name as the table that is associated with the transition table for the trigger. An unqualified table
or view name is implicitly qualified according to the following rules:

• If the CREATE PROCEDURE statement is embedded in a program, the implicit qualifier is the
authorization ID in the QUALIFIER bind option when the plan or package was created or last
rebound. If QUALIFIER was not used, the implicit qualifier is the owner of the plan or package.

• If the CREATE PROCEDURE statement is dynamically prepared, the implicit qualifier is the SQL
authorization ID in the CURRENT SCHEMA special register.

When the procedure is called, the corresponding columns of the transition table identified by the table
locator and the table or view identified in the TABLE LIKE clause must have the same definition. The
data type, length, precision, scale, and encoding scheme of these columns must match exactly. The
description of the table or view at the time the CREATE PROCEDURE statement was executed is used.

Additionally, a character FOR BIT DATA column of the transition table cannot be passed as input for
a table parameter for which the corresponding column of the table specified at the definition is not
defined as character FOR BIT DATA. (The definition occurs with the CREATE PROCEDURE statement.)
Likewise, a character column of the transition table that is not FOR BIT DATA cannot be passed as
input for a table parameter for which the corresponding column of the table specified at the definition
is defined as character FOR BIT DATA.

For more information about using table locators, see Accessing transition tables in a user-defined
function or stored procedure (Db2 Application programming and SQL).

Chapter 7. Statements 1587

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_accesstansitiontable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_accesstansitiontable.html

SPECIFIC procedure-name
FL 507Specifies the procedure name as the specific name for the procedure. The name must be the
same as the procedure name.

If you do not specify a schema name, the schema name is the same as the explicit or implicit schema
name of the procedure name (procedure-name). If you specify a schema name, it must be the same as
the explicit or implicit schema name of the procedure name.

If you do not specify the SPECIFIC clause, the specific name is the name of the procedure.

Specify the SPECIFIC clause when replacing an existing procedure in the following situations.

• The parameter list of the existing procedure includes a table parameter
• The CREATE statement specifies changes to the parameter list other than parameter names

FENCED
Specifies that the procedure runs in an external address space.

DYNAMIC RESULT SETS integer
Specifies the maximum number of query result sets that the stored procedure can return. The default
is DYNAMIC RESULT SETS 0, which indicates that there are no result sets. The value must be in the
range 0–32767.

ALLOW DEBUG MODE, DISALLOW DEBUG MODE, or DISABLE DEBUG MODE
Specifies whether the procedure can be run in debugging mode. When DYNAMICRULES run behavior
is in effect, the default is determined by using the value of the CURRENT DEBUG MODE special
register. Otherwise the default is DISALLOW DEBUG MODE.

Do not specify this option unless LANGUAGE JAVA is in effect.

ALLOW DEBUG MODE
Specifies that the JAVA procedure can be run in debugging mode.

DISALLOW DEBUG MODE
Specifies that the JAVA procedure cannot be run in debugging mode.

You can use an ALTER PROCEDURE statement to change this option to ALLOW DEBUG MODE.

DISABLE DEBUG MODE
Specifies that the JAVA procedure can never be run in debugging mode.

The procedure cannot be changed to specify ALLOW DEBUG MODE or DISALLOW DEBUG MODE
once the procedure has been created or altered using DISABLE DEBUG MODE. To change this
option, you must drop and re-create the procedure using the option that you want.

PARAMETER CCSID or PARAMETER VARCHAR
Specifies the encoding scheme for string parameters, and in the case of LANGUAGE C, specifies the
representation of variable length string parameters.
CCSID

Indicates whether the encoding scheme for character or graphic string parameters is ASCII,
EBCDIC, or UNICODE. The default encoding scheme is the value specified in the CCSID clauses of
the parameter list or in the field DEF ENCODING SCHEME on installation panel DSNTIPF.

This clause provides a convenient way to specify the encoding scheme for character or graphic
string parameters. If individual CCSID clauses are specified for individual parameters in addition
to this PARAMETER CCSID clause, the value specified in all of the CCSID clauses must be the
same value that is specified in this clause.

This clause also specifies the encoding scheme to be used for system-generated parameters of
the routine such as message tokens and DBINFO.

VARCHAR
Specifies that the representation of the values of varying length character string-parameters for
procedures that specify LANGUAGE C.

This option can only be specified if LANGUAGE C is also specified.

1588 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html

NULTERM
Specifies that variable length character string parameters are represented in a NUL-
terminated string form.

STRUCTURE
Specifies that variable length character string parameters are represented in a VARCHAR
structure form.

Using the PARAMETER VARCHAR clause, there is no way to specify the VARCHAR form of an
individual parameter as these is with PARAMETER CCSID. The PARAMETER VARCHAR clause only
applies to parameters in the parameter list of a procedure and in the RETURNS clause. It does not
apply to system-generated parameters of the routine such as message tokens and DBINFO.

In a data sharing environment, you should not specify the PARAMETER VARCHAR clause until
all members of the data sharing group support the clause. If some group members support this
clause and others do not, and PARAMETER VARCHAR is specified in an external routine, the
routine will encounter different parameter forms depending on which group member invokes the
routine.

EXTERNAL
Specifies that the CREATE PROCEDURE statement is being used to define a new procedure that is
based on code written in an external programming language. If the NAME clause is not specified,
'NAME procedure-name' is assumed. The NAME clause is required for a LANGUAGE JAVA procedure
because the default name is not valid for a Java procedure. In some cases, the default name will not
be valid. To avoid invalid names, specify the NAME clause for the following types of procedures:

• A procedure that is defined as LANGUAGE JAVA
• A procedure that has a name that is greater than 8 bytes in length, contains an underscore, or does

not conform to the rules for an ordinary identifier.

NAME string or identifier
Identifies the user-written code that implements the stored procedure.

If LANGUAGE is JAVA, string must be specified and enclosed in single quotation marks, with no
extraneous blanks within the single quotation marks. It must specify a valid external-java-routine-
name. If multiple strings are specified, the total length of all of them must not be greater than
1305 bytes and they must be separated by a space or a line break.

An external-java-routine-name contains the following parts:
jar-name

Identifies the name given to the JAR file when it was installed in the database. The name
contains jar-id, which can optionally be qualified with a schema. Examples are "myJar" and
"mySchema.myJar." The unqualified jar-id is implicitly qualified with a schema name according
to the following rules:

• If the statement is embedded in a program, the schema name is the authorization ID in
the QUALIFIER bind option when the package or plan was created or last rebound. If the
QUALIFIER was not specified, the schema name is the owner of the package or plan.

• If the statement is dynamically prepared, the schema name is the SQL authorization ID in
the CURRENT SCHEMA special register.

If jar-name is specified, it must exist when the CREATE PROCEDURE statement is processed.
Do not specify a jar-name for a JAVA procedure for which NO SQL is also specified.

If jar-name is not specified, the procedure is loaded from the class file directly instead of
being loaded from a JAR file. Db2 searches the directories in the CLASSPATH associated
with the WLM Environment. Environmental variables for Java routines are specified in a data
set identified in a JAVAENV DD card on the JCL used to start the address space for a WLM-
managed stored procedure.

Chapter 7. Statements 1589

method-name
Identifies the name of the method and must not be longer than 254 bytes. Its package, class,
and method ID's are specific to Java and as such are not limited to 18 bytes. In addition, the
rules for what these can contain are not necessarily the same as the rules for an SQL ordinary
identifier.
package-id

Identifies a package. The concatenated list of package-ids identifies the package that the
class identifier is part of. If the class is part of a package, the method name must include
the complete package prefix, such as "myPacks.StoredProcs." The Java virtual machine
looks in the directory "/myPacks/StoredProcs/" for the classes.

class-id
Identifies the class identifier of the Java object.

method-id
Identifies the method identifier with the Java class to be invoked.

method-signature
Identifies a list of zero or more Java data types for the parameter list and must not be
longer than 1024 bytes. Specify the method-signature if the procedure involves any input or
output parameters that can be NULL. When the stored procedure being created is called, Db2
searches for a Java method with the exact method-signature. The number of java-datatype
elements specified indicates how many parameters that the Java method must have.

A Java procedure can have no parameters. In this case, you code an empty set of parentheses
for method-signature. If a Java method-signature is not specified, Db2 searches for a Java
method with a signature derived from the default JDBC types associated with the SQL types
specified in the parameter list of the CREATE PROCEDURE statement.

For other values of LANGUAGE, the value must conform to the naming conventions for MVS load
modules: the value must be less than or equal to 8 bytes, and it must conform to the rules for an
ordinary identifier with the exception that it must not contain an underscore.

LANGUAGE
This mandatory clause is used to specify the language interface convention to which the procedure
body is written. All programs must be designed to run in the server's environment. Assembler, C,
COBOL, and PL/I programs must be designed to run in IBM's Language Environment.
ASSEMBLE

The stored procedure is written in Assembler.
C

The stored procedure is written in C or C++.
COBOL

The stored procedure is written in COBOL, including the OO-COBOL language extensions.
JAVA

The stored procedure is written in Java and is executed in the Java Virtual Machine. When
LANGUAGE JAVA is specified, the EXTERNAL NAME clause must be specified with a valid external-
java-routine-name and PARAMETER STYLE must be specified with JAVA. The procedure must be a
public static method of the specified Java class.

Do not specify LANGUAGE JAVA when DBINFO, PROGRAM TYPE MAIN, or RUN OPTIONS is
specified.

PLI
The stored procedure is written in PL/I.

REXX
The stored procedure is written in REXX. Do not specify LANGUAGE REXX when PARAMETER
STYLE SQL is in effect. When REXX is specified, the procedure must use PARAMETER STYLE
GENERAL or GENERAL WITH NULLS.

1590 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

MODIFIES SQL DATA, READS SQL DATA, CONTAINS SQL, or NO SQL
Specifies the classification of SQL statements and nested routines that this routine can execute or
invoke. The database manager verifies that the SQL statements issued by the procedure, and all
routines locally invoked by the routine, are consistent with this specification; the verification is not
performed when nested remote routines are invoked. For the classification of each statement, see
Appendix D, “SQL statement data access classification for routines,” on page 2275.
MODIFIES SQL DATA

Specifies that the procedure can execute any SQL statement except statements that are not
supported in procedures.

READS SQL DATA
Specifies that the procedure can execute statements with a data access indication of READS SQL
DATA, CONTAINS SQL, or NO SQL. The procedure cannot execute SQL statements that modify
data.

CONTAINS SQL
Specifies that the procedure can execute only SQL statements with an access indication of
CONTAINS SQL or NO SQL. The procedure cannot execute statements that read or modify data.

NO SQL
Specifies that the procedure can execute only SQL statements with a data access classification of
NO SQL. Do not specify NO SQL for a JAVA procedure that uses a JAR file.

PARAMETER STYLE
Identifies the linkage convention used to pass parameters to and return values from the stored
procedure. All of the linkage conventions provide arguments to the stored procedure that contain
the parameters specified on the CALL statement. Some of the linkage conventions pass additional
arguments to the stored procedure that provide more information to the stored procedure. For more
information on linkage conventions, see Linkage conventions for external stored procedures (Db2
Application programming and SQL).
SQL

Specifies that, in addition to the parameters on the CALL statement, several additional parameters
are passed to the stored procedure. The following parameters are passed:

• The first n parameters that are specified on the CREATE PROCEDURE statement.
• n parameters for indicator variables for the parameters.
• The SQLSTATE to be returned.
• The qualified name of the stored procedure.
• The specific name of the stored procedure.
• The SQL diagnostic string to be returned to Db2.
• If DBINFO is specified, the DBINFO structure.

PARAMETER STYLE SQL is the default. Do not specify PARAMETER STYLE SQL when LANGUAGE
REXX or LANGUAGE JAVA is in effect.

GENERAL
Specifies that the stored procedure uses a parameter passing mechanism where the stored
procedure receives only the parameters specified on the CALL statement. Arguments to
procedures defined with this parameter style cannot be null.

GENERAL WITH NULLS
Specifies that, in addition to the parameters on the CALL statement as specified in GENERAL,
another argument is also passed to the stored procedure. The additional argument contains an
indicator array with an element for each of the parameters on the CALL statement. In C, this is
an array of short INTS. The indicator array enables the stored procedure to accept or return null
parameter values.

Chapter 7. Statements 1591

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_linkageconventionssp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_linkageconventionssp.html

JAVA
Specifies that the stored procedure uses a parameter passing convention that conforms to the
Java and SQLJ Routines specifications. PARAMETER JAVA can be specified only if LANGUAGE is
JAVA. JAVA must be specified for PARAMETER STYLE when LANGUAGE is JAVA.

INOUT and OUT parameters are passed as single-entry arrays. The INOUT and OUT parameters
are declared in the Java method as single-element arrays of the Java type.

For REXX stored procedures (LANGUAGE REXX), GENERAL and GENERAL WITH NULLS are the
only valid values for PARAMETER STYLE; therefore, specify one of these values and do not allow
PARAMETER STYLE to default to SQL.

DETERMINISTIC or NOT DETERMINISTIC
Specifies whether the stored procedure returns the same results each time the stored procedure is
called with the same IN and INOUT arguments.
DETERMINISTIC

The stored procedure always returns the same results each time the stored procedure is called
with the same IN and INOUT arguments, if the referenced data in the database has not changed.

NOT DETERMINISTIC
The stored procedure might not return the same result each time the procedure is called with the
same IN and INOUT arguments, even when the referenced data in the database has not changed.
NOT DETERMINISTIC is the default.

Db2 does not verify that the stored procedure code is consistent with the specification of
DETERMINISTIC or NOT DETERMINISTIC.

NO PACKAGE PATH or PACKAGE PATH package-path
Specifies the package path to use when the procedure is run. This is the list of the possible package
collections into which the DBRM this is associated with the procedure is bound.
NO PACKAGE PATH

Specifies that the list of package collections for the procedure is the same as the list of package
collection IDs for the calling program. If the calling program does not use a package, Db2 resolves
the package by using the CURRENT PACKAGE PATH special register, the CURRENT PACKAGESET
special register, or the PKLIST bind option (in this order). For information about how Db2 uses
these three items, see Binding an application plan (Db2 Application programming and SQL).

PACKAGE PATH package-path
Specifies a list of package collections, in the same format as the SET CURRENT PACKAGE PATH
special register.

If the COLLID clause is specified with PACKAGE PATH, the COLLID clause is ignored when the
routine is invoked.

The package-path value that is provided when the procedure is created is checked when the CALL
statement is prepared. If package-path contains SESSION_USER (or USER), PATH, or PACKAGE
PATH, an error is returned when the package-path value is checked.

NO DBINFO or DBINFO
Specifies whether additional status information is passed to the stored procedure when it is invoked.
NO DBINFO

Additional information is not passed. NO DBINFO is the default.
DBINFO

An additional argument is passed when the stored procedure is invoked. The argument is a
structure that contains information such as the name of the current server, the application run
time authorization ID and identification of the version and release of the database manager that
invoked the procedure. For details about the argument and its structure, see DBINFO structure
(Db2 Application programming and SQL).

DBINFO can be specified only if PARAMETER STYLE SQL is specified.

1592 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_bindplan.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_dbinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_dbinfo.html

NO COLLID or COLLID collection-id
Identifies the package collection that is to be used when the stored procedure is executed. This is the
package collection into which the DBRM that is associated with the stored procedure is bound.
NO COLLID

The package collection for the stored procedure is the same as the package collection of the
calling program. If the invoking program does not use a package, Db2 resolves the package
by using the CURRENT PACKAGE PATH special register, the CURRENT PACKAGESET special
register, or the PKLIST bind option (in this order). For details about how Db2 uses these three
items, see the information on package resolution in Binding an application plan (Db2 Application
programming and SQL).

NO COLLID is the default.

COLLID collection-id
The package collection for the stored procedure is the one specified.

For REXX stored procedures, collection-id can be DSNREXRR, DSNREXRS, DSNREXCR, or
DSNREXCS.

For Java stored procedures that meet these conditions, you need to run the DB2Binder utility
with the -collection option to bind the driver packages into the collection that is specified by the
COLLID value:

• The COLLID value is different from the collection into which the IBM Data Server Driver for JDBC
and SQLJ packages are bound.

• jar-name is specified in the EXTERNAL NAME clause.

For more information, see the following topics:

• Specifying the package collection that Db2 uses for applications (Db2 Application programming
and SQL)

• DB2Binder utility (Db2 Application Programming for Java)

WLM ENVIRONMENT
Identifies the WLM (workload manager) environment in which the stored procedure is to run when the
Db2 stored procedure address space is WLM-established. The name of the WLM environment is an
SQL identifier.

If you do not specify WLM ENVIRONMENT, the stored procedure runs in the default WLM-established
stored procedure address space specified at installation time.

name
The WLM environment in which the stored procedure must run. If another stored procedure
or a user-defined function calls the stored procedure and that calling routine is running in an
address space that is not associated with the specified WLM environment, Db2 routes the stored
procedure request to a different address space.

(name,*)
When an SQL application program directly calls a stored procedure, the WLM environment in
which the stored procedure runs.

If another stored procedure or a user-defined function calls the stored procedure, the stored
procedure runs in the same WLM environment that the calling routine uses.

You must have appropriate authority for the WLM environment.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single invocation of a stored
procedure can run. The value is unrelated to the ASUTIME column of the resource limit specification
table. This option is ignored if LANGUAGE JAVA is specified.

When you are debugging a stored procedure, setting a limit can be helpful in case the stored
procedure gets caught in a loop. For information on service units, see z/OS MVS Initialization and
Tuning Guide.

Chapter 7. Statements 1593

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_bindplan.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_bindplan.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_specifypackagecollection.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_specifypackagecollection.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_r0023708.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae100/abstract.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae100/abstract.htm

NO LIMIT
There is no limit on the service units. NO LIMIT is the default.

LIMIT integer
The limit on the number of CPU service units is a positive integer in the range 1–2147483647.
If the procedure uses more service units than the specified value, Db2 cancels the procedure.
The CPU cycles that are consumed by parallel tasks in a procedure do not contribute towards the
specified ASUTIME LIMIT.

STAY RESIDENT
Specifies whether the stored procedure load module is to remain resident in memory when the stored
procedure ends. This option is ignored if LANGUAGE JAVA is specified.
NO

The load module is deleted from memory after the stored procedure ends. NO is the default.
YES

The load module remains resident in memory after the stored procedure ends.
PROGRAM TYPE

Specifies whether the stored procedure runs as a main routine or a subroutine.
SUB

The stored procedure runs as a subroutine. With LANGUAGE JAVA, PROGRAM TYPE SUB is the
only valid option.

MAIN
The stored procedure runs as a main routine. With LANGUAGE REXX, PROGRAM TYPE MAIN is
always in effect.

The default for PROGRAM TYPE is:

• MAIN with LANGUAGE REXX
• SUB with LANGUAGE JAVA
• For other languages, the default depends on the value of the CURRENT RULES special register:

– MAIN when the value is Db2
– SUB when the value is STD

SECURITY
Specifies how the stored procedure interacts with an external security product, such as RACF, to
control access to non-SQL resources.
Db2

The stored procedure does not require a special external security environment. If the stored
procedure accesses resources that an external security product protects, the access is performed
using the authorization ID associated with the stored procedure address space. Db2 is the default.

USER
An external security environment should be established for the stored procedure. If the stored
procedure accesses resources that the external security product protects, the access is performed
using the authorization ID of the user who invoked the stored procedure.

DEFINER
An external security environment should be established for the stored procedure. If the stored
procedure accesses resources that the external security product protects, the access is performed
using the authorization ID of the owner of the stored procedure.

STOP AFTER SYSTEM DEFAULT FAILURES, STOP AFTER nn FAILURES, or CONTINUE AFTER FAILURE
Specifies whether the routine is to be put in a stopped state after some number of failures.
STOP AFTER SYSTEM DEFAULT FAILURES

Specifies that this routine should be placed in a stopped state after the number of failures
indicated by the value of field MAX ABEND COUNT on installation panel DSNTIPX. This is the
default.

1594 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

STOP AFTER nn FAILURES
Specifies that this routine should be placed in a stopped state after nn failures. The value nn can
be an integer 1–32767.

CONTINUE AFTER FAILURE
Specifies that this routine should not be placed in a stopped state after any failure.

RUN OPTIONS runtime-options
Specifies the Language Environment run time options to be used for the stored procedure. For a REXX
stored procedure, specifies the Language Environment run time options to be passed to the REXX
language interface to Db2. You must specify runtime-options as a character string that is no longer
than 254 bytes. If you do not specify RUN OPTIONS or pass an empty string, Db2 does not pass any
run time options to Language Environment, and Language Environment uses its installation defaults.

Do not specify RUN OPTIONS when LANGUAGE JAVA is in effect.

For a description of the Language Environment run time options, see Language Environment
Programming Reference (z/OS Language Environment Programming Reference).

COMMIT ON RETURN
Indicates whether Db2 commits the transaction immediately on return from the stored procedure.
NO

Db2 does not issue a commit when the stored procedure returns. NO is the default.
YES

Db2 issues a commit when the stored procedure returns if the following statements are true:

• The SQLCODE that is returned by the CALL statement is not negative.
• The stored procedure is not in a must abort state.

The commit operation includes the work that is performed by the calling application process and
the stored procedure.

If the stored procedure returns result sets, the cursors that are associated with the result sets
must have been defined as WITH HOLD to be usable after the commit.

INHERIT SPECIAL REGISTERS or DEFAULT SPECIAL REGISTERS
Specifies how special registers are set on entry to the routine. The default is INHERIT SPECIAL
REGISTERS.
INHERIT SPECIAL REGISTERS

Specifies that the values of special registers are inherited according to the rules listed in the table
for characteristics of special registers in a stored procedure in “Special registers in a user-defined
function or a stored procedure” on page 215.

DEFAULT SPECIAL REGISTERS
Specifies that special registers are initialized to the default values, as indicated by the rules in
the table for characteristics of special registers in a stored procedure in “Special registers in a
user-defined function or a stored procedure” on page 215.

CALLED ON NULL INPUT
Specifies that the procedure is to be called even if any or all argument values are null, which means
that the procedure must be coded to test for null argument values. The procedure can return null or
nonnull values. CALLED ON NULL INPUT is the default.

Notes for CREATE PROCEDURE (external)
Considerations for all types of procedures

For considerations that apply to all types of procedures, see “CREATE PROCEDURE statement
(overview)” on page 1578.

Character string representation considerations

The PARAMETER VARCHAR clause is specific to external procedures because of the native use of
NUL-terminated strings in C. VARCHAR structure representation is useful when character string data

Chapter 7. Statements 1595

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ceea300/abstract.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ceea300/abstract.htm

is known to contain embedded NUL-terminators. It is also useful when it cannot be guaranteed that
character string data does not contain embedded NUL-terminators.

PARAMETER VARCHAR does not apply to fixed length character strings, VARCHAR FOR BIT DATA,
CLOB, DBCLOB, or implicitly generated parameters. The clause does not apply to VARCHAR FOR BIT
DATA because BIT DATA can contain X'00' characters, and its value representation starts with length
information. It does not apply to LOB data because a LOB value representation starts with length
information.

PARAMETER VARCHAR does not apply to optional parameters that are implicitly provided to an
external procedure. For example, a CREATE PROCEDURE statement for LANGUAGE C must also
specify PARAMETER STYLE SQL, which returns an SQLSTATE NUL-terminated character string; that
SQLSTATE will not be represented in VARCHAR structured form. Likewise, none of the parameters
that represent the qualified name of the procedure, the specific name of the procedure, or the SQL
diagnostic string that is returned to the database manager will be represented in VARCHAR structured
form.

Environment for running stored procedures
You can use the WLM ENVIRONMENT clause to identify the address space in which a stored
procedure is to run. Using different WLM environments lets you isolate one group of programs from
another. For example, you might choose to isolate programs based on security requirements and
place all payroll applications in one WLM environment because those applications deal with sensitive
data, such as employee salaries.

Regardless of where the stored procedure is to run, Db2 invokes RACF to determine whether you have
appropriate authorization. You must have authorization to issue CREATE PROCEDURE statements that
refer to the specified WLM environment or the Db2-established stored procedure address space. For
example, the following RACF command authorizes Db2 user DB2USER1 to define stored procedures
on Db2 subsystem DB2A that run in the WLM environment named PAYROLL.

 PERMIT DB2A.WLMENV.PAYROLL CLASS(DSNR) ID(DB2USER1) ACCESS(READ)

Alternative syntax and synonyms
To provide compatibility with previous releases of Db2 or other products in the Db2 family, Db2
supports the following alternative syntax:

• RESULT SET as a synonym for DYNAMIC RESULT SET
• RESULT SETS as a synonym for DYNAMIC RESULT SETS
• STANDARD CALL as a synonym for DB2SQL
• SIMPLE CALL as a synonym for GENERAL
• SIMPLE CALL WITH NULLS as a synonym for GENERAL WITH NULLS
• VARIANT as a synonym for NOT DETERMINISTIC
• NOT VARIANT as a synonym for DETERMINISTIC
• NULL CALL as a synonym for CALLED ON NULL INPUT
• PARAMETER STYLE DB2SQL as a synonym for PARAMETER STYLE SQL

Examples for CREATE PROCEDURE (external)

Example 1
Create the definition for a stored procedure that is written in COBOL. The procedure accepts an
assembly part number and returns the number of parts that make up the assembly, the total part
cost, and a result set. The result set lists the part numbers, quantity, and unit cost of each part.
Assume that the input parameter cannot contain a null value and that the procedure is to run in a WLM
environment called PARTSA.

 CREATE PROCEDURE SYSPROC.MYPROC(IN INT, OUT INT, OUT DECIMAL(7,2))
 LANGUAGE COBOL
 EXTERNAL NAME MYMODULE

1596 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 PARAMETER STYLE GENERAL
 WLM ENVIRONMENT PARTSA
 DYNAMIC RESULT SETS 1;

Example 2
Create the definition for the stored procedure described in Example 1, except use the linkage
convention that passes more information than the parameter specified on the CALL statement.
Specify Language Environment run time options HEAP, BELOW, ALL31, and STACK.

 CREATE PROCEDURE SYSPROC.MYPROC(IN INT, OUT INT, OUT DECIMAL(7,2))
 LANGUAGE COBOL
 EXTERNAL NAME MYMODULE
 PARAMETER STYLE SQL
 WLM ENVIRONMENT PARTSA
 DYNAMIC RESULT SETS 1
 RUN OPTIONS 'HEAP(,,ANY),BELOW(4K,,),ALL31(ON),STACK(,,ANY,)';

Example 3
Create the procedure definition for a stored procedure, written in Java, that is passed a part number
and returns the cost of the part and the quantity that is currently available.

 CREATE PROCEDURE PARTS_ON_HAND(IN PARTNUM INT,
 OUT COST DECIMAL(7,2),
 OUT QUANTITY INT)
 LANGUAGE JAVA
 EXTERNAL NAME 'PARTS.ONHAND'
 PARAMETER STYLE JAVA;

Related concepts
Routines in Db2 for z/OS: functions and procedures (Introduction to Db2 for z/OS)
Naming conventions
The rules for forming a name depend on the type of the object designated by the name.
Related tasks
Implementing Db2 stored procedures (Stored procedures provided by Db2)

CREATE PROCEDURE statement (SQL - external procedure)
(deprecated)

The CREATE PROCEDURE statement defines an external SQL procedure at the current server and
specifies the source statements for the procedure. This is the only type of SQL procedure that is available
for versions of Db2 prior to DB2 9.

Deprecated function: External SQL procedures are deprecated and not as fully supported as native SQL
procedures. For best results, create native SQL procedures instead. For more information, see Creating
native SQL procedures (Db2 Application programming and SQL) and Migrating an external SQL procedure
to a native SQL procedure (Db2 Application programming and SQL).

For information about the SQL control statements that are supported in external SQL procedures, refer to
Appendix E, “SQL control statements for external SQL procedures,” on page 2279.

Invocation for CREATE PROCEDURE (SQL - external)
This statement can only be dynamically prepared, but the DYNAMICRULES run behavior must be specified
implicitly or explicitly. It is intended to be processed using one of the following methods:

• JCL
• The Db2 for z/OS SQL procedure processor (DSNTPSMP) (IBM Optim™ Development Studio uses this

method.)

Issuing the CREATE PROCEDURE statement from another context will result in an incomplete procedure
definition even though the statement processing returns without error. For more information on preparing
SQL procedures for execution, see Creating external SQL procedures (deprecated) (Db2 Application
programming and SQL).

Chapter 7. Statements 1597

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_routinesintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sproc/src/tpc/db2z_implementstoredprocedure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createnativesqlprocedure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createnativesqlprocedure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_migrateexternalsptonativesp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_migrateexternalsptonativesp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createexternalsqlproc.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createexternalsqlproc.html

Authorization for CREATE PROCEDURE (SQL - external)
The privilege set that is defined below must include at least one of the following:

• The CREATEIN privilege on the schema
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The authorization ID that matches the schema name implicitly has the CREATEIN privilege on the
schema.

If the authorization ID that is used to create the procedure has the installation SYSADM authority or the
installation SYSOPR authority and if the current SQLID is set to SYSINSTL, the procedure is identified as
system-defined procedure.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the owner is a role, the implicit schema match does
not apply and this role needs to include one of the previously listed conditions.

If the statement is dynamically prepared and is not running in a trusted context for which the ROLE AS
OBJECT OWNER clause is specified, the privilege set is the set of privileges that are held by the SQL
authorization ID of the process. If the schema name is not the same as the SQL authorization ID of the
process, one of the following conditions must be met:

• The privilege set includes SYSADM or SYSCTRL authority.
• The SQL authorization ID of the process has the CREATEIN privilege on the schema.

The authorization ID that is used to create the stored procedure must have authority to create programs
that are to be run in the specified WLM environment.

The owner of the procedure is determined by how the CREATE PROCEDURE statement is invoked:

• If the statement is embedded in a program, the owner is the authorization ID of the owner of the plan or
package.

• If the statement is dynamically prepared, the owner is the SQL authorization ID in the CURRENT SQLID
special register.

The owner is implicitly given the EXECUTE privilege with the GRANT option for the procedure.

Syntax for CREATE PROCEDURE (SQL - external)

CREATE PROCEDURE procedure-name

(
,

parameter-declaration

)

option-list SQL-routine-body

parameter-declaration:

IN

OUT

INOUT

parameter-name parameter-type

parameter-type:

1598 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

built-in-type

TABLE LIKE table-name AS LOCATOR

built-in-type:

SMALLINT

INTEGER

INT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

BIT

DATA

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID ASCII

EBCDIC

UNICODE

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

option-list: (The options can be specified in any order, but each option can be specified only one time)

Chapter 7. Statements 1599

LANGUAGE SQL
FENCED

1

EXTERNAL NAME ' string '

identifier

1

DYNAMIC RESULT SETS 0

DYNAMIC RESULT SETS integer PARAMETER CCSID ASCII

EBCDIC

UNICODE

PARAMETER VARCHAR

NULTERM

STRUCTURE

NOT DETERMINISTIC

DETERMINISTIC

CALLED ON NULL INPUT MODIFIES SQL DATA

READS SQL DATA

CONTAINS SQL

NO DBINFO

NO COLLID

COLLID collection-id

WLM ENVIRONMENT name

(name , *)

ASUTIME NO LIMIT

ASUTIME LIMIT integer

STAY RESIDENT NO

STAY RESIDENT YES

PROGRAM TYPE MAIN

PROGRAM TYPE SUB

SECURITY DB2

SECURITY USER

SECURITY DEFINER

RUN OPTIONS run-time-options

COMMIT ON RETURN NO

COMMIT ON RETURN YES

INHERIT SPECIAL REGISTERS

DEFAULT SPECIAL REGISTERS

STOP AFTER SYSTEM DEFAULT FAILURES

STOP AFTER integer FAILURES

CONTINUE AFTER FAILURE

Notes:
1 Either the FENCED or EXTERNAL NAME clause must be specified to indicate that the definition is for an
external SQL procedure.

1600 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Description for CREATE PROCEDURE (SQL - external)
procedure-name

Names the procedure. The name, including the implicit or explicit qualifier, must not identify an
existing stored procedure at the current server.

The schema name can be 'SYSTOOLS' or 'SYSFUN' if the privilege set includes the SYSADM or
SYSCTRL privilege. Otherwise, the schema name must not begin with 'SYS' unless the schema name is
'SYSADM', 'SYSIBMADM', or 'SYSPROC'.

(parameter-declaration,…)
Specifies the number of parameters of the procedure, the data type of each parameter, and the name
of each parameter. A parameter for a procedure can be used only for input, only for output, or for both
input and output. If an error is returned by the procedure, OUT parameters are undefined, and INOUT
parameters are unchanged. All of the parameters are nullable.
IN

Identifies the parameter as an input parameter to the procedure. The value of the parameter on
entry to the procedure is the value that is returned to the calling SQL application, even if changes
are made to the parameter within the procedure.

IN is the default.

OUT
Identifies the parameter as an output parameter that is returned by the procedure. If the
parameter is not set within the procedure, the null value is returned.

INOUT
Identifies the parameter as both an input and output parameter for the procedure. If the
parameter is not set within the procedure, its input value is returned.

parameter-name
Names the parameter for use as an SQL variable. parameter-name is an SQL identifier and must
not be a delimited identifier that includes lowercase letters or special characters. A parameter
name cannot be the same as the name of any other parameter for this version of the procedure.

parameter-type
Specifies the data type of the parameter.
built-in-type

The data type of the parameter is a built-in data type.

For more information on the data types, including the subtype of character data types (the
FOR subtype DATA clause), see built-in-type. For external SQL procedures, the maximum limit
for VARCHAR is 32767 and for VARGRAPHIC is 16382.

For parameters with a character or graphic data type, the PARAMETER CCSID clause or CCSID
clause indicates the encoding scheme of the parameter. If you do not specify either of these
clauses, the encoding scheme is the value of field DEF ENCODING SCHEME on installation
panel DSNTIPF.

Although an input parameter with a character data type has an implicitly or explicitly specified
subtype (BIT, SBCS, or MIXED), the value that is actually passed in the input parameter can
have any subtype. Therefore, conversion of the input data to the subtype of the parameter
might occur when the procedure is called. With ASCII or EBCDIC, an error occurs if mixed
data that actually contains DBCS characters is used as the value for an input parameter that is
declared with an SBCS subtype.

A parameter with a datetime data type is passed to the SQL procedure as a character data
type, and the data is passed in ISO format.

The encoding scheme for a datetime type parameter is determined as follows:

• If there are one or more parameters with a character or graphic data type, the encoding
scheme of the datetime type parameter is the same as the encoding scheme of the
character or graphic parameters.

Chapter 7. Statements 1601

• Otherwise, the encoding scheme is the value of field DEF ENCODING SCHEME on installation
panel DSNTIPF.

TABLE LIKE table-name AS LOCATOR
Specifies that the parameter is a transition table. However, when the procedure is called, the
actual values in the transition table are not passed to the procedure. A single value is passed
instead. This single value is a locator to the table, which the procedure uses to access the
columns of the transition table. A procedure with a table parameter can only be invoked from
the triggered action of a trigger.

The transition table includes columns that are defined as implicitly hidden in the table. The
table that is identified can contain XML columns; however, the procedure cannot reference
those XML columns.

For more information about the TABLE LIKE clause, see TABLE LIKE. For more information
about using table locators, see Accessing transition tables in a user-defined function or stored
procedure (Db2 Application programming and SQL).

LANGUAGE
Specifies the application programming language in which the procedure is written.
SQL

The procedure is written in Db2 SQL procedural language.
FENCED

Specifies that the procedure runs in an external address space. FENCED also specifies that the SQL
procedure program is an MVS load module with an external name.

DYNAMIC RESULT SETS integer
Specifies the maximum number of query result sets that the procedure can return. The default is
DYNAMIC RESULT SETS 0, which indicates that the procedure can return no result sets. The value of
integer must be in the range 0–32767.

PARAMETER CCSID
Indicates whether the encoding scheme for character and graphic string parameters is ASCII,
EBCDIC, or UNICODE. The default encoding scheme is the value that is specified in the CCSID clauses
of the parameter list or in the field DEF ENCODING SCHEME on installation panel DSNTIPF.

This clause provides a convenient way to specify the encoding scheme for character and graphic
string parameters. If individual CCSID clauses are specified for individual parameters in addition to
this PARAMETER CCSID clause, the value that is specified in all of the CCSID clauses must be the
same value that is specified in this clause.

This clause also specifies the encoding scheme that is to be used for system-generated parameters of
the routine such as message tokens and DBINFO.

PARAMETER VARCHAR
Specifies that the representation of the values of varying length character string-parameters for
procedures that specify LANGUAGE C.
NULTERM

Specifies that variable length character string parameters are represented in a NUL-terminated
string form.

NULTERM is the default.

STRUCTURE
Specifies that variable length character string parameters are represented in a VARCHAR structure
form.

The PARAMETER VARCHAR clause only applies to parameters in the parameter list of a procedure
and in the RETURNS clause. It does not apply to system-generated parameters of the routine such as
message tokens and DBINFO.

In a data sharing environment, you should not specify the PARAMETER VARCHAR clause until all
members of the data sharing group support the clause. If some group members support this clause

1602 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_accesstansitiontable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_accesstansitiontable.html

and others do not, and PARAMETER VARCHAR is specified, the routine will encounter different
parameter forms depending on which group member invokes the routine.

EXTERNAL NAME 'string' or identifier
Specifies the name of the MVS load module for the program that runs when the procedure name is
specified in an SQL CALL statement. The value must conform to the naming conventions for MVS load
modules: the value must be less than or equal to 8 bytes, and it must conform to the rules for an
ordinary identifier with the exception that it must not contain an underscore.

EXTERNAL NAME procedure-name is the default. In some cases, the default name will not be valid. To
avoid an invalid name, specify EXTERNAL NAME for a procedure that has a name that is greater than 8
bytes in length, contains an underscore, or does not conform to the rules for an ordinary identifier.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the procedure returns the same results each time the procedure is called with the
same IN and INOUT arguments.
NOT DETERMINISTIC

The procedure might not return the same result each time the procedure is called with the same
IN and INOUT arguments, even when the referenced data in the database has not changed.

NOT DETERMINISTIC is the default.

DETERMINISTIC
The procedure always returns the same results each time the stored procedure is called with the
same IN and INOUT arguments, if the referenced data in the database has not changed.

Db2 does not verify that the procedure code is consistent with the specification of DETERMINISTIC or
NOT DETERMINISTIC.

CALLED ON NULL INPUT
Specifies that the procedure is to be called even if any or all argument values are null, which means
that the procedure must be coded to test for null argument values. The procedure can return null or
non-null values.

CALLED ON NULL INPUT is the default.

MODIFIES SQL DATA, READS SQL DATA, or CONTAINS SQL
Specifies the classification of SQL statements and nested routines that this routine can execute or
invoke. The database manager verifies that the SQL statements issued by the procedure, and all
routines locally invoked by the routine, are consistent with this specification; the verification is not
performed when nested remote routines are invoked. For the classification of each statement, see
Appendix D, “SQL statement data access classification for routines,” on page 2275.
MODIFIES SQL DATA

Specifies that the procedure can execute any SQL statement except statements that are not
supported in procedures.

MODIFIES SQL DATA is the default.

READS SQL DATA
Specifies that the procedure can execute statements with a data access indication of READS SQL
DATA or CONTAINS SQL. The procedure cannot execute SQL statements that modify data.

CONTAINS SQL
Specifies that the procedure can execute only SQL statements with a data access indication of
CONTAINS SQL. The procedure cannot execute statements that read or modify data.

NO DBINFO
Specifies that no additional status information that is known by Db2 is passed to the procedure when
it is invoked.

NO COLLID or COLLID collection-id
Identifies the package collection that is to be used when the procedure is executed. This is the
package collection into which the DBRM that is associated with the procedure is bound.

Chapter 7. Statements 1603

NO COLLID
Specifies that the package collection for the procedure is the same as the package collection of
the calling program. If the invoking program does not use a package, Db2 resolves the package
by using the CURRENT PACKAGE PATH special register, the CURRENT PACKAGESET special
register, or the PKLIST bind option (in this order). For details about how Db2 uses these three
items, see the information on package resolution in Binding an application plan (Db2 Application
programming and SQL).

NO COLLID is the default.

COLLID collection-id
Specifies the package collection for the procedure.

WLM ENVIRONMENT name or (name,*)
Identifies the WLM (workload manager) environment in which the stored procedure is to run when the
Db2 stored procedure address space is WLM-established. The name of the WLM environment is an
SQL identifier.

If you do not specify WLM ENVIRONMENT, the procedure runs in the default WLM-established stored
procedure address space that is specified at installation time.

name
The WLM environment in which the procedure must run. If another procedure or a user-defined
function calls the procedure and that calling routine is running in an address space that is not
associated with the specified WLM environment, Db2 routes the procedure request to a different
address space.

(name,*)
When an SQL application program directly calls a procedure, name specifies the WLM environment
in which the procedure runs.

If another procedure or a user-defined function calls the stored procedure, the procedure runs in
the same WLM environment that the calling routine uses.

You must have appropriate authority for the WLM environment.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single invocation of a
procedure can run. The value is unrelated to the ASUTIME column of the resource limit specification
table.

When you are debugging a procedure, setting a limit can be helpful in case the procedure gets caught
in a loop. For information on service units, see z/OS MVS Initialization and Tuning Guide.

NO LIMIT
There is no limit on the number of CPU service units that the procedure can run.

NO LIMIT is the default.

LIMIT integer
The limit on the number of CPU service units is a positive integer in the range 1–2147483647.
If the procedure uses more service units than the specified value, Db2 cancels the procedure.
The CPU cycles that are consumed by parallel tasks in a procedure do not contribute towards the
specified ASUTIME LIMIT.

STAY RESIDENT
Specifies whether the load module for the procedure remains resident in memory when the procedure
ends.
NO

The load module is deleted from memory after the procedure ends.

NO is the default.

YES
The load module remains resident in memory after the procedure ends.

1604 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_bindplan.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_bindplan.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae100/abstract.htm

PROGRAM TYPE
Specifies whether the procedure runs as a main routine or a subroutine.
MAIN

The procedure runs as a main routine.

MAIN is the default.

SUB
The procedure runs as a subroutine.

SECURITY
Specifies how the procedure interacts with an external security product, such as RACF, to control
access to non-SQL resources.
Db2

The procedure does not require a special external security environment. If the procedure
accesses resources that an external security product protects, the access is performed using
the authorization ID that is associated with the address space in which the procedure runs.

Db2 is the default.

USER
An external security environment should be established for the procedure. If the procedure
accesses resources that the external security product protects, the access is performed using
the authorization ID of the user who invoked the procedure.

DEFINER
An external security environment should be established for the procedure. If the procedure
accesses resources that the external security product protects, the access is performed using
the authorization ID of the owner of the procedure.

RUN OPTIONS run-time-options
Specifies the Language Environment run time options that are to be used for the procedure. You
must specify run-time-options as a character string that is no longer than 254 bytes. If you do not
specify RUN OPTIONS or pass an empty string, Db2 does not pass any run time options to Language
Environment, and Language Environment uses its installation defaults.

For a description of the Language Environment run time options, see Language Environment
Programming Reference (z/OS Language Environment Programming Reference).

COMMIT ON RETURN
Indicates whether Db2 commits the transaction immediately on return from the procedure.
NO

Db2 does not issue a commit when the procedure returns.

NO is the default.

YES
Db2 issues a commit when the procedure returns if the following statements are true:

• A positive SQLCODE is returned by the CALL statement.
• The procedure is not in a must abort state.

The commit operation includes the work that is performed by the calling application process and
the procedure.

If the procedure returns result sets, the cursors that are associated with the result sets must have
been defined as WITH HOLD to be usable after the commit.

INHERIT SPECIAL REGISTERS or DEFAULT SPECIAL REGISTERS
Specifies how special registers are set on entry to the routine.
INHERIT SPECIAL REGISTERS

Specifies that the values of special registers are inherited, according to the rules that are listed in
the table for characteristics of special registers in a procedure in Table 47 on page 215.

Chapter 7. Statements 1605

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ceea300/abstract.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ceea300/abstract.htm

INHERIT SPECIAL REGISTERS is the default.

DEFAULT SPECIAL REGISTERS
Specifies that special registers are initialized to the default values, as indicated by the rules in the
table for characteristics of special registers in a procedure in Table 47 on page 215.

STOP AFTER SYSTEM DEFAULT FAILURES, STOP AFTER nn FAILURES, or CONTINUE AFTER FAILURE
Specifies the routine is stopped after failures.
STOP AFTER SYSTEM DEFAULT FAILURES

Specifies that this routine should be placed in a stopped state after the number of failures
indicated by the value of field MAX ABEND COUNT on installation panel DSNTIPX.

STOP AFTER SYSTEM DEFAULT FAILURES is the default.

STOP AFTER nn FAILURES
Specifies that this routine should be placed in a stopped state after nn failures. The value nn can
be an integer 1–32767.

CONTINUE AFTER FAILURE
Specifies that this routine should not be placed in a stopped state after any failure.

SQL-routine-body
Specifies the statements that define the body of the SQL procedure. For information on the SQL
control statements that are supported in external SQL procedures, see Appendix E, “SQL control
statements for external SQL procedures,” on page 2279.

Notes for CREATE PROCEDURE (SQL - external)
Considerations for all types of procedures

For considerations that apply to all types of procedures, see “CREATE PROCEDURE statement
(overview)” on page 1578.

Alternative syntax and synonyms
To provide compatibility with previous releases of Db2 or other products in the Db2 family, Db2
supports the following alternative syntax:

• RESULT SET and RESULT SETS as synonyms for DYNAMIC RESULT SETS
• VARIANT as a synonym for NOT DETERMINISTIC
• NOT VARIANT as a synonym for DETERMINISTIC

Examples for CREATE PROCEDURE (SQL - external)

Example 1
Create the definition for an SQL procedure. The procedure accepts an employee number and a
multiplier for a pay raise as input. The following tasks are performed in the procedure body:

• Calculate the employee's new salary.
• Update the employee table with the new salary value.

CREATE PROCEDURE UPDATESALARY
 (IN EMPLOYEE_NUMBER CHAR(10),
 IN RATE DECIMAL(6,2))
 LANGUAGE SQL
 FENCED
 EXTERNAL NAME 'USALARY1'
 MODIFIES SQL DATA
 UPDATE EMP
 SET SALARY = SALARY * RATE
 WHERE EMPNO = EMPLOYEE_NUMBER

1606 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 2

Create the definition for the SQL procedure described in example 1, but specify that the procedure
has these characteristics:

• The procedure runs in a WLM environment called PARTSA.
• The same input always produces the same output.
• SQL work is committed on return to the caller.
• The Language Environment run time options to be used when the SQL procedure executes are

'MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)'.

CREATE PROCEDURE UPDATESALARY
 (IN EMPLOYEE_NUMBER CHAR(10),
 IN RATE DECIMAL(6,2))
 LANGUAGE SQL
 FENCED
 EXTERNAL NAME 'USALARY2'
 MODIFIES SQL DATA
 WLM ENVIRONMENT PARTSA
 DETERMINISTIC
 RUN OPTIONS 'MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)'
 COMMIT ON RETURN YES
 UPDATE EMP
 SET SALARY = SALARY * RATE
 WHERE EMPNO = EMPLOYEE_NUMBER

For more examples of SQL procedures, see Appendix E, “SQL control statements for external SQL
procedures,” on page 2279.

Related concepts
Routines in Db2 for z/OS: functions and procedures (Introduction to Db2 for z/OS)
Naming conventions
The rules for forming a name depend on the type of the object designated by the name.
Related tasks
Migrating an external SQL procedure to a native SQL procedure (Db2 Application programming and SQL)
Creating external SQL procedures (deprecated) (Db2 Application programming and SQL)

CREATE PROCEDURE statement (SQL - native procedure)
The CREATE PROCEDURE statement defines an SQL procedure, or a version of a procedure, at the current
server and specifies the source statements for the procedure.

FL 507

If the OR REPLACE clause is specified and the procedure already exists:

• If the VERSION clause is not specified, the procedure definition is replaced.
• If the VERSION clause is specified and the identified version exists, the version is replaced. Otherwise

the version is added to the procedure definition.

Native SQL procedures can contain SQL control statements. For information about the SQL control
statements that are supported in native SQL procedures, refer to Chapter 8, “SQL procedural language
(SQL PL),” on page 2207.

Invocation for CREATE PROCEDURE (SQL - native)
This statement can only be dynamically prepared, and the DYNAMICRULES run behavior must be
specified implicitly or explicitly.

Authorization for CREATE PROCEDURE (SQL - native)
To create a new procedure in the implicit or explicit schema, the privilege set that is defined below must
include at least one of the following:

Chapter 7. Statements 1607

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_routinesintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_migrateexternalsptonativesp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createexternalsqlproc.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html

• The CREATIN privilege on the schema
• System DBADM authority
• SYSCTRL authority
• SYSADM authority
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The authorization ID that matches the schema name implicitly has the CREATEIN privilege on the
schema.

FL 507To replace a procedure, the privilege set that is defined below must include at least one of the
following:

• Ownership of the procedure
• Both the DROPIN and CREATEIN privilege on the schema
• System DBADM authority
• SYSCTRL authority
• SYSADM authority
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

FL 507To add or replace a version of a procedure, the privilege set that is defined below must include at
least one of the following:

• Ownership of the procedure
• The ALTERIN privilege on the schema
• System DBADM authority
• SYSCTRL authority
• SYSADM authority
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

If a user-defined type is referenced (as the data type of a parameter or SQL variable), the privilege set
must also include at least one of the following privileges or authorities:

• Ownership of the user-defined type
• The USAGE privilege on the user-defined type
• System DBADM authority
• DATAACCESS authority
• SYSADM authority

If the procedure uses a table as a parameter, the privilege set must also include at least one of the
following privileges or authorities:

• Ownership of the table
• The SELECT privilege on the table
• DATAACCESS authority
• SYSADM authority

If you specify the WLM ENVIRONMENT FOR DEBUG MODE clause, RACF or an external security product
is invoked to check the required authority for defining programs in the WLM environment. If the WLM
environment access is protected in RACF, the privilege set must include the required authority.

To create or replace a procedure, or add or replace a version of a procedure, the privilege set must include
the required authorization to add a new package or a new version of an existing package depending on
the value of the BIND NEW PACKAGE field on installation panel DSNTIPP, or the privilege set must include
SYSADM or SYSCTRL or system DBADM authority. The owner of the procedure package must have the
privileges that are required to execute the statements in SQL-routine-body.

If the SECURED option is specified, at least one of the following privileges is required:

1608 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html

• SECADM authority
• CREATE_SECURE_OBJECT privilege

If the SEPARATE SECURITY subsystem parameter is set to NO, SYSADM authority has implicit SECADM
authority.

Additional authorization might be required on the SYSDUMMYx tables depending on the content of the
procedure definition. For more information, see SYSDUMMYx tables (Introduction to Db2 for z/OS).

If the authorization ID that is used to create the procedure has the installation SYSADM authority or the
installation SYSOPR authority and if the current SQLID is set to SYSINSTL, the procedure is identified as
system-defined procedure.

Privilege set:
The privilege set is the privileges that are held by the SQL authorization ID of the process unless
the process is within a trusted context and the ROLE AS OBJECT OWNER clause is specified. In that
case, the privileges set is the privileges that are held by the role that is associated with the primary
authorization ID of the process.

When a CREATE PROCEDURE statement is issued in a trusted context that has the ROLE AS OBJECT
OWNER clause, the package owner is determined as follows:

• If the PACKAGE OWNER option is not specified, the role associated with the binder becomes the
package owner.

• If the PACKAGE OWNER option is specified, the role specified in the PACKAGE OWNER option
becomes the package owner. In a trusted context, the specified PACKAGE OWNER must be a role.

Otherwise, the package owner is determined as follows:

• If the PACKAGE OWNER option is not specified, the procedure owner becomes the package owner.
• If the PACKAGE OWNER option is specified, the authorization-name specified in the PACKAGE

OWNER option becomes the package owner.

Syntax for CREATE PROCEDURE (SQL - native)

CREATE

OR REPLACE

 PROCEDURE procedure-name

(
,

parameter-declaration

)

procedure-definition

WRAPPED obfuscated-statement-text

parameter-declaration:

IN

OUT

INOUT

parameter-name parameter-type

parameter-type:

Chapter 7. Statements 1609

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sysdummy.html

data-type

TABLE LIKE table-name

view-name

AS LOCATOR

data-type:

built-in-type

distinct-type-name

array-type-name

built-in-type:

1610 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

BIT

DATA

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID ASCII

EBCDIC

UNICODE

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

XML

option-list: (The options can be specified in any order, but each one can only be specified one time.)

Chapter 7. Statements 1611

LANGUAGE SQL SPECIFIC procedure-name NOT DETERMINISTIC

DETERMINISTIC

MODIFIES SQL DATA

READS SQL DATA

CONTAINS SQL

CALLED ON NULL INPUT

DYNAMIC RESULT SETS 0

DYNAMIC RESULT SETS integer DISALLOW DEBUG MODE

ALLOW DEBUG MODE

DISABLE DEBUG MODE

PARAMETER CCSID ASCII

PARAMETER CCSID EBCDIC

PARAMETER CCSID UNICODE

QUALIFIER schema-name

PACKAGE OWNER authorization-name

ASUTIME NO LIMIT

ASUTIME LIMIT integer

COMMIT ON RETURN NO

COMMIT ON RETURN YES

AUTONOMOUS

INHERIT SPECIAL REGISTERS

DEFAULT SPECIAL REGISTERS

WLM ENVIRONMENT FOR DEBUG MODE name DEFER PREPARE

NODEFER PREPARE

CURRENT DATA NO

CURRENT DATA YES

DEGREE 1

DEGREE ANY

CONCURRENT ACCESS RESOLUTION USE CURRENTLY COMMITTED

CONCURRENT ACCESS RESOLUTION WAIT FOR OUTCOME

DYNAMICRULES RUN

DYNAMICRULES BIND

DYNAMICRULES DEFINEBIND

DYNAMICRULES DEFINERUN

DYNAMICRULES INVOKEBIND

DYNAMICRULES INVOKERUN

APPLICATION ENCODING SCHEME ASCII

APPLICATION ENCODING SCHEME EBCDIC

APPLICATION ENCODING SCHEME UNICODE

WITHOUT EXPLAIN

WITH EXPLAIN

WITHOUT IMMEDIATE WRITE

WITH IMMEDIATE WRITE

ISOLATION LEVEL CS

ISOLATION LEVEL RS

ISOLATION LEVEL RR

ISOLATION LEVEL UR

WITHOUT KEEP DYNAMIC

WITH KEEP DYNAMIC

OPTHINT ''

OPTHINT ' hint-id '

SQL PATH

,

schema-name

SYSTEM PATH

SESSION USER

USER

QUERY ACCELERATION NONE

QUERY ACCELERATION ENABLE

QUERY ACCELERATION ENABLE WITH FAILBACK

QUERY ACCELERATION ELIGIBLE

QUERY ACCELERATION ALL

GET_ACCEL_ARCHIVE NO

GET_ACCEL_ARCHIVE YES

ACCELERATION WAITFORDATA nnnn.m

ACCELERATOR accelerator-name

RELEASE AT COMMIT

RELEASE AT DEALLOCATE

REOPT NONE

REOPT ALWAYS

REOPT ONCE

VALIDATE RUN

VALIDATE BIND

ROUNDING DEC_ROUND_CEILING

ROUNDING DEC_ROUND_DOWN

ROUNDING DEC_ROUND_FLOOR

ROUNDING DEC_ROUND_HALF_DOWN

ROUNDING DEC_ROUND_HALF_EVEN

ROUNDING DEC_ROUND_HALF_UP

ROUNDING DEC_ROUND_UP

DATE FORMAT ISO

DATE FORMAT EUR

DATE FORMAT USA

DATE FORMAT JIS

DATE FORMAT LOCAL

DECIMAL(15)

DECIMAL(31)

DECIMAL(15,  s)

DECIMAL(31,  s)

FOR UPDATE CLAUSE REQUIRED

FOR UPDATE CLAUSE OPTIONAL

TIME FORMAT ISO

TIME FORMAT EUR

TIME FORMAT USA

TIME FORMAT JIS

TIME FORMAT LOCAL

BUSINESS_TIME SENSITIVE YES

BUSINESS_TIME SENSITIVE NO

SYSTEM_TIME SENSITIVE YES

SYSTEM_TIME SENSITIVE NO

ARCHIVE SENSITIVE YES

ARCHIVE SENSITIVE NO

APPLCOMPAT applcompat-level

CONCENTRATE STATEMENTS OFF

CONCENTRATE STATEMENTS WITH LITERALS

procedure-definition:

1612 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

VERSION V1

VERSION routine-version-id option-list

SQL-routine-body

SQL-routine-body:

Chapter 7. Statements 1613

SQL-control-statement

ALTER DATABASE statement

ALTER FUNCTION statement (external scalar, external table, sourced, SQL scalar, or SQL table)

ALTER INDEX statement

ALTER PROCEDURE statement (external, SQL - external, or SQL - native)

ALTER SEQUENCE statement

ALTER STOGROUP statement

ALTER TABLE statement

ALTER TABLESPACE statement

ALTER TRUSTED CONTEXT statement

ALTER VIEW statement

COMMENT statement

COMMIT statement

CONNECT statement

CREATE ALIAS statement

CREATE DATABASE statement

CREATE FUNCTION statement (external scalar, external table, or sourced)

CREATE GLOBAL TEMPORARY TABLE statement

CREATE INDEX statement

CREATE PROCEDURE statement (external)

CREATE ROLE statement

CREATE SEQUENCE statement

CREATE STOGROUP statement

CREATE SYNONYM statement

CREATE TABLE statement

CREATE TABLESPACE statement

CREATE TRUSTED CONTEXT statement

CREATE TYPE statement

CREATE VIEW statement

DECLARE GLOBAL TEMPORARY TABLE statement

DELETE statement

DROP statement

EXCHANGE statement

EXECUTE IMMEDIATE statement

GRANT statement

INSERT statement

LABEL statement

LOCK TABLE statement

MERGE statement

REFRESH TABLE statement

RELEASE statement

RELEASE SAVEPOINT statement

RENAME statement

REVOKE statement

ROLLBACK statement

SAVEPOINT statement

SELECT INTO statement

SET CONNECTION statement

SET special-register statement

TRUNCATE statement

UPDATE statement

VALUES INTO statement

1

Notes:
1 An ALTER FUNCTION statement (SQL scalar) or an ALTER PROCEDURE statement (SQL native) with an
ADD VERSION or REPLACE clause are not allowed in an SQL-routine-body.

1614 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Description for CREATE PROCEDURE (SQL - native)
OR REPLACE

FL 507

Specifies that if the procedure exists at the current server, the existing definition is replaced, or
that a version of the procedure is added or replaced. This option is ignored if a definition for the
procedure does not exist at the current server. If a procedure exists with the specified name, the
existing procedure must be a native SQL procedure.

If the procedure does not yet exist and the VERSION keyword is not specified, the procedure is
created with the initial version of the procedure (V1).

If the procedure exists and the VERSION keyword is not specified, the procedure is replaced. The
existing definition is dropped before the new definition is replaced in the catalog with the exception
that the privileges that were granted on the procedure are not affected. The procedure is re-created
as follows:

• Any existing comments are discarded
• The definition of the procedure can change
• The timestamp that is associated with the procedure definition is updated
• The owner of the procedure can change
• System default values are used for options that are not explicitly specified, even if those options

were explicitly specified when the procedure that is being replaced was originally defined.

To replace an existing procedure, the procedure must not be defined with more than a single version,
or with a single version for which the version id is other than V1. Additionally, one of the following
conditions must be met:

• The SPECIFIC clause must be specified with the procedure name
• The signature of the new definition must match the signature of the existing procedure definition,

except for parameter names

If the procedure exists with the specified version of the procedure, and the VERSION keyword is
specified, the version is replaced in the catalog as if an ALTER PROCEDURE statement had been
issued with the REPLACE VERSION clause. The procedure owner is not changed. Binding the replaced
version of the procedure might result in a new access path even if the routine body is not changed.

When you replace a version of a procedure, the data types, CCSID specifications, and character data
attributes (FOR BIT/SBCS/MIXED DATA) of the parameters must be the same as the attributes of
the corresponding parameters for the currently active version of the procedure. The parameter list
must not include a table parameter. For options that are not explicitly specified, the system default
values for those options are used, even if those options were explicitly specified when the version of
the procedure that is being replaced was originally defined. This is not the case for versions of the
procedure that specified DISABLE DEBUG MODE. If DISABLE DEBUG MODE is specified for a version
of a procedure, the option cannot be changed using a CREATE statement with the OR REPLACE clause.

If the procedure exists but version routine-version-id does not exist, and the VERSION keyword is
specified, the specified version is created. routine-version-id is the version identifier for the new
version of the procedure. The new version is defined as if an ALTER PROCEDURE statement had
been issued with an ADD VERSION clause. The procedure owner is not changed. When a procedure
definition is replaced, any existing comments in the catalog for that definition of the procedure are
removed.

When you add a new version of a procedure, the data types, CCSID specifications, and character
data attributes (FOR BIT/SBCS/MIXED DATA) of the parameters must be the same as the attributes
of the corresponding parameters for the currently active version of the procedure. The parameter list
must not include a table parameter. The parameter names can differ from the other versions of the
procedure. For options that are not explicitly specified, the system default values are used.

Chapter 7. Statements 1615

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html

procedure-name

FL 507

Names the procedure. The name, including the implicit or explicit schema name, must not identify
a procedure that exists at the current server. However, you can specify an existing procedure name
when the OR REPLACE keyword is also specified.

The name must not identify an existing wrapped procedure if the CREATE statement adds or replaces
a version of that procedure.

The schema name can be 'SYSTOOLS' or 'SYSFUN' if the privilege set includes the SYSADM or
SYSCTRL privilege. Otherwise, the schema name must not begin with 'SYS' unless the schema name is
'SYSADM', 'SYSIBMADM', or 'SYSPROC'.

(parameter-declaration,…)
Specifies the number of parameters of the procedure, the data type and usage of each parameter,
and the name of each parameter for the version of the procedure that is being defined. The number
of parameters and the specified data type and usage of each parameter must match the data types
in the corresponding position of the parameter for all other versions of this procedure. Synonyms for
data types are considered to be a match. All parameters are nullable.

IN, OUT, and INOUT specify the usage of the parameter. The usage of the parameters must match the
implicit or explicit usage of the parameters of other versions of the same procedure.

IN
Identifies the parameter as an input parameter to the procedure. The value of the parameter on
entry to the procedure is the value that is returned to the calling SQL application, even if changes
are made to the parameter within the procedure.

IN is the default.

OUT
Identifies the parameter as an output parameter that is returned by the procedure. If the
parameter is not set within the procedure, the null value is returned.

INOUT
Identifies the parameter as both an input and output parameter for the procedure. If the
parameter is not set within the procedure, its input value is returned.

parameter-name
Names the parameter for use as an SQL variable. A parameter name cannot be the same as the
name of any other parameter for this version of the procedure. The name of the parameter in this
version of the procedure can be different than the name of the corresponding parameter for other
versions of this procedure.

built-in-type
The data type of the parameter is a built-in data type.

For more information on the data types, including the subtype of character data types (the FOR
subtype DATA clause), see "built-in-type" in “CREATE TABLE statement” on page 1650. However,
the varying length string data types have different maximum lengths than for the CREATE TABLE
statement. The maximum lengths for parameters (and SQL variables) are as follows: 32704 for
VARCHAR or VARBINARY, and 16352 for VARGRAPHIC.

For parameters with a character or graphic data type, the PARAMETER CCSID clause or CCSID
clause indicates the encoding scheme of the parameter. If you do not specify either of these
clauses, the encoding scheme is the value of field DEF ENCODING SCHEME on installation panel
DSNTIPF.

Although an input parameter with a character data type has an implicitly or explicitly specified
subtype (BIT, SBCS, or MIXED), the value that is actually passed in the input parameter can have
any subtype. Therefore, conversion of the input data to the subtype of the parameter might occur
when the procedure is called. With ASCII or EBCDIC, an error occurs if mixed data that actually
contains DBCS characters is used as the value for an input parameter that is declared with an
SBCS subtype.

1616 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html

Parameters with a datetime data type or a distinct type are passed to the function as a different
data type:

• A datetime type parameter is passed as a character data type, and the data is passed in ISO
format. The encoding scheme for a datetime type parameter is the same as the implicitly
or explicitly specified encoding scheme of any character or graphic string parameters. If no
character or graphic string parameters are passed, the encoding scheme is the value of field DEF
ENCODING SCHEME on installation panel DSNTIPF.

• A distinct type parameter is passed as the source type of the distinct type.

AS LOCATOR
Specifies that a locator to the value of the parameter is passed to the procedure instead of the
actual value. Specify AS LOCATOR only for parameters with a LOB data type or a distinct type
based on a LOB data type. Passing locators instead of values can result in fewer bytes being
passed to the procedure, especially when the value of the parameter is very large.

The AS LOCATOR clause has no effect on determining whether data types can be promoted.

distinct-type-name
The data type of the input parameter is a distinct type. Any length, precision, scale, subtype, or
encoding scheme attributes for the parameter are those of the source type of the distinct type.
The distinct type must not be based on a LOB data type.

array-type-name
The data type of the input parameter is a user-defined array type.

If you specify array-type-name without a schema name, Db2 resolves the array type by searching
the schemas in the SQL path.

TABLE LIKE table-name AS LOCATOR
Specifies that the parameter is a transition table. However, when the procedure is called, the actual
values in the transition table are not passed to the procedure. A single value is passed instead. This
single value is a locator to the table, which the procedure uses to access the columns of the transition
table. The table that is identified can contain XML columns; however, the procedure cannot reference
those XML columns. A procedure with a table parameter can only be invoked from the triggered action
of a trigger.

The TABLE LIKE clause must not be specified when the CREATE statement adds or replaces a version
of an existing procedure.

VERSION routine-version-id
Specifies the version identifier for the version of the procedure that is to be defined. See “Naming
conventions in SQL” on page 79 for information about specifying routine-version-id. You can use an
ALTER PROCEDURE statement with the ADD VERSION clause or the BIND DEPLOY command to create
additional versions of the procedure.

V1 is the default version identifier.

Important: Do not create additional versions of procedures that are supplied with Db2 by specifying
the VERSION keyword. Only versions that are supplied with Db2 are supported. Additional versions of
such routines cause the installation and configuration of the supplied routines to fail.

LANGUAGE SQL
Specifies that the procedure is written in the Db2 SQL procedural language.

SPECIFIC procedure-name

FL 507

Specifies the procedure name as the specific name for the procedure. The name must be the same as
the procedure name.

If you do not specify a schema name, it is the same as the explicit or implicit schema name of the
procedure name (procedure-name). If you specify a schema name, it must be the same as the explicit
or implicit schema name of the procedure name.

Chapter 7. Statements 1617

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html

If you do not specify the SPECIFIC clause, the specific name is the name of the procedure. The
specific name is stored in the SPECIFIC column of the SYSROUTINES catalog table.

Specify the SPECIFIC clause when replacing an existing procedure in the following situations:

• The parameter list of the existing procedure includes a table parameter.
• The CREATE statement specifies changes to the parameter list other than for parameter names.

DETERMINISTIC or NOT DETERMINISTIC
Specifies whether the procedure returns the same results each time it is called with the same IN and
INOUT arguments.
DETERMINISTIC

The procedure always returns the same results each time it is called with the same IN and INOUT
arguments if the data that is referenced in the database has not changed.

NOT DETERMINISTIC
The procedure might not return the same result each time it is called with the same IN and INOUT
arguments, even when the data that is referenced in the database has not changed.

NOT DETERMINISTIC is the default.

Db2 does not verify that the procedure code is consistent with the specification of DETERMINISTIC or
NOT DETERMINISTIC.

MODIFIES SQL DATA, READS SQL DATA, or CONTAINS SQL
Specifies the classification of SQL statements and nested routines that this routine can execute or
invoke. The database manager verifies that the SQL statements issued by the procedure, and all
routines locally invoked by the routine, are consistent with this specification; the verification is not
performed when nested remote routines are invoked. For the classification of each statement, see
Appendix D, “SQL statement data access classification for routines,” on page 2275.
MODIFIES SQL DATA

Specifies that the procedure can execute any SQL statement except statements that are not
supported in procedures.

MODIFIES SQL DATA is the default.

READS SQL DATA
Specifies that the procedure can execute statements with a data access indication of READS SQL
DATA or CONTAINS SQL. The procedure cannot execute SQL statements that modify data.

CONTAINS SQL
Specifies that the procedure can execute only SQL statements with a data access indication of
CONTAINS SQL. The procedure cannot execute statements that read or modify data.

CALLED ON NULL INPUT
Specifies that the procedure will be called if any, or even if all parameter values are null.

DYNAMIC RESULT SETS integer
Specifies the maximum number of query result sets that the procedure can return. The default is
DYNAMIC RESULT SETS 0, which indicates that there are no result sets. The value must be in the
range 0–32767.

ALLOW DEBUG MODE, DISALLOW DEBUG MODE, or DISABLE DEBUG MODE
Specifies whether this version of the routine can be run in debugging mode. The default is determined
using the value of the CURRENT DEBUG MODE special register.
ALLOW DEBUG MODE

Specifies that this version of the routine can be run in debugging mode. When this version of the
routine is invoked and debugging is attempted, a WLM environment must be available.

DISALLOW DEBUG MODE
Specifies that this version of the routine cannot be run in debugging mode.

You can use an ALTER statement to change this option to ALLOW DEBUG MODE for this initial
version of the routine.

1618 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

DISABLE DEBUG MODE
Specifies that this version of the routine can never be run in debugging mode.

This version of the routine cannot be changed to specify ALLOW DEBUG MODE or DISALLOW
DEBUG MODE after this version of the routine has been created or altered to use DISABLE DEBUG
MODE. To change this option, drop the routine and create it again using the option that you want.
An alternative to dropping and recreating the routine is to create a version of the routine that uses
the option that you want and making that version the active version.

When DISABLE DEBUG MODE is in effect, the WLM ENVIRONMENT FOR DEBUG MODE is ignored.

PARAMETER CCSID
Indicates whether the encoding scheme for character or graphic string parameters is ASCII, EBCDIC,
or UNICODE. The default encoding scheme is the value that is specified in the CCSID clauses of the
parameter list, or in the field DEF ENCODING SCHEME on installation panel DSNTIPF.

This clause provides a convenient way to specify the encoding scheme for character or graphic string
parameters. If individual CCSID clauses are specified for individual parameters in addition to this
PARAMETER CCSID clause, the value that is specified in all of the CCSID clauses must be the same
value that is specified in this clause.

If the data type for a parameter is a user-defined distinct type that is defined as a character or graphic
type string, the CCSID of the distinct type must be the same as the value that is specified in this
clause.

If the data type for a parameter is a user-defined array type that is defined with character or graphic
string array elements, or a character string array index, the CCSID of these array attributes must be
the same as the value that is specified in this clause.

This clause also specifies the encoding scheme that will be used for system-generated parameters of
the routine.

QUALIFIER schema-name
Specifies the implicit qualifier that is used for unqualified object names that are referenced in the
procedure body. For information about how the default for this option is determined, see “Unqualified
alias, index, JAR file, mask, permission, sequence, table, trigger, and view names” on page 86.

PACKAGE OWNER authorization-name
Specifies the owner of the package that is associated with the version of the routine. The SQL
authorization ID of the process is the default value.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single invocation of a routine
can run. The value is unrelated to the ASUTIME column of the resource limit specification table.

When you are debugging a routine, setting a limit can be helpful in case the routine gets caught in a
loop. For information on service units, see z/OS MVS Initialization and Tuning Guide.

NO LIMIT
Specifies that there is no limit on the service units.

NO LIMIT is the default.

LIMIT integer
The limit on the number of CPU service units is a positive integer in the range 1–2 147 483 647.
If the procedure uses more service units than the specified value, Db2 cancels the procedure.
The CPU cycles that are consumed by parallel tasks in a procedure do not contribute towards the
specified ASUTIME LIMIT.

COMMIT ON RETURN NO, COMMIT ON RETURN YES, or AUTONOMOUS
Indicates whether Db2 commits the transaction immediately on return from the procedure.
COMMIT ON RETURN NO

Db2 does not issue a commit when the procedure returns. NO is the default.
COMMIT ON RETURN YES,

Db2 issues a commit when the procedure returns if the following statements are true:

Chapter 7. Statements 1619

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae100/abstract.htm

• The SQLCODE that is returned by the CALL statement is not negative.
• The procedure is not in a must-abort state.

The commit operation includes the work that is performed by the calling application process and
by the procedure.

If the procedure returns result sets, the cursors that are associated with the result sets must have
been defined as WITH HOLD to be usable after the commit.

AUTONOMOUS
Db2 executes the SQL procedure in a unit of work that is independent from the calling application.
When this option is specified the procedure follows the rules of the COMMIT ON RETURN YES
option before returning to the calling application. However, it does not commit changes in the
calling application. When autonomous is specified:

• DYNAMIC RESULT SETS 0 must be in effect.
• Stored procedure parameters must not be defined as:

– A LOB type
– The XML data type
– A distinct data type that is based on a LOB or XML value
– An array type that is defined with array elements that are a LOB type

A value must not be assigned to a global variable when an autonomous procedure is executing.

INHERIT SPECIAL REGISTERS or DEFAULT SPECIAL REGISTERS
Specifies how special registers are set on entry to the routine.
INHERIT SPECIAL REGISTERS

Specifies that the values of special registers are inherited, according to the rules that are listed in
the table for characteristics of special registers in a routine in Table 47 on page 215.

INHERIT SPECIAL REGISTERS is the default.

DEFAULT SPECIAL REGISTERS
Specifies that special registers are initialized to the default values, as indicated by the rules in the
table for characteristics of special registers in a routine in Table 47 on page 215.

WLM ENVIRONMENT FOR DEBUG MODE name
Specifies the WLM (workload manager) application environment that is used by Db2 when debugging
the routine. The name of the WLM environment is an SQL identifier.

If you do not specify WLM ENVIRONMENT FOR DEBUG MODE, Db2 uses the default WLM-established
stored procedure address space specified at installation time.

You must have the appropriate authority for the WLM application environment.

The WLM ENVIRONMENT FOR DEBUG MODE value is ignored when DISABLE DEBUG MODE is in
effect.

DEFER PREPARE or NODEFER PREPARE
Specifies whether to defer preparation of dynamic SQL statements that refer to remote objects, or to
prepare them immediately.

The default depends on the value in effect for the REOPT option. If REOPT NONE is in effect, the
default is inherited from the plan at run time. Otherwise, the default is DEFER PREPARE.

DEFER PREPARE
Specifies that the preparation of dynamic SQL statements that refer to remote objects will be
deferred.

For considerations for distributed processing, see DEFER and NODEFER bind options (Db2
Commands).

1620 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptdeferandnodefer.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptdeferandnodefer.html

NODEFER PREPARE
Specifies that the preparation of dynamic SQL statements that refer to remote objects will not be
deferred.

CURRENT DATA YES or CURRENT DATA NO
Specifies whether to require data currency for read-only and ambiguous cursors when the isolation
level of cursor stability is in effect. CURRENT DATA also determines whether block fetch can be used
for distributed, ambiguous cursors.
CURRENT DATA YES

Specifies that data currency is required for read-only and ambiguous cursors. Db2 acquired page
or row locks to ensure data currency. Block fetch is ignored for distributed, ambiguous cursors.

CURRENT DATA NO
Specifies that data currency is not required for read-only and ambiguous cursors. Block fetch is
allowed for distributed, ambiguous cursors. Use of CURRENT DATA NO is not recommended if the
routine attempts to dynamically prepare and execute a DELETE WHERE CURRENT OF statement
against an ambiguous cursor after that cursor is opened. You receive a negative SQLCODE if your
routine attempts to use a DELETE WHERE CURRENT OF statement for any of the following cursors:

• A cursor that is using block fetch
• A cursor that is using query parallelism
• A cursor that is positioned on a row that is modified by this or another application process

CURRENT DATA NO is the default.

DEGREE
Specifies whether to attempt to run a query using parallel processing to maximize performance.
1

Specifies that parallel processing should not be used.

1 is the default.

ANY
Specifies that parallel processing can be used.

CONCURRENT ACCESS RESOLUTION
Specifies the whether processing uses only committed data or whether it will wait for commit or
rollback of data that is in the process of being updated.
WAIT FOR OUTCOME

Specifies that processing will wait for the commit or rollback of data that is in the process of being
updated.

USE CURRENTLY COMMITTED
Specifies that processing use the currently committed version of the data when data that is in the
process of being updated is encountered. USE CURRENTLY COMMITTED is applicable on scans
that access tables that are defined in universal table spaces with row or page level lock size.

When there is lock contention between a read transaction and an insert transaction, USE
CURRENTLY COMMITTED is applicable to scans with isolation level CS or RS. Applicable scans
include intent read scans for read-only and ambiguous queries and for updatable cursors. USE
CURRENTLY COMMITTED is also applicable to scans initiated from WHERE predicates of UPDATE
or DELETE statements and the subselect of INSERT statements.

When there is lock contention is between a read transaction and a delete transaction, USE
CURRENTLY COMMITTED is applicable to scans with isolation level CS and when CURRENT DATA
NO is specified.

DYNAMICRULES
Specifies the values that apply, at run time, for the following dynamic SQL attributes:

• The authorization ID that is used to check authorization
• The qualifier that is used for unqualified objects

Chapter 7. Statements 1621

• The source for application programming options that Db2 uses to parse and semantically verify
dynamic SQL statements

DYNAMICRULES also specifies whether dynamic SQL statements can include GRANT, REVOKE, ALTER,
CREATE, DROP, and RENAME statements.

In addition to the value of the DYNAMICRULES clause, the run time environment of a routine controls
how dynamic SQL statements behave at run time. The combination of the DYNAMICRULES value and
the run time environment determines the value for the dynamic SQL attributes. That set of attribute
values is called the dynamic SQL statement behavior. The following values can be specified:
RUN

Specifies that dynamic SQL statements are to be processed using run behavior.

RUN is the default.

BIND
Specifies that dynamic SQL statements are to be processed using bind behavior.

DEFINEBIND
Specifies that dynamic SQL statements are to be processed using either define behavior or bind
behavior.

DEFINERUN
Specifies that dynamic SQL statements are to be processed using either define behavior or run
behavior.

INVOKEBIND
Specifies that dynamic SQL statements are to be processed using either invoke behavior or bind
behavior.

INVOKERUN
Specifies that dynamic SQL statements are to be processed using either invoke behavior or run
behavior.

See For information on the effects of these options, see “Authorization IDs and dynamic SQL” on page
94.

APPLICATION ENCODING SCHEME
Specifies the default encoding scheme for SQL variables in static SQL statements in the routine body.
The value is used for defining an SQL variable in a compound statement if the CCSID clause is not
specified as part of the data type, and the PARAMETER CCSID routine option is not specified.
ASCII

Specifies that the data is encoded using the ASCII CCSIDs of the server.
EBCDIC

Specifies that the data is encoded using the EBCDIC CCSIDs of the server.
UNICODE

Specifies that the data is encoded using the Unicode CCSIDs of the server.

See the ENCODING bind option in ENCODING bind option (Db2 Commands) for information about how
the default for this option is determined.

WITH EXPLAIN or WITHOUT EXPLAIN
Specifies whether information will be provided about how SQL statements in the routine will execute.
WITHOUT EXPLAIN

Specifies that information will not be provided about how SQL statements in the routine will
execute.

You can get EXPLAIN output for a statement that is embedded in a routine that is specified using
WITHOUT EXPLAIN by embedding the SQL statement EXPLAIN in the routine body. Otherwise, the
value of the EXPLAIN option applies to all explainable SQL statements in the routine body, and to
the fullselect portion of any DECLARE CURSOR statements.

WITHOUT EXPLAIN is the default.

1622 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptencoding.html

WITH EXPLAIN
Specifies that information will be provided about how SQL statements in the routine will execute.
Information is inserted into the table owner.PLAN_TABLE. owner is the authorization ID of the
owner of the routine. Alternatively, the authorization ID of the owner of the routine can have an
alias as owner.PLAN_TABLE that points to the base table, PLAN_TABLE. owner must also have
the appropriate SELECT and INSERT privileges on that table. WITH EXPLAIN does not obtain
information for statements that access remote objects. PLAN_TABLE must have a base table and
can have multiple aliases with the same table name, PLAN_TABLE, but have different schema
qualifiers. It cannot be a view or a synonym and should exist before the CREATE statement is
processed. In all inserts to owner.PLAN_TABLE, the value of QUERYNO is the statement number
that is assigned by Db2.

The WITH EXPLAIN option also populates two optional tables, if they exist:
DSN_STATEMNT_TABLE and DSN_FUNCTION_TABLE. DSN_STATEMNT_TABLE contains an
estimate of the processing cost for an SQL statement and DSN_FUNCTION_TABLE contains
information about function resolution. For more information, see EXPLAIN tables (Db2
Performance).

For more information about the EXPLAIN statement, including a description of the tables that are
populated by the WITH EXPLAIN option, see “EXPLAIN statement” on page 1917.

WITH IMMEDIATE WRITE or WITHOUT IMMEDIATE WRITE
Specifies whether immediate writes are to be done for updates that are made to group buffer pool
dependent page sets or partitions. This option is only applicable for data sharing environments. The
IMMEDWRITE subsystem parameter has no affect of this option. IMMEDWRITE bind option (Db2
Commands) shows the implied hierarchy of the IMMEDWRITE bind option (which is similar to this
routine option) as it affects run time.
WITHOUT IMMEDIATE WRITE

Specifies that normal write activity is performed. Updated pages that are group buffer pool
dependent are written at or before phase one of commit or at the end of abort for transactions
that have been rolled back.

WITHOUT IMMEDIATE WRITE is the default.

WITH IMMEDIATE WRITE
Specifies that updated pages that are group buffer pool dependent are immediately written as
soon as the buffer update completes. Updated pages are written immediately even if the buffer
is updated during forward progress or during the rollback of a transaction. WITH IMMEDIATE
WRITE might impact performance.

ISOLATION LEVEL RR, RS, CS, or UR
Specifies how far to isolate the routine from the effects of other running applications. For information
about isolation levels, see Choosing an ISOLATION option (Db2 Performance).
RR

Specifies repeatable read.
RS

Specifies read stability.
CS

Specifies cursor stability. CS is the default.
UR

Specifies uncommitted read.
WITH KEEP DYNAMIC or WITHOUT KEEP DYNAMIC

Specifies whether Db2 keeps dynamic SQL statements after commit points.
WITHOUT KEEP DYNAMIC

Specifies that Db2 does not keep dynamic SQL statements after commit points.

WITHOUT KEEP DYNAMIC is the default.

Chapter 7. Statements 1623

https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_explaintables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_explaintables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptimmedwrite.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptimmedwrite.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_chooseisolationoption.html

WITH KEEP DYNAMIC
Specifies that Db2 keeps dynamic SQL statements after commit points. If you specify WITH KEEP
DYNAMIC, the application does not need to prepare an SQL statement after every commit point.
Db2 keeps the dynamic SQL statement until one of the following occurs:

• The application process ends
• A rollback operations occurs
• The application executes an explicit PREPARE statement with the same statement identifier as

the dynamic SQL statement

If you specify WITH KEEP DYNAMIC, and the dynamic statement cache is active, the Db2
subsystem keeps a copy of the prepared statement in the cache. If the dynamic statement
cache is not active, the subsystem keeps only the SQL statement string past a commit point.
If the application executes an OPEN, EXECUTE, or DESCRIBE operation for that statement, the
statement is implicitly prepared.

If you specify WITH KEEP DYNAMIC, DDF server threads that are used to execute procedures
or packages that have this option in effect will remain active. Active DDF server threads are
subject to idle thread timeout. For more information see IDLE THREAD TIMEOUT field (IDTHTOIN
subsystem parameter) (Db2 Installation and Migration).

If you specify WITH KEEP DYNAMIC, you must not specify REOPT ALWAYS. WITH KEEP DYNAMIC
and REOPT ALWAYS are mutually exclusive. However, you can specify WITH KEEP DYNAMIC and
REOPT ONCE.

Use WITH KEEP DYNAMIC to improve performance if your DRDA client application uses a cursor
that is defined as WITH HOLD. The Db2 subsystem automatically closes a held cursor when there
are no more rows to retrieve, which eliminates an extra network message.

OPTHINT 'hint-id'
Specifies whether query optimization hints are used for static SQL statements that are contained
within the body of the routine.

hint-id is a character string of up to 128 bytes in length, which is used by the Db2 subsystem when
searching the PLAN_TABLE for rows to use as input. The default value is an empty string (''), which
indicates that the Db2 subsystem does not use optimization hints for static SQL statements.

Optimization hints are only used if optimization hints are enabled for your system. For more
information, see OPTIMIZATION HINTS field (OPTHINTS subsystem parameter) (Db2 Installation and
Migration).

SQL PATH

Specifies the SQL path that Db2 uses to resolve unqualified user-defined type, function, and
procedure names in static SQL statements in the procedure body.

This option does not apply to dynamic SQL statements in the procedure body. Db2 uses the CURRENT
PATH special register value to resolve unqualified user-defined type, function, and procedure names
in dynamic SQL statements.

The default value for SQL PATH is "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM", and the value of
the QUALIFIER option, which is the qualifier for the procedure that is the target of the statement.

Schemas "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM" do not need to be explicitly specified. If
any of these schemas is not explicitly specified, it is implicitly assumed at the beginning the SQL path.

Db2 calculates the length by taking each schema-name specified and removing any trailing blanks
from it, adding two delimiters around it, and adding one comma after each schema name except for
the last one. The length of the resulting string cannot exceed the length of the CURRENT SCHEMA
special register. If you do not specify the "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM", schemas,
they are not included in the length of the SQL path. If the total length of the SQL path exceeds the
length of the CURRENT PATH special register, Db2 returns an error for the CREATE statement.

For more information, see the following related topics:

1624 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_idthtoin.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_idthtoin.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_opthints.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_opthints.html

• “SQL path” on page 85
• PATH bind option (Db2 Commands)
• “CURRENT PATH special register” on page 200
• “CURRENT SCHEMA special register” on page 206

schema-name
Specifies a schema. Db2 does not validate that the specified schema actually exists when the
CREATE statement is processed.

SYSPUBLIC must not be specified for the SQL path.

schema-name-list
Specifies a comma separated list of schema names. The same schema name should not appear
more than one time in the list of schema names. The number of schema names that you can
specify is limited by the maximum length of the resulting SQL path.

SYSPUBLIC must not be specified for the SQL path.

SYSTEM PATH
Specifies the schema names "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM".

SESSION_USER or USER
Specifies the value of the SESSION_USER or USER special register, which represents a maximum
8 byte (in EBCDIC) schema-name. At the time the CREATE statement is processed, this length is
included in the total length of the list of schema names that is specified for the PATH bind option.

RELEASE AT
Specifies when to release resources that the procedure uses: either at each commit point or when the
procedure terminates.
COMMIT

Specifies that resources will be released at each commit point.

COMMIT is the default.

DEALLOCATE
Specifies that resources will be released only when the thread terminates. DEALLOCATE has no
effect on dynamic SQL statements, which always use RELEASE AT COMMIT, with this exception:
When you use the RELEASE AT DEALLOCATE clause and the WITH KEEP DYNAMIC clause, and the
subsystem is installed with a value of YES for the field CACHE DYNAMIC SQL on installation panel
DSNTIP8, the RELEASE AT DEALLOCATE option is honored for dynamic SELECT and data change
statements.

Locks that are acquired for dynamic statements are held unit one of the following events occurs:

• The application process ends.
• The application process issues a PREPARE statement with the same statement identifier. (Locks

are released at the next commit point).
• The statement is removed from the dynamic statement cache because the statement has not

been used. (Locks are released at the next commit point).
• An object that the statement is dependent on is dropped or altered, or a privilege that the

statement needs is revoked. (Locks are released at the next commit point).

RELEASE AT DEALLOCATE can increase the package or plan size because additional items become
resident in the package or plan.

For more information, see Choosing a RELEASE option (Db2 Performance).

REOPT
Specifies if Db2 will determine the access path at run time by using the values of SQL variables or SQL
parameters, parameter markers, and special registers.

Chapter 7. Statements 1625

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptpath.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_choosereleaseoption.html

NONE
Specifies that Db2 does not determine the access path at run time by using the values of SQL
variables or SQL parameters, parameter markers, and special registers.

NONE is the default.

ALWAYS
Specifies that Db2 always determines the access path at run time each time an SQL statement is
run. Do not specify REOPT ALWAYS with the WITH KEEP DYNAMIC or NODEFER PREPARE clauses.

ONCE
Specifies that Db2 determine the access path for any dynamic SQL statements only once, at
the first time the statement is opened. This access path is used until the prepared statement is
invalidated or removed from the dynamic statement cache and need to be prepared again.

QUERY ACCELERATION
Specifies whether a static SQL query is bound for acceleration, and if so, with what behavior.
NONE

Specifies that no static SQL query in the application is bound for acceleration or will be
accelerated when the application is run.

ENABLE
Specifies that a static SQL query is bound for acceleration if it satisfies the acceleration criteria,
including the cost and heuristics criteria. The query is routed to an accelerator when the
application runs. Otherwise, if the static query does not satisfy the acceleration criteria, the query
is bound for execution in Db2.

If an error condition, such as one of the following examples, occurs while executing the
accelerated static query when the application is run, Db2 fails the static query and returns a
negative SQL code to the application:

• A failure occurs while running the static query on the accelerator.
• The accelerator returns an error for the query.
• The accelerator is not started and Db2 cannot route the static query to the accelerator for

execution.

ENABLE WITH FAILBACK
Results in the same behavior as ENABLE, except if one of the error conditions occurs on the first
OPEN of the accelerated static query when the application is run. In this case, instead of failing
the static query and returning a negative SQL code to the application, Db2 performs a temporary
statement-level incremental bind of the query and runs the query in Db2. The application does not
see the acceleration failure. Failback to Db2 is not possible after the application does a successful
OPEN for the query on the accelerator.

ELIGIBLE
Specifies that a static SQL query is bound for acceleration if the query meets the basic
acceleration criteria, regardless of the cost or heuristics criteria. The query is routed to the
accelerator when the application runs.

Like the behavior for ENABLE, if an error condition occurs while executing the accelerated static
query when the application is run, Db2 fails the static query and returns a negative SQL code to
the application.

ALL
Specifies that all of the static SQL queries in the application are to be bound for acceleration and
routed to the accelerator when the application runs. If Db2 determines that a static query cannot
be bound to run on the accelerator and the query references a user base table or view, the BIND
or REBIND PACKAGE operation fails with an error message for that query. (A failure exception
is made for declared global temporary tables (DGTTs) and created global temporary tables and
(CGTTs) because these tables cannot be accelerated.)

1626 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Like the behavior for ENABLE, if an error condition occurs while executing the accelerated static
query when the application is run, Db2 fails the static query and returns a negative SQL code to
the application.

This bind option does not apply to a fullselect or WITH common-table-expression that is specified in
a RETURN statement for the routine, or in a SET host-variable-assignment that is used in the routine.
The queries that are specified in these cases cannot be accelerated.

GET_ACCEL_ARCHIVE
Specifies whether a static SQL query that is bound for acceleration retrieves archived data on the
accelerator, instead of active data.
NO

Specifies that no static SQL query is bound to retrieve archived data from the accelerator. If the
static query also is not bound for acceleration, the query is bound to run in Db2.

If the static query is bound for acceleration because the QUERYACCELERATION bind option was
specified, the query is routed to the accelerator when the application runs; however, the query
does not retrieve any archived data.

YES
Specifies that if all of the following criteria are met, the query is bound for acceleration and
retrieves the archived data on the accelerator when the application runs:

• The QUERYACCELERATION bind option is also specified.
• The static SQL query references an accelerated table that has partitioned data archived on an

accelerator.
• The static query satisfies the acceleration criteria that is specified by the QUERYACCELERATION

bind option.

If the static query does not satisfy the acceleration criteria that is specified by the
QUERYACCELERATION bind option, the BIND or REBIND PACKAGE operation fails with an error
message for that query.

This bind option does not apply to a fullselect or WITH common-table-expression that is specified in
a RETURN statement for the routine, or in a SET host-variable-assignment that is used in the routine.
The queries that are specified in these cases cannot be accelerated.

ACCELERATION WAITFORDATA
Specifies the maximum amount of time, if any, that an accelerator will delay a query while the
accelerator waits for the replication of committed Db2 data changes that occurred prior to Db2
running the query.

For static accelerated queries, you must also set the QUERYACCELERATION bind option for this
function or procedure to a valid value other than NONE to request that static queries be accelerated. If
the QUERYACCELERATION bind option value is set to NONE, the ACCELERATIONWAITFORDATA bind
option is accepted and the package is bound with the option value; however, the option will not apply
to static SQL queries because no static queries will be accelerated.

For dynamic accelerated queries, specifying the ACCELERATION WAITFORDATA bind option also
initializes the CURRENT QUERY ACCELERATION WAITFORDATA special register, which is used for
the dynamic queries in the Db2 function or procedure if the function or procedure option DEFAULT
SPECIAL REGISTERS is also used. Initializing CURRENT QUERY ACCELERATION WAITFORDATA to a
value greater than 0 specifies that Db2 and the accelerator will apply WAITFORDATA delay behavior
and restrictions to all dynamic SQL queries to be accelerated from the Db2 function or procedure. The
CURRENT QUERY ACCELERATION special register must also have a valid value other than NONE to
request that dynamic queries be accelerated.

nnnn.m
Specifies a DECIMAL(5,1) numeric-constant value that specifies the maximum number of seconds
that the accelerator will delay a query while the accelerator waits for the replication of committed
Db2 data changes that occurred prior to Db2 running the query.

Chapter 7. Statements 1627

You can specify a value in the range of 0.0–3600.0 seconds. For example, a value of 20.0
represents 20.0 seconds (or 20000 milliseconds), and a value of 30.5 represents 30.5 seconds
(or 30500 milliseconds). The maximum value of 3600.0 means they the query is delayed for 3600
seconds.

You can also specify the value as an INTEGER numeric-constant value ranging 0–3600 seconds,
which Db2 will convert to a DECIMAL(5,1) value.

Important: When a non-zero value is specified for the ACCELERATIONWAITFORDATA bind
option, Db2 and the accelerator will apply other WAITFORDATA delay behaviors, restrictions, and
requirements to all queries that will be accelerated from the application package. These behaviors,
restrictions, and requirements can cause queries that were formerly accelerated successfully to
no longer be accelerated or to fail. See “SET CURRENT QUERY ACCELERATION WAITFORDATA
statement” on page 2150 for more information about WAITFORDATA behaviors, restrictions, and
requirements.

ACCELERATOR
Specifies an accelerator server that, if enabled and available, Db2 will consider as the preferred
accelerator for eligible SQL queries before sending the queries to other accelerator servers. If the
specified accelerator server is not enabled or available, Db2 will send the queries to other available
accelerator servers.

VALIDATE RUN or VALIDATE BIND
Specifies whether to recheck, at run time, errors of the type "OBJECT NOT FOUND" and "NOT
AUTHORIZED" that are found during bind or rebind. The option has no effect if all objects and needed
privileges exist.
VALIDATE RUN

Specifies that if needed objects or privileges do not exist when the CREATE statement is
processed, warning messages are returned, but the CREATE statement succeeds. The Db2
subsystem rechecks for the objects and privileges at run time for those SQL statements that
failed the checks during processing of the CREATE statement. The authorization checks the use of
the authorization ID of the owner of the routine.

VALIDATE RUN is the default.

VALIDATE BIND
Specifies that if needed objects or privileges do not exist at the time the CREATE statement is
processed, an error is issued and the CREATE statement fails.

ROUNDING
Specifies the rounding mode for manipulation of DECFLOAT data. The default value is taken from the
DEFAULT DECIMAL FLOATING POINT ROUNDING MODE in DECP.
DEC_ROUND_CEILING

Specifies numbers are rounded towards positive infinity.
DEC_ROUND_DOWN

Specifies numbers are rounded towards 0 (truncation).
DEC_ROUND_FLOOR

Specifies numbers are rounded towards negative infinity.
DEC_ROUND_HALF_DOWN

Specifies numbers are rounded to nearest; if equidistant, round down.
DEC_ROUND_HALF_EVEN

Specifies numbers are rounded to nearest; if equidistant, round so that the final digit is even.
DEC_ROUND_HALF_UP

Specifies numbers are rounded to nearest; if equidistant, round up.
DEC_ROUND_UP

Specifies numbers are rounded away from 0.

1628 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

DATE FORMAT ISO, EUR, USA, JIS, or LOCAL
Specifies the date format for result values that are string representations of date or time values. For
more information, see “String representations of datetime values” on page 120.

The default format is specified in the DATE FORMAT field of installation panel DSNTIP4 of the system
where the routine is defined. You cannot use the LOCAL option unless you have a date exit routine.

DECIMAL(15), DECIMAL(31), DECIMAL(15,s), or DECIMAL(31,s)
Specifies the maximum precision that is to be used for decimal arithmetic operations. For more
information see “Arithmetic with two decimal operands” on page 251. The default format is specified
in the DECIMAL ARITHMETIC field of installation panel DSNTIPF of the system where the routine is
defined. If the form pp.s is specified, s must be a number in the range 1–9. s represents the minimum
scale that is to be used for division.

FOR UPDATE CLAUSE OPTIONAL or FOR UPDATE CLAUSE REQUIRED
Specifies whether the FOR UPDATE clause is required for a DECLARE CURSOR statement if the cursor
is to be used to perform positioned updates.
FOR UPDATE CLAUSE REQUIRED

Specifies that a FOR UPDATE clause must be specified as part of the cursor definition if the cursor
will be used to make positioned updates.

FOR UPDATE CLAUSE REQUIRED is the default.

FOR UPDATE CLAUSE OPTIONAL
Specifies that the FOR UPDATE clause does not need to be specified in order for a cursor to be
used for positioned updates. The routine body can include positioned UPDATE statements that
update columns that the user is authorized to update.

The FOR UPDATE clause with no column list applies to static or dynamic SQL statements. Even if you
do not use this clause, you can specify FOR UPDATE OF with a column list to restrict updates to only
the columns that are identified in the FOR UPDATE clause and to specify the acquisition of update
locks.

TIME FORMAT ISO, EUR, USA, JIS, or LOCAL
Specifies the time format for result values that are string representations of date or time values. For
more information, see “String representations of datetime values” on page 120.

The default format is specified in the TIME FORMAT field of installation panel DSNTIP4 of the system
where the routine is defined. You cannot use the LOCAL option unless you have a date exit routine.

BUSINESS_TIME SENSITIVE
Determines whether references to application-period temporal tables in both static and dynamic SQL
statements are affected by the value of the CURRENT TEMPORAL BUSINESS_TIME special register.
YES

References to application-period temporal tables are affected by the value of the CURRENT
TEMPORAL BUSINESS_TIME special register. YES is the default value.

NO
References to application-period temporal tables are not affected by the value of the CURRENT
TEMPORAL BUSINESS_TIME special register.

For more information, see .“CURRENT TEMPORAL BUSINESS_TIME special register” on page 208

SYSTEM_TIME SENSITIVE
Determines whether references to system-period temporal tables in both static and dynamic SQL
statements are affected by the value of the CURRENT TEMPORAL SYSTEM_TIME special register.
YES

References to system-period temporal tables are affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register. YES is the default value.

NO
References to system-period temporal tables are not affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

Chapter 7. Statements 1629

For more information, see “CURRENT TEMPORAL SYSTEM_TIME special register” on page 210.

ARCHIVE SENSITIVE
Determines whether references to archive-enabled tables in SQL statements are affected by the value
of the SYSIBMADM.GET_ARCHIVE built-in global variable.
YES

References to archive-enabled tables are affected by the value of the SYSIBMADM.GET_ARCHIVE
built-in global variable. YES is the default value.

NO
References to archive-enabled tables are not affected by the value of the
SYSIBMADM.GET_ARCHIVE built-in global variable.

For related information, see “GET_ARCHIVE” on page 330

APPLCOMPAT applcompat-level
Specifies the application compatibility level behavior for static SQL statements in the procedure body.
If this option is not specified, the behavior is determined by the APPLCOMPAT subsystem parameter.

The following applcompat-level values can be specified:
VvvRrMmmm

Compatibility with the behavior of the identified Db2 function level. For example, V12R1M510
specifies compatibility with the highest available Db2 12 function level. The equivalent function
level or higher must be activated.

For the new capabilities that become available in each application compatibility level, see:

• SQL changes in Db2 13 application compatibility levels
• SQL changes in Db2 12 application compatibility levels

Tip: Extra program preparation steps might be required to increase the application compatibility
level for applications that use data server clients or drivers to access Db2 for z/OS. For more
information, see Setting application compatibility levels for data server clients and drivers (Db2
Application programming and SQL).

V12R1
Compatibility with the behavior of Db2 12 function level 500. This value has the same result as
specifying V12R1M500.

V11R1
Compatibility with the behavior of Db2 11 new-function mode. After migration to Db2 12, this
value has the same result as specifying V12R1M100. For more information, see V11R1 application
compatibility level (Db2 Application programming and SQL)

V10R1
Compatibility with the behavior of DB2 10 new-function mode. For more information, see V10R1
application compatibility level (Db2 Application programming and SQL).

CONCENTRATE STATEMENTS OFF or CONCENTRATE STATEMENTS WITH LITERALS
Specifies whether each dynamic SQL statement in the routine that specifies literal constants will be
cached as a separate unique statement entry in the dynamic statement cache, instead of sharing an
existing statement in the cache. Dynamic SQL statements are eligible to share an existing statement
in the cache if the new statement meets all of the conditions for sharing a cached version of the same
dynamic statement, except that the new statement specifies one or more literal constants that are
different than the cached statement.
CONCENTRATE STATEMENTS OFF

Specifies that each dynamic SQL statement that specifies literal constants will be cached as a
unique statement entry if it specifies one or more constants that are different than the cached
version of the same dynamic statement. CONCENTRATE STATEMENTS OFF is the default dynamic
statement caching behavior.

1630 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/wnew/src/tpc/db2z_13_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html

CONCENTRATE STATEMENTS WITH LITERALS

Specifies that each dynamic SQL statement that specifies literal constants will share a cached
version of the same dynamic statement that is also prepared using the CONCENTRATE
STATEMENTS WITH LITERALS option, if the new dynamic statement meets all of the conditions for
sharing the cached statement, and the constants that are specified can be reused in place of the
constants in the cached statement.

SQL-routine-body
Specifies the statements that define the body of the SQL procedure. For information on the SQL
control statements that are supported in native SQL procedures, see Chapter 8, “SQL procedural
language (SQL PL),” on page 2207. If an SQL-procedure-statement is the only statement in the
procedure body, the statement must not end with a semicolon.

WRAPPED obfuscated-statement-text
Specifies the encoded definition of the function. A CREATE PROCEDURE statement can be encoded
using the WRAP scalar function.

WRAPPED must not be specified on a static CREATE statement, or a CREATE statement that adds or
replaces a version of an existing procedure.

Notes for CREATE PROCEDURE (SQL - native)
Considerations for all types of procedures

For considerations that apply to all types of procedures, see “CREATE PROCEDURE statement
(overview)” on page 1578.

Error handling in SQL procedures
You should consider the possible exceptions that can occur for each SQL statement in the body of a
procedure. Any exception SQLSTATE that is not handled within the procedure using a handler within a
compound statement results in the exception SQLSTATE being returned to the caller of the procedure.

Versions of a procedure
FL 507The CREATE PROCEDURE statement for an SQL procedure defines the initial version of
the procedure. You can define an additional version using the ADD VERSION clause of the ALTER
PROCEDURE statement, or the CREATE PROCEDURE statement with the OR REPLACE clause and the
VERSION clause when the procedure already exists. You can replace a version using the REPLACE
VERSION clause of the ALTER PROCEDURE, or the CREATE PROCEDURE statement with the OR
REPLACE clause and the VERSION clause when the procedure version already exists.

The data types, CCSID specifications and character data attributes (FOR BIT/SBCS/MIXED DATA) of
the parameters must be the same as the attributes of the corresponding parameters for the currently
active version of the procedure, unless the OR REPLACE is specified and the VERSION keyword is not
specified.

Important: Do not create additional versions of procedures that are supplied with Db2 by specifying
the VERSION keyword. Only versions that are supplied with Db2 are supported. Additional versions of
such routines cause the installation and configuration of the supplied routines to fail.

Considerations for an existing procedure that is defined using a TABLE LIKE name AS LOCATOR
clause

FL 507If an existing native SQL procedure is defined with a table parameter (the TABLE LIKE name AS
LOCATOR clause was specified in the original CREATE PROCEDURE statement to indicate that one of
the parameters is a transition table), the procedure cannot be changed with a CREATE PROCEDURE
statement to add or replace a version of the procedure. In this case, the procedure must be dropped
and re-created.

Characteristics of the package that is generated for a procedure
The package that is associated with the first version of a procedure is named as follows:

• location is set to the value of the CURRENT SERVER special register
• collection-id (schema) for the package is the same as the schema qualifier of the procedure.
• package-id is the same as the specific name of the procedure

Chapter 7. Statements 1631

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html

• version-id is the same as the version identifier for the initial version of the procedure.

If you want to change the collection-id for the name of the package, you need to make a copy of the
package.

The package is generated using the bind options that correspond to the implicitly or explicitly
specified procedure options. For more information, see the table in “Correspondence of procedure
options to BIND options” on page 1632. In addition to the corresponding bind options, the package is
generated using the following bind options:

• DBPROTOCOL(DRDA)
• FLAG(1)
• SQLERROR(NOPACKAGE)
• ENABLE(*)

Correspondence of procedure options to BIND options

The following table lists the corresponding bind command options for specific CREATE PROCEDURE
and ALTER PROCEDURE options. For more information about the bind options, see BIND and REBIND
options for packages, plans, and services (Db2 Commands).

Correspondence of procedure options to bind options

CREATE PROCEDURE or ALTER PROCEDURE
option

Bind commands option

ACCELERATION WAITFORDATA nnnn.m ACCELERATIONWAITFORDATA(nnnn.m)

ACCELERATOR accelerator-name ACCELERATOR(accelerator-name)

APPLICATION ENCODING SCHEME ASCII ENCODING(ASCII)

APPLICATION ENCODING SCHEME EBCDIC ENCODING(EBCDIC)

APPLICATION ENCODING SCHEME UNICODE ENCODING(UNICODE)

ARCHIVE SENSITIVE NO ARCHIVESENSITIVE(NO)

ARCHIVE SENSITIVE YES ARCHIVESENSITIVE(YES)

BUSINESS_TIME SENSITIVE NO BUSTIMESENSITIVE(NO)

BUSINESS_TIME SENSITIVE YES BUSTIMESENSITIVE(YES)

CURRENT DATA NO CURRENTDATA(NO)

CURRENT DATA YES CURRENTDATA(YES)

DEFER PREPARE DEFER(PREPARE)

NODEFER PREPARE NODEFER(PREPARE)

DEGREE 1 DEGREE(1)

DEGREE ANY DEGREE(ANY)

DYNAMICRULES RUN DYNAMICRULES(RUN)

DYNAMICRULES BIND DYNAMICRULES(BIND)

DYNAMICRULES DEFINEBIND DYNAMICRULES(DEFINEBIND)

DYNAMICRULES DEFINERUN DYNAMICRULES(DEFINERUN)

DYNAMICRULES INVOKEBIND DYNAMICRULES(INVOKEBIND)

DYNAMICRULES INVOKERUN DYNAMICRULES(INVOKERUN)

1632 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html

CREATE PROCEDURE or ALTER PROCEDURE
option

Bind commands option

GET_ACCEL_ARCHIVE NO GETACCELARCHIVE(NO)

GET_ACCEL_ARCHIVE YES GETACCELARCHIVE(YES)

ISOLATION LEVEL CS ISOLATION(CS)

ISOLATION LEVEL RS ISOLATION(RS)

ISOLATION LEVEL RR ISOLATION(RR)

ISOLATION LEVEL UR ISOLATION(UR)

OPTHINT string-constant OPTHINT(hint-id)

PACKAGE OWNER authorization-name OWNER(authorization-id)

QUALIFIER schema-name QUALIFIER(qualifier-name)

QUERY ACCELERATION NONE QUERYACCELERATION(NONE)

QUERY ACCELERATION ENABLE QUERYACCELERATION(ENABLE)

QUERY ACCELERATION ENABLE WITH FAILBACK QUERYACCELERATION(ENABLE WITH
FAILBACK)

QUERY ACCELERATION ELIGIBLE QUERYACCELERATION(ELIGIBLE)

QUERY ACCELERATION ALL QUERYACCELERATION(ALL)

RELEASE AT COMMIT RELEASE(COMMIT)

RELEASE AT DEALLOCATE RELEASE(DEALLOCATE)

REOPT ALWAYS REOPT(ALWAYS)

REOPT NONE REOPT(NONE)

REOPT ONCE REOPT(ONCE)

ROUNDING DEC_ROUND_CEILING ROUNDING(CEILING)

ROUNDING DEC_ROUND_DOWN ROUNDING(DOWN)

ROUNDING DEC_ROUNDING_FLOOR ROUNDING(FLOOR)

ROUNDING DEC_ROUNDING_HALF_DOWN ROUNDING(HALFDOWN)

ROUNDING DEC_ROUNDING_HALF_EVEN ROUNDING(HALFEVEN)

ROUNDING DEC_ROUNDING_HALF_UP ROUNDING(HALFUP)

ROUNDING DEC_ROUNDING_UP ROUNDING(UP)

SQL PATH path-specification PATH(path-specification)

SYSTEM_TIME SENSITIVE NO SYSTIMESENSITIVE(NO)

SYSTEM_TIME SENSITIVE YES SYSTIMESENSITIVE(YES)

VALIDATE BIND VALIDATE(BIND)

VALIDATE RUN VALIDATE(RUN)

WITH EXPLAIN EXPLAIN(YES)

WITHOUT EXPLAIN EXPLAIN(NO)

WITH IMMEDIATE WRITE IMMEDWRITE(YES)

Chapter 7. Statements 1633

CREATE PROCEDURE or ALTER PROCEDURE
option

Bind commands option

WITHOUT IMMEDIATE WRITE IMMEDWRITE(NO)

WITH KEEPDYNAMIC KEEPDYNAMIC(YES)

WITHOUT KEEPDYNAMIC KEEPDYNAMIC(NO)

Application compatibility level considerations for procedure objects
The application compatibility level controls the adoption and use of new capabilities and
enhancements. When an object is created or altered, two separate application compatibility levels
are used: one to process the definition of the object, and the other for processing the SQL statements
in the object body:

Object definition The CURRENT APPLICATION COMPATIBILITY special register value is
used to process the object definition, except for statements in the object
body

This application compatibility level is stored in the
SYSENVIRONMENT.APPLCOMPAT column. You can use the environment
ID value in the catalog definition of the object to locate the
SYSENVIRONMENT row with the matching ENVID value.

This application compatibility level can be changed when the object is
regenerated.

Statements in the
object body

The application compatibility level that is implicitly or explicitly specified
with the APPLCOMPAT option of the CREATE or ALTER statement is used to
process statements in the object body.

This application compatibility level is stored in the
SYSPACKAGE.APPLCOMPAT column for the package associated with the
object definition.

Considerations for SQL processor programs
SQL processor programs, such as SPUFI, the command line processor, and DSNTEP2, might
not correctly parse SQL statements that end with semicolons in the routine body of a CREATE
PROCEDURE statement. These processor programs accept multiple SQL statements as input, with
each statement separated with a terminator character. Processor programs that use a semicolon
as the SQL statement terminator can truncate a CREATE PROCEDURE statement with embedded
semicolons and pass only a portion of it to Db2. Therefore, you might need to change the SQL
terminator character for these processor programs. For more information, see Setting the SQL
terminator character in a SPUFI input data set (Db2 Application programming and SQL), and SQLTERM
in DSNTEP2 and DSNTEP4 sample programs (Db2 Application programming and SQL).

Identifier resolution
See Chapter 8, “SQL procedural language (SQL PL),” on page 2207 for information on how names are
resolved to columns, variables, or SQL parameters within an SQL routine.

If duplicate names are used for columns, variables, and parameters, qualify the duplicate names by
using the table designator for columns, the routine name for parameters, the label name for SQL
variables, and the schema name for global variables.

Lines within the SQL procedure definition
When an SQL procedure is created, information is retained on lines in the CREATE statement. Lines
are determined by the presence of the new line control character.

In an SQL procedure, a new line control character is a special character that is used for a new line. The
new line control characters for an SQL procedure include:

• Line feed

1634 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_setsqlterminator.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_setsqlterminator.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_dsntep24.html

• New line
• Carriage return
• Carriage return, followed by a line feed
• Carriage return, followed by a new line

For more information about control characters, see Tokens.

Stored procedures with a parameter that is defined as an array type
A procedure that is defined with a parameter that is an array type, other than an array global variable,
can be invoked only from within an SQL PL context, or from a Java application program that uses IBM
Data Server Driver for JDBC and SQLJ type 4 connectivity, unless the corresponding argument in the
CALL statement is an array global variable. If the corresponding argument in the CALL statement is an
array global variable, the procedure can be invoked outside an SQL PL context.

Obfuscated statements
A CREATE PROCEDURE statement for a native SQL procedure can be executed in obfuscated form.
In an obfuscated statement, only the procedure name, parameters, and the WRAPPED keyword
are readable. The rest of the statement is encoded in such a way that it is not readable but can
be decoded by a database server that supports obfuscated statements. The WRAP scalar function
produces obfuscated statements. Any debug options that are specified when the function is created
from an obfuscated statement are ignored.

Compatibilities
For compatibility with previous versions of Db2, the following clauses can be specified, but they will
be ignored and a warning will be issued:

• STAY RESIDENT
• PROGRAM TYPE
• RUN OPTIONS
• NO DBINFO
• COLLID or NOCOLLID
• SECURITY
• PARAMETER STYLE GENERAL WITH NULLS
• STOP AFTER SYSTEM DEFAULT FAILURES
• STOP AFTER nn FAILURES
• CONTINUE AFTER FAILURES
• PARAMETER VARCHAR

If the FENCED or EXTERNAL clause is specified, an external SQL procedure will be generated. See
“CREATE PROCEDURE statement (SQL - external procedure) (deprecated)” on page 1597 for more
information.

If WLM ENVIRONMENT is specified without the FOR DEBUG MODE keywords, and error is returned. If
WLM ENVIRONMENT is specified for a native SQL procedure, WLM ENVIRONMENT FOR DEBUG MODE
must be specified.

Alternative syntax and synonyms
To provide compatibility with previous releases of Db2 or other products in the Db2 family, Db2
supports the following alternative syntax:

• RESULT SET and RESULT SETS as synonyms for DYNAMIC RESULT SETS
• VARIANT as a synonym for NOT DETERMINISTIC
• NOT VARIANT as a synonym for DETERMINISTIC
• NULL CALL as a synonym for CALLED ON NULL

Chapter 7. Statements 1635

Examples for CREATE PROCEDURE (SQL - native)

Example 1

Create the definition for an SQL procedure. The procedure accepts an employee number and a
multiplier for a pay raise as input. The following tasks are performed in the procedure body:

• Calculate the employee's new salary.
• Update the employee table with the new salary value.

CREATE PROCEDURE UPDATE_SALARY_1
 (IN EMPLOYEE_NUMBER CHAR(10),
 IN RATE DECIMAL(6,2))
 LANGUAGE SQL
 MODIFIES SQL DATA
 UPDATE EMP
 SET SALARY = SALARY * RATE
 WHERE EMPNO = EMPLOYEE_NUMBER

Example 2

Create the definition for the SQL procedure described in example 1, but specify that the procedure
has these characteristics:

• The same input always produces the same output.
• SQL work is committed on return to the caller.

CREATE PROCEDURE UPDATE_SALARY_1
 (IN EMPLOYEE_NUMBER CHAR(10),
 IN RATE DECIMAL(6,2))
 LANGUAGE SQL
 MODIFIES SQL DATA
 DETERMINISTIC
 COMMIT ON RETURN YES
 UPDATE EMP
 SET SALARY = SALARY * RATE
 WHERE EMPNO = EMPLOYEE_NUMBER

Example 3:
Create the definition for an SQL procedure that uses arrays as IN and OUT parameters. The procedure
is named GETWEEKENDS. It accepts an array of DATE values as input, and returns an array that
contains only the dates that fall on a Saturday or Sunday. For example, if the input dates are a
Saturday, a Friday, and a Sunday, the procedure returns only the dates that fall on Saturday and
Sunday.

Suppose that the following user-defined array type has been defined:

CREATE TYPE DATEARRAY AS DATE ARRAY[100];

After the array type is created, any references to it need to specify the fully qualified user-defined
array type name. Otherwise, the schema for the type needs to be in the CURRENT PATH.

Suppose that the SQL procedure is defined like this:

CREATE PROCEDURE GETWEEKENDS(IN MYDATES DATEARRAY, OUT WEEKENDS DATEARRAY)
 BEGIN
 -- ARRAY INDEX VARIABLES
 DECLARE DATEINDEX, WEEKENDINDEX INT DEFAULT 1;
 -- VARIABLE TO STORE THE ARRAY LENGTH OF MYDATES,
 -- INITIALIZED USING THE CARDINALITY FUNCTION.
 DECLARE DATESCOUNT INT;
 SET DATESCOUNT = CARDINALITY(MYDATES);
 -- FOR EACH DATE IN MYDATES, IF THE DATE IS A SUNDAY OR SATURDAY,
 -- ADD IT TO THE OUTPUT ARRAY NAMED "WEEKENDS"
 WHILE DATEINDEX <= DATESCOUNT DO
 IF DAYOFWEEK(MYDATES[DATEINDEX]) IN (1, 7) THEN
 SET WEEKENDS[WEEKENDINDEX] = MYDATES[DATEINDEX];
 SET WEEKENDINDEX = WEEKENDINDEX + 1;
 END IF;

1636 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 SET DATEINDEX = DATEINDEX + 1;
 END WHILE;
 END

Also suppose that input array MYDATES contains the following content:

['2012-04-28', '2012-02-10','2012-03-18']

After the procedure returns, output array WEEKENDS contains the following content:

['2012-04-28', '2012-03-18']

Example 4
Create the definition for an SQL procedure that uses arrays as OUT parameters. The procedure is
named GET_PHONES. It returns an array that contains phone numbers for employee 1775. If more
than five phone numbers exist for the employee, an error is returned because the array is defined for
only five elements.

Suppose that the following user-defined array type and table have been defined:

CREATE TYPE PHONELIST AS DECIMAL(10, 0) ARRAY[5];
CREATE TABLE EMP_PHONES(ID INTEGER, PHONENUMBER DECIMAL(10,0));

The SQL procedure is defined like this:

CREATE PROCEDURE GET_PHONES(OUT EPHONES PHONELIST)
 BEGIN
 SELECT ARRAY_AGG(PHONENUMBER)
 INTO EPHONES
 FROM EMP_PHONES
 WHERE ID = 1775;
 END

For more examples of SQL procedures, see Chapter 8, “SQL procedural language (SQL PL),” on page 2207.

Related concepts
Routines in Db2 for z/OS: functions and procedures (Introduction to Db2 for z/OS)
Naming conventions
The rules for forming a name depend on the type of the object designated by the name.
Related tasks
Creating native SQL procedures (Db2 Application programming and SQL)
Migrating an external SQL procedure to a native SQL procedure (Db2 Application programming and SQL)

CREATE ROLE statement
The CREATE ROLE statement creates a role at the current server.

Invocation for CREATE ROLE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for CREATE ROLE
The privilege set that is defined below must include at least one of the following authorities:

• SYSADM authority
• SYSCTRL authority
• SECADM

Chapter 7. Statements 1637

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_routinesintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createnativesqlprocedure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_migrateexternalsptonativesp.html

Privilege set: If the statement is embedded in an application program, the privilege set is the set of
privileges that are held by the owner of the plan or package.

If the statement is dynamically prepared, the privilege set is the set of privileges that are held by the SQL
authorization ID of the process or by the role that is associated with the primary authorization ID, if the
statement is run in a trusted context and the ROLE AS OBJECT OWNER clause is specified.

Syntax for CREATE ROLE

CREATE ROLE role-name

Description for CREATE ROLE
role-name

Names the role. The name must not identify a role that exists at the current server. The name must
not begin with the characters 'SYS' and must not be 'DBADM', ‘NONE', 'NULL', 'PUBLIC', or 'SECADM'.

Examples for CREATE ROLE

The following statement creates a role named TELLER.

 CREATE ROLE TELLER;

Related concepts
Roles in a trusted context (Managing Security)
Managing access through authorization IDs and roles (Managing Security)
Naming conventions
The rules for forming a name depend on the type of the object designated by the name.

CREATE SEQUENCE statement
The CREATE SEQUENCE statement creates a sequence at the current server.

Invocation for CREATE SEQUENCE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for CREATE SEQUENCE
The privilege set that is defined below must include at least one of the following:

• The CREATEIN privilege on the schema
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The authorization ID that matches the schema name implicitly has the CREATEIN privilege on the
schema.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the of the owner of the plan or package. If the application is bound in a trusted context
with the ROLE AS OBJECT OWNER clause specified, a role is the owner. Otherwise, an authorization ID is
the owner.

1638 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_roles.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_idbasedobjectaccess.html

If the statement is dynamically prepared, the privilege set is the privileges that are held by the SQL
authorization ID of the process unless the process is within a trusted context and the ROLE AS OBJECT
OWNER clause is specified. In that case, the privileges set is the privileges that are held by the role that is
associated with the primary authorization ID of the process.

If the data type of the sequence is a distinct type, the privilege set must include the USAGE privilege on
the distinct type.

Syntax for CREATE SEQUENCE

CREATE SEQUENCE sequence-name

1

AS

INTEGER

data-type

START WITH numeric-constant

INCREMENT BY 1

INCREMENT BY numeric-constant

NO MINVALUE

MINVALUE numeric-constant

NO MAXVALUE

MAXVALUE numeric-constant

NO CYCLE

CYCLE

CACHE 20

NO CACHE

CACHE integer-constant

NO ORDER

ORDER

Notes:
1 The same clause must not be specified more than once. Separator commas can be specified between
sequence attributes when a sequence is defined.

data-type:

built-in-type

distinct-type-name

built-in-type:

Chapter 7. Statements 1639

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

Description for CREATE SEQUENCE
sequence-name

Names the sequence. The name, including the implicit or explicit qualifiers, must not identify an
existing sequence at the current server, including the sequence names that are generated by Db2.

The schema name must not begin with 'SYS' unless the schema name is 'SYSADM'.

AS data-type
Specifies the data type to be used for the sequence value. The data type can be any exact numeric
data type (SMALLINT, INTEGER, BIGINT, or DECIMAL with a scale of zero), or a user-defined distinct
type for which the source type is an exact numeric data type with a scale of zero. The default, when AS
is not specified, is INTEGER. If DECIMAL is specified, the default is DECIMAL(5,0).

START WITH numeric-constant
Specifies the first value for the sequence. The value can be any positive or negative value that could
be assigned to the a column of the data type that is associated with the sequence without non-zero
digits existing to the right of the decimal point.

If the START WITH clause is not explicitly specified with a value, the default is the MINVALUE for
ascending sequences and MAXVALUE for descending sequences.

This value is not necessarily the value that a sequence would cycle to after reaching the maximum or
minimum value of the sequence. The START WITH clause can be used to start a sequence outside the
range that is used for cycles. The range used for cycles is defined by MINVALUE and MAXVALUE.

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the sequence. The value can be any positive or
negative value (including 0) that could be assigned to a column of the data type that is associated with
the sequence without any non-zero digits existing to the right of the decimal point. The default is 1.

If INCREMENT BY is positive, the sequence ascends. If INCREMENT BY is negative, the sequence
descends. If INCREMENT is 0, the sequence is treated as an ascending sequence.

The absolute value of INCREMENT BY can be greater than the difference between MAXVALUE and
MINVALUE.

MINVALUE or NO MINVALUE
Specifies the minimum value at which a descending sequence either cycles or stops generating values
or an ascending sequence cycles to after reaching the maximum value. The default is NO MINVALUE.
MINVALUE numeric-constant

Specifies the minimum end of the range of values for the sequence. The last value that is
generated for a cycle of a descending sequence will be equal to or greater than this value.
MINVALUE is the value to which an ascending sequence cycles to after reaching the maximum
value.

The value can be any positive or negative value that could be assigned to the a column of the
data type that is associated with the sequence without non-zero digits existing to the right of the
decimal point. The value must be less than or equal to the maximum value.

1640 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

For the effects of defining MINVALUE and MAXVALUE with the same value, see “Defining a
constant sequence” on page 1643.

NO MINVALUE
Specifies that the minimum end point of the range of values for the sequence has not been
specified explicitly. In such a case, the default value for MINVALUE becomes one of the following:

• For an ascending sequence, the value is the START WITH value or 1 if START WITH is not
specified.

• For a descending sequence, the value is the minimum value of the data type that is associated
with the sequence.

MAXVALUE or NO MAXVALUE
Specifies the maximum value at which an ascending sequence either cycles or stops generating
values or an descending sequence cycles to after reaching the minimum value. The default is NO
MAXVALUE.
MAXVALUE numeric-constant

Specifies the maximum end of the range of values for the sequence. The last value that is
generated for a cycle of an ascending sequence will be less than or equal to this value. MAXVALUE
is the value to which a descending sequence cycles to after reaching the minimum value.

The value can be any positive or negative value that could be assigned to the a column of the
data type that is associated with the sequence without non-zero digits existing to the right of the
decimal point. The value must be greater than or equal to the minimum value.

For the effects of defining MAXVALUE and MINVALUE with the same value, see “Defining a
constant sequence” on page 1643.

NO MAXVALUE
Specifies the maximum end point of the range of values for the sequence has not been specified
explicitly. In such a case, the default value for MAXVALUE becomes one of the following:

• For an ascending sequence, the value is the maximum value of the data type that is associated
with the sequence.

• For a descending sequence, the value is the START WITH value or -1 if START WITH is not
specified.

To find the maximum possible value for a given data type, see Appendix A, “Limits in Db2 for z/OS,” on
page 2247.

CYCLE or NO CYCLE
Specifies whether or not the sequence should continue to generate values after reaching either its
maximum or minimum value. The boundary of the sequence can be reached either with the next value
landing exactly on the boundary condition or by overshooting it. The default is NO CYCLE.
CYCLE

Specifies that the sequence continue to generate values after either the maximum or minimum
value has been reached. If this option is used, after an ascending sequence reaches its maximum
value, it generates its minimum value. After a descending sequence reaches its minimum value, it
generates its maximum value. The maximum and minimum values for the sequence defined by the
MINVALUE and MAXVALUE options determine the range that is used for cycling.

When CYCLE is in effect, duplicate values can be generated by the sequence. When a sequence
is defined with CYCLE, any application conversion tools for converting applications from other
vendor platforms to Db2 should also explicitly specify MINVALUE, MAXVALUE, and START WITH
values.

NO CYCLE
Specifies that the sequence cannot generate more values once the maximum or minimum value
for the sequence has been reached. The NO CYCLE option (the default) can be altered to CYCLE at
any time during the life of the sequence.

Chapter 7. Statements 1641

When the next value is being generated for a sequence if the maximum value (for an ascending
sequence) or the minimum value (for a descending sequence) of the logical range of the sequence
is exceeded and the NO CYCLE option is in effect, an error occurs.

CACHE or NO CACHE
Specifies whether or not to keep some preallocated values in memory for faster access. This is a
performance and tuning option.
CACHE integer-constant

Specifies the maximum number of values of the sequence that Db2 can preallocate and keep in
memory. Preallocating values in the cache reduces synchronous I/O when values are generated
for the sequence. The actual number of values that Db2 caches is always the lesser of the number
in effect for the CACHE option and the number of remaining values within the logical range. Thus,
the CACHE value is essentially an upper limit for the size of the cache.

The minimum value is 2. The default is CACHE 20.

In a non-data sharing environment, if the system is shut down (either normally or through a
system failure), all cached sequence values that have not been used in committed statements are
lost (that is, they will never be used). The value specified for the CACHE option is the maximum
number of sequence values that could be lost when the system is shut down.

In a data sharing environment, you can use the CACHE and NO ORDER options to allow multiple
Db2 members to cache sequence values simultaneously.

NO CACHE
Specifies that values of the sequence are not to be preallocated. This option ensures that there is
not a loss of values in the case of a system failure. When NO CACHE is specified, the values of the
sequence are not stored in the cache. In this case, every request for a new value for the sequence
results in synchronous I/O to the log.

ORDER or NO ORDER
Specifies whether the sequence numbers must be generated in order of request. The default is NO
ORDER.
ORDER

Specifies that the sequence numbers are generated in order of request.

In a non-data sharing environment, there is no guarantee that values are assigned in order across
the entire server unless NO CACHE is also specified. ORDER applies only to a single-application
process.

In a data sharing environment, if ORDER is specified, NO CACHE is implicitly set, even if CACHE
integer-constant is specified.

NO ORDER
Specifies that the sequence numbers do not need to be generated in order of request.

In a data sharing environment, if the NO ORDER and CACHE integer-constant options are in effect,
multiple caches can be active simultaneously, and the requests for next value assignments from
different Db2 members might not result in the assignment of values in strict numeric order. For
example, if members DB2A and DB2B are using the same sequence, and DB2A gets the cache
values 1 to 20 and DB2B gets the cache values 21 to 40, the actual order of values assigned would
be 1, 21, 2 if DB2A requested the next value first, then DB2B requested, and then DB2A again
requested. Therefore, to guarantee that sequence numbers are generated in strict numeric order
among multiple Db2 members using the same sequence concurrently, specify the ORDER option.

Notes for CREATE SEQUENCE
Owner privileges

The owner is authorized to change (ALTER privilege) or use (USAGE privilege) the sequence and
grant others these privileges. See “GRANT statement (sequence privileges)” on page 1979. For more
information about ownership of the object see “Authorization, privileges, permissions, masks, and
object ownership” on page 90.

1642 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Relationship of MINVALUE and MAXVALUE
MINVALUE must not be greater than MAXVALUE. Although MINVALUE is typically less than
MAXVALUE, MINVALUE can equal MAXVALUE. If START WITH were the same value as MINVALUE and
MAXVALUE, the sequence would be constant. The request for the next value in a constant sequence
appears to have no effect because all of the values that are generated by the sequence are in fact the
same value.

Defining sequences that cycle

When you define a sequence, you can choose to have it cycle automatically or not when the maximum
or minimum value for the sequence has been reached.

• Implicitly or explicitly defining a sequence with NO CYCLE causes the sequence to not cycle
automatically after the boundary is reached. However, you can use the ALTER SEQUENCE statement
to cycle the sequence manually. ALTER SEQUENCE allows you to restart or extend the sequence,
which causes sequence values to continue to be generated.

• Explicitly defining a sequence with CYCLE causes the sequence to cycle automatically after the
boundary is reached. Sequence values continue to be generated after the sequence cycles.

When a sequence is defined to cycle automatically, the maximum or minimum value that is
generated for a sequence might not be the actual MAXVALUE or MINVALUE value that is specified if
the increment is a value other than 1 or -1. For example, the sequence defined with START WITH=1,
INCREMENT=2, MAXVALUE=10 will generate a maximum value of 9, and will not generate the value
10.

When a sequence is defined with CYCLE, any application conversion tools (for converting
applications from other vendor platforms to Db2) should also explicitly specify MINVALUE,
MAXVALUE, and START WITH.

Defining a constant sequence

You can define a sequence such that it always returns the same (or a constant) value. To create a
constant sequence, use either of these techniques when defining the sequence:

• Specify an INCREMENT value of zero and a START WITH value that does not exceed MAXVALUE.
Use this option in most cases, and especially if the constant sequence is used often, such as for
transaction workloads.

• Specify the same value for START WITH, MINVALUE, and MAXVALUE, and specify CYCLE. This option
requires more log write activity and can result in longer wait times, especially if the sequence is
used often.

A constant sequence can be used as a numeric global variable. You can use ALTER SEQUENCE to
adjust the values that are generated for a constant sequence.

Consumed values of a sequence
After Db2 generates a value for a sequence, that value can be said to be "consumed" regardless of
whether or not that value is used by the application or not. The value is not reused within the current
cycle. A consumed value might not be used when the statement that caused the value to be generated
fails for some reason or is rolled back after the value was generated. Generated but unused values
can constitute gaps in a sequence.

Gaps in a sequence

Consecutive values in a sequence differ by the constant INCREMENT BY value specified for the
sequence. However, gaps can occur in the values that are assigned to a sequence object by Db2.

The following situations are some examples of how gaps can be introduced in the sequence values:

• A transaction has advanced the sequence and then rolls back.
• The SQL statement leading to the generation of the next value fails after the value was generated.
• The NEXT VALUE expression is used in the SELECT statement of a cursor in a DRDA environment

where the client uses block-fetch and not all retrieved rows are fetched by the application.
• The sequence is altered and then the alteration is rolled back.

Chapter 7. Statements 1643

• The sequence (or an identity column table) is dropped and then the drop is rolled back.
• The SYSIBM.SYSSEQ table space is stopped or closed for any reason (including when DSMAX is

reached)
• The Db2 subsystem is stopped or goes down

Values of such gaps are not available for the current cycle, unless the sequence is altered and
restarted in a specific way to make them available.

A sequence is incremented independently of a transaction. Thus, a given transaction increments
the sequence two times might see a gap in the two numbers that it receives if other transactions
concurrently increment the same sequence. Most applications can tolerate these instances as these
are not really gaps.

Duplicate sequence values
It is possible the duplicate values can be generated for a sequence. Duplicate values are most likely
to occur when a sequence is defined with the CYCLE option, is defined as a constant sequence, or is
altered. For example, the following situations could cause duplicate sequence values:

• A sequence is defined with the attributes START WITH=2, INCREMENT BY 2, MINVALUE=2,
MAXVALUE=10, and CYCLE.

• The ALTER SEQUENCE statement is used to restart the sequence with a value that has already been
generated.

• The ALTER SEQUENCE statement is used to reverse the ascending direction of a sequence by
changing the INCREMENT BY value from a positive to a negative.

Using sequences

A sequence can be referenced using a sequence-reference. A sequence reference can appear in most
places that an expression can appear. A sequence reference can specify whether the value to be
returned is a newly generated value or the previously generated value. A NEXT VALUE sequence
expression is used to generate a new value. A PREVIOUS VALUE sequence expression is used to
obtain the last assigned value of a sequence. For more information, see “Sequence reference” on
page 292.

Alternative syntax and synonyms

To provide compatibility with previous releases of Db2 or other products in the Db2 family, Db2
supports the following keywords:

• NOMINVALUE (single key word) as a synonym for NO MINVALUE
• NOMAXVALUE (single key word) as a synonym for NO MAXVALUE
• NOCYCLE (single key word) as a synonym for NO CYCLE
• NOCACHE (single key word) as a synonym for NO CACHE
• NOORDER (single key word) as a synonym for NO ORDER

Examples for CREATE SEQUENCE
Example 1

Create a sequence names "org_seq" that starts at 1 increments by 1, does not cycle, and caches 24
values at a time:

 CREATE SEQUENCE ORDER_SEQ
 START WITH 1
 INCREMENT BY 1
 NO MAXVALUE
 NO CYCLE
 CACHE 24;

INCREMENT 1, NO MAXVALUE, and NO CYCLE are defaults and do not need to be specified.

1644 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 2
The following example shows how to create and use a sequence named "order_seq" in a table named
"orders":

 CREATE SEQUENCE ORDER_SEQ
 START WITH 1
 INCREMENT BY 1
 NO MAXVALUE
 NO CYCLE
 CACHE 20;
 INSERT INTO ORDERS (ORDERNO, CUSTNO)
 VALUES (NEXT VALUE FOR ORDER_SEQ, 123456);

or to update the orders:

 UPDATE ORDERS
 SET ORDERNO = NEXT VALUE FOR ORDER_SEQ
 WHERE CUSTNO = 123456;

Example 3
The following example shows how to use the same sequence number as a unique key value in two
separate tables by referencing the sequence number with a NEXT VALUE expression for the first row
to generate the sequence value and with a PREVIOUS VALUE expression for the other rows to refer to
the sequence value most recently generated.

 INSERT INTO ORDERS (ORDERNO, CUSTNO)
 VALUES (NEXT VALUE FOR ORDER_SEQ, 123456);
 INSERT INTO LINE_ITEMS (ORDERNO, PARTNO, QUANTITY)
 VALUES (PREVIOUS VALUE FOR ORDER_SEQ, 987654, 100);

If NEXT VALUE is invoked in the same statement as the PREVIOUS VALUE, then regardless of their
order in the statement, PREVIOUS VALUE returns the previous (unincremented) value and NEXT
VALUE returns the next value.

Related concepts
Sequences (Introduction to Db2 for z/OS)
Sequence objects (Db2 Application programming and SQL)
Naming conventions
The rules for forming a name depend on the type of the object designated by the name.

CREATE STOGROUP statement
The CREATE STOGROUP statement creates a storage group at the current server. Storage from the
identified volumes can later be allocated for table spaces and index spaces.

Invocation for CREATE STOGROUP
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for CREATE STOGROUP
The privilege set that is defined below must include at least one of the following:

• The CREATESG privilege
• SYSADM or SYSCTRL authority
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the of the owner of the plan or package. If the application is bound in a trusted context
with the ROLE AS OBJECT OWNER clause specified, a role is the owner. Otherwise, an authorization ID is
the owner.

Chapter 7. Statements 1645

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sequences.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_sequenceobject.html

If the statement is dynamically prepared, the privilege set is the privileges that are held by the SQL
authorization ID of the process unless the process is within a trusted context and the ROLE AS OBJECT
OWNER clause is specified. In that case, the privileges set is the privileges that are held by the role that is
associated with the primary authorization ID of the process.

Syntax for CREATE STOGROUP

CREATE STOGROUP stogroup-name

VOLUMES (

,
1

1
 volume-id

,

'*'

)

VCAT catalog-name

DATACLAS  dc-name MGMTCLAS  mc-name STORCLAS  sc-name

NO KEY LABEL

KEY LABEL key-label-name

Notes:
1 The same volume-id must not be specified more than once.

Description for CREATE STOGROUP
stogroup-name

Names the storage group. The name must not identify a storage group that exists at the current
server.

VOLUMES(volume-id,...) or VOLUMES('*',...)
Defines the volumes of the storage group. Each volume-id is a volume serial number of a storage
volume. The volume serial number can have a maximum of six characters and is specified as an
identifier or a string constant.

If the data set that is associated with the storage group is not managed by Storage Management
Subsystem (SMS), VOLUMES must be specified. Asterisks are recognized only by SMS. SMS usage
is recommended, rather than using Db2 to allocate data to specific volumes. Having Db2 select the
volume requires non-SMS usage or assigning an SMS Storage Class with guaranteed space. However,
because guaranteed space reduces the benefits of SMS allocation, it is not recommended. If one or
more of the DATACLAS, MGMTCLAS, or STORCLAS clauses are specified, VOLUMES can be omitted. If
the VOLUMES clause is omitted, the volume selection is controlled by SMS.

If you do choose to use specific volume assignments, additional manual space management must be
performed. Free space must be managed for each individual volume to prevent failures during the
initial allocation and extension. This process generally requires more time for space management and
results in more space shortages. Guaranteed space should be used only where the space needs are
relatively small and do not change.

VCAT catalog-name
Identifies the integrated catalog facility catalog for the storage group. The designated catalog is the
one in which entries are placed for the data sets created by Db2 with the aid of the storage group, for
associated table or index spaces or for their partitions. For each such space or partition, association

1646 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

is made through a USING clause in a CREATE TABLESPACE, CREATE INDEX, ALTER TABLESPACE, or
ALTER INDEX statement. For more on the association, see the descriptions of those statements.

The data sets are VSAM linear data sets cataloged in the integrated catalog facility catalog that
catalog-name identifies. For more information about catalog-name values, see “Naming conventions
in SQL” on page 79.

More than one Db2 subsystem can share the integrated catalog facility catalogs with the current
server. To avoid the chance of those subsystems attempting to assign the same name to different data
sets, specify a catalog-name value that is not used by the other Db2 subsystems.

DATACLAS dc-name
Identifies the name of the SMS data class to associate with the Db2 storage group. The SMS data class
name must be from 1-8 characters in length. The SMS storage administrator defines the data class
that can be used. DATACLAS must not be specified more than one time.

MGMTCLAS mc-name
Identifies the name of the SMS management class to associate with the Db2 storage group. The
SMS management class name must be from 1-8 characters in length. The SMS storage administrator
defines the management class that can be used. MGMTCLAS must not be specified more than one
time.

STORCLAS sc-name
Identifies the name of the SMS storage class to associate with the Db2 storage group. The SMS
storage class name must be from 1-8 characters in length. The SMS storage administrator defines the
storage class that can be used. STORCLAS must not be specified more than one time.

FL 502 KEY LABEL key-label-name or NO KEY LABEL
Specifies whether a key label is specified at the storage group level for encryption.
KEY LABEL key-label-name

Specifies the key label that is used to encrypt any data set allocated for the table spaces and index
spaces using the storage group.

The key label must be defined in ICSF. The Db2 address space RACF user ID or group must be
permitted access to the key label in RACF.

The key label can be overridden when the data set is allocated. For details about the order of
precedence, see Notes.

NO KEY LABEL
Indicates that there is no key label specified at the storage group level for encryption.

Notes for CREATE STOGROUP
Device types

When the storage group is used at run time, an error can occur if the volumes in the storage group are
of different device types, or if a volume is not available to z/OS for dynamic allocation of data sets.

When a storage group is used to extend a data set, all volumes in the storage group must be of the
same device type as the volumes used when the data set was defined. Otherwise, an extend failure
occurs if an attempt is made to extend the data set.

Number of volumes
There is no specific limit on the number of volumes that can be defined for a storage group. However,
the maximum number of volumes that can be managed for a storage group is 133.

z/OS imposes a limit on the number of volumes that can be allocated per data set (currently, 59
volumes). For the latest information on that restriction, see z/OS DFSMS Access Method Services for
Catalogs.

Storage group owner
If the statement is embedded in an application program, the owner of the plan or package is the
owner of the storage group. If the statement is dynamically prepared, the SQL authorization ID of the

Chapter 7. Statements 1647

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html

process is the owner of the storage group. The owner has the privilege of altering and dropping the
storage group.

Specifying volume IDs
A new storage group must have either specific volume IDs or non-specific volume IDs. You cannot
create a storage group that contains a mixture of specific and non-specific volume IDs.

Verifying the existence of volumes and classes

When processing the VOLUMES, DATACLAS, MGMTCLAS, or STORCLAS clauses, Db2 does not check
the existence of the volumes or classes or determine the types of devices that are identified or if
SMS is active. Later, when the storage group allocates data sets, the list of volumes is passed to Data
Facilities (DFSMSdfp) in the physical order of the rows in the SYSIBM.SYSVOLUMES catalog table. For
more information, see Implementing Db2 storage groups (Db2 Administration Guide).

Key label requirement
To use a key label for encryption, the VSAM data sets for the page sets need to be associated with an
SMS Data Class that has extended format capability (EF enabled).

Determining a key label for base table space and associated objects
When a key label is specified at the table level, Db2 provides the key label to DFSMS to encrypt all
the table spaces and index spaces associated with the table. This includes base table space, auxiliary
table spaces, XML table spaces, index spaces, and clone table space, regardless of whether the base
table space or associated objects are explicitly or implicitly created. Db2 does not enforce any key
label relationship between the base table and an associated history or archive table. The key label for
the archive and the history tables has to be set independent of the base table. If there is no key label
specified at the table level, Db2 will provide the key label to DFSMS specified for the storage group.

When Db2 calls DFSMS to allocate the dataset for table space or index space, DFSMS uses its order of
precedence to determine the key label and can override the key label specified by Db2.

DFSMS order of precedence:

• RACF data set profile
• JCL, dynamic allocation, TSO ALLOCATE
• SMS data class construct

If the security administrator has specified a key label for the RACF data set profile, that key label takes
precedence over the Db2 provided key label. The REPORT utility can be run to determine the key label
used for encryption.

Examples for CREATE STOGROUP

Example 1
Create storage group, DSN8G120, of volumes ABC005 and DEF008. DSNCAT is the integrated catalog
facility catalog name.

 CREATE STOGROUP DSN8G120
 VOLUMES (ABC005,DEF008)
 VCAT DSNCAT;

Example 2
Create storage group DSNCG100 with key label, STG01KLABEL.

 CREATE STOGROUP DSNCG100
 VOLUMES (ABC001,DEF003) VCAT DSNCAT
 KEY LABEL STG01KLABEL;

Related concepts
Db2 storage groups (Introduction to Db2 for z/OS)
Naming conventions

1648 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_storagegroupimplementation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_stogroups.html

The rules for forming a name depend on the type of the object designated by the name.
Related tasks
Creating Db2 storage groups (Db2 Administration Guide)

CREATE SYNONYM statement (unsupported)
The CREATE SYNONYM statement is unsupported in application compatibility level V12R1M504 and
higher. Use CREATE ALIAS statements instead.

Unsupported function: FL 504 Beginning in Db2 12, packages bound with APPLCOMPAT(V12R1M504)
or higher cannot issue CREATE SYNONYM statements. Although there are some differences, you can
use aliases instead. Unlike synonyms, aliases behave the same for all Db2 family products. For more
information about aliases, see Aliases (Introduction to Db2 for z/OS) and “CREATE ALIAS statement” on
page 1415. Existing synonyms remain supported, but support might be removed in the future.

Invocation for CREATE SYNONYM
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for CREATE SYNONYM
None required.

Syntax for CREATE SYNONYM

CREATE SYNONYM synonym FOR authorization-name . table-name

view-name

Description for CREATE SYNONYM
synonym

Names the synonym. The name must not identify a synonym, table, view, or alias that exists at the
current server and that is owned by the owner of the synonym that is being created and must not
identify a table that exists in the SYSIBM.SYSPENDINGOBJECTS catalog table. The unqualified name
must not be the same as an existing synonym.

FOR authorization-name.table-name or authorization-name.view-name
Identifies the object to which the synonym applies. The name must consist of two parts and must
identify a table, view, or alias that exists at the current server. If a table is identified, it must not be
an auxiliary table or a declared temporary table. If an alias is identified, it must be an alias for a table
or view at the current server and the synonym is defined for that table or view. The name must not
identify a table that was implicitly created for an XML column, or an accelerator-only table.

Notes for CREATE SYNONYM
Owner privileges: There are no specific privileges on a synonym.

The owner of the synonym is determined as follows:

• If the CURRENT SCHEMA special register contains a value that is not the same as the CURRENT SQLID
special register, the owner of the synonym is the value of the CURRENT SCHEMA special register.

• Otherwise, the owner of the schema is the value of the CURRENT SQLID special register.

For more information about ownership of an object, see “Authorization, privileges, permissions, masks,
and object ownership” on page 90.

Chapter 7. Statements 1649

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createstoragegroups.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_aliases.html

If an alias is used to denote the table or view, the name of that table or view, not the alias, is recorded in
the catalog as the definition of the synonym. That severs the connection between the synonym and alias,
and even if the alias is dropped and redefined, the synonym is still in effect and names the original table
or view.

Example for CREATE SYNONYM

Define DEPT as a synonym for the table DSN8C10.DEPT.

 CREATE SYNONYM DEPT
 FOR DSN8C10.DEPT;

CREATE TABLE statement
The CREATE TABLE statement defines a table. The definition must include its name and the names and
attributes of its columns. The definition can include other attributes of the table, such as its primary key
and its table space.

Invocation for CREATE TABLE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for CREATE TABLE
The privilege set that is defined below must include at least one of the following:

• The CREATETAB privilege for the database explicitly specified by the IN clause.

If the IN clause is not specified, the CREATETAB privilege on database DSNDB04 is required.
• DBADM, DBCTRL, or DBMAINT authority for the database explicitly specified by the IN clause. If the IN

clause is not specified, DBADM, DBCTRL, or DBMAINT authority for database DSNDB04 is required.
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

If the table space is created implicitly, the privilege set that is defined below must include at least one of
the following:

• The CREATETS privilege for the database explicitly specified by the IN clause.

If the IN clause is not specified, the CREATETS privilege on database DSNDB04 is required.
• DBADM, DBCTRL, or DBMAINT authority for the database explicitly specified by the IN clause. If the IN

clause is not specified, DBADM, DBCTRL, or DBMAINT authority for database DSNDB04 is required.
• SYSADM or SYSCTRL authority
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The privilege set must also have the USE privilege for the following objects:

• For the table space if one is specified in the IN clause
• For the default buffer pool and default storage group of the database if a database is specified in the IN

clause

If you specify a table space name, you must also have the SYSADM or SYSCTRL authority or the DBADM
authority for the database.

For tables that are created in an implicit database, the database authority must be held on DSNDB04.

1650 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Additional privileges might be required in the following conditions:

• The clause IN, LIKE or FOREIGN KEY is specified.
• The data type of a column is a distinct type.
• The table space is implicitly created.
• A fullselect is specified.
• A column is defined as a security label column.

Privilege set: See the description of the appropriate clauses for details about these privileges.

If the statement is embedded in an application program, the privilege set is the privileges that are held by
the owner of the package.

If the application is bound in a trusted context with the ROLE AS OBJECT OWNER clause specified:

• A role is the owner of the table that is being created
• The privilege set is the set of privileges that are held by that role
• The schema qualifier (implicit or explicit) must be the same as the role, unless the role has the

CREATEIN privilege on the schema, or SYSADM, SYSCTRL, or system DBADM authority

Otherwise, an authorization ID is the owner of the package, and the following rules apply:

• If the privilege set lacks the CREATEIN privilege on the schema, SYSADM authority, SYSCTRL authority,
and System DBADM authority, the schema qualifier (implicit or explicit) must be the same as the
authorization ID of the owner of the package.

• If the privilege set lacks SYSADM authority, SYSCTRL authority, and System DBADM authority, and the
table is explicitly qualified, the authorization ID that is the same as the schema name must have all the
necessary privileges to create the table, and that authorization ID is the owner of the table. Otherwise,
the authorization ID of the owner of the package must have all the necessary privileges to create the
table, and that authorization ID is the owner of the table.

• If the privilege set includes SYSADM authority, SYSCTRL authority, or system DBADM authority, the
schema qualifier (implicit or explicit) can be any schema name. However, if the table is explicitly
qualified, the authorization ID that is the same as the schema name is the owner of the table.
Otherwise, the authorization ID of the owner of the package is the owner of the table.

• If the privilege set includes DBADM authority and DBCTRL authority for the database, the schema
qualifier (implicit or explicit) can be any schema name. However, if the table is explicitly qualified,
the authorization ID that is the same as the schema name is the owner of the table. Otherwise, the
authorization ID of the owner of the package is the owner of the table.

If the statement is dynamically prepared, the privilege set is the privileges that are held by the SQL
authorization ID of the process unless the process is within a trusted context and the ROLE AS OBJECT
OWNER clause is in effect. When ROLE AS OBJECT OWNER is in effect, the privileges set is the privileges
that are held by the role that is associated with the primary authorization ID of the process, and the owner
of the table is that role. The schema qualifier (implicit or explicit) must be the same as that role, unless
the role has CREATEIN privilege on the schema, or SYSADM authority, SYSCTRL authority, or System
DBADM authority.

For the case where the SQL authorization ID of the process holds the privileges, the following rules apply:

• If the privilege set lacks CREATEIN privilege on the schema, SYSADM authority, SYSCTRL authority, and
System DBADM authority, the schema qualifier must be the same as one of the authorization IDs of the
process.

• If the privilege set lacks SYSADM authority, SYSCTRL authority, and System DBADM authority, and the
table is explicitly qualified, then the authorization ID that is the same as the schema name must have
all the necessary privileges to create the table, and that authorization ID is the owner of the table.
Otherwise, the SQL authorization ID of the process must include all privileges that are needed to create
the table, and that authorization ID is the owner of the table.

• If the privilege set includes SYSADM authority, SYSCTRL authority, or System DBADM authority, the
schema qualifier can be any schema name. However, if the table is explicitly qualified, then the

Chapter 7. Statements 1651

authorization ID that is the same as the schema name is the owner of the table. Otherwise, the SQL
authorization ID of the process is the owner of the table.

Syntax for CREATE TABLE

CREATE TABLE table-name (

,

column-definition

period-definition

unique-constraint

referential-constraint

check-constraint

)

LIKE table-name

view-name copy-options

as-result-table

copy-options

materialized-query-definition

1

IN

database-name .

 table-space-name

IN DATABASE database-name

IN ACCELERATOR accelerator-name

partitioning-clause

organization-clause
2

EDITPROC program-name
WITH ROW ATTRIBUTES

WITHOUT ROW ATTRIBUTES

VALIDPROC program-name

AUDIT NONE

AUDIT CHANGES

AUDIT ALL

OBID integer

DATA CAPTURE NONE

DATA CAPTURE CHANGES

WITH RESTRICT ON DROP

CCSID ASCII

EBCDIC

UNICODE

NOT VOLATILE
CARDINALITY

VOLATILE
CARDINALITY

LOGGED

NOT LOGGED

imptscmp-parameter
3

COMPRESS NO

COMPRESS YES

COMPRESS YES FIXEDLENGTH

COMPRESS YES HUFFMAN

APPEND

NO

YES

impdssize-parameter
4

DSSIZE integer G

tbsbp-parameter
5

BUFFERPOOL bpname

MEMBER CLUSTER

TRACKMOD imptkmod-parameter
6

TRACKMOD YES

TRACKMOD NO

PAGENUM pageset_pagenum-parameter
7

PAGENUM RELATIVE
8

PAGENUM ABSOLUTE

NO KEY LABEL

KEY LABEL key-label-name

Notes:

1652 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

1 The same clause must not be specified more than once.
2 FL 504 Hash-organized tables are deprecated. Beginning in Db2 12, packages bound with
APPLCOMPAT(V12R1M504) or higher cannot create hash-organized tables or alter existing tables to use
hash-organization. Existing hash organized tables remain supported, but they are likely to be unsupported in
the future.
3 The IMPTSCMP subsystem parameter specifies the default value. See USE DATA COMPRESSION field
(IMPTSCMP subsystem parameter) (Db2 Installation and Migration).
4 The IMPDSSIZE subsystem parameter specifies the default value. See IMPDSSIZE in macro DSN6SYSP
(Db2 Installation and Migration).
5 The TBSBPOOL, TBSBP8K, TBSBP16K, or TBSBP32K subsystem parameter determines the default value.
See DSNTIP2: Buffer pool sizes panel 2 (Db2 Installation and Migration).
6 The IMPTKMOD subsystem parameter specifies the default value. See IMPTKMOD in macro DSN6SYSP
(Db2 Installation and Migration).
7 See PAGE SET PAGE NUMBERING field (PAGESET_PAGENUM subsystem parameter) (Db2 Installation and
Migration).
8 PAGENUM RELATIVE is allowed only if a partitioning clause is specified.

column-definition:

column-name data-type
1

2

NOT NULL

generated-clause

column-constraint

WITH
DEFAULT

constant

SESSION_USER

USER

CURRENT SQLID

NULL
3

cast-function-name (constant

SESSION_USER

USER

CURRENT SQLID

NULL

)

FIELDPROC program-name

(

,

constant)

AS SECURITY LABEL
4

IMPLICITLY HIDDEN

INLINE LENGTH integer
5

Notes:
1 Data type is optional if as-row-change-timestamp-clause is specified
2 The same clause must not be specified more than one time.

Chapter 7. Statements 1653

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_imptscmp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_imptscmp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_impdssize.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_impdssize.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntip2.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_imptkmod.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_imptkmod.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_pagesetpagenum.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_pagesetpagenum.html

3 The cast-function-name form of the DEFAULT value can only be used with a column that is defined as a
distinct type.
4 AS SECURITY LABEL can be specified only for a CHAR(8) data type and requires that the NOT NULL and
WITH DEFAULT clauses be specified.
5 INLINE LENGTH only applies to a column with a LOB data type or a distinct type that is based on a LOB
data type.

data-type:

built-in-type

distinct-type-name

built-in-type:

1654 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

FOR SBCS

MIXED

BIT

DATA

CCSID 1208
1

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) FOR SBCS

MIXED

BIT

DATA

CCSID 1208
1

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID 1200
1

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

ROWID

XML

(XML-type-modifier)

Notes:
1 The CCSID clause must only be specified for a character string or graphic string column in an EBCDIC
table. The CCSID clause must not be specified with non-deterministic-expression.

Chapter 7. Statements 1655

XML-type-modifier:

XMLSCHEMA

,

XML-schema-specification

ELEMENT element-name

XML-schema-specification:

ID registered-XML-schema-name

URI target-namespace

NO NAMESPACE LOCATION schema-location

generated-clause:

GENERATED
ALWAYS

BY DEFAULT as-identity-clause

as-row-change-timestamp-clause

GENERATED
ALWAYS

as-row-transaction-start-id-clause

as-row-transaction-timestamp-clause

as-generated-expression-clause

as-identity-clause:

1656 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

AS IDENTITY

(
1

START WITH 1

START WITH numeric-constant

INCREMENT BY 1

INCREMENT BY numeric-constant

NO MINVALUE

MINVALUE numeric-constant

NO MAXVALUE

MAXVALUE numeric-constant

NO CYCLE

CYCLE

CACHE 20

NO CACHE

CACHE integer-constant

NO ORDER

ORDER

)

Notes:
1 Separator commas can be specified between attributes when an identity column is defined.

as-row-change-timestamp-clause:

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

as-row-transaction-start-id-clause:

AS TRANSACTION START ID

as-row-transaction-timestamp-clause:

AS ROW BEGIN

START

END

as-generated-expression-clause:

AS (non-deterministic-expression)

non-deterministic-expression:

Chapter 7. Statements 1657

DATA CHANGE OPERATION

special-register

session-variable

special-register:

1

CURRENT CLIENT_ACCTNG

CURRENT CLIENT_APPLNAME

CURRENT CLIENT_CORR_TOKEN

CURRENT CLIENT_USERID

CURRENT CLIENT_WRKSTNNAME

CURRENT SERVER

CURRENT SQLID

SESSION_USER
2

Notes:
1 This definition of special register is specific to this context, as part of non-deterministic-expression.
2 USER can be specified as a synonym for SESSION_USER.

session-variable:

1

SYSIBM.PACKAGE_NAME

SYSIBM.PACKAGE_SCHEMA

SYSIBM.PACKAGE_VERSION

Notes:
1 This definition of session variable is specific to this context, as part of non-deterministic-expression.

column-constraint:

CONSTRAINT constraint-name

PRIMARY KEY

UNIQUE

references-clause

CHECK(check-condition)

period-definition:

1658 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

PERIOD
FOR

SYSTEM_TIME (begin-column-name , end-column-name)

BUSINESS_TIME (begin-column-name , end-column-name
EXCLUSIVE

INCLUSIVE

)

unique-constraint:

CONSTRAINT constraint-name

PRIMARY KEY

UNIQUE

(

,

 column-name

,BUSINESS_TIME WITHOUT OVERLAPS
1

)

Notes:
1 If BUSINESS_TIME WITHOUT OVERLAPS is specified, the BUSINESS_TIME period will not overlap in
time periods for the same column-name values.

referential-constraint:

CONSTRAINT constraint-name

FOREIGN KEY

(

,

 column-name
, PERIOD BUSINESS_TIME

)

references-clause

references-clause:

Chapter 7. Statements 1659

REFERENCES parent-table-name

(

,

column-name

, PERIOD BUSINESS_TIME

)

ON DELETE RESTRICT

NO ACTION

CASCADE

SET NULL

ENFORCED

NOT ENFORCED

ENABLE QUERY OPTIMIZATION

check-constraint:

CONSTRAINT constraint-name

CHECK (check-condition)

as-result-table:

(

,

column-name)

AS (fullselect) WITH NO DATA

copy-options:

1660 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

1

EXCLUDING IDENTITY
COLUMN ATTRIBUTES

INCLUDING IDENTITY
COLUMN ATTRIBUTES

EXCLUDING ROW CHANGE TIMESTAMP
COLUMN ATTRIBUTES

INCLUDING ROW CHANGE TIMESTAMP
COLUMN ATTRIBUTES

EXCLUDING
COLUMN

DEFAULTS
2

INCLUDING
COLUMN

DEFAULTS

USING TYPE DEFAULTS

EXCLUDING XML TYPE MODIFIERS
3

Notes:
1 These clauses can be specified in any order and must not be specified more than one time.
2 EXCLUDING COLUMN DEFAULTS, INCLUDING COLUMN DEFAULTS, and USING TYPE DEFAULTS must not
be specified with the LIKE clause.
3 EXCLUDING XML TYPE MODIFIERS must be specified with the LIKE clause if the identified table has an
XML type modifier and none of the XML columns of the new table has an XML type modifier. EXCLUDING
XML TYPE MODIFIERS is not supported when a view is identified in a LIKE clause and the view contains
XML columns.

materialized-query-definition

(

,

column-name)

AS ( fullselect) refreshable-table-options

refreshable-table-options:

Chapter 7. Statements 1661

DATA INITIALLY DEFERRED REFRESH DEFERRED

1

MAINTAINED BY SYSTEM

MAINTAINED BY USER

ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION

Notes:
1 The same clause must not be specified more than one time.

partitioning-clause:

PARTITION BY SIZE

EVERY integer-constant G

PARTITION BY
RANGE

(

,

partition-expression) (

,

partition-element)

partition-expression:

column-name
NULLS LAST ASC

DESC

partition-element:

PARTITION integer ENDING
AT

(

,

constant

MAXVALUE

MINVALUE

)

partition-hash-space
1

INCLUSIVE

Notes:
1 FL 504 Hash-organized tables are deprecated. Beginning in Db2 12, packages bound with
APPLCOMPAT(V12R1M504) or higher cannot create hash-organized tables or alter existing tables to use
hash-organization. Existing hash organized tables remain supported, but they are likely to be unsupported
in the future.

1662 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

Description for CREATE TABLE
table-name

Names the table. The name, including the implicit or explicit qualifier, must not identify a
table, view, alias, or synonym that exists at the current server or a table that exists in the
SYSIBM.SYSPENDINGOBJECTS catalog table. The unqualified name must not be the same as an
existing synonym.

If the name is qualified, the name can be a two-part or three-part name. If a three-part name is used,
the first part must match the value of field Db2LOCATION NAME on installation panel DSNTIPR at the
current server. (If the current server is not the local Db2, this name is not necessarily the name in the
CURRENT SERVER special register.)

For more information, see Guidelines for table names (Db2 Administration Guide).

FL 502 KEY LABEL key-label-name or NO KEY LABEL
Specifies whether key label is specified at the table level for encryption. The table-name must identify
a table that resides in a universal table space, or a partitioned (non-UTS) table space. If you specify a
table-space-name using the IN clause, a subsequent REORG of the table space is required for the key
label value to take effect.
KEY LABEL key-label-name

Specifies the default key label that is used to encrypt all the table spaces and index spaces
associated with the table. This includes base table spaces, auxiliary table spaces, XML table
spaces, index spaces, and clone table spaces, regardless of whether they are explicitly or
implicitly created. Users must set the key label for archive or history tables independently.

The data set must be Db2-managed for all the table spaces and index spaces associated with the
table.

The table-name must not identify one of the following:

• An accelerator-only table.
• An auxiliary table.

The key label must be defined in ICSF. Db2 address space RACF user ID or group must be
permitted access to the key label in RACF.

The key label can be inherited or overridden when the data set is allocated. For details about the
order of precedence, see Notes®.

NO KEY LABEL
Indicates that there is no key label specified at the table level for encryption.

column-definition
column-name

Names a column of the table. For a dependent table, up to 749 columns can be named. For a table
that is not a dependent, this number is 750. Do not qualify column-name and do not use the same
name for more than one column of the table.

built-in-type
Specifies the data type of the column as one of the following built-in data types, and for character
string data types, specifies the subtype. For more information about defining a table with a LOB
column (CLOB, BLOB, or DBCLOB), see Creating a table with LOB columns.

If IN ACCELERATOR is specified, not all data types are supported. For example, DECFLOAT, LOB,
ROWID, TIMESTAMP WITH TIME ZONE, and XML are not supported. The IBM Db2 Analytics
Accelerator for z/OS: Stored Procedures Reference has a complete list of supported data types.

SMALLINT
For a small integer.

INTEGER or INT
For a large integer.

Chapter 7. Statements 1663

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_guidelinesfortablenames.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html

BIGINT
For a big integer.

DECIMAL(integer,integer) or DEC(integer,integer)
DECIMAL(integer) or DEC(integer)
DECIMAL or DEC

For a decimal number. The first integer is the precision of the number. That is, the total number of
digits, which can range 1–31. The second integer is the scale of the number. That is, the number of
digits to the right of the decimal point, which can range from 0 to the precision of the number.

You can use DECIMAL(p) for DECIMAL(p,0) and DECIMAL for DECIMAL(5,0).

You can also use the word NUMERIC instead of DECIMAL. For example, NUMERIC(8) is equivalent
to DECIMAL(8). Unlike DECIMAL, NUMERIC has no allowable abbreviation.

DECFLOAT(integer)
For a decimal floating-point number. The value of integer must be either 16 or 34 and represents
the number of significant digits that can be stored. If integer is omitted, the DECFLOAT column will
be capable of representing 34 significant digits.

FLOAT(integer)
FLOAT

For a floating-point number. If integer is in the range 1–21 inclusive, the format is single precision
floating-point. If the integer is in the range 22–53 inclusive, the format is double precision
floating-point.

You can use DOUBLE PRECISION or FLOAT for FLOAT(53).

REAL
For single precision floating-point.

DOUBLE or DOUBLE PRECISION
For double precision floating-point

CHARACTER(integer) or CHAR(integer)
CHARACTER or CHAR

For a fixed-length character string of length integer, which can range 1–255. If the length
specification is omitted, a length of 1 character is assumed.
CCSID 1208

Specifies that the column is a Unicode column encoded in UTF-8. This clause must not be
specified for an ASCII or Unicode table.

VARCHAR(integer), CHAR VARYING(integer), or CHARACTER VARYING(integer)
For a varying-length character string of maximum length integer, which can range from 1 to the
maximum record size minus 10 bytes. See Table 208 on page 1707 to determine the maximum
record size.
CCSID 1208

Specifies that the column is a Unicode column encoded in UTF-8. This clause must not be
specified for an ASCII or Unicode table.

FOR subtype DATA
Specifies a subtype for a character string column, which is a column with a data type of CHAR,
VARCHAR, or CLOB. Do not use the FOR subtype DATA clause with columns of any other data type
(including any distinct type). subtype can be one of the following:
SBCS

Column holds single-byte data.
MIXED

Column holds mixed data. Do not specify MIXED if the value of field MIXED DATA on
installation panel DSNTIPF is NO unless the CCSID UNICODE clause is also specified, or the
table is being created in a Unicode table space or database.

BIT
Column holds BIT data. Do not specify BIT for a CLOB column.

1664 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Only character strings are valid when subtype is BIT.

If you do not specify the FOR subtype DATA clause, the column is defined with a default subtype.
For ASCII or EBCDIC data:

• The default is SBCS when the value of field MIXED DATA on installation panel DSNTIPF is NO.
• The default is MIXED when the value is YES.

For Unicode data, the default subtype is MIXED.

A security label column is always considered SBCS data, regardless of the encoding scheme of the
table.

CLOB(integer [K|M|G]), CHAR LARGE OBJECT(integer [K|M|G]), or CHARACTER LARGE
OBJECT(integer [K|M|G])
CLOB, CHAR LARGE OBJECT, or CHARACTER LARGE OBJECT

For a character large object (CLOB) string of the specified maximum length in bytes. The maximum
length must be in the range 1–2147483647. A CLOB column has a varying-length. It cannot
be referenced in certain contexts regardless of its maximum length. For more information, see
“Restrictions using LOBs” on page 117.

When integer is not specified, the default length is 1M. The maximum value that can be specified
for integer depends on whether a units indicator is also specified as shown in the following list.
integer

The maximum value for integer is 2147483647. The maximum length of the string is integer.
integer K

The maximum value for integer is 2097152. The maximum length is 1024 times integer.
integer M

The maximum value for integer is 2048. The maximum length is 1,048,576 times integer.
integer G

The maximum value for integer is 2. The maximum length is 1,073,741,824 times integer.

integer can be separated from K, M, or G by 0 or more spaces.

If you specify a value that evaluates to 2 gigabytes (2,147,483,648), Db2 uses a value that is one
byte less, or 2147483647.

CCSID 1208
Specifies that the column is a Unicode column encoded in UTF-8. This clause must not be
specified for an ASCII or Unicode table.

GRAPHIC(integer)
GRAPHIC

For a fixed-length graphic string of length integer, which can range 1–127. If the length
specification is omitted, a length of 1 character is assumed.
CCSID 1200

Specifies that the column is a Unicode column encoded in UTF-16. This clause must not be
specified for an ASCII or Unicode table.

VARGRAPHIC(integer)
For a varying-length graphic string of maximum length integer, which must range from 1 to n/2,
where n is the maximum row size minus 2 bytes.
CCSID 1200

Specifies that the column is a Unicode column encoded in UTF-16. This clause must not be
specified for an ASCII or Unicode table.

DBCLOB(integer [K|M|G])
DBCLOB

For a double-byte character large object (DBCLOB) string of the specified maximum length in
double-byte characters. The maximum length must be in the range of 1–1,073,741,823. A

Chapter 7. Statements 1665

DBCLOB column has a varying-length. It cannot be referenced in certain contexts regardless of its
maximum length. For more information, see “Restrictions using LOBs” on page 117.

When integer is not specified, the default length is 1M. The meaning of integer K|M|G is similar to
CLOB. The difference is that the number specified is the number of double-byte characters.

integer can be separated from K, M, or G by 0 or more spaces.

CCSID 1200
Specifies that the column is a Unicode column encoded in UTF-16. This clause must not be
specified for an ASCII or Unicode table.

BINARY(integer)
A fixed-length binary string of length integer. The integer can range 1–255. If the length
specification is omitted, a length of 1 byte is assumed.

BINARY VARYING(integer) or VARBINARY(integer)
A varying-length binary string of maximum length integer, which can range 1–32704. The length is
limited by the page size of the table space.

BLOB (integer [K|M|G] or BINARY LARGE OBJECT(integer [K|M|G])
BLOB or BINARY LARGE OBJECT

For a binary large object (BLOB) string of the specified maximum length in bytes. The maximum
length must be in the range of 1–2147483647. A BLOB column has a varying-length. It cannot
be referenced in certain contexts regardless of its maximum length. For more information, see
“Restrictions using LOBs” on page 117.

When integer is not specified, the default length is 1M. The meaning of integer K|M|G is the same
as for CLOB.

integer can be separated from K, M, or G by 0 or more spaces.

DATE
For a date.

TIME
For a time.

TIMESTAMP(integer) WITHOUT TIME ZONE
For a timestamp. integer specifies the optional timestamp precision attribute and must be in the
range 0–12. The timestamp precision denotes the number of fractional second digits that are
included in the timestamp. The default is 6.

TIMESTAMP(integer) WITH TIME ZONE
For a timestamp with time zone. integer specifies the optional timestamp precision attribute and
must be in the range 0–12. The timestamp precision denotes the number of fractional second
digits that are included in the timestamp. The default is 6.

ROWID
For a row ID type.

A table can contain at most two ROWID columns. If it contains two, one column is implicitly
generated by Db2 and the other column is explicitly defined as a ROWID without the IMPLICITLY
HIDDEN attribute. The values in a ROWID column are unique for every row in the table and cannot
be updated. You must specify NOT NULL with ROWID.

XML
For an XML document. Only well-formed XML documents can be inserted into an XML column.

If the XML column is the first XML column that you create for the table, a BIGINT DOCID column is
implicitly created and is used to store a unique document identifier for the XML columns of a row.

XMLSCHEMA
Specifies one or more XML schemas that are used to validate the XML value. The same XML
schema can not be specified more than one time.

If the XML value has already been validated, for example, the XML value is the result of the
DSN_XMLVALIDATE function or from an XML column with a type modifier, and the XML schema

1666 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

against which the XML value is validated is one of the schemas specified in the XML-type-modifier,
Db2 accepts the XML value without revalidation.

XML-schema-specification
Specifies one XML schema. The XML schema can be identified by using either the registered-
XML-schema-name or the schema's target namespace followed by an optional schema
location. Any XML schema that is referenced in this clause must be registered in the XML
schema repository prior to use.
ID registered-XML-schema-name

Identifies an XML schema by using its registered-XML-schema-name. The name must
uniquely identify an existing XML schema in the XML schema repository at the current
server. If no XML schema by this name exists, an error is returned.

The schema qualifier must be SYSXSR.

URI target-namespace
Specifies the target namespace URI of the XML schema. The value for the target-
namespace URI is a character string constant which is not empty. The URI must be the
target namespace of a registered XML schema and, if no LOCATION clause is specified, it
must uniquely identify the registered XML schema.

NO NAMESPACE
Specifies that the XML schema has no target namespace. There must be a registered XML
schema that has no target namespace. If no LOCATION clause is specified, there must be
only one such registered XML schema.

LOCATION schema-location
Specifies the XML schema location URI of the XML schema. The value of schema-location
is a character string constant that is not empty. The schema location URI, combined with
the target namespace URI, must identify a registered XML schema.

ELEMENT element-name
Specifies the name of the global element declaration. element-name must match the local
name of the root element node in the instance XML document. The namespace name of the
root element node must be the same as the target namespace URI.

distinct-type-name
Specifies the data type of the column is a distinct type (a user-defined data type). The length,
precision, and scale of the column are respectively the length, precision, and scale of the source type
of the distinct type. The privilege set must implicitly or explicitly include the USAGE privilege on the
distinct type.

The encoding scheme of the distinct type must be the same as the encoding scheme of the table. The
subtype for the distinct type, if it has the attribute, is the subtype with which the distinct type was
created.

If the column is to be used in the definition of the foreign key of a referential constraint, the data type
of the corresponding column of the parent key must have the same distinct type.

NOT NULL
Prevents the column from containing null values. Omission of NOT NULL implies that the column can
contain null values.

column-constraint
The column-constraint of a column-definition provides a shorthand method of defining a constraint
composed of a single column. Thus, if a column-constraint is specified in the definition of column C,
the effect is the same as if that constraint were specified as a unique-constraint, referential-constraint,
or check-constraint in which C is the only identified column.
CONSTRAINT constraint-name

Names the constraint. If a constraint name is not specified, a unique constraint name is
generated. If the name is specified, it must be different from the names of any referential, check,
primary key, or unique key constraints previously specified on the table.

Chapter 7. Statements 1667

PRIMARY KEY
Provides a shorthand method of defining a primary key composed of a single column. Thus, if
PRIMARY KEY is specified in the definition of column C, the effect is the same as if the PRIMARY
KEY(C) clause is specified as a separate clause.

The NOT NULL clause must be specified with this clause. PRIMARY KEY cannot be specified more
than one time in a column definition, and must not be specified if the UNIQUE clause is specified
in the definition. This clause must also not be specified if the definition is for one of the following
types of columns:

• a LOB column
• a ROWID column
• a distinct type column that is based on a LOB or ROWID data type
• an XML column
• a row change timestamp column
• a column in an accelerator-only table

The table is marked as unavailable until its primary index is explicitly created unless the CREATE
TABLE statement is processed by the schema processor or the table space that contains the table
is implicitly created. In that case, Db2 implicitly creates an index to enforce the uniqueness of the
primary key and the table definition is considered complete. (For more information about implicitly
created indexes, see Implicitly created indexes.)

UNIQUE
Provides a shorthand method of defining a unique key composed of a single column. Thus, if
UNIQUE is specified in the definition of column C, the effect is the same as if the UNIQUE(C)
clause is specified as a separate clause.

The NOT NULL clause must be specified with this clause. UNIQUE cannot be specified more than
one time in a column definition and must not be specified if the PRIMARY KEY clause is specified
in the column definition or if the definition is for one of the following types of columns:

• a LOB column
• a ROWID column
• a distinct type column that is based on a LOB or ROWID data type
• an XML column
• a row change timestamp column
• a column in an accelerator-only table

The table is marked as unavailable until all the required indexes are explicitly created unless the
CREATE TABLE statement is processed by the schema processor or the table space that contains
the table is implicitly created. In that case, Db2 implicitly creates the indexes that are required
for the unique keys and the table definition is considered complete. (For more information about
implicitly created indexes, see Implicitly created indexes.)

references-clause
The references-clause of a column-definition provides a shorthand method of defining a foreign
key composed of a single column. Thus, if references-clause is specified in the definition of column
C, the effect is the same as if the references-clause were specified as part of a FOREIGN KEY
clause in which C is the only identified column.

Do not specify references-clause in the definition of the following types of columns because these
types of columns cannot be a foreign key:

• a LOB column
• a ROWID column
• a DECFLOAT column
• a distinct type column that is based on a LOB, ROWID, or DECFLOAT data type

1668 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• an XML column
• a row change timestamp column
• a security label column

CHECK (check-condition)
CHECK (check-condition) provides a shorthand method of defining a check constraint that applies
to a single column. For conformance with the SQL standard, if CHECK is specified in the column
definition of column C, no columns other than C should be referenced in the check condition of
the check constraint. The effect is the same as if the check condition were specified as a separate
clause.

DEFAULT
Specifies the default value that is assigned to the column in the absence of a value specified on an
insert or update operation or LOAD. DEFAULT must not be specified more than one time in the same
column-definition. Do not specify DEFAULT for the following types of columns because Db2 generates
default values:

• An identity column (a column that is defined AS IDENTITY)
• A ROWID column (or a distinct type that is based on a ROWID)
• A row change timestamp column
• A row-begin column
• A row-end column
• A transaction-start-id column
• An XML column

If IN ACCELERATOR is specified, do not specify DEFAULT for a column.

Do not specify a value after the DEFAULT keyword for a security label column. Db2 provides the
default value for a security label column.

If a value is not specified after DEFAULT, the default value depends on the data type of the column, as
follows:
Data Type

Default Value
Numeric

0
Big integer

0
Fixed-length character string

Blanks
Fixed-length graphic string

Blanks
Fixed-length binary string

Hexadecimal zeros
Varying-length string

A string of length 0
Inline BLOB

Hexadecimal zeros
Inline CLOB

Blanks
Inline DBCLOB

Blanks
Date

CURRENT DATE

Chapter 7. Statements 1669

Time
CURRENT TIME

TIMESTAMP(integer) WITHOUT TIME ZONE
CURRENT TIMESTAMP(p) WITHOUT TIME ZONE where p is the corresponding timestamp
precision.

TIMESTAMP(integer) WITH TIME ZONE
CURRENT TIMESTAMP(p) WITH TIME ZONE where p is the corresponding timestamp precision.

If the column is defined as timestamp with time zone the default value must include a time zone.

Distinct type
The default of the source data type

A default value other than the one that is listed above can be specified in one of the following forms:

• WITH DEFAULT for a default value of an empty string
• DEFAULT NULL for a default value of null

Omission of NOT NULL and DEFAULT from a column-definition, for a column other than an identity
column, is an implicit specification of DEFAULT NULL. For an identity column, it is an implicit
specification of NOT NULL, and Db2 generates default values.

constant
Specifies a constant as the default value for the column. The value of the constant must conform
to the rules for assigning that value to the column.

A character or graphic string constant must be short enough so that its UTF-8 representation
requires no more than 1536. A hexadecimal graphic string constant (GX) cannot be specified.

In addition, the length of the constant value cannot be greater than the INLINE LENGTH attribute
for LOB columns.

SESSION_USER or USER
Specifies the value of the SESSION_USER (USER) special register at the time of an SQL data
change statement or LOAD as the default value for the column. If SESSION_USER is specified, the
data type of the column must be a character string with a length attribute greater than or equal to
8 characters when the value is expressed in CCSID 37. If the data type of the column is an inline
CLOB, the INLINE LENGTH attribute must be greater than or equal to 8 characters when the value
is expressed as CCSID 37.

CURRENT SQLID
Specifies the value of the SQL authorization ID of the process at the time of an insert or update
operation or LOAD as the default value for the column. If CURRENT SQLID is specified, the data
type of the column must be a character string with a length attribute greater than or equal to the
length attribute of the CURRENT SQLID special register. If the data type of the column is an inline
CLOB, the INLINE LENGTH attribute must be greater than or equal to the length attribute of the
CURRENT SQLID special register.

NULL
Specifies null as the default value for the column. If NOT NULL is specified, DEFAULT NULL must
not be specified with the same column-definition.

cast-function-name
The name of the cast function that matches the name of the distinct type for the column. A cast
function can only be specified if the data type of the column is a distinct type.

The schema name of the cast function, whether it is explicitly specified or implicitly resolved
through function resolution, must be the same as the explicitly or implicitly specified schema
name of the distinct type.

constant
Specifies a constant as the argument. The constant must conform to the rules of a constant
for the source type of the distinct type. The length of the constant cannot be greater than the
INLINE LENGTH attribute for LOB columns.

1670 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SESSION_USER or USER
Specifies the value of the SESSION_USER (USER) special register at the time a row is inserted
as the default for the column. The source type of the distinct type of the column must be a
CHAR, VARCHAR, or inline CLOB with a length attribute (inline length attribute for CLOB) that is
greater than or equal to the length attribute of the SESSION_USER special register.

CURRENT SQLID
Specifies the value of the CURRENT SQLID special register at the time a row is inserted as the
default for the column. The source type of the distinct type of the column must be a CHAR,
VARCHAR, or inline CLOB with a length attribute (or inline length attribute for CLOB) that is
greater than or equal to the length attribute of the CURRENT SQLID special register.

NULL
Specifies the NULL value as the argument.

In a given column definition:

• DEFAULT and FIELDPROC cannot both be specified.
• NOT NULL and DEFAULT NULL cannot both be specified.

Table 204 on page 1671 summarizes the effect of specifying the various combinations of the NOT
NULL and DEFAULT clauses on the CREATE TABLE statement column-description clause.

Table 204. Effect of specifying combinations of the NOT NULL and DEFAULT clauses

If NOT NULL is: And DEFAULT is: The effect is:

Specified1 Omitted An error occurs if a value is not provided
for the column on an insert or update
operation or LOAD.

Specified without an operand The system defined nonnull default value
is used.

constant The specified constant is used as the
default value.

SESSION_USER The value of the SESSION_USER special
register at the time of an insert or update
operation or LOAD is used as the default
value.

CURRENT SQLID The SQL authorization ID of the process
at the time of an insert or update
operation or LOAD is used as the default
value.

NULL An error occurs during the execution of
CREATE TABLE.

Chapter 7. Statements 1671

Table 204. Effect of specifying combinations of the NOT NULL and DEFAULT clauses (continued)

If NOT NULL is: And DEFAULT is: The effect is:

Omitted Omitted Equivalent to an implicit specification of
DEFAULT NULL.

Specified without an operand The system defined nonnull default value
is used.

constant The specified constant is used as the
default value.

SESSION_USER The value of the SESSION_USER special
register at execution time is used as the
default value.

CURRENT SQLID The SQL authorization ID of the process
is used as the default value.

NULL Null is used as the default value.

Note: The table does not apply to a column with a ROWID data type or to an identity column.

GENERATED
Specifies that Db2 generates values for the column. GENERATED must be specified if the column is to
be considered one of the following types of columns:

• An identity column
• A row change timestamp column.
• A ROWID column
• A row-begin column
• A row-end column
• A transaction-start-id column
• A generated expression column

GENERATED must only be specified for these types of columns. GENERATED must not be specified
with default-clause in a column definition.

GENERATED must not be specified if the column definition references global variables.

ALWAYS
Specifies that Db2 always generates a value for the column when a row is inserted or updated and
a default value must be generated. ALWAYS is the default and recommended value.

BY DEFAULT
Specifies that Db2 will generate a value for the column when a row is inserted or updated and a
default value must be generated, unless an explicit value is specified.

For a row change timestamp column, Db2 inserts or updates a specified value but does not verify
that the value is unique for the column unless the row change timestamp column has a unique
constraint or a unique index that specifies only the row change timestamp column.

For a ROWID column, Db2 uses a specified value only if it is a valid row ID value that was
previously generated by Db2 and the column has a unique, single-column index. Until this index
is created on the ROWID column, the SQL insert or update operation and the LOAD utility cannot
be used to add rows to the table. If the table space is explicitly created and the value of the
CURRENT RULES special register is 'STD' when the CREATE TABLE statement is processed, or
if the table space is implicitly created, Db2 implicitly creates the index on the ROWID column.
The name of this index is 'I' followed by the first ten characters of the column name followed by
seven randomly generated characters. If the column name is less than ten characters, Db2 adds

1672 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

underscore characters to the end of the name until it has ten characters. The implicitly created
index has the COPY NO attribute.

For an identity column, Db2 inserts a specified value but does not verify that it a unique value for
the column unless the identity column has a unique, single-column index.

BY DEFAULT is the recommended value only when you are using data propagation.

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP
Specifies that the column is a timestamp column for the table. Db2 generates a value for the
column for each row as the row is inserted, and for any row in which any column is updated.
The value that is generated for a row change timestamp column is a timestamp that corresponds
to the insert or update time of the row. If multiple rows are inserted or updated with a single
statement, the value for the row change timestamp column might be different for each row.

A table can only have one row change timestamp column.

If data-type is specified, it must be TIMESTAMP WITHOUT TIME ZONE with a precision of 6.

A row change timestamp column cannot have a DEFAULT clause. NOT NULL must be specified for
a row change timestamp column.

AS TRANSACTION START ID
Specifies that the value is assigned by Db2 whenever a row is inserted into the table or any
column in the row is updated. Db2 assigns a unique timestamp value per transaction or the null
value. The null value is assigned to the transaction-start-ID column if the column is nullable.
Otherwise, the value is generated using the time-of-day clock during execution of the first data
change statement in the transaction that requires a value to be assigned to a row-begin column
or transaction-start-ID column in the table, or when a row in a system-period temporal table is
deleted. If multiple rows are inserted or updated within a single SQL transaction, the values for
the transaction-start-ID column are the same for all the rows and are unique from the values that
are generated for the column for another transaction.

A transaction-start-ID column is required for a system-period temporal table.

A table can have only one transaction-start-ID column. If a data type is not specified, the column
is defined as TIMESTAMP(12) WITHOUT TIME ZONE. If a data type is specified, it must be
TIMESTAMP(12) WITHOUT TIME ZONE or TIMESTAMP(12) WITH TIME ZONE. If the column is
defined as TIMESTAMP WITH TIME ZONE, the values are stored in UTC, with a time zone of
+00:00. A transaction-start-ID column cannot have a DEFAULT clause. A transaction-start-ID
column is not updatable.

A value for a transaction-start-ID column is composed of a TIMESTAMP(9) value that is unique per
transaction per data sharing member followed by 3 digits that indicate the data sharing member
number.

AS ROW BEGIN
Specifies that a timestamp value is assigned to the column whenever a row
is inserted or any column in the row is updated. If the value of the
SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME built-in global variable at the time of the
insert or update is null, the value is generated using a reading of the time-of-day clock during
execution of the first data change statement in the unit of work that requires a value to be
assigned to a row-begin column or transaction-start-ID column in a table, or a row in a system-
period temporal table is deleted. Otherwise, the row-begin column is assigned the value of the
SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME built-in global variable at the time of the
insert or update.

A row-begin column is intended to be used for a system-period temporal table.

A table can have only one column defined as AS ROW BEGIN. If a data type is specified, it must
be TIMESTAMP(12) WITHOUT TIME ZONE or TIMESTAMP(12) WITH TIME ZONE. If the column
is defined as TIMESTAMP(12) WITH TIME ZONE, the values are stored in UTC, with a time zone
of +00:00. If no data type is specified, the column is defined as TIMESTAMP(12) WITHOUT TIME

Chapter 7. Statements 1673

ZONE. A column defined as a row-begin column cannot have a DEFAULT clause, and must be
defined as NOT NULL.

A row-begin column is not updatable.

A value for a row-begin column is composed of a TIMESTAMP(9) value that is unique per
transaction per data sharing member followed by 3 digits that indicate the data sharing member
number.

AS ROW END
Specifies that a value for the data type of the column is assigned by Db2 whenever a row is
inserted or any column in the row is updated. The value that is assigned for a TIMESTAMP
WITHOUT TIME ZONE column is the TIMESTAMP value '9999-12-30-00.00.00.000000000000'.
The value that is assigned for a TIMESTAMP WITH TIME ZONE column is the TIMESTAMP value
'9999-12-30-00.00.00.000000000000 +00:00'.

A row-end column is required as the second column of a SYSTEM_TIME period.

A table can have only one row-end column. If a data type is not specified, the column is defined as
TIMESTAMP(12) WITHOUT TIME ZONE. If a data type is specified, it must be TIMESTAMP(12)
WITHOUT TIME ZONE or TIMESTAMP(12) WITH TIME ZONE. If the column is defined as
TIMESTAMP WITH TIME ZONE, the values are stored in UTC, with a time zone of +00:00. A
row-end column cannot have a DEFAULT clause and must be defined as NOT NULL. A row-end
column is not updatable.

as-generated-expression-clause
Specifies that values for the column are generated by Db2. The generated value is assigned to the
column whenever a row is inserted, or any column in the row is updated.
DATA CHANGE OPERATION

Specifies that the database manager generates one of the following values, depending on the
specified expression:
I

Insert operation.
U

Update operation.
D

Delete operation.

A table can have only one DATA CHANGE OPERATION column. The column must be defined as
CHAR(1). The column cannot have a DEFAULT clause and must not be defined as NOT NULL.

The column is a non-deterministic generated expression column.

Do not specify any of the following clauses for the column:

• CCSID 1200
• CCSID 1208
• FIELDPROC

special-register
Specifies the value of the special register. The column is to contain the value of the special
register at the time of the data change statement that assigns the value to the column. If
multiple rows are inserted or updated with a single SQL statement, the value for the column is
the same for all of the rows.

special-register must be one of the following special registers, and the column must use the
required data type.

1674 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 205. Possible special register values for non-deterministic generated expression
columns

Special register Data type for the column

CURRENT CLIENT_ACCTNG VARCHAR(255)

CURRENT CLIENT_APPLNAME VARCHAR(255)

CURRENT CLIENT_CORR_TOKEN VARCHAR(255)

CURRENT CLIENT_USERID VARCHAR(255)

CURRENT CLIENT_WRKSTNNAME VARCHAR(255)

CURRENT SERVER CHAR(16)

CURRENT SQLID VARCHAR(n) where n ≥ 8

SESSION_USER or USER VARCHAR(128)

The column cannot have a DEFAULT clause and must not be defined as NOT NULL.

The column is a non-deterministic generated expression column.

Do not specify any of the following clauses for the column:

• CCSID 1200
• CCSID 1208
• FIELDPROC

For more information, see “Special registers” on page 177.

session-variable
Specifies the value of a built-in session variable. The fully qualified name of the session
variable must be specified. The value of the session variable is obtained from the
GETVARIABLE function at the time of the data change operation that assigns the value to the
column. If multiple rows are changed with a single SQL statement, the value for the column is
the same for all of the rows.

session-variable must be one of the following session variables, and the column must use the
required data type.

Table 206. Possible session variable values for non-deterministic generated expression
columns

Session variable Data type for the column

SYSIBM.PACKAGE_NAME VARCHAR(128)

SYSIBM.PACKAGE_SCHEMA VARCHAR(128)

SYSIBM.PACKAGE_VERSION VARCHAR(122)

The column cannot have a DEFAULT clause and must not be defined as NOT NULL.

The column is a non-deterministic generated expression column.

Do not specify any of the following clauses for the column:

• CCSID 1200
• CCSID 1208
• FIELDPROC

For more information, see “Built-in session variables” on page 336.

Chapter 7. Statements 1675

AS IDENTITY
Specifies that the column is an identity column for the table. A table can have only one identity
column. AS IDENTITY can be specified only if the data type for the column is an exact numeric
type with a scale of zero (SMALLINT, INTEGER, BIGINT, DECIMAL with a scale of zero, or a distinct
type based on one of these types).

An identity column is implicitly NOT NULL. An identity column cannot have a WITH DEFAULT
clause.

Defining a column AS IDENTITY does not necessarily ensure the uniqueness of the values. To
ensure uniqueness of the values, define a unique, single-column index on the identity column.

If IN ACCELERATOR is specified, AS IDENTITY must not be specified.

START WITH numeric-constant
Specifies the first value that is generated for the identity column. The value can be any positive
or negative value that could be assigned to the column without non-zero digits existing to the
right of the decimal point.

If a value is not explicitly specified when the identity column is defined, the default is the
MINVALUE for an ascending identity column and the MAXVALUE for a descending identity
column. This value is not necessarily the value that would be cycled to after reaching the
maximum or minimum value for the identity column. The range used for cycles is defined by
MINVALUE and MAXVALUE. MAXVALUE and MINVALUE do not constrain the numeric-constant
value. That is, the START WITH clause can be used to start the generation of values outside
the range that is used for cycles. However, the next generated value after the specified START
WITH value is MINVALUE for an ascending identity column or MAXVALUE for a descending
identity column.

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the identity column. The value can be
any positive or negative value (including 0) that does not exceed the value of a large integer
constant, and could be assigned to the column without any non-zero digits existing to the right
of the decimal point.

If this value is negative, the values for the identity column descend. If this value is 0 or
positive, the values for the identity column ascend. The default is 1.

MINVALUE or NO MINVALUE
Specifies the minimum value at which a descending identity column either cycles or stops
generating values or an ascending identity column cycles to after reaching the maximum
value.
NO MINVALUE

Specifies that the minimum end point of the range of values for the identity column has not
be set. In such a case, the default value for MINVALUE becomes one of the following:

• For an ascending identity column, the value is the START WITH value or 1 if START WITH
is not specified.

• For a descending identity column, the value is the minimum value of the data type of the
column.

The default is NO MINVALUE.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value that is generated for this identity
column. This value can be any positive or negative value that could be assigned to this
column without non-zero digits existing to the right of the decimal point. The value must
be less than or equal to the maximum value.

MAXVALUE or NO MAXVALUE
Specifies the maximum value at which an ascending identity column either cycles or stops
generating values or a descending identity column cycles to after reaching the minimum value.

1676 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

NO MAXVALUE
Specifies that the minimum end point of the range of values for the identity column has not
be set. In such a case, the default value for MAXVALUE becomes one of the following:

• For an ascending identity column, the value is the maximum value of the data type
associated with the column.

• For a descending identity column, the value is the START WITH value -1 if START WITH is
not specified.

The default is NO MAXVALUE.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value that is generated for this
identity column. This value can be any positive or negative value that could be assigned
to this column without non-zero digits existing to the right of the decimal point. The value
must be greater than or equal to the minimum value.

CYCLE or NO CYCLE
Specifies whether this identity column should continue to generate values after reaching
either its maximum or minimum value. The default is NO CYCLE.
NO CYCLE

Specifies that values will not be generated for the identity column after the maximum or
minimum value has been reached.

CYCLE
Specifies that values continue to be generated for the identity column after the maximum
or minimum value has been reached. If this option is used, after an ascending identity
column reaches the maximum value, it generates its minimum value. After a descending
identity column reaches its minimum value, it generates its maximum value. The maximum
and minimum values for the identity column determine the range that is used for cycling.

When CYCLE is in effect, duplicate values can be generated by Db2 for an identity column.
However, if a unique index exists on the identity column and a non-unique value is
generated for it, an error occurs.

CACHE integer-constant or NO CACHE
Specifies whether to keep some preallocated values in memory. Preallocating and storing
values in the cache improves the performance of inserting rows into a table. The default is
CACHE 20.

In a non-data sharing environment, if the system is shut down (either normally or through a
system failure), all cached sequence values that have not been used in committed statements
are lost (that is, they will never be used). The value specified for the CACHE option is the
maximum number of sequence values that could be lost when the system is shut down.

In a data sharing environment, you can use the CACHE and NO ORDER options to allow
multiple Db2 members to cache sequence values simultaneously.

NO CACHE
Specifies that values for the identity column and sequences are not preallocated and
stored in the cache, ensuring that values will not be lost in the case of a system failure.
In this case, every request for a new value for the identity column or sequence results in
synchronous I/O.

In a data sharing environment, use NO CACHE if you need to guarantee that the identity
column and sequence values are generated in the order in which they are requested.

CACHE integer-constant
Specifies the maximum number of values of the identity column sequence that Db2 can
preallocate and keep in memory.

During a Db2 shutdown, all cached identity column values and sequence values that are
yet to be assigned will be lost and will not be used. Therefore, the value that is specified

Chapter 7. Statements 1677

for CACHE also represents the maximum number of identity column values and sequence
values that will be lost during a Db2 shutdown.

The minimum value is 2.

In a data sharing environment, you can use the CACHE and NO ORDER options to allow
multiple Db2 members to cache sequence values simultaneously.

ORDER or NO ORDER
Specifies whether the identity column values must be generated in order of request. The
default is NO ORDER.

In a non-data sharing environment, there is no guarantee that values are assigned in order
across the entire server unless NO CACHE is also specified. ORDER applies only to a single-
application process.

In a data sharing environment, if ORDER is specified, NO CACHE is implicitly set, even if
CACHE integer-constant is specified.

NO ORDER
Specifies that the values do not need to be generated in order of request.

ORDER
Specifies that the values are generated in order of request. Specifying ORDER might
disable the caching of values. ORDER applies only to a single-application process.

In a data sharing environment, if the CACHE and NO ORDER options are in effect, multiple
caches can be active simultaneously, and the requests for identity values from different Db2
members might not result in the assignment of values in strict numeric order. For example, if
members DB2A and DB2B are using the identity column, and DB2A gets the cache values 1
to 20 and DB2B gets the cache values 21 to 40, the actual order of values assigned would be
1,21,2 if DB2A requested a value first, then DB2B requested, and then DB2A again requested.
Therefore, to guarantee that identity values are generated in strict numeric order among
multiple Db2 members using the same identity column, specify the ORDER option.

FIELDPROC program-name
Designates program-name as the field procedure exit routine for the column. A field procedure can
be specified only for a column with a length attribute that is not greater than 255 bytes. FIELDPROC
can only be specified for columns that are a built-in character string or graphic string data types. The
column must not be one of the following:

• a LOB column
• a security label column
• a row change timestamp column
• a column with the TIMESTAMP WITH TIME ZONE data type
• a Unicode column in an EBCDIC table
• a column in an accelerator-only table

The field procedure encodes and decodes column values: before a value is inserted in the column, it is
passed to the field procedure for encoding. Before a value from the column is used by a program, it is
passed to the field procedure for decoding. A field procedure could be used, for example, to alter the
sorting sequence of values entered in the column.

The field procedure is also invoked during the processing of the CREATE TABLE statement. When so
invoked, the procedure provides Db2 with the column's field description. The field description defines
the data characteristics of the encoded values. By contrast, the information you supply for the column
in the CREATE TABLE statement defines the data characteristics of the decoded values.

For more information, see:

Field procedures (Db2 Administration Guide)
“String comparisons” on page 157

1678 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_fieldprocedure.html

constant
Is a parameter that is passed to the field procedure when it is invoked. A parameter list is optional.
The nth parameter specified in the FIELDPROC clause on CREATE TABLE corresponds to the nth
parameter of the specified field procedure. The maximum length of the parameter list is 254
bytes, including commas but excluding insignificant blanks and the delimiting parentheses.

If you omit FIELDPROC, the column has no field procedure.

AS SECURITY LABEL
Specifies that the column will contain security label values. This also indicates that the table is
defined with multilevel security with row level granularity. A table can have only one security label
column. A security label column cannot be defined for an accelerator-only table. To define a table
with a security label column, the primary authorization ID of the statement must have a valid security
label, and the RACF SECLABEL class must be active. In addition, the following conditions are also
required:

• The data type of the column must be CHAR(8).
• The subtype of the column must be SBCS.
• The column must be defined with the NOT NULL and WITH DEFAULT clauses.
• The column must be an EBCDIC column.
• The WITH DEFAULT clause must not specify a default value (Db2 determines the default value)
• No field procedures, check constraints, or referential constraints are defined on the column.
• No edit procedure for the table can be defined with row attribute sensitivity.

For information about using multilevel security, see Multilevel security (Managing Security).

IMPLICITLY HIDDEN
Specifies that the column is not visible in the result for SQL statements unless you explicitly refer
to the column by name. For example, assuming that the table T1 includes a column that is defined
with the IMPLICITLY HIDDEN clause, the result of a SELECT * would not include the implicitly hidden
column. However, the result of a SELECT statement that explicitly refers to the name of the implicitly
hidden column would include that column in the result table.

IMPLICITLY HIDDEN must not be specified for a column that is defined as a ROWID, or a distinct type
that is based on a ROWID. IMPLICITLY HIDDEN must not be specified for all columns of a table. If IN
ACCELERATOR is specified, IMPLICITLY HIDDEN must not be specified.

INLINE LENGTH integer
Specifies the maximum length of the inline portion of a LOB column value. The inline portion is the
portion that is stored in the base table space. INLINE LENGTH cannot be specified if the column is not
a LOB column (or a distinct type that is based on a LOB), if the table is not in a universal table space, or
if the table is an accelerator-only table.

For BLOB and CLOB columns, integer specifies the maximum number of bytes that are stored in the
base table space for the column. integer must be in the range 0–32680 (inclusive) for a BLOB or CLOB
column.

For a DBCLOB column, integer specifies the maximum number of double-byte characters that are
stored in the table space for the column. integer must be in the range 0–16340 (inclusive) for a
DBCLOB column.

If INLINE LENGTH is specified, the value of integer cannot be greater than the maximum length of the
LOB column.

If the INLINE LENGTH clause is not specified, the maximum length of the LOB column depends on the
following conditions:

• If a distinct type is not used or the distinct type that is used has been created without the INLINE
LENGTH attribute, the LOB column will use the value of the LOB INLINE LENGTH parameter on
installation panel DSNTIPD as the default inline length when the value of LOB INLINE LENGTH does
not exceed the maximum length of the LOB column. If the value of LOB INLINE LENGTH exceeds the
maximum length of the LOB column, the maximum length is the inline length of this LOB column.

Chapter 7. Statements 1679

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_mls.html

• If a distinct type that has been created with the INLINE LENGTH attribute is used, the LOB column
inherits the inline length from the distinct type.

Regardless of how the length is determined, the inline length of the LOB cannot be greater than its
maximum length.

period-definition
PERIOD FOR

Defines a period for the table. begin-column-name must not be the same as end-column-name. The
data type, length, precision, and scale for begin-column-name must be the same as for end-column-
name.

If IN ACCELERATOR is specified, PERIOD must not be specified.

SYSTEM_TIME (begin-column-name,end-column-name)
Defines a system period with the name SYSTEM_TIME. There must not be a column in the table
with the name SYSTEM_TIME. A table can have only one SYSTEM_TIME period. begin-column-
name must be defined as AS ROW BEGIN and end-column-name must be defined as AS ROW END.

BUSINESS_TIME (begin-column-name,end-column-name)
Defines an application period with the name BUSINESS_TIME. There must not be a column in the
table with the name BUSINESS_TIME. A table can have only one BUSINESS_TIME period. begin-
column-name and end-column-name must be defined as DATE or TIMESTAMP(6) WITHOUT TIME
ZONE, and the columns must be defined as NOT NULL. begin-column-name and end-column-name
must not identify a column that is defined with a GENERATED clause.

An implicit check constraint is generated to ensure the relationship of the value of end-column-
name to the value of begin-column-name as follows:

• For an inclusive-exclusive BUSINESS_TIME period, the value of end-column-name is greater
than the value of begin-column-name.

• For an inclusive-inclusive BUSINESS_TIME period, the value of end-column-name is greater than
or equal to the value of begin-column-name.

The name of the implicitly created check constraint is
DB2_GENERATED_CHECK_CONSTRAINT_FOR_BUSINESS_TIME, and that name must not be
defined as the name of an existing check constraint.

begin-column-name
Identifies the column that records the beginning of the period of time in which a row is valid. The
name must identify a column that exists in the table and must not be the same as a column that is
used in the definition of another period for the table. begin-column-name must not be the same as
end-column-name. The data type and precision for begin-column-name must be the same as for
end-column-name.

For a SYSTEM_TIME period, begin-column-name must be defined as AS ROW BEGIN.

For a BUSINESS_TIME period, the column must not be defined with a GENERATED clause.

end-column-name
Identifies the column that records the end of the period of time in which a row is valid. In the
history table that is associated with a system-period temporal table, the history table column that
corresponds to end-column-name in the system-period temporal table is set to reflect the deletion
of the row. The name must identify a column that exists in the table and must not be the same as a
column that is used in the definition of another period for the table.

For a SYSTEM_TIME period, end-column-name must be defined as AS ROW END.

For a BUSINESS_TIME period, the column must not be defined with a GENERATED clause.

EXCLUSIVE
Specifies that the value of the end column is not included in the period. The BUSINESS_TIME
period is defined as inclusive-exclusive.

1680 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

INCLUSIVE
Specifies that the value of the end column is included in the period. The BUSINESS_TIME period is
defined as inclusive-inclusive.

unique-constraint
CONSTRAINT constraint-name

Names the constraint. If a constraint name is not specified, a unique constraint name is generated.
If a name is specified, it must be different from the names of any referential, check, primary key, or
unique key constraints previously specified on the table.

PRIMARY KEY(column-name,...)
Defines a primary key composed of the identified columns. The clause must not be specified more
than one time and the same column must not be identified more than one time. The identified
columns must be defined as NOT NULL. Each column-name must be an unqualified name that
identifies a column of the table except for the following types of columns:

• a LOB column
• a ROWID column
• a distinct type column that is based on a LOB or ROWID data type
• an XML column
• a row change timestamp column
• a column in an accelerator-only table

All character and graphic string columns in the key must use the same encoding scheme.

The number of identified columns must not exceed 64. In addition, the sum of the length attributes of
the columns must not be greater than 2000 - n - 2m - 3d, where m is the number of varying-length
columns and d is the number of DECFLOAT columns in the key.

The table is marked as unavailable until its primary index is explicitly created unless the table space
is explicitly created and the CREATE TABLE statement is processed by the schema processor, or
the table space is implicitly created. In that case, Db2 implicitly creates an index to enforce the
uniqueness of the primary key and the table definition is considered complete. (For more information
about implicitly created indexes, see Implicitly created indexes.)

BUSINESS_TIME WITHOUT OVERLAPS can be specified as the last item in the list. If BUSINESS_TIME
WITHOUT OVERLAPS is specified, the list must include at least one column-name or key-expression.
When WITHOUT OVERLAPS is specified, the values for the rest of the specified keys are unique with
respect to the time for the BUSINESS_TIME period. When BUSINESS_TIME WITHOUT OVERLAPS is
specified, the columns of the BUSINESS_TIME period must not be specified as part of the constraint.
The specification of BUSINESS_TIME WITHOUT OVERLAPS adds the following to the constraint:

• The end column of the BUSINESS_TIME period in ascending order
• The begin column of the BUSINESS_TIME period in ascending order

UNIQUE(column-name,…)
Defines a unique key composed of the identified columns. Each column-name must be an unqualified
name that identifies a column of the table. Each identified column must be defined as NOT NULL. The
same column must not be identified more than one time. The following types of columns cannot be
identified:

• a LOB column
• a ROWID column
• a distinct type column that is based on a LOB or ROWID data type
• an XML column
• a row change timestamp column
• a column in an accelerator-only table

Chapter 7. Statements 1681

The number of identified columns must not exceed 64. In addition, the sum of the length attributes of
the columns must not be greater than 2000 - n - 2m - 3d, where m is the number of varying-length
columns and d is the number of DECFLOAT columns in the key.

All character and graphic string columns in the key must use the same encoding scheme.

A unique key is a duplicate if it is the same as the primary key or a previously defined unique key. The
specification of a duplicate unique key is ignored with a warning.

The table is marked as unavailable until all the required indexes are explicitly created unless the table
space is explicitly created and the CREATE TABLE statement is processed by the schema processor,
or the table space is implicitly created. In these cases, Db2 implicitly creates the indexes that are
required for the unique keys and the table definition is considered complete. (For more information
about implicitly created indexes, see Implicitly created indexes.)

BUSINESS_TIME WITHOUT OVERLAPS can be specified as the last item in the list. If BUSINESS_TIME
WITHOUT OVERLAPS is specified, the list must include at least one column-name or key-expression.
When WITHOUT OVERLAPS is specified, the values for the rest of the specified keys are unique with
respect to the time for the BUSINESS_TIME period. When BUSINESS_TIME WITHOUT OVERLAPS is
specified, the columns of the BUSINESS_TIME period must not be specified as part of the constraint.
The specification of BUSINESS_TIME WITHOUT OVERLAPS adds the following to the constraint:

• The end column of the BUSINESS_TIME period in ascending order
• The begin column of the BUSINESS_TIME period in ascending order

referential-constraint
CONSTRAINT constraint-name

Names the referential constraint. If a constraint name is not specified, a unique constraint name
is generated. If a name is specified, it must be different from the names of any referential, check,
primary key, or unique key constraints previously specified on the table.

FOREIGN KEY (column-name,...) references-clause
Each specification of the FOREIGN KEY clause defines a referential constraint. The table being created
is the child table for the referential constraint.

The foreign key of the referential constraint is composed of the identified columns, and the columns
of the BUSINESS_TIME period if the clause PERIOD BUSINESS_TIME is specified. Each column-name
must be an unqualified name that identifies a column of the table. The same column must not
be identified more than one time. If PERIOD BUSINESS_TIME is specified, the columns of the
BUSINESS_TIME period must not be specified as part of the constraint.The column cannot be any
of the following types of columns:

• a LOB column
• a ROWID column
• a DECFLOAT column
• an XML column
• a row change timestamp column
• a security label column
• a column in an accelerator-only table

The number of identified columns, and the columns of the BUSINESS_TIME period if the clause
PERIOD BUSINESS_TIME is specified, must not exceed 64, including columns of the BUSINESS_TIME
period if PERIOD BUSINESS_TIME is specified. The sum of the column length attributes must not
exceed 255 minus the number of columns that allow null values. The referential constraint is a
duplicate if the FOREIGN KEY and parent table are the same as the FOREIGN KEY and parent table
of a previously defined referential constraint. The specification of a duplicate referential constraint is
ignored with a warning. An exception is that a duplicate referential constraint is not allowed if the
definition of the constraint includes the PERIOD BUSINESS_TIME clause.

1682 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

REFERENCES parent-table-name (column-name,...)
The table name that is specified after REFERENCES is the parent table for the referential constraint.
parent-table-name must identify a table that exists at the current server33. The table name must not
identify one of the following tables:

• A catalog table
• A directory table
• A declared global temporary table
• A history table
• An archive table

In the following discussion, let T2 denote an identified table and let T1 denote the table that you are
creating (T1 and T2 cannot be the same table33).

T2 must have a unique index. The privilege set must include the ALTER or REFERENCES privilege on
the parent table, or the REFERENCES privilege on the columns of the nominated parent key, including
the columns of the BUSINESS_TIME period if the PERIOD BUSINESS_TIME clause is specified..

The parent key of the referential constraint is composed of the identified columns, or columns of
the BUSINESS_TIME period if PERIOD BUSINESS_TIME is specified. Each column-name must be an
unqualified name that identifies a column of T2. The same column must not be identified more than
one time. If PERIOD BUSINESS_TIME is specified, the columns of the BUSINESS_TIME period must
not be specified as part of the constraint. The identified column cannot be any of the following types
of columns:

• a LOB column
• a ROWID column
• a DECFLOAT column
• an XML column
• a row change timestamp column
• a security label column

The list of column names in the parent key must match the list of column names in a primary key or
unique key in the parent table T2. The column names must be specified in the same order as in the
primary key or unique key. If PERIOD BUSINESS_TIME was specified for the primary key or unique key
of the parent table T2, then PERIOD BUSINESS_TIME must also be specified for the foreign key clause
for T1. If any of the referenced columns in T2 has a non-numeric data type, T2 and T1 must use the
same encoding scheme, unless T2 is a Unicode table, and T1 is an EBCDIC table with Unicode key
columns. In that case, for each character or graphic string column in T1, the CCSID must be the same
as the corresponding column in T2.

If a list of column names is not specified, T2 must have a primary key. Omission of a list of column
names is an implicit specification of the columns of the primary key for T2.

The specified foreign key must have the same number of columns as the parent key of T2 and,
except for their names, default values, null attributes and check constraints, the description of the nth
column of the foreign key must be identical to the description of the nth column of the nominated
parent key. If the foreign key includes a column defined as a distinct type, the corresponding column
of the nominated parent key must be the same distinct type. If a column of the foreign key has a
field procedure, the corresponding column of the nominated parent key must have the same field
procedure and an identical field description. A field description is a description of the encoded value
as it is stored in the database for a column that has been defined to have an associated field
procedure.

If PERIOD BUSINESS_TIME is specified in the FOREIGN KEY clause, then PERIOD BUSINESS_TIME
must also be specified in the REFERENCES clause. If PERIOD BUSINESS_TIME is not specified in the

33 This restriction is relaxed when the statement is processed by the schema processor and the other table is
created within the same CREATE SCHEMA.

Chapter 7. Statements 1683

FOREIGN KEY clause, then PERIOD BUSINESS_TIME must also not be specified in the REFERENCES
clause.

If the PERIOD BUSINESS_TIME clause is specified, T2 must not be defined as part of a referential
cycle. T1 and T2 must not be the same table, and T1 must not be a descendent, directly or indirectly,
of another table that is a descendent of T2.

The table space that contains T1 must be available to Db2. If T1 is populated, its table space is placed
in a check pending status. A table in a segmented table space is populated if the table is not empty.
A table in a table space that is not segmented is considered populated if the table space has ever
contained any records.

The referential constraint that is specified by a FOREIGN KEY clause defines a relationship in which
T2 is the parent and T1 is the dependent. A description of the referential constraint is recorded in the
catalog.

PERIOD BUSINESS_TIME
Specifies that the BUSINESS_TIME period is considered part of the referential constraint. When
PERIOD BUSINESS_TIME is specified, the values for the rest of the specified columns are unique with
respect to the specified point of time.

PERIOD BUSINESS_TIME can be specified as the last key expression. If PERIOD BUSINESS_TIME is
not the last key expression, an error is returned. If PERIOD BUSINESS_TIME is specified, the columns
of the BUSINESS_TIME period must not be specified as part of the constraint.

When PERIOD BUSINESS_TIME is specified, the following columns are implicitly added to the end of
the constraint:

• The end column of the BUSINESS_TIME period.
• The start column of the BUSINESS_TIME period.

The PERIOD BUSINESS_TIME clause specifies that there must not be a row in the child table for which
the period of time represented by the BUSINESS_TIME period values for that row is not contained
in the BUSINESS_TIME period of a corresponding row in the parent table. Furthermore, it is not
necessary that there be exactly one corresponding row in the parent table where the BUSINESS_TIME
period contains the BUSINESS_TIME period of the child row. As long as the BUSINESS_TIME period
of a row in the child table is contained in the union of the BUSINESS_TIME periods of two or more
contiguous matching rows in the parent table, the referential constraint is considered satisfied.

When the FOREIGN KEY clause specifies the PERIOD BUSINESS_TIME clause, the following
conditions apply:

• The corresponding REFERENCES clause must also specify the PERIOD BUSINESS_TIME clause.
• A unique index with the BUSINESS_TIME WITHOUT OVERLAPS clause must be defined on the table.

The table is marked as unavailable until the index is created.
• A unique index must be defined on the parent table with the BUSINESS_TIME WITHOUT OVERLAPS

clause.

ON DELETE RESTRICT must be, implicitly or explicitly, specified when PERIOD BUSINESS_TIME is
also specified.

ON DELETE
The delete rule of the relationship is determined by the ON DELETE clause. For more on the concepts
used here, see Referential constraints (Introduction to Db2 for z/OS).

SET NULL must not be specified unless some column of the foreign key allows null values. The
default value for the rule depends on the value of the CURRENT RULES special register when the
CREATE TABLE statement is processed. If the value of the register is 'Db2', the delete rule defaults to
RESTRICT; if the value is 'STD', the delete rule defaults to NO ACTION.

The delete rule applies when a row of T2 is the object of a DELETE or propagated delete operation and
that row has dependents in T1. Let p denote such a row of T2. Then:

• If RESTRICT or NO ACTION is specified, an error occurs and no rows are deleted.

1684 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_integrity.html

• If CASCADE is specified, the delete operation is propagated to the dependents of p in T1.
• If SET NULL is specified, each nullable column of the foreign key of each dependent of p in T1 is set

to null.

Let T3 denote a table identified in another FOREIGN KEY clause (if any) of the CREATE TABLE
statement. The delete rules of the relationships involving T2 and T3 must be the same and must not
be SET NULL if:

• T2 and T3 are the same table.
• T2 is a descendent of T3 and the deletion of rows from T3 cascades to T2.
• T2 and T3 are both descendents of the same table and the deletion of rows from that table

cascades to both T2 and T3.

ENFORCED or NOT ENFORCED
Indicates whether or not the referential constraint is enforced by Db2 during normal operations, such
as insert, update, or delete.
ENFORCED

Specifies that the referential constraint is enforced by the Db2 during normal operations (such as
insert, update, or delete) and that it is guaranteed to be correct. This is the default.

NOT ENFORCED
Specifies that the referential constraint is not enforced by Db2 during normal operations, such
as insert, update, or delete. This option should only be used when the data that is stored in the
table is verified to conform to the constraint by some other method than relying on the database
manager.

ENABLE QUERY OPTIMIZATION
Specifies that the constraint can be used for query optimization. Db2 uses the information in query
optimization using materialized query tables with the assumption that the constraint is correct. This is
the default.

check-constraint
CONSTRAINT constraint-name

Names the check constraint. The constraint name must be different from the names of any referential,
check, primary key, or unique key constraints previously specified on the table.

If constraint-name is not specified, a unique constraint name is derived from the name of the first
column in the check-condition specified in the definition of the check constraint.

CHECK (check-condition)
Defines a check constraint. At any time, the check-condition must be true or unknown for every
row of the table. A check-condition can evaluate to unknown if a column that is an operand of the
predicate is null. A check-condition that evaluates to unknown does not violate the check constraint. A
check-condition is a search condition, with the following restrictions:

• It can refer only to columns of table table-name.
• The columns cannot be the following types of columns:

– LOB columns
– ROWID columns
– DECFLOAT columns
– distinct type columns that are based on LOB, ROWID, and DECFLOAT data types
– XML columns
– security label columns
– columns in an accelerator-only table

• It can be up to 3800 bytes long, not including redundant blanks.
• It must not contain any of the following:

Chapter 7. Statements 1685

– Subselects
– Built-in or user-defined functions
– CAST specifications
– Cast functions other than those created when the distinct type was created
– Host variables
– Parameter markers
– Special registers
– Global variables
– Columns that include a field procedure
– CASE expressions
– ROW CHANGE expressions
– Row-value expressions
– DISTINCT predicates
– GX constants (hexadecimal graphic string constants)
– Sequence references
– OLAP specifications

• It must not result in CCSID conversion.
• If a check-condition refers to a LOB column (including a distinct type that is based on a LOB), the

reference must occur within a LIKE predicate.
• The AND and OR logical operators can be used between predicates. The NOT logical operator

cannot be used with the following predicates: NOT BETWEEN, NOT IN, NOT LIKE, or IS NOT NULL.
• The first operand of every predicate must be the column name of a column in the table.
• The second operand in the check-condition must be either a constant or the name of a column in the

table.

– If the second operand of a predicate is a constant, and if the constant is:

- A floating-point number, then the column data type must be floating point.
- A decimal number, then the column data type must be either floating point or decimal.
- An integer number, then the column data type must not be a small integer.
- A small integer number, then the column data type must be small integer.
- A decimal constant, then its precision must not be larger than the precision of the column.

– If the second operand of a predicate is a column, then both columns of the predicate must have:

- The same data type.
- Identical descriptions with the exception that the specification of the NOT NULL and DEFAULT

clauses for the columns can be different, and that string columns with the same data type can
have different length attributes.

LIKE
table-name or view-name

Specifies that the columns of the table have exactly the same name and description as the columns of
the identified table or view.

The name that is specified after LIKE must identify a table or view that exists at the current server or a
declared temporary table. A view cannot contain columns of length 0.

LIKE must not reference an accelerator-only table or be used with the IN ACCELERATOR clause.

The privilege set must implicitly or explicitly include the SELECT privilege on the identified table or
view. If the identified table or view contains a column with a distinct type, the USAGE privilege on

1686 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

the distinct type is also needed. An identified table must not be an auxiliary table or a clone table.
An identified view must not include a column that is an explicitly defined ROWID column (including a
distinct type that is based on a ROWID), an identity column, or a row change timestamp column.

The use of LIKE is an implicit definition of n columns, where n is the number of columns in
the identified table (including implicitly hidden columns) or view. A column of the new table that
corresponds to an implicitly hidden column in the existing table will also be defined as implicitly
hidden. The implicit definition includes all attributes of the n columns as they are described in
SYSCOLUMNS with the following exceptions:

• When a table is identified in the LIKE clause and a column in the table has a field procedure, the
corresponding column of the new table has the same field procedure and the field description.
However, the field procedure is not invoked during the execution of the CREATE TABLE statement.
When a view is identified in the LIKE clause, none of the columns of the new table will have a field
procedure. This is true even in the case that a column of a base table underlying the view has a field
procedure defined.

• When a table is identified in the LIKE clause and a column in the table is an identity column, the
corresponding column of the new table inherits only the data type of the identity column; none
of the identity attributes of the column are inherited unless the INCLUDING IDENTITY clause is
specified.

• When a table is identified in the LIKE clause and a column in the table is a security label column, the
corresponding column of the new table inherits only the data type of the security label column; none
of the security label attributes of the column are inherited.

• When a table that contains a ROWID column is identified in the LIKE clause, the corresponding
column of the new table inherits the ROWID column, regardless of whether the column has the
IMPLICITLY HIDDEN attribute.

• When a table is identified in the LIKE clause and the table contains a row change timestamp
column, a transaction-start-ID column, a row-begin column, or a row-end column, the
corresponding column of the new table inherits only the data type of the original column. The new
column is not considered a generated column.

• When a table is identified in the LIKE clause and a column in the table is a generated expression
column, the corresponding column of the new table inherits only the data type of the original
column. The new column is not considered a generated column.

• When a table is identified in the LIKE clause and the table contains an inline LOB column, the
corresponding columns of the new table will inherit the inline attribute if the table is in an universal
table space. Otherwise, the inline attribute of the table identified in the LIKE clause is ignored.

• When a view is identified in the LIKE clause, the default value that is associated with the
corresponding column of the new table depends on the column of the underlying base table for
the view. If the column of the base table does not have a default, the new column does not have a
default. If the column of the base table has a default, the default of the new column is:

– Null if the column of the underlying base table allows nulls.
– The default for the data type of the underlying base table if the underlying base table does not

allow nulls.

The above defaults are chosen regardless of the current default of the base table column. The
existence of an INSTEAD OF trigger does not affect the inheritance of default values.

• When a table that uses table-controlled partitioning is identified in the LIKE clause, the new table
does not inherit partitioning scheme of that table. You can add these partition boundaries by
specifying ALTER TABLE with the ADD PARTITION BY RANGE clause.

• The CCSID of the column is determined by the implicit or explicit CCSID clause. For more
information, see the CCSID clause.

An exception is a Unicode column in an EBCDIC table, which inherits the CCSID of the column in the
existing table.

Chapter 7. Statements 1687

• When a table is identified in the LIKE clause and the table includes a period definition, the new table
does not inherit the period. definition.

• When the table that is identified in the LIKE clause is a system-period temporal table, the new table
is not a system-period temporal table.

• When the table that is identified in the LIKE clause has row access controls or column access
controls activated, the new table does not inherit the row access controls or the column access
controls.

The implicit definition does not include any other attributes of the identified table or view. For
example, the new table does not have a primary key or foreign key. The table is created in the table
space implicitly or explicitly specified by the IN clause, and the table has any other optional clause
only if the optional clause is specified.

copy-options
copy-options

Specifies whether identity column attributes, row change timestamp attributes, and column defaults
are inherited from the definition of the source of the result table.
EXCLUDING IDENTITY COLUMN ATTRIBUTES or INCLUDING IDENTITY COLUMN ATTRIBUTES

Specifies whether identity column attributes are inherited from the definition of the source of the
result table.
EXCLUDING IDENTITY COLUMN ATTRIBUTES

Specifies that identity column attributes are not inherited from the definition of the source of
the result table. This is the default.

INCLUDING IDENTITY COLUMN ATTRIBUTES
Specifies that, if available, identity column attributes (such as START WITH, INCREMENT BY,
and CACHE values) are inherited from the definition of the source table. These attributes can
be inherited if the element of the corresponding column in the table, view, or fullselect is the
name of a column of a table or the name of a column of a view that directly or indirectly maps
to the column name of a base table with the identity attribute. In other cases, the columns of
the new temporary table do not inherit the identity attributes. The columns of the new table do
not inherit the identity attributes in the following cases:

• The select list of the fullselect includes multiple instances of an identity column name (that
is, selecting the same column more than one time).

• The select list of the fullselect includes multiple identity columns (that is, it involves a join).
• The identity column is included in an expression in the select list.
• The fullselect includes a set operation.

EXCLUDING ROW CHANGE TIMESTAMP COLUMN ATTRIBUTES or INCLUDING ROW CHANGE
TIMESTAMP COLUMN ATTRIBUTES

Specifies whether row change timestamp column attributes are inherited from the definition of the
source of the result table.
EXCLUDING ROW CHANGE TIMESTAMP COLUMN ATTRIBUTES

Specifies that row change timestamp column attributes are not inherited from the source
result table definition. This is the default.

INCLUDING ROW CHANGE TIMESTAMP COLUMN ATTRIBUTES
Specifies that, if available, row change timestamp column attributes are inherited from
the definition of the source table. These attributes can be inherited if the element of the
corresponding column in the table, view, or fullselect is the name of a column of a table or the
name of a column of a view that directly or indirectly maps to the column name of a base table
defined as a row change timestamp column. In other cases, the columns of the new temporary
table do not inherit the row change timestamp column attributes. The columns of the new
table do not inherit the row change timestamp attributes in the following cases:

1688 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• The select list of the fullselect includes multiple instances of a row change timestamp
column name (that is, selecting the same column more than one time).

• The select list of the fullselect includes multiple row change timestamp column names (that
is, it involves a join).

• The row change timestamp column is included in an expression in the select list.
• The fullselect includes a set operation (such as union).

EXCLUDING COLUMN DEFAULTS, INCLUDING COLUMN DEFAULTS, or USING TYPE DEFAULTS
Specifies whether column defaults are inherited from the source result table definition.
EXCLUDING COLUMN DEFAULTS, INCLUDING COLUMN DEFAULTS, and USING TYPE DEFAULTS
must not be specified if the LIKE clause is specified.
EXCLUDING COLUMN DEFAULTS

Specifies that the column defaults are not inherited from the definition of the source table. The
default values of the column of the new table are either null or there are no default values. If
the column can be null, the default is the null value. If the column cannot be null, there is no
default value, and an error occurs if a value is not provided for a column on an insert or update
operation, or LOAD for the new table.

INCLUDING COLUMN DEFAULTS
Specifies that column defaults for each updatable column of the definition of the source
table are inherited. Columns that are not updatable do not have a default defined in the
corresponding column of the created table. The existence of an INSTEAD OF trigger for a view
does not affect the inheritance of default values.

USING TYPE DEFAULTS
Specifies that the default values for the table depend on data type of the columns that result
from fullselect, as follows:
Data type

Default value
Numeric

0
Fixed-length character string

Blanks
Fixed-length graphic string

Blanks
Fixed-length binary string

Hexadecimal zeros
Varying-length string

A string of length 0
Fixed-length char or fixed-length graphic

A string of blanks
Fixed-length binary

Hexadecimal zeros
Date

CURRENT DATE
Time

CURRENT TIME
Timestamp(integer) without time zone

CURRENT TIMESTAMP(p) WITHOUT TIME ZONE where p is the corresponding timestamp
precision.

Timestamp(integer) with time zone
CURRENT TIMESTAMP(p) WITH TIME ZONE where p is the corresponding timestamp
precision.

Chapter 7. Statements 1689

as-result-table
as-result-table

Specifies that the column definitions of the table are based on the result of the fullselect.
column-name

Names the columns in the table. If a list of column names is specified, it must consist of as
many names as there are columns in the result table of the fullselect. Each column-name must be
unique and unqualified. If a list of column names is not specified, the columns of the table inherit
the names of the columns of the result table of the fullselect.

A list of column names must be specified if the result table of the fullselect has duplicate column
names or an unnamed column. An unnamed column is a column derived from a constant, function,
expression, or set operation that is not named using the AS clause.

AS (fullselect)
Specifies that the table definition is based on the column definitions from the result of the
fullselect. The use of AS (fullselect) is an implicit definition of n columns for the table, where n
is the number of columns that would result from the fullselect. The columns of the new table
are defined by the columns that result from the fullselect. Every select list element must have a
unique name. The AS clause can be used in the select-clause to provide unique names.

The implicit definition includes the column name, data type, length, precision, scale, and
nullability characteristic of each of the result columns of fullselect. The length of each column
must not be 0. Other column attributes, such as DEFAULT and IDENTITY, are not inherited from
the fullselect. A column of the new table that corresponds to an implicitly hidden column of a base
table referenced in the fullselect is not considered hidden in the new table. The generated column
attributes are not inherited from the fullselect. That is, a new column of the table is not considered
as a generated column. A FIELDPROC is inherited for a column if the corresponding select item of
the fullselect is a column that can be mapped to a column of a base table or a view. The new table
contains a security label column if only one table in the fullselect contains a security label column
and the primary authorization ID of the statement has a valid security label.

The outermost SELECT list of the fullselect must not reference data that is encoded with different
encoding schemes. An exception is that the outermost SELECT list can contain a mixture of
EBCDIC and Unicode columns. In this case, the new table is an EBCDIC table with one or more
Unicode columns.

The implicit definition does not include any other attributes of the identified table or view. For
example, the new table does not have a primary key or foreign key. The table is created in the
table space implicitly or explicitly specified by the IN clause, and the table has any other optional
clause only if the optional clause is specified.

If IN ACCELERATOR is specified, AS (fullselect) cannot be specified.

The owner of the table being created must have the SELECT privilege on the tables or views
referenced in the fullselect, or the privilege set must include SYSADM or DBADM authority for
the database in which the tables of the fullselect reside. Having SELECT privilege means that the
owner has at least one of the following authorizations.

• Ownership of the tables or views referenced in the fullselect
• The SELECT privilege on the tables and views referenced in the fullselect
• SYSADM authority
• DBADM authority for the database in which the tables of the fullselect reside

Additional privileges might be necessary for accessing other objects that are referenced in the
fullselect.

The fullselect must not:

• Result in a column having a ROWID, BLOB, CLOB, DBCLOB, or XML data type or a distinct type
based on these data types.

• Include multiple security label columns.

1690 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• Include a PREVIOUS VALUE or a NEXT VALUE expression.
• Refer to host variables or include parameter markers.
• Include an SQL data change statement in the FROM clause.
• In the outermost SELECT, reference a combination of ASCII and EBCDIC data, or a combination

of ASCII and Unicode data.
• Result in a column that is an array.
• Reference a remote object.
• Reference an accelerator-only table.

WITH NO DATA
Specifies that the query is used only to define the attributes of the new table. The table is not
populated using the results of the fullselect and the REFRESH TABLE statement cannot be used.

If the tables that are specified in the fullselect use row access controls or column access controls,
the row access controls and the column access controls are not defined for the new table.

materialized-query-definition
materialized-query-definition

Specifies that the column definitions of the materialized query table are based on the result of a
fullselect. If materialized-query-table-options are specified, the REFRESH TABLE statement can be
used to populate the table with the results of the fullselect.
column-name

Names the columns in the table. If a list of column names is specified, it must consist of as
many names as there are columns in the result table of the fullselect. Each column-name must be
unique and unqualified. If a list of column names is not specified, the columns of the table inherit
the names of the columns of the result table of the fullselect.

A list of column names must be specified if the result table of the fullselect has duplicate column
names or an unnamed column. An unnamed column is a column derived from a constant, function,
expression, or set operation that is not named using the AS clause of the select list.

AS (fullselect)
Specifies that the table definition is based on the column definitions from the result of the
fullselect. The use of AS (fullselect) is an implicit definition of n columns for the table, where n
is the number of columns that would result from the fullselect. The columns of the new table
are defined by the columns that result from the fullselect. Every select list element must have a
unique name. The AS clause can be used in the select-clause to provide unique names.

The implicit definition includes the column name, data type, length, precision, scale, and
nullability characteristic of each of the result columns of fullselect. The length of each column
must not be a 0. Other column attributes, such as DEFAULT, IDENTITY, and unique constraints,
are not inherited from the fullselect. A column of the new table that corresponds to an implicitly
hidden column of a base table referenced in the fullselect is not considered hidden in the new
table. The generated column attributes are not inherited from the fullselect. That is, the new
column of the materialized query table is not considered as a generated column. A FIELDPROC
is inherited for a column if the corresponding select item of the fullselect is a column that can be
directly mapped to a column of a base table or a view in the FROM clause of the fullselect. The
materialized query table contains a security label column if only one table in the fullselect contains
a security label column and the primary authorization ID of the statement has a valid security
label.

The outermost SELECT list of the fullselect can include result columns that are defined as EBCDIC
columns and result columns that are defined as Unicode columns. In this case, the materialized
query table is an EBCDIC table with one or more Unicode columns.

Authorization for creating materialized query tables
The owner of the table being created must have the SELECT privilege on the tables or views
referenced in the fullselect, or the privilege set must include SYSADM or DBADM authority for

Chapter 7. Statements 1691

the database in which the tables of the fullselect reside. Having SELECT privilege means that
the owner has at least one of the following authorizations:

• Ownership of the tables or views referenced in the fullselect
• The SELECT privilege on the tables and views referenced in the fullselect
• SYSADM authority
• DBADM authority for the database in which the tables of the fullselect reside

Additional privileges might be necessary for accessing other objects that are referenced in the
fullselect.

The rules for establishing the qualifiers for names used in the fullselect are the same as the
rules used to establish the qualifiers for table-name.

The following restrictions apply when creating materialized query tables. When fullselect does not
satisfy the restrictions, an error occurs:

• The length of each result column of the fullselect must not be 0.
• The fullselect cannot contain a column of a LOB or XML data type.
• No more than one table in the fullselect can contain a security label column.
• The fullselect must not contain a period specification.
• The outermost SELECT list must not reference data that is encoded with a combination of ASCII

and EBCDIC CCSID sets, or a combination of ASCII and Unicode CCSID sets.
• The object that is specified in the FROM clause of the fullselect cannot be a view with columns

of length 0.
• The fullselect cannot contain a reference to a created global temporary table, a declared global

temporary table, an accelerator-only table, a directory table, or another materialized query
table.

• If IN ACCELERATOR is specified, materialized-query-definition cannot be specified.
• The fullselect cannot directly or indirectly reference a base table that has been activated for the

row or column access control or a base table for which a row permission or a column mask has
been defined.

• The fullselect must not refer to host variables or include parameter markers.
• The fullselect must not refer to global variables.
• The fullselect must not include the following built-in functions: LISTAGG, PERCENTILE_CONT, or

PERCENTILE_DISC.

Additional restrictions when ENABLE QUERY OPTIMIZATION is in effect:

• The fullselect must be a subselect.
• The subselect cannot include the following:

– A special register
– A scalar fullselect
– A row change timestamp column
– A ROW CHANGE expression
– An expression for which implicit time zone values apply (for example, cast a timestamp to a

timestamp with time zone)
– The RAND built-in function
– The RID built-in function
– A user-defined scalar or table function that is not deterministic or that has external actions
– Any predicates that include a subquery
– A row-value-expression in a predicate

1692 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

– A join using the INNER JOIN syntax, or an outer join
– A lateral correlation
– A nested table expression or view that requires temporary materialization
– A direct or indirect reference to a table that uses activated row or column access controls, or

a table for which row or column access controls have been defined.
– A FETCH FIRST clause
– A reference to a global variable
– A collection-derived table (UNNEST)
– A GROUPING SETS or super-groups clause

• If a table with a security label is referenced, the security label column must be referenced in the
outer select list of the subselect.

• If the subselect references a view, the fullselect in the view definition must satisfy all other
restrictions.

refreshable-table-options
Specifies the options for a refreshable materialized query table. The ORDER BY clause is allowed,
but it is used only by REFRESH. The ORDER BY clause can improve the locality of reference of data
in the materialized query table.
DATA INITIALLY DEFERRED

Specifies that the data is not inserted into the materialized query table when it is created. Use
the REFRESH TABLE statement to populate the materialized query table, or use the INSERT
statement to insert data into a user-maintained materialized query table.

REFRESH DEFERRED
Specifies that the data in the table can be refreshed at any time using the REFRESH TABLE
statement. The data in the table only reflects the result of the query as a snapshot at the
time when the REFRESH TABLE statement is processed or when it was last updated for a
user-maintained materialized query table.

MAINTAINED BY SYSTEM or MAINTAINED BY USER
Specifies how the data in the materialized query table is maintained.
MAINTAINED BY SYSTEM

Specifies that the materialized query table is maintained by the system. Only the REFRESH
statement is allowed on the table. This is the default.

MAINTAINED BY USER
Specifies that the materialized query table is maintained by the user, who can use the
LOAD utility, an SQL data change statement, a SELECT from data change statement, or
REFRESH TABLE SQL statements on the table.

ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION
Specifies whether this materialized query table can be used for optimization.
ENABLE QUERY OPTIMIZATION

Specifies that the materialized query table can be used for query optimization. If the
fullselect specified does not satisfy the restrictions for query optimization, an error occurs.

ENABLE QUERY OPTIMIZATION is the default.

The fullselect must not contain a period specification.

DISABLE QUERY OPTIMIZATION
Specifies that the materialized query table cannot be used for query optimization. The
table can still be queried directly.

IN
IN database-name.table-space-name or IN DATABASE database-name

Identifies the database and table space in which the table is created. Both forms are optional.

Chapter 7. Statements 1693

If you specify database-name and table-space-name, the database must be described in the catalog
on the current server. The database must not be DSNDB06 or a work file database. The table space
must belong to the database that you specify.

If you specify database-name but not table-space-name, a table space is implicitly created in
database-name. The name of the table space is derived from the name of the table. The buffer pool
that is used is the default buffer pool for user data that is specified on installation panel DSNTIP1.

If you specify a table space but not a database, the database that contains the table space is used.

If you do not specify the IN clause, a database is implicitly created with the name DSNxxxxx, where
xxxxx is a five-digit number. A table space is also implicitly created.

If you specify table-space-name, the table space cannot be one of the following table spaces:

• A table space that was created implicitly
• A partitioned table space that already contains a table
• A LOB table space
• An XML table space
• FL 504 A non-UTS table space

If you specify a partitioned table space, you cannot load or use the table until its partitioned scheme is
created.

You cannot specify a name in the format of an implicitly created database name, which is DSNxxxxx,
where xxxxx is a five-digit number..

If you specify table-space-name, but you do not specify database-name, or you do not specify the
IN clause, users who have the authority to create table spaces or tables in database DSNDB04 have
authority to create tables and table spaces in the implicitly created database.

If you do not specify table-space-name, the privilege set must have: SYSADM or SYSCTRL authority;
DBADM, DBCTRL, or DBMAINT authority for the database; or the CREATETS privilege for the database.
You must also have the USE privilege for the default buffer pool in the database and default storage
group.

For implicitly created table spaces, Db2 selects the buffer pool as described in Implicitly defined table
spaces (Db2 Administration Guide).

IN ACCELERATOR accelerator-name
Specifies that the table is an accelerator-only table. accelerator-name identifies the accelerator in
which the table will be defined.

FL 509 You can specify an alias (logical name) for accelerator-name. For more information, see Using
an alias for an accelerator (Db2 Performance). To create a high availability accelerator-only table,
specify a location alias that represents multiple accelerators to define the table in all accelerators that
are associated with the location alias.

If you specify an accelerator-only table, the table and the data of the table exists only in the
accelerator, not in Db2. However, the table and column definition of the accelerator-only table are
contained in Db2 catalog tables.

partitioning-clause block
PARTITION BY SIZE or PARTITION BY RANGE

Specifies the partitioning scheme for the table. For more information, see Partitioning data in Db2
tables (Db2 Administration Guide).
PARTITION BY SIZE

Specifies that the table is created in a partition-by-growth table space. If the IN clause specifies
a table-space-name, it must identify a partition-by-growth table space. If the IN clause does not
specify an existing table space name and the PARTITION BY clause is not specified, PARTITION
BY SIZE is the default.

1694 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicitlydefinedtablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicitlydefinedtablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_acceleratoralias.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_acceleratoralias.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_partitiontabledata.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_partitiontabledata.html

If IN ACCELERATOR is specified, PARTITION BY SIZE must not be specified.

EVERY integer G
Specifies that the table is to be partitioned by growth, every integer G bytes. integer must not
be greater than 256. If the IN clause identifies a table space, integer must be the same as the
DSSIZE value that is in effect for the table space that will contain the table.

integer can be separated from G by 0 or more spaces.

PARTITION BY RANGE
Specifies the range partitioning scheme for the table (the columns that are used to partition the
data). When this clause is specified, the table space is complete, and it is not necessary to create
a partitioned index on the table. If this clause is used, the ENDING AT clause cannot be used on a
subsequent CREATE INDEX statement for this table.

PARTITION BY RANGE must not be specified for a table that is created in a partition-by-growth
table space. If IN ACCELERATOR is specified, PARTITION BY RANGE must not be specified.

partition-expression
Specifies the key data over which the range is defined to determine the target data partition of
the data.
column-name

Specifies the columns of the key. Each column-name must identify a column of the table.
Do not specify more than 64 columns or the same column more than one time. The sum of
length attributes of the columns must not be greater than 255 - n, where n is the number
of columns that can contain null values. Do not specify a qualified column name.

A timestamp with time zone column (or a column with a distinct type that is based on
the timestamp with time zone data type) can only be specified as the last column in a
partitioning key.

Do not specify a column for column-name if the column is defined as follows:

• a LOB column (or a column with a distinct type that is based on a LOB data type)
• a BINARY column (or a column with a distinct type that is based on a BINARY data type)
• a VARBINARY column (or a column with a distinct type that is based on a VARBINARY

data type)
• a DECFLOAT column (or a column with a distinct type that is based on a DECFLOAT data

type)
• an XML column

All character and graphic string columns in the key must be defined with the same
encoding scheme.

NULLS LAST
Specifies that null values are treated as positive infinity for purposes of comparison.

ASC
Puts the entries in ascending order by the column. ASC is the default.

DESC
Puts the entries in descending order by the column.

partition-element
Specifies ranges for a data partitioning key and the table space where rows of the table in the
range will be stored.
PARTITION integer

integer is the physical number of a partition in the table space. A PARTITION clause must
be specified for every partition of the table space. In this context, highest means highest
in the sorting sequences of the columns. In a column defined as ascending (ASC), highest
and lowest have their usual meanings. In a column defined as descending (DESC), the
lowest actual value is highest in the sorting sequence.

Chapter 7. Statements 1695

ENDING AT (constant, MAXVALUE, or MINVALUE, ...)
Defines the limit key for a partition boundary. Specify at least one value (constant,
MAXVALUE, or MINVALUE) after ENDING AT in each PARTITION clause. You can use as
many values as there are columns in the key. The concatenation of all values is the highest
value of the key for ascending and the lowest for descending.
constant

Specifies a constant value with a data type that must conform to the rules for assigning
that value to the column. If a string constant is longer or shorter than required by the
length attribute of its column, the constant is either truncated or padded on the right
to the required length. If the column is ascending, the padding character is X'FF'. If
the column is descending, the padding character is X'00'. The precision and scale of a
decimal constant must not be greater than the precision and scale of its corresponding
column. A hexadecimal string constant (GX) cannot be specified.

MAXVALUE
Specifies a value greater than the maximum value for the limit key of a partition
boundary (that is, all X'FF' regardless of whether the column is ascending or
descending). If all of the columns in the partitioning key are ascending, a constant
or the MINVALUE clause cannot be specified following MAXVALUE. After MAXVALUE is
specified, all subsequent columns must be MAXVALUE.

MINVALUE
Specifies a value that is smaller than the minimum value for the limit key of a
partition boundary (that is, all X'00' regardless of whether the column is ascending
or descending). If all of the columns in the partitioning key are descending, a constant
or the MAXVALUE clause cannot be specified following MINVALUE. After MINVALUE is
specified, all subsequent columns must be MINVALUE.

The key values are subject to the following rules:

• The first value corresponds to the first column of the key, the second value to the second
column, and so on. Using fewer values than there are columns in the key has the same
effect as using the highest or lowest values for the omitted columns, depending on
whether they are ascending or descending.

• The highest value of the key in any partition must be lower than the highest value of the
key in the next partition for ascending cases.

• The values specified for the last partition are enforced. The value specified for the last
partition is the highest value of the key that can be placed in the table. Any key values
greater than the value specified for the last partition are out of range.

• If the concatenation of all the values exceeds 255 bytes, only the first 255 bytes are
considered.

• If a key includes a ROWID column or a column with a distinct type that is based on
a ROWID data type, 17 bytes of the constant that is specified for the corresponding
ROWID column are considered.

• If a null value is specified for the partitioning key and the key is ascending, an error is
returned unless MAXVALUE is specified. If the key is descending, an error is returned
unless MINVALUE is specified.

partition-hash-space
See partition-hash-space.

INCLUSIVE
Specifies that the specified range values are included in the data partition.

organization-clause
See organization-clause.

1696 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Other options
EDITPROC program-name

Identifies the user-written code that implements the edit procedure for the table. The edit procedure
must exist at the current server. The procedure is invoked during the execution of an SQL data change
statement or LOAD and all row retrieval operations on the table.

An edit routine receives an entire table row, and can transform that row in any way. Also, it receives a
transformed row and must change the row back to its original form.

For information on writing an EDITPROC exit routine, see Edit procedures (Db2 Administration Guide).

WITH ROW ATTRIBUTES
Specifies that the edit procedure parameter list contains an address for the description of a row.
WITH ROW ATTRIBUTES must not be specified for a table with an identity, LOB, XML, ROWID, or
SECURITY LABEL column. WITH ROW ATTRIBUTES is the default. When WITH ROW ATTRIBUTES
is specified, the column names in the table must not be longer than 18 EBCDIC SBCS characters in
length.

WITHOUT ROW ATTRIBUTES
Specifies that the description of the row is not provided to the edit procedure. On entry to the edit
procedure, the address for the row description in the parameter list contains a value of zero.

VALIDPROC program-name
Designates program-name as the validation exit routine for the table. Writing a validation exit routine
is described in Validation routines (Db2 Administration Guide).

The validation routine can inhibit a load, insert, update, or delete operation on any row of the table:
before the operation takes place, the procedure is passed the row. The values that are represented
by any LOB or XML columns in the table are not passed to the validation routine. On an insert or
update operation, if the table has a security label column and the user does not have write-down
privilege, the user's security label value is passed to the validation routine as the value of the column.
After examining the row, the procedure returns a value that indicates whether the operation should
proceed. A typical use is to impose restrictions on the values that can appear in various columns. If IN
ACCELERATOR is specified, VALIDPROC must not be specified.

A table can have only one validation procedure at a time. In an ALTER TABLE statement, you can
designate a replacement procedure or discontinue the use of a validation procedure.

If you omit VALIDPROC, the table has no validation routine.

AUDIT
Identifies the types of access to this table that causes auditing to be performed. For information about
audit trace classes, see Types of Db2 traces (Db2 Performance) and -START TRACE command (Db2)
(Db2 Commands).

If a materialized query table is refreshed with the REFRESH TABLE statement, the auditing also
occurs during the REFRESH TABLE operation. AUDIT works as usual for LOAD and SQL data change
operations on a user-maintained materialized query table.

NONE
Specifies that no auditing is to be done when this table is accessed. This is the default.

CHANGES
Specifies that auditing is to be done when the table is accessed during the first insert, update, or
delete operation. However, the auditing is done only if the appropriate audit trace class is active.

ALL
Specifies that auditing is to be done when the table is accessed during the first operation of
any kind performed by a utility or application process. However, the auditing is done only if the
appropriate audit trace class is active and the access is not performed with COPY, RECOVER,
REPAIR, LOAD with a dummy input data set, or any stand-alone utility.

Chapter 7. Statements 1697

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_editroutine.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_validationroutine.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_tracetypes.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_starttrace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_starttrace.html

If the table is subsequently altered with an ALTER TABLE statement, the ALTER TABLE statement is
audited for successful and failed attempts in the following cases, if the appropriate audit trace class is
active:

• AUDIT attribute is changed to NONE, CHANGES, or ALL on an audited or non-audited table.
• AUDIT CHANGES or AUDIT ALL is in effect.

If IN ACCELERATOR is specified, AUDIT NONE, CHANGES, and ALL must not be specified.

OBID integer
Identifies the OBID to be used for this table. An OBID is the identifier for an object's internal
descriptor. The integer must be greater than 1 and must not identify an existing or previously used
OBID of the database. If you omit OBID, Db2 generates a value.

The following statement retrieves the value of OBID:

 SELECT OBID
 FROM SYSIBM.SYSTABLES
 WHERE CREATOR = 'ccc' AND NAME = 'nnn';

Here, nnn is the table name and ccc is the creator of the table.

DATA CAPTURE
Specifies whether the logging of the following actions on the table includes additional information to
support data replication processing:

• SQL data change operations
• Adding columns (using the ADD COLUMN clause)
• Changing columns (using the ALTER COLUMN clause)

For more information, see Altering a table to capture changed data (Db2 Administration Guide).

If a materialized query table is refreshed with the REFRESH TABLE statement, the logging of the
augmented information occurs during the REFRESH TABLE operation. DATA CAPTURE works as usual
for insert, update, and delete operations on a user-maintained materialized query table.

A table with data that is stored only in an accelerator-only table cannot be defined with this attribute.

NONE
Do not record additional information to the log. This is the default.

CHANGES
Write additional data about SQL updates to the log. Information about the values that are
represented by any LOB or XML columns is not available. Do not specify DATA CAPTURE CHANGES
for tables that reside in table spaces that specify NOT LOGGED.

WITH RESTRICT ON DROP
Indicates that the table can be dropped only by using REPAIR DBD DROP. In addition, the database
and table space that contain the table can be dropped only by using REPAIR DBD DROP.

The WITH RESTRICT ON DROP clause can be removed using the ALTER TABLE statement with the
DROP RESTRICT ON DROP clause. After the WITH RESTRICT ON DROP clause is removed from the
definition of the table, the table, the database, and the containing table space can be dropped using
the DROP statement.

CCSID encoding-scheme
Specifies the encoding scheme for string data stored in the table. If the IN clause is specified with a
table space, the value must agree with the encoding scheme that is already in use for the specified
table space. The specific CCSIDs for SBCS, mixed, and graphic data are determined by the table space
or database specified in the IN clause. If the IN clause is not specified, the value specified is used
for the table being created as well as for the table space that Db2 implicitly creates. The specific
CCSIDs for SBCS, mixed, and graphic data are determined by the default CCSIDs for the server for the
specified encoding scheme. The valid values are ASCII, EBCDIC, and UNICODE.

1698 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_altertablefordatacapture.html

If IN ACCELERATOR is specified, a Unicode column cannot be defined in an EBCDIC table and a
column cannot be defined as ASCII mixed or graphic. IBM Db2 Analytics Accelerator for z/OS: Stored
Procedures Reference contains a complete description of encoding schemes allowed in an accelerator.

If the CCSID clause is not specified, the encoding scheme for the table depends on the IN clause:

• If the IN clause is specified, the encoding scheme already in use for the table space or database
specified in the IN clause is used.

• If the IN clause is not specified, the encoding scheme of the new table is the same as the scheme
for the table that is specified in the LIKE clause.

If CCSID EBCDIC is explicitly or implicitly specified, and any columns in the table are defined with
the CCSID 1208 or CCSID 1200 clause, CCSID EBCDIC represents the default encoding scheme for
character or graphic columns that do not include the CCSID 1208 or CCSID 1200 clause.

If the CCSID clause is specified for a materialized query table:

• If the encoding scheme in the CCSID clause is ASCII or Unicode, or if the encoding scheme in the
CCSID clause is EBCDIC and the result table of the fullselect contains no Unicode columns, the
encoding scheme specified in the clause must be the same as the scheme for the result CCSID of
the fullselect. The CCSID must also be the same as the CCSID of the table space for the table being
created.

• If the encoding scheme in the CCSID clause is EBCDIC, and the result table of the fullselect contains
Unicode columns, the encoding scheme of the table space for the table must be EBCDIC.

VOLATILE or NOT VOLATILE
Specifies how Db2 chooses to access the table.
VOLATILE

Specifies that Db2 uses index access to the table whenever possible for SQL operations. However,
be aware that list prefetch and certain other optimization techniques might be disabled when
VOLATILE is used.

One instance in which you might want to use VOLATILE is for a table whose size can vary greatly.
If statistics are taken when the table is empty or has only a few rows, those statistics might not be
appropriate when the table has many rows.

Another instance in which you might want to use VOLATILE is for a table that contains groups of
rows, as defined by the primary key on the table. All but the last column of the primary key of such
a table indicate the group to which a given row belongs. The last column of the primary key is the
sequence number indicating the order in which the rows are to be read from the group. VOLATILE
maximizes concurrency of operations on rows within each group, since rows are usually accessed
in the same order for each operation. If IN ACCELERATOR is specified, VOLATILE must not be
specified. For this usage, the primary index must be the only index that is defined on the table, and
list prefetch is disabled to ensure the sequence in which the rows are locked.

NOT VOLATILE
Specifies that SQL access to this table should be based on the current statistics. NOT VOLATILE is
the default.

CARDINALITY
An optional keyword that currently has no effect, but that is provided for Db2 family compatibility.

LOGGED or NOT LOGGED
Specifies whether changes that are made to the data in an implicitly created table space are recorded
in the log. This parameter applies to an implicitly created table space and to all indexes of this table.
XML table spaces and indexes associated with the XML table spaces inherit the logging attribute
from the associated base table space. Auxiliary indexes also inherit the logging attribute from the
associated base table space.

Do not specify LOGGED or NOT LOGGED if the table space name is specified by using the IN table-
space-name clause or if the IN ACCELERATOR clause is specified.

Chapter 7. Statements 1699

LOGGED
Specifies that changes that are made to the data in an implicitly created table space are recorded
in the log.

LOGGED is the default.

NOT LOGGED
Specifies that changes that are made to data in an implicitly created table space are not recorded
in the log.

NOT LOGGED prevents undo and redo information from being recorded in the log. However,
control information for an implicitly created table space will continue to be recorded in the log.

COMPRESS YES or COMPRESS NO
Specifies whether data compression applies to the rows of any implicitly created table space. The
IMPTSCMP subsystem parameter specifies the default value. See USE DATA COMPRESSION field
(IMPTSCMP subsystem parameter) (Db2 Installation and Migration).

If the IN table-space-name clause or the IN ACCELERATOR clause is specified, COMPRESS must not
be specified.

YES
FL 509Specifies that data compression applies to the rows of the implicitly created table space.
The rows are not compressed until the LOAD or REORG utility is run on the table in the implicitly
created table space, or the total row data size reaches the compression data threshold while an
insert operation is performed.

If a keyword for the compression algorithm is not specified, the default compression algorithm is
used. The data compression algorithm is determined by the TS_COMPRESSION_TYPE subsystem
parameter.

If a keyword for the compression algorithm is specified:

• LOB table spaces that are implicitly created for LOB columns in this table are defined as if
COMPRESS YES is specified without a compression algorithm. LOB compression is managed by
zEnterprise data compression (zEDC) hardware if available.

• XML table spaces that are implicitly created for XML columns in this table inherit the COMPRESS
attribute.

FIXEDLENGTH
FL 509 Specified the fixed-length data compression algorithm.

HUFFMAN
FL 509 Specifies the Huffman data compression algorithm. See Using Huffman compression to
compress your data (Db2 Performance) for requirements to enable Huffman compression.

NO
Specifies that data compression is not used for the rows of the implicitly created table space.
Inserted and updated rows are not subject to data compression.

APPEND NO or APPEND YES
Specifies whether append processing is used for the table. The APPEND clause must not be specified
for a table that is created in a work file table space.
NO

Specifies that append processing is not used for the table. For insert and LOAD operations, Db2
will attempt to place data rows in a well clustered manner with respect to the value in the row's
cluster key column.

NO is the default.

YES
Specifies that data rows are to be placed into the table by disregarding the clustering during insert
and LOAD operations.

1700 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_imptscmp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_imptscmp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_compressdatahuffman.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_compressdatahuffman.html

DSSIZE integer G
Specifies the maximum size for an implicitly created partition-by-growth or partition-by-range table
space. This value is only applied to an implicitly created base table space, not to any associated
implicitly created XML or LOB table spaces.

Do not specify DSSIZE integer G if any of the following conditions are true:

• The table space name is specified by using the IN table-space-name clause.
• The PARTITION BY clause includes the EVERY integer-constant G clause.
• The statement contains an accelerator-only table.

The IMPDSSIZE subsystem parameter specifies the default value. See IMPDSSIZE in macro
DSN6SYSP (Db2 Installation and Migration).

For more detailed information about the DSSIZE clause, refer to “CREATE TABLESPACE statement” on
page 1718.

integer can be separated from G by 0 or more spaces.

BUFFERPOOL bpname
Specifies the buffer pool be use for an implicitly created table space and determines the page size of
the table space. For 4KB, 8KB, 16KB and 32KB page buffer pools, the page sizes are 4 KB, 8 KB, 16
KB, and 32 KB, respectively.

bpname must identify an activated buffer pool. The privilege set must include SYSADM authority,
SYSCTRL authority, or the USE privilege on the buffer pool.

Do not specify BUFFERPOOL bpname if the table space name is specified by using the IN table-space-
name clause or the IN ACCELERATOR clause is specified.

If you do not specify the BUFFERPOOL clause, Db2 selects the buffer pool as described in Implicitly
defined table spaces (Db2 Administration Guide).

Refer to “Naming conventions in SQL” on page 79 for more information about bpname.

MEMBER CLUSTER
Specifies that data that is inserted by an insert operation is not clustered by the implicit clustering
index (the first index) or the explicit clustering index. Db2 places the data in an implicitly created table
space based on available space.

Do not specify MEMBER CLUSTER if the table space name is specified by using the IN table-space-
name clause or if IN ACCELERATOR clause is specified.

TRACKMOD YES or TRACKMOD NO
Specifies whether Db2 tracks modified pages in the space map pages of an implicitly created table
space. The IMPTKMOD subsystem parameter specifies the default value. See IMPTKMOD in macro
DSN6SYSP (Db2 Installation and Migration).

Do not specify TRACKMOD YES or TRACKMOD NO if the table space name is specified by using the IN
table-space-name clause or if using the IN ACCELERATOR clause.

TRACKMOD YES
Changed pages are tracked in the space map pages to help improve performance of incremental
image copies.

TRACKMOD NO
Changed pages are not tracked in the space map pages. Db2 uses the LRSN value in each page to
determine whether a page has been changed.

PAGENUM
Identifies the type of page numbering that is used when you create a partition-by-range table
space. This value is applied to an implicitly created base table space. The PAGESET_PAGENUM
subsystem parameter specifies the default PAGENUM value. See PAGE SET PAGE NUMBERING field
(PAGESET_PAGENUM subsystem parameter) (Db2 Installation and Migration).

Chapter 7. Statements 1701

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_impdssize.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_impdssize.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicitlydefinedtablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicitlydefinedtablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_imptkmod.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_imptkmod.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_pagesetpagenum.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_pagesetpagenum.html

RELATIVE
Indicates that internal page numbering is kept as a 4-byte value without a partition number. The
page number is a relative page from the start of the partition, and the partition number is kept only
in the header page.

ABSOLUTE
Indicates that internal page numbering is kept as a 4-byte value that includes a partition number
and page number. Distinguishing which bits represent the partition and which represent the page
number requires a shift value. The shift value is LOG base 2 (DSSIZE/(page size)).

Notes for CREATE TABLE
Owner privileges

The owner of the table has all table privileges (see “GRANT statement (table or view privileges)” on
page 1988) with the ability to grant these privileges to others. For more information about ownership
of the object, see “Authorization, privileges, permissions, masks, and object ownership” on page 90.

Table design
Designing tables is part of the process of database design. For more information, see Db2 database
design (Introduction to Db2 for z/OS) .

If the IN DATABASE clause is specified without a table space name
If you specify IN DATABASE (either explicitly or by default), but do not specify a table space, a table
space is implicitly created in the specified database. The name of the table space is derived from the
table name. The qualifier of the table space is the same as the qualifier of the table. The owner of the
table space is SYSIBM.

For more information, see Implicitly defined table spaces (Db2 Administration Guide).

If the IN clause is not specified
If you do not specify the IN clause, the Db2 implicitly creates a table space as described previously,
but the Db2 also chooses a database. Db2 creates a name in the form of DSNnnnnn, where nnnnn is
between 00001 and the maximum value of the sequence SYSIBM.DSNSEQ_IMPLICITDB, which has a
default of 10000, inclusive. The owner of the database is SYSIBM.

• If DSNnnnnn already exists and is an implicitly created database, the Db2 subsystem creates the
table in that database.

• If DSNnnnnn does not exist, the Db2 subsystem creates a database with the name DSNnnnnn.

If DSNnnnnn cannot be created because of a deadlock, timeout, or resource unavailable condition,
the Db2 subsystem increments nnnnn by one and tries the resultant database name. If the Db2
subsystem reaches the maximum value of the sequence SYSIBM.DSNSEQ_IMPLICITDB, and the
corresponding database name is not available, the Db2 subsystem sets nnnnn to 00001 and tries the
resultant database name. If the Db2 subsystem attempts to create the table a number of times that is
equal to the maximum value of the sequence SYSIBM.DSNSEQ_IMPLICITDB without success, an error
occurs.

System objects for implicitly created table spaces
If a table space is implicitly created, all of the following required system objects are also implicitly
created:

• The enforcing primary key index
• The enforcing unique key index
• Any necessary LOB table spaces, auxiliary table spaces, and auxiliary indexes
• The ROWID index (if the ROWID column is defined as GENERATED BY DEFAULT)

When Db2 implicitly creates a base table space for a table with LOB columns that can have inline
LOBs, Db2 creates the base table space in reordered row format, regardless of the value of the RRF
subsystem parameter.

The attributes of an implicitly created table space can be changed by using the “ALTER TABLESPACE
statement” on page 1321 statement.

1702 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_implementationofdatabasedesign.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_implementationofdatabasedesign.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicitlydefinedtablespaces.html

Creating a table in a segmented (non-UTS) table space (deprecated)
A table cannot be created in a segmented table space if any of the following conditions are true:

• FL 504 The effective application compatibility of the CREATE TABLE statement is V12R1M504 or
higher.

• The available space in the data set is less than the segment size specified for the table space, and
• The data set cannot be extended.

Deprecated function: FL 504 Non-UTS table spaces for base tables are deprecated. CREATE
TABLESPACE statements that run at application compatibility level V12R1M504 or higher always
create a partition-by-growth or partition-by-range table space, and CREATE TABLE statements that
specify a non-UTS table space (including existing multi-table segmented table spaces) return an error.
However, you can use a lower application compatibility level to create table spaces of the deprecated
types if needed, such as for recovery situations. For instructions, see Creating non-UTS table spaces
(deprecated) (Db2 Administration Guide).

Creating a table with graphic and mixed data columns
You cannot create an ASCII or EBCDIC table with a GRAPHIC, VARGRAPHIC, or DBCLOB column or
a CHAR, VARCHAR, or CLOB column defined as FOR MIXED DATA when the setting for installation
option MIXED DATA is NO, unless the table is EBCDIC, and the columns are Unicode.

Creating a table with distinct type columns based on LOB, ROWID, and DECFLOAT columns
Because a distinct type is subject to the same restrictions as its source type, all the syntactic rules
that apply to LOB columns (CLOB, DBCLOB, and BLOB), ROWID columns, and DECFLOAT columns
apply to distinct type columns that are based on LOBs, row IDs, and DECFLOATs. For example, a table
cannot have both an explicitly defined ROWID column and a column with a distinct type that is based
on a row ID.

Tables with inline LOB columns
If the page size is exceeded for a table in a universal table space, Db2 recalculates the record size
using 0 as the inline length for LOB columns that do not specify the INLINE LENGTH clause. A record
size of 0 is used in the recalculation even if the LOB_INLINE_LENGTH subsystem parameter value is
greater than 0. After the recalculation, if the page size is still exceeded, the CREATE TABLE statement
returns an error.

You cannot create a table with an inline LOB column in a table space that has basic row format.

Creating a table with LOB columns
A table with a LOB column (CLOB, DBCLOB, or BLOB) must also have a ROWID column, one or more
auxiliary tables, and indexes on the auxiliary tables. In many situations, Db2 can implicitly create the
required objects for you. For more information, see “ROWID columns for tables with LOB columns” on
page 1703 and “Auxiliary tables and indexes for LOB columns” on page 1704.

ROWID columns for tables with LOB columns

When you create the table without explicitly defining a ROWID column, Db2 implicitly generates
a ROWID column for you. This column is called an implicitly hidden ROWID column. The implicitly
hidden ROWID column has the following attributes:

• Db2 creates the column with a name of DB2_GENERATED_ROWID_FOR_LOBSnn.

Db2 appends nn only if the column name already exists in the table, replacing nn with 00 and
incrementing by 1 until the name is unique within the row.

• Defines the column as GENERATED ALWAYS.
• Appends the implicitly hidden ROWID column to the end of the row after all the other explicitly
defined columns.

For example, assume that Db2 generated an implicitly hidden ROWID column named
DB2_GENERATED_ROWID_FOR_LOBS for table MYTABLE. The result table for a SELECT * statement
for table MYTABLE would not contain that ROWID column. However, the result table for SELECT COL1,
DB2_GENERATED_ROWID_FOR_LOBS would include the implicitly hidden ROWID column.

Chapter 7. Statements 1703

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createdeprecatedtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createdeprecatedtablespace.html

If the MIXED DATA subsystem parameter is set to YES, and a lowercase or mixed case hexadecimal
constant is specified as the default value for a LOB column, the CREATE TABLE statement returns an
error.

Auxiliary tables and indexes for LOB columns

The definition of a table that contains a LOB column is marked incomplete until an auxiliary table is
created in a LOB table space for each LOB column in the base table and an index is created on each
auxiliary table. The auxiliary table stores the actual values of a LOB column. For each LOB column in a
partitioned table space, one auxiliary table and related index must be defined for each partition of the
base table space.

Db2 sometimes implicitly creates the LOB table space, auxiliary table, and index on the auxiliary
table for each LOB column in a table or partition. For more information, see LOB table space implicit
creation (Db2 Administration Guide).

If Db2 does not implicitly create the LOB table spaces, auxiliary tables, and indexes on the auxiliary
tables, you must create these objects by issuing CREATE TABLESPACE, CREATE AUXILIARY TABLE,
and CREATE INDEX statements. For more information, see Creating LOB table spaces, auxiliary tables,
and auxiliary indexes explicitly (Db2 Administration Guide).

Creating a table with an XML column
If the table has XML columns, the underlying XML table space is implicitly created with the same
PAGENUM attribute as the base table space. The DSSIZE is inherited from the base table space for a
base table in the partition-by-growth (PBG) table space.

The following table shows the DSSIZE for an implicitly created XML table space for a base table in
a partition-by-range (PBR) or range-partitioned (non-UTS) table space. For partition-by-range (PBR)
table spaces with relative page numbering, Db2 also rounds the DSSIZE up to the nearest power of
two before using the following table.

Table 207. Default DSSIZE for XML table spaces, given the base table space DSSIZE and buffer-pool
page size

Base table space
DSSIZE

4KB base page
size

8KB base page
size

16KB base page
size

32KB base page
size

1–4 GB 4G B 4 GB 4 GB 4 GB

5–8 GB 32 GB 16 GB 16 GB 16 GB

9–16 GB 64 GB 32 GB 16 GB 16 GB

17–32 GB 64 GB 64 GB 32 GB 16 GB

33–64 GB 64 GB 64 GB 64 GB 32 GB

65–128 GB 256 GB 256 GB 128 GB 64 GB

129–256 GB 256 GB 256 GB 256 GB 128 GB

257–512 GB 512 GB 512 GB 512 GB 256 GB

513-1024 GB 1024 GB 1024 GB 1024 GB 512 GB

For more information, see XML table space implicit creation (Db2 Administration Guide).

Naming convention for implicitly created XML objects
Implicitly created XML table spaces names will be Xyyynnnn, where yyy is derived from the first three
bytes of the base table name (if the name is shorter than 3, yyy is padded with X). nnnn is a numeric
string that will start at 0000 and be incremented by 1 until a unique number is found.

Implicitly created XML table names will be Xyyyyyyyyyyyyyyyyyynnn, where yyyyyyyyyyyyyyyyyy is the
first 18 UTF-8 bytes of the base table name or of the entire name if it is less than 18. nnn will only be
appended if the name already exists in the table. If the name already exists, nnn will be replaced with
000 and will be incremented by 1 until the name is unique.

1704 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicittablespacelob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_implicittablespacelob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createexplicitlobts.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createexplicitlobts.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_howimplicitlycreatexmltablespace.html

Implicitly created document ID index names will be I_DOCIDyyyyyyyyyyyyyyyyyynnn, where
yyyyyyyyyyyyyyyyyy is the first 18 UTF-8 bytes of the base table name or the entire name if it is
less than 18. nnn will only be appended if the index already exists in the table. If the index already
exists, nnn will be replaced with 000 and will be incremented by 1 until the name is unique.

Implicitly created node ID index names will be I_NODEIDyyyyyyyyyyyyyyyyyynnn, where
yyyyyyyyyyyyyyyyyy is the first 18 UTF-8 bytes of the XML table name or the entire name if it is
less than 18. nnn will only be appended if the index already exists in the table. If the index already
exists, nnn will be replaced with 000 and will be incremented by 1 until the name is unique.

Creating a table with an identity column
When a table has an identity column, Db2 can automatically generate sequential numeric values for
the column as rows are inserted into the table. Thus, identity columns are ideal for primary keys.
Identity columns and ROWID columns are similar in that both types of columns contain values that
Db2 generates. ROWID columns are used in large object (LOB) table spaces and can be useful in
direct-row access. ROWID columns contain values of the ROWID data type, which returns a 40-byte
VARCHAR value that is not regularly ascending or descending. ROWID data values are therefore not
well suited to many application uses, such as generating employee numbers or product numbers. For
data that is not LOB data and that does not require direct-row access, identity columns are usually a
better approach, because identity columns contain existing numeric data types and can be used in a
wide variety of uses for which ROWID values would not be suitable.

When a table is recovered to a point-in-time, it is possible that a large gap in the generated values
for the identity column might result. For example, assume a table has an identity column that has an
incremental value of 1 and that the last generated value at time T1 was 100 and Db2 subsequently
generates values up to 1000. Now, assume that the table space is recovered back to time T1. The
generated value of the identity column for the next row that is inserted after the recovery completes
will be 1001, leaving a gap in the range 100–1001 in the values of the identity column.

If you want to ensure that an identity column has unique values, create a unique index on the column.

Creating a table with a LONG VARCHAR or LONG VARGRAPHIC column
Although the syntax LONG VARCHAR and LONG VARGRAPHIC is allowed for compatibility with
previous releases of Db2, its use is not encouraged. VARCHAR(integer) and VARGRAPHIC(integer)
is the recommended syntax, because after the CREATE TABLE statement is processed, Db2 considers
a LONG VARCHAR column to be VARCHAR and a LONG VARGRAPHIC column to be VARGRAPHIC.

When a column is defined using the LONG VARCHAR or LONG VARGRAPHIC syntax, Db2 determines
the length attribute of the column. You can use the following information, which is provided for
existing applications that require the use of the LONG VARCHAR or LONGVARGRAPHIC syntax, to
calculate the byte count and the character count of the column.

To calculate the byte count, use this formula:

2*(INTEGER((INTEGER((m-i-k)/j))/2))

Where:
m

Is the maximum row size (8 less than the maximum record size)
i

Is the sum of the byte counts of all columns in the table that are not LONG VARCHAR or LONG
VARGRAPHIC

j
is the number of LONG VARCHAR and LONG VARGRAPHIC columns in the table

k
k is the number of LONG VARCHAR and LONG VARGRAPHIC columns that allow nulls

To find the character count:

1. Find the byte count.
2. Subtract 2.

Chapter 7. Statements 1705

3. If the data type is LONG VARGRAPHIC, divide the result by 2. If the result is not an integer, drop
the fractional part.

Defining a system-period temporal table
A system-period temporal table definition includes the following:

• A system period named SYSTEM_TIME which is defined using a row-begin column and a row-end
column.

• A transaction-start-ID column.
• A system-period data versioning definition which includes the name of the associated history table,

which is specified in a subsequent ALTER TABLE statement.

To ensure that the history table cannot be implicitly dropped when a system-period temporal table is
dropped, use the WITH RESTRICT ON DROP clause in the definition of the history table.

Defining an application-period temporal table
An application-period temporal table definition includes an application period named
BUSINESS_TIME. The application period is defined using a begin timestamp column and an end
timestamp column.

Data change operations on an application-period temporal table might result in an automatic insert
of one or two additional rows when a row is updated or deleted. When an update or delete of a row
in an application-period temporal table is specified for a portion of the period that is represented by
that row, the row is updated or deleted and one or two rows are automatically inserted to represent
the portion of the row that is not changed. New values are generated for each generated column in an
application-period temporal table for each row that is automatically inserted as a result of an update
or delete operation on the table. If a generated column is defined as part of a unique or primary
key, parent key in a referential constraint, or unique index, it is possible that an automatic insert will
violate a constraint or index, in which case an error is returned.

Bitemporal tables
A table that is defined for system-period data versioning and contains a BUSINESS_TIME period is
referred to as a bitemporal table.

Considerations for transaction-start-ID columns
A transaction-start-ID column contains a null value if the column allows null values. A row-begin
column which is unique from other row-begin column values that are generated for other transactions
exists with the transaction-start-ID column. Given that the column might contain null values, consider
using one of the following methods when retrieving a value from the column:

COALESCE (transaction_start_id_col, row_begin_col)
CASE WHEN transaction_start_id_col IS NOT NULL
 THEN transaction_start_id_col
 ELSE row_begin_col
END

Implicitly created indexes
When the PRIMARY KEY or UNIQUE clause is used in the CREATE TABLE statement and the CREATE
TABLE statement is processed by the schema processor or the table space that contains the table is
implicitly created, Db2 implicitly creates the unique indexes used to enforce the uniqueness of the
primary or unique keys.

When a ROWID column is defined as GENERATED BY DEFAULT in the CREATE TABLE statement, and
the CREATE TABLE statement is processed by SET CURRENT RULES = 'STD' or the table space that
contains the table is implicitly created, Db2 implicitly creates the unique indexes used to enforce the
uniqueness of the ROWID column.

The privilege set must include the USE privilege of the buffer pool.

Each index is created as if the following CREATE INDEX statement were issued:

CREATE UNIQUE INDEX xxx ON table-name (column1,...)

Where:

1706 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• xxx is the name of the index that Db2 generates.
• table-name is the name of the table specified in the CREATE TABLE statement.
• (column1,...) is the list of column names that were specified in the UNIQUE or PRIMARY KEY clause

of the CREATE TABLE statement, or the column is a ROWID column that is defined as GENERATED
BY DEFAULT.

For more information about the schema processor, see Creating a schema by using the schema
processor (Db2 Administration Guide).

In addition, if A table space that contains the table is implicitly created, Db2 will check the DEFINE
DATA SET subsystem parameter to determine whether to define the underlying data set for the index
space of the implicitly created index on the base table.

If DEFINE DATA SET is NO, the index is created as if the following CREATE INDEX statement is issued:

CREATE UNIQUE INDEX xxx ON table-name (column1,...) DEFINE NO

Maximum record size
The maximum record size of a table depends on the page size of the table space and whether the
EDITPROC clause is specified, as shown in Table 208 on page 1707..

The initial page size of the table space is the size of its buffer, which is determined by the
BUFFERPOOL clause that was explicitly or implicitly specified when the table space was created.
When the record size reaches 90 percent of the maximum record size for the page size of the table
space, the next largest page size is automatically used.

Table 208. Maximum record size, in bytes

Page Size
= 4KB

Page Size
= 8KB

Page Size
= 16KB

Page Size
= 32KB

Table without
EDITPROC=YES

4056 8138 16330 32714

Table with
EDITPROC=YES

4046 8128 16320 32704

The maximum record size corresponds to the maximum length of a VARCHAR column if that column is
the only column in the table.

If the table space that contains the table is implicitly created, the proper buffer pool size is chosen
according to the actual record size. If the record size reaches 90% of the maximum record size for the
page size of the table space, the next largest page size will be used. Table 209 on page 1707 shows
90% of the maximum record size:

Table 209. 90% of Maximum record size, in bytes

Page Size
= 4KB

Page Size
= 8KB

Page Size
= 16KB

Page Size
= 32KB

Table without
EDITPROC=YES

3650 7324 14697 29443

Table with
EDITPROC=YES

3641 7315 14688 29434

A row in a table with PAGENUM RELATIVE or in a table space with PAGENUM RELATIVE must have
a minimum data size of 3 bytes. Rows with data that compresses to less than 3 bytes, will not be
compressed when stored in the table.

Chapter 7. Statements 1707

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createschemas.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createschemas.html

Byte counts
The sum of the byte counts of the columns must not exceed the maximum row size of the table. The
maximum row size is eight less than the maximum record size.

For columns that do not allow null values, Table 210 on page 1708 gives the byte counts of columns
by data type. For columns that allow null values, the byte count is one more than shown in the table.

Table 210. Byte counts of columns by data type

Data Type Byte Count

INTEGER 4

SMALLINT 2

BIGINT 8

FLOAT(n) If n is in the range 1–21, the byte count is 4. If n is in the range
22–53, the byte count is 8.

DECIMAL INTEGER(p/2)+1, where p is the precision

DECFLOAT(16) 9

DECFLOAT(34) 17

CHAR(n) n

VARCHAR(n) n+2

CLOB 6

Inline CLOB 6 + inline byte count

GRAPHIC(n) 2n

VARGRAPHIC(n) 2n+2

DBCLOB 6

Inline DBCLOB 6 + (inline char count * 2)

BINARY(n) n

VARBINARY(n) n+2

BLOB 6

Inline BLOB 6 + inline byte count

DATE 4

TIME 3

TIMESTAMP(p) WITHOUT
TIME ZONE

INTEGER((p+1)/2) + 7 where p is the precision

TIMESTAMP(p) WITH TIME
ZONE

INTEGER((p+1)/2) + 9 where p is the precision

ROWID 19

distinct type The length of the source data type upon which the distinct type was
based

XML 6 - If column cannot contain multiple versions of an XML document.

14 - If column can contain multiple versions of an XML document.

1708 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

For more information, see How Db2 uses XML versions (Db2 Programming for XML).

Creating a materialized query table
If the fullselect in the CREATE TABLE statement contains a SELECT *, the select list of the subselect
is determined at the time the materialized query table is created. In addition, any references to
user-defined functions are resolved at the same time. The isolation level at the time when the
CREATE TABLE statement is executed is the isolation level for the materialized query table. After
a materialized query table is created, the REFRESH_TIME column of the row for the table in the
SYSIBM.SYSVIEWS catalog table contains the default timestamp.

The owner of a materialized query table has all the table privileges with the grant option on the table
irrespective of whether the owner has the necessary privileges on the base tables, views, functions,
and sequences.

No unique constraints or unique indexes can be created for materialized query tables. Thus, a
materialized query table cannot be a parent table in a referential constraint.

When you are creating user-maintained materialized query tables, you should create the materialized
query table with query optimization disabled and then enable the table for query optimization after
it is populated. Otherwise, Db2 might rewrite queries to use the empty materialized query table, and
you will not get accurate results.

Considerations for implicitly hidden columns
A column that is defined as implicitly hidden is not part of the result table of a query that specifies
* in a SELECT list. However, an implicitly hidden column can be explicitly referenced in a query. For
example, an implicitly hidden column can be referenced in the SELECT list or in a predicate in a query.
Additionally, an implicitly hidden column can be explicitly referenced in a COMMENT, CREATE INDEX
statement, ALTER TABLE statement, INSERT statement, MERGE statement, UPDATE statement, or
RENAME statement. An implicitly hidden column can be referenced in a referential constraint. A
REFERENCES clause that does not contain a column list refers implicitly to the primary key of the
parent table. It is possible that the primary key of the parent table includes a column defined as
implicitly hidden. Such a referential constraint is allowed.

If the SELECT list of the fullselect of a materialized query definition explicitly refers to an implicitly
hidden column, that column will be part of the materialized query table.

If the SELECT list of the fullselect of a view definition (CREATE VIEW statement) explicitly refers to
an implicitly hidden column, that column will be part of the view, however the view column is not
considered 'hidden'.

Restrictions on field procedures, edit procedures, and validation exit procedures
Field procedures, edit procedures, and validation exit procedures cannot be used on tables that have
column names that are larger than 18 EBCDIC bytes. If you have tables that have field procedures or
validation exit procedures and you add a column where the column name is larger than 18 bytes, the
field procedures and validation exit procedures for the table will be invalidated.

Consider using triggers to replace the functionality on field procedures, edit procedures, and
validation exit procedures on tables where the column names are larger than 18 EBCDIC bytes.

Restrictions on certain SQL statements in the same unit of work as CREATE TABLE

• A CREATE TABLE statement that contains a PARTITION BY clause should not be followed in the
same unit of work by SQL statements that change data.

• A CREATE TABLE statement that contains an IN ACCELERATOR clause should be issued in a
separate unit of work from other SQL statements.

Creating a table while a utility runs
You cannot use CREATE TABLE while a Db2 utility has control of the table space implicitly or explicitly
specified by the IN clause.

Restrictions involving pending definition changes
A CREATE TABLE statement is not allowed if there are pending changes to the definition of the
table space, if the CREATE TABLE statement specifies a FOREIGN KEY clause that reference a
column for which there are pending definition changes, or if the CREATE TABLE statement specifies

Chapter 7. Statements 1709

https://www.ibm.com/docs/en/SSEPEK_12.0.0/xml/src/tpc/db2z_xmlversions.html

a materialized query table definition that references a table for which there are pending definition
changes.

Key label requirement
To use a key label for encryption, the VSAM data sets for the page sets need to be associated with an
SMS Data Class that has extended format capability (EF enabled).

Determining a key label for base table space and associated objects
When a key label is specified at the table level, Db2 provides the key label to DFSMS to encrypt all
the table spaces and index spaces associated with the table. This includes base table space, auxiliary
table spaces, XML table spaces, index spaces, and clone table space, regardless of whether the base
table space or associated objects are explicitly or implicitly created. Db2 does not enforce any key
label relationship between the base table and an associated history or archive table. The key label for
the archive and the history tables has to be set independent of the base table. If there is no key label
specified at the table level, Db2 will provide the key label to DFSMS specified for the storage group.

When Db2 calls DFSMS to allocate the dataset for table space or index space, DFSMS uses its order of
precedence to determine the key label and can override the key label specified by Db2.

DFSMS order of precedence:

• RACF data set profile
• JCL, dynamic allocation, TSO ALLOCATE
• SMS data class construct

If the security administrator has specified a key label for the RACF data set profile, that key label takes
precedence over the Db2 provided key label. The REPORT utility can be run to determine the key label
used for encryption.

Description of key label in effect in DB2

Table 211. Example scenarios for a partition-by-growth table space, that describe the key label in effect in DB2.
This is the key label provided to DFSMS during allocation of data set for table spaces and index spaces.

Scenarios Catalog key label value Key label provided to DFSMS
during data set allocation

Create storage group, SG01 with key
label, SGKL01.

SYSSTOGROUP record - KEY
LABEL: SGKL01

Create table space, TBSP01 using storage
group, SG01 – Creates Partition 1

SGKL01

Create table, TB01 in table space,
TBSP01 with key label, TBKL01

SYSTABLESPACE record for
TBSP01 / SYSTABLES record for
TBKL01 – KEY LABEL: TBKL01

REORG TABLESPACE TBSP01 – Reorgs
Partition 1

TBKL01

Create index, IX01 on table, TB01 creates
index space

SYSINDEXES record for IX01 –
KEY LABEL: TBKL01

TBKL01

Insert data into TB01 – Creates Partition
2

TBKL01

Alter table, TB01 to specify NO KEY
LABEL

SYSTABLESPACE record for
TBSP01 / SYSTABLES record for
TBKL01 / SYSINDEXES record
for IX01 – KEY LABEL: Empty
string

Insert data into TB01 – Creates partition
3

SGKL01

1710 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 211. Example scenarios for a partition-by-growth table space, that describe the key label in effect in
DB2. This is the key label provided to DFSMS during allocation of data set for table spaces and index spaces.
(continued)

Scenarios Catalog key label value Key label provided to DFSMS
during data set allocation

REORG TABLESPACE TBSP01 with REUSE
option – Resets and reuses DB2-managed
data sets. No change to key label

Key label considerations

If the last table is dropped from a segmented table space, the table space and its underlying data
set will remain. If key label is in effect, the KEYLABEL column for the table space's SYSTABLESPACE
record will be cleared. If a new table is created in this table space, it will be encrypted with the
previous key label. If the table has to be created as unencrypted, execute the REORG TABLESPACE
utility for the table space.

If a table space is explicitly created with the DEFINE YES option and a table with a key label is
defined in that table space, then the data sets associated with the table space will not be encrypted.
A subsequent REORG is necessary to encrypt the data sets. Users that want immediate encryption of
the data sets associated with the table space must to define table spaces with the DEFINE NO option.

Syntax and descriptions for hash organization (deprecated)

Deprecated function: FL 504 Hash-organized tables are deprecated. Beginning in Db2 12, packages
bound with APPLCOMPAT(V12R1M504) or higher cannot create hash-organized tables or alter
existing tables to use hash-organization. Existing hash organized tables remain supported, but they
are likely to be unsupported in the future.

organization-clause

organization-clause

ORGANIZE BY HASH UNIQUE (

,

column-name)

HASH SPACE 64 M

HASH SPACE integer K

M

G

ORGANIZE BY HASH
Specifies that a hash is to be used for the data organization of the table.

If PARTITION BY RANGE is specified, and the IN clause specifies a table space, the table
space must be a partition by range universal table space, and cannot be a table space with
PAGENUM RELATIVE.

If PARTITION BY RANGE is not specified, and an IN clause is specified, the IN clause must
identify a partition-by-growth table space.

ORGANIZE BY HASH must not be specified if the table is defined with APPEND YES.

ORGANIZE BY HASH must not be specified if the table is using basic row format.

If IN ACCELERATOR is specified, ORGANIZE BY HASH must not be specified.

Chapter 7. Statements 1711

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

UNIQUE
Specifies that Db2 enforces uniqueness of the hash key columns, preventing the table
from containing two or more rows with the same value of the hash key.

(column-name,...)

The list of column names defines the hash key that is used to determine where a row will
be placed. Each column-name must be an unqualified name that identifies a column of the
table. The same column must not be specified more than once and the specified columns
must be defined as NOT NULL. The number of specified columns must not exceed 64, and
the sum of their length attributes must not exceed 255. A specified column cannot be any
of the following types:

• a LOB column
• a DECFLOAT column
• a XML column
• a distinct type column that is based on one of the preceding data types

All character and graphic string columns in the key must use the same encoding scheme.

If PARTITION BY RANGE is also specified, the list of column names must specify all
of the column names that are specified in partition-expression for the table, and must
specify the column names in the same order as partition-expression. If the ORGANIZE BY
clause contains more columns than partition-expression, partition-expression determines
the partition number.

HASH SPACE integerK|M|G
Specifies the amount of fixed hash space to preallocate for the table. If the table is
partitioned by range, this is the space for each partition.

The default is 64M for a table in a partition-by-growth table space or 64M for each
partition of a partition-by-range table space.

K
Indicates that the integer value is multiplied by 1024 to specify the hash space size in
bytes. The integer value must be in the range 256–268,435,456.

M
Indicates that the integer value is multiplied by 1,048,576 to specify the hash space
size in bytes. The integer value must be in the range 1–262,144.

G
Indicates that the integer value is to be multiplied by 1,073,741,824 to specify the
hash space size in bytes. The integer value must be in the range 1–256 for a partition
by range table and must be in the range 1–131,072 for a non-partitioned table.

If a value greater than 4G is specified, the data sets for the table space are associated
with a DFSMS data class that has been specified with extended format and extended
addressability.

partition-hash-space

HASH SPACE integer K

M

G

HASH SPACE integerK|M|G
Specifies the amount of fixed hash space to preallocate for the partition that is associated with
the partition-element. If HASH SPACE is omitted from the partition element, the HASH SPACE
value from the ORGANIZE BY clause is used. If IN ACCELERATOR is specified, HASH SPACE
must not be specified.

1712 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If HASH SPACE is not specified, each partition will use the HASH SPACE value specified in
organization-clause.

The HASH SPACE keyword in partition-element must only be specified if organization-clause is
also specified.

K
Indicates that the integer value is multiplied by 1024 to specify the hash space size in
bytes. The integer value must be in the range 256–268,435,456.

M
Indicates that the integer value is multiplied by 1,048,576 to specify the hash space size in
bytes. The integer value must be in the range 1–262,144.

G
Indicates that the integer value is to be multiplied by 1,073,741,824 to specify the hash
space size in bytes. The integer value must be in the range 1–256 for a partition by range
table and must be in the range 1–131,072 for a non-partitioned table.

If a value greater than 4G is specified, the data sets for the table space are associated with a
DFSMS data class that has been specified with extended format and extended addressability.

Notes for hash organization (deprecated)

Deprecated function: FL 504 Hash-organized tables are deprecated. Beginning in Db2 12, packages
bound with APPLCOMPAT(V12R1M504) or higher cannot create hash-organized tables or alter
existing tables to use hash-organization. Existing hash organized tables remain supported, but they
are likely to be unsupported in the future.

If the IN clause is not specified with ORGANIZE BY HASH
If you do not specify IN DATABASE (either explicitly or by default), Db2 will use the default DSSIZE
of 4G for each partition for a partition-by-range table space or use the value that is specified in the
partitioning clause. The hash space value that is specified on CREATE TABLE will be validated, per
part, to ensure that the specified DSSIZE is adequate. If the DSSIZE is not adequate, an error will
be returned.

If the maximum number of partitions needed for the specified hash space is more than the
maximum number of partitions allowed, Db2 to will return an error.

If the selected buffer pool is not available, a error will be returned.

Creating a table with hash organization and LOB columns
If the table space is a partition-by-growth table space, Db2 will preallocate as many partitions as
needed depending on the value specified for HASH SPACE. If Db2 needs to implicitly create the
LOB object in a new partition, the privilege set for the implicitly created LOB objects must include
the USE privilege on the buffer pool for the LOB table space.

Hash space and Db2 page size
If the specified hash space is less than or equal to 64 MB (the Db2 default), Db2 will add extra
space for Db2 system pages. If the specified hash space is greater than 64 MB, Db2 will use part
of the hash space for Db2 system pages. The amount of space needed for Db2 system pages
depends on SEGSIZE and PAGESIZE. The larger the SEGSIZE and/or PAGESIZE becomes, the
larger the requirement for Db2 system pages. Db2 can reserve up to 5 MB for system pages for the
highest SEGSIZE value (64) and PAGESIZE value (32K).

Hash space and DSSIZE
Depending on certain table space characteristics, Db2 needs to reserve space for the hash
overflow area. Therefore, the amount of hash space cannot be equal to the DSSIZE value. The
maximum amount of hash space that can be specified is approximately 20% less than the DSSIZE
value. Db2 returns an error if the amount of hash space is too large. If the amount of hash space is
too large, specify a larger value of DSSIZE, or decrease the amount of hash space.

Specifying APPEND for hash-organized tables
Append processing is not applicable to tables with hash organization since there is no key
clustering in hash organization. For insert operations into tables with hash organization, Db2 will
use the internal hash algorithm to determine the location of the row.

Chapter 7. Statements 1713

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

Maximum record size for hash-organized tables
For hash-organized tables, the maximum record size on whether the EDITPROC clause is
specified, as shown in Table 212 on page 1714.

The initial page size of the table space is the size of its buffer, which is determined by the
BUFFERPOOL clause that was explicitly or implicitly specified when the table space was created.
When the record size reaches 90 percent of the maximum record size for the page size of the table
space, the next largest page size is automatically used.

Table 212. Maximum record size, in bytes for hash organized tables

Page Size
= 4KB

Page Size
= 8KB

Page Size
= 16KB

Page Size
= 32KB

Hash table (hash
home page)

3817 7899 16091 32475

Hash table with
EDITPROC=YES
(hash home page)

3807 7889 16081 32465

The maximum record size corresponds to the maximum length of a VARCHAR column if that
column is the only column in the table.

If the table space that contains the table is implicitly created, the proper buffer pool size is chosen
according to the actual record size.

A row in a table with PAGENUM RELATIVE or in a table space with PAGENUM RELATIVE must have
a minimum data size of 3 bytes. Rows with data that compresses to less than 3 bytes, will not be
compressed when stored in the table.

Restrictions for tables with hash organization
Tables that use hash organization are subject to the following restrictions:

• A table that is defined to use hash organization cannot be created in a LOB table space or XML
table space.

• ORGANIZE BY HASH must not be specified if the table space is defined with the MEMBER
CLUSTER clause.

• The MAXROWS clause is applicable only to the hash overflow area of the table space for tables
with hash organization. The fixed hash area of each page will contain as many rows as it can
hold, up to a maximum of 255.

• The ORGANIZE BY HASH UNIQUE (column-list) clause is required when specifying HASH SPACE
integer K|M|G in the partition-element. The organization-clause applies to the entire table and
the partition-element clause applies at the partition level.

• Db2 automatically creates a hash overflow index when a table is created with hash organization.

Alternative syntax and synonyms
To provide compatibility with previous releases of Db2 or other products in the Db2 family, Db2
supports the following clauses:

• NOCACHE (single clause) as a synonym for NO CACHE
• NOCYCLE (single clause) as a synonym for NO CYCLE
• NOMINVALUE (single clause) as a synonym for NO MINVALUE
• NOMAXVALUE (single clause) as a synonym for NO MAXVALUE
• NOORDER (single clause) as a synonym for NO ORDER
• PART integer VALUES can be specified as an alternative to PARTITION integer ENDING AT.
• VALUES as a synonym for ENDING AT
• DEFINITION ONLY as a synonym for WITH NO DATA

1714 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• SUMMARY between CREATE and TABLE
• TIMEZONE can be specified as an alternative to TIME ZONE.

Examples for CREATE TABLE

Example 1

Create a table named DSN8C10.DEPT in the table space DSN8S12D of the database DSN8D12A.
Name the five columns DEPTNO, DEPTNAME, MGRNO, ADMRDEPT, and LOCATION, allowing only
MGRNO and LOCATION to contain nulls, and designating DEPTNO as the only column in the primary
key. All five columns hold character string data. Assuming a value of NO for the field MIXED DATA on
installation panel DSNTIPF, all five columns have the subtype SBCS.

 CREATE TABLE DSN8C10.DEPT
 (DEPTNO CHAR(3) NOT NULL,
 DEPTNAME VARCHAR(36) NOT NULL,
 MGRNO CHAR(6) ,
 ADMRDEPT CHAR(3) NOT NULL,
 LOCATION CHAR(16) ,
 PRIMARY KEY(DEPTNO))
 IN DSN8D12A.DSN8S12D;

Example 2
Create a table named DSN8C10.PROJ in an implicitly created table space of the database DSN8D12A.
Assign the table a validation procedure named DSN8EAPR.

 CREATE TABLE DSN8C10.PROJ
 (PROJNO CHAR(6) NOT NULL,
 PROJNAME VARCHAR(24) NOT NULL,
 DEPTNO CHAR(3) NOT NULL,
 RESPEMP CHAR(6) NOT NULL,
 PRSTAFF DECIMAL(5,2) ,
 PRSTDATE DATE ,
 PRENDATE DATE ,
 MAJPROJ CHAR(6) NOT NULL)
 IN DATABASE DSN8D12A
 VALIDPROC DSN8EAPR;

Example 3

Assume that table PROJECT has a non-primary unique key that consists of columns DEPTNO and
RESPEMP (the department number and employee responsible for a project). Create a project activity
table named ACTIVITY with a foreign key on that unique key.

 CREATE TABLE ACTIVITY
 (PROJNO CHAR(6) NOT NULL,
 ACTNO SMALLINT NOT NULL,
 ACTDEPT CHAR(3) NOT NULL,
 ACTOWNER CHAR(6) NOT NULL,
 ACSTAFF DECIMAL(5,2) ,
 ACSTDATE DATE NOT NULL,
 ACENDATE DATE ,
 FOREIGN KEY (ACTDEPT,ACTOWNER)
 REFERENCES PROJECT (DEPTNO,RESPEMP) ON DELETE RESTRICT)
 IN DSN8D12A.DSN8S12D;

Example 4

Create an employee photo and resume table EMP_PHOTO_RESUME that complements the sample
employee table. The table contains a photo and resume for each employee. Put the table in table
space DSN8D12A.DSN8S12E. Let Db2 always generate the values for the ROWID column.

 CREATE TABLE DSN8C10.EMP_PHOTO_RESUME
 (EMPNO CHAR(6) NOT NULL,
 EMP_ROWID ROWID NOT NULL GENERATED ALWAYS,
 EMP_PHOTO BLOB(110K),
 RESUME CLOB(5K),
 PRIMARY KEY (EMPNO))

Chapter 7. Statements 1715

 IN DSN8D12A.DSN8S12E
 CCSID EBCDIC;

Example 5
Create an EMPLOYEE table with an identity column named EMPNO. Define the identity column so
that Db2 will always generate the values for the column. Use the default value, which is 1, for the
first value that should be assigned and for the incremental difference between the subsequently
generated consecutive numbers.

 CREATE TABLE EMPLOYEE
 (EMPNO INTEGER GENERATED ALWAYS AS IDENTITY,
 ID SMALLINT,
 NAME CHAR(30),
 SALARY DECIMAL(5,2),
 DEPTNO SMALLINT)
 IN DSN8D12A.DSN8S12D;

Example 6
Assume a very large transaction table named TRANS contains one row for each transaction processed
by a company. The table is defined with many columns. Create a materialized query table for the
TRANS table that contain daily summary data for the date and amount of a transaction.

 CREATE TABLE STRANS AS
 (SELECT YEAR AS SYEAR, MONTH AS SMONTH, DAY AS SDAY, SUM(AMOUNT) AS SSUM
 FROM TRANS
 GROUP BY YEAR, MONTH, DAY)
 DATA INITIALLY DEFERRED REFRESH DEFERRED;

Example 7
The following example creates a table in a partition-by-growth table space and includes the APPEND
option:

 CREATE TABLE TS01TB
 (C1 SMALLINT,
 C2 DECIMAL(9,2),
 C3 CHAR(4))
 APPEND YES
 IN TS01DB.TS01TS;

Example 8
The following example creates a table in a partition-by-growth table space where the table space is
implicitly created:

 CREATE TABLE TS02TB
 (C1 SMALLINT,
 C2 DECIMAL(9,2),
 C3 CHAR(4))
 PARTITION BY SIZE EVERY 4G
 IN DATABASE DSNDB04;

Example 9
Create a table, EMP_INFO, that contains a phone number and address for each employee. Include a
row change timestamp column in the table to track the modification of employee information:

 CREATE TABLE EMP_INFO
 (EMPNO CHAR(6) NOT NULL,
 EMP_INFOCHANGE NOT NULL
 GENERATED ALWAYS FOR EACH ROW ON UPDATE
 AS ROW CHANGE TIMESTAMP,
 EMP_ADDRESS VARCHAR(300),
 EMP_PHONENO CHAR(4),
 PRIMARY KEY (EMPNO));

Example 10
Create a table, TB01, that uses a range partitioning scheme with a segment size of 4 and 4 partitions.

CREATE TABLE TB01 (
 ACCT_NUM INTEGER,
 CUST_LAST_NM CHAR(15),

1716 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 LAST_ACTIVITY_DT VARCHAR(25),
 COL2 CHAR(10),
 COL3 CHAR(25),
 COL4 CHAR(25),
 COL5 CHAR(25),
 COL6 CHAR(55),
 STATE CHAR(55))
 IN DBB.TS01

 PARTITION BY (ACCT_NUM)
 (PARTITION 1 ENDING AT (199),
 PARTITION 2 ENDING AT (299),
 PARTITION 3 ENDING AT (399),
 PARTITION 4 ENDING AT (MAXVALUE));

Example 11
Create a table, policy_info, that uses a SYSTEM_TIME period and create a history table,
hist_policy_info. Then issue an ALTER TABLE statement to associate the policy_info table with the
hist_policy_info table.

CREATE TABLE policy_info
 (policy_id CHAR(10) NOT NULL,
 coverage INT NOT NULL,
 sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN,
 sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END,
 create_id TIMESTAMP(12) GENERATED ALWAYS AS TRANSACTION START ID,
 PERIOD SYSTEM_TIME(sys_start,sys_end));

CREATE TABLE hist_policy_info
 (policy_id CHAR(10) NOT NULL,
 coverage INT NOT NULL,
 sys_start TIMESTAMP(12) NOT NULL,
 sys_end TIMESTAMP(12) NOT NULL,
 create_id TIMESTAMP(12));

ALTER TABLE policy_info
 ADD VERSIONING USE HISTORY TABLE hist_policy_info;

Example 12
Create a table, policy_info, that uses a BUSINESS_TIME period.

CREATE TABLE policy_info
 (policy_id CHAR(4) NOT NULL,
 coverage INT NOT NULL,
 bus_start DATE NOT NULL,
 bus_end DATE NOT NULL,
 PERIOD BUSINESS_TIME(bus_start, bus_end));

Example 13

Create a table, policy_info, that uses both a SYSTEM_TIME period and a BUSINESS_TIME period
to keep historical rows and track a user-specified time period. A table that specifies both a
SYSTEM_TIME period and a BUSINESS_TIME period is sometimes referred to as a bitemporal table.
To enable retention of historical rows, a history table, hist_policy_info, also needs to be created and
associated (using the ALTER TABLE statement) with the policy_info table.

CREATE TABLE policy_info
 (policy_id CHAR(4) NOT NULL,
 coverage INT NOT NULL,
 bus_start DATE NOT NULL,
 bus_end DATE NOT NULL,
 sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN,
 sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END,
 create_id TIMESTAMP(12) GENERATED ALWAYS AS TRANSACTION START ID,
 PERIOD BUSINESS_TIME(bus_start, bus_end),
 PERIOD SYSTEM_TIME(sys_start, sys_end));

CREATE TABLE hist_policy_info
 (policy_id CHAR(4) NOT NULL,
 coverage INT NOT NULL,
 bus_start DATE NOT NULL,
 bus_end DATE NOT NULL,

Chapter 7. Statements 1717

 sys_start TIMESTAMP(12) NOT NULL,
 sys_end TIMESTAMP(12) NOT NULL),
 create_id TIMESTAMP(12);

ALTER TABLE policy_info
 ADD VERSIONING USE HISTORY TABLE hist_policy_info;

Example 14: Create table EMPLOYEE.PERSONAL with key label EMPKEYLABEL.

CREATE TABLE EMPLOYEE.PERSONAL
 (DEPTNO CHAR(3) NOT NULL,
 DEPTNAME VARCHAR(36) NOT NULL,
 MGRNO CHAR(6) ,
 ADMRDEPT CHAR(3) NOT NULL,
 LOCATION CHAR(16) ,
 PRIMARY KEY(DEPTNO))
 IN DSN8D12A.DSN8S12D
 KEY LABEL EMPKEYLABEL;

Related concepts
Types of accelerator tables (Db2 Performance)
Unicode columns in EBCDIC tables
A single encoding scheme is used for all character and character string data in a table. An exception is
that an EBCDIC table can contain one or more Unicode columns in addition to EBCDIC string columns.
Unicode support in Db2 (Db2 Installation and Migration)
Naming conventions
The rules for forming a name depend on the type of the object designated by the name.
Related tasks
Creating tables from application programs (Db2 Application programming and SQL)
Related reference
EBCDIC and ASCII support (Db2 Installation and Migration)
Related information
Implementing Db2 tables (Db2 Administration Guide)
Conditions that prevent query routing to an accelerator

CREATE TABLESPACE statement
The CREATE TABLESPACE statement defines a table space at the current server. The type of table space
depends on the keywords specified.

FL 504Depending on the keywords specified, the result is a partition-by-range or partition-by-growth
table space.

For information about the rules and restrictions for creating table spaces in work file databases, see Table
spaces in a work file database.

For information about creating large object (LOB) table spaces, see “CREATE LOB TABLESPACE” on page
1553.

Db2 creates XML table spaces implicitly when you create or alter tables to add XML columns. For more
information, see XML table space implicit creation (Db2 Administration Guide).

Invocation for CREATE TABLESPACE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for CREATE TABLESPACE
The privilege set that is defined below must include at least one of the following:

1718 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_typesofacceleratortables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_unicodesupp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createtablesapp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ebcdicasciisupp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_tableimplementation.html
https://www.ibm.com/docs/en/daafz/7.5?topic=accelerator-conditions-that-prevent-query-routing
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_howimplicitlycreatexmltablespace.html

• The CREATETS privilege for the database
• DBADM, DBCTRL, or DBMAINT authority for the database
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

Additional privileges might be required, as explained in the description of the BUFFERPOOL and USING
STOGROUP clauses.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the of the owner of the plan or package. If the application is bound in a trusted context
with the ROLE AS OBJECT OWNER clause specified, a role is the owner. Otherwise, an authorization ID is
the owner.

If the statement is dynamically prepared, the privilege set is the privileges that are held by the SQL
authorization ID of the process unless the process is within a trusted context and the ROLE AS OBJECT
OWNER clause is specified. In that case, the privileges set is the privileges that are held by the role that is
associated with the primary authorization ID of the process.

Chapter 7. Statements 1719

Syntax for CREATE TABLESPACE
CREATE TABLESPACE table-space-name

1

IN DSNDB04

IN database-name

BUFFERPOOL bpname

partition-by-growth-specification

partition-by-range-specification
2

DPSEGSZ-parameter
3

SEGSIZE integer

CCSID ASCII

EBCDIC

UNICODE

CLOSE YES

CLOSE NO

COMPRESS NO

COMPRESS YES

COMPRESS YES FIXEDLENGTH

COMPRESS YES HUFFMAN

DEFINE YES

DEFINE NO

free-block

gbpcache-block

INSERT ALGORITHM 0

INSERT ALGORITHM level

LOCKMAX SYSTEM

integer

locksize-block

LOGGED

NOT LOGGED

MAXROWS integer

MEMBER CLUSTER

TRACKMOD imptkmod-parameter
4

TRACKMOD YES

TRACKMOD NO

using-block

Notes:
1 The same clause must not be specified more than one time.

1720 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

2 FL 504 If the CREATE TABLESPACE statement runs at application compatibility level V12R1M503 or
lower, you can use deprecated specifications to create non-UTS segmented or partitioned table spaces.
See Creating non-UTS table spaces (deprecated) (Db2 Administration Guide).
3 The default SEGSIZE value is controlled by the DPSEGSZ subsystem parameter.
4 imptkmod-parameter is the IMPTKMOD subsystem parameter value. For more information, see
IMPTKMOD in macro DSN6SYSP (Db2 Installation and Migration).

partition-by-growth-specification:

MAXPARTITIONS 256

1

MAXPARTITIONS integer

NUMPARTS

1

integer

DSSIZE integer
2

G

Notes:
1 The same clause must not be specified more than one time.
2 Specify a power-of-two integer in the range 1–256, or accept a default based on the MAXPARTITIONS
value and the buffer pool page size. See Table 214 on page 1725.

partition-by-range-specification:

Chapter 7. Statements 1721

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createdeprecatedtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_dpsegsz.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_imptkmod.html

NUMPARTS integer

1

(

,

PARTITION integer
2

using-block

free-block

gbpcache-block

COMPRESS NO

COMPRESS YES

COMPRESS YES FIXEDLENGTH

COMPRESS YES HUFFMAN

IMPTKMOD-parameter
3

TRACKMOD YES

TRACKMOD NO

DSSIZE 4 G
4

DSSIZE integer G

)

PAGENUM pageset-pagenum-parameter
5

PAGENUM ABSOLUTE
4

PAGENUM RELATIVE

DSSIZE integer G
6

Notes:
1 Group multiple PARTITION clauses. Other clauses must not be specified more than one time.
2 The same clause must not be specified more than one time.
3 The IMPTKMOD subsystem parameter specified the default TRACKMOD option. For more information,
see IMPTKMOD in macro DSN6SYSP (Db2 Installation and Migration).
4 DSSIZE at the partition level can be specified only if PAGENUM RELATIVE is in effect.
5 The default for PAGESET_PAGENUM is ABSOLUTE. See PAGE SET PAGE NUMBERING field
(PAGESET_PAGENUM subsystem parameter) (Db2 Installation and Migration)
6 If PAGENUM RELATIVE is used, specify any integer in the range 1–1024, or accept the default value
4G. If absolute page numbers are used, specify a power-of-two integer in the range 1–256, or accept the
default value based on the NUMPARTS value and the buffer pool page size. See Table 215 on page 1727.

free-block:

1722 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_imptkmod.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_pagesetpagenum.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_pagesetpagenum.html

FREEPAGE 0

FREEPAGE integer

PCTFREE 5

PCTFREE smallint

smallint

FOR UPDATE smallint
1

2

Notes:
1 The default PCTFREE value is controlled by the PCTFREE_UPD subsystem parameter.
2 The same clause must not be specified more than one time.

gbpcache-block:

GBPCACHE CHANGED

GBPCACHE ALL

GBPCACHE SYSTEM

GBPCACHE NONE

locksize-block:

LOCKSIZE ANY

LOCKSIZE TABLESPACE

LOCKSIZE PAGE

LOCKSIZE ROW

using-block:

USING VCAT catalog-name

STOGROUP stogroup-name

PRIQTY -1

PRIQTY integer

SECQTY -1

SECQTY integer

ERASE NO

ERASE YES

1

Chapter 7. Statements 1723

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_pctfreeupd.html

Notes:
1 The same clause must not be specified more than one time.

Description for CREATE TABLESPACE
table-space-name

Names the table space. The name, qualified with the database-name implicitly or explicitly specified
by the IN clause, must not identify a table space, index space, or LOB table space that exists at the
current server or that exists in the SYSPENDINGOBJECTS catalog table.

A table space that is for declared temporary tables must be in the work file database. PUBLIC
implicitly receives the USE privilege (without GRANT authority) on any table space created in the work
file database. This implicit privilege is not recorded in the Db2 catalog, and it cannot be revoked.

IN database-name
Specifies the database in which the table space is created. database-name must identify a database
that exists at the current server and must not specify the following:

• DSNDB06
• A TEMP database
• An implicitly created database

If the table space is for declared temporary tables or static scrollable cursors, the name of the work
file database must be specified.

FL 504 If database-name identifies a work file database, the table space must be a partition-by-
growth table space.

DSNDB04 is the default.

BUFFERPOOL bpname
Identifies the buffer pool to be used for the table space and determines the page size of the table
space. For 4KB, 8KB, 16KB and 32KB page buffer pools, the page sizes are 4 KB, 8 KB, 16 KB, and
32 KB, respectively. The bpname must identify an activated buffer pool, and the privilege set must
include SYSADM or SYSCTRL authority, or the USE privilege on the buffer pool. If the table space is to
be created in a work file database, you can specify neither 8KB buffer pools nor 16KB buffer pools.

If you do not specify the BUFFERPOOL clause, the default buffer pool of the database is used.

See “Naming conventions in SQL” on page 79 for more details about bpname. See -ALTER
BUFFERPOOL command (Db2) (Db2 Commands) for a description of active and inactive buffer pools.

The buffer pool page size affects the number of partitions that can be used. For more information, see
“Maximum number of partitions and table space size ” on page 1736.

partition-by-growth-specification

Specifies the creation of a partition-by-growth table space. FL 504 If partition-by-growth-
specification and partition-by-range-specification are both omitted, a partition-by-growth table space
is created with MAXPARTITIONS 256. For a summary of clauses that control the table space type to
create, see Table space types.

MAXPARTITIONS integer
Specifies that the table space is a partition-by-growth table space.

integer specifies the maximum number of partitions to which the table space can grow. integer
must be in the range of 1–4096, depending on the corresponding value of the DSSIZE clause.
The following table shows the maximum value for MAXPARTITIONS in relation to the page size or
DSSIZE value for the table space.

1724 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_alterbufferpool.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_alterbufferpool.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

Table 213. Maximum MAXPARTITIONS value for a given page size and DSSIZE value

DSSIZE value 4K page size 8K page size 16K page size 32K page size

1–4 G 4096 4096 4096 4096

8 G 2048 4096 4096 4096

16 G 1024 2048 4096 4096

32 G 512 1024 2048 4096

64 G 254 512 1024 2048

128 G 128 256 512 1024

256 G 64 128 256 512

For more information, see “Maximum number of partitions and table space size ” on page 1736.

The schema definition for the first partition is always created, and the NUMPARTS value, if
specified, controls the number of partition schema definitions to initially create and allocate data
sets for. The data sets for additional partitions are not allocated until they are needed.

Although the physical data sets are not defined based on the MAXPARTITIONS value, storage
and CPU overhead is possible. If an increase in the number of partitions is expected by using
the MAXPARTITONS clause, be aware that specifying a value larger than necessary, such as 4096
(the maximum value), as a default for all partition-by-growth table spaces can cause larger than
expected storage requests.

NUMPARTS integer
If specified with MAXPARTITIONS, the integer value specifies the number of partition schema
definitions to initially create. Data sets are also allocated for this many partitions, unless DEFINE
NO is specified. integer must be a value in the range 1–4096 inclusive and must be less than or
equal to the value that is specified for the MAXPARTITIONS clause.

If MAXPARTITIONS is not specified, see the NUMPARTS clause description in “partition-by-range-
specification” on page 1726.

DSSIZE integer G
Specifies the data set size in integer gigabytes for partitions in the table space. Each partition
occupies one data set, so the data set size is also the maximum size of the partitions.

When DSSIZE is specified for a partition-by-growth table space, it must be a power-of-two integer
in the range 1–256 G (1, 2, 4, 8, 16, 32, 64, 128, or 256).

integer can be separated from G by 0 or more spaces.

FL 504 If the MAXPARTITIONS clause is omitted, the default value for DSSIZE is 4G for any
page size. Otherwise, the default value for DSSIZE depends on the buffer pool page size and the
specified MAXPARTITIONS value as shown in the following table.

Table 214. DSSIZE defaults for partition-by-growth table spaces

Page size MAXPARTITIONS value DSSIZE default value

Any 1–254 4 G

4K 255–4096 4 G

8K 255–4096 8 G

16K 255–4096 16 G

32K 255–4096 32 G

Chapter 7. Statements 1725

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

For any DSSIZE value greater than 4 G, the data sets for the table space must be associated with a
DFSMS data class that is specified with extended format and extended addressability.

The DSSIZE value affects the number of partitions that can be used. For more information, see
“Maximum number of partitions and table space size ” on page 1736.

partition-by-range-specification
FL 504 Specifies the creation of a partition-by-range table space. For a summary of clauses that
control the table space type to create, see Table space types.
NUMPARTS integer

If specified without MAXPARTITIONS, indicates that a partition-by-range table space is created.
The integer value specifies the number of partitions schema definitions to create. Data sets are
also allocated for this many partitions, unless DEFINE NO is also specified. integer must be a value
in the range 1–4096 inclusive.

If MAXPARTITIONS is also specified, see the NUMPARTS clause description in “partition-by-
growth-specification” on page 1724.

For table spaces created with PAGENUM RELATIVE, the maximum number of partitions is 4096.
For table spaces with PAGENUM ABSOLUTE, the maximum number of partitions depends on the
buffer pool page size and DSSIZE. The total table space size depends on the number of partitions
and DSSIZE. For more information, see “Maximum number of partitions and table space size ” on
page 1736.

PARTITION integer
Specifies the partition to which the following partition-level clauses apply. integer can range from
1 to the number of partitions given by NUMPARTS.

You can specify the PARTITION clause as many times as needed. If you use the same partition
number more than once, only the last specification for that partition is used.

DSSIZE integer G
When specified in a PARTITION clause for a partition-by-range table space, which is
supported only when PAGENUM RELATIVE is specified for the table space, specifies the data
set size in integer gigabytes for the partition identified by PARTITION integer. Each partition
occupies one data set, so the data set size is also the maximum size of the partition. The
integer G value can be any value 1–1024G. The default value is 4G.

integer can be separated from G by 0 or more spaces.

PAGENUM
Identifies the type of page numbering that is used when you create a partition-by-range table
space. The PAGESET_PAGENUM subsystem parameter specifies the default PAGENUM value.
The default for PAGESET_PAGENUM is ABSOLUTE. See PAGE SET PAGE NUMBERING field
(PAGESET_PAGENUM subsystem parameter) (Db2 Installation and Migration).
RELATIVE

Indicates that internal page numbering is kept as a 4-byte value without a partition number.
The page number is a relative page from the start of the partition, and the partition number
is kept only in the header page. When PAGENUM RELATIVE is specified, the data sets for
the table space must be associated with a DFSMS data class that is specified with extended
format and extended addressability.

ABSOLUTE
Indicates that internal page numbering is kept as a 4-byte value that includes a partition
number and page number. Distinguishing which bits represent the partition and which
represent the page number requires a shift value. The shift value is LOG base 2 (DSSIZE/(page
-size)).

DSSIZE integer G
Specifies the data set size in integer gigabytes for partitions in the table space. Each partition
occupies one data set, so the data set size is also the maximum size of the partitions.

1726 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_pagesetpagenum.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_pagesetpagenum.html

When DSSIZE is specified at the table-space level for a partition-by-range table space with
PAGENUM RELATIVE, it can specify any integer value in the range 1–1024 G, and the default value
is 4 G.

integer can be separated from G by 0 or more spaces.

If absolute page numbers are used, the DSSIZE value must be a power-of-two integer in the range
1–256 G (1, 2, 4, 8, 16, 32, 64, 128, or 256), and the default value depends on the NUMPARTS
value and the buffer pool page size, as shown in the following table.

integer can be separated from G by 0 or more spaces.

Table 215. DSSIZE defaults for partition-by-range table spaces with absolute page numbering

Page size NUMPARTS value DSSIZE default value

Any 1–16 4 G

Any 17–32 2 G

Any 33–64 1 G

Any 65–254 4 G

4K 255–4096 4 G

8K 255–4096 8 G

16K 255–4096 16 G

32K 255–4096 32 G

The DSSIZE value affects the number of partitions that can be used. For more information , see
“Maximum number of partitions and table space size ” on page 1736.

For any DSSIZE value greater than 4 G, the data sets for the table space must be associated with a
DFSMS data class that is specified with extended format and extended addressability.

SEGSIZE integer
Specifies the size in pages for each segment of the table space. The integer value must be a
multiple of 4, in the range 4–64.

If SEGSIZE is not specified, the default SEGSIZE value is controlled by the DPSEGSZ subsystem
parameter. SEGSIZE 32 is used if the DPSEGSZ value is 0. Otherwise the SEGSIZE value is the
DPSEGSZ value.

However, the DPSEGSZ value has no effect for a table space created in a work file database, and
SEGSIZE 16 is used.

CCSID encoding-scheme
Specifies the encoding scheme for a table in the table space.

If you do not specify a CCSID when it is allowed, the default is the encoding scheme of the
database in which the table space resides, except for table spaces in database DSNDB04; for
table spaces in DSNDB04, the default is the value of field DEF ENCODING SCHEME on installation
panel DSNTIPF.

ASCII
Specifies that the data is encoded using ASCII CCSIDs. If the database in which the table
space is to reside is already defined as ASCII, the ASCII CCSIDs associated with that database
are used. Otherwise, the default ASCII CCSIDs of the server are used.

EBCDIC
Specifies that the data is encoded using EBCDIC CCSIDs. If the database in which the table
space is to reside is already defined as EBCDIC, the EBCDIC CCSIDs associated with that
database are used. Otherwise, the default EBCDIC CCSIDs of the server are used.

An EBCDIC table in the table space can include Unicode columns.

Chapter 7. Statements 1727

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_dpsegsz.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_dpsegsz.html

UNICODE
Specifies that the data is encoded using the UNICODE CCSIDs of the server.

Usually, each encoding scheme requires only a single CCSID. Additional CCSIDs are needed when
mixed, graphic, or Unicode data is used.

All data stored within a table space must use the same encoding scheme unless the table space is
in a work file database.

CLOSE
When the limit on the number of open data sets is reached, specifies the priority in which data
sets are closed.
YES

Eligible for closing before CLOSE NO data sets. CLOSE YES is the default value, unless the
table space is in a work file database.

NO
Eligible for closing after all eligible CLOSE YES data sets are closed.

COMPRESS
Specifies whether data compression applies to the rows of the table space or a partition in the
table space.

For partitioned table spaces, the COMPRESS attribute for a partition is determined from the first of
the following conditions that apply to the CREATE statement:

• The value specified in the COMPRESS clause in the PARTITION clause for that partition
• The value specified in the COMPRESS clause that is not in any PARTITION clause
• Otherwise, COMPRESS NO is the default for the partition

For more information about data compression, see Compressing your data (Db2 Performance).

YES
FL 509 Specifies that data compression is used for the table space or partition. The rows are
not compressed until the LOAD or REORG utility is run on a table in the table space or on
a partition, or until the total row data size reaches the compression data threshold while an
insert operation is performed.

If a keyword for the compression algorithm is not specified, the default compression algorithm
is used. The data compression algorithm is determined by the TS_COMPRESSION_TYPE
subsystem parameter.

If a keyword for the compression algorithm is specified:

• LOB table spaces that are implicitly created for LOB columns in this table space are defined
as if COMPRESS YES has been specified without a compression algorithm. LOB compression
is managed by zEDC hardware if available.

• XML table spaces that are implicitly created for XML columns in this table space inherit the
compression attribute.

FIXEDLENGTH
FL 509 Specified the fixed-length data compression algorithm.

HUFFMAN
FL 509 Specifies the Huffman data compression algorithm. See Using Huffman
compression to compress your data (Db2 Performance) for requirements to enable
Huffman compression.

NO
Specifies no data compression for the table space or partition. Inserted rows are not
compressed.

DEFINE
Specifies when the underlying data sets for the table space are physically allocated.

1728 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_compressdataperf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_compressdatahuffman.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_compressdatahuffman.html

YES
The data sets are created when the table space is created (the CREATE TABLESPACE
statement is executed). YES is the default.

NO
The data sets are not created until data is inserted into the table space. DEFINE NO is
applicable only for Db2-managed data sets (USING STOGROUP is specified). DEFINE NO is
ignored for user-managed data sets (USING VCAT is specified). Db2 uses the SPACE column in
catalog table SYSTABLEPART to record the status of the data sets (undefined or allocated).

DEFINE NO is not recommended if you intend to use any tools outside of Db2 to manipulate
data, such as to load data, because data sets might then exist when Db2 does not expect them
to exist. When Db2 encounters this inconsistent state, applications will receive an error.

For table spaces that are created with DEFINE NO, point-in-time recover will not work before
data sets exist and before a recovery copy exists.

free-block
Specifies how to leave free space when the table space is loaded or reorganized.
FREEPAGE integer

Specifies how often to leave a page of free space when the table space or partition is loaded
or reorganized. You must specify an integer in the range 0–255. If you specify 0, no pages are
left as free space. Otherwise, one free page is left after every n pages, where n is the specified
integer value. The number of pages left must be less than the segment size. If the integer you
specify is not less than the segment size, n is one less than the segment size.

The default is FREEPAGE 0, leaving no free pages.

For more information, see:

Reserving free space in table spaces (Db2 Performance)
Reserving free spaces for indexes (Db2 Performance)

PCTFREE smallint
Indicates what percentage of each page to leave as free space when the table is loaded or
reorganized. smallint is in the range 0–99. The first record on each page is loaded without
restriction. When additional records are loaded, at least smallint percent of free space is left
on each page.

The default is PCTFREE 5, which means that 5% of the space on each page is reserved as free
space.

FOR UPDATE smallint
Specifies the percentage of space to reserve as free space on each page, for use by
subsequent update operations. The smallint value is an integer in the range -1 to 99. FOR
UPDATE -1 specifies that 5% of free space is reserved initially, and the amount of free
space is calculated automatically based on certain real-time statistics values. The first
record on each page is always loaded without restriction.

An update operation might use more space, if it is available, than is specified by the
PCTFREE or PCTFREE FOR UPDATE options.

The default FOR UPDATE value is controlled by the PCTFREE_UPD subsystem parameter.

The value is recorded in the PCTFREE_UPD column of the SYSIBM.SYSTABLEPART catalog
table.

The sum of the values for PCTFREE smallint and FOR UPDATE smallint must be less than or
equal to 99.

For more information, see:

Reserving free space in table spaces (Db2 Performance)
Reserving free spaces for indexes (Db2 Performance)

Chapter 7. Statements 1729

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_reservefreespacetable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_reservefreespaceindex.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_pctfreeupd.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_reservefreespacetable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_reservefreespaceindex.html

gbpcache-block

In a data sharing environment, specifies which pages of the table space or partition are written
to the group buffer pool. In a non-data-sharing environment, you can specify GBPCACHE for a
table space, but it is ignored. However, do not specify GBPCACHE for a table space in a work file
database in either environment (data sharing or non-data-sharing).

GBPCACHE
Specifies pages of the table space or partition are written to the group buffer pool.
CHANGED

When there is inter-Db2 R/W interest on the table space or partition, updated pages are
written to the group buffer pool. When there is no inter-Db2 R/W interest, the group buffer
pool is not used. Inter-Db2 R/W interest exists when more than one member in the data
sharing group has the table space or partition open, and at least one member has it open
for update. GBPCACHE CHANGED is the default.

If the table space is in a group buffer pool that is defined to be used only for cross-
invalidation (GBPCACHE NO), CHANGED is ignored and no pages are cached to the group
buffer pool.

ALL
Indicates that pages are to be cached in the group buffer pool as they are read in from
DASD.

Exception: In the case of a single updating Db2 when no other DB2s have any interest in
the page set, no pages are cached in the group buffer pool.

If the table space is in a group buffer pool that is defined to be used only for cross-
invalidation (GBPCACHE NO), ALL is ignored and no pages are cached to the group buffer
pool.

NONE
Indicates that no pages are to be cached to the group buffer pool. Db2 uses the group
buffer pool only for cross-invalidation.

If you specify NONE, the table space or partition must not be in recover pending status and
must be in the stopped state when the CREATE TABLESPACE statement is executed.

The value of GBPCACHE for a particular partition is determined by the first of these choices
that applies:

1. The GBPCACHE specified in the PARTITION clause for the partition. Do not use more than
one gbpcache-block in any PARTITION clause.

2. The value specified in a gbpcache-block for the table space.
3. The default value CHANGED.

INSERT ALGORITHM level
Specifies the algorithm that is used when rows are inserted into tables in this table space. The
insert algorithm level is used only where applicable when MEMBER CLUSTER is specified. The
default value is 0.
0

Specifies that the insert algorithm level is determined by the DEFAULT_INSERT_ALGORITHM
subsystem parameter at the time a row is inserted.

1
Specifies that the basic insert algorithm is used.

2
Specifies that insert algorithm 2 is used.

LOCKMAX
Specifies the maximum number of page or row locks an application process can hold
simultaneously in the table space. If a program requests more than that number, locks are

1730 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

escalated. The page or row locks are released and the intent lock on the table space is promoted
to S or X mode.
integer

Specifies the number of locks allowed before escalating, in the range 0–2147483647.

Zero (0) indicates that the number of locks on the table or table space are not counted and
escalation does not occur.

SYSTEM
FL 507 Specifies that Db2 determines the maximum number of locks that a program can
hold simultaneously in the table space from the SYSIBMADM.MAX_LOCKS_PER_TABLESPACE
built-in global variable.

For more information see “MAX_LOCKS_PER_TABLESPACE” on page 331.

The following table summarizes the results of specifying a LOCKSIZE value while omitting
LOCKMAX.

LOCKSIZE Resultant LOCKMAX

ANY SYSTEM

TABLESPACE, PAGE, ROW 0

If the lock size is TABLESPACE, LOCKMAX must be omitted, or its operand must be 0.

locksize-block
Specifies the size of locks used for the table space, and thresholds for lock escalation in some
cases.
LOCKSIZE

Specifies the size of locks used within the table space and, in some cases, also the threshold
at which lock escalation occurs.
ANY

Specifies that Db2 can use any lock size.

FL 507In most cases, Db2 uses LOCKSIZE PAGE LOCKMAX SYSTEM. However, when the
number of locks acquired for the table space exceeds the maximum number of locks
allowed for a table space (the value of the SYSIBMADM.MAX_LOCKS_PER_TABLESPACE
built-in global variable), the page locks are released and partition level locks are used. For
more information see “MAX_LOCKS_PER_TABLESPACE” on page 331.

TABLESPACE
Specifies table space locks.

PAGE
Specifies page locks.

ROW
Specifies row locks.

LOGGED or NOT LOGGED
Specifies whether changes that are made to the data in the specified table space are recorded in
the log. LOGGED and NOT LOGGED cannot be specified for table spaces in database DSNDB06,
which contains the Db2 catalog. This setting applies to the table that is created in the specified
table space and to all indexes of the table. XML table spaces and their indexes inherit the logging
attribute from the associated base table space. Auxiliary indexes also inherit the logging attribute
from the associated base table space.
LOGGED

Specifies that changes that are made to the data in the specified table space are recorded in
the log.

LOGGED is the default.

Chapter 7. Statements 1731

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html

NOT LOGGED
Specifies that changes that are made to data in the specified table space are not recorded in
the log.

NOT LOGGED prevents undo and redo information from being recorded in the log; however,
control information for the specified table space will continue to be recorded in the log.

MAXROWS integer
Specifies the maximum number of rows that Db2 will consider placing on each data page. The
integer can range 1–255. This value is considered for insert operations, LOAD, and REORG. For
LOAD and REORG, the PCTFREE specification is considered before MAXROWS; therefore, fewer
rows might be stored than the value you specify for MAXROWS.

If you do not specify MAXROWS, the default number of rows is 255.

MEMBER CLUSTER
Specifies that data inserted by an insert operation is not clustered by the implicit clustering index
(the first index) or the explicit clustering index. Instead, Db2 chooses where to locate the data in
the table space based on available space.

TRACKMOD
Specifies whether Db2 tracks modified pages in the space map pages.
YES

Db2 tracks changed pages in the space map pages to improve the performance of incremental
image copy.

NO
Db2 does not track changed pages in the space map pages. It uses the LRSN value in each
page to determine whether a page has been changed.

The TRACKMOD clause can be specified for each partition, or for the table space. If the
TRACKMOD value is not specified for a partition, the TRACKMOD value for the table space is
used. If the TRACKMOD value for the table space is not specified, the default value specified by
the IMPTKMOD subsystem parameter is used. For more information, see IMPTKMOD in macro
DSN6SYSP (Db2 Installation and Migration).

using-block

Specifies whether Db2 or the user manages the data sets for the table space or its partitions.
The USING clause can be specified for each partition or for the table space. If the USING clause
is not specified for a partition, the USING clause specified for the table space is used. If the
USING clause is not specified for the table space, the storage group of the database is used, with
the normal defaults for PRIQTY, SECQTY, and ERASE. If the USING clause for the table space is
omitted, the default storage group for database must exist.

VCAT catalog-name
Indicates that the data set for the partition is managed by the user using the naming
conventions set forth in Data set naming conventions (Db2 Administration Guide). As was true
for the nonpartitioned case, catalog-name identifies the catalog for the data set and supplies
the first-level qualifier for the data set name.

One or more Db2 subsystems could share integrated catalog facility catalogs with the current
server. To avoid the chance of having one of those subsystems attempt to assign the same
name to different data sets, select a value for catalog-name that is not used by the other Db2
subsystems.

USING VCAT must not be specified for a partition-by-growth table space.

Db2 assumes one and only one data set for each partition.

1732 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_imptkmod.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_imptkmod.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_datasetnamingconventions.html

STOGROUP stogroup-name
Indicates that Db2 will create a data set for the partition with the aid of a storage group named
stogroup-name. The data set is defined during the execution of this statement. Db2 assumes
one and only one data set for each partition.

The stogroup-name must identify a storage group that exists at the current server and the
privilege set must include SYSADM authority, SYSCTRL authority, or the USE privilege for the
storage group. The integrated catalog facility catalog used for the storage group must not
contain an entry for that data set.

When USING STOGROUP is specified for a partition, the defaults for PRIQTY, SECQTY, and
ERASE are the values specified in the USING STOGROUP clause that is not in any PARTITION
clause. If that USING STOGROUP clause is not specified, the defaults are those specified in
the description of PRIQTY, SECQTY, and ERASE.

PRIQTY integer
Specifies the minimum primary space allocation for a Db2-managed data set. integer must
be a positive integer, or -1. In general, when you specify PRIQTY with a positive integer
value, the primary space allocation is at least n kilobytes, where n is the value of integer.
However, the following exceptions exist:

• For 4KB page sizes, if integer is greater than 0 and less than 200, n is 200.
• For 8KB page sizes, if integer is greater than 0 and less than 400, n is 400.
• For 16KB page sizes, if integer is greater than 0 and less than 800, n is 800.
• For 32KB page sizes, if integer is greater than 0 and less than 1600, n is 1600.
• For any page size, if integer is greater than 67108864, n is 67108864.

If you do not specify PRIQTY, or specify PRIQTY with a value of -1, Db2 uses a default
value for the primary space allocation; for information on how Db2 determines the default
value, see Rules for primary and secondary space allocation (Introduction to Db2 for z/
OS).

If you specify PRIQTY, and do not specify a value of -1, Db2 specifies the primary space
allocation to access method services using the smallest multiple of p KB not less than
n, where p is the page size of the table space. The allocated space can be greater than
the amount of space requested by Db2. For example, it could be the smallest number
of tracks that will accommodate the request. The amount of storage space requested
must be available on some volume in the storage group based on VSAM space allocation
restrictions. Otherwise, the primary space allocation will fail. To more closely estimate
the actual amount of storage, see DEFINE CLUSTER command (DFSMS Access Method
Services for Catalogs).

Executing this statement causes only one data set to be created. However, you might have
more data than this one data set can hold. Db2 automatically defines more data sets when
they are needed. Regardless of the value in PRIQTY, when a data set reaches its maximum
size, Db2 creates a new one. To enable a data set to reach its maximum size without
running out of extents, it is recommended that you allow Db2 to automatically choose the
value of the secondary space allocations for extents.

If you do choose to explicitly specify SECQTY, to avoid wasting space, use the following
formula to make sure that PRIQTY and its associated secondary extent values do not
exceed the maximum size of the data set:

PRIQTY + (number of extents * SECQTY) <= DSSIZE (implicit or explicit)

SECQTY integer
Specifies the minimum secondary space allocation for a Db2-managed data set. integer
must be a positive integer, 0, or -1. If you do not specify SECQTY, or specify SECQTY with
a value of -1, Db2 uses a formula to determine a value. For information on the actual value
that is used for secondary space allocation, whether you specify a value or not, see Rules
for primary and secondary space allocation (Introduction to Db2 for z/OS).

Chapter 7. Statements 1733

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_primaryspaceallocation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_primaryspaceallocation.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/defclu.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/defclu.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_primaryspaceallocation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_primaryspaceallocation.html

If you specify SECQTY, and do not specify a value of -1, Db2 specifies the secondary space
allocation to access method services using the smallest multiple of p KB not less than
integer, where p is the page size of the table space. The allocated space can be greater
than the amount of space requested by Db2. For example, it could be the smallest number
of tracks that will accommodate the request. To more closely estimate the actual amount
of storage, see DEFINE CLUSTER command (DFSMS Access Method Services for Catalogs).

ERASE
Indicates whether the Db2-managed data sets for the table space are to be erased when
they are deleted during the execution of a utility or an SQL statement that drops the table
space.
NO

Does not erase the data sets. Operations involving data set deletion will perform better
than ERASE YES. However, the data is still accessible, though not through Db2. This is
the default.

YES
Erases the data sets. As a security measure, Db2 overwrites all data in the data sets
with zeros before they are deleted.

Notes for CREATE TABLESPACE
Table space types

FL 504 In application compatibility level V12R1M504 and higher, the type of partitioning of
the resulting table space depends on whether the CREATE TABLESPACE statement specifies the
MAXPARTITIONS clause and NUMPARTS clauses, as shown in the following table. If the CREATE
TABLESPACE statement specifies the NUMPARTS clause but no MAXPARTITIONS clause, the result
is a partition-by-range table space table space. Otherwise, the result is a partition-by-growth table
space.

However, below application compatibility level V12R1M504, deprecated table space types including
segmented (non-UTS) and partitioned (non-UTS) table spaces can be created. In such cases, the type
of table space created depends on the SEGSIZE, MAXPARTITIONS, and NUMPARTS clauses that the
CREATE TABLESPACE statement specifies.

Table 216. CREATE TABLESPACE clauses for specifying table space types, by application compatibility level.

Table space type APPLCOMPAT(V12R1M504) and
higher

APPLCOMPAT(V12R1M503) and
lower

Partition-by-growth Any of the following combinations:

• MAXPARTITIONS and NUMPARTS
• MAXPARTITIONS
• Omit both

Any of the following combinations:

• MAXPARTITIONS and NUMPARTS
• MAXPARTITIONS and SEGSIZE

n“1” on page 1735

• MAXPARTITIONS

Partition-by-range NUMPARTS only NUMPARTS and SEGSIZE n“1” on page
1735

Segmented (non-UTS) Not supported“2” on page 1735 One of the following combinations:

• SEGSIZE n“1” on page 1735

• Omit MAXPARTITIONS,
NUMPARTS, and SEGSIZE

Partitioned (non-UTS) Not supported“2” on page 1735 NUMPARTS and SEGSIZE 0

1734 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.idai200/defclu.htm
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_partitionbygrowthtablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_rangepartitionedtablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_segmentedtablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_partitionedtablespaces.html

Table 216. CREATE TABLESPACE clauses for specifying table space types, by application compatibility level.
(continued)

Table space type APPLCOMPAT(V12R1M504) and
higher

APPLCOMPAT(V12R1M503) and
lower

Notes:

1. Where n is a non-zero value. The DPSEGSZ subsystem parameter determines the default value. For more
information, see DEFAULT PARTITION SEGSIZE field (DPSEGSZ subsystem parameter) (Db2 Installation and
Migration).

2. FL 504 Non-UTS table spaces for base tables are deprecated. CREATE TABLESPACE statements that run
at application compatibility level V12R1M504 or higher always create a partition-by-growth or partition-by-
range table space, and CREATE TABLE statements that specify a non-UTS table space (including existing
multi-table segmented table spaces) return an error. However, you can use a lower application compatibility
level to create table spaces of the deprecated types if needed, such as for recovery situations. For
instructions, see Creating non-UTS table spaces (deprecated) (Db2 Administration Guide).

DSSIZE value greater than 4 G
For any DSSIZE value greater than 4 G, the data sets for the table space must be associated with a
DFSMS data class that is specified with extended format and extended addressability.

FL 504 XML table spaces
If a partition-by-growth table space contains an XML column, the corresponding XML table space is
a partition-by-growth table space that grows independently of the base table space. If a partition-by-
range table space contains an XML column, the corresponding XML table space is a partition-by-range
table space that is data partitioned. That is, it is partitioned according to the partitioning scheme of
the base table data.

Applications that use currently committed access with table spaces that specify LOCKSIZE PAGE
To ensure that readers of data in a table space that is defined with LOCKSIZE PAGE can always access
currently committed data, set MAXROWS to 8 or less. If MAXROWS is greater than 8, readers might
need to wait for insert or delete operations on tables in the table space to commit before the readers
can access rows in the tables.

For more information, see Accessing currently committed data to avoid lock contention (Db2
Performance).

Table spaces in a work file database
FL 504A table space in a work file database is always a partition-by-growth table space.

The following restrictions apply to table spaces created in a work file database:

• They can be created for another member only if both the executing Db2 subsystem and the
other member can access the work file data sets. That is required whether the data sets are
user-managed or in a Db2 storage group.

• They cannot use 8 KB or 16 KB page sizes. (The buffer pool in which you define the table space
determines the page size. For example, a table space that is defined in a 4 KB buffer pool has 4 KB
page sizes.)

• When you create a table space in a work file database, the following clauses are not allowed:

CCSID
COMPRESS
CLOSE YES
DEFINE NO
FREEPAGE
GBPCACHE
LARGE
LOCKPART
LOCKSIZE

Chapter 7. Statements 1735

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_dpsegsz.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_dpsegsz.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createdeprecatedtablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_accesscommitteddata.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_accesscommitteddata.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

LOGGED
MAXROWS
MEMBER CLUSTER
NOT LOGGED
PAGENUM
PCTFREE
SEGSIZE (SEGSIZE 16 is always used)
TRACKMOD

Table spaces for declared temporary tables
Declared temporary tables and sensitive static scrollable cursors must reside in table spaces in
the work file database. At least one table space with a 32 KB page size must exist in the work
file database before a declared temporary table can be defined and used or before sensitive static
scrollable cursors are opened.

Table spaces in the work file database are shared by work files, created and declared global
temporary tables and sensitive static scrollable cursor result tables. You cannot specify which table
space is to be used for any specific object.

Table space row formats
All newly created table spaces use re-ordered row format.

Rules for primary and secondary space allocation
You can specify the primary and secondary space allocation or let Db2 choose them. Having Db2
choose the values, especially the secondary space quantity, increases the possibility of reaching the
maximum data set size before running out of extents. For more information, see Rules for primary and
secondary space allocation (Introduction to Db2 for z/OS).

Maximum number of partitions and table space size
For partition-by-range table spaces created with relative page numbering, the maximum number of
partitions is 4096. For partition-by-range table spaces with absolute page numbering or partition-by
growth table spaces, the following tables show how the maximum number of partitions and the
total table space size depend on the buffer pool page size and DSSIZE value, with 5-byte extended
addressability (EA) storage.“1” on page 1738

4 KB page size

Table 217. Maximum number of partitions and table space size by DSSIZE, with 4 KB page size

DSSIZE Maximum number of
partitions

Total table space size

1G 4096 4 TB

2G 4096 8 TB

4G 4096 16 TB

8G 2048 16 TB

16G 1024 16 TB

32G 512 16 TB

64G 256 16 TB

128G 128 16 TB

256G 64 16 TB

1736 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_primaryspaceallocation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_primaryspaceallocation.html

8 KB page size

Table 218. Maximum number of partitions and table space size by DSSIZE, with 8 KB page size

DSSIZE Maximum number of
partitions

Total table space size

1G 4096 4TB

2G 4096 8TB

4G 4096 16TB

8G 4096 32TB

16G 2048 32TB

32G 1024 32TB

64G 512 32TB

128G 256 32TB

256G 128 32TB

16 KB page size

Table 219. Maximum number of partitions and table space size by DSSIZE, with 16 KB page size

DSSIZE Maximum number of
partitions

Total table space size

1G 4096 4 TB

2G 4096 8 TB

4G 4096 16 TB

8G 4096 32 TB

16G 4096 64 TB

32G 2048 64 TB

64G 1024 64 TB

128G 512 64 TB

256G 256 64 TB

32 KB page size

Table 220. Maximum number of partitions and table space size by DSSIZE, with 32 KB page size

DSSIZE Maximum number of
partitions

Total table space size

1G 4096 4 TB

2G 4096 8 TB

4G 4096 16 TB

8G 4096 32 TB

16G 4096 64 TB

32G 4096 128 TB

64G 2048 128 TB

Chapter 7. Statements 1737

Table 220. Maximum number of partitions and table space size by DSSIZE, with 32 KB page size
(continued)

DSSIZE Maximum number of
partitions

Total table space size

128G 1024 128 TB

256G 512 128 TB

Notes:

1. For 5-byte non-EA storage, the maximum values for 4 KB page size are DSSIZE 4 G, 4096
partitions, and 16 TB for total table space.

Alternative syntax and synonyms
For compatibility with previous Db2 releases or function levels, the following keywords are supported:

• You can specify the LOCKPART clause, but it has no effect. Db2 treats all table spaces as if they
were defined as LOCKPART YES. LOCKPART YES specifies the use of selective partition locking.
When all the conditions for selective partition locking are met, Db2 locks only the partitions that are
accessed. When the conditions for selective partition locking are not met, Db2 locks every partition
of the table space.

LOCKSIZE TABLESPACE and LOCKPART YES are mutually exclusive.
• When creating a partitioned table space, you can specify PART as a synonym for PARTITION.
• When specifying the logging attributes for a table space, you can specify LOG YES as a synonym for

LOGGED, and you can specify LOG NO as a synonym for NOT LOGGED.
• DSSIZE is the preferred clause for specifying the partition size, however you can specify the CREATE

LARGE TABLESPACE when creating partitioned table spaces.
• FL 504 If neither MAXPARTITIONS nor NUMPARTS is specified, you can specify LOCKSIZE TABLE as

a synonym for LOCKSIZE TABLESPACE.

Although these keywords are supported as alternatives, they are not the preferred syntax.

Examples for CREATE TABLESPACE

Example 1: using a storage group for a partition-by-growth table space
Create a table space DSN8S12D in database DSN8D12A. Let Db2 define the data sets, using storage
group DSN8G120. The primary space allocation is 52 kilobytes; the secondary, 20 kilobytes. The data
sets need not be erased before they are deleted.

Locking on tables in the space is to take place at the page level. Associate the table space with buffer
pool BP1. The data sets can be closed when no one is using the table space.

 CREATE TABLESPACE DSN8S12D
 IN DSN8D12A
 USING STOGROUP DSN8G120
 PRIQTY 52
 SECQTY 20
 ERASE NO
 LOCKSIZE PAGE
 BUFFERPOOL BP1
 CLOSE YES;

For the above example, the underlying data sets for the table space will be created immediately,
which is the default (DEFINE YES). If you want to defer the creation of the data sets until data is first
inserted into the table space, you would specify DEFINE NO instead of accepting the default behavior.

FL 504Because the CREATE TABLESPACE statement omits the NUMPARTS and MAXPARTITIONS
clauses, the resulting table spaces is a partition-by-growth table space.

1738 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

Example 2: partition options for a partition-by-range table space
Assume that a large query database application uses a table space to record historical sales data for
marketing statistics. Create large table space SALESHX in database DSN8D12A for the application.
Create it with 82 partitions, specifying that the data in partitions 80–82 is to be compressed.

Let Db2 define the data sets for all the partitions in the table space, using storage group DSN8G120.
For each data set, the primary space allocation is 4000 kilobytes, and the secondary space allocation
is 130 kilobytes. Except for the data set for partition 82, the data sets do not need to be erased before
they are deleted.

Locking on the table is to take place at the page level. There can only be one table in a partitioned
table space. Associate the table space with buffer pool BP1. The data sets cannot be closed when no
one is using the table space. If there are no CLOSE YES data sets to close, Db2 might close the CLOSE
NO data sets when the DSMAX is reached.

 CREATE TABLESPACE SALESHX
 IN DSN8D12A
 USING STOGROUP DSN8G120
 PRIQTY 4000
 SECQTY 130
 ERASE NO
 NUMPARTS 82
 (PARTITION 80
 COMPRESS YES,
 PARTITION 81
 COMPRESS YES,
 PARTITION 82
 COMPRESS YES
 USING STOGROUP DSN8G120
 ERASE YES)
 LOCKSIZE PAGE
 BUFFERPOOL BP1
 CLOSE NO;

FL 504 Because the CREATE TABLESPACE statement specifies a NUMPARTS clause and no
MAXPARTITIONS clause, a partition-by-range table space is created.

Example 3: partition-by-range table space

The following example creates a partition-by-range table space, TS1, in database DSN8D12A using
storage group DSN8G120. The table space has 16 pages per segment and has 55 partitions. It
specifies LOCKSIZE ANY.

 CREATE TABLESPACE TS1
 IN DSN8D12A
 USING STOGROUP DSN8G120
 NUMPARTS 55
 SEGSIZE 16
 LOCKSIZE ANY;

Example 4: partition-by-range table space
The following example creates a partition-by-range table space, TS2, in database DSN8D12A using
storage group DSN8G120. The table space has 64 pages per segment and has seven defer-defined
partitions, where every other partition is compressed.

 CREATE TABLESPACE TS2
 IN DSN8D12A
 USING STOGROUP DSN8G120
 NUMPARTS 7
 (
 PARTITION 1 COMPRESS YES,
 PARTITION 3 COMPRESS YES,
 PARTITION 5 COMPRESS YES,
 PARTITION 7 COMPRESS YES
)
 SEGSIZE 64
 DEFINE NO;

Chapter 7. Statements 1739

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

Example 5: partition-by-growth table space
The following example creates a partition-by-growth table space that has a maximum size of 2 GB for
each partition, four pages per segment with a maximum of 24 partitions for the table space.

CREATE TABLESPACE TS01TS IN TS01DB USING STOGROUP SG1
 DSSIZE 2G
 MAXPARTITIONS 24
 LOCKSIZE ANY
 SEGSIZE 4;

Related concepts
Db2 table spaces (Introduction to Db2 for z/OS)
Table space types and characteristics in Db2 for z/OS (Db2 Administration Guide)
Naming conventions
The rules for forming a name depend on the type of the object designated by the name.
Related information
Implementing Db2 table spaces (Db2 Administration Guide)

CREATE TRIGGER statement (advanced trigger)
The CREATE TRIGGER (advanced) statement defines an advanced trigger in a schema and builds a trigger
package at the current server. Each time that the trigger activates, the trigger package executes one or
more times.

For a description of the differences between basic and advanced triggers, see Triggers (Introduction to
Db2 for z/OS).

Invocation for CREATE TRIGGER (advanced)
This statement can be issued interactively. It is an executable statement that can be dynamically
prepared only if DYNAMICRULES RUN behavior is in effect. For more information, see “Authorization
IDs and dynamic SQL” on page 94.

Authorization for CREATE TRIGGER (advanced)
To create a new trigger in the implicit or explicit schema, the privilege set that is defined below must
include at least one of the following:

• The CREATEIN privilege on the schema
• System DBADM authority
• SYSCTRL authority
• SYSADM authority
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

To replace a trigger, the privilege set that is defined below must include at least one of the following:

• Ownership of the trigger
• DATAACCESS authority and DROPIN and CREATEIN privilege on the schema
• SYSADM authority

Additionally, to create or replace an existing trigger for a table, the privilege set that is defined below must
include at least one of the following:

• The TRIGGER privilege on the table on which the trigger is defined
• The ALTER privilege on the table on which the trigger is defined
• DBADM authority on the database that contains the table
• System DBADM authority
• SYSCTRL authority

1740 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_tablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_typesofdb2tablespaces.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_tablespaceimplentation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_triggers.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_triggers.html

• SYSADM authority
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

Additionally, to create or replace an existing trigger for a view, the privilege set that is defined below must
include at least one of the following:

• Ownership of the view on which the trigger is defined
• System DBADM authority
• SYSCTRL authority
• SYSADM authority

To add or replace a version of an existing trigger, the privilege set that is defined below must include at
least one of the following:

• Ownership of the trigger
• DATAACCESS authority and ALTERIN on the schema
• SYSADM authority

Additional privileges might be needed for the following:

• To execute the body of the trigger, the owner of the trigger must have SYSADM authority, or each of the
following:

– The SELECT privilege on the table on which the trigger is defined
– The SELECT privilege on any table or view that is referenced in the search-condition of the triggered-

action
– The privileges that are required to execute the statements in SQL-trigger-body

• If the SECURED option is specified, either SECADM authority or the CREATE_SECURE_OBJECT privilege
is needed.

Note: If the SEPARATE SECURITY subsystem parameter is set to NO, SYSADM authority has implicit
SECADM authority.

• If the WLM ENVIRONMENT FOR DEBUG MODE clause is specified, RACF or an external security product
is invoked to check the required authority for defining programs in the WLM environment. If the WLM
environment access is protected in RACF, the user that issued the CREATE statement must have the
required authority. For more information, see Managing authorizations for creation of stored procedures
in WLM environments (Managing Security).

• Additional authorization might be required on the SYSDUMMYx tables depending on the content of the
trigger definition. See SYSDUMMYx tables.

Privilege set: The privilege set is the privileges that are held by the SQL authorization ID of the process
unless the process is within a trusted context and the ROLE AS OBJECT OWNER clause is specified. In
that case, the privilege set is the privileges that are held by the role that is associated with the primary
authorization ID of the process and the owner is that role.

Syntax for CREATE TRIGGER (advanced)

CREATE

OR REPLACE

TRIGGER trigger-name

trigger-definition

WRAPPED obfuscated-statement-text

trigger-definition

Chapter 7. Statements 1741

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_manageaccess2wlmenv.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_manageaccess2wlmenv.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_sysdummy.html

VERSION V1

VERSION trigger-version-id

trigger-activation-time trigger-event ON

table-name

view-name

REFERENCING
1

OLD
ROW AS

correlation-name

NEW
ROW AS

correlation-name

OLD_TABLE
AS

table-identifier

NEW_TABLE
AS

table-identifier

trigger-granularity

option-list

triggered-action

Notes:
1 The same clause must not be specified more than one time.

trigger-activation-time

NO CASCADE
BEFORE

AFTER

INSTEAD OF

trigger-event

INSERT

DELETE

UPDATE

OF

,

column-name

trigger-granularity

FOR EACH STATEMENT

FOR EACH ROW

triggered-action

1742 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

WHEN ( search-condition)

SQL-trigger-body

SQL-trigger-body

SQL-control-statement

triggered-SQL-statement

triggered-SQL-statement:

CALL statement

DELETE statement (searched)
1

GET DIAGNOSTICS statement

INSERT statement
1

MERGE statement
1

REFRESH TABLE statement
1

SET assignment-statement statement

SIGNAL statement

TRUNCATE statement
1

UPDATE statement (searched)
1

VALUES INTO statement

Notes:
1 The statement is not allowed in an SQL-trigger-body for a BEFORE trigger.

option-list: (The options can be specified in any order, but each one can only be specified one time.)

Chapter 7. Statements 1743

DISALLOW DEBUG MODE

ALLOW DEBUG MODE

DISABLE DEBUG MODE

QUALIFIER schema-name

ASUTIME NO LIMIT

ASUTIME LIMIT integer

WLM ENVIRONMENT FOR DEBUG MODE name

CURRENT DATA NO

CURRENT DATA YES

CONCURRENT ACCESS RESOLUTION USE CURRENTLY COMMITTED

CONCURRENT ACCESS RESOLUTION WAIT FOR OUTCOME

DYNAMICRULES RUN

DYNAMICRULES BIND APPLICATION ENCODING SCHEME ASCII

APPLICATION ENCODING SCHEME EBCDIC

APPLICATION ENCODING SCHEME UNICODE

WITHOUT EXPLAIN

WITH EXPLAIN

WITHOUT IMMEDIATE WRITE

WITH IMMEDIATE WRITE

ISOLATION LEVEL CS

ISOLATION LEVEL RS

ISOLATION LEVEL RR

ISOLATION LEVEL UR

OPTHINT ''

OPTHINT string-constant

SQL PATH

,

schema-name

SYSTEM PATH

SESSION USER

USER

RELEASE AT COMMIT

RELEASE AT DEALLOCATE ROUNDING DEC_ROUND_CEILING

ROUNDING DEC_ROUND_DOWN

ROUNDING DEC_ROUND_FLOOR

ROUNDING DEC_ROUND_HALF_DOWN

ROUNDING DEC_ROUND_HALF_EVEN

ROUNDING DEC_ROUND_HALF_UP

ROUNDING DEC_ROUND_UP

DATE FORMAT ISO

DATE FORMAT EUR

DATE FORMAT USA

DATE FORMAT JIS

DATE FORMAT LOCAL

DECIMAL(15)

DECIMAL(31)

DECIMAL(15,  s)

DECIMAL(31,  s)

TIME FORMAT ISO

TIME FORMAT EUR

TIME FORMAT USA

TIME FORMAT JIS

TIME FORMAT LOCAL

FOR UPDATE CLAUSE REQUIRED

FOR UPDATE CLAUSE OPTIONAL

NOT SECURED

SECURED

BUSINESS_TIME SENSITIVE YES

BUSINESS_TIME SENSITIVE NO

SYSTEM_TIME SENSITIVE YES

SYSTEM_TIME SENSITIVE NO

ARCHIVE SENSITIVE YES

ARCHIVE SENSITIVE NO

APPLCOMPAT V12R1M500

APPLCOMPAT applcompat-level

CONCENTRATE STATEMENTS OFF

CONCENTRATE STATEMENTS WITH LITERALS

1744 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Description for CREATE TRIGGER (advanced)
OR REPLACE

Specifies to replace or change the definition for the trigger, if one exists at the current server. This
option is ignored if a definition for the trigger does not exist at the current server.

If the VERSION keyword is not specified, and the trigger does not yet exist, the trigger is created with
the initial version of the trigger (V1).

If the VERSION keyword is not specified, and the trigger exists:

• The existing trigger must not be defined with more than a single version or with a single version for
which the version id is not V1.

• Otherwise, the only version that currently exists is V1 (or the trigger is a basic trigger), the trigger is
recreated as follows:

– The existing definition is effectively dropped before the definition is replaced in the catalog.
– Any existing comment is discarded.
– The definition of the trigger (including the object owner and target table or view name) can

change.
– The timestamp associated with the trigger definition is updated.
– The create time of the trigger is changed and the activation order of the trigger is not maintained.

If the VERSION keyword is specified and the specified version of the trigger exists, the version is
effectively replaced in the catalog as if the ALTER TRIGGER statement had been issued with the
REPLACE VERSION clause. The trigger owner is not changed. The create time of the trigger is not
changed, and the statement does not affect the order of trigger execution.

When you replace a version of a trigger, the following trigger attributes must be the same as the
corresponding attributes for the currently active version of the trigger: trigger-activation-time, trigger-
event, table or view name, and trigger-granularity. The content of the REFERENCING clause can differ
from the other versions of the trigger. For options that are not explicitly specified, the system default
values for those options are used, even if those options were explicitly specified for the version of the
trigger that is being replaced. This is not the case for versions of the trigger that specified DISABLE
DEBUG MODE. If DISABLE DEBUG MODE is specified for a version of a trigger, the option cannot be
changed using the REPLACE clause.

If the VERSION keyword is specified and the specified version of the trigger does not exist, the version
is defined as if the ALTER TRIGGER statement had been issued with an ADD VERSION clause. The
trigger owner is not changed. The create time of the trigger is not changed, and the statement does not
affect the order of trigger execution.

When you add a new version of a trigger, the following trigger attributes must be the same as the
corresponding attributes for the currently active version of the trigger: trigger-activation-time, trigger-
event, table or view name, and trigger-granularity. The content of the REFERENCING clause can differ
from the other versions of the trigger. For options that are not explicitly specified, the system default
values for those options are used.

trigger-name
Names the trigger. The name, including the implicit or explicit schema name, must not identify a
trigger that exists at the current server. However, specifying the name of an existing trigger is allowed
in the following situations:

• When the OR REPLACE clause is specified to replace an existing trigger
• When the VERSION clause is specified to add or replace a version of an existing trigger

The name is also used to create the trigger package; therefore, if OR REPLACE is not specified,
the name must also not identify a package that is already described in the catalog. The schema
name becomes the collection-id of the trigger package. Although trigger-name can be specified as an
ordinary or delimited identifier, the name should conform to the rules for an ordinary identifier. Refer
to The implicitly created trigger package for additional information.

Chapter 7. Statements 1745

The schema name can be 'SYSTOOLS' if the privilege set includes the SYSCTRL privilege. Otherwise,
the schema name must not begin with 'SYS' unless the schema name is 'SYSADM', 'SYSIBMADM', or
'SYSPROC'.

VERSION trigger-version-id
Specifies the version identifier for the version of the trigger that is to be defined or replaced. See
“Naming conventions in SQL” on page 79 for information about specifying trigger-version-id. You can
use an ALTER TRIGGER statement with the ADD VERSION clause or the CREATE TRIGGER statement
with the OR REPLACE clause to create additional versions of the trigger. V1 is the default version
identifier. See Versions of a trigger for more information about the use of versions for triggers.

trigger-activation-time
NO CASCADE

NO CASCADE is allowed for compatibility with prior releases and other products.
BEFORE

Specifies that the trigger is a before trigger. Db2 executes the triggered action before it applies
any changes caused by an insert, delete, or update operation on the subject table. It also specifies
that the triggered action does not activate other triggers because the triggered action of a before
trigger cannot contain any updates, REFRESH TABLE, or TRUNCATE SQL statements.

BEFORE must not be specified when view-name is also specified. FOR EACH ROW must be
specified for a BEFORE trigger.

AFTER
Specifies that the trigger is an after trigger. Db2 executes the triggered action after it applies any
changes caused by an insert, delete, or update operation on the subject table. AFTER must not be
specified if view-name is also specified.

INSTEAD OF
Specifies that the trigger is an instead of trigger. The associated triggered action replaces the
action against the subject view. Only one INSTEAD OF trigger is allowed for each type of operation
on a given subject view. Db2 executes the triggered-action instead of the insert, update, or delete
operation on the subject view.

INSTEAD OF must not be specified when table-name is also specified. The WHEN clause can not
be specified for an INSTEAD OF trigger. FOR EACH ROW must be specified for an INSTEAD OF
trigger.

ON table-name
Identifies the subject table of the BEFORE or AFTER trigger definition. The name must identify a
base table that exists at the current server. It must not identify a materialized query table, a clone
table, a temporary table, an auxiliary table, an alias, a synonym, a real-time statistics table, an
accelerator-only table, a catalog table, or a directory table.

ON view-name
Identifies the subject view of the INSTEAD OF trigger definition. The name must identify a view that
exists at the current server.

view-name must not specify a view where any of the following conditions are true:

• The view is defined with the WITH CASCADED CHECK option (a symmetric view)
• The view on which a symmetric view has been defined
• The view references data that is encoded with different encoding schemes or CCSID values
• The view has a column that is a ROWID column
• The view has a column that is based on an underlying column of any of the following types:

– A LOB, XML, or ROWID column
– An identity column
– A security label column
– A row change timestamp column

1746 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

– A row-begin column
– A row-end column
– A transaction start ID column

• The view has columns that have field procedures
• All of the underlying tables of the view are catalog tables
• All of the underlying tables of the view are created global temporary tables
• All of the underlying tables of the view are clone tables
• The view has other views that are dependent on it

REFERENCING
Specifies the correlation names for the transition variables and the table names for the transition
tables. For the rows in the subject table that are modified by the triggering SQL operation (insert,
delete, or update), a correlation name identifies the columns of a specific row. table-identifiers identify
the complete set of affected rows. Transition variables with XML types cannot be referenced inside of
a trigger. If the column of a transition table is referenced, the data type of the column cannot be XML.

Each row that is affected by the triggering SQL operation is available to the triggered action by
qualifying column names with correlation-names that are specified as follows:

OLD ROW AS correlation-name
Specifies the correlation name that identifies the transition variables containing the values in the
row prior to the triggering SQL operation.

NEW ROW AS correlation-name
Specifies the correlation name that identifies the transition variables containing the values in the
row as modified by the triggering SQL operation and by any assignment statement in a before
trigger that has already been executed.

If OLD and NEW are both specified, a reference to a transition variable must be qualified with the
associated correlation name.

The complete set of rows that are affected by the triggering operation is available as a transition table
to the triggered action. Specify a table-identifier to refer to the transition table as follows:

OLD_TABLE AS table-identifier
Specifies the name of a temporary table that identifies the values in the complete set of rows that
are modified rows by the triggering SQL operation prior to any actual changes.

NEW_TABLE AS table-identifier
Specifies the name of a temporary table that identifies the values in the complete set of rows as
modified by the triggering SQL operation and by any assignment statement in a before trigger that
has already been executed.

Only one OLD and one NEW correlation-name can be specified for a trigger. Only one OLD_TABLE
and one NEW_TABLE table-identifier can be specified for a trigger. All of the correlation-names and
table-identifiers must be unique from one another.

Table 221 on page 1748 summarizes the allowable combinations of transition variables and
transition tables that you can specify for the various trigger types. The OLD correlation-name and
the OLD_TABLE table-identifier are valid only if the triggering event is either a delete operation or
an update operation. For a delete operation, the OLD correlation-name captures the values of the
columns in the deleted row, and the OLD_TABLE table-identifier captures the values in the set of
deleted rows. For an update operation, the OLD correlation-name captures the values of the columns
of a row before the update operation, and the OLD_TABLE table-identifier captures the values in the
set of rows before the update operation.

The NEW correlation-name and the NEW_TABLE table-identifier are valid only if the triggering event
is either an insert operation or an update operation. For both operations, the NEW correlation-name
captures the values of the columns in the inserted or updated row and the NEW_TABLE table-identifier
captures the values in the set of inserted or updated rows. For BEFORE triggers, the values of the

Chapter 7. Statements 1747

updated rows include the changes from any assignment statements in the triggered action of BEFORE
triggers.

Table 221. Allowable combinations of attributes in a trigger definition

Granularity
Activation
time

Triggering SQL
operation

Transition
variables
allowed“1” on
page 1748

Transition tables
allowed“1” on
page 1748

FOR EACH ROW

BEFORE

DELETE OLD None

INSERT NEW None

UPDATE OLD, NEW None

AFTER

DELETE OLD OLD_TABLE

INSERT NEW NEW_TABLE

UPDATE OLD, NEW OLD_TABLE,
NEW_TABLE

INSTEAD OF

DELETE OLD OLD_TABLE

INSERT NEW NEW_TABLE

UPDATE OLD, NEW OLD_TABLE,
NEW_TABLE

FOR EACH STATEMENT AFTER

DELETE None OLD_TABLE

INSERT None NEW_TABLE

UPDATE None OLD_TABLE,
NEW_TABLE

Note:

1. If a transition table or variable is referenced where it is not allowed, an error is returned.

A transition variable that has a character data type inherits the subtype and CCSID of the column
of the subject table. During the execution of the triggered action, the transition variables are treated
like host variables. Therefore, character conversion might occur. However, unlike a host variable, a
transition variable can have the bit data attribute, and character conversion never occurs for bit data.
A transition variable is considered to be bit data if the column of the table to which it corresponds is
bit data.

You cannot modify a transition table; transition tables are read-only. Although a transition table does
not inherit any edit or validation procedures from the subject table, it does inherit the encoding
scheme and field procedures of the subject table.

The scope of each correlation-name and each table-identifier is the entire trigger definition.

trigger-granularity
FOR EACH ROW or FOR EACH STATEMENT

Specifies the conditions for which Db2 executes the triggered action.
FOR EACH ROW

Specifies that Db2 executes the triggered action for each row of the subject table that the
triggering SQL operation modifies. If the triggering SQL operation does not modify any rows, the
triggered action is not executed..

1748 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

FOR EACH STATEMENT
Specifies that Db2 executes the triggered action only one time for the triggering operation. Even if
the triggering operation does not modify or delete any rows, the triggered action is executed one
time.

FOR EACH STATEMENT must not be specified for a BEFORE or INSTEAD OF trigger.

FOR EACH ROW or FOR EACH STATEMENT
Specifies the conditions for which Db2 executes the triggered action.
FOR EACH ROW

Specifies that Db2 executes the triggered action for each row of the subject table that the
triggering SQL operation modifies. If the triggering SQL operation does not modify any rows, the
triggered action is not executed.

FOR EACH STATEMENT
Specifies that Db2 executes the triggered action only one time for the triggering operation. Even if
the triggering operation does not modify or delete any rows, the triggered action is executed one
time.

FOR EACH STATEMENT must not be specified for a BEFORE or INSTEAD OF trigger.

ALLOW DEBUG MODE, DISALLOW DEBUG MODE, or DISABLE DEBUG MODE
Specifies whether this version of the trigger can be run in debugging mode. The default is determined
using the value of the CURRENT DEBUG MODE special register.
ALLOW DEBUG MODE

Specifies that this version of the trigger can be run in debugging mode. When ALLOW
DEBUG MODE is in effect, a WLM environment must be available. If you do not specify WLM
ENVIRONMENT FOR DEBUG MODE, Db2 uses the default WLM-established stored procedure
address space specified at installation time.

DISALLOW DEBUG MODE
Specifies that this version of the trigger cannot be run in debugging mode. You can use an ALTER
statement to change this option to ALLOW DEBUG MODE for the initial version of the trigger. When
DISALLOW DEBUG MODE is in effect, a WLM environment must be available. If you do not specify
WLM ENVIRONMENT FOR DEBUG MODE, Db2 uses the default WLM-established stored procedure
address space specified at installation time.

DISABLE DEBUG MODE
Specifies that this version of the trigger can never be run in debugging mode.

This version of the trigger cannot be changed to specify ALLOW DEBUG MODE or DISALLOW
DEBUG MODE after this version of the trigger has been created or altered to use DISABLE DEBUG
MODE. To change this option, drop the trigger, and create it again using the option that you want.
An alternative to dropping and recreating the trigger is to create a version of the trigger that uses
the option that you want, and making that version the active version.

When DISABLE DEBUG MODE is in effect, WLM ENVIRONMENT FOR DEBUG MODE is ignored.

QUALIFIER schema-name
Specifies the implicit qualifier that is used for unqualified object names that are referenced in the
trigger body. For information about how the default for this option is determined, see “Unqualified
alias, index, JAR file, mask, permission, sequence, table, trigger, and view names” on page 86.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single invocation of this
version of the trigger can run. The value is unrelated to the ASUTIME column of the resource limit
specification table.

When you are debugging a trigger, setting a limit can be helpful in case the trigger gets caught in a
loop. For information on service units, see z/OS MVS Initialization and Tuning Guide.

NO LIMIT
Specifies that there is no limit on the service units.

Chapter 7. Statements 1749

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.ieae100/abstract.htm

NO LIMIT is the default.

LIMIT integer
The limit on the number of CPU service units is a positive integer in the range 1–2147483647.
If the trigger uses more service units than the specified value, Db2 cancels the trigger. The CPU
cycles that are consumed by parallel tasks in a trigger do not contribute towards the specified
ASUTIME LIMIT.

WLM ENVIRONMENT FOR DEBUG MODE name
Specifies the WLM (workload manager) application environment that is used by Db2 when debugging
the trigger. The name of the WLM environment is an SQL identifier.

If you do not specify WLM ENVIRONMENT FOR DEBUG MODE, Db2 uses the default WLM-established
stored procedure address space specified at installation time.

You must have the appropriate authority for the WLM application environment.

The WLM ENVIRONMENT FOR DEBUG MODE value is ignored when DISABLE DEBUG MODE is in
effect.

CURRENT DATA YES or CURRENT DATA NO
Specifies whether to require data currency for read-only and ambiguous cursors when the isolation
level of cursor stability is in effect. CURRENT DATA also determines whether block fetch can be used
for distributed, ambiguous cursors.
CURRENT DATA YES

Specifies that data currency is required for read-only and ambiguous cursors. Db2 acquires page
or row locks to ensure data currency. Block fetch is ignored for distributed, ambiguous cursors.

CURRENT DATA NO
Specifies that data currency is not required for read-only and ambiguous cursors. Block fetch is
allowed for distributed, ambiguous cursors. Use of CURRENT DATA NO is not recommended if the
trigger attempts to dynamically prepare and execute a DELETE WHERE CURRENT OF statement
against an ambiguous cursor after that cursor is opened. You receive an error if your trigger
attempts to use a DELETE WHERE CURRENT OF statement for any of the following cursors:

• A cursor that is using block fetch
• A cursor that is using query parallelism
• A cursor that is positioned on a row that is modified by this or another application process

CURRENT DATA NO is the default.

CONCURRENT ACCESS RESOLUTION
Specifies the whether processing uses only committed data or whether it will wait for commit or
rollback of data that is in the process of being updated.
WAIT FOR OUTCOME

Specifies that processing will wait for the commit or rollback of data that is in the process of being
updated.

USE CURRENTLY COMMITTED
Specifies that processing use the currently committed version of the data when data that is in the
process of being updated is encountered. USE CURRENTLY COMMITTED is applicable on scans
that access tables that are defined in universal table spaces with row or page level lock size.

When there is lock contention between a read transaction and an insert transaction, USE
CURRENTLY COMMITTED is applicable to scans with isolation level CS or RS. Applicable scans
include intent read scans for read-only and ambiguous queries and for updatable cursors. USE
CURRENTLY COMMITTED is also applicable to scans initiated from WHERE predicates of UPDATE
or DELETE statements and the subselect of INSERT statements.

When there is lock contention is between a read transaction and a delete transaction, USE
CURRENTLY COMMITTED is applicable to scans with isolation level CS and when CURRENT DATA
NO is specified.

1750 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

DYNAMICRULES
Specifies the values that apply, at run time, for the following dynamic SQL attributes:

• The authorization ID that is used to check authorization
• The qualifier that is used for unqualified objects
• The source for application programming options that Db2 uses to parse and semantically verify

dynamic SQL statements

In the context of a trigger, DYNAMICRULES also specifies whether dynamic SQL statements can
include ALTER, CREATE, and DROP statements.

In addition to the value of the DYNAMICRULES clause, the run time environment of a trigger controls
how dynamic SQL statements behave at run time. The combination of the DYNAMICRULES value and
the run time environment determines the value for the dynamic SQL attributes. That set of attribute
values is called the dynamic SQL statement behavior. The following values can be specified:
RUN

Specifies that dynamic SQL statements are to be processed using run behavior.

RUN is the default.

BIND
Specifies that dynamic SQL statements are to be processed using bind behavior.

See “Authorization IDs and dynamic SQL” on page 94 for information on the effects of these options.

APPLICATION ENCODING SCHEME
Specifies the default encoding scheme for SQL variables in static SQL statements in the trigger body.
The value is used for defining an SQL variable in a compound statement if the CCSID clause is not
specified as part of the data type.
ASCII

Specifies that the data is encoded using the ASCII CCSIDs of the server.
EBCDIC

Specifies that the data is encoded using the EBCDIC CCSIDs of the server.
UNICODE

Specifies that the data is encoded using the Unicode CCSIDs of the server.

See ENCODING bind option (Db2 Commands) for information about how the default for this option is
determined.

WITH EXPLAIN or WITHOUT EXPLAIN
Specifies whether information will be provided about how SQL statements in the trigger will execute.
WITHOUT EXPLAIN

Specifies that information will not be provided about how SQL statements in the trigger will
execute.

You can get EXPLAIN output for a statement that is embedded in a trigger that is specified using
WITHOUT EXPLAIN by embedding the SQL statement EXPLAIN in the trigger body. Otherwise, the
value of the EXPLAIN option applies to all explainable SQL statements in the trigger body, and to
the fullselect portion of any DECLARE CURSOR statements.

WITHOUT EXPLAIN is the default.

WITH EXPLAIN
Specifies that information will be provided about how SQL statements in the trigger will execute.
Information is inserted into the table owner. PLAN_TABLE. owner is the authorization ID of the
owner of the trigger. Alternatively, the authorization ID of the owner of the trigger can have an
alias as owner.PLAN_TABLE that points to the base table, PLAN_TABLE. owner must also have the
appropriate SELECT and INSERT privileges on that table. PLAN_TABLE must have a base table
and can have multiple aliases with the same table name, PLAN_TABLE, but have different schema
qualifiers. It cannot be a view or a synonym and should exist before the CREATE statement is

Chapter 7. Statements 1751

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptencoding.html

processed. In all inserts to owner.PLAN_TABLE, the value of QUERYNO is the statement number
that is assigned by Db2.

The WITH EXPLAIN option also populates two optional tables, if they exist:
DSN_STATEMNT_TABLE and DSN_FUNCTION_TABLE. DSN_STATEMNT_TABLE contains an
estimate of the processing cost for an SQL statement. See Estimating the cost of SQL statements
(Db2 Performance) for more information. DSN_FUNCTION_TABLE contains information about
function resolution. See Checking how Db2 resolves functions by using DSN_FUNCTION_TABLE
(Db2 Application programming and SQL) for more information.

For more information about the EXPLAIN statement, including a description of the tables that are
populated by the WITH EXPLAIN option, see “EXPLAIN statement” on page 1917.

WITH IMMEDIATE WRITE or WITHOUT IMMEDIATE WRITE
Specifies whether immediate writes are to be done for updates that are made to group buffer pool
dependent page sets or partitions. This option is only applicable for data sharing environments. The
IMMEDWRITE subsystem parameter has no affect of this option. IMMEDWRITE bind option (Db2
Commands) shows the implied hierarchy of the IMMEDWRITE bind option (which is similar to this
trigger option) as it affects run time.
WITHOUT IMMEDIATE WRITE

Specifies that normal write activity is performed. Updated pages that are group buffer pool
dependent are written at or before phase one of commit or at the end of abort for transactions
that have been rolled back.

WITHOUT IMMEDIATE WRITE is the default.

WITH IMMEDIATE WRITE
Specifies that updated pages that are group buffer pool dependent are immediately written as
soon as the buffer update completes. Updated pages are written immediately even if the buffer is
updated during forward progress or during the rollback of a transaction. WITH IMMEDIATE WRITE
might impact performance.

ISOLATION LEVEL RR, RS, CS, or UR
Specifies how far to isolate the trigger from the effects of other running applications. For information
about isolation levels, see Choosing an ISOLATION option (Db2 Performance).
RR

Specifies repeatable read.
RS

Specifies read stability.
CS

Specifies cursor stability. CS is the default.
UR

Specifies uncommitted read.
OPTHINT string-constant

Specifies whether query optimization hints are used for static SQL statements that are contained
within the body of the trigger.

string-constant is a character string of up to 128 bytes in length, which is used by the Db2 subsystem
when searching the PLAN_TABLE for rows to use as input. The default value is an empty string, which
indicates that the Db2 subsystem does not use optimization hints for static SQL statements.

Optimization hints are only used if optimization hints are enabled for your system. See Preparing to
influence access paths (Db2 Performance) for information about enabling optimization hints.

SQL PATH
Specifies the SQL path that Db2 uses to resolve unqualified user-defined types, functions, and
procedure names in the body of the trigger. The default value is "SYSIBM", "SYSFUN", "SYSPROC",
"SYSIBMADM", and the value of the QUALIFIER option.

1752 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_estimatecostsqlstatement.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_estimatecostsqlstatement.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_checkfunctionresolution.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_checkfunctionresolution.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptimmedwrite.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptimmedwrite.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_chooseisolationoption.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_enablehints.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_enablehints.html

Schemas "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM" do not need to be explicitly specified. If
any of these schemas is not explicitly specified, it is implicitly assumed at the beginning the SQL path,
in the order listed.

Db2 calculates the length by taking each schema-name specified and removing any trailing blanks
from it, adding two delimiters around it, and adding one comma after each schema name, except for
the last one. The length of the resulting string cannot exceed the length of the CURRENT SCHEMA
special register. If you do not specify the "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM", schemas,
they are not included in the length of the SQL path. If the total length of the SQL path exceeds the
length of the CURRENT PATH special register, Db2 returns an error.

For more information, see:

“SQL path” on page 85
“CURRENT SCHEMA special register” on page 206
“CURRENT PATH special register” on page 200

schema-name
Identifies a schema. Db2 does not verify that the schema exists when the CREATE statement
is processed. The same schema name should not appear more than once in the list of schema
names.

SYSPUBLIC must not be specified for the SQL path.

SYSTEM PATH
Specifies the schema names "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM".

SESSION_USER or USER
Specifies the value of the SESSION_USER or USER special register, which represents a maximum
8-byte (in EBCDIC) schema-name. At the time the CREATE statement is processed, this length is
included in the total length of the list of schema names that is specified for the SQL PATH option.

If you specify SESSION_USER (or USER) in a list of schema names, do not use delimiters around
the SESSION_USER (or USER) keyword.

RELEASE AT
Specifies when to release resources that the trigger uses: either at each commit point or when the
trigger terminates.
COMMIT

Specifies that resources will be released at each commit point.

COMMIT is the default.

DEALLOCATE
Specifies that resources will be released only when the thread terminates. DEALLOCATE has no
effect on dynamic SQL statements, which always use RELEASE AT COMMIT, with this exception:
When you use the RELEASE AT DEALLOCATE clause and the WITH KEEP DYNAMIC clause, and the
subsystem is installed with a value of YES for the field CACHE DYNAMIC SQL on installation panel
DSNTIP8, the RELEASE AT DEALLOCATE option is honored for dynamic SELECT and data change
statements.

Locks that are acquired for dynamic statements are held unit one of the following events occurs:

• The application process ends.
• The application process issues a PREPARE statement with the same statement identifier. (Locks

are released at the next commit point).
• The statement is removed from the dynamic statement cache because the statement has not

been used. (Locks are released at the next commit point.)
• An object that the statement is dependent on is dropped or altered, or a privilege that the

statement needs is revoked. (Locks are released at the next commit point.)

RELEASE AT DEALLOCATE can increase the package or plan size because additional items become
resident in the package or plan.

Chapter 7. Statements 1753

For more information, see Choosing a RELEASE option (Db2 Performance).

ROUNDING
Specifies the rounding mode for manipulation of DECFLOAT data. The default value is taken from
the DEFAULT DECIMAL FLOATING POINT ROUNDING MODE in the application programming defaults
module.
DEC_ROUND_CEILING

Specifies numbers are rounded towards positive infinity.
DEC_ROUND_DOWN

Specifies numbers are rounded towards 0 (truncation).
DEC_ROUND_FLOOR

Specifies numbers are rounded towards negative infinity.
DEC_ROUND_HALF_DOWN

Specifies numbers are rounded to nearest; if equidistant, round down.
DEC_ROUND_HALF_EVEN

Specifies numbers are rounded to nearest; if equidistant, round so that the final digit is even.
DEC_ROUND_HALF_UP

Specifies numbers are rounded to nearest; if equidistant, round up.
DEC_ROUND_UP

Specifies numbers are rounded away from 0.
DATE FORMAT ISO, EUR, USA, JIS, or LOCAL

Specifies the date format for result values that are string representations of date or time values. See
“String representations of datetime values” on page 120 for more information.

The default format is specified in the DATE FORMAT field of installation panel DSNTIP4 of the system
where the routine is defined. You cannot use the LOCAL option unless you have a date exit routine.

DECIMAL(15), DECIMAL(31), DECIMAL(15,s), or DECIMAL(31,s)
Specifies the maximum precision that is to be used for decimal arithmetic operations. See “Arithmetic
with two decimal operands” on page 251 for more information. The default format is specified in the
DECIMAL ARITHMETIC field of installation panel DSNTIPF of the system where the routine is defined.
If the form pp.s is specified, s must be a number in the range 1–9. s represents the minimum scale
that is to be used for division.

TIME FORMAT ISO, EUR, USA, JIS, or LOCAL
Specifies the time format for result values that are string representations of date or time values. See
“String representations of datetime values” on page 120 for more information.

The default format is specified in the TIME FORMAT field of installation panel DSNTIP4 of the system
where the routine is defined. You cannot use the LOCAL option unless you have a date exit routine.

FOR UPDATE CLAUSE OPTIONAL or FOR UPDATE CLAUSE REQUIRED
Specifies whether the FOR UPDATE clause is required for a DECLARE CURSOR statement if the cursor
is to be used to perform positioned updates.
FOR UPDATE CLAUSE REQUIRED

Specifies that a FOR UPDATE clause must be specified as part of the cursor definition if the cursor
will be used to make positioned updates.

FOR UPDATE CLAUSE REQUIRED is the default.

FOR UPDATE CLAUSE OPTIONAL
Specifies that the FOR UPDATE clause does not need to be specified in order for a cursor to be
used for positioned updates. The trigger body can include positioned UPDATE statements that
update columns that the user is authorized to update.

The FOR UPDATE clause with no column list applies to static or dynamic SQL statements. Even if you
do not use this clause, you can specify FOR UPDATE OF with a column list to restrict updates to only
the columns that are identified in the FOR UPDATE clause and to specify the acquisition of update
locks.

1754 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_choosereleaseoption.html

NOT SECURED or SECURED
Specifies whether the trigger is considered secure. NOT SECURED is the default.
SECURED

Specifies the trigger is considered secure.

SECURED must be specified for a trigger if its subject table is using row access control or column
access control. SECURED must also be specified for a trigger that is created for a view and one or
more of the underlying tables in the view definition is using row access control or column access
control.

NOT SECURED
Specifies the trigger is considered not secure.

NOT SECURED must not be specified for a trigger whose subject table is using row access control
or column access control. NOT SECURED must also not be specified for a trigger that is created for
a view and one or more of the underlying tables in the view definition is using row access control
or column access control.

BUSINESS_TIME SENSITIVE
Determines whether references to application-period temporal tables in both static and dynamic SQL
statements are affected by the value of the CURRENT TEMPORAL BUSINESS_TIME special register.
YES

References to application-period temporal tables are affected by the value of the CURRENT
TEMPORAL BUSINESS_TIME special register. YES is the default value.

NO
References to application-period temporal tables are not affected by the value of the CURRENT
TEMPORAL BUSINESS_TIME special register.

For more information, see “CURRENT TEMPORAL BUSINESS_TIME special register” on page 208.

SYSTEM_TIME SENSITIVE
Determines whether references to system-period temporal tables in both static and dynamic SQL
statements are affected by the value of the CURRENT TEMPORAL SYSTEM_TIME special register.
YES

References to system-period temporal tables are affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register. YES is the default value.

NO
References to system-period temporal tables are not affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

For more information, see “CURRENT TEMPORAL SYSTEM_TIME special register” on page 210.

ARCHIVE SENSITIVE
Determines whether references to archive-enabled tables in SQL statements are affected by the value
of the SYSIBMADM.GET_ARCHIVE built-in global variable.
YES

References to archive-enabled tables are affected by the value of the SYSIBMADM.GET_ARCHIVE
built-in global variable. YES is the default value.

NO
References to archive-enabled tables are not affected by the value of the
SYSIBMADM.GET_ARCHIVE built-in global variable.

For related information, see “GET_ARCHIVE” on page 330.

APPLCOMPAT applcompat-level
Specifies the application compatibility level behavior for static SQL statements in the trigger body. The
default value is V12R1M500. The following applcompat-level values can be specified:

Chapter 7. Statements 1755

VvvRrMmmm

Compatibility with the behavior of the identified Db2 function level. For example, V12R1M510
specifies compatibility with the highest available Db2 12 function level. The equivalent function
level or higher must be activated.

For the new capabilities that become available in each application compatibility level, see:

• SQL changes in Db2 13 application compatibility levels
• SQL changes in Db2 12 application compatibility levels

Tip: Extra program preparation steps might be required to increase the application compatibility
level for applications that use data server clients or drivers to access Db2 for z/OS. For more
information, see Setting application compatibility levels for data server clients and drivers (Db2
Application programming and SQL).

V12R1
Compatibility with the behavior of Db2 12 function level 500. This value has the same result as
specifying V12R1M500.

Values such as V11R1 and V10R1 for compatibility with previous Db2 releases are not supported for
triggers.

For more information, see APPLCOMPAT bind option (Db2 Commands) and APPL COMPAT LEVEL field
(APPLCOMPAT subsystem parameter) (Db2 Installation and Migration)

CONCENTRATE STATEMENTS OFF or CONCENTRATE STATEMENTS WITH LITERALS
Specifies whether a dynamic SQL statement that specifies literal constants will be cached as a
separate unique statement entry in the dynamic statement cache instead of sharing an existing
statement in the cache. Dynamic SQL statements are eligible to share an existing statement in the
cache if the new statement meets all of the conditions for sharing a cached version of the same
dynamic statement except that the new statement specifies one or more literal constants that are
different than the cached statement.
CONCENTRATE STATEMENTS OFF

Specifies that the dynamic SQL statement that specifies literal constants will be cached as a
unique statement entry if it specifies one or more constants that are different than the cached
version of the same dynamic statement. CONCENTRATE STATEMENTS OFF is the default dynamic
statement caching behavior.

CONCENTRATE STATEMENTS WITH LITERALS
Specifies that the dynamic SQL statement that specifies literal constants will share a cached
version of the same dynamic statement that is also prepared using the CONCENTRATE
STATEMENTS WITH LITERALS option if the new dynamic statement meets all of the conditions
for sharing the cached statement and the constants that are specified can be reused in place of
the constants in the cached statement.

trigger-event
Specifies that the triggered action that is associated with the trigger is to be executed when the trigger
event is applied to the subject table or view.
INSERT

Specifies that the trigger is an insert trigger. Db2 executes the triggered action whenever there is
an insert operation on the subject table. However, if the insert trigger is defined on any explain
table, and the insert operation was caused by Db2 adding a row to the table, the triggered action is
not executed.

DELETE
Specifies that the trigger is a delete trigger. Db2 executes the triggered action whenever there is a
delete operation on the subject table.

1756 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/wnew/src/tpc/db2z_13_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptapplcompat.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_applcompat.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_applcompat.html

UPDATE
Specifies that the trigger is an update trigger. Db2 executes the triggered action whenever there is
an update operation on the subject table.

If you do not specify a list of column names, an update operation on any column of the subject
table, including columns that are subsequently added with the ALTER TABLE statement, activates
the triggered action.

OF column-name,...
Each column-name that you specify must be a column of the subject table and must appear
in the list only once. An update operation on any of the listed columns activates the triggered
action.

UPDATE OF column-name cannot be specified for an INSTEAD OF trigger.

triggered-action
Specifies the action to be performed when the trigger is activated. The triggered-action is composed
of one or more SQL statements and an optional condition that controls whether the statements are
executed.
WHEN (search-condition)

Specifies a condition that evaluates to true, false, or unknown. The triggered SQL statements
are executed only if the search-condition evaluates to true. If the WHEN clause is omitted, the
associated SQL statements are always executed.

The WHEN clause must not be specified for an INSTEAD OF trigger.

SQL-trigger-body
Specifies a single SQL-control-statement, including a compound statement, or triggered-SQL-
statement that is to be executed for the triggered-action. See Chapter 8, “SQL procedural language
(SQL PL),” on page 2207 for more information about defining SQL triggers.
SQL-control-statement

Specifies an SQL control statement, which can include nested control statements and other
SQL statements specified in the syntax diagram for “SQL-procedure-statement (SQL PL)” on
page 2212. The statements that can be specified for SQL-procedure-statement are subject to
the syntax notes relating to triggers.

triggered-SQL-statement

Specifies an SQL statement that is the only statement in a trigger body.

.

Only certain SQL statements can be specified in the SQL-trigger-body.

The trigger body must not contain a statement that is not supported.

• A statement in the trigger body must not refer to host variables, undefined transition variables,
or declared temporary tables.

• A statement in the trigger body must only refer to a table or view that is at the current server.
• A statement in the trigger body must only invoke a stored procedure or user-defined function

that is at the current server. An invoked routine can, however, access a server other than the
current server.

• A statement in the trigger body must not modify a column that is part of a BUSINESS_TIME
period.

• The trigger body must not, directly or indirectly, issue a CALL statement for a procedure that
contains one of the following statements:

– COMMIT
– CONNECT
– RELEASE connection

Chapter 7. Statements 1757

– RELEASE SAVEPOINT
– ROLLBACK (without TO SAVEPOINT)
– SAVEPOINT
– SET CONNECTION

• The trigger body must not, directly or indirectly, issue a CALL statement for a procedure that is
defined with the COMMIT ON RETURN option.

• If the trigger is a before trigger:

– The trigger body must not contain a DELETE, INSERT, MERGE, REFRESH TABLE, TRUNCATE,
UPDATE statement, or SELECT FROM data-change-statement.

– The trigger body must not, directly or indirectly, invoke a routine containing one of the
following statements:

- ALTER
- COMMENT
- CREATE
- DECLARE GLOBAL TEMPORARY TABLE
- DELETE
- DROP
- EXCHANGE
- GRANT
- INSERT
- LABEL
- LOCK TABLE
- MERGE
- REFRESH TABLE
- RENAME
- REVOKE
- TRUNCATE
- UPDATE

A CREATE TRIGGER statement (or ALTER TRIGGER statement) cannot contain a hexadecimal
graphic string (GX) constant.

The triggered action can refer to the values in the set of affected rows. This action is supported
through the use of transition variables and transition tables.

All tables, views, aliases, sequences, roles, user-defined data types, user-defined functions, and
procedures referenced in the triggered-action must exist at the current server when the trigger is
created, or the version of the trigger is defined. The table or view that an alias refers to must also
exist when the trigger is created, or the version of the trigger is defined.

WRAPPED obfuscated-statement-text
Specifies the encoded definition of the trigger. A CREATE TRIGGER statement can be encoded using
the WRAP scalar function.

WRAPPED must not be specified on a static CREATE statement.

Notes for CREATE TRIGGER (advanced)
Owner privileges:

When an INSTEAD OF trigger is defined, the associated privilege (INSERT, UPDATE, or DELETE on the
view) is given to the owner of the view. The owner is granted the privilege with the ability to grant that

1758 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

privilege to others. For more information about ownership of an object, see “Authorization, privileges,
permissions, masks, and object ownership” on page 90.

Execution authorization:
The user executing the triggering SQL operation does not need authority to execute a SQL-trigger-
body. An SQL-trigger-body executes using the authority of the owner of the trigger.

Activating a trigger:
Only insert, delete, or update operations can activate a trigger. The activation of a trigger might
cause trigger cascading.Trigger cascading is the result of the activation of one trigger that executes
SQL statements that cause the activation of other triggers or even the same trigger again. The
triggered actions might also cause updates as a result of the original modification, which can result
in the activation of additional triggers. With trigger cascading, a significant chain of triggers might be
activated, causing a significant change to the database as a result of a single insert, delete, or update
operation. The number of levels of nested trigger cascading is limited to 16.

Loading a table with the LOAD utility does not activate any triggers that are defined for the table if the
SHRLEVEL NONE option is specified or accepted as the default. If the LOAD statement includes the
SHRLEVEL CHANGE option, triggers are activated when loading a table with the LOAD utility.

Adding triggers to enforce constraints:
Adding a trigger on a table that already has rows in it will not cause the triggered-action to be
executed. Thus, if the trigger is designed to enforce constraints on the data in the table, the data in the
existing rows might not satisfy those constraints.

Multiple triggers:
Multiple triggers that have the same activation time and triggering event can be defined on a table.
The triggers are activated in the order in which they were created. For example, the trigger that was
created first is executed first; the trigger that was created second is executed second. If the OR
REPLACE option is used to replace an existing trigger, the create time is changed and therefore might
affect the order of trigger execution.

Transition variables and transition tables:
The triggered-action can refer to the values in the set of affected rows. This action is supported
through the use of transition variables and transition tables.

A transition variable has the same name and data type as the corresponding column of the table
that the trigger is defined on, and is nullable. A transition variable contains the value of a column in
an affected row. A transition variable is qualified by a correlation name that identifies whether the
reference is to the old value (before the update) or the new value (after the update). A transition
variable can be referenced in the search condition, or in an SQL statement in the trigger body,
wherever a variable would be allowed if the reference was made outside the body of a trigger. A
new transition variable can be assigned a value in a before update or insert trigger. The values of the
updated rows include the changes from any assignments to transition variables in the triggered-action
of a before trigger.

A transition table contains the complete set of affected rows: either the old values (before the update)
or the new values (after the update). A transition table is read-only, and can be referenced in the
triggered-action of an after or instead of trigger. A column of a transition table has the same name,
data type, and null attribute as the corresponding column of the table that the trigger is defined on.
A transition table is referenced using an associated table identifier that allows the complete set of
affected rows to be treated as a table. A transition table can be referenced in a search condition,
or in an SQL statement in the trigger body, wherever a table would be allowed if the reference was
made outside the body of a trigger. In addition, a transition table can be passed as an argument to a
user-defined function or procedure, specifying the TABLE keyword before the table identifier for the
transition table. When the function or procedure is invoked, a table locator is passed for the transition
table.

Considerations for table-locator-reference elements:
table-locator-reference must not be specified in the body of a trigger.

Chapter 7. Statements 1759

Considerations for implicitly hidden columns:
In the body of a trigger, a transition variable that corresponds to an implicitly hidden column can be
referenced. A transition table, that corresponds to a table with an implicitly hidden column, includes
that column as part of the transition table. Likewise, a transition variable will exist for the column that
is defined as implicitly hidden. A transition variable that corresponds to an implicitly hidden column
can be referenced in the body of a trigger.

Lines within the advanced trigger definition:
When an advanced trigger is created, information is retained on lines in the CREATE statement. Lines
are determined by the presence of the new line control character.

In an advanced trigger, a new line control character is a special character that is used for a new line.
The new line control characters for an advanced trigger include:

• Line feed
• New line
• Carriage return
• Carriage return, followed by a line feed
• Carriage return, followed by a new line

For more information about control characters, see “Control characters” on page 76.

Identifier resolution:
See SQL control statements for SQL routines for information on how names are resolved to columns,
SQL variables, transition variables, or global variables in the trigger body.

If non-unique names are used for columns, SQL variables, transition variables, or global variables,
qualify the non-unique names by using the table designator for columns, the label name for SQL
variables, correlation name for transition variables, and schema for global variables.

Considerations for transition variables in AFTER and INSTEAD OF triggers:
Transition variables cannot be modified in an AFTER or INSTEAD OF trigger.

Considerations for INSTEAD OF triggers:
The addition of an INSTEAD OF trigger for a view affects the read-only characteristic of the view. If a
read-only view has a dependency relationship with an INSTEAD OF trigger, the type of operation that
is defined for the INSTEAD OF trigger defines whether the view is deletable, insertable, or updatable.

The creation of an INSTEAD OF trigger causes dependent packages, plans, and statements in the
dynamic statement cache to be marked invalid if the view definition is not read-only.

The initial values for new transition variables or new transition table columns that are visible in an
INSTEAD OF INSERT trigger are set as follows:

• If a value is explicitly specified for a column in the insert operation, the corresponding new
transition variable is that explicitly specified value.

• If a value is not explicitly specified for a column in the insert operation or the DEFAULT clause is
specified, the corresponding new transition variable is:

– the default value of the underlying table column if the view column is updatable (without the
INSTEAD OF trigger)

– otherwise, the null value

If a view column is not nullable and does not have a default, the value must be explicitly specified in
the insert operation.

The initial values for new transition variables that are visible in an INSTEAD OF UPDATE trigger are set
as follows:

• If a value is explicitly specified for a column in the update operation, the corresponding new
transition variable is that explicitly specified value

• If the DEFAULT clause is explicitly specified for a column in the update operation, the corresponding
new transition variable is:

1760 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

– the default value of the underlying table column if the view column is updatable (without the
INSTEAD OF trigger)

– otherwise, the null value

If a view column is not nullable and does not have a default, the value must be explicitly specified in
the update operation.

• Otherwise, the corresponding new transition variable is the existing value of the column in the row.

Considerations for a MERGE statement:
The MERGE statement can execute insert, delete, and update operations. The applicable triggers are
activated for the MERGE statement for the data change operations that are executed.

Considerations for triggers that are defined on tables that contain XML columns:
Although a trigger can be defined on a table that contains an XML column:

• An XML column cannot be referenced with a transition variable in the trigger body. An SQL-
procedure-statement cannot reference a transition variable that is an XML data type.

• An XML column of a transition table cannot be referenced in the trigger body. An SQL-procedure-
statement cannot reference a column in a transition table that is an XML data type.

Creating a trigger with the SECURED option:
Typically, the security administrator will examine the data that is accessed by a trigger, ensure that it
is secure, and grant the CREATE_SECURE_OBJECT privilege to someone who requires the privileges
to create a secured trigger. After the trigger is created, the security administrator will revoke the
CREATE_SECURE_OBJECT privilege from the owner of the trigger.

The trigger is considered secure after the CREATE TRIGGER statement is executed. Db2 treats the
SECURED attribute as an assertion that declares that the user has established an audit procedure for
all activities in the trigger body. If a secure trigger references user-defined functions, Db2 assumes
those functions are secure without validation. If those functions can access sensitive data, the user
with SECADM authority needs to ensure that those functions are allowed to access that data and
that an audit procedure is in place for all versions of those functions, and that all subsequent ALTER
FUNCTION statements or changes to external packages are being reviewed by this audit process.

A trigger must be secure if its subject table is using row access control or column access control.
SECURED must also be specified for a trigger that is created for a view and one or more of the
underlying tables in the view definition is using row access control or column access control.

Creating a trigger with the NOT SECURED option:
The CREATE TRIGGER statement returns an error if the subject table of the trigger is using row access
control or column access control, or if the trigger is for a view and one or more of the underlying tables
in the view definition is using row access control or column access control.

Row and column access control that is not enforced for transition variables and transition tables:
If row access control or column access control is enforced for the subject table of the trigger,
row permissions and column masks are not applied to the initial values of transition variables and
transition tables. Row access control and column access control is enforced for the triggering table,
but is ignored for transition variables and transition tables that are referenced in the body of the
trigger body or are passed as arguments to user-defined functions that are invoked in the body of the
trigger. To ensure that there are no security concerns for SQL statements accessing sensitive data in
transition variables and transition tables in the trigger action, the trigger must be created with the
SECURED option. If a trigger is not secure, the CREATE TRIGGER statement returns an error.

Versions of a trigger:
The CREATE TRIGGER statement defines the initial version of the trigger. Only one version of the
trigger is considered to be the active version of the trigger. You can define additional versions using
the ADD VERSION clause of the ALTER TRIGGER statement, or the CREATE TRIGGER statement with
the OR REPLACE clause and the VERSION clause where the trigger already exists. You can replace
a version using the REPLACE VERSION clause of the ALTER PROCEDURE statement, or the CREATE
PROCEDURE statement with the OR REPLACE clause and the VERSION clause, when the procedure
version already exists. For all versions of a trigger, the following trigger attributes must be the same:

Chapter 7. Statements 1761

trigger-activation-time, trigger-event, table or view name, and trigger-granularity. The content of the
REFERENCING clause can differ for each version of the trigger.

Restrictions involving pending definition changes:
CREATE TRIGGER is not allowed if the trigger is defined on a table for which there are pending
definition changes.

Considerations for the special plan, statement, and function tables for EXPLAIN:
You can create a trigger on PLAN_TABLE, DSN_STATEMNT_TABLE, or DSN_FUNCTION_TABLE.
However, insert triggers that are defined on these tables are not activated when Db2 adds rows
to the tables.

Dependent objects:
A trigger is dependent on the triggering table or view and objects that are referenced in the trigger
body.

Adding a column to a subject table or a table referenced in the triggered-action:
If a column is added to the subject table after triggers have been defined, the following rules apply:

• If the trigger is an update trigger that was defined without an explicit list of column names, an
update to the new column activates the trigger.

• If the subject table is referenced in the triggered-action, the new column is not accessible to the SQL
statements until the trigger package is rebound.

• The OLD_TABLE and the NEW_TABLE transition tables contain the new column, but the column
cannot be referenced unless the trigger is re-created. If the transition tables are passed to a
user-defined function or a stored procedure, the user-defined function or stored procedure must
be re-created with the new definition of the table (that is, the function or procedure must be
dropped and re-created), and the package for the user-defined function or stored procedure must
be rebound.

If a column is added to any table that is referenced in the triggered-action, the new column is not
accessible to the SQL statements until the trigger package is rebound.

Altering the attributes of a column that the triggered action references:
If a column is altered in the table on which the trigger is defined (the subject table), the alter is
processed, and the dependent trigger packages are invalidated.

Renaming the table for which the trigger is defined, or tables referenced in the triggered-action:
You cannot rename a table for which a trigger is defined (the subject table). Except for the subject
table, you can rename any table to which the SQL statements in the triggered action refer. After
renaming such a table, drop the trigger and then re-create the trigger so that it refers to the renamed
table.

Dropping the table or view for which a trigger is defined:
If the table or view that a trigger is defined on is dropped, the trigger is also dropped.

Effects of dropping or revoking privileges on an object referenced in the triggered-action:
Dropping an object that is referenced in the body of a trigger, or revoking a privilege to an object
referenced in the body of a trigger, may result in the following:

• Dropping any table, view, alias, or index that is referenced or used within the SQL statements in the
triggered action causes the trigger and its package to be invalidated.

• Dropping a synonym that is referenced does not have any effect on the trigger or its package.
• Dropping a user-defined function that is referenced by the SQL statements in the triggered action is

not allowed. An error occurs.
• Dropping a sequence that is referenced by the SQL statements in the triggered action is not allowed.

An error occurs.
• Revoking a privilege on which the trigger depends causes the trigger and its package to be

invalidated. If the appropriate privilege does not exist when the trigger package is rebound, the
SQL statement that references the object fails.

1762 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Error handling in triggers:
A trigger can return errors, like other SQL statements. Applications need to account for the possible
errors that can be expected when a trigger is invoked. Any exception SQLSTATE that is not handled
within the trigger body (using a handler) results in the return of the exception SQLSTATE to the
statement that caused the trigger to be activated. For example, if a SIGNAL statement (RESIGNAL
statement or RAISE_ERROR function) raises a non-severe error in the SQL-trigger-body, and the
condition is not handled within the trigger body, SQLCODE -438 and the corresponding SQLSTATE are
returned. Other non-severe errors are returned with SQLCODE -723 and SQLSTATE 09000. Severe
errors that occur during the execution of triggered SQL statements are returned with SQLCODE -901,
-906, -911, or -913, and the corresponding SQLSTATE. Warnings are not returned.

Triggers and global variables:
The content of a global variable that is referenced by a trigger is inherited from the triggering SQL
operation (delete, insert, or update).

Special registers:
The values of the special registers that are used in the trigger body are determined when the trigger is
activated. The value of the CURRENT PACKAGESET special register is set to the schema name of the
trigger, and the values of the other special registers are inherited from the triggering SQL operation
(insert, update, or delete). Special register values are saved when a trigger is activated and are
restored on return from the trigger. The CURRENT DATE, CURRENT TIME, and CURRENT TIMESTAMP
special registers are not restored on return from the trigger.

Result sets for stored procedures:
If a trigger invokes a stored procedure that returns result sets, the application that activated the
trigger cannot access those result sets.

Transaction isolation:
All of the statements in the SQL-trigger-body run under the isolation level that is in effect for the
trigger.

Limiting processor time:
The Db2 resource limit facility allows you to specify the maximum amount of processor time for a
dynamic, manipulative SQL statement such as SELECT or SQL data change statements. The execution
of a trigger is counted as part of the triggering SQL statement. The ASUTIME trigger option can be
used to specify such a limit.

Errors binding triggers:
When a CREATE TRIGGER statement is bound, the SQL statements within the triggered action might
not be fully parsed. Syntax errors in those statements might not be caught until the CREATE TRIGGER
statement is executed.

Characteristics of the package that is generated for a trigger:
The package that is associated with the trigger is named as follows:

• location is set to the value of the CURRENT SERVER special register.
• collection-id (schema) for the package is the same as the schema qualifier of the trigger.
• package-id is the same as the name of the trigger.

The package is generated using the bind options that correspond to the implicitly or explicitly
specified trigger options. See Table 191 on page 1361 for more information. In addition to the
corresponding bind options, the package is generated using the following bind options:

• FLAG(I)
• SQLERROR(NOPACKAGE)
• ENABLE(*)
• VALIDATE(BIND)

A trigger package becomes invalid if an object or privilege on which it depends is dropped or revoked.
The next time that the trigger is activated, Db2 attempts to rebind the invalid trigger package. If the
automatic rebind is unsuccessful, the trigger package remains invalid.

Chapter 7. Statements 1763

You cannot create another package from the trigger package, such as with the BIND COPY command.
The only way to drop a trigger package is to drop the trigger or the subject table or view. Dropping the
trigger drops the trigger package; dropping the subject table or view drops the trigger and the trigger
package.

Each time that the trigger activates, the trigger package executes one or more times.

Considerations for SQL processor programs:
SQL processor programs, such as SPUFI, the command line processor, and DSNTEP2, might not
correctly parse SQL statements in the triggered action that are ended with semicolons. These
processor programs accept multiple SQL statements, each separated with a terminator character,
as input. Processor programs that use a semicolon as the SQL statement terminator can truncate
a CREATE TRIGGER statement with embedded semicolons and pass only a portion of it to Db2.
Therefore, you might need to change the SQL terminator character for these processor programs.
For information on changing the terminator character for SPUFI and DSNTEP2, see Setting the SQL
terminator character in a SPUFI input data set (Db2 Application programming and SQL) and DSNTEP2
and DSNTEP4 sample programs (Db2 Application programming and SQL).

Application compatibility level considerations for trigger objects
The application compatibility level controls the adoption and use of new capabilities and
enhancements. When an object is created or altered, two separate application compatibility levels
are used: one to process the definition of the object, and the other for processing the SQL statements
in the object body:

Object definition The CURRENT APPLICATION COMPATIBILITY special register value is
used to process the object definition, except for statements in the object
body

This application compatibility level is stored in the
SYSENVIRONMENT.APPLCOMPAT column. You can use the environment
ID value in the catalog definition of the object to locate the
SYSENVIRONMENT row with the matching ENVID value.

This application compatibility level can be changed when the object is
regenerated.

Statements in the
object body

The application compatibility level that is implicitly or explicitly specified
with the APPLCOMPAT option of the CREATE or ALTER statement is used to
process statements in the object body.

This application compatibility level is stored in the
SYSPACKAGE.APPLCOMPAT column for the package associated with the
object definition.

Alternative syntax and synonyms:
To provide compatibility with previous releases of Db2 or other products in the Db2 family, Db2
supports the following keywords:

• OLD TABLE as a synonym for OLD_TABLE
• NEW TABLE as a synonym for NEW_TABLE

Obfuscated statements:
A CREATE TRIGGER statement can be executed in obfuscated form. In an obfuscated statement, only
the trigger name and the WRAPPED keyword are readable. The rest of the statement is encoded in
such a way that it is not readable but can be decoded by a database server that supports obfuscated
statements. The WRAP scalar function produces obfuscated statements. Any debug options that are
specified when the trigger is created from an obfuscated statement are ignored.

Examples for CREATE TRIGGER (advanced)

1764 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_setsqlterminator.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_setsqlterminator.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_dsntep24.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_dsntep24.html

Example 1
Create two triggers that track the number of employees that a company manages. The subject table
is the EMPLOYEE table, and the triggers increment and decrement a column with the total number of
employees in the COMPANY_STATS table. The tables have these columns:

EMPLOYEE table: ID, NAME, ADDRESS, and POSITION
COMPANY_STATS table: NBEMP, NBPRODUCT, and REVENUE

This example shows the use of transition variables in a row trigger to maintain summary data in
another table.

Create the first trigger, NEW_HIRE, so that it increments the number of employees each time a new
person is hired; that is, each time a new row is inserted into the EMPLOYEE table, increase the value of
column NBEMP in table COMPANY_STATS by 1.

 CREATE TRIGGER NEW_HIRE
 AFTER INSERT ON EMPLOYEE
 FOR EACH ROW
 BEGIN ATOMIC
 UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
 END

Create the second trigger, FORM_EMP, so that it decrements the number of employees each time an
employee leaves the company; that is, each time a row is deleted from the table EMPLOYEE, decrease
the value of column NBEMP in table COMPANY_STATS by 1.

 CREATE TRIGGER FORM_EMP
 AFTER DELETE ON EMPLOYEE
 FOR EACH ROW
 BEGIN ATOMIC
 UPDATE COMPANY_STATS SET NBEMP = NBEMP - 1;
 END

Example 2

Create a trigger, REORDER, that invokes user-defined function ISSUE_SHIP_REQUEST to issue a
shipping request whenever a parts record is updated and the on-hand quantity for the affected part
is less than 10% of its maximum stocked quantity. User-defined function ISSUE_SHIP_REQUEST
orders a quantity of the part that is equal to the part's maximum stocked quantity minus its on-hand
quantity; ensures that the request is sent to the appropriate supplier, and returns the quantity
ordered.

The parts records are in the PARTS table. Although the table has more columns, the trigger is
activated only when columns ON_HAND and MAX_STOCKED are updated.

 CREATE TRIGGER REORDER
 AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
 REFERENCING NEW AS NROW
 FOR EACH ROW
 WHEN (NROW.ON_HAND < 0.10 * NROW.MAX_STOCKED)
 BEGIN ATOMIC
 DECLARE QTY_ORDERED INTEGER;

 VALUES(ISSUE_SHIP_REQUEST(NROW.MAX_STOCKED - NROW.ON_HAND, NROW.PARTNO))
 INTO QTY_ORDERED;
 END

Example 3
Repeat the scenario in Example 2 except use a SELECT INTO statement instead of a VALUES INTO
statement to invoke the user-defined function. This example also shows how to define the trigger as a
statement trigger instead of a row trigger. For each row in the transition table that evaluates to true for
the WHERE clause, a shipping request is issued for the part.

 CREATE TRIGGER REORDER
 AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
 REFERENCING NEW_TABLE AS NTABLE
 FOR EACH STATEMENT
 BEGIN ATOMIC
 DECLARE QTY_ORDERED INTEGER;

Chapter 7. Statements 1765

 SELECT ISSUE_SHIP_REQUEST(MAX_STOCKED - ON_HAND, PARTNO)
 FROM NTABLE
 WHERE (ON_HAND < 0.10 * MAX_STOCKED)
 INTO QTY_ORDERED;
 END

Example 4
Assume that table EMPLOYEE contains column SALARY. Create a trigger, SAL_ADJ, that prevents an
update to an employee's salary that exceeds 20% and signals such an error. Have the error that
is returned with an SQLSTATE of '75001' and a description. This example shows that the SIGNAL
statement is useful for restricting changes that violate business rules.

 CREATE TRIGGER SAL_ADJ
 AFTER UPDATE OF SALARY ON EMPLOYEE
 REFERENCING OLD AS OLD_EMP
 NEW AS NEW_EMP
 FOR EACH ROW
 WHEN (NEW_EMP.SALARY > (OLD_EMP.SALARY * 1.20))
 BEGIN ATOMIC
 SIGNAL SQLSTATE '75001' ('Invalid Salary Increase - Exceeds 20
 END

Example 5
Assume that the following statements create a table, WEATHER (which stores temperature values
in Fahrenheit), and a view, CELSIUS_WEATHER for users who prefer to work in Celsius instead of
Fahrenheit:

 CREATE TABLE WEATHER
 (CITY VARCHAR(25),
 TEMPF DECIMAL(5,2));
 CREATE VIEW CELSIUS_WEATHER (CITY, TEMPC) AS
 SELECT CITY, (TEMPF-32)/1.8
 FROM WEATHER;

The following INSTEAD OF trigger is used on the CELSIUS_WEATHER view to convert Celsius values to
Fahrenheit values and then insert the Fahrenheit value into the WEATHER table:

 CREATE TRIGGER CW_INSERT INSTEAD OF INSERT
 ON CELSIUS_WEATHER
 REFERENCING NEW AS NEWCW
 FOR EACH ROW
 BEGIN ATOMIC
 INSERT INTO WEATHER VALUES
 (NEWCW.CITY,
 1.8*NEWCW.TEMPC+32)
 END;

Example 6
Create a before update trigger, STOCK_STATUS, using logic to record and track changes to stock
prices.

Assume that the database contains two tables, CURRENTQUOTE and QUOTEHISTORY.
CURRENTQUOTE has columns SYMBOL, QUOTE, and STATUS. QUOTEHISTORY has columns SYMBOL,
QUOTE, and QUOTE_TIMESTAMP.

When the QUOTE column of CURRENTQUOTE is updated, the new quote must be copied, with a
timestamp, to the QUOTEHISTORY table. Also, the STATUS column of CURRENTQUOTE must be
updated to reflect whether the stock is:

1 Rising in value

2 At a new high for the year

3 Dropping in value

4 At a new low for the year

5 Steady in value

1766 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

CREATE TRIGGER statements that accomplish these tasks are as follows:

Trigger STOCK_STATUS sets the status:

CREATE TRIGGER STOCK_STATUS
 NO CASCADE BEFORE UPDATE OF QUOTE ON CURRENTQUOTE
 REFERENCING NEW AS NEWQUOTE
 OLD AS OLDQUOTE
 FOR EACH ROW
 BEGIN ATOMIC
 SET NEWQUOTE.STATUS = CASE
 WHEN NEWQUOTE.QUOTE >
 (SELECT MAX(QUOTE)
 FROM QUOTEHISTORY
 WHERE SYMBOL = NEWQUOTE.SYMBOL
 AND YEAR(QUOTE_TIMESTAMP) = YEAR(CURRENT DATE))
 THEN 'High'
 WHEN NEWQUOTE.QUOTE <
 (SELECT MIN(QUOTE)
 FROM QUOTEHISTORY
 WHERE SYMBOL = NEWQUOTE.SYMBOL
 AND YEAR(QUOTE_TIMESTAMP) = YEAR(CURRENT DATE))
 THEN 'Low'
 WHEN NEWQUOTE.QUOTE > OLDQUOTE.QUOTE THEN 'Rising'
 WHEN NEWQUOTE.QUOTE < OLDQUOTE.QUOTE THEN 'Dropping'
 WHEN NEWQUOTE.QUOTE = OLDQUOTE.QUOTE THEN 'Steady'
 END;
END

Trigger RECORD_HISTORY records changes in the QUOTEHISTORY table:

CREATE TRIGGER RECORD_HISTORY
 AFTER UPDATE OF QUOTE ON CURRENTQUOTE
 REFERENCING NEW AS NEWQUOTE FOR EACH ROW
 BEGIN ATOMIC
 INSERT INTO QUOTEHISTORY VALUES (NEWQUOTE.SYMBOL,
 NEWQUOTE.QUOTE,
 CURRENT TIMESTAMP);
 END

Example 7
Create a before insert trigger, NEW_HIRED, that uses logic to illustrate the different scopes of a
transition variable as compared to an SQL variable that is declared within the trigger body. Suppose
that an EMPLOYEE table is defined as follows:

CREATE TABLE EMPLOYEE (EMPNO CHAR(6),
 FIRSTNAME VARCHAR(32),
 WORKDEPT CHAR(5),
 NUM INTEGER)#

In the trigger NEW_HIRED, the correlation name for the transition variables for the new values is XYZ,
and XYZ is also the label for a compound statement in which an SQL variable is defined. The table
has a column named NUM, and the SQL variable is also named NUM. The reference to XYZ.NUM in
the assignment statement refers to the SQL variable because that is the definition with the most local
scope to the assignment statement.

CREATE TRIGGER NEW_HIRED
 BEFORE INSERT ON EMPLOYEE
 REFERENCING NEW AS XYZ
 FOR EACH ROW
 XYZ: BEGIN
 DECLARE NUM INTEGER;
 SET XYZ.NUM = XYZ.NUM + 1;
 END XYZ#

Suppose that the following INSERT statement is issued:

INSERT INTO EMPLOYEE VALUES ('000001', 'RICK', 'DPT01', 10)#

The values in the table are the same as the values that were originally specified in the VALUES
clause for the INSERT statement. This means that the NUM transition variable is not affected by the

Chapter 7. Statements 1767

assignment statement. The references to XYZ.NUM in the assignment statement resolve to the SQL
variable NUM, rather than the transition variable NUM.

Issue the following SELECT statement to see the results after the INSERT statement runs:

SELECT * FROM EMPLOYEE#

The results are:

EMPNO FIRSTNAME WORKDEPT NUM

000001 RICK DPT01 10

Example 8
Create a BEFORE INSERT trigger using logic to enforce the rule that a class ends one hour after
it begins if the ending time is not provided upon INSERT into CLASS_SCHED. Define the trigger to
enforce an additional restriction that a class cannot end beyond 9 pm.

CREATE TRIGGER VALIDATE_SCHED
 BEFORE INSERT ON CLASS_SCHED
 REFERENCING NEW AS N
 FOR EACH ROW
 WHEN (N.ENDING IS NULL OR N.ENDING > '21:00')
 VS: BEGIN
 -- SUPPLY DEFAULT VALUE FOR ENDING TIME IF NULL
 IF (N.ENDING IS NULL) THEN
 SET N.ENDING = N.STARTING + 1 HOUR;
 END IF;
 -- ENSURE THAT CLASS DOES NOT END BEYOND 9PM
 IF (N.ENDING > '21:00') THEN
 SIGNAL SQLSTATE '80000'
 SET MESSAGE_TEXT = 'CLASS ENDING TIME IS BEYOND 9 PM';
 END IF;
 END VS

Example 9: Change the trigger VALIDATE_SCHED to change the restriction so that classes cannot end
beyond 7 PM. The OR REPLACE clause is added to the original CREATE TRIGGER statement, and the
rule is changed to check for the ending time (N.ENDING > '19:00'). The CREATE TRIGGER statement
replaces the existing definition of the trigger with the updated definition.

CREATE OR REPLACE TRIGGER VALIDATE_SCHED
 BEFORE INSERT ON CLASSES
 REFERENCING NEW AS N
 FOR EACH ROW
 -- TRIGGER WHEN CLAUSE
 WHEN (N.ENDING IS NULL OR N.ENDING > '19:00')
 VS: BEGIN
 -- SUPPLY DEFAULT VALUE FOR ENDING TIME IF NULL
 IF (N.ENDING IS NULL) THEN
 SET N.ENDING = N.STARTING + 1 HOUR;
 END IF;
 -- ENSURE THAT CLASS DOES NOT END BEYOND 7 PM
 IF (N.ENDING > '19:00') THEN
 SIGNAL SQLSTATE '80000'
 SET MESSAGE_TEXT = 'CLASS ENDING TIME IS BEYOND 7 PM';
 END IF;
 END VS

Related concepts
Triggers (Introduction to Db2 for z/OS)
Naming conventions
The rules for forming a name depend on the type of the object designated by the name.
Related tasks
Creating a trigger (Db2 Application programming and SQL)
Converting existing triggers to support advanced capabilities (Db2 Application programming and SQL)

1768 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_triggers.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createtrigger.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_convertenhancedtriggers.html

CREATE TRIGGER statement (basic trigger)
The CREATE TRIGGER (basic) statement defines a basic trigger in a schema and builds a trigger package
at the current server. Each time that the trigger activates, the trigger package executes one or more times.

For a description of the differences between basic and advanced triggers, see Triggers (Introduction to
Db2 for z/OS).

Invocation for CREATE TRIGGER (basic)
The statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for CREATE TRIGGER (basic)
The privilege set that is defined below must include at least one of the following:

• The CREATEIN privilege on the schema
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

In defining a trigger on a table, the privilege set that is defined below must include SYSADM authority or
each of the following:

• The SELECT privilege on the table on which the trigger is defined, if the REFERENCING clause is
included in the trigger definition

• The SELECT privilege on any table or view in the search-condition of the triggered-action
• The necessary privileges to invoke the triggered SQL statements in the triggered action
• The authorization to define a trigger on the table, which must include at least one of the following:

– The TRIGGER privilege on the table on which the trigger is defined
– The ALTER privilege on the table on which the trigger is defined
– DBADM authority on the database that contains the table
– SYSCTRL authority
– Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)
– System DBADM authority

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

In defining a trigger on a view, the privilege set that is defined below must include SYSADM authority or
each of the following:

• The SELECT privilege on the view on which the trigger is defined, if the REFERENCING clause is included
in the trigger definition

• The SELECT privilege on any table or view in the search-condition of the triggered-action
• The necessary privileges to invoke the triggered SQL statements in the triggered action
• The authorization to define a trigger on the view, which must include at least one of the following:

– Ownership of the view on which the trigger is defined
– SYSCTRL authority
– System DBADM authority

Chapter 7. Statements 1769

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_triggers.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_triggers.html

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the owner is a role, the implicit schema match does
not apply and this role needs to include one of the previously listed conditions.

If the statement is dynamically prepared and is not running in a trusted context for which the ROLE AS
OBJECT OWNER clause is specified, the privilege set is the set of privileges that are held by the SQL
authorization ID of the process. The specified trigger name can include a schema name (a qualifier). If the
schema name is not the same as the SQL authorization ID of the process, one of the following conditions
must be met:

• The privilege set includes SYSADM or SYSCTRL authority.
• The SQL authorization ID of the process has the CREATEIN privilege on the schema.

If the SECURED option is specified, at least one of the following privileges is required:

• SECADM authority
• CREATE_SECURE_OBJECT privilege

Note: If the SEPARATE SECURITY subsystem parameter is set to NO, SYSADM authority has implicit
SECADM authority.

Syntax for CREATE TRIGGER (basic)

CREATE TRIGGER trigger-name trigger-definition

WRAPPED obfuscated-statement-text

trigger-definition

trigger-activation-time trigger-event ON table-name

view-name

REFERENCING
1

OLD
AS

correlation-name

NEW
AS

correlation-name

OLD_TABLE
AS

table-identifier

NEW_TABLE
AS

table-identifier

trigger-granularity MODE DB2SQL option-list triggered-action

Notes:
1 The same clause must not be specified more than one time.

trigger-activation-time

1770 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

NO CASCADE BEFORE

AFTER

INSTEAD OF

trigger-event

INSERT

DELETE

UPDATE

OF

,

column-name

trigger-granularity

FOR EACH STATEMENT

FOR EACH ROW

triggered-action

WHEN ( search-condition)

SQL-trigger-body

SQL-trigger-body

triggered-SQL-statement

BEGIN ATOMIC triggered-SQL-statement ; END

triggered-SQL-statement:

Chapter 7. Statements 1771

CALL statement

DELETE statement (searched)
1

common-table-expression
1

fullselect

INSERT statement

MERGE statement
1

REFRESH TABLE statement
1

SET assignment-statement statement
2

SIGNAL statement

TRUNCATE statement
1

UPDATE statement (searched)
1

VALUES statement

Notes:
1 The statement is not allowed in an SQL-trigger-body for a BEFORE trigger.
2 The target of a SET-assignment-statement statement must be a transition variable.

option-list:

NOT SECURED

SECURED

Description for CREATE TRIGGER (basic)
trigger-name

Names the trigger. The name, including the implicit or explicit schema name, must not identify a
trigger that exists at the current server.

The name is also used to create the trigger package; therefore, the name must also not identify a
package that is already described in the catalog. The schema name becomes the collection-id of the
trigger package. Although trigger-name can be specified as an ordinary or delimited identifier, the
name should conform to the rules for an ordinary identifier. Refer to The implicitly created trigger
package for additional information.

The schema name can be 'SYSTOOLS' if the privilege set includes the SYSCTRL privilege. Otherwise,
the schema name must not begin with 'SYS' unless the schema name is 'SYSADM', 'SYSIBMADM', or
'SYSPROC'.

NO CASCADE BEFORE
Specifies that the trigger is a before trigger. Db2 executes the triggered action before it applies any
changes caused by an insert, delete, or update operation on the subject table. It also specifies that
the triggered action does not activate other triggers because the triggered action of a before trigger
cannot contain any updates, REFRESH TABLE, or TRUNCATE SQL statements.

BEFORE must not be specified when view-name is also specified. FOR EACH ROW must be specified
for a BEFORE trigger.

1772 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

AFTER
Specifies that the trigger is an after trigger. Db2 executes the triggered action after it applies any
changes caused by an insert, delete, or update operation on the subject table. AFTER must not be
specified if view-name is also specified.

INSTEAD OF
Specifies that the trigger is an instead of trigger. The associated triggered action replaces the action
against the subject view. Only one INSTEAD OF trigger is allowed for each type of operation on a given
subject view. Db2 executes the triggered-action instead of the insert, update, or delete operation on
the subject view.

INSTEAD OF must not be specified when table-name is also specified. The WHEN clause can not be
specified for an INSTEAD OF trigger. FOR EACH STATEMENT must not be specified for an INSTEAD OF
trigger.

In the view definition, the non-numeric columns of the outermost SELECT list of the fullselect must
use the same encoding scheme.

ON table-name
Identifies the subject table of the BEFORE or AFTER trigger definition. The name must identify a
base table that exists at the current server. It must not identify a materialized query table, a clone
table, a temporary table, an auxiliary table, an alias, a synonym, a real-time statistics table, an
accelerator-only table, a catalog table, or a directory table.

ON view-name
Identifies the subject view of the INSTEAD OF trigger definition. The name must identify a view that
exists at the current server.

view-name must not specify a view where any of the following conditions are true:

• The view is defined with the WITH CASCADED CHECK option (a symmetric view)
• The view on which a symmetric view has been defined
• The view references data that is encoded with different encoding schemes or CCSID values
• The view has a column that is a ROWID column
• The view has a column that is based on an underlying column of any of the following types:

– A LOB, XML, or ROWID column
– An identity column
– A security label column
– A row change timestamp column
– A row-begin column
– A row-end column
– A transaction start ID column

• The view has columns that have field procedures
• All of the underlying tables of the view are catalog tables
• All of the underlying tables of the view are created global temporary tables
• All of the underlying tables of the view are clone tables
• The view has other views that are dependent on it

REFERENCING
Specifies the correlation names for the transition variables and the table names for the transition
tables. For the rows in the subject table that are modified by the triggering SQL operation (insert,
delete, or update), a correlation name identifies the columns of a specific row. table-identifiers identify
the complete set of affected rows. Transition variables with XML types cannot be referenced inside of
a trigger. If the column of a transition table is referenced, the data type of the column cannot be XML.

Each row that is affected by the triggering SQL operation is available to the triggered action by
qualifying column names with correlation-names that are specified as follows:

Chapter 7. Statements 1773

OLD AS correlation-name
Specifies the correlation name that identifies the values in the row prior to the triggering SQL
operation.

NEW AS correlation-name
Specifies the correlation name that identifies the values in the row as modified by the triggering
SQL operation and by any assignment statement in a before trigger that has already been
executed.

The complete set of rows that are affected by the triggering operation is available to the triggered
action by using table-identifiers that are specified as follows:

OLD_TABLE AS table-identifier
Specifies the name of a temporary table that identifies the values in the complete set of rows that
are modified rows by the triggering SQL operation prior to any actual changes.

NEW_TABLE AS table-identifier
Specifies the name of a temporary table that identifies the values in the complete set of rows as
modified by the triggering SQL operation and by any assignment statement in a before trigger that
has already been executed.

Only one OLD and one NEW correlation-name can be specified for a trigger. Only one OLD_TABLE
and one NEW_TABLE table-identifier can be specified for a trigger. All of the correlation-names and
table-identifiers must be unique from one another.

Table 222 on page 1775 summarizes the allowable combinations of transition variables and
transition tables that you can specify for the various trigger types. The OLD correlation-name and
the OLD_TABLE table-identifier are valid only if the triggering event is either a delete operation or
an update operation. For a delete operation, the OLD correlation-name captures the values of the
columns in the deleted row, and the OLD_TABLE table-identifier captures the values in the set of
deleted rows. For an update operation, the OLD correlation-name captures the values of the columns
of a row before the update operation, and the OLD_TABLE table-identifier captures the values in the
set of updated rows.

The NEW correlation-name and the NEW_TABLE table-identifier are valid only if the triggering event
is either an insert operation or an update operation. For both operations, the NEW correlation-name
captures the values of the columns in the inserted or updated row and the NEW_TABLE table-identifier
captures the values in the set of inserted or updated rows. For BEFORE triggers, the values of the
updated rows include the changes from any assignment statements in the triggered action of BEFORE
triggers.

1774 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 222. Allowable combinations of attributes in a trigger definition

Granularity
Activation
time

Triggering SQL
operation

Transition
variables
allowed“1” on
page 1775

Transition tables
allowed“1” on
page 1775

FOR EACH ROW

BEFORE

DELETE OLD None

INSERT NEW None

UPDATE OLD, NEW None

AFTER

DELETE OLD OLD_TABLE

INSERT NEW NEW_TABLE

UPDATE OLD, NEW OLD_TABLE,
NEW_TABLE

INSTEAD OF

DELETE OLD OLD_TABLE

INSERT NEW NEW_TABLE

UPDATE OLD, NEW OLD_TABLE,
NEW_TABLE

FOR EACH STATEMENT AFTER

DELETE None OLD_TABLE

INSERT None NEW_TABLE

UPDATE None OLD_TABLE,
NEW_TABLE

Note:

1. If a transition table or variable is referenced where it is not allowed, an error is returned.

A transition variable that has a character data type inherits the subtype and CCSID of the column
of the subject table. During the execution of the triggered action, the transition variables are treated
like host variables. Therefore, character conversion might occur. However, unlike a host variable, a
transition variable can have the bit data attribute, and character conversion never occurs for bit data.
A transition variable is considered to be bit data if the column of the table to which it corresponds is
bit data.

You cannot modify a transition table; transition tables are read-only. Although a transition table does
not inherit any edit or validation procedures from the subject table, it does inherit the encoding
scheme and field procedures of the subject table.

The scope of each correlation-name and each table-identifier is the entire trigger definition.

trigger-granularity
FOR EACH ROW or FOR EACH STATEMENT

Specifies the conditions for which Db2 executes the triggered action.
FOR EACH ROW

Specifies that Db2 executes the triggered action for each row of the subject table that the
triggering SQL operation modifies. If the triggering SQL operation does not modify any rows, the
triggered action is not executed..

FOR EACH STATEMENT
Specifies that Db2 executes the triggered action only one time for the triggering operation. Even if
the triggering operation does not modify or delete any rows, the triggered action is executed one
time.

FOR EACH STATEMENT must not be specified for a BEFORE or INSTEAD OF trigger.

Chapter 7. Statements 1775

MODE DB2SQL
Indicates that a basic trigger is to be created.

NOT SECURED or SECURED
Specifies whether the trigger is considered secure. NOT SECURED is the default.
SECURED

Specifies the trigger is considered secure.

SECURED must be specified for a trigger if its subject table is using row access control or column
access control. SECURED must also be specified for a trigger that is created for a view and one or
more of the underlying tables in the view definition is using row access control or column access
control.

NOT SECURED
Specifies the trigger is considered not secure.

NOT SECURED must not be specified for a trigger whose subject table is using row access control
or column access control. NOT SECURED must also not be specified for a trigger that is created for
a view and one or more of the underlying tables in the view definition is using row access control
or column access control.

trigger-event
Specifies that the triggered action that is associated with the trigger is to be executed when the trigger
event is applied to the subject table or view.
INSERT

Specifies that the trigger is an insert trigger. Db2 executes the triggered action whenever there is
an insert operation on the subject table. However, if the insert trigger is defined on any explain
table, and the insert operation was caused by Db2 adding a row to the table, the triggered action is
not to be executed.

DELETE
Specifies that the trigger is a delete trigger. Db2 executes the triggered action whenever there is a
delete operation on the subject table.

UPDATE
Specifies that the trigger is an update trigger. Db2 executes the triggered action whenever there is
an update operation on the subject table.

If you do not specify a list of column names, an update operation on any column of the subject
table, including columns that are subsequently added with the ALTER TABLE statement, activates
the triggered action.

OF column-name,...
Each column-name that you specify must be a column of the subject table and must appear
in the list only once. An update operation on any of the listed columns activates the triggered
action.

UPDATE OF column-name cannot be specified for an INSTEAD OF trigger.

triggered-action
Specifies the action to be performed when the trigger is activated. The triggered-action is composed
of one or more SQL statements and an optional condition that controls whether the statements are
executed.
WHEN (search-condition)

Specifies a condition that evaluates to true, false, or unknown. The triggered SQL statements
are executed only if the search-condition evaluates to true. If the WHEN clause is omitted, the
associated SQL statements are always executed.

The WHEN clause must not be specified for an INSTEAD OF trigger.

SQL-trigger-body
Specifies the SQL statements that are to be executed for the triggered action. Only certain SQL
statements can be specified in the SQL-trigger-body.

1776 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

triggered-SQL-statement
Specifies the SQL statements that can be specified as the only statement in a trigger body.

BEGIN ATOMIC triggered-SQL-statement,... END
Specifies a list of SQL statements that are to be executed for the triggered action. The
statements are executed in the order in which they are specified.

Only certain SQL statements can be specified in the SQL-trigger-body.

The trigger body must not contain a statement that is not supported. Table 223 on page 1777 shows
the list of allowable SQL statements, which differs depending on whether the trigger is being defined
as BEFORE, AFTER, or INSTEAD OF. An 'X' in the table indicates that the statement is valid.

Table 223. Allowable SQL statements

SQL statement

Trigger activation time

BEFORE AFTER INSTEAD OF

CALL X X X

DELETE (searched) X X

fullselect X X X

INSERT X X

MERGE X X

REFRESH TABLE X X

SET transition variable X

SIGNAL X X X

TRUNCATE X X

UPDATE (serached) X X

VALUES X X X

The statements in the triggered action have these restrictions:

• They must not refer to host variables, parameter markers, undefined transition variables, or
declared temporary tables.

• They must only refer to a table or view that is at the current server.
• They must only invoke a stored procedure or user-defined function that is at the current server. An

invoked routine can, however, access a server other than the current server.
• They must not contain a fullselect that refers to the subject table if the trigger is defined as BEFORE.
• They must not modify a column that is part of a BUSINESS_TIME period.

• If the trigger is a before trigger:

– The trigger body must not contain a DELETE, INSERT, MERGE, REFRESH TABLE, TRUNCATE,
UPDATE statement, or SELECT FROM data-change-statement, and must not reference a
procedure or function that is defined as MODIFIES SQL DATA.

– The trigger body must not, directly or indirectly, issue a CALL statement for a procedure
containing one of the following statements:

- ALTER
- COMMENT
- CREATE
- DELETE
- DROP

Chapter 7. Statements 1777

- EXCHANGE
- GRANT
- LABEL
- LOCK TABLE
- MERGE
- REFRESH TABLE
- RENAME
- REVOKE
- TRUNCATE
- UPDATE

A CREATE TRIGGER statement cannot contain a hexadecimal graphic string (GX) constant.

The triggered action can refer to the values in the set of affected rows. This action is supported
through the use of transition variables and transition tables.

All tables, views, aliases, sequences, roles, user-defined data types, user-defined functions, and
procedures referenced in the triggered-action must exist at the current server when the version of the
trigger is defined. The table or view that an alias refers to must also exist when the version of the
trigger is defined.

WRAPPED obfuscated-statement-text
Specifies the encoded definition of the trigger. A CREATE TRIGGER statement can be encoded using
the WRAP scalar function.

WRAPPED must not be specified on a static CREATE statement.

Notes for CREATE TRIGGER (basic)
Owner privileges:

When an INSTEAD OF trigger is defined, the associated privilege (INSERT, UPDATE, or DELETE on the
view) is given to the owner of the view. The owner is granted the privilege with the ability to grant that
privilege to others. For more information about ownership of an object, see “Authorization, privileges,
permissions, masks, and object ownership” on page 90.

Execution authorization:
The user executing the triggering SQL operation does not need authority to execute a SQL-trigger-
body. An SQL-trigger-body executes using the authority of the owner of the trigger.

Activating a trigger:
Only insert, delete, or update operations can activate a trigger. The activation of a trigger might
cause trigger cascading.Trigger cascading is the result of the activation of one trigger that executes
SQL statements that cause the activation of other triggers or even the same trigger again. The
triggered actions might also cause updates as a result of the original modification, which can result
in the activation of additional triggers. With trigger cascading, a significant chain of triggers might be
activated, causing a significant change to the database as a result of a single insert, delete, or update
operation.

Loading a table with the LOAD utility does not activate any triggers that are defined for the table if the
SHRLEVEL NONE option is specified or accepted as the default. If the LOAD statement includes the
SHRLEVEL CHANGE option, triggers are activated when loading a table with the LOAD utility.

Adding triggers to enforce constraints:
Adding a trigger on a table that already has rows in it will not cause the triggered-action to be
executed. Thus, if the trigger is designed to enforce constraints on the data in the table, the data in the
existing rows might not satisfy those constraints.

1778 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Multiple triggers:
Multiple triggers that have the same triggering SQL operation and activation time can be defined on a
table. The triggers are activated in the order in which they were created. For example, the trigger that
was created first is executed first; the trigger that was created second is executed second.

Transition variables and transition tables:
The triggered-action can refer to the values in the set of affected rows. This action is supported
through the use of transition variables and transition tables.

A transition variable has the same name, data type, and nullability attribute as the corresponding
column of the table that the trigger is defined on. A transition variable contains the value of a column
in an affected row. A transition variable is qualified by a correlation name that identifies whether the
reference is to the old value (before the update) or the new value (after the update). A transition
variable can be referenced in the search condition, or in an SQL statement in the trigger body,
wherever a variable would be allowed if the reference was made outside the body of a trigger. A
new transition variable can be assigned a value in a before update or insert trigger. The values of the
updated rows include the changes from any assignments to transition variables in the triggered-action
of a before trigger.

A transition table contains the complete set of affected rows: either the old values (before the update)
or the new values (after the update). A transition table is read-only, and can be referenced in the
triggered-action of an after or instead of trigger. A column of a transition table has the same name,
data type, and null attribute as the corresponding column of the table that the trigger is defined on.
A transition table is referenced using an associated table identifier that allows the complete set of
affected rows to be treated as a table. A transition table can be referenced in a search condition,
or in an SQL statement in the trigger body, wherever a table would be allowed if the reference was
made outside the body of a trigger. In addition, a transition table can be passed as an argument to a
user-defined function or procedure, specifying the TABLE keyword before the table identifier for the
transition table. When the function or procedure is invoked, a table locator is passed for the transition
table.

A transition variable or transition table is not affected after being returned from a procedure invoked
from within a triggered action regardless of whether the corresponding parameter was defined in the
CREATE PROCEDURE statement as IN, INOUT, or OUT.

Considerations for table-locator-reference elements:
table-locator-reference must not be specified in the body of a trigger.

Considerations for implicitly hidden columns:
In the body of a trigger, a transition variable that corresponds to an implicitly hidden column can be
referenced. A transition table, that corresponds to a table with an implicitly hidden column, includes
that column as part of the transition table. Likewise, a transition variable will exist for the column that
is defined as implicitly hidden. A transition variable that corresponds to an implicitly hidden column
can be referenced in the body of a trigger.

Identifier resolution:
Names that are the same should be explicitly qualified. Qualifying a name clearly indicates whether
the name refers to a column, a transition variable, or a global variable. If the name is not qualified or
is qualified but is still ambiguous, the following rules describe how the name is resolved. If correlation
names are specified for both old and new transition variables, a reference to a transition variable must
be qualified with the associated correlation name. The name is resolved by checking for a match in the
following order:

• If the tables and views specified in the trigger body exist at the time the trigger is created, the name
is first checked as a column name at the current server. If the name is found as a column name, but
the privilege set that is used to issue the CREATE statement does not have the proper authority to
access the table or view, an error is returned.

• If the name is not found as a column, the name is checked as a transition variable name.
• If the name is not found as a transition variable, the name is checked as a global variable.
• If the name is still not resolved, an error is returned.

Chapter 7. Statements 1779

Considerations for transition variables in AFTER and INSTEAD OF triggers:
Transition variables cannot be modified in an AFTER or INSTEAD OF trigger.

Invalidation of packages:
This statement might invalidate all packages that depend on target objects, and sometimes other
related objects through cascading effects, depending on the clauses and keywords specified
and other factors. For more information, see Changes that invalidate packages (Db2 Application
programming and SQL).

Invalidation of cached dynamic SQL statements:
This statement might invalidate cached dynamic SQL statements that depend on target objects, and
sometimes other related objects through cascading effects. For more information, see Invalidation of
cached dynamic statements (Db2 Performance).

Considerations for INSTEAD OF triggers:
The addition of an INSTEAD OF trigger for a view affects the read only characteristic of the view. If a
read-only view has a dependency relationship with an INSTEAD OF trigger, the type of operation that
is defined for the INSTEAD OF trigger defines whether the view is deletable, insertable, or updatable.

The creation of an INSTEAD OF trigger causes dependent packages, plans, and statements in the
dynamic statement cache to be marked invalid if the view definition is not read-only.

The initial values for new transition variables or new transition table columns that are visible in an
INSTEAD OF INSERT trigger are set as follows:

• If a value is explicitly specified for a column in the insert operation, the corresponding new
transition variable is that explicitly specified value.

• If a value is not explicitly specified for a column in the insert operation or the DEFAULT clause is
specified, the corresponding new transition variable is:

– the default value of the underlying table column if the view column is updatable (without the
INSTEAD OF trigger)

– otherwise, the null value

If a view column is not nullable and does not have a default, the value must be explicitly specified in
the insert operation.

The initial values for new transition variables that are visible in an INSTEAD OF UPDATE trigger are set
as follows:

• If a value is explicitly specified for a column in the update operation, the corresponding new
transition variable is that explicitly specified value

• If the DEFAULT clause is explicitly specified for a column in the update operation, the corresponding
new transition variable is:

– the default value of the underlying table column if the view column is updatable (without the
INSTEAD OF trigger)

– otherwise, the null value

If a view column is not nullable and does not have a default, the value must be explicitly specified in
the update operation.

• Otherwise, the corresponding new transition variable is the existing value of the column in the row.

Considerations for a MERGE statement:
The MERGE statement can execute insert, delete, and update operations. The applicable triggers are
activated for the MERGE statement for the data change operations that are executed.

Considerations for triggers that are defined on tables that contain XML columns:
Although a trigger can be defined on a table that contains an XML column:

• An XML column cannot be referenced with a trigger transition variable in the trigger body.
• An XML column of a transition table cannot be referenced in the trigger body.

1780 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_dynamicsqlcacheinvalidation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_dynamicsqlcacheinvalidation.html

Creating a trigger with the SECURED option:
Typically, the security administrator will examine the data that is accessed by a trigger, ensure that it
is secure, and grant the CREATE_SECURE_OBJECT privilege to someone who requires the privileges
to create a secured trigger. After the trigger is created, the security administrator will revoke the
CREATE_SECURE_OBJECT privilege from the owner of the trigger.

The trigger is considered secure after the CREATE TRIGGER statement is executed. Db2 treats the
SECURED attribute as an assertion that declares that the user has established an audit procedure for
all activities in the trigger body. If a secure trigger references user-defined functions, Db2 assumes
those functions are secure without validation. If those functions can access sensitive data, the user
with SECADM authority needs to ensure that those functions are allowed to access that data and
that an audit procedure is in place for all versions of those functions, and that all subsequent ALTER
FUNCTION statements or changes to external packages are being reviewed by this audit process.

A trigger must be secure if its subject table is using row access control or column access control.
SECURED must also be specified for a trigger that is created for a view and one or more of the
underlying tables in the view definition is using row access control or column access control.

Creating a trigger with the NOT SECURED option:
The CREATE TRIGGER statement returns an error if the subject table of the trigger is using row access
control or column access control, or if the trigger is for a view and one or more of the underlying tables
in the view definition is using row access control or column access control.

Row and column access control that is not enforced for transition variables and transition tables:
If row access control or column access control is enforced for the subject table of the trigger,
row permissions and column masks are not applied to the initial values of transition variables and
transition tables. Row access control and column access control is enforced for the triggering table,
but is ignored for transition variables and transition tables that are referenced in the body of the
trigger body or are passed as arguments to user-defined functions that are invoked in the body of the
trigger. To ensure that there are no security concerns for SQL statements accessing sensitive data in
transition variables and transition tables in the trigger action, the trigger must be created with the
SECURED option. If a trigger is not secure, the CREATE TRIGGER statement returns an error.

Restrictions involving pending definition changes:
CREATE TRIGGER is not allowed if the trigger is defined on a table for which there are pending
definition changes.

Considerations for the special plan, statement, and function tables for EXPLAIN:
You can create a trigger on PLAN_TABLE, DSN_STATEMNT_TABLE, or DSN_FUNCTION_TABLE.
However, insert triggers that are defined on these tables are not activated when Db2 adds rows
to the tables.

Dependent objects:
A trigger is dependent on the triggering table and objects that are referenced in the trigger body.

Adding a column to a subject table or a table referenced in the triggered-action:
If a column is added to the subject table after triggers have been defined, the following rules apply:

• If the trigger is an update trigger that was defined without an explicit list of column names, an
update to the new column activates the trigger.

• If the subject table is referenced in the triggered-action, the new column is not accessible to the SQL
statements until the trigger package is rebound.

• The OLD_TABLE and the NEW_TABLE transition tables contain the new column, but the column
cannot be referenced unless the trigger is re-created. If the transition tables are passed to a
user-defined function or a stored procedure, the user-defined function or stored procedure must
be re-created with the new definition of the table (that is, the function or procedure must be
dropped and re-created), and the package for the user-defined function or stored procedure must
be rebound.

If a column is added to any table that is referenced in the triggered-action, the new column is not
accessible to the SQL statements until the trigger package is rebound.

Chapter 7. Statements 1781

Dropping a column from a subject table or a table referenced in the triggered-action:
A column cannot be dropped from a table for which a trigger is defined.

Altering the attributes of a column that the triggered action references:
If a column is altered in the table on which the trigger is defined (the subject table), the alter is
processed, and the dependent trigger packages are invalidated.

Renaming the table for which the trigger is defined, or tables referenced in the triggered-action:
You cannot rename a table for which a trigger is defined (the subject table). Except for the subject
table, you can rename any table to which the SQL statements in the triggered action refer. After
renaming such a table, drop the trigger and then re-create the trigger so that it refers to the renamed
table.

Dropping the table or view for which a trigger is defined:
If the table or view that a trigger is defined on is dropped, the trigger is also dropped.

Effects of dropping or revoking privileges on an object referenced in the triggered-action:
Dropping an object that is referenced in the body of a trigger, or revoking a privilege to an object that is
referenced in the body of a trigger, might have the following results:

• Dropping any table, view, alias, or index that is referenced or used within the SQL statements in the
triggered action causes the trigger and its package to be invalidated.

• Dropping a synonym that is referenced does not have any effect on the trigger or its package.
• Dropping a user-defined function that is referenced by the SQL statements in the triggered action is

not allowed. An error occurs.
• Dropping a sequence that is referenced by the SQL statements in the triggered action is not allowed.

An error occurs.
• Revoking a privilege on which the trigger depends causes the trigger and its package to be

invalidated. If the appropriate privilege does not exist when the trigger package is rebound, the
SQL statement that references the object fails.

Error handling in triggers:
A trigger can return errors, like other SQL statements. Applications need to account for the possible
errors that can be expected when a trigger is invoked.

Triggers and global variables:
The content of a global variable that is referenced by a trigger is inherited from the triggering SQL
operation (delete, insert, or update).

Special registers:
The values of the special registers that are used in the trigger body are determined when the trigger is
activated. The value of the CURRENT PACKAGESET special register is set to the schema name of the
trigger, and the values of the other special registers are inherited from the triggering SQL operation
(insert, update, or delete). Special register values are saved when a trigger is activated and are
restored on return from the trigger. The CURRENT DATE, CURRENT TIME, and CURRENT TIMESTAMP
special registers are not restored on return from the trigger.

Result sets for stored procedures:
If a trigger invokes a stored procedure that returns result sets, the application that activated the
trigger cannot access those result sets.

Transaction isolation:
All of the statements in the SQL-trigger-body run under the isolation level that is in effect for the
trigger.

Limiting processor time:
The Db2 resource limit facility allows you to specify the maximum amount of processor time for a
dynamic, manipulative SQL statement such as SELECT or SQL data change statements. The execution
of a trigger is counted as part of the triggering SQL statement.

Errors binding triggers:
When a CREATE TRIGGER statement is bound, the SQL statements within the triggered action might
not be fully parsed. Syntax errors in those statements might not be caught until the CREATE TRIGGER
statement is executed.

1782 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Characteristics of the package that is generated for a trigger:
The package that is associated with the trigger is named as follows:

• location is set to the value of the CURRENT SERVER special register.
• collection-id (schema) for the package is the same as the schema qualifier of the trigger.
• package-id is the same as the name of the trigger.
• version-id is an empty string.

Db2 creates the trigger package with the following initial attributes (some of these attributes can be
modified using the REBIND TRIGGER PACKAGE command):

• ACTION(ADD)
• ARCHIVESENSITIVE(YES)
• BUSTIMESENSITIVE(YES)
• CURRENTDATA(NO)
• DBPROTOCOL(DRDA)
• DEGREE(1)
• DESCSTAT(value from the DESCSTAT subsystem parameter)
• DYNAMICRULES(BIND)
• ENABLE(*)
• ENCODING(0)
• EXPLAIN(NO)
• FLAG(I)
• ISOLATION(CS)
• REOPT(NONE)
• NODEFER(PREPARE)
• OPTHINT
• OWNER(authorization ID) or ROLE
• PATH(path)
• RELEASE(COMMIT)
• ROUNDING(value from the CURRENT DECFLOAT ROUNDING MODE special register)
• SQLERROR(NOPACKAGE)
• SYSTIMESENSITIVE(YES)
• QUALIFIER(authorization ID)
• VALIDATE(BIND)

The values of OWNER, QUALIFIER, and PATH are set depending on whether the CREATE TRIGGER
statement is embedded in a program or issued interactively. If the statement is embedded in a
program, OWNER and QUALIFIER are the owner and qualifier of the package or plan. PATH is the
value from the PATH bind option. If the statement is issued interactively, both OWNER and QUALIFIER
are the SQL authorization ID. PATH is the value in the CURRENT PATH special register.

Multiple versions of a trigger package are not allowed. Use the REBIND TRIGGER PACKAGE command
to explicitly rebind the basic trigger package. To specify the name of a trigger package for the bind
commands, the trigger name must conform to the rules for an ordinary identifier.

A trigger package becomes invalid if an object or privilege on which it depends is dropped or revoked.
The next time that the trigger is activated, Db2 attempts to rebind the invalid trigger package. If the
automatic rebind is unsuccessful, the trigger package remains invalid.

Chapter 7. Statements 1783

You cannot create another package from the trigger package, such as with the BIND COPY command.
The only way to drop a trigger package is to drop the trigger or the subject table. Dropping the trigger
drops the trigger package; dropping the subject table drops the trigger and the trigger package.

Each time that the trigger activates, the trigger package executes one or more times.

Considerations for SQL processor programs:
SQL processor programs, such as SPUFI, the command line processor, and DSNTEP2, might not
correctly parse SQL statements in the triggered action that are ended with semicolons. These
processor programs accept multiple SQL statements, each separated with a terminator character,
as input. Processor programs that use a semicolon as the SQL statement terminator can truncate
a CREATE TRIGGER statement with embedded semicolons and pass only a portion of it to Db2.
Therefore, you might need to change the SQL terminator character for these processor programs.
For information on changing the terminator character for SPUFI and DSNTEP2, see Setting the SQL
terminator character in a SPUFI input data set (Db2 Application programming and SQL) and DSNTEP2
and DSNTEP4 sample programs (Db2 Application programming and SQL).

Application compatibility level:
The SQL statements in the trigger body must conform to the behavior specified by the application
compatibility option in effect. The application compatibility value used to process the trigger is
recorded in the APPLCOMPAT column of the SYSIBM.SYSPACKAGE catalog table.

Alternative syntax and synonyms:
To provide compatibility with previous releases of Db2 or other products in the Db2 family, Db2
supports the following keywords:

• OLD TABLE as a synonym for OLD_TABLE
• NEW TABLE as a synonym for NEW_TABLE

Obfuscated statements:
A CREATE TRIGGER statement can be executed in obfuscated form. In an obfuscated statement, only
the trigger name and the WRAPPED keyword are readable. The rest of the statement is encoded in
such a way that it is not readable but can be decoded by a database server that supports obfuscated
statements. The WRAP scalar function produces obfuscated statements. Any debug options that are
specified when the trigger is created from an obfuscated statement are ignored.

Examples for CREATE TRIGGER (basic)

Example 1

Create two triggers that track the number of employees that a company manages. The subject table
is the EMPLOYEE table, and the triggers increment and decrement a column with the total number of
employees in the COMPANY_STATS table. The tables have these columns:

EMPLOYEE table: ID, NAME, ADDRESS, and POSITION
COMPANY_STATS table: NBEMP, NBPRODUCT, and REVENUE

This example shows the use of transition variables in a row trigger to maintain summary data in
another table.

Create the first trigger, NEW_HIRE, so that it increments the number of employees each time a new
person is hired; that is, each time a new row is inserted into the EMPLOYEE table, increase the value of
column NBEMP in table COMPANY_STATS by 1.

 CREATE TRIGGER NEW_HIRE
 AFTER INSERT ON EMPLOYEE
 FOR EACH ROW MODE DB2SQL
 BEGIN ATOMIC
 UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
 END

1784 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_setsqlterminator.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_setsqlterminator.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_dsntep24.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_dsntep24.html

Create the second trigger, FORM_EMP, so that it decrements the number of employees each time an
employee leaves the company; that is, each time a row is deleted from the table EMPLOYEE, decrease
the value of column NBEMP in table COMPANY_STATS by 1.

 CREATE TRIGGER FORM_EMP
 AFTER DELETE ON EMPLOYEE
 FOR EACH ROW MODE DB2SQL
 BEGIN ATOMIC
 UPDATE COMPANY_STATS SET NBEMP = NBEMP - 1;
 END

Example 2

Create a trigger, REORDER, that invokes user-defined function ISSUE_SHIP_REQUEST to issue a
shipping request whenever a parts record is updated and the on-hand quantity for the affected part
is less than 10% of its maximum stocked quantity. User-defined function ISSUE_SHIP_REQUEST
orders a quantity of the part that is equal to the part's maximum stocked quantity minus its on-hand
quantity; the function also ensures that the request is sent to the appropriate supplier.

The parts records are in the PARTS table. Although the table has more columns, the trigger is
activated only when columns ON_HAND and MAX_STOCKED are updated.

 CREATE TRIGGER REORDER
 AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
 REFERENCING NEW AS NROW
 FOR EACH ROW
 MODE DB2SQL
 WHEN (NROW.ON_HAND < 0.10 * NROW.MAX_STOCKED)
 BEGIN ATOMIC
 VALUES(ISSUE_SHIP_REQUEST(NROW.MAX_STOCKED - NROW.ON_HAND, NROW.PARTNO));
 END

Example 3

Repeat the scenario in Example 2 except use a fullselect instead of a VALUES statement to invoke
the user-defined function. This example also shows how to define the trigger as a statement trigger
instead of a row trigger. For each row in the transition table that evaluates to true for the WHERE
clause, a shipping request is issued for the part.

 CREATE TRIGGER REORDER
 AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
 REFERENCING NEW_TABLE AS NTABLE
 FOR EACH STATEMENT MODE DB2SQL
 BEGIN ATOMIC
 SELECT ISSUE_SHIP_REQUEST(MAX_STOCKED - ON_HAND, PARTNO)
 FROM NTABLE
 WHERE (ON_HAND < 0.10 * MAX_STOCKED);
 END

Example 4
Assume that table EMPLOYEE contains column SALARY. Create a trigger, SAL_ADJ, that prevents an
update to an employee's salary that exceeds 20% and signals such an error. Have the error that
is returned with an SQLSTATE of '75001' and a description. This example shows that the SIGNAL
statement is useful for restricting changes that violate business rules.

 CREATE TRIGGER SAL_ADJ
 AFTER UPDATE OF SALARY ON EMPLOYEE
 REFERENCING OLD AS OLD_EMP
 NEW AS NEW_EMP
 FOR EACH ROW MODE DB2SQL
 WHEN (NEW_EMP.SALARY > (OLD_EMP.SALARY * 1.20))
 BEGIN ATOMIC
 SIGNAL SQLSTATE '75001' ('Invalid Salary Increase - Exceeds 20');
 END

Example 5
Assume that the following statements create a table, WEATHER (which stores temperature values
in Fahrenheit), and a view, CELSIUS_WEATHER for users who prefer to work in Celsius instead of
Fahrenheit:

Chapter 7. Statements 1785

 CREATE TABLE WEATHER
 (CITY VARCHAR(25),
 TEMPF DECIMAL(5,2));
 CREATE VIEW CELSIUS_WEATHER (CITY, TEMPC) AS
 SELECT CITY, (TEMPF-32)/1.8
 FROM WEATHER;

The following INSTEAD OF trigger is used on the CELSIUS_WEATHER view to convert Celsius values to
Fahrenheit values and then insert the Fahrenheit value into the WEATHER table:

 CREATE TRIGGER CW_INSERT INSTEAD OF INSERT
 ON CELSIUS_WEATHER
 REFERENCING NEW AS NEWCW
 FOR EACH ROW MODE DB2SQL
 BEGIN ATOMIC
 INSERT INTO WEATHER VALUES
 (NEWCW.CITY,
 1.8*NEWCW.TEMPC+32);
 END

Example 6
Consider an application that records and tracks changes to stock prices. The database contains two
tables, CURRENTQUOTE and QUOTEHISTORY. CURRENTQUOTE has columns SYMBOL, QUOTE, and
STATUS. QUOTEHISTORY has columns SYMBOL, QUOTE, and QUOTE_TIMESTAMP.

When the QUOTE column of CURRENTQUOTE is updated, the new quote must be copied, with a
timestamp, to the QUOTEHISTORY table. Also, the STATUS column of CURRENTQUOTE must be
updated to reflect whether the stock is:

1 Rising in value

2 At a new high for the year

3 Dropping in value

4 At a new low for the year

5 Steady in value

CREATE TRIGGER statements that accomplish these tasks are as follows:

Trigger STOCK_STATUS sets the status:

CREATE TRIGGER STOCK_STATUS
 NO CASCADE BEFORE UPDATE OF QUOTE ON CURRENTQUOTE
 REFERENCING NEW AS NEWQUOTE
 OLD AS OLDQUOTE
 FOR EACH ROW MODE DB2SQL
 BEGIN ATOMIC
 SET NEWQUOTE.STATUS = CASE
 WHEN NEWQUOTE.QUOTE >
 (SELECT MAX(QUOTE)
 FROM QUOTEHISTORY
 WHERE SYMBOL = NEWQUOTE.SYMBOL
 AND YEAR(QUOTE_TIMESTAMP) = YEAR(CURRENT DATE))
 THEN 'High'
 WHEN NEWQUOTE.QUOTE <
 (SELECT MIN(QUOTE)
 FROM QUOTEHISTORY
 WHERE SYMBOL = NEWQUOTE.SYMBOL
 AND YEAR(QUOTE_TIMESTAMP) = YEAR(CURRENT DATE))
 THEN 'Low'
 WHEN NEWQUOTE.QUOTE > OLDQUOTE.QUOTE THEN 'Rising'
 WHEN NEWQUOTE.QUOTE < OLDQUOTE.QUOTE THEN 'Dropping'
 WHEN NEWQUOTE.QUOTE = OLDQUOTE.QUOTE THEN 'Steady'
 END;
END

Trigger RECORD_HISTORY records changes in the QUOTEHISTORY table:

CREATE TRIGGER RECORD_HISTORY
 AFTER UPDATE OF QUOTE ON CURRENTQUOTE
 REFERENCING NEW AS NEWQUOTE FOR EACH ROW MODE DB2SQL

1786 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 BEGIN ATOMIC
 INSERT INTO QUOTEHISTORY VALUES (NEWQUOTE.SYMBOL,
 NEWQUOTE.QUOTE,
 CURRENT TIMESTAMP);
 END

Related concepts
Triggers (Introduction to Db2 for z/OS)
Naming conventions
The rules for forming a name depend on the type of the object designated by the name.
Related tasks
Creating a trigger (Db2 Application programming and SQL)

CREATE TRUSTED CONTEXT statement
The CREATE TRUSTED CONTEXT statement defines a trusted context at the current server.

Invocation for CREATE TRUSTED CONTEXT
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is implicitly or explicitly
specified.

Authorization for CREATE TRUSTED CONTEXT
The privilege set that is defined below must include at least one of the following:

• SYSADM authority
• SECADM authority

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the application is bound in a trusted context with
the ROLE AS OBJECT OWNER clause specified, a role is the owner. Otherwise, an authorization ID is the
owner.

If the statement is dynamically prepared, the privilege set is the privileges that are held by the SQL
authorization ID of the process unless the process is within a trusted context and the ROLE AS OBJECT
OWNER clause is specified. In that case, the privileges set is the privileges that are held by the role that is
associated with the primary authorization ID of the process.

Chapter 7. Statements 1787

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_triggers.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createtrigger.html

Syntax for CREATE TRUSTED CONTEXT

CREATE TRUSTED CONTEXT context-name

BASED UPON CONNECTION USING SYSTEM AUTHID authorization-name

NO DEFAULT ROLE

DEFAULT ROLE role-name
WITHOUT ROLE AS OBJECT OWNER

WITH ROLE AS OBJECT OWNER AND QUALIFIER

DISABLE

ENABLE

NO DEFAULT SECURITY LABEL

DEFAULT SECURITY LABEL seclabel-name

ATTRIBUTES
1

(

,

ADDRESS address-value

ENCRYPTION encryption-value
2

SERVAUTH servauth-value
,

JOBNAME jobname-value

3
)

WITH USE FOR

,

authorization-name

user-options

EXTERNAL SECURITY PROFILE profile-name

user-options

PUBLIC
WITHOUT AUTHENTICATION

WITH AUTHENTICATION

Notes:
1 This clause and the clauses that follow can be specified in any order. Each clause must not be specified
more than one time.
2 ENCRYPTION must not be specified more than one time.
3 Each pair of attribute name and corresponding value must be unique.

user-options:

1

ROLE role-name SECURITY LABEL seclabel-name

WITHOUT AUTHENTICATION

WITH AUTHENTICATION

Notes:

1788 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

1 These clauses can be specified in any order. Each clause must not be specified more than one time.

Description for CREATE TRUSTED CONTEXT
context-name

Names the trusted context. The name must not identify a trusted context that exists at the current
server.

BASED UPON CONNECTION USING SYSTEM AUTHID authorization-name
Specifies that the context is a connection that is established by the authorization ID that is specified
by authorization-name. The system authorization ID is the primary authorization ID. For a remote
connection, it is derived from the system user ID that is provided by an external entity, such as a
middleware server. For a local connection, the system authorization ID is derived depending on the
sources, as specified in Table 224 on page 1789.

Table 224. System authorization ID for a local connection

Source of local connection System authorization ID

Started task (RRSAF) USER parameter on JOB statement or RACF
USER.

TSO TSO logon ID

BATCH USER parameter on JOB statement

authorization-name must not be associated with an existing trusted context.
NO DEFAULT ROLE or DEFAULT ROLE role-name

Specifies whether a default role is associated with a trusted connection that is based on the specified
trusted context.
NO DEFAULT ROLE

Specifies that the trusted context does not have a default role. The authorization ID of the process
is the owner of any object that is created using a trusted connection that is based on this trusted
context. That authorization ID must possess all of the privileges that are necessary to create that
object.

NO DEFAULT ROLE is the default.

DEFAULT ROLE role-name
Specifies that role-name is the role for the trusted context. role-name must identify a role that
exists at the current server. This role is used with the user in a trusted connection that is based on
the specified trusted context when the user does not have a user-specified role that is defined as
part of the definition of this trusted context.

WITHOUT ROLE AS OBJECT OWNER or WITH ROLE AS OBJECT OWNER AND QUALIFIER
Specifies whether a role is used as the owner of objects that are created using a trusted connection
that is based on the specified trusted context.
WITHOUT ROLE AS OBJECT OWNER

Specifies that a role is not used as the owner of the objects that are created using a trusted
connection that is based on the specified trusted context. The authorization ID of the process is
the owner of any object that is the created using a trusted connection that is based on this trusted
context. That authorization ID must possess all of the privileges that are necessary to create the
object.

WITHOUT ROLE AS OBJECT OWNER is the default.

WITH ROLE AS OBJECT OWNER AND QUALIFIER
Specifies that the context assigned role is the owner of the objects that are created using a trusted
connection that is based on this trusted context and that role must possess all of the privileges
that are necessary to create the object. The context assigned role is the role that is defined

Chapter 7. Statements 1789

for the user within this trusted context, if one is defined. Otherwise, the role is the default role
that is associated with the trusted context. The role is also used as the grantor for any GRANT
statements that are issued, and the revoker for any REVOKE statement that are issued using a
trusted connection that is based on this trusted context.
AND QUALIFIER

Specifies that role-name will be used as the default for the CURRENT SCHEMA special register.
The role-name will also be included in the SQL PATH (in place of CURRENT SQLID).

When WITH ROLE AS OBJECT OWNER AND QUALIFIER is not specified, there is no change
to the default for the CURRENT SCHEMA special register and the SQL PATH.

DISABLE or ENABLE
Specifies whether the trusted context is created in the enabled or disabled state.
DISABLE

Specified that the trusted context is disabled when it is created. A trusted context that is disabled
is not considered when a trusted connection is established. DISABLE is the default.

ENABLE
Specifies that the trusted context is enabled when it is created.

NO DEFAULT SECURITY LABEL or DEFAULT SECURITY LABEL seclabel-name
Specifies whether the trusted connection has a default security label.
NO DEFAULT SECURITY LABEL

Specifies that the trusted context does not have a default security label.
DEFAULT SECURITY LABEL seclabel-name

Specifies that seclabel-name is the default security label for the trusted context and is the security
label that is used for multilevel security verification. seclabel-name must identify one of the RACF
SECLABEL values that is defined for the SYSTEM AUTHID. This security label is used for a trusted
connection that is based on the specified trusted context when the user does not have a specific
security label defined as part of the definition of this trusted context. In this case, seclabel-name
must also identify one of the RACF SECLABEL values that is defined for the user.

ATTRIBUTES
Specifies a list of one or more connection trust attributes that are used to define the trusted context.
ADDRESS address-value

Specifies the actual communication address that is used by the connection to communicate with
the database manager. The protocol supported is only for TCP/IP. The ADDRESS attribute can be
specified multiple times, but each address-value must be unique.

When establishing a trusted connection, if multiple values are defined for the ADDRESS attribute
for a trusted context, a candidate connection is considered to match this attribute if the address
that is used by a connection matches any of the defined values for the ADDRESS attribute of the
trusted context.

address-value specifies a string constant that contains the value that is associated with the
ADDRESS trust attribute. address-value must be an IPv4 address, an IPv6 address, or a secure
domain name with a length no greater than 254 bytes. No validation of address-value is done
at the time the CREATE TRUSTED CONTEXT statement is processed. address-value must be left
justified within the string constant.

• An IPv4 address is represented as a dotted decimal address. An example of an IPv4 address is
9.112.46.111

• An IPv6 address is represented as a colon hexadecimal address. An example of an IPv6
address is 2001:0DB8:0000:0000:0008:0800:200C:417A. This address can also be express
in a compressed form as 2001:DB8::8:800:200C:417A.

• A domain name is converted to an IP address by the domain name server where a resulting
IPv4 or IPv6 address is determined. An example of a domain name is www.ibm.com. The
gethostbyname socket call is used to resolve the domain name.

1790 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

ENCRYPTION encryption-value
Specifies the minimum level of encryption of the data stream (network encryption).

encryption-value specifies a string constant that contains the value that is associated with the
ENCRYPTION trust attribute. encryption-value must be left justified within the string constant.
ENCRYPTION must not be specified more than one time in the statement. encryption-value must
be one of the following:

• NONE, which specifies that no specific level of encryption is required.
• LOW, which specifies that a minimum of light encryption is required. LOW corresponds to 64-bit

DRDA encryption.
• HIGH, which specifies that strong encryption is required. HIGH corresponds to SSL encryption.

The following table summarizes when a trusted context can be used depending on the encryption
that is used by the existing connection. If the trusted context cannot be used for the connection, a
warning is returned.

Table 225. Summary of when trusted context can be used by an existing connection

Encryption that is used by the
existing connection

Value of the ENCRYPTION
clause for the trusted context

Can the trusted context be
used for the connection?

No encryption NONE Yes

No encryption LOW No

No encryption HIGH No

Low encryption (64-bit) NONE Yes

Low encryption (64-bit) LOW Yes

Low encryption (64-bit) HIGH No

High encryption (128-bit) NONE Yes

High encryption (128-bit) LOW Yes

High encryption (128-bit) HIGH Yes

JOBNAME jobname-value
Specifies the z/OS job name or started task name (depending on the source of the address
space) for local applications. The JOBNAME attribute can be specified multiple times, but each
jobname-value must be unique.

jobname-value specifies a string constant that contains the value that is associated with the
JOBNAME trust attribute. jobname-value is an EBCDIC 8 byte value that specifies the job name
or the started task name. The value must be left justified within the string constant. The last
character in the name can be a wildcard character (*) if the first character is an alphabetic
character. If the job name ends with a wildcard, any job names that begin with the specified
characters are considered for establishing the trusted connection.

The following table lists possible values for the job name depending on the source of the address
space.

Table 226. Job name for local connection

Source of the address space Job name

RRSAF Job name or started task name

TSO TSO logon ID

BATCH Job name on JOB statement

Chapter 7. Statements 1791

SERVAUTH servauth-value
Specifies the name of a resource in the RACF SERVAUTH class. This resource is the network
access security zone name that contains the IP address of the connection that is used to
communicate with Db2. The SERVAUTH attribute can be specified multiple times but each
servauth-value must be unique.

servauth-value specifies a string constant that contains the value that is associated with the
SERVAUTH trust attribute. servauth-value is an EBCDIC 64 byte RACF SERVAUTH CLASS resource
name. servauth-value must be left justified in the string constant. No validation of servauth-value
is done at the time the CREATE TRUSTED CONTEXT statement is processed.

WITH USE FOR
Specifies who can use a trusted connection that is based on the specified trusted context.
authorization-name

Specifies that the trusted connection can be used by the specified authorization-name. This is the
Db2 primary authorization ID. The authorization-name must not be specified more than one time
in the WITH USE FOR clause.
ROLE role-name

Specifies that role-name is the role that is used when a trusted connection is used by the
specified authorization-name. The role-name must identify a role that exists at the current
server. The role that is explicitly specified for the user overrides any default role that is
associated with the trusted context.

SECURITY LABEL seclabel-name
Specifies that seclabel-name is the security label to use for multilevel security verification
when the trusted connection is used by the specified authorization-name. The seclabel-name
must be one of the RACF SECLABEL values that is defined for the user. The security label that
is explicitly specified for the user overrides any default security label that is associated with
the trusted context.

WITHOUT AUTHENTICATION or WITH AUTHENTICATION
Specifies whether use of the trusted connection requires authentication of the user.
WITHOUT AUTHENTICATION

Specifies that use of a trusted connection by the user does not require authentication.
WITHOUT AUTHENTICATION is the default.

WITH AUTHENTICATION
Specifies that use of a trusted connection requires the authentication token with the
authorization ID to authenticate the user. If a trusted connection is established locally, the
authentication token is the password that is provided by the CONNECT statement with the
USER and USING clauses. If the trusted connection is established from a remote client,
the authentication token can be one of the following tokens:

• password
• RACF Passticket
• Kerberos token

EXTERNAL SECURITY PROFILE profile-name
Specifies that the trusted connection can be used by the Db2 primary authorization IDs that are
permitted to use the specified profile-name in RACF. profile-name must not be specified more
than one time in the WITH USE FOR clause. If an authorization ID is permitted to use more than
one specified profile-name, the role that is specified for profile-name can be associated with the
process if the user authentication satisfies the AUTHENTICATION definition. This role can hold
additional privileges that are available to the process.
ROLE role-name

Specifies that role-name is the role that is used when a trusted connection is used by any
authorization ID permitted to use the specified profile-name in RACF. The role-name must
identify a role that exists at the current server. The role that is explicitly specified for the
profile overrides any default role that is associated with the trusted context.

1792 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SECURITY LABEL seclabel-name
Specifies that seclabel-name is the security label to use for multilevel security verification
when the trusted connection is used by any authorization ID that is permitted to use the
specified profile-name in RACF. The seclabel-name must be one of the RACF SECLABEL
values that is defined for the user. The security label that is explicitly specified for the profile
overrides any default security label that is associated with the trusted context.

WITHOUT AUTHENTICATION or WITH AUTHENTICATION
Specifies whether use of the trusted connection requires authentication of the user.
WITHOUT AUTHENTICATION

Specifies that use of a trusted connection by the user does not require authentication.
WITHOUT AUTHENTICATION is the default.

WITH AUTHENTICATION
Specifies that use of a trusted connection requires the authentication token with the
authorization ID to authenticate the user. If a trusted connection is established locally, the
authentication token is the password that is provided by the CONNECT statement with the
USER and USING clauses. If the trusted connection is established from a remote client,
the authentication token can be one of the following tokens:

• password
• RACF Passticket
• Kerberos token

PUBLIC
Specifies that a trusted connection that is based on the specified trusted context can be used
by any user. All users that are using a trusted connection that is defined with PUBLIC use the
privileges that are associated with the default role for the associated trusted context. If the
default role is not defined for the trusted context, there is no role associated with the users that
use a trusted connection that is based on the specified trusted context.

If the default security label for the trusted context is defined, all users that are using the trusted
context must have the security label defined as one of the RACF SECLABEL values for the user.
The default security label is used for multilevel security verification with all users that are using
the trusted context.

WITHOUT AUTHENTICATION or WITH AUTHENTICATION
Specifies whether use of the trusted connection requires authentication of the user.
WITHOUT AUTHENTICATION

Specifies that use of a trusted connection by the user does not require authentication.
WITHOUT AUTHENTICATION is the default.

WITH AUTHENTICATION
Specifies that use of a trusted connection requires the authentication token with the
authorization ID to authenticate the user. If a trusted connection is established locally, the
authentication token is the password that is provided by the CONNECT statement with the
USER and USING clauses. If the trusted connection is established from a remote client, the
authentication token can be one of the following tokens:

• password
• RACF Passticket
• Kerberos token

Notes for CREATE TRUSTED CONTEXT

Owner privileges: There are no specific privileges on a trusted context.

Requirement for trusted connections: If you set field 1 (RESTART or DEFER) to DEFER and set field 2
(objects to restart or defer) to ALL in installation panel DSNTIPS, you cannot use trusted connections.

Chapter 7. Statements 1793

Order of precedence for users of a trusted connection: The specifications for a user are determined in the
following order of precedence:

• authorization-name
• EXTERNAL SECURITY PROFILE profile-name
• PUBLIC

For example, assume that a trusted context is defined with use for JOE WITH AUTHENTICATION,
EXTERNAL SECURITY PROFILE SPROFILE WITHOUT AUTHENTICATION, and PUBLIC WITH
AUTHENTICATION. Users JOE and SAM are permitted to use the RACF PROFILE SPROFILE. If the
trusted connection is used by JOE, authentication is required. If the trusted connection is used by SAM,
authentication is not required. However, if user SALLY uses the trusted connection, authentication is
required.

User-clause SYSTEM AUTHID considerations: If the authorization-name that is specified in the SYSTEM
AUTHID clause is the same as the authorization-name that is specified in the user-clause authorization-
name, the role or the security label that is specified for authorization-name takes precedence over the
default value. The value that is specified for the profile-name, is permitted to use the profile. If the
authorization name that is specified in the SYSTEM AUTHID clause is permitted to use one of the profile
names and is not defined in authorization-name, the role or the security label that is specified for that
profile-name takes precedence over the default value.

If authentication is required for SYSTEM AUTHID, either by specification of the AUTHENTICATION clause
in the user-clause or by setting the value of the TCP/IP Already Verified subsystem parameter to NO,
the authentication requirement takes precedence when establishing a remote trusted connection. For
example, if authorization-name is the same as the authorization name that is specified for SYSTEM
AUTHID and the WITHOUT AUTHENTICATION clause is specified, but the TCP/IP Already Verified
subsystem parameter is set to NO, an authentication token is required for SYSTEM AUTHID when the
remote trusted connection is established. If authorization-name is the SYSTEM AUTHID and the WITH
AUTHENTICATION clause is specified, but the TCP/IP Already Verified subsystem parameter is set to YES,
an authentication token is still required for SYSTEM AUTHID.

Specifying a role in the definition of a trusted context: The definition of a trusted context can designate
a role for a specific authorization ID, and a default role for use for an authorization ID for which a specific
role has not been specified in the definition of the trusted context. This role can be used with a trusted
connection that is based on the trusted context, but it does not make the role available outside of a
trusted connection that is based on the trusted context. When an SQL statement that is not a CREATE,
GRANT, or REVOKE statement is issued using a trusted connection, the privileges that are held by a
role that is in effect for the authorization ID within the definition of the associated trusted context are
considered in addition to other privileges that are directly held by the authorization ID of the statement.
The CREATE, GRANT, and REVOKE statements only consider the privileges of the role that is in effect for
the trusted connection, or the authorization ID of the statement if a role is not in effect for the trusted
connection. If ROLE AS OBJECT OWNER is in effect for a trusted connection, the role that is in effect for
the authorization ID for the trusted connection becomes the owner of any object that is created while
using the trusted connection.

When a newly created trusted context takes effect: The newly created trusted context takes effect after
the CREATE TRUSTED CONTEXT statement is committed. If the CREATE TRUSTED CONTEXT statement
results in an error or is rolled back, no trusted context is created.

Examples for CREATE TRUSTED CONTEXT

Example 1: The following statement creates a trusted context called CTX1, which is based on a
connection and can only be used by users JOE and SAM. Authentication information is required for JOE to
use the trusted connection. The trusted context specifies a default role called CTXROLE. However, when

1794 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

JOE uses the trusted connection, the default role is overridden by the user role, ROLE1. When SAM uses
the trusted connection, SAM uses the default role. CTX1 is enabled when it is created.

 CREATE TRUSTED CONTEXT CTX1
 BASED UPON CONNECTION USING SYSTEM AUTHID ADMF001
 ATTRIBUTES (ADDRESS '9.30.131.203',
 ENCRYPTION 'LOW')
 DEFAULT ROLE CTXROLE
 ENABLE
 WITH USE FOR SAM, JOE ROLE ROLE1 WITH AUTHENTICATION;

Example 2: The following statement creates a trusted context, CTX2, for a started task, WASPROD. CTX2
is based on a connection, can be used by user SALLY, specifies a default role CTXROLE, and is enabled
when it is created. SALLY uses the default role that is associated with the trusted context.

 CREATE TRUSTED CONTEXT CTX2
 BASED UPON CONNECTION USING SYSTEM AUTHID ADMF002
 ATTRIBUTES (JOBNAME 'WASPROD')
 DEFAULT ROLE CTXROLE WITH ROLE AS OBJECT OWNER AND QUALIFIER
 ENABLE
 WITH USE FOR SALLY;

CREATE TYPE statement
The CREATE TYPE statement defines a user-defined data type at the current server.

The following types of user-defined data types can be defined:

Array
A user-defined data type that is an ordinary array or an associative array. The elements of an array
type are based on one of the built-in data types. See “CREATE TYPE statement (array type)” on page
1795.

Distinct
A user-defined data type that shares a common representation with one of the built-in data
types. Functions that cast between the user-defined distinct type and the source built-in data type
are generated when the user-defined distinct type is created. Optionally, support for comparison
operations to use with the user-defined distinct type can be generated when the user-defined distinct
type is created. See “CREATE TYPE statement (distinct type)” on page 1801.

Related concepts
Distinct types (Db2 Application programming and SQL)
Arrays in SQL statements (Db2 Application programming and SQL)

CREATE TYPE statement (array type)
The CREATE TYPE (array) statement defines an array type at the current server. An array type is a
user-defined data type that is an ordinary array or an associative array. The elements of an array type are
based on one of the built-in data types.

Invocation for CREATE TYPE (array)
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES RUN
behavior is in effect. For more information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for CREATE TYPE (array)
The privilege set that is defined below must include at least one of the following:

• The CREATEIN privilege on the schema
• SYSADM or SYSCTRL authority
• System DBADM

Chapter 7. Statements 1795

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_dinstincttype.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_arrays.html

• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The authorization ID that matches the schema name implicitly has the CREATEIN privilege on the
schema.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package.

If the statement is running under a trusted context for which the ROLE AS OBJECT OWNER clause is
specified, the owner is a role. The implicit schema match does not apply, and this role needs to include
one of the previously listed conditions.

If the statement is dynamically prepared and is not running in a trusted context for which the ROLE AS
OBJECT OWNER clause is specified, the privilege set is the set of privileges that are held by the SQL
authorization ID of the process. The specified distinct type name can include a schema name (a qualifier).
If the schema name is not the same as the SQL authorization ID of the process, one of the following
conditions must be met:

• The privilege set includes SYSADM or SYSCTRL authority.
• The SQL authorization ID of the process has the CREATEIN privilege on the schema.

Syntax for CREATE TYPE (array)

CREATE TYPE array-type-name AS built-in-type ARRAY [

2147483647

integer-constant

data-type2

]

built-in-type:

1796 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

BIT

DATA

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID ASCII

EBCDIC

UNICODE

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

data-type2:

Chapter 7. Statements 1797

INTEGER

INT

VARCHAR

CHARACTER

CHAR

VARYING

( integer)

CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

BIT

DATA

Description for CREATE TYPE (array)
array-type-name

Names the array type. The name, including the implicit or explicit qualifier, must not identify any other
built-in or user-defined type that exists at the current server.

The unqualified form of array-type-name must not be any of the following system-reserved keywords,
even if you specify them as delimited identifiers:

ALL LIKE UNIQUE
AND MATCH UNKNOWN
ANY NOT =
BETWEEN NULL =
DISTINCT ONLY <
EXCEPT OR <=
EXISTS OVERLAPS <
FALSE SIMILAR >
FOR SOME >=
FROM TABLE >
IN TRUE <>
IS TYPE

The schema name can be 'SYSTOOLS' if the privilege set includes the SYSADM or SYSCTRL privilege.
Otherwise, the schema name must not begin with 'SYS' unless the schema name is 'SYSADM'.

built-in-type
Specifies the built-in data type of the array elements. The data type must not be ROWID or XML. For
more information on built-in data types, see built-in-type in CREATE TABLE.

CCSID ASCII, EBCDIC, or UNICODE in a built-in-type specification
If the data type is a character or graphic string and a CCSID clause is not specified for built-in-type,
the default CCSID for built-in-type is determined as follows:

• If data-type2 is a character string data type with an explicit CCSID clause, that same CCSID value is
used for built-in-type.

• If data-type2 is a character string data type without an explicit CCSID clause, the CCSID for built-in-
type is determined from the encoding scheme that is indicated by the value of field DEF ENCODING
SCHEME on installation panel DSNTIPF.

If a CCSID clause is specified for built-in-type and for data-type2, the CCSID values must be the same.

FOR SBCS, MIXED, or BIT DATA in a built-in-type specification
Specifies a subtype for a character string data type (VARCHAR). Do not use this clause with any other
data type.
SBCS

Single-byte data.
MIXED

Mixed data. Do not specify MIXED if the value of field MIXED DATA on installation panel DSNTIPF
is NO unless the CCSID UNICODE clause is also specified.

BIT
Bit data.

If you do not specify the FOR SBCS DATA, FOR MIXED DATA, or FOR BIT DATA clause, the default
value is determined as follows:

• For ASCII or EBCDIC data:

1798 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

– The default is SBCS when the value of field MIXED DATA on installation panel DSNTIPF is NO.
– The default is MIXED when the value is YES.

• For Unicode data, the default subtype is MIXED.

ARRAY[integer-constant]
Specifies that the type is an ordinary array with a maximum cardinality of integer-constant. The value
must be an integer that is greater than 0 and less than or equal to the largest positive integer value
(2147483647). The default is 2147483647. Each varying-length string array element is allocated as
its maximum length.

The cardinality of an array value is determined by the highest element position that is assigned to
the array value. The maximum cardinality of an array is limited by the total amount of memory that is
available to Db2 applications. Therefore, although an array with a large cardinality can be created, not
all elements might be available for use. An attempt to assign a value to an array element when there is
not enough memory results in an error.

ARRAY[data-type2]
Specifies that the type is an associative array that is indexed by values of data type data-type2. The
data type must be the INTEGER or VARCHAR data type. The value that is specified as the index during
assignment of a value to an array element must be assignable to a value of data-type2.

The cardinality of an array value is determined by the number of unique index values that are used
when during assignment of array elements.

CCSID ASCII, EBCDIC, or UNICODE in a data-type2 specification
If the data type is a character string, and a CCSID clause is not specified for data-type2, the default
CCSID is determined as follows:

• If built-in-type is a character string data type with an explicit CCSID clause, that same CCSID value is
used for data-type2.

• If built-in-type is a character string data type without an explicit CCSID clause, the CCSID for
data-type2 is determined from the encoding scheme that is indicated by the value of field DEF
ENCODING SCHEME on installation panel DSNTIPF.

If a CCSID clause is specified for built-in-type and for data-type2, the CCSID values must be the same.

FOR SBCS, MIXED, or BIT DATA in a data-type2 specification
Specifies a subtype for a character string data type (VARCHAR). Do not use this clause with any other
data type.
SBCS

Single-byte data.
MIXED

Mixed data. Do not specify MIXED if the value of field MIXED DATA on installation panel DSNTIPF
is NO unless the CCSID UNICODE clause is also specified.

BIT
Bit data.

If you do not specify the FOR SBCS DATA, FOR MIXED DATA, or FOR BIT DATA clause, the default
value is determined as follows:

• For ASCII or EBCDIC data:

– The default is SBCS when the value of field MIXED DATA on installation panel DSNTIPF is NO.
– The default is MIXED when the value is YES.

• For Unicode data, the default subtype is MIXED.

Notes for CREATE TYPE (array)
Array type usage: A user-defined array type can only be used as the data type of:

• An SQL variable

Chapter 7. Statements 1799

• A global variable
• A parameter or RETURNS data-type of an SQL scalar function
• A parameter of a native SQL procedure
• The target data type for a CAST specification

Generated cast functions: The successful execution of the CREATE TYPE (array) statement causes the
Db2 database manager to generate cast functions for the user-defined array type. Those cast functions
are recorded in the Db2 catalog. The unqualified names of the two cast functions are ARRAY and the
name of the array type. A generated cast function cannot be explicitly dropped. The cast functions that
are generated for an array type are implicitly dropped when the array type is dropped with the DROP
statement.

Examples for CREATE TYPE (array)

Example 1
Create an ordinary array user-defined type named PHONENUMBERS, with a maximum of 50
elements. The elements are of the DECIMAL(10,0) data type.

CREATE TYPE PHONENUMBERS AS DECIMAL(10,0) ARRAY[50];

Example 2
Create an ordinary array user-defined type named NUMBERS, in the schema GENERIC. You do not
know the maximum number of elements, so you use the default value. The elements are of the
DECFLOAT(34) data type.

CREATE TYPE GENERIC.NUMBERS AS DECFLOAT(34) ARRAY[];

Example 3
Create an associative array user-defined type named PERSONAL_PHONENUMBERS. The elements are
of the DECIMAL(16, 0) data type. The array type is indexed by strings such as 'Home', 'Work', or 'Cell',
so the index data type must be VARCHAR.

CREATE TYPE PERSONAL_PHONENUMBERS AS DECIMAL(16,0) ARRAY[VARCHAR(8)];

Example 4
Create an associative array user-defined type named CAPITALSARRAY. The elements are capital
cities. The index values are province, territory, or country names, so the index data type must be
VARCHAR.

CREATE TYPE CAPITALSARRAY AS VARCHAR(30) ARRAY[VARCHAR(20)];

Example 5
Create an associative array user-defined type named PRODUCTS. The elements are product
descriptions of up to 40 characters. The index values are product numbers, which have the INTEGER
data type.

CREATE TYPE PRODUCTS AS VARCHAR(40) ARRAY[INTEGER];

Related concepts
Arrays in SQL statements (Db2 Application programming and SQL)
Example of using arrays in an SQL procedure (Db2 Application programming and SQL)
Naming conventions

1800 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_arrays.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_storedprocarrayexample.html

The rules for forming a name depend on the type of the object designated by the name.

CREATE TYPE statement (distinct type)
The CREATE TYPE (distinct) statement defines a distinct type, which is a data type that a user defines. A
distinct type must be based on one of the built-in data types.

Successful execution of the statement also generates:

• A function to cast between the distinct type and its source type
• A function to cast between the source type and its distinct type
• As appropriate, support for the use of comparison operators with the distinct type

Invocation for CREATE TYPE (distinct)
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for CREATE TYPE (distinct)
The privilege set that is defined below must include at least one of the following:

• The CREATEIN privilege on the schema
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The authorization ID that matches the schema name implicitly has the CREATEIN privilege on the
schema.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the owner is a role, the implicit schema match does
not apply and this role needs to include one of the previously listed conditions.

If the statement is dynamically prepared and is not running in a trusted context for which the ROLE AS
OBJECT OWNER clause is specified, the privilege set is the set of privileges that are held by the SQL
authorization ID of the process. The specified distinct type name can include a schema name (a qualifier).
If the schema name is not the same as the SQL authorization ID of the process, one of the following
conditions must be met:

• The privilege set includes SYSADM or SYSCTRL authority.
• The SQL authorization ID of the process has the CREATEIN privilege on the schema.

Syntax for CREATE TYPE (distinct)

CREATE TYPE distinct-type-name AS source-data-type

INLINE LENGTH integer
1

Notes:
1 INLINE LENGTH can only be specified when source-data-type is a LOB data type.

source-data-type

Chapter 7. Statements 1801

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

BIT

DATA

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID ASCII

EBCDIC

UNICODE

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

ROWID

Description for CREATE TYPE (distinct)
distinct-type-name

Names the distinct type. The name, including the implicit or explicit qualifier, must not identify a
distinct type that exists at the current server.

1802 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• The unqualified form of distinct-type-name must not be the name of a built-in data type, BOOLEAN,
or any of following system-reserved keywords even if you specify them as delimited identifiers:

ALL LIKE UNIQUE
AND MATCH UNKNOWN
ANY NOT =
BETWEEN NULL ¬=
DISTINCT ONLY <
EXCEPT OR <=
EXISTS OVERLAPS ¬<
FALSE SIMILAR >
FOR SOME >=
FROM TABLE ¬>
IN TRUE <>
IS TYPE

• The qualified form of distinct-type-name is an SQL identifier (the schema name) followed by a period
and an SQL identifier.

The schema name can be 'SYSTOOLS' if the privilege set includes the SYSADM or SYSCTRL privilege.
Otherwise, the schema name must not begin with 'SYS' unless the schema name is 'SYSADM'.

source-data-type
Specifies the data type that is used as the basis for the internal representation of the distinct type. The
data type must be a built-in data type. For more information on built-in data types, see built-in-type.

If the distinct type is based on a character or graphic string data type, the FOR clause indicates the
subtype. If you do not specify the FOR clause, the distinct type is defined with the default subtype. For
ASCII or EBCDIC data, the default is SBCS when the value of field MIXED DATA on installation panel
DSNTIPF is NO. The default is MIXED when the value is YES. For UNICODE character data, the default
subtype is mixed.

If the distinct type is based on a string data type, the CCSID clause indicates whether the encoding
scheme of the data is ASCII, EBCDIC or UNICODE. If you do not specify CCSID ASCII, CCSID EBCDIC,
or UNICODE, the encoding scheme is the value of field DEF ENCODING SCHEME on installation panel
DSNTIPF.

INLINE LENGTH integer
Specifies the default inline length for columns that reference the distinct type. INLINE LENGTH can
only be specified when source-data-type is a LOB data type. Only columns in a table that is in a
universal table space can inherit the specified inline length for the distinct type. If the table is not in a
universal table space, the specified inline length is ignored.

Where source-data-type is BLOB and CLOB, integer specifies the maximum number of bytes that are
stored in the base table space for columns that reference this distinct type. integer must be in the
range 0–32680 (inclusive) for a BLOB or CLOB source-data-type.

Where source-data-type is DBCLOB, integer specifies the maximum number of double-byte characters
that are stored in the table space for columns that reference the distinct type. integer must be in the
range 0–16340 (inclusive) for a DBCLOB source-data-type.

If INLINE LENGTH is specified with a value of 0 for integer, any column that references the distinct
type will not have an inline length unless the CREATE TABLE or ALTER TABLE ADD statement specifies
an inline length for the column.

If INLINE LENGTH is not specified, any column that reference the distinct type takes its default vale
from the value of the LOB INLINE LENGTH parameter on installation panel DSNTIPD.

integer cannot be greater than the maximum length of the distinct type.

Notes for CREATE TYPE (distinct)
Owner privileges:

The owner of the distinct type is authorized to define columns, parameters, or variables with the
distinct type (USAGE privilege) with the ability to grant these privileges to others. See “GRANT

Chapter 7. Statements 1803

statement (type or JAR file privileges)” on page 1991. The owner is also authorized to invoke
the generated cast function (EXECUTE privilege; see “GRANT statement (function or procedure
privileges)” on page 1970). The owner is given the USAGE and EXECUTE privileges with the
GRANT option. For more information about ownership of the object, see “Authorization, privileges,
permissions, masks, and object ownership” on page 90.

Base data types with DBCS or mixed data:
When the implicit or explicit encoding scheme is ASCII or EBCDIC and the base data type is graphic
or a character type is MIXED DATA, then the value of field FOR MIXED DATA on installation panel
DSNTIPF must be YES; otherwise, an error occurs.

Generated cast functions:
The successful execution of the CREATE TYPE (distinct) statement causes Db2 to generate the
following cast functions:

• A function to convert from the distinct type to its base data type
• A function to convert from the base data type to the distinct type
• A function to cast from a data type A to distinct type DT, where A is promotable to the base data

type S of distinct type DT

For some base data types, Db2 supports an additional function to convert from:

– INTEGER to the distinct type if the source type is SMALLINT
– VARCHAR to the distinct type if the source type is CHAR
– VARGRAPHIC to the distinct type if the source type is GRAPHIC
– VARBINARY to the distinct type if the source type is BINARY
– DOUBLE to the distinct type if the source type is REAL

The cast functions are created as if the following statements were executed:

 CREATE FUNCTION source-type-name (distinct-type-name)
 RETURNS source-type-name …
 CREATE FUNCTION distinct-type-name (source-type-name)
 RETURNS distinct-type-name …

In cases in which a length, precision, or scale is specified for the base type in the CREATE TYPE
statement, the unqualified name of the cast function that converts from the distinct type to the base
type is the name of the base data type. The data type of the value that the cast function returns
includes any length, precision, or scale values that were specified for the base data type on the
CREATE TYPE statement. (See Table 227 on page 1805 for details.)

For example, assume that a distinct type named T_SHOESIZE is created with the following statement:

 CREATE TYPE CLAIRE.T_SHOESIZE AS VARCHAR(2)

When the statement is executed, Db2 also generates the following cast functions. VARCHAR converts
from the distinct type to the source type, and T_SHOESIZE converts from the source type to the
distinct type.

 FUNCTION CLAIRE.VARCHAR (CLAIRE.T_SHOESIZE) RETURNS SYSIBM.VARCHAR (2)
 FUNCTION CLAIRE.T_SHOESIZE (SYSIBM.VARCHAR (2)) RETURNS CLAIRE.T_SHOESIZE

Notice that function VARCHAR returns a value with a data type of VARCHAR(2) and that function
T_SHOESIZE has an input parameter with a data type of VARCHAR(2).

The schema of the generated cast functions is the same as the schema of the distinct type. No other
function with the same name and function signature must already exist in the database.

In the preceding example, if T_SHOESIZE was based on a SMALLINT, CHAR, or GRAPHIC data type
instead of a VARCHAR data type, another cast function would have been generated in addition to the
two functions to cast between the distinct type and the base data type. For example, assume that
T_SHOESIZE is created with this statement:

1804 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

CREATE TYPE CLAIRE.T_SHOESIZE AS CHAR(2)

When the statement is executed, Db2 generates these cast functions:

FUNCTION CLAIRE.CHAR (CLAIRE.T_SHOESIZE) RETURNS SYSIBM.CHAR (2)
 FUNCTION CLAIRE.T_SHOESIZE (SYSIBM.CHAR (2)) RETURNS CLAIRE.T_SHOESIZE
 FUNCTION CLAIRE.T_SHOESIZE (SYSIBM.VARCHAR (2)) RETURNS CLAIRE.T_SHOESIZE

Notice that the third function enables the casting of a VARCHAR(2) to T_SHOESIZE. This additional
function is created to enable casting a constant, such as 'AB', directly to the distinct type. Without the
additional function, you would have to first cast 'AB', which has a data type of VARCHAR, to a data type
of CHAR and then cast it to the distinct type.

You cannot explicitly drop a generated cast function. The cast functions that are generated for a
distinct type are implicitly dropped when the distinct type is dropped with the DROP statement.

For each built-in data type that can be the base data type for a distinct type, the following table gives
the names of the generated cast functions, the data types of the input parameters, and the data types
of the values that the functions returns.

Table 227. CAST functions on distinct types

Source type name Function name Parameter-type Return-type

SMALLINT distinct-type-name SMALLINT distinct-type-name

distinct-type-name INTEGER distinct-type-name

SMALLINT distinct-type-name SMALLINT

INTEGER distinct-type-name INTEGER distinct-type-name

INTEGER distinct-type-name INTEGER

BIGINT distinct-type-name BIGINT distinct-type-name

BIGINT distinct-type-name BIGINT

DECIMAL distinct-type-name DECIMAL (p,s) distinct-type-name

DECIMAL distinct-type-name DECIMAL (p,s)

NUMERIC distinct-type-name DECIMAL (p,s) distinct-type-name

DECIMAL distinct-type-name DECIMAL (p,s)

REAL distinct-type-name REAL distinct-type-name

distinct-type-name DOUBLE distinct-type-name

REAL distinct-type-name REAL

DECFLOAT distinct-type-name DECFLOAT(n) DECFLOAT(n)

DECFLOAT distinct-type-name DECFLOAT(n)

FLOAT(n) where n<=21 distinct-type-name REAL distinct-type-name

distinct-type-name DOUBLE distinct-type-name

REAL distinct-type-name REAL

FLOAT(n) where n>21 distinct-type-name DOUBLE distinct-type-name

DOUBLE distinct-type-name DOUBLE

FLOAT distinct-type-name DOUBLE distinct-type-name

DOUBLE distinct-type-name DOUBLE

Chapter 7. Statements 1805

Table 227. CAST functions on distinct types (continued)

Source type name Function name Parameter-type Return-type

DOUBLE distinct-type-name DOUBLE distinct-type-name

DOUBLE distinct-type-name DOUBLE

DOUBLE PRECISION distinct-type-name DOUBLE distinct-type-name

distinct-type-name CHAR (n) distinct-type-name

CHAR distinct-type-name CHAR (n)

distinct-type-name VARCHAR (n) distinct-type-name

DOUBLE distinct-type-name DOUBLE

CHAR
CHARACTER

distinct-type-name CHAR (n) distinct-type-name

CHAR distinct-type-name CHAR (n)

distinct-type-name VARCHAR (n) distinct-type-name

VARCHAR
CHARACTER VARYING
CHAR VARYING

distinct-type-name VARCHAR (n) distinct-type-name

VARCHAR distinct-type-name VARCHAR (n)

CLOB distinct-type-name CLOB (n) distinct-type-name

CLOB distinct-type-name CLOB (n)

GRAPHIC distinct-type-name GRAPHIC (n) distinct-type-name

GRAPHIC distinct-type-name GRAPHIC (n)

distinct-type-name VARGRAPHIC (n) distinct-type-name

VARGRAPHIC distinct-type-name VARGRAPHIC (n) distinct-type-name

VARGRAPHIC distinct-type-name VARGRAPHIC (n)

DBCLOB distinct-type-name DBCLOB (n) distinct-type-name

DBCLOB distinct-type-name DBCLOB (n)

BINARY distinct-type-name BINARY(n) distinct-type-name

BINARY distinct-type-name BINARY(n)

distinct-type-name VARBINARY(n) distinct-type-name

VARBINARY distinct-type-name VARBINARY(n) distinct-type-name

VARBINARY distinct-type-name VARBINARY(n)

BLOB distinct-type-name BLOB (n) distinct-type-name

BLOB distinct-type-name BLOB (n)

DATE distinct-type-name DATE distinct-type-name

DATE distinct-type-name DATE

TIME distinct-type-name TIME distinct-type-name

TIME distinct-type-name TIME

1806 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 227. CAST functions on distinct types (continued)

Source type name Function name Parameter-type Return-type

TIMESTAMP distinct-type-name TIMESTAMP distinct-type-name

TIMESTAMP distinct-type-name TIMESTAMP(p) WITHOUT
TIME ZONE

TIMESTAMP(p) WITH
TIME ZONE

distinct-type-name TIMESTAMP WITH TIME
ZONE

distinct-type-name

TIMESTAMP_TZ distinct-type-name TIMESTAMP(p) WITH
TIME ZONE

ROWID distinct-type-name ROWID distinct-type-name

ROWID distinct-type-name ROWID

Notes: NUMERIC and FLOAT are not recommended when creating a distinct type for a portable application. Use
DECIMAL and DOUBLE (or REAL) instead.

Built-in functions:
When a distinct type is defined, the built-in functions (such as AVG, MAX, and LENGTH) are not
automatically supported for the distinct type. You can use a built-in function on a distinct type only
after a sourced user-defined function, which is based on the built-in function, has been created for
the distinct type. For information on defining sourced user-defined functions, see “CREATE FUNCTION
statement (sourced function)” on page 1498.

Arithmetic operators with distinct type operands:
A distinct type cannot be used with arithmetic operators even if its base data type is numeric.

For additional information see “Arithmetic with distinct type operands” on page 256.

Alternative syntax and synonyms:
The WITH COMPARISONS clause, which specifies that system-generated comparison operators are
to be created for comparing two instances of the distinct type, can be specified as the last clause of
the statement. Use WITH COMPARISONS only if it is required for compatibility with other products in
the Db2 family. If the base data type is either BLOB, CLOB, or DBCLOB and WITH COMPARISONS is
specified, a warning occurs as in previous releases.

To provide compatibility with previous releases of Db2 or other products in the Db2 family, Db2
supports the following clauses:

• DISTINCT TYPE as a synonym for TYPE
• TIMEZONE can be specified as an alternative to TIME ZONE

.

Examples for CREATE TYPE (distinct)

Example 1
Create a distinct type named SHOESIZE that is based on an INTEGER data type.

 CREATE TYPE SHOESIZE AS INTEGER;

The successful execution of this statement also generates two cast functions. Function
INTEGER(SHOESIZE) returns a value with data type INTEGER, and function SHOESIZE(INTEGER)
returns a value with distinct type SHOESIZE.

Example 2

Create a distinct type named MILES that is based on a DOUBLE data type.

Chapter 7. Statements 1807

 CREATE TYPE MILES AS DOUBLE;

The successful execution of this statement also generates two cast functions. Function
DOUBLE(MILES) returns a value with data type DOUBLE, and function MILES(DOUBLE) returns a value
with distinct type MILES.

Related concepts
Distinct types (Introduction to Db2 for z/OS)
Naming conventions
The rules for forming a name depend on the type of the object designated by the name.
Related tasks
Creating a distinct type (Db2 Application programming and SQL)

CREATE VARIABLE statement
The CREATE VARIABLE statement creates a global variable at the current server.

Invocation for CREATE VARIABLE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for CREATE VARIABLE
The privilege set that is defined below must include at least one of the following:

• The CREATEIN privilege on the schema
• System DBADM authority
• SYSADM authority
• SYSCTRL authority
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

Privilege set: The authorization ID that matches the schema name implicitly has the CREATEIN privilege
on the schema. If the statement is embedded in an application program, the privilege set is the set of
privileges that are held by the owner of the package. If the owner is a role, the implicit schema does not
apply and this role needs to include one of the previously listed privileges or authorities.

If the statement is dynamically prepared, the privilege set is the privileges that are held by the SQL
authorization ID of the process unless the process is within a trusted context and the ROLE AS OBJECT
OWNER AND QUALIFIER clause is in effect. If the schema name is not the same as the SQL authorization
ID of the process, one of the following conditions must be met:

• The privilege set includes SYSADM or SYSCTRL authority.
• The SQL authorization ID of the process has the CREATEIN privilege on the schema.

When the ROLE AS OBJECT OWNER AND QUALIFIER clause is in effect, the privilege set is the set
privileges that are held by the role. If the schema name does not match this role, one of the following
conditions must be met:

• The privilege set includes SYSADM or SYSCTRL authority.
• This role has the CREATEIN privilege on the schema.

1808 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_distincttypes.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createdistincttype.html

Syntax for CREATE VARIABLE

CREATE VARIABLE variable-name data-type
DEFAULT NULL

DEFAULT constant

special-register

data-type:

built-in-type

array-type-name

built-in-type:

Chapter 7. Statements 1809

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

FOR SBCS

MIXED

BIT

DATA

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) FOR SBCS

MIXED

DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

1810 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Description for CREATE VARIABLE
variable-name

Names the global variable. The name, including the implicit or explicit qualifier, must not identify a
global variable that exists at the current server. If the qualifier is not specified, the contents of the
CURRENT SCHEMA special register is used.

The schema name must not begin with 'SYS' unless the schema name is 'SYSADM'.

data-type
Specifies the data type of the global variable.
built-in-type

The data type of the global variable is a built-in type. For information about the data types, see
built-in-type. The data type cannot be ROWID or XML.

array-type-name
Specifies the name of a user-defined array type. The variable is an array that is defined with the
“CREATE TYPE statement (array type)” on page 1795 statement.

If you specify array-type-name without a schema name, Db2 resolves the array type by searching
the schemas in the SQL path.

An array type with elements that are defined as character strings must be defined with CCSID
UNICODE.

DEFAULT, DEFAULT NULL, DEFAULT constant, or DEFAULT special-register
The default value that is assigned to the global variable if a value is not explicitly specified. Specifies a
value for the global variable when it is first referenced in the session. The default value is determined
on this first reference. If the DEFAULT clause is not specified, the default for the global variable is the
null value. Only DEFAULT NULL can be explicitly specified if array-type-name is specified.
DEFAULT NULL

Specifies null as the default value for the global variable. The value of a global variable is always
nullable.

DEFAULT constant
Specifies that the value of the constant is the default value for the global variable. The value of the
constant must conform to the rules for assigning that value to the global variable. constant cannot
be any of the constants NAN, SNAN, or INFINITY.

DEFAULT special-register
Specifies that the value of the special register, when the global variable is instantiated, is used as
the default value of the global variable. The value of the specified special register must conform to
the rules for assigning that value to the global variable. The following special registers must not be
specified:

• CURRENT GET_ACCEL_ARCHIVE
• CURRENT QUERY_ACCELERATION
• CURRENT TEMPORAL BUSINESS_TIME
• CURRENT TEMPORAL SYSTEM_TIME

Notes for CREATE VARIABLE
Session scope:

Global variables have a session scope. Although they are available for use to all sessions that are
active at the current server, the value of the global variable is private for each session.

Modifications to the value of a global variable:
Global variables are not under transaction control. Modifications to the value of a global variable are
not affected by either a COMMIT or ROLLBACK statement.

Chapter 7. Statements 1811

Privileges to use a global variable:
Reading from or writing to a global variable requires that the authorization ID or role that is in effect
have the appropriate privileges on the global variable. The owner of the variable is implicitly granted
all privileges on the variable.

Setting the default value:
After a global variable has been created, it is instantiated to its default value when it is first
referenced within a given scope. If a global variable is referenced within a statement, it is instantiated
independently from the execution of that statement.

Using a newly created global variable:
If a global variable is created within a session, it cannot be used by other sessions until the unit of
work has committed. However, the newly created global variable can be used within the session in
which it is created before the unit of work commits.

Examples for CREATE VARIABLE

Example 1: Create a global variable to indicate what printer to use for the session.

CREATE VARIABLE MYSCHEMA.MYJOB_PRINTER VARCHAR(30)
 DEFAULT 'Default printer';

Example 2: Create a global variable to indicate the department where an employee works.

CREATE VARIABLE SCHEMA1.GV_DEPTNO INTEGER
 DEFAULT 'Unassigned';

Example 3: Create user-defined array type myArrayIntType as an array of integers. Create global variable
myGlobalVar with type myArrayIntType.

CREATE TYPE myArrayIntType AS INT ARRAY[];
CREATE VARIABLE myGlobalVar myArrayIntType;

CREATE VIEW statement
The CREATE VIEW statement creates a view on tables or views at the current server.

Invocation for CREATE VIEW
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for CREATE VIEW
For every table or view identified in the fullselect, the privilege set that is defined below must include at
least one of the following:

• The SELECT privilege on the table or view
• Ownership of the table or view
• DBADM authority for the database (tables only)
• DATAACCESS authority
• SYSADM authority
• SQLADM authority (catalog tables only)
• System DBADM authority (catalog tables only)
• ACCESSCTRL authority (catalog tables only)
• SYSCTRL authority (catalog tables only)
• SECADM authority (catalog tables only)

1812 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

Authority requirements depend in part on the choice of the owner of the view. For information on how to
choose the owner, see the description of view-name in “ALTER VIEW statement” on page 1378.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the of the owner of the plan or package. If the application is bound in a trusted context
with the ROLE AS OBJECT OWNER clause specified, a role is the owner. Otherwise, an authorization ID is
the owner.

• If this privilege set includes SYSADM authority, the owner of the view can be any authorization ID. If that
set includes SYSCTRL but not SYSADM authority, the following is true: the owner of the view can be any
authorization ID, provided the view does not refer to user tables or views in the first FROM clause of its
defining fullselect. (It could refer instead, for example, to catalog tables or views thereof.)

If the view satisfies the rules in the preceding paragraph, and if no errors are present in the CREATE
statement, the view is created, even if the owner has no privileges at all on the tables and views
identified in the fullselect of the view definition.

• If the privilege set includes system DBADM authority, the owner of the view can be any authorization
ID. However, to create a view on a user table, either the owner of the view or the creator must have the
SELECT privilege on all the tables or views in the CREATE VIEW statement.

• If the privilege set lacks system DBADM, SYSADM and SYSCTRL but includes DBADM authority on at
least one of the databases that contains a table from which the view is created, the owner of the view
can be any authorization ID if all of the following conditions are true:

– The value of subsystem parameter DBACRVW is set to YES.
– The view is not based only on views.

Note: The owner of the view must have the SELECT privilege on all tables and views in the CREATE
VIEW statement, or, if the owner does not have the SELECT privilege on a table, the creator must have
DBADM authority on the database that contains that table.

• If the privilege set lacks SYSADM, SYSCTRL, system DBADM, and DBADM authority, or if the
authorization ID of the application plan or package fails to meet any of the previous conditions, the
owner of the view must be the owner of the application plan or package.

If ROLE AS OBJECT OWNER is in effect, the schema qualifier must be the same as the role, unless the
role has the CREATEIN privilege on the schema, SYSADM authority, system DBADM authority, or SYSCTRL
authority.

If ROLE AS OBJECT OWNER is not in effect, one of the following rules applies:

• If the privilege set lacks the CREATIN privilege on the schema, SYSADM authority, system DBADM
authority, or SYSCTRL authority, the schema qualifier (implicit or explicit) must be the same as one of
the authorization ids of the process.

• If the privilege set includes system DBADM authority, SYSADM authority or SYSCTRL authority, the
schema qualifier can be any valid schema name.

If the statement is dynamically prepared, the following rules apply:

• If the SQL authorization ID of the process has SYSADM authority, the owner of the view can be any
authorization ID. If that authorization ID has SYSCTRL but not SYSADM authority, the following is true:
the owner of the view can be any authorization ID, provided the view does not refer to user tables or
views in the first FROM clause of its defining fullselect. (It could refer instead, for example, to catalog
tables or views thereof.)

If the view satisfies the rules in the preceding paragraph, and if no errors are present in the CREATE
statement, the view is created, even if the owner has no privileges at all on the tables and views
identified in the fullselect of the view definition.

• If the SQL authorization ID of the process has system DBADM authority, the owner of the view can be
any authorization ID. However, to create a view on a user table, either the owner of the view or the

Chapter 7. Statements 1813

SQL authorization ID must have the SELECT privilege on all the tables or views in the CREATE VIEW
statement.

• If SQL authorization ID of the process lacks system DBADM authority, SYSADM and SYSCTRL but
includes DBADM authority on at least one of the databases that contains a table from which the view
is created, the owner of the view can be different from the SQL authorization ID if all of the following
conditions are true:

– The value of field DBADM CREATE AUTH was set to YES on panel DSNTIPP during Db2 installation.
– The view is not based only on views.

Note: The owner of the view must have the SELECT privilege on all tables and views in the CREATE
VIEW statement, or, if the owner does not have the SELECT privilege on a table, the creator must have
DBADM authority on the database that contains that table.

• If the SQL authorization ID of the process lacks SYSADM, SYSCTRL, system DBADM authority, or DBADM
authority, or if the SQL authorization ID of the process fails to meet any of the previous conditions, only
the authorization IDs of the process can own the view. In this case, the privilege set is the privileges that
are held by the authorization ID selected for ownership.

Syntax for CREATE VIEW

CREATE VIEW view-name

(

,

column-name)

AS

WITH

,

common-table-expression

fullselect

WITH
CASCADED

LOCAL

CHECK OPTION

Description for CREATE VIEW
view-name

Names the view. The name, including the implicit or explicit qualifier, must not identify a
table, view, alias, or synonym that exists at the current server or a table that exists in the
SYSIBM.SYSPENDINGOBJECTS catalog table. The unqualified name must not be the same as an
existing synonym.

If the name is qualified, the name can be a two-part or three-part name. If a three-part name is used,
the first part must match the value of the field Db2 LOCATION NAME of installation panel DSNTIPR at
the current server. (If the current server is not the local Db2, this name is not necessarily the name in
the CURRENT SERVER special register.)

column-name,…
Names the columns in the view. If you specify a list of column names, it must consist of as many
names as there are columns in the result table of the fullselect. Each name must be unique and
unqualified. If you do not specify a list of column names, the columns of the view inherit the names of
the columns of the result table of the fullselect.

You must specify a list of column names if the result table of the fullselect has duplicate column
names or an unnamed column (a column derived from a constant, function, or expression that was not

1814 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

given a name by the AS clause). For more details about unnamed columns, see the information about
names of result columns under “select-clause” on page 1010.

AS
Identifies the view definition.

WITH common-table-expression
Defines a common table expression for use with the fullselect that follows. The fullselect must not
contain a period specification. For an explanation of common table expression, see “common-table-
expression” on page 1069.

fullselect
Defines the view. At any time, the view consists of the rows that would result if the fullselect were
executed.

The fullselect must conform to the following rules:

• The fullselect must not refer to any host variables or parameter markers (question marks), but can
refer to global variables.

• The fullselect must not refer to any declared temporary tables.
• The fullselect must not include an invocation of the UNPACK function.
• The fullselect must not contain a period specification.
• The FROM clause of the fullselect must not include a data-change-table-reference.
• The FROM clause of the fullselect must not include a view for which an INSTEAD OF trigger is
defined.

• The outer SELECT list of the outer fullselect must not result in a column that is an array.

For an explanation of fullselect, see “fullselect” on page 1060.

WITH CASCADED CHECK OPTION or WITH LOCAL CHECK OPTIONS
Specifies that every row that is inserted or updated through the view must conform to the definition of
the view. A row that does not conform to the definition of the view is a row that cannot be retrieved
using that view.

The CHECK OPTION clause must not be specified if the view is read-only, includes a subquery,
references a function that is not deterministic or has an external action, or if the fullselect of the view
refers to a created temporary table. If the CHECK OPTION clause is specified for an updatable view
that does not allow inserts, it applies to updates only.

If the CHECK OPTION clause is omitted, the definition of the view is not used in the checking of any
insert or update operations that use the view. Some checking might still occur during insert or update
operations if the view is directly or indirectly dependent on another view that includes the CHECK
OPTION clause. Because the definition of the view is not used, rows might be inserted or updated
through the view that do not conform to the definition of the view.

The difference between the two forms of the check option, CASCADED and LOCAL, is meaningful only
when a view is dependent on another view. The default is CASCADED. The view on which another view
is directly or indirectly defined is an underlying view.
CASCADED

Update and insert operations on view V must satisfy the search conditions of view V and all
underlying views, regardless of whether the underlying views were defined with a check option.
Furthermore, every updatable view that is directly or indirectly defined on view V inherits those
search conditions (the search conditions of view V and all underlying views of V) as a constraint on
insert or update operations. WITH CASCADED CHECK OPTION must not be specified if a view on
which the specified view definition is dependent has an INSTEAD OF trigger defined.

LOCAL
Update and insert operations on view V must satisfy the search conditions of view V and
underlying views that are defined with a check option (either WITH CASCADED CHECK OPTION
or WITH LOCAL CHECK OPTION). Furthermore, every updatable view that is directly or indirectly
defined on view V inherits those search conditions (the search conditions of view V and all

Chapter 7. Statements 1815

underlying views of V that are defined with a check option) as a constraint on insert or update
operations.

The LOCAL form of the CHECK option lets you update or insert rows that do not conform to the
search condition of view V. You can perform these operations if the view is directly or indirectly
defined on a view that was defined without a check option.

Table 228 on page 1816 illustrates the effect of using the default check option, CASCADED. The
information in Table 228 on page 1816 is based on the following views:

• CREATE VIEW V1 AS SELECT COL1 FROM T1 WHERE COL1 > 10
• CREATE VIEW V2 AS SELECT COL1 FROM V1 WITH CASCADED CHECK OPTION
• CREATE VIEW V3 AS SELECT COL1 FROM V2 WHERE COL1 < 100

Table 228. Examples using default check option, CASCADED

SQL statement Description of result

INSERT INTO V1 VALUES(5) Succeeds because V1 does not have a check option and it is
not dependent on any other view that has a check option.

INSERT INTO V2 VALUES(5) Results in an error because the inserted row does not
conform to the search condition of V1 which is implicitly
is part of the definition of V2.

INSERT INTO V3 VALUES(5) Results in an error because the inserted row does not
conform to the search condition of V1.

INSERT INTO V3 VALUES(200) Succeeds even though it does not conform to the definition
of V3 (V3 does not have the view check option specified); it
does conform to the definition of V2 (which does have the
view check option specified).

The difference between CASCADED and LOCAL is shown best by example. Consider the following
updatable views, where x and y represent either LOCAL or CASCADED:

V1 is defined on Table T0.
V2 is defined on V1 WITH x CHECK OPTION.
V3 is defined on V2.
V4 is defined on V3 WITH y CHECK OPTION.
V5 is defined on V4.

This example shows V1 as an underlying view for V2 and V2 as dependent on V1.

Table 229 on page 1816 shows the views in which search conditions are checked during an insert or
update operation:

Table 229. Views in which search conditions are checked during insert and update operations

View used in
INSERT or
UPDATE operation

x = LOCAL
y = LOCAL

x = CASCADED
y = CASCADED

x = LOCAL
y = CASCADED

x = CASCADED
y = LOCAL

V1 None None None None

V2 V2 V2, V1 V2 V2, V1

V3 V2 V2, V1 V2 V2, V1

V4 V4, V2 V4, V3, V2, V1 V4, V3, V2, V1 V4, V2, V1

V5 V4, V2 V4, V3, V2, V1 V4, V3, V2, V1 V4, V2, V1

1816 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Notes for CREATE VIEW
Owner privileges

The owner of a view always acquires the SELECT privilege on the view and the authority to drop the
view. If all of the privileges that are required to create the view are held with the GRANT option before
the view is created, the owner of the view receives the SELECT privilege with the GRANT option.
Otherwise, the owner receives the SELECT privilege without the GRANT option. For example, assume
that a view definition also refers to a user-defined function. If the owner's EXECUTE privilege on the
user-defined function is held without the GRANT option, the owner acquires the SELECT privilege on
the view without the GRANT option.

The owner can also acquire INSERT, UPDATE, and DELETE privileges on the view. Acquiring these
privileges is possible if the view is not "read-only", which means a single table of view is identified in
the first FROM clause of the fullselect. For each privilege that the owner has on the identified table or
view (INSERT, UPDATE, and DELETE) before the new view is created, the owner acquires that privilege
on the view. The owner receives the privilege with the GRANT option if the privilege is held on the
table or view with the GRANT option. Otherwise, the owner receives the privileges without the GRANT
option.

With appropriate Db2 authority, a process can create views for those who have no authority to create
the views themselves. The owner of such a view has the SELECT privilege on the view, without the
GRANT option, and can drop the view.

For more information on the ownership of an object, see “Authorization, privileges, permissions,
masks, and object ownership” on page 90.

Authorization for views created for other users
When a process with appropriate authority creates a view for another user that does not have
authorization for the underlying table or view, the SELECT privilege for the created view is implicitly
granted to the user.

Considerations for row access control and column access control
The view definition might reference a table for which row access control or column access control
is activated. If the view definition references a table for which row access control or column access
control is activated, the WITH CHECK OPTION clause must not be specified if the search conditions
from the view or from the underlying views will be checked during an insert or update operation. Note
that the WITH CHECK OPTION clause is ignored if such search conditions do not exist.

Read-only views
A view is read-only if one or more of the following statements is true of its definition:

• The first FROM clause identifies more than one table or view, or identifies a table function, a nested
table expression, a common table expression, or a collection-derived table.

• The first SELECT clause specifies the keyword DISTINCT.
• The outer fullselect contains a GROUP BY clause.
• The outer fullselect contains a HAVING clause.
• The first SELECT clause contains an aggregate function.
• It contains a subquery such that the base object of the outer fullselect, and of the subquery, is the

same table.
• The first FROM clause identifies a read-only view.
• The first FROM clause identifies a system-maintained materialized query table.
• The outer fullselect is not a subselect (contains a set operator).

A read-only view cannot be the object of an SQL data change statement or a TRUNCATE statement. A
view that includes GROUP BY or HAVING cannot be referred to in a subquery of a basic predicate.

Insertable views
A view is insertable if an INSTEAD OF trigger for the insert operation has been defined for the view, or
if at least one column of the view is updatable (independent of an INSTEAD OF trigger for update).

Chapter 7. Statements 1817

Considerations for implicitly hidden columns
It is possible that the result table of the fullselect will include a column of a base table that is defined
as implicitly hidden. This can occur when the implicitly hidden column is explicitly referenced in the
fullselect of the view definition. However, the corresponding column of the view does not inherit the
implicitly hidden attribute. Columns of a view cannot be defined as hidden.

Testing a view definition
You can test the semantics of your view definition by executing SELECT * FROM view-name.

The two forms of a view definition
Both the source and the operational form of a view definition are stored in the Db2 catalog. Those two
forms are not necessarily equivalent because the operational form reflects the state that exists when
the view is created. For example, consider the following statement:

 CREATE VIEW V AS SELECT * FROM S;

In this example, S is a synonym or alias for A.T, which is a table with columns C1, C2, and C3®. The
operational form of the view definition is equivalent to:

 SELECT C1, C2, C3 FROM A.T;

Adding columns to A.T using ALTER TABLE and dropping S does not affect the operational form of the
view definition. Thus, if columns are added to A.T or if S is redefined, the source form of the view
definition can be misleading.

View restrictions
A view definition cannot contain references to remote objects. A view definition cannot map to more
than 15 base table instances. A view definition cannot reference a declared global temporary table.

Restrictions involving pending definition changes
CREATE VIEW is not allowed if the view references a column on which there are pending definition
changes.

Considerations for inline LOB columns
If the view references a table that contains an inline LOB column and Db2 determines that the inline
attribute can be passed on to the view, the view will then inherit the inline attribute, otherwise the
inline attribute is not inherited by the view.

Considerations for XML columns
If the view has an XML column and the column of the underlying base table for the view has an XML
type modifier, the view column has the same type modifier. However, if there is an instead of trigger
defined on the view, validation of the column, according to XML schemas in the type modifier, is not
enforced during insert or update to this view.

Examples for CREATE VIEW

Example 1
Create the view DSN8C10.VPROJRE1. PROJNO, PROJNAME, PROJDEP, RESPEMP, FIRSTNME,
MIDINIT, and LASTNAME are column names. The view is a join of tables and is therefore read-only.

 CREATE VIEW DSN8C10.VPROJRE1
 (PROJNO,PROJNAME,PROJDEP,RESPEMP,
 FIRSTNME,MIDINIT,LASTNAME)
 AS SELECT ALL
 PROJNO,PROJNAME,DEPTNO,EMPNO,
 FIRSTNME,MIDINIT,LASTNAME
 FROM DSN8C10.PROJ, DSN8C10.EMP
 WHERE RESPEMP = EMPNO;

In the example, the WHERE clause refers to the column EMPNO, which is contained in one of the base
tables but is not part of the view. In general, a column named in the WHERE, GROUP BY, or HAVING
clause need not be part of the view.

1818 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 2

Create the view DSN8C10.FIRSTQTR that is the UNION ALL of three fullselects, one for each month of
the first quarter of 2000. The common names are SNO, CHARGES, and DATE.

 CREATE VIEW DSN8C10.FIRSTQTR (SNO, CHARGES, DATE) AS
 SELECT SNO, CHARGES, DATE
 FROM MONTH1
 WHERE DATE BETWEEN '01/01/2000' and '01/31/2000'
 UNION All
 SELECT SNO, CHARGES, DATE
 FROM MONTH2
 WHERE DATE BETWEEN '02/01/2000' and '02/29/2000'
 UNION All
 SELECT SNO, CHARGES, DATE
 FROM MONTH3
 WHERE DATE BETWEEN '03/01/2000' and '03/31/2000';

Related concepts
Db2 views (Introduction to Db2 for z/OS)
Naming conventions
The rules for forming a name depend on the type of the object designated by the name.
Related tasks
Creating Db2 views (Db2 Administration Guide)

DECLARE CURSOR statement
The DECLARE CURSOR statement defines a cursor.

Invocation for DECLARE CURSOR
This statement can only be embedded in an application program. It is not an executable statement. It
must not be specified in Java.

Authorization for DECLARE CURSOR
For each table or view identified in the SELECT statement of the cursor, the privilege set must include at
least one of the following:

• The SELECT privilege
• Ownership of the object
• DBADM authority for the corresponding database (tables only)
• SYSADM authority
• SYSCTRL authority (catalog tables only)
• DATAACCESS authority

If the select-statement contains an SQL data change statement, the authorization requirements of that
statement also apply to the DECLARE CURSOR statement.

The SELECT statement of the cursor is one of the following:

• The prepared select statement identified by statement-name
• The specified select-statement

If statement-name is specified:

• The privilege set is determined by the DYNAMICRULES behavior in effect (run, bind, define, or invoke)
and is summarized in Table 171 on page 1089. (For more information on these behaviors, including a
list of the DYNAMICRULES bind option values that determine them, see “Authorization IDs and dynamic
SQL” on page 94.)

• The authorization check is performed when the SELECT statement is prepared.

Chapter 7. Statements 1819

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_views.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createviews.html

• The cursor cannot be opened unless the SELECT statement is successfully prepared.

If select-statement is specified:

• The privilege set consists of the privileges that are held by the authorization ID of the owner of the plan
or package.

• If the plan or package is bound with VALIDATE(BIND), the authorization check is performed at bind
time, and the bind is unsuccessful if any required privilege does not exist.

• If the plan or package is bound with VALIDATE(RUN), an authorization check is performed at bind time,
but all required privileges need not exist at that time. If all privileges exist at bind time, no authorization
checking is performed when the cursor is opened. If any privilege does not exist at bind time, an
authorization check is performed the first time the cursor is opened within a unit of work. The OPEN is
unsuccessful if any required privilege does not exist.

Syntax for DECLARE CURSOR

DECLARE cursor-name
NO SCROLL

ASENSITIVE

INSENSITIVE

SENSITIVE
DYNAMIC

STATIC

SCROLL

CURSOR

holdability

returnability

rowset-positioning

FOR select-statement

statement-name

Notes:
1 The same clause must not be specified more than once.

holdability:

WITHOUT HOLD

WITH HOLD

returnability:

WITHOUT RETURN

WITH RETURN
TO CALLER

TO CLIENT

rowset-positioning:

1820 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

WITHOUT ROWSET POSITIONING

WITH ROWSET POSITIONING

Description for DECLARE CURSOR
cursor-name

Names the cursor. The name must not identify a cursor that has already been declared in the source
program. The name is usually VARCHAR(128); however, if the cursor is defined WITH RETURN, the
name is limited to VARCHAR(30).

NO SCROLL or SCROLL
Specifies whether the cursor is scrollable or not scrollable.
NO SCROLL

Specifies that the cursor is not scrollable. This is the default.
SCROLL

Specifies that the cursor is scrollable. For a scrollable cursor, whether the cursor has sensitivity to
inserts, updates, or deletes depends on the cursor sensitivity option in effect for the cursor. If a
sensitivity option is not specified, ASENSITIVE is the default.
ASENSITIVE

Specifies that the cursor should be as sensitive as possible. This is the default.

A cursor that defined as ASENSITIVE will be either insensitive or sensitive dynamic; it will
not be sensitive static. For information about how the effective sensitivity of the cursor is
returned to the application with the GET DIAGNOSTICS statement or in the SQLCA, see “OPEN
statement” on page 2037.

The sensitivity of a cursor is a factor in the choice of access path. Explicitly specify the
sensitivity level that you need, instead of specifying ASENSITIVE.

INSENSITIVE
Specifies that the cursor does not have sensitivity to inserts, updates, or deletes that are made
to the rows underlying the result table. As a result, the size of the result table, the order of
the rows, and the values for each row do not change after the cursor is opened. In addition,
the cursor is read-only. The SELECT statement or attribute-string of the PREPARE statement
cannot contain a FOR UPDATE clause, and the cursor cannot be used for positioned updates or
deletes.

SENSITIVE
Specifies that the cursor has sensitivity to changes that are made to the database after the
result table is materialized. The cursor is always sensitive to updates and deletes that are
made using the cursor (that is, positioned updates and deletes using the same cursor). When
the current value of a row no longer satisfies the select-statement or statement-name, that
row is no longer visible through the cursor. When a row of the result table is deleted from the
underlying base table, the row is no longer visible through the cursor.

If Db2 cannot make changes visible to the cursor, then an error is issued at bind time for OPEN
CURSOR. Db2 cannot make changes visible to the cursor when the cursor implicitly becomes
read-only. For example, when the result table must be materialized, as when the FROM clause
of the SELECT statement contains more than one table or view. The current list of conditions
that result in an implicit read-only cursor can be found in Read-only cursors.

The default is DYNAMIC.

DYNAMIC
Specifies that the result table of the cursor is dynamic, meaning that the size of the result
table might change after the cursor is opened as rows are inserted into or deleted from
the underlying table, and the order of the rows might change. Rows that are inserted,

Chapter 7. Statements 1821

deleted, or updated by statements that are executed by the same application process
as the cursor are visible to the cursor immediately. Rows that are inserted, deleted, or
updated by statements that are executed by other application processes are visible only
after the statements are committed. If a column for an ORDER BY clause is updated via
a cursor or any means outside the process, the next FETCH statement behaves as if the
updated row was deleted and re-inserted into the result table at its correct location. At the
time of a positioned update, the cursor is positioned before the next row of the original
location and there is no current row, making the row appear to have moved.

If a SENSITIVE DYNAMIC cursor is not possible, an error is returned. For example, if a
temporary table is needed an error is returned. The SELECT statement of a cursor that is
defined as SENSITIVE DYNAMIC cannot contain an SQL data change statement.

The offset-clause and the fetch-clause must not be specified for the outermost fullselect
for a sensitive dynamic cursor.

STATIC
Specifies that the size of the result table and the order of the rows do not change after
the cursor is opened. Rows inserted into the underlying table are not added to the result
table regardless of how the rows are inserted. Rows in the result table do not move if
columns in the ORDER BY clause are updated in rows that have already been materialized.
Positioned updates and deletes are allowed if the result table is updatable. The SELECT
statement of a cursor that is defined as SENSITIVE STATIC cannot contain an SQL data
change statement.

A STATIC cursor has visibility to changes made by this cursor using positioned updates
or deletes. Committed changes made outside this cursor are visible with the SENSITIVE
option of the FETCH statement. A FETCH SENSITIVE can result in a hole in the result table
(that is, a difference between the result table and its underlying base table). If an updated
row in the base table of a cursor no longer satisfies the predicate of its SELECT statement,
an update hole occurs in the result table. If a row of a cursor was deleted in the base table,
a delete hole occurs in the result table. When a FETCH SENSITIVE detects an update hole,
no data is returned (a warning is issued), and the cursor is left positioned on the update
hole. When a FETCH SENSITIVE detects a delete hole, no data is returned (a warning is
issued), and the cursor is left positioned on the delete hole.

Updates through a cursor result in an automatic re-fetch of the row. This re-fetch means
that updates can create a hole themselves. The re-fetched row also reflects changes as
a result of triggers updating the same row. It is important to reflect these changes to
maintain the consistency of data in the row.

Using a function that is not deterministic (built-in or user-defined) in the WHERE clause
of the select-statement or statement-name of a SENSITIVE STATIC cursor can cause
misleading results. This situation occurs because Db2 constructs a temporary result
table and retrieves rows from this table for FETCH INSENSITIVE statements. When Db2
processes a FETCH SENSITIVE statement, rows are fetched from the underlying table and
predicates are re-evaluated. Using a function that is not deterministic can yield a different
result on each FETCH SENSITIVE of the same row, which could also result in the row no
longer being considered a match.

A FETCH INSENSITIVE on a SENSITIVE STATIC SCROLL cursor is not sensitive to changes
made outside the cursor, unless a previous FETCH SENSITIVE has already refreshed that
row; however, positioned updates and delete changes with the cursor are visible.

STATIC cursors are insensitive to insertions.

WITHOUT HOLD or WITH HOLD
Specifies whether the cursor should be prevented from being closed as a consequence of a commit
operation.
WITHOUT HOLD

Does not prevent the cursor from being closed as a consequence of a commit operation. This is
the default.

1822 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

WITH HOLD
Prevents the cursor from being closed as a consequence of a commit operation. A cursor declared
with WITH HOLD is closed at commit time if one of the following is true:

• The connection associated with the cursor is in the release pending status.
• The bind option DISCONNECT(AUTOMATIC) is in effect.
• The environment is one in which the option WITH HOLD is ignored.

When WITH HOLD is specified, a commit operation commits all of the changes in the current unit
of work. For example, with a non-scrollable cursor, an initial FETCH statement is needed after a
COMMIT statement to position the cursor on the row that follows the row that the cursor was
positioned on before the commit operation.

WITH HOLD has no effect on an SQL data change statement within a SELECT statement. When
a COMMIT is issued, the changes caused by the SQL data change statement are committed,
regardless of whether or not the cursor is declared WITH HOLD.

All cursors are implicitly closed by a connect (Type 1) or rollback operation. A cursor is also
implicitly closed by a commit operation if WITH HOLD is ignored or not specified.

Cursors that are declared with WITH HOLD in CICS or in IMS non-message-driven programs will
not be closed by a rollback operation if the cursor was opened in a previous unit of work and no
changes have been made to the database in the current unit of work. The cursor cannot be closed
because CICS and IMS do not broadcast the rollback request to Db2 for a null unit of work.

If a cursor is closed before the commit operation, the effect is the same as if the cursor was
declared without the option WITH HOLD.

WITH HOLD is ignored in IMS message driven programs (MPP, IFP, and message-driven BMP).
WITH HOLD maintains the cursor position in a CICS pseudo-conversational program until the
end-of-task (EOT).

For details on restrictions that apply to declaring cursors with WITH HOLD, see Held and non-held
cursors (Db2 Application programming and SQL).

WITHOUT RETURN or WITH RETURN
Specifies whether the result table of the cursor is intended to be used as a result set that will be
returned from a procedure. If statement-name is specified, the default is the corresponding prepare
attribute of the statement. Otherwise, the default is WITHOUT RETURN.
WITHOUT RETURN

Specifies that the result table of the cursor is not intended to be used as a result set that will be
returned from a procedure.

WITH RETURN
Specifies that the result table of the cursor is intended to be used as a result set that will be
returned from a procedure. WITH RETURN is relevant only if the DECLARE CURSOR statement is
contained within the source code for a procedure. In other cases, the precompiler might accept
the clause, but it has not effect.

When a cursor that is declared using the WITH RETURN TO CALLER clause remains open at the
end of a program or routine, that cursor defines a result set from the program or routine. Use the
CLOSE statement to close a cursor that is not intended to be a result set from the program or
routine. Although Db2 will automatically close any cursors that are not declared using with a WITH
RETURN clause, the use of the CLOSE statement is recommended to increase the portability of
applications.

For non-scrollable cursors, the result set consists of all rows from the current cursor position to
the end of the result table. For scrollable cursors, the result set consists of all rows of the result
table.

TO CALLER
Specifies that the cursor can return a result set to the caller of the procedure. The caller is
the program or routine that executed the SQL CALL statement that invokes the procedure that

Chapter 7. Statements 1823

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_heldnonheldcursor.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_heldnonheldcursor.html

contains the DECLARE CURSOR statement. For example, if the caller is a procedure, the result
set, is returned to the procedure. If the caller is a client application, the result set is returned
to the client application.

If the statement is contained within the source code for a procedure, WITH RETURN TO
CALLER specifies that the cursor can be used as a result set cursor. A result set cursor is used
when the result table of a cursor is to be returned from a procedure. Specifying TO CALLER is
optional.

In other cases, the clause is ignored and the cursor cannot be used as a result set cursor.

TO CLIENT
Specifies that the cursor can return a result set to the client application. This cursor is invisible
to any intermediate nested procedures. If a function or trigger calls the procedure (either
directly or indirectly), the result set cannot be returned to the client and the cursor will be
closed after the procedure finishes.

rowset-positioning
Specifies whether multiple rows of data can be accessed as a rowset on a single FETCH statement for
the cursor. The default is WITHOUT ROWSET POSITIONING.
WITHOUT ROWSET POSITIONING

Specifies that the cursor can be used only with row-positioned FETCH statements. The cursor is to
return a single row for each FETCH statement and the FOR n ROWS clause cannot be specified on
a FETCH statement for this cursor. WITHOUT ROWSET POSITIONING or single row access refers
to how data is fetched from the database engine. For remote access, data might be blocked and
returned to the client in blocks.

WITH ROWSET POSITIONING
Specifies that the cursor can be used with either row-positioned or rowset-positioned FETCH
statements. This cursor can be used to return either a single row or multiple rows, as a rowset,
with a single FETCH statement. ROWSET POSITIONING refers to how data is fetched from the
database engine. For remote access, if any row qualifies, at least 1 row is returned as a rowset.
The size of the rowset depends on the number of rows specified on the FETCH statement and on
the number of rows that qualify. Data might be blocked and returned to the client in blocks.

Db2 REXX applications do not support cursors that are declared WITH ROWSET POSITIONING. To
allow a cursor for a SELECT statement in a Db2 REXX application to be used with row-positioned
or rowset-positioned FETCH statements, specify WITH ROWSET POSITIONING in the attribute
string of the PREPARE statement for the SELECT statement.

select-statement
Specifies the result table of the cursor. See “select-statement” on page 1067 for an explanation of
select-statement.

The select-statement must not include parameter markers (except for REXX), but can include
references to host variables. In host languages, other than REXX, the declarations of the host
variables must precede the DECLARE CURSOR statement in the source program. In REXX, parameter
markers must be used in place of host variables and the statement must be prepared.

The USING clause of the OPEN statement can be used to specify host variables that will override the
values of the host variables or parameter markers that are specified as part of the statement in the
DECLARE CURSOR statement.

The select-statement must not contain an SQL data change statement if the cursor is defined as
SENSITIVE DYNAMIC or SENSITIVE STATIC.

The select-statement must not contain a fullselect that is a VALUES clause.

The outer select list of the select-statement of a scrollable cursor must not be an array value.

statement-name
Identifies the prepared select-statement that specifies the result table of the cursor whenever the
cursor is opened. The statement-name must not be identical to a statement name specified in

1824 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

another DECLARE CURSOR statement of the source program. For an explanation of prepared SELECT
statements, see “PREPARE statement” on page 2042.

The prepared select-statement must not contain an SQL data change statement if the cursor is defined
as SENSITIVE DYNAMIC or SENSITIVE STATIC.

Notes for DECLARE CURSOR
A cursor in the open state designates a result table and a position relative to the rows of that table. The
table is the result table specified by the SELECT statement of the cursor.

Read-only cursors:

If the result table is read-only, the cursor is read-only. The cursor that references a view with instead
of triggers are read-only since positioned UPDATE and positioned DELETE statements are not allowed
using those cursors. The result table is read-only if one or more of the following statements is true
about the select-statement of the cursor:

• The first FROM clause identifies or contains any of the following:

– More than one table or view
– A catalog table with no updatable columns
– A read-only view
– A nested table expression
– A table function
– A system-maintained materialized query table
– A single table that is a system-period temporal table, and a period specification for SYSTEM_TIME

is used
– A single view that directly or indirectly references a system-period temporal table in the FROM

clause of the outer fullselect of the view definition, and a period specification for SYSTEM_TIME is
used

• The first SELECT clause specifies the keyword DISTINCT, contains an aggregate function, or uses
both

• It contains an SQL data change statement
• The outer subselect contains a GROUP BY clause, a HAVING clause, or both clauses
• It contains a subquery such that the base object of the outer subselect, and of the subquery, is the

same table
• Any of the following operators or clauses are specified:

– A set operator
– An ORDER BY clause (except when the cursor is declared as SENSITIVE STATIC scrollable)
– A FOR READ ONLY clause

• It is executed with isolation level UR and a FOR UPDATE clause is not specified.
• It is a VALUES clause.

If the result table is not read-only, the cursor can be used to update or delete the underlying rows of
the result table.

Referencing columns that will be updated:
If a cursor uses FETCH statements to retrieve columns that will be updated later, specify FOR UPDATE
OF when you select the columns. Then specify WHERE CURRENT OF in the subsequent UPDATE
or DELETE statements. These clauses prevent Db2 from selecting access through an index on the
columns that are being updated, which might otherwise cause Db2 to read the same row more than
once.

For more information, see Updating previously retrieved data (Db2 Application programming and
SQL).

Chapter 7. Statements 1825

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_updateretrieveddata.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_updateretrieveddata.html

Tables for which row or column access controls are enforced:
The select-statement of the cursor can reference a table for which row or column access controls are
enforced. The row or column access controls do not effect the determination of whether the cursor is
read-only and do not effect the cursor sensitivity.

Work file database requirement for static scrollable cursors:
To use a static scrollable cursor, you must first create a work file database and at least one table
space with a 32KB page size in this database because a static scrollable cursor requires a temporary
table for its result table while the cursor is open. Db2 chooses a table space to use for the temporary
result table. Dynamic scrollable cursors do not require a declared temporary table.

For static scrollable cursor declarations that contain empty strings, Db2 assigns one byte in the
temporary table space for each empty string. The following example shows a scrollable cursor
declaration with an empty string:

EXEC SQL DECLARE CSROWSTAT SENSITIVE STATIC SCROLL CURSOR
 WITH ROWSET POSITIONING WITH HOLD FOR
 SELECT ID1,''
 FROM TB;

Cursors in COBOL and Fortran programs:
In COBOL and Fortran source programs, the DECLARE CURSOR statement must precede all
statements that explicitly refer to the cursor by name. This rule does not necessarily apply to the
other host languages because the precompiler provides a two-pass option for these languages. This
rule applies to other host languages if the two-pass option is not used.

Cursors in REXX:
If host variables are used in a DECLARE CURSOR statement within a REXX procedure, the DECLARE
CURSOR statement must be the object of a PREPARE and EXECUTE.

Scope of a cursor:
The scope of cursor-name is the source program in which it is defined; that is, the application program
submitted to the precompiler. Thus, you can only refer to a cursor by statements that are precompiled
with the cursor declaration. For example, a COBOL program called from another program cannot use a
cursor that was opened by the calling program. Furthermore, a cursor defined in a Fortran subprogram
can only be referred to in that subprogram. Cursors that specify WITH RETURN in a procedure and are
left open are returned as result sets.

Although the scope of a cursor is the program in which it is declared, each package (or DBRM of
a plan) created from the program includes a separate instance of the cursor, and more than one
instance of the cursor can be used in the same execution of the program. For example, assume a
program is precompiled with the CONNECT(2) option and its DBRM is used to create a package at
location X and a package at location Y. The program contains the following SQL statements:

 DECLARE C CURSOR FOR ...
 CONNECT TO X
 OPEN C
 FETCH C INTO ...
 CONNECT TO Y
 OPEN C
 FETCH C INTO ...

The second OPEN C statement does not cause an error because it refers to a different instance of
cursor C. The same notion applies to a single location if the packages are in different collections.

A SELECT statement is evaluated at the time the cursor is opened. If the same cursor is opened,
closed, and then opened again, the results can be different. If the SELECT statement of the
cursor contains CURRENT DATE, CURRENT TIME or CURRENT TIMESTAMP, all references to these
special registers yields the same respective datetime value on each FETCH operation. The value is
determined when the cursor is opened. Multiple cursors using the same SELECT statement can be
opened concurrently. They are each considered independent activities.

1826 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Blocking of data:
To process data more efficiently, Db2 might block data for read-only cursors. If a cursor is not going
to be used in a positioned UPDATE or positioned DELETE statement, define the cursor as FOR READ
ONLY.

Positioned deletes and isolation level UR:
Specify FOR UPDATE if you want to use the cursor for a positioned DELETE and the isolation level is
UR because of a BIND option. In this case, the isolation level is CS.

Returning a result set from a stored procedure:
A cursor that is declared in a stored procedure returns a result set when all of the following conditions
are true:

• The cursor is declared with the WITH RETURN option. In a distributed environment, blocks of each
result set of the cursor's data are returned with the CALL statement reply.

• The cursor is left open after exiting from the stored procedure. A cursor declared with the SCROLL
option must be left positioned before the first row before exiting from the stored procedure.

• The cursor is declared with the WITH HOLD option if the stored procedure is defined to commit on
return.

The result set is the set of all rows after the current position of the cursor after exiting the stored
procedure. The result set is assumed to be read-only. If that same procedure is invoked again, open
result set cursors for a stored procedure at a given site are automatically closed by the database
management system.

Scrollable cursors specified with user-defined functions:
A row can be fetched more than once with a scrollable cursor. Therefore, if a scrollable cursor is
defined with a function that is not deterministic in the select list of the cursor, a row can be fetched
multiple times with different results for each fetch. (However, the value of a function that is not
deterministic in the WHERE clause of a scrollable cursor is captured when the cursor is opened
and remains unchanged until the cursor is closed.) Similarly, if a scrollable cursor is defined with a
user-defined function with external action, the action is executed with every fetch.

Multiple instances of a cursor that is defined with RETURN TO CLIENT:

If the cursor is declared in a native SQL procedure, a cursor that is declared as WITH RETURN TO
CLIENT can be opened even when a cursor with the same name is already in the open state. In this
case, the already open cursor becomes a result set cursor and is no longer accessible by using its
cursor name. A new cursor is opened and becomes accessible by using the cursor name. When a
CLOSE statement is issued, the last instance of the cursor will be closed. Closing the new cursor
does not make the cursor that was previously accessible by that name accessible by the cursor name
again. Cursors that become result set cursors in this way cannot be accessed at the server and can be
processed only at the client.

Examples for DECLARE CURSOR

The statements in the following examples are assumed to be in PL/I programs.

Example 1

Declare C1 as the cursor of a query to retrieve data from the table DSN8C10.DEPT. The query itself
appears in the DECLARE CURSOR statement.

 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT DEPTNO, DEPTNAME, MGRNO
 FROM DSN8C10.DEPT
 WHERE ADMRDEPT = 'A00';

Example 2

Declare C1 as the cursor of a query to retrieve data from the table DSN8810.DEPT. Assume that the
data will be updated later with a searched update and should be locked when the query executes. The
query itself appears in the DECLARE CURSOR statement.

Chapter 7. Statements 1827

 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT DEPTNO, DEPTNAME, MGRNO
 FROM DSN8C10.DEPT
 WHERE ADMRDEPT = 'A00'
 FOR READ ONLY WITH RS USE AND KEEP EXCLUSIVE LOCKS;

Example 3

Declare C2 as the cursor for a statement named STMT2.

 EXEC SQL DECLARE C2 CURSOR FOR STMT2;

Example 4

Declare C3 as the cursor for a query to be used in positioned updates of the table DSN8C10.EMP.
Allow the completed updates to be committed from time to time without closing the cursor.

 EXEC SQL DECLARE C3 CURSOR WITH HOLD FOR
 SELECT * FROM DSN8C10.EMP
 FOR UPDATE OF WORKDEPT, PHONENO, JOB, EDLEVEL, SALARY;

Instead of specifying which columns should be updated, you could use a FOR UPDATE clause without
the names of the columns to indicate that all updatable columns are updated.

Example 5

In stored procedure SP1, declare C4 as the cursor for a query of the table DSN8C10.PROJ. Enable the
cursor to return a result set to the caller of SP1, which performs a commit on return.

 EXEC SQL DECLARE C4 CURSOR WITH HOLD WITH RETURN FOR
 SELECT PROJNO, PROJNAME
 FROM DSN8C10.PROJ
 WHERE DEPTNO = 'A01';

Example 6

In the following example, the DECLARE CURSOR statement associates the cursor name C5 with the
results of the SELECT and specifies that the cursor is scrollable. C5 allows positioned updates and
deletes because the result table can be updated.

 EXEC SQL DECLARE C5 SENSITIVE STATIC SCROLL CURSOR FOR
 SELECT DEPTNO, DEPTNAME, MGRNO
 FROM DSN8C10.DEPT
 WHERE ADMRDEPT = 'A00';

Example 7

In the following example, the DECLARE CURSOR statement associates the cursor name C6 with the
results of the SELECT and specifies that the cursor is scrollable.

 EXEC SQL DECLARE C6 INSENSITIVE SCROLL CURSOR FOR
 SELECT DEPTNO, DEPTNAME, MGRNO
 FROM DSN8C10.DEPT
 WHERE DEPTNO;

Example 8

The following example illustrates how an application program might use dynamic scrollable cursors:
First create and populate a table.

 CREATE TABLE ORDER
 (ORDERNUM INTEGER,
 CUSTNUM INTEGER,
 CUSTNAME VARCHAR(20),
 ORDERDATE CHAR(8),
 ORDERAMT DECIMAL(8,3),
 COMMENTS VARCHAR(20));

Populate the table by inserting or loading about 500 rows.

1828 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 EXEC SQL DECLARE CURSOR ORDERSCROLL
 SENSITIVE DYNAMIC SCROLL FOR
 SELECT ORDERNUM, CUSTNAME, ORDERAMT, ORDERDATE FROM ORDER
 WHERE ORDERAMT > 1000
 FOR UPDATE OF COMMENTS;

Open the scrollable cursor.

 OPEN CURSOR ORDERSCROLL;

Fetch forward from the scrollable cursor.

 -- Loop-to-fill-screen
 -- do 10 times
 FETCH FROM ORDERSCROLL INTO :HV1, :HV2, :HV3, :HV4;
 -- end

Fetch RELATIVE from the scrollable cursor.

 -- Skip-forward-100-rows
 FETCH RELATIVE +100
 FROM ORDERSCROLL INTO :HV1, :HV2, :HV3, :HV4;

 -- Skip-backward-50-rows
 FETCH RELATIVE -50
 FROM ORDERSCROLL INTO :HV1, :HV2, :HV3, :HV4;

Fetch ABSOLUTE from the scrollable cursor.

 -- Re-read-the-third-row
 FETCH ABSOLUTE +3
 FROM ORDERSCROLL INTO :HV1, :HV2, :HV3, :HV4;

Fetch RELATIVE from scrollable cursor.

 -- Read-the-third-row-from current position
 FETCH SENSITIVE RELATIVE +3
 FROM ORDERSCROLL INTO :HV1, :HV2, :HV3, :HV4;

Do a positioned update through the scrollable cursor.

 -- Update-the-current-row
 UPDATE ORDER SET COMMENTS = "Expedite"
 WHERE CURRENT OF ORDERSCROLL;

Close the scrollable cursor.

 CLOSE CURSOR ORDERSCROLL;

Example 9

Declare C1 as the cursor of a query to retrieve a rowset from the table DEPT. The prepared statement
is MYCURSOR.

 EXEC SQL DECLARE C1 CURSOR
 WITH ROWSET POSITIONING FOR MYCURSOR;

Related tasks
Retrieving a set of rows by using a cursor (Db2 Application programming and SQL)
Using scrollable cursors efficiently (Db2 Performance)

Chapter 7. Statements 1829

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_retrieverowscursor.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_usecrollcursor.html

DECLARE GLOBAL TEMPORARY TABLE statement
The DECLARE GLOBAL TEMPORARY TABLE statement defines a declared temporary table for the current
application process. The declared temporary table resides in the work file database and its description
does not appear in the system catalog. It is not persistent and cannot be shared with other application
processes. Each application process that defines a declared temporary table of the same name has its
own unique description and instance of the temporary table. When the application process terminates,
the temporary table is dropped.

Invocation for DECLARE GLOBAL TEMPORARY TABLE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for DECLARE GLOBAL TEMPORARY TABLE
None are required, unless the LIKE clause or AS fullselect is specified. In those cases, additional privileges
might be required.

PUBLIC implicitly has the following privileges without GRANT authority for declared temporary tables:

• The CREATETAB privilege to define a declared temporary table in the database that is defined AS
WORKFILE, which is the database for declared temporary tables.

• The USE privilege to use the table spaces in the database that is defined as WORKFILE.
• All table privileges on the table and authority to drop the table. (Table privileges for a declared

temporary table cannot be granted or revoked.)

These implicit privileges are not recorded in the Db2 catalog and cannot be revoked.

1830 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Syntax for DECLARE GLOBAL TEMPORARY TABLE

DECLARE GLOBAL TEMPORARY TABLE table-name

(

,

column-definition)

LIKE table-name

view-name

as-result-table

copy-options

CCSID ASCII

EBCDIC

UNICODE

ON COMMIT DELETE ROWS

ON COMMIT PRESERVE ROWS

ON COMMIT DROP TABLE

LOGGED

NOT LOGGED
ON ROLLBACK DELETE ROWS

ON ROLLBACK PRESERVE ROWS

Notes:
1 The same clause must not be specified more than one time.

column-definition:

column-name data-type
1

WITH
DEFAULT

constant

SESSION_USER

USER

CURRENT SQLID

NULL

GENERATED ALWAYS

BY DEFAULT identity-options

NOT NULL

Notes:

Chapter 7. Statements 1831

1 The same clause must not be specified more than once.

data-type:

built-in-type

distinct-type-name

built-in-type:

1832 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

FOR SBCS

MIXED

BIT

DATA

CCSID 1208
1

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

CCSID 1200
1

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

Notes:
1 The CCSID clause must only be specified for a character string or a graphic string column in an EBCDIC
created global temporary table.

as-result-table:

Chapter 7. Statements 1833

AS ( fullselect) WITH NO DATA

copy-options:

1

EXCLUDING IDENTITY
COLUMN ATTRIBUTES

INCLUDING IDENTITY
COLUMN ATTRIBUTES

EXCLUDING
COLUMN

DEFAULTS
2

INCLUDING
COLUMN

DEFAULTS

USING TYPE DEFAULTS

Notes:
1 These clauses can be specified in any order and must not be specified more than one time.
2 EXCLUDING COLUMN DEFAULTS, INCLUDING COLUMN DEFAULTS, and USING TYPE DEFAULTS must not
be specified with the LIKE clause.

identity-options:

AS IDENTITY

(

START WITH 1

START WITH numeric-constant

INCREMENT BY 1

INCREMENT BY numeric-constant

NO MINVALUE

MINVALUE numeric-constant

NO MAXVALUE

MAXVALUE numeric-constant

NO CYCLE

CYCLE

CACHE 20

NO CACHE

CACHE integer-constant

)

Notes:
1 Separator commas can be specified between the attributes when an identity column is defined

1834 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Description for DECLARE GLOBAL TEMPORARY TABLE
table-name

Names the temporary table. The qualifier, if specified explicitly, must be SESSION. If the qualifier is
not specified, it is implicitly defined to be SESSION.

If a table, view, synonym, or alias already exists with the same name and an implicit or explicit
qualifier of SESSION:

• The declared temporary table is still defined with SESSION.table-name. An error is not issued
because the resolution of a declared temporary table name does not include the persistent and
shared names in the Db2 catalog tables.

• Any references to SESSION.table-name will resolve to the declared temporary table rather than to
any existing SESSION.table-name whose definition is persistent and is in the Db2 catalog tables.

column-definition
Defines the attributes of a column for each instance of the table. The number of columns defined must
not exceed 750. The maximum record size must not exceed 32683 bytes. The maximum row size
must not exceed 32675 bytes (8 bytes less than the maximum record size).

column-name
Names the column. The name must not be qualified and must not be the same as the name of another
column in the table.

data-type
Specifies the data type of the column. The data type can be any built-in data type that can be
specified for the CREATE TABLE statement except for a LOB (BLOB, CLOB, and DBCLOB), ROWID, or
XML type. The FOR subtype DATA clause can be specified as part of data-type. For more information
on the data types and the rules that apply to them, see built-in-type.

DEFAULT
Specifies a default value for the column. This clause must not be specified more than once in the
same column-definition.

Omission of NOT NULL and DEFAULT from a column-definition is an implicit specification of DEFAULT
NULL.

If DEFAULT is specified without a value after it, the default value of the column depends on the data
type of the column, as follows:
Data type

Default value
Numeric

0
Fixed-length character string

A string of blanks
Fixed-length graphic string

A string of blanks
Fixed-length binary string

Hexadecimal zeros
Varying-length string

A string of length 0
Date

CURRENT DATE
Time

CURRENT TIME
Timestamp

CURRENT TIMESTAMP(p) where p is the corresponding timestamp precision.
Timestamp with time zone

CURRENT TIMESTAMP(p) WITH TIME ZONE where p is the corresponding timestamp precision.

Chapter 7. Statements 1835

A default value other than the one that is listed above can be specified in one of the following forms:
constant

Specifies a constant as the default value for the column. The value of the constant must conform
to the rules for assigning that value to the column. A hexadecimal graphic string constant (GX)
cannot be specified.

SESSION_USER or USER
Specifies the value of the SESSION_USER (USER) special register at the time of an insert or
update operation or LOAD as the default value for the column. The data type of the column must
be a character string with a length attribute greater than or equal to the length attribute of the
SESSION_USER special register.

CURRENT SQLID
Specifies the value of the SQL authorization ID of the process at the time of an SQL data change
statement or LOAD as the default value for the column. The data type of the column must be
a character string with a length attribute greater than or equal to the length attribute of the
CURRENT SQLID special register.

NULL
Specifies null as the default value for the column. If NOT NULL was specified, DEFAULT NULL must
not be specified within the same column-definition.

GENERATED
Specifies that Db2 generates values for the column. GENERATED must be specified if the column is to
be considered an IDENTITY column. If DEFAULT is specified for the column for an update operation,
Db2 generates a value for both GENERATED ALWAYS and GENERATED BY DEFAULT.
ALWAYS

Specifies that Db2 always generates a value for the column when a row is inserted into the table.
BY DEFAULT

Specifies that Db2 generates a value for the column when a row is inserted into the table unless
a value is specified. BY DEFAULT is the recommended value only when you are using data
propagation.

Defining a column as GENERATED BY DEFAULT does not necessarily guarantee the uniqueness
of the values. To ensure uniqueness of the values, define a unique, single-column index on the
column.

AS IDENTITY
Specifies that the column is an identity column for the table. A table can have only one identity
column. AS IDENTITY can be specified only if the data type for the column is an exact numeric type
with a scale of zero (SMALLINT, INTEGER, BIGINT, DECIMAL with a scale of zero).

An identity column is implicitly NOT NULL. An identity column cannot have a DEFAULT clause. For
the descriptions of the identity attributes, see the description of the AS IDENTITY clause in “CREATE
TABLE statement” on page 1650.

NOT NULL
Specifies that the column cannot contain nulls. Omission of NOT NULL indicates that the column can
contain nulls.

LIKE table-name or view-name
Specifies that the columns of the table have the same name, data type, and nullability attributes
as the columns of the identified table or view. If a table is identified, the column default attributes
are also defined by that table. If row permissions or column access control is enforced for the table
specified by table-name, row and column access controls are not inherited by the new table. The
name specified must identify a table, view, synonym, or alias that exists at the current server. The
identified table must not be an auxiliary table or an accelerator-only table.

The privilege set must include the SELECT privilege on the identified table or view.

This clause is similar to the LIKE clause on CREATE TABLE, but it has the following differences:

1836 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• If LIKE results in a column having a LOB data type, a ROWID data type, or distinct type, the
DECLARE GLOBAL TEMPORARY TABLE statement fails.

• In addition to these data type restrictions, if any column has any other attribute value that is not
allowed in a declared temporary table, that attribute value is ignored. The corresponding column in
the new temporary table has the default value for that attribute unless otherwise indicated.

When the identified object is a table, the column name, data type, nullability, and default attributes
are determined from the columns of the specified table; any identity column attributes are inherited
only if the INCLUDING IDENTITY COLUMN ATTRIBUTES clause is specified.

as-result-table
Specifies that the table definition is based on the column definitions from the result of a query
expression.

The behavior of these column attributes is controlled with the INCLUDING or USING TYPE DEFAULTS
clauses, which are defined below.

AS (fullselect)
Specifies an implicit definition of n columns for the declared global temporary table, where n is the
number of columns that would result from the fullselect. The columns of the new table are defined
by the columns that result from the fullselect. Every select list element must have a unique name.
The AS clause can be used in the select-clause to provide unique names. The implicit definition
includes the column name, data type, and nullability characteristic of each of the result columns
of fullselect. A column of the new table that corresponds to an implicitly hidden column of a base
table referenced in the fullselect is not considered hidden in the new table.Row and column access
controls that are enforced on the base table are not inherited by the new table.

The result table of the fullselect must not contain a column that has a LOB data type, a ROWID
data type, an XML data type or a distinct type.

If fullselect results in other column attributes that are not applicable for a declared temporary
table, those attributes are ignored in the implicit definition for the declared temporary table.

If fullselect results in a row change timestamp column, the corresponding column of the new
table inherits only the data type of the row change timestamp column. The new column is not
considered as a generated column.

The fullselect must not refer to variables or include parameter markers (question marks), but can
refer to global variables. The outermost SELECT list of the outermost fullselect must not reference
data that is encoded with different encoding schemes, unless that data is from EBCDIC and
Unicode columns in an EBCDIC table. The outermost SELECT list of the outermost fullselect must
not result in a column that is an array.

WITH NO DATA
Specifies that the fullselect is not executed. You can use the INSERT INTO statement with the
same fullselect specified in the AS clause to populate the declared temporary table with the set of
rows from the result table of the fullselect.

copy-options
Specifies whether identity column attributes and column defaults are inherited from the definition of
the source of the result table.
EXCLUDING IDENTITY COLUMN ATTRIBUTES or INCLUDING IDENTITY COLUMN ATTRIBUTES

Specifies whether identity column attributes are inherited from the columns resulting from the
fullselect, table-name, or view-name.
EXCLUDING IDENTITY COLUMN ATTRIBUTES

Specifies that the table does not inherit the identity attributes of the columns resulting from
the fullselect, table-name, or view-name.

INCLUDING IDENTITY COLUMN ATTRIBUTES
Specifies that the table inherits the identity attributes, if any, of the columns resulting from
the fullselect or table-name. In general, the identity attributes are copied if the element of the

Chapter 7. Statements 1837

corresponding column in the table or fullselect is the name of a table column that directly or
indirectly maps to the name of a base table column that is an identity column.

If the INCLUDING IDENTITY COLUMN ATTRIBUTES clause is specified with the AS fullselect
clause, the columns of the new table do not inherit the identity attribute in the following cases:

• The select list of the fullselect includes multiple instances of an identity column name (that
is, selecting the same column more than once).

• The select list of the fullselect includes multiple identity columns (that is, it involves a join).
• The identity column is included in an expression in the select list.
• The fullselect includes a set operation.

If INCLUDING IDENTITY COLUMN ATTRIBUTES is not specified, the new table will not have an
identity column.

If the LIKE clause identifies a view, INCLUDING IDENTITY COLUMN ATTRIBUTES must not be
specified.

EXCLUDING COLUMN DEFAULTS, INCLUDING COLUMN DEFAULTS, or USING TYPE DEFAULTS
Specifies whether the table inherits the default values of the columns of the fullselect.
EXCLUDING COLUMN DEFAULTS, INCLUDING COLUMN DEFAULTS, and USING TYPE DEFAULTS
must not be specified if the LIKE clause is specified.
EXCLUDING COLUMN DEFAULTS

Specifies that the table does not inherit the default values of the columns of the fullselect. The
default values of the column of the new table are either null or there are no default values. If
the column can be null, the default is the null value. If the column cannot be null, there is no
default value, and an error occurs if a value is not provided for a column on an insert operation
for the new table.

INCLUDING COLUMN DEFAULTS
Specifies that the table inherits the default values of the columns of the fullselect. A default
value is the value that is assigned to the column when a value is not specified on an insert
operation or LOAD. Columns resulting from the fullselect that are not updatable will not have a
default defined in the corresponding column of the created table.

USING TYPE DEFAULTS
Specifies that the default values for the declared temporary table depend on the data type of
the columns that result from fullselect, as follows:
Data type

Default value
Numeric

0
Fixed-length character string

Blanks
Fixed-length graphic string

Blanks
Fixed-length binary string

Hexadecimal zeros
Varying-length string

A string of length 0
Date

CURRENT DATE
Time

CURRENT TIME
Timestamp

CURRENT TIMESTAMP(p) where p is the corresponding timestamp precision.

1838 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Timestamp(integer) with time zone
CURRENT TIMESTAMP(p) WITH TIME ZONE where p is the corresponding timestamp
precision.

CCSID encoding-scheme
Specifies the encoding scheme for string data that is stored in the table. For declared temporary
tables, the encoding scheme for the data cannot be specified for the table space or database, and all
data in one table space or the database need not use the same encoding scheme. Because there can
be only one work file database for all declared temporary tables for each Db2 member, there can be a
mixture of encoding schemes in both the database and each table space.

The CCSID clause can be specified for the declared temporary table, or for individual columns in
the declared temporary table. If a CCSID clause is specified for the table, that CCSID specifies the
encoding scheme for the table, regardless of whether the LIKE clause is also specified. If a CCSID
clause is not specified for the table, the encoding scheme for the table is EBCDIC.

If a CCSID clause is specified for a column, the encoding scheme for the declared temporary table
must be EBCDIC. If a CCSID clause is not specified for a column, and the LIKE clause is not specified
for the table, the CCSID of the column is the same as the CCSID of the table. If the LIKE clause is
specified, and the source table that is specified in the LIKE clause is an EBCDIC table with Unicode
columns, the columns in the declared temporary table that correspond to the Unicode columns in the
source table are also Unicode.

ASCII
Specifies that the data is encoded by using the ASCII CCSIDs of the server.

EBCDIC
Specifies that the data is encoded by using the EBCDIC CCSIDs of the server.

UNICODE
Specifies that the data is encoded by using the UNICODE CCSIDs of the server.

An error occurs if the CCSIDs for the encoding scheme have not been defined. Usually, each
encoding scheme requires only a single CCSID. Additional CCSIDs are needed when mixed, graphic, or
UNICODE data is used.

ON COMMIT
Specifies what happens to the table for a commit operation. The default is ON COMMIT DELETE
ROWS.
DELETE ROWS

Specifies that all of the rows of the table are deleted if there is no open cursor that is defined as
WITH HOLD that references the table.

PRESERVE ROWS
Specifies that all of the rows of the table are preserved. Thread reuse capability is not available
to any application process or thread that contains, at its most recent commit, an active declared
temporary table that was defined with the ON COMMIT PRESERVE ROWS clause.

DROP TABLE
Specifies that the table is implicitly dropped at commit if there is no open cursor that is defined
as WITH HOLD that references the table. If there is an open cursor defined as WITH HOLD on the
table at commit, the rows are preserved.

LOGGED or NOT LOGGED
Specifies whether operations for the table are to be logged. This option also applies to any indexes
that are associated with the table. Indexes inherit the logging attribute from their associated tables.
LOGGED

Specifies that insert, update, or delete operations for the declared temporary table are logged.
Create and drop actions for the table are also logged. This is the default option.

NOT LOGGED
Specifies that insert, update, or delete operations for the declared temporary table are not logged.
However, create and drop actions for the table are logged.

Chapter 7. Statements 1839

ON ROLLBACK DELETE ROWS
Specifies that when a ROLLBACK or ROLLBACK TO SAVEPOINT statement is issued, all rows of
the global temporary table are deleted. This is the default.

ON ROLLBACK PRESERVE ROWS
Specifies that when a ROLLBACK or ROLLBACK TO SAVEPOINT statement is issued, all rows of
the global temporary table are preserved.

If a ROLLBACK or ROLLBACK TO SAVEPOINT statement is issued, the following actions occur for
tables that were created or dropped:

• If the table was created within the unit of work or savepoint, the table is dropped.
• If the table was dropped within the unit of work or savepoint, the table is re-created without any

data.

For statements that insert multiple rows, the ATOMIC and NOT ATOMIC CONTINUE ON
SQLEXCEPTION options of the INSERT statement determine the result of an error. If ATOMIC
is specified, an error during insertion causes all rows in the global temporary table to be deleted.
If NOT ATOMIC CONTINUE ON SQLEXCEPTION is specified, an error during insertion causes all
rows in the table to be deleted, but the next insert is processed. At the end of the insert, the table
includes only the rows that were inserted after the last error.

Restriction: In CREATE TABLESPACE and ALTER TABLESPACE statements, LOG YES and LOG NO can
be used as syntax alternatives for LOGGED and NOT LOGGED, respectively. These syntax alternatives
cannot be used in a DECLARE GLOBAL TEMPORARY TABLE statement.

Notes for DECLARE GLOBAL TEMPORARY TABLE
Instantiation, scope, and termination

For the following explanations, P denotes an application process, and T is a declared temporary table
executed in P:

• An empty instance of T is created when a DECLARE GLOBAL TEMPORARY TABLE statement is
executed in P.

• Any SQL statement in P can reference T, and any of those references to T in P is a reference to that
same instance of T. ()

If a DECLARE GLOBAL TEMPORARY statement is specified within an SQL PL compound statement,
the scope of the declared temporary table is the application process and not just the compound
statement. A declared temporary table cannot be defined multiple times by the same name in other
compound statements in that application process, unless the table has been dropped explicitly.

• If T was declared at a remote server, the reference to T must use the same Db2 connection that was
used to declare T and that connection must not have been terminated after T was declared. When
the connection to the database server at which T was declared terminates, T is dropped.

• If T was defined with the ON COMMIT DELETE ROWS clause specified implicitly or explicitly, when a
commit operation terminates a unit of work in P and there is no open WITH HOLD cursor in P that is
dependent on T, the commit deletes all rows from T.

• If T is defined with the ON COMMIT DROP TABLE clause, when a commit operation terminates a unit
of work in P and no program in P has a WITH HOLD cursor open that is dependent on T, the commit
includes the operation DROP TABLE T.

• When a rollback operation terminates a unit of work or savepoint in P, and that unit of work or
savepoint includes the declaration of SESSION.T, the changes to table T are undone.

When a rollback operation terminates a unit of work or savepoint in P, and that unit of work or
savepoint includes the declaration of SESSION.T, the rollback drops table T.

When a rollback operation terminates a unit of work or savepoint in P, and that unit of work or
savepoint includes the drop of the declaration of declared temporary table SESSION.T, the rollback
undoes the drop of table T.

1840 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• When the application process that declared T terminates, T is dropped.
• When a rollback operation terminates a unit of work or a savepoint in P, and that unit of work or

savepoint includes a modification to SESSION.T the following actions occur:

– If NOT LOGGED was specified, all rows from SESSION.T are deleted unless ON ROLLBACK
PRESERVE ROWS was also specified.

– If NOT LOGGED was not specified, the changes to table T are undone.
• If NOT LOGGED was specified and an INSERT, UPDATE or DELETE statement fails during execution

(not a compilation error), all rows from SESSION.T are deleted.
• When a rollback operation terminates a unit of work or a savepoint in P, and that unit of work

or savepoint includes the declaration of SESSION.T, the rollback includes the operation DROP
SESSION.T.

• When a rollback operation terminates a unit of work or a savepoint in P, and that unit of work or
savepoint includes the drop of a declared temporary table SESSION.T, the rollback undoes the drop
of the table. If NOT LOGGED was specified, the table is also emptied.

• When the application process that declared T terminates or disconnects from the database, T is
dropped and its instantiated rows are destroyed.

Privileges
When a declared temporary table is defined, PUBLIC is implicitly granted all table privileges on the
table and authority to drop the table. These implicit privileges are not recorded in the Db2 catalog and
cannot be revoked. This enables any SQL statement in the application process to reference a declared
temporary table that has already been defined in that application process.

Referring to a declared temporary table in other SQL statements

Many SQL statements support declared temporary tables. To refer to a declared temporary table in
an SQL statement other than DECLARE GLOBAL TEMPORARY TABLE, you must qualify the table name
with SESSION. You can either specify SESSION explicitly in the table name or use the QUALIFIER bind
option to specify SESSION as the qualifier for all SQL statements in the plan or package.

If you use SESSION as the qualifier for a table name but the application process does not include a
DECLARE GLOBAL TEMPORARY TABLE statement for the table name, Db2 assumes that you are not
referring to a declared temporary table. Db2 resolves such table references to a table whose definition
is persistent and appears in the Db2 catalog tables.

With the exception of the DECLARE GLOBAL TEMPORARY TABLE statement, any static SQL statement
that references a declared temporary table is incrementally bound at run time. This is because the
definition of the declared temporary table does not exist until the DECLARE GLOBAL TEMPORARY
statement is executed in the application process that contains those SQL statements and the
definition does not persist when the application process finishes running.

When a plan or package is bound, any static SQL statement (other than the DECLARE GLOBAL
TEMPORARY TABLE statement) that references a table-name that is qualified by SESSION, regardless
of whether the reference is for a declared temporary table, is not completely bound. However, the
bind of the plan or package succeeds if there are no other errors. No object dependencies, including
non-DECLARE GLOBAL TEMPORARY TABLE objects, are recorded in the Db2 catalog for any such
statements. These static SQL statements are then incrementally bound at run time when the static
SQL statement is issued.

The incremental binds are necessary for the following reasons:

• The definition of the declared temporary table does not exist until the DECLARE GLOBAL
TEMPORARY TABLE statement for the table is executed in the same application process that
contains those SQL statements. Therefore, Db2 must wait until the plan or package is run to
determine if SESSION.table-name refers to a base table or a declared temporary table.

• The definition of a declared temporary table does not persist after the table it is explicitly dropped
(DROP statement), implicitly dropped (ON COMMIT DROP TABLE), or the application process that
defined it finishes running. When the application process terminates or is re-used as a reusable

Chapter 7. Statements 1841

application thread, the instantiated rows of the table are deleted and the definition of the declared
temporary table is dropped if it has not already been explicitly or implicitly dropped.

After the plan or package is bound, any static SQL statement that refers to a table-name that is
qualified by SESSION has a new statement status of M in the Db2 catalog table (STATUS column of
SYSIBM.SYSSTMT or SYSIBM.SYSPACKSTMT).

Thread reuse

If a declared temporary table is defined in an application process that is running as a local thread, the
application process or local thread that declared the table qualifies for explicit thread reuse if:

• The table was defined with both the default ON COMMIT DELETE ROWS attribute and the NOT
LOGGED ON ROLLBACK DELETE ROWS attribute.

• The table was defined with PRESERVE ROWS specified on either the ON COMMIT or NOT LOGGED
ON ROLLBACK option and the table was explicitly dropped with the DROP TABLE statement before
the thread's commit operation.

• The table was defined with the ON COMMIT DROP TABLE attribute. When a declared temporary
table is defined with the ON COMMIT DROP TABLE and a commit occurs, the table is implicitly
dropped if there are no open cursors defined with the WITH HOLD option.

When the thread is reused, the declared temporary table is dropped and its rows are destroyed.
However, if you do not explicitly or implicitly drop all declared temporary tables before or when your
thread performs a commit and the thread becomes idle waiting to be reused, as with all thread reuse
situations, the idle thread holds resources and locks. This includes some declared temporary table
resources and locks on the table spaces and the database descriptor (DBD) for the work file database.
So, instead of using the implicit drop feature of thread reuse to drop your declared temporary tables, it
is recommended that you:

• Use the DROP TABLE statement to explicitly drop your declared temporary tables before the thread
performs a commit and becomes idle.

• Define the declared temporary tables with ON COMMIT DROP TABLE clause so that the tables are
implicitly dropped when a commit occurs.

Explicitly dropping the tables before a commit occurs or having them implicitly dropped when the
commit occurs enables you to maximize the use of declared temporary table resources and release
locks when multiple threads are using declared temporary table.

Remote threads qualify for thread reuse differently than local threads. If a declared temporary table
is defined (with or without ON COMMIT DELETE ROWS) in an application process that is running as a
remote or DDF thread (also known as Database Access Thread or DBAT), the remote thread qualifies
for thread reuse only when the declared temporary table is explicitly dropped before the thread
performs a commit operation. Dropping the declared temporary table enables the remote thread to
qualify for the implicit thread reuse that is supported for DDF threads via connection pooling and to
become an inactive DBAT (type 1 inactive thread) or an inactive connection (type 2 inactive thread).

Parallelism support
Only I/O and CP parallelism are supported. Any query that involves a declared temporary table is
limited to parallel tasks on a single CPC.

Restrictions on the use of declared temporary tables
Declared temporary tables cannot:

• Be specified in referential constraints.
• Be referenced in any SQL statements that are defined in an SQL function body (CREATE FUNCTION

or ALTER FUNCTION statements), a trigger body (CREATE TRIGGER statement). If you refer a table
name that is qualified with SESSION in a trigger body, Db2 assumes that you are referring to a base
table.

• Be referenced in a CREATE INDEX statement unless the schema name of the index is SESSION.

In addition, do not refer to a declared temporary table in any of the following statements.

1842 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Statement Statement

ALTER INDEX
ALTER TABLE
COMMENT
CREATE ALIAS
CREATE FUNCTION (TABLE LIKE clause)
CREATE MASK (ON table-name clause)
CREATE PERMISSION (ON table-name clause)
CREATE PROCEDURE (TABLE LIKE clause)

CREATE TRIGGER
CREATE VIEW
GRANT (table or view privileges)
LABEL
LOCK TABLE
REFRESH TABLE
RENAME
REVOKE (table or view privileges)

Declared global temporary tables and dynamic statement caching
The Db2 dynamic statement cache feature does not support dynamic SQL statements that reference
declared temporary tables, even if the SQL statement also includes references to base or persistent
tables. Db2 will not insert such statements into the dynamic statement cache. Instead, these dynamic
statements are processed as if statement caching is not in effect. Declared temporary tables are
unique and specific to an application process or Db2 thread, cannot be shared across threads, are not
described in the Db2 catalog, and do not persist beyond termination of the Db2 thread or application
process. These attributes prevent the use of the dynamic statement cache feature where tables and
SQL statements are shared across threads or application processes.

Table space requirements in the work file database
Db2 stores all declared temporary tables in the work file database. You cannot define a declared
temporary table unless a table space with at least an 32KB page size exists in the work file database.

Alternative syntax and synonyms
To provide compatibility with previous releases, Db2 allows you to specify:

• LONG VARCHAR as a synonym for VARCHAR(integer) and LONG VARGRAPHIC as a synonym for
VARGRAPHIC(integer) when defining the data type of a column.

However, the use of these synonyms is not encouraged because after the statement is processed,
Db2 considers a LONG VARCHAR column to be VARCHAR and a LONG VARGRAPHIC column to be
VARGRAPHIC.

• DEFINITION ONLY as a synonym for WITH NO DATA.
• TIMEZONE can be specified as an alternative to TIME ZONE.

Examples for DECLARE GLOBAL TEMPORARY TABLE

Example 1
Define a declared temporary table with column definitions for an employee number, salary,
commission, and bonus.

 DECLARE GLOBAL TEMPORARY TABLE SESSION.TEMP_EMP
 (EMPNO CHAR(6) NOT NULL,
 SALARY DECIMAL(9, 2),
 BONUS DECIMAL(9, 2),
 COMM DECIMAL(9, 2))
 CCSID EBCDIC
 ON COMMIT PRESERVE ROWS;

Example 2

Assume that base table USER1.EMPTAB exists and that it contains three columns, one of which is an
identity column. Declare a temporary table that has the same column names and attributes (including
identity attributes) as the base table.

 DECLARE GLOBAL TEMPORARY TABLE TEMPTAB1
 LIKE USER1.EMPTAB

Chapter 7. Statements 1843

 INCLUDING IDENTITY
 ON COMMIT PRESERVE ROWS;

In the above example, Db2 uses SESSION as the implicit qualifier for TEMPTAB1.

DECLARE STATEMENT statement
The DECLARE STATEMENT statement is used for application program documentation. It declares names
that are used to identify prepared SQL statements.

Invocation for DECLARE STATEMENT
This statement can only be embedded in an application program. It is not an executable statement.

Authorization for DECLARE STATEMENT
None required.

Syntax for DECLARE STATEMENT

DECLARE

,

statement-name STATEMENT

Description for DECLARE STATEMENT
statement-name STATEMENT

Lists one or more names that are used in your application program to identify prepared SQL
statements.

Example for DECLARE STATEMENT

This example shows the use of the DECLARE STATEMENT statement in a PL/I program.

 EXEC SQL DECLARE OBJECT_STATEMENT STATEMENT;

 EXEC SQL INCLUDE SQLDA;
 EXEC SQL DECLARE C1 CURSOR FOR OBJECT_STATEMENT;

 (SOURCE_STATEMENT IS "SELECT DEPTNO, DEPTNAME,
 MGRNO FROM DSN8C10.DEPT WHERE ADMRDEPT = 'A00'")

 EXEC SQL PREPARE OBJECT_STATEMENT FROM SOURCE_STATEMENT;
 EXEC SQL DESCRIBE OBJECT_STATEMENT INTO SQLDA;

 /* Examine SQLDA */

 EXEC SQL OPEN C1;

 DO WHILE (SQLCODE = 0);
 EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA;

 /* Print results */

 END;

 EXEC SQL CLOSE C1;

1844 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

DECLARE TABLE statement
The DECLARE TABLE statement is used for application program documentation. It also provides the
precompiler with information used to check your embedded SQL statements. (The DCLGEN subcommand
can be used to generate declarations for tables and views described in any accessible Db2 catalog.

For more information about DCLGEN, see Declaring table and view definitions (Db2 Application
programming and SQL) and DCLGEN (declarations generator) subcommand (DSN) (Db2 Commands).)

Invocation for DECLARE TABLE
This statement can only be embedded in an application program. It is not an executable statement.

Authorization for DECLARE TABLE
None required.

Syntax for DECLARE TABLE

DECLARE table-name

view-name

TABLE(

,

column-name built-in-type

distinct-type-name NOT NULL

NOT NULL WITH DEFAULT

)

built-in-type:

Chapter 7. Statements 1845

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_declaretableviewdefinition.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_declaretableviewdefinition.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_dclgen.html

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

)

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

ROWID

XML

1846 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Description for DECLARE TABLE
table-name or view-name

Specifies the name of the table or view to document. If the table is defined in your application
program, the description of the table in the SQL statement in which it is defined (for example, CREATE
TABLE or DECLARE GLOBAL TEMPORARY TABLE statement) and the DECLARE TABLE statement must
be identical.

column-name
Specifies the name of a column of the table or view.

The precompiler uses these names to check for consistency of names within your SQL statements. It
also uses the data type to check for consistency of names and data types within your SQL statements.

built-in-type
Specifies the built-in data type of the column. Use one of the built-in data types.
SMALLINT

For a small integer.
INTEGER or INT

For a large integer.
BIGINT

For a big integer.
DECIMAL(integer,integer) or DEC(integer,integer)
DECIMAL(integer) or DEC(integer)
DECIMAL or DEC

For a decimal number. The first integer is the precision of the number. That is, the total number of
digits, which can range 1–31. The second integer is the scale of the number. That is, the number of
digits to the right of the decimal point, which can range from 0 to the precision of the number.

You can use DECIMAL(p) for DECIMAL(p,0) and DECIMAL for DECIMAL(5,0).

You can also use the word NUMERIC instead of DECIMAL. For example, NUMERIC(8) is equivalent
to DECIMAL(8). Unlike DECIMAL, NUMERIC has no allowable abbreviation.

FLOAT(integer)
FLOAT

For a floating-point number. If integer is in the range 1–21 inclusive, the format is single precision
floating-point. If the integer is in the range 22–53 inclusive, the format is double precision
floating-point.

You can use DOUBLE PRECISION or FLOAT for FLOAT(53).

REAL
For single precision floating-point.

DOUBLE or DOUBLE PRECISION
For double precision floating-point

DECFLOAT(integer)
For a decimal floating-point number. The value of integer must be either 16 or 34 and represents
the number of significant digits that can be stored. If integer is omitted, the DECFLOAT column will
be capable of representing 34 significant digits.

CHARACTER(integer) or CHAR(integer)
CHARACTER or CHAR

For a fixed-length character string of length integer, which can range 1–255. If the length
specification is omitted, a length of 1 character is assumed.
CCSID 1208

Specifies that the column is a Unicode column encoded in UTF-8. This clause must not be
specified for an ASCII or Unicode table.

Chapter 7. Statements 1847

VARCHAR(integer), CHAR VARYING(integer), or CHARACTER VARYING(integer)
For a varying-length character string of maximum length integer, which can range from 1 to the
maximum record size minus 10 bytes. See Table 208 on page 1707 to determine the maximum
record size.
CCSID 1208

Specifies that the column is a Unicode column encoded in UTF-8. This clause must not be
specified for an ASCII or Unicode table.

CLOB(integer [K|M|G]), CHAR LARGE OBJECT(integer [K|M|G]), or CHARACTER LARGE
OBJECT(integer [K|M|G])
CLOB, CHAR LARGE OBJECT, or CHARACTER LARGE OBJECT

For a character large object (CLOB) string of the specified maximum length in bytes. The maximum
length must be in the range 1–2147483647. A CLOB column has a varying-length. It cannot
be referenced in certain contexts regardless of its maximum length. For more information, see
“Restrictions using LOBs” on page 117.

When integer is not specified, the default length is 1M. The maximum value that can be specified
for integer depends on whether a units indicator is also specified as shown in the following list.
integer

The maximum value for integer is 2147483647. The maximum length of the string is integer.
integer K

The maximum value for integer is 2097152. The maximum length is 1024 times integer.
integer M

The maximum value for integer is 2048. The maximum length is 1,048,576 times integer.
integer G

The maximum value for integer is 2. The maximum length is 1,073,741,824 times integer.

integer can be separated from K, M, or G by 0 or more spaces.

If you specify a value that evaluates to 2 gigabytes (2,147,483,648), Db2 uses a value that is one
byte less, or 2147483647.

CCSID 1208
Specifies that the column is a Unicode column encoded in UTF-8. This clause must not be
specified for an ASCII or Unicode table.

GRAPHIC(integer)
GRAPHIC

For a fixed-length graphic string of length integer, which can range 1–127. If the length
specification is omitted, a length of 1 character is assumed.
CCSID 1200

Specifies that the column is a Unicode column encoded in UTF-16. This clause must not be
specified for an ASCII or Unicode table.

VARGRAPHIC(integer)
For a varying-length graphic string of maximum length integer, which must range from 1 to n/2,
where n is the maximum row size minus 2 bytes.
CCSID 1200

Specifies that the column is a Unicode column encoded in UTF-16. This clause must not be
specified for an ASCII or Unicode table.

DBCLOB(integer [K|M|G])
DBCLOB

For a double-byte character large object (DBCLOB) string of the specified maximum length in
double-byte characters. The maximum length must be in the range of 1–1,073,741,823. A
DBCLOB column has a varying-length. It cannot be referenced in certain contexts regardless of its
maximum length. For more information, see “Restrictions using LOBs” on page 117.

When integer is not specified, the default length is 1M. The meaning of integer K|M|G is similar to
CLOB. The difference is that the number specified is the number of double-byte characters.

1848 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

integer can be separated from K, M, or G by 0 or more spaces.

CCSID 1200
Specifies that the column is a Unicode column encoded in UTF-16. This clause must not be
specified for an ASCII or Unicode table.

BINARY(integer)
A fixed-length binary string of length integer. The integer can range 1–255. If the length
specification is omitted, a length of 1 byte is assumed.

BINARY VARYING(integer) or VARBINARY(integer)
A varying-length binary string of maximum length integer, which can range 1–32704. The length is
limited by the page size of the table space.

BLOB (integer [K|M|G] or BINARY LARGE OBJECT(integer [K|M|G])
BLOB or BINARY LARGE OBJECT

For a binary large object (BLOB) string of the specified maximum length in bytes. The maximum
length must be in the range of 1–2147483647. A BLOB column has a varying-length. It cannot
be referenced in certain contexts regardless of its maximum length. For more information, see
“Restrictions using LOBs” on page 117.

When integer is not specified, the default length is 1M. The meaning of integer K|M|G is the same
as for CLOB.

integer can be separated from K, M, or G by 0 or more spaces.

DATE
For a date.

TIME
For a time.

TIMESTAMP(integer) WITHOUT TIME ZONE
For a timestamp. integer specifies the optional timestamp precision attribute and must be in the
range 0–12. The timestamp precision denotes the number of fractional second digits that are
included in the timestamp. The default is 6.

TIMESTAMP(integer) WITH TIME ZONE
For a timestamp with time zone. integer specifies the optional timestamp precision attribute and
must be in the range 0–12. The timestamp precision denotes the number of fractional second
digits that are included in the timestamp. The default is 6.

ROWID
For a row ID type.

A table can contain at most two ROWID columns. If it contains two, one column is implicitly
generated by Db2 and the other column is explicitly defined as a ROWID without the IMPLICITLY
HIDDEN attribute. The values in a ROWID column are unique for every row in the table and cannot
be updated. You must specify NOT NULL with ROWID.

XML
For an XML document. Only well-formed XML documents can be inserted into an XML column.

If the XML column is the first XML column that you create for the table, a BIGINT DOCID column is
implicitly created and is used to store a unique document identifier for the XML columns of a row.

distinct-type-name
Specifies the distinct type (user-defined data type) of the column. An implicit or explicit schema name
qualifies the name.

NOT NULL
Specifies that the column does not allow null values and does not provide a default value.

NOT NULL WITH DEFAULT
Specifies that the column does not allow null values but provides a default value.

Chapter 7. Statements 1849

Notes for DECLARE TABLE

Error handling during processing: If an error occurs during the processing of the DECLARE TABLE
statement, a warning message is issued, and the precompiler continues processing your source program.

Documenting a distinct type column: Although you can specify the name of a distinct type as the data
type of a column in the DECLARE TABLE statement, use the built-in data type on which the distinct type is
based instead. Using the base type enables the precompiler to check the embedded SQL statements for
errors; otherwise, error checking is deferred until bind time.

To determine the source data type of the distinct type, check the value of column SOURCETYPE in catalog
table SYSDATATYPES.

Examples for DECLARE TABLE

Example 1: Issue a DECLARE TABLE statement for the sample employee table, DSN8C10.EMP.

EXEC SQL DECLARE DSN8C10.EMP TABLE
 (EMPNO CHAR(6) NOT NULL,
 FIRSTNME VARCHAR(12) NOT NULL,
 MIDINIT CHAR(1) NOT NULL,
 LASTNAME VARCHAR(15) NOT NULL,
 WORKDEPT CHAR(3) ,
 PHONENO CHAR(4) ,
 HIREDATE DATE ,
 JOB CHAR(8) ,
 EDLEVEL SMALLINT ,
 SEX CHAR(1) ,
 BIRTHDATE DATE ,
 SALARY DECIMAL(9,2) ,
 BONUS DECIMAL(9,2) ,
 COMM DECIMAL(9,2));

Example 2: Issue a DECLARE TABLE statement for a table that includes a column with a distinct type.

Assume that table CANADIAN_SALES keeps information for your company's sales in Canada. The table
includes one column, TOTAL, that is defined as a distinct type. The distinct type CANADIAN_DOLLAR was
created with the following definition:

CREATE TYPE CANADIAN_DOLLAR AS DECIMAL(9,2);

The CANADIAN_SALES table was created with the following definition, which uses the distinct type
CANADIAN_DOLLAR as the data type for the TOTAL column.

CREATE TABLE CANADIAN_SALES
 (PRODUCT_ITEM INTEGER,
 MONTH INTEGER,
 YEAR INTEGER,
 TOTAL CANADIAN_DOLLAR); -- TOTAL column data type is a distinct type

A DECLARE TABLE statement must include only built-in data types. Therefore, in the DECLARE
TABLE statement for the CANADIAN_SALES table, you need to use the source data type for the
CANADIAN_DOLLAR distinct type, which is DECIMAL(9,2).

DECLARE TABLE CANADIAN_SALES
 (PRODUCT_ITEM INTEGER,
 MONTH INTEGER,
 YEAR INTEGER,
 TOTAL DECIMAL(9,2)); -- Define the column using the source built-in data type

DECLARE VARIABLE statement
The DECLARE VARIABLE statement defines a CCSID for a host variable and the subtype of the
variable. When it appears in an application program, the DECLARE VARIABLE statement causes the

1850 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Db2 precompiler to tag a host variable with a specific CCSID. When the host variable appears in an
SQL statement, the Db2 precompiler places this CCSID into the structures that it generates for the SQL
statement.

Invocation for DECLARE VARIABLE
This statement can only be embedded in an application program. It is not an executable statement.

Authorization for DECLARE VARIABLE
None required.

Syntax for DECLARE VARIABLE

DECLARE

,

 host-variable VARIABLE
CCSID EBCDIC

CCSID ASCII

CCSID UNICODE

FOR SBCS DATA

FOR MIXED DATA

FOR BIT DATA

CCSID integer-constant

Description for DECLARE VARIABLE
host-variable

Identifies a character or graphic string host variable defined in the program. An indicator variable
cannot be specified for the host-variable.

CCSID ASCII, EBCDIC, or UNICODE
Specifies that the appropriate default CCSID for the specified encoding scheme of the server should
be used.
CCSID ASCII

Specifies that the default ASCII CCSID for the type of the variable at the server should be used.
CCSID EBCDIC

Specifies that the default EBCDIC CCSID for the type of the variable at the server should be used.
CCSID EBCDIC is the default if this option is not specified.

CCSID UNICODE
Specifies that the default UNICODE CCSID for the type of the variable at the server should be
used.

FOR SBCS DATA, FOR MIXED DATA, or FOR BIT DATA
Specifies the type of data contained in the variable host-variable. The FOR clause cannot be specified
when declaring a graphic host variable.

For ASCII or EBCDIC data, if this clause is not specified when declaring a character host variable, the
default is FOR SBCS DATA if MIXED DATA = NO on the installation panel DSNTIPF. The default is FOR
MIXED DATA if MIXED DATA = YES on the installation panel DSNTIPF.

For UNICODE data, the default is always FOR MIXED DATA, regardless of the setting of MIXED DATA
on the installation panel DSNTIPF.

FOR SBCS DATA
Specifies that the values of the host variable can contain only SBCS (single-byte character set)
data.

FOR MIXED DATA
Specifies that the values of the host variable can contain both SBCS data and DBCS data.

Chapter 7. Statements 1851

FOR BIT DATA
Specifies that the values of the host-variable are not associated with a coded character set and,
therefore, are never converted. The CCSID of a FOR BIT DATA host variable is 65535.

CCSID integer-constant
Specifies that the values of the host variable contain data that is encoded using CCSID integer-
constant. If the integer is an SBCS CCSID, the host variable is SBCS data. If the integer is a mixed data
CCSID, the host variable is mixed data. For character host variables, the CCSID specified must be an
SBCS, mixed CCSID, or UNICODE (UTF-8) CCSID. For graphic host variables, the CCSID specified must
be a DBCS or UNICODE (UTF-16) CCSID. The valid range of values for the integer is 1–65533.

Notes for DECLARE VARIABLE
Placement of statement: The DECLARE VARIABLE statement can be specified anywhere in an application
program that SQL statements are valid with the following exception. The DECLARE VARIABLE statement
must occur before an SQL statement that refers to a host variable specified in the DECLARE VARIABLE
statement.

CCSID exceptions for EXECUTE IMMEDIATE or PREPARE: When the host variable appears in an SQL
statement, the Db2 precompiler places the appropriate numeric CCSID into the structures it generates for
the SQL statement. This placement of the CCSID occurs for any SQL statement other than the EXECUTE
IMMEDIATE or PREPARE statements. The placement of the CCSID also occurs for a host-variable in an
EXECUTE IMMEDIATE or PREPARE statement, but it does not occur for a variable in a string-expression in
an EXECUTE IMMEDIATE or PREPARE statement.

If a PL/1 application program contains at least one DECLARE VARIABLE statement, a string-expression
in any EXECUTE IMMEDIATE or PREPARE statement cannot be preceded by a colon. An expression that
consists of just a variable name preceded by a colon is interpreted as a host-variable.

Specific host languages: If a DECLARE VARIABLE statement is used in an assembler source program, the
ONEPASS SQL processing option must not be used. If a DECLARE VARIABLE statement is used in a C,
C++, or PL/I source program, the TWOPASS SQL processing option must be used. For those languages,
or COBOL, the host-variable definition can either precede or follow a DECLARE VARIABLE statement that
refers to that variable. If a DECLARE VARIABLE statement is used in a FORTRAN source program, then the
host-variable definition must precede the DECLARE VARIABLE statement.

Example for DECLARE VARIABLE

Example: Define the following host variables using PL/I data types: FRED as fixed length bit data, JEAN as
fixed length UTF-8 (mixed) data, DAVE as varying length UTF-8 (mixed) data, PETE as fixed length graphic
UTF-16 data, and AMBER as varying length graphic UTF-16 data.

Use the DECLARE VARIABLE statement to specify a data subtype or CCSID for these host variables: FRED
as CCSID EBCDIC, JEAN as CCSID 1208 or CCSID UNICODE, DAVE as CCSID 1208 or CCSID UNICODE,
PETE as CCSID 1200 or CCSID UNICODE, and AMBER as CCSID 1200 or CCSID UNICODE.

 EXEC SQL BEGIN DECLARE SECTION;
 DCL FRED CHAR(10);
 EXEC SQL DECLARE :FRED VARIABLE CCSID EBCDIC FOR BIT DATA;
 DCL JEAN CHAR(30);
 EXEC SQL DECLARE :JEAN VARIABLE CCSID 1208;
 DCL DAVE CHAR(9) VARYING;
 EXEC SQL DECLARE :DAVE VARIABLE CCSID UNICODE;
 DCL PETE GRAPHIC(10);
 EXEC SQL DECLARE :PETE VARIABLE CCSID 1200;
 DCL AMBER GRAPHIC(20) VARYING;
 EXEC SQL DECLARE :AMBER VARIABLE CCSID UNICODE;
 EXEC SQL END DECLARE SECTION;

1852 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

DELETE statement
The DELETE statement deletes rows from a table or view. Deleting a row from a view deletes the row from
the table on which the view is based if no INSTEAD OF DELETE trigger is defined for this view. If such a
trigger is defined, the trigger is activated instead.

The table or view can be at the current server or any Db2 subsystem with which the current server can
establish a connection.

There are two forms of this statement:

• The searched DELETE form is used to delete one or more rows, optionally determined by a search
condition.

• The positioned DELETE form specifies that one or more rows corresponding to the current cursor
position are to be deleted.

Invocation for DELETE
This statement can be embedded in an application program or issued interactively. A positioned DELETE
is embedded in an application program. Both the embedded and interactive forms are executable
statements that can be dynamically prepared.

Authorization for DELETE
Authority requirements depend on whether the object identified in the statement is a user-defined table,
a catalog table, or a view, and whether the statement is a searched DELETE and SQL standard rules are in
effect:

When a table other than a catalog table is identified: The privilege set must include at least one of the
following:

• The DELETE privilege on the table
• Ownership of the table
• DBADM authority on the database that contains the table
• SYSADM authority

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

When a catalog table is identified: The privilege set must include at least one of the following:

• DBADM authority on the catalog database
• SYSCTRL authority
• SYSADM authority

When a view is identified: The privilege set must include at least one of the following:

• The DELETE privilege on the view
• SYSADM authority

If the search-condition in a searched DELETE contains a reference to a column of the table or view, or the
expression in the assignment-clause contains a reference to a column of the table or view, the privilege set
must include at least one of the following:

• The SELECT privilege on the table or view
• Ownership of the table or view
• DBADM authority on the database that contains the table, if the target is a table and that table that is

not a catalog table
• DATAACCESS
• SYSADM authority

Chapter 7. Statements 1853

If the search-condition in a searched DELETE includes a subquery, or if the assignment-clause includes a
scalar-fullselect or a row-fullselect, see “Authorization for queries” on page 1007 for an explanation of the
authorization required.

The owner of a view, unlike the owner of a table, might not have DELETE authority on the view (or might
have DELETE authority without being able to grant it to others). The nature of the view itself can preclude
its use for DELETE. For more information, see the description of authority in “CREATE VIEW statement” on
page 1812.

If the statement is embedded in an application program, the privilege set is the privileges that are
held by the owner of the plan or package. If the statement is dynamically prepared, the privilege set is
determined by the DYNAMICRULES behavior in effect (run, bind, define, or invoke) and is summarized in
Table 171 on page 1089. (For more information on these behaviors, including a list of the DYNAMICRULES
bind option values that determine them, see “Authorization IDs and dynamic SQL” on page 94.)

FL 509 If the statement attempts to delete a row in the SYSIBM.SYSAUDITPOLICIES catalog table that
is subject to a tamper-proof audit policy, additional RACF authorization is required. During statement
execution, the primary authorization ID or one of the groups associated with the primary authorization ID
must be authorized to access the tamper-proof audit policy profile in RACF. For more information on the
authorization rules, see Db2 audit policies (Managing Security).

searched delete:

DELETE FROM table-name

view-name period-clause
1 correlation-name

include-column SET assignment-clause

WHERE search-condition fetch-clause

2

isolation-clause

SKIP LOCKED DATA

QUERYNO integer

Notes:
1 If the period-clause is specified, the fetch-clause must not be specified.
2 The same clause must not be specified more than one time.

positioned delete:

DELETE FROM table-name

view-name correlation-name

WHERE CURRENT OF

cursor-name

FOR ROW host-variable

integer-constant

OF ROWSET

period-clause:

1854 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_auditpolicy.html

FOR PORTION OF BUSINESS_TIME FROM value1 TO value2

BETWEEN value1 AND value2

include-column:

INCLUDE (

,

column-name data-type)

data-type:

built-in-type

distinct-type

built-in-type:

Chapter 7. Statements 1855

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

FOR BIT DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC ( integer)

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

assignment clause:

1856 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

,

column-name = expression

NULL

(

,

column-name) = (

,
1

expression

NULL

row-fullselect
2

)

Notes:
1 The number of expressions and NULL keywords must match the number of column-names.
2 The number of columns in the select list must match the number of column-names.

isolation-clause:

WITH RR

RS

CS

Description for DELETE
FROM table-name or view-name

Identifies the table or view from which rows are to be deleted. The name must identify a table or
view that exists at the Db2 subsystem that is identified by the implicitly or explicitly specified location
name. The name must not identify:

• An auxiliary table
• A catalog table for which deletes are not allowed
• A view of such a catalog table
• A directory table
• A read-only view (see “CREATE VIEW statement” on page 1812)
• A view that is defined with an instead of trigger if the fetch-clause is specified.
• A created global temporary table if the fetch-clause is specified.
• An accelerator-only table if the fetch-clause is specified.
• A system-maintained materialized query table
• A table that is implicitly created for an XML column
• An archive-enabled table if the SYSIBMADM.GET_ARCHIVE global variable is set to Y, the

ARCHIVESENSITIVE bind option is set to YES, and the operation is a positioned delete

In an IMS or CICS application, the Db2 subsystem that contains the identified table or view must be a
remote server that supports two-phase commit.

period-clause
Specifies that a period clause applies to the target of the delete operation. The same period name
must not be specified more than one time. If the target of the delete operation is a view:

• The FROM clause of the outer fullselect of the view definition must include a reference, directly or
indirectly, to an application-period temporal table.

• An INSTEAD OF trigger must not be defined for that view.

Chapter 7. Statements 1857

FOR PORTION OF BUSINESS_TIME
Specifies that the delete only applies to row values for the portion of the BUSINESS_TIME period
in the row that is specified by the period clause. BUSINESS_TIME must be a period that is defined
on the table.

FOR PORTION OF BUSINESS_TIME must not be specified if the value of the CURRENT TEMPORAL
BUSINESS_TIME special register is not NULL when the BUSTIMESENSITIVE bind option is set to
YES.

FROM value1 TO value2
Specifies that the delete operation applies to rows for the period that is specified from value1 to
value2. No rows are deleted if value1 is greater than or equal to value2, or if value1 or value2 is
the null value.

This clause must not be specified for an inclusive-inclusive period.

For the period condition that is specified with FROM value1 TO value2, the period that is specified
by period-name in a row of the target table of the delete:

• Overlaps the beginning of the specified period if the value of the begin column is less than
value1 and the value of the end column is greater than value1.

• Overlaps the end of the specified period if the value of the end column is greater than or equal to
value2 and the value of the begin column is less than value2.

• Is fully contained within the specified period if the value for the begin column for period-name in
the row is greater than or equal to value1 and the value for the corresponding end column in the
row is less than or equal to value2.

• Is partially contained in the specified period if the row overlaps the beginning of the specified
period or the end of the specified period.

• Fully overlaps the specified period if the period in the row overlaps the beginning of the specified
period and overlaps the end of the specified period, .

• Is not contained in the period if both columns of period-name are less than or equal to value1 or
are greater than value2.

If the period period-name in a row is not contained in the specified period, the row is not deleted.
Otherwise, the delete operation is applied based on the specification of the PORTION OF clause
and how the values in the columns of period-name overlap the specified period as follows:

• If the period period-name in a row is fully contained within the specified period, the row is
deleted.

• If the period period-name in a row is partially contained in the specified period and overlaps the
beginning of the specified period:

– The row is deleted.
– A row is inserted using the original values from the row, except that the end column is set to

value1, and new values are used for other generated columns.
• If the period period-name in a row is partially contained in the specified period and overlaps the

end of the specified period:

– The row is deleted.
– A row is inserted using the original values from the row, except that the begin column is set to

value2, and new values are used for other generated columns.
• If the period period-name in a row fully overlaps the specified period:

– The row is deleted.
– A row is inserted using the original values from the row, except that the end column is set to

value1, a column defined as DATA CHANGE OPERATION is set to 'I', and new values are used
for other generated columns.

1858 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

– An additional row is inserted using the original values from the row, except that the begin
column is set to value2, a column defined as DATA CHANGE OPERATION is set to 'I', and new
values are used for other generated columns.

Any existing delete triggers are activated for the rows that are deleted, and any existing insert
triggers are activated for the rows that are implicitly inserted.

BETWEEN value1 AND value2
Specifies that the delete operation applies to rows for the period that is specified from value1 up
to and including value2. No rows are deleted if value1 is greater than value2, or if value1 or value2
is the null value. This clause must not be specified for an inclusive-exclusive period.

For the period clause that is specified with BETWEEN value1 AND value2, period period-name in a
row in the target of the delete covers one of the following ranges:

• Overlaps the beginning of the specified period if the value of the begin column is less than
value1 and the value of the end column is greater than or equal to value1.

• Overlaps the end of the specified period if the value of the end column is greater than value2
and the value of the begin column is less than or equal to value2.

• Is fully contained within the specified period if the value for the begin column for period-name in
the row is greater than or equal to value1 and the value for the corresponding end column in the
row is less than or equal to value2.

• Is partially contained in the specified period if the row overlaps the beginning of the specified
period or the end of the specified period, but not both .

• fully overlaps the specified period if the period in the row overlaps the beginning of the specified
period and overlaps the end of the specified period.

• Is not contained in the period if both columns of period-name are less than value1 or greater
than value2.

If the period period-name in a row is not contained in the specified period, the row is not deleted.
Otherwise, the delete operation is based on the following items:

• The specification of the PORTION OF clause.
• How the values in the columns of period-name overlap the specified period.
• spu (smallest period unit), which depends on the data type of the columns of the period as

follows:

– For a period containing DATE columns, spu is 1 day.
– For a period containing TIMESTAMP(6) columns, spu is 1 microsecond.

Based on those items, the delete operation is applied as follows:

• If the period period-name in a row is fully contained within the specified period, the row is
deleted.

• If the period period-name in a row is partially contained in the specified period and overlaps the
beginning of the specified period:

– The row is deleted.
– A row is inserted using the original values from the row, except that the end column is set to

value1 - spu, and new values are used for other generated columns.
• If the period period-name in a row is partially contained in the specified period and overlaps the

end of the specified period:

– The row is deleted.
– A row is inserted using the original values from the row, except that the begin column is set to

value2 + spu, and new values are used for other generated columns.
• If the period period-name in a row fully overlaps the specified period:

– The row is deleted.

Chapter 7. Statements 1859

– A row is inserted using the original values from the row, except that the end column is set to
value1 - spu, and new values are used for other generated columns.

– An additional row is inserted using the original values from the row, except that the begin
column is set to value2 + spu, and new values are used for other generated columns.

value1, value2
Specifies expressions that return a value of a built-in data type. The result of each expression
must be comparable to the data type of the columns of the specified period. See the comparison
rules described in “Assignment and comparison” on page 143. Each expression can contain any of
the following supported operands:

• A constant
• A special register
• A variable
• An array element specification
• A built-in scalar function whose arguments are supported operands
• A CAST specification where the cast operand is a supported operand
• An expression that uses arithmetic operators and operands

Each expression must not have a timestamp precision that is greater than the precision of the
columns for the period.

If the begin and end columns of the period are defined as TIMESTAMP WITHOUT TIME ZONE,
each expression must not return a value of a timestamp with a time zone.

A period clause for a view must not contain an untyped parameter marker.

correlation-name
Specifies an alternate name that can be used within the search-condition to designate the table or
view. (For an explanation of correlation names, see “Correlation names” on page 220.)

include-column
Specifies a set of columns that are included, along with the columns of table-name or view-name, in
the result table of the DELETE statement when it is nested in the FROM clause of the outer fullselect
that is used in a subselect, SELECT statement, or in a SELECT INTO statement. The included columns
are appended to the end of the list of columns that is identified by table-name or view-name. If no
value is assigned to a column that is specified by an include-column, a NULL value is returned for that
column.
INCLUDE

Introduces a list of columns that are to be included in the result table of the DELETE statement.
The included columns are only available if the DELETE statement is nested in the FROM clause of
a SELECT statement or a SELECT INTO statement.

column-name
Specifies the name for a column of the result table of the DELETE statement that is not the same
name as another included column nor a column in the table or view that is specified in table-name
or view-name.

data-type
Specifies the data type of the included column. The included columns are nullable.
built-in-type

Specifies a built-in data type. See “CREATE TABLE statement” on page 1650 for a description
of each built-in type.

The CCSID 1208 and CCSID 1200 clauses must not be specified for an INCLUDE column.

distinct-type
Specifies a distinct type. Any length, precision, or scale attributes for the column are those of
the source type of the distinct type as specified by using the CREATE TYPE statement.

1860 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SET
Introduces the assignment of values to columns.
assignment-clause

The assignment-clause introduces a list of one or more column-names and the values that are to
be assigned to the columns. The column-names are the only columns that can be set using the
assignment-clause.

column-name
Identifies an INCLUDE column.

Assignments to included columns are only processed when the DELETE statement is nested in the
FROM clause of a SELECT statement or a SELECT INTO statement. The columns that are named in
the INCLUDE clause are the only columns that can be set using the SET clause. The null value is
returned for an included column that is not set by using an explicit SET clause.

expression
Indicates the new value of the column. The expression is any expression of the type described in
“Expressions” on page 245. It must not include an aggregate function.

A column-name in an expression must identify a column of the table or view. For each row that is
deleted, the value of the column in the expression is the value of the column in the row before the
row is deleted.

NULL
Specifies the null value as the new value of the column. Specify NULL only for nullable columns.

row-fullselect
Specifies a fullselect that returns a single row. The column values are assigned to each of the
corresponding column-names. If the fullselect returns no rows, the null value is assigned to each
column; an error occurs if any column that is to be deleted is not nullable. An error also occurs if
there is more than one row in the result.

If the fullselect refers to columns that are to be deleted, the value of such a column in the
fullselect is the value of the column in the row before the row is deleted.

WHERE
Specifies the rows to be deleted. You can omit the clause, give a search condition, or specify a cursor.
For a created temporary table or a view of a created temporary table, you must omit the clause. When
the clause is omitted, all the rows of the table or view are deleted.
search-condition

Is any search condition as described in Chapter 2, “Language elements in SQL,” on page 75. Each
column-name in the search condition, other than in a subquery, must identify a column of the
table or view.

The search condition is applied to each row of the table or view and the deleted rows are those for
which the result of the search condition is true.

If the search condition contains a subquery, the subquery can be thought of as being executed
each time the search condition is applied to a row, and the results used in applying the search
condition. In actuality, a subquery with no correlated references is executed just once, whereas it
is possible that a subquery with a correlated reference must be executed once for each row.

Let T2 denote the object table of a DELETE statement and let T1 denote a table that is referred to
in the FROM clause of a subquery of that statement. T1 must not be a table that can be affected by
the DELETE on T2. Thus, the following rules apply:

• T1 must not be a dependent of T2 in a relationship with a delete rule of CASCADE or SET NULL,
unless the result of the subquery is materialized before the DELETE action is executed.

• T1 must not be a dependent of T3 in a relationship with a delete rule of CASCADE or SET NULL if
deletes of T2 cascade to T3.

Chapter 7. Statements 1861

fetch-clause
Limits the effects of the delete to a subset of the qualifying rows. See “fetch-clause” on page 1047 for
details.

WHERE CURRENT OF cursor-name
Identifies the cursor to be used in the delete operation. cursor-name must identify a declared cursor
as explained in the description of the DECLARE CURSOR statement in “DECLARE CURSOR statement”
on page 1819. If the DELETE statement is embedded in a program, the DECLARE CURSOR statement
must include select-statement rather than statement-name.

The table or view named must also be named in the FROM clause of the SELECT statement of the
cursor, and the result table of the cursor must be capable of being deleted. For an explanation of
read-only result tables, see Read-only cursors. Note that the object of the DELETE statement must
not be identified as the object of the subquery in the WHERE clause of the SELECT statement of the
cursor.

If the cursor is ambiguous and the plan or package was bound with CURRENTDATA(NO), Db2 might
return an error to the application if DELETE WHERE CURRENT OF is attempted for any of the following:

• A cursor that is using block fetching
• A cursor that is using query parallelism
• A cursor that is positioned on a row that has been modified by this or another application process

When the DELETE statement is executed, the cursor must be open and positioned on a row or rowset
of the result table.

• If the cursor is positioned on a single row, that row is the one deleted, and after the deletion
the cursor is positioned before the next row of its result table. If there is no next row, the cursor
positioned after the last row.

• If the cursor is positioned on a rowset, all rows corresponding to the rows of the current rowset are
deleted, and after the deletion the cursor is positioned before the next rowset of its result table. If
there is no next rowset, the cursor positioned after the last rowset.

A positioned DELETE must not be specified for a cursor that references a view on which an instead of
delete trigger is defined, even if the view is an updatable view.

FOR ROW n OF ROWSET
Specifies which row of the current rowset is to be deleted. The corresponding row of the rowset is
deleted, and the cursor remains positioned on the current rowset. If the rowset consists of a single
row, or all other rows in the rowset have already been deleted, then the cursor is positioned before
the next rowset of the result table. If there is no next rowset, the cursor is positioned after the last
rowset.

host-variable or integer-constant is assigned to an integral value k. If host-variable is specified, it must
be an exact numeric type with scale zero, must not include an indicator variable, and k must be in the
range 1–32767. The cursor must be positioned on a rowset, and the specified value must be a valid
value for the set of rows most recently retrieved for the cursor.

If the specified row cannot be deleted, an error is returned. It is possible that the specified row is
within the bounds of the rowset most recently requested, but the current rowset contains less than
the number of rows that were implicitly or explicitly requested when that rowset was established.

If, via a positioned delete against a sensitive static cursor that specifies a particular row of the current
rowset, and that row has been identified as a delete hole (that is, a row in the result table whose
corresponding row has deleted from the base table), an error is returned.

If, via a positioned delete against a sensitive static cursor that specifies a particular row of the
current rowset, and that row has been identified as an update hole (that is, a row in the result table
whose corresponding row has been updated so that it no longer satisfies a predicate of the SELECT
statement), an error is returned.

1862 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

It is possible for another application process to delete a row in the base table of the SELECT
statement so that the specified row of the cursor no longer has a corresponding row in the base
table. An attempt to delete such a row results in an error.

If the FOR ROW n OF ROWSET clause is not specified, the current position of cursor determines the
rows that are affected by the statement:

• If the cursor is positioned on a single row, that row is the one deleted. After the row is deleted,
the cursor is positioned before the next row of its result table. If there is no next row, the cursor
positioned after the last row.

• If the cursor is positioned on a rowset, all rows corresponding to the rows of the current rowset
are deleted. After the rows are deleted, the cursor is positioned before the next rowset of its result
table. If there is no next rowset, the cursor positioned after the last rowset.

isolation-clause
Specifies the isolation level used when locating the rows to be deleted by the statement.
WITH

Introduces the isolation level, which may be one of the following:
RR

Repeatable read
RS

Read stability
CS

Cursor stability

The default isolation level of the statement is the isolation level of the package or plan in which the
statement is bound, with the package isolation taking precedence over the plan isolation. When a
package isolation is not specified, the plan isolation is the default.

SKIP LOCKED DATA
The SKIP LOCKED DATA clause specifies that rows are skipped when incompatible locks are held on
the row by other transactions. These rows can belong to any accessed table that is specified in the
statement. SKIP LOCKED DATA can be used only when isolation CS or RS is in effect and applies only
to row level or page level locks.

For DELETE statements, SKIP LOCKED DATA can be specified only in the searched form of the DELETE
statement. SKIP LOCKED DATA is ignored if it is specified when the isolation level that is in effect
is repeatable read (WITH RR) or uncommitted read (WITH UR). The default isolation level of the
statement depends on the isolation level of the package or plan with which the statement is bound,
with the package isolation taking precedence over the plan isolation. When a package isolation is not
specified, the plan isolation is the default.

QUERYNO integer
Specifies the number to be used for this SQL statement in EXPLAIN output and trace records. The
number is used for the QUERYNO column of the plan table for the rows that contain information about
this SQL statement. This number is also used in the QUERYNO column of the SYSIBM.SYSSTMT and
SYSIBM.SYSPACKSTMT catalog tables.

If the clause is omitted, the number associated with the SQL statement is the statement number
assigned during precompilation. Thus, if the application program is changed and then precompiled,
that statement number might change.

Using the QUERYNO clause to assign unique numbers to the SQL statements in a program is helpful:

• For simplifying the use of optimization hints for access path selection
• For correlating SQL statement text with EXPLAIN output in the plan table

For more information about enabling and using optimization hints, see Influencing access path
selection (Db2 Performance)

Chapter 7. Statements 1863

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_influenceaccesspaths.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_influenceaccesspaths.html

For information on accessing the plan table, see Investigating SQL performance by using EXPLAIN
(Db2 Performance).

Notes for DELETE

Delete operation errors:
If an error occurs during the execution of any delete operation, no changes are made. If an error
occurs during the execution of a positioned delete, the position of the cursor is unchanged. However,
it is possible for an error to make the position of the cursor invalid, in which case the cursor is closed.
It is also possible for a delete operation to cause a rollback, in which case the cursor is closed.

Position of cursor:
If an application process deletes a row on which any of its cursors are positioned, those cursors are
positioned before the next row of the result table. Let C be a cursor that is positioned before row R
(as a result of an OPEN, a DELETE through C, a DELETE through some other cursor, or a searched
DELETE). In the presence of an SQL data change statements that affect the base table from which R
is derived, the next FETCH operation referencing C does not necessarily position C on R. For example,
the operation can position C on R', where R' is a new row that is now the next row of the result table.

Locking:
Unless appropriate locks already exist, one or more exclusive locks are acquired during the execution
of a successful delete operation. Until the locks are released by a commit or rollback operation, the
effect of the delete operation can only be perceived by the application process that performed the
deletion and the locks can prevent other application processes from performing operations on the
table. Locks are not acquired when rows are deleted from a declared temporary table unless all the
rows are deleted (DELETE FROM T). When all the rows are deleted from a declared temporary table,
a segmented table lock is acquired on the pages for the table and no other table in the table space is
affected.

Triggers:
Delete operations can cause triggers to be activated. A trigger might cause other statements to be
executed or might raise error conditions that are based on the deleted rows. If a DELETE statement
on a view causes an INSTEAD OF trigger to be activated, referential integrity is checked against the
updates that are performed in the trigger and not against the underlying tables of the view that cause
the trigger to be activated.

Triggers defined on a table for which row or column access control is also enforced:
Row permissions and column masks are not applied to the initial values of transition variables and
transition tables. Row and column access control that is enforced for the triggering table is also
ignored for any transition variables or transition tables that are referenced in the trigger body or that
are passed as arguments to user-defined functions that are invoked in the trigger body. To ensure
that no security concern exists for SQL statements in the trigger action (access to sensitive data in
transition variables and transition tables, for example), the trigger must be secure. For information
about securing a trigger, see “CREATE TRIGGER statement (basic trigger)” on page 1769 and “ALTER
TRIGGER statement (basic trigger)” on page 1365.

Referential integrity:
If the identified table or the base table of the identified view is a parent, the rows selected must not
have any dependents in a relationship with a delete rule of RESTRICT or NO ACTION. In addition, the
delete operation must not cascade to descendent rows that have dependents in a relationship with a
delete rule of RESTRICT or NO ACTION.

If the delete operation is not prevented by a RESTRICT or NO ACTION delete rule, the selected rows
are deleted and any rows that are dependents of the selected rows are also deleted.

• The nullable columns of foreign keys in any rows that are their dependents in a relationship
governed by a delete rule of SET NULL are set to the null value.

• Any rows that are their dependents in a relationship governed by a delete rule of CASCADE are also
deleted, and these rules apply, in turn, to those rows.

1864 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_useexplain2capturesqlinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_useexplain2capturesqlinfo.html

The only difference between NO ACTION and RESTRICT is when the referential constraint is enforced.
RESTRICT (IBM SQL rules) enforces the rule immediately, and NO ACTION (SQL standard rules)
enforces the rule at the end of the statement. This difference matters only in the case of a searched
DELETE involving a self-referencing constraint that deletes more than one row. NO ACTION might
allow the DELETE to be successful where RESTRICT (if it were allowed) would prevent it.

Check constraint:
A check constraint can prevent the deletion of a row in a parent table when there are dependents in a
relationship with a delete rule of SET NULL. If deleting a row in the parent table would cause a column
in a dependent table to be set to null and there is a check constraint that specifies that the column
must not be null, the row is not deleted.

Referential constraints defined on a table for which row or column access control is enforced:
Row and column access controls do not effect referential constraints.

Nesting user-defined functions or stored procedures:
A DELETE statement can implicitly or explicitly refer to user-defined functions or stored procedures.
This is known as nesting of SQL statements. A user-defined function or stored procedure that is
nested within the DELETE must not access the table from which you are deleting rows.

Indexes with VARBINARY columns:
If the identified table has an index on a VARBINARY column or a column that is a distinct type that
is based on VARBINARY data type, that index column cannot specify the DESC attribute. To use the
SQL data change operation on the identified table, either drop the index or alter the data type of the
column to BINARY and then rebuild the index.

Number of rows deleted:
Except as noted below, a delete operation sets SQLERRD(3) in the SQLCA to the number of deleted
rows. This number does not include any rows that were deleted as a result of a CASCADE delete rule
or a trigger.

DELETE FROM T without a WHERE clause deletes all rows of T. If a table T is contained in a segmented
table space and is not a parent table, this deletion will be performed without accessing T. The
SQLERRD(3) field is set to -1. (For a complete description of the SQLCA, including exceptions to the
above, see Appendix F, “SQL communication area (SQLCA),” on page 2303.

Rules for positioned DELETE with SENSITIVE STATIC scrollable cursor:
When a SENSITIVE STATIC scrollable cursor has been declared, the following rules apply:

• Delete attempt of delete holes or update holes. If, with a positioned delete against a SENSITIVE
STATIC scrollable cursor, an attempt is made to delete a row that has been identified as a delete
hole (that is, a row in the result table whose corresponding row has been deleted from the base
table), an error occurs.

If an attempt is made to delete a row that has been identified as an update hole (that is, a row in the
result table whose corresponding row has been updated so that it no longer satisfies the predicate
of the SELECT statement), an error occurs.

• Delete operations. Positioned delete operations with SENSITIVE STATIC scrollable cursors perform
as follows:

1. The SELECT list items in the target row of the base table of the cursor are compared with the
values in the corresponding row of the result table (that is, the result table must still agree with
the base table). If the values are not identical, the delete operation is rejected and an error
occurs. The operation can be attempted again after a successful FETCH SENSITIVE has occurred
for the target row.

2. The WHERE clause of the SELECT statement is re-evaluated to determine whether the current
values in the base table still satisfy the search criteria. The values in the SELECT list are
compared to determine that these values have not changed. If the WHERE clause evaluates
as true, and the values in the SELECT list have not changed, the delete operation is allowed
to proceed. Otherwise, an error occurs, the delete operation is rejected, and an update hole
appears in the cursor.

Chapter 7. Statements 1865

3. After the base table row is successfully deleted, the temporary result table is updated and the
row is marked as a delete hole.

• Rollback of delete holes. Delete holes are usually permanent. Once a delete hole is identified, it
remains a delete hole until the cursor is closed. However, if a positioned delete using this cursor
actually caused the creation of the hole (that is, this cursor was used to make the changes that
resulted in the hole) and the delete was subsequently rolled back, then the row is no longer
considered a delete hole.

• Result table. Any deletes, either positioned or searched, to rows of the base table on which a
SENSITIVE STATIC scrollable cursor is defined are reflected in the result table if a positioned update
or positioned delete is attempted with the scrollable cursor. A SENSITIVE STATIC scrollable cursor
sees these deletes when a FETCH SENSITIVE is attempted.

If the FOR ROW n OF ROWSET clause is not specified, the entire rowset fetched by the most recent
FETCH statement that returned data for the specified cursor is deleted.

Referencing columns that will be updated:
If a cursor uses FETCH statements to retrieve columns that will be updated later, specify FOR UPDATE
OF when you select the columns. Then specify WHERE CURRENT OF in the subsequent UPDATE
or DELETE statements. These clauses prevent Db2 from selecting access through an index on the
columns that are being updated, which might otherwise cause Db2 to read the same row more than
once.

For more information, see Updating previously retrieved data (Db2 Application programming and
SQL).

Deleting rows from a table with multilevel security:
When you delete rows from a table with multilevel security, Db2 compares the security label of the
user (the primary authorization ID) to the security label of the row. The delete proceeds according to
the following rules:

• If the security label of the user and the security label of the row are equivalent, the row is deleted.
• If the security label of the user dominates the security label of the row, the user's write-down

privilege determines the security the result of the DELETE statement:

– If the user has write-down privilege or write-down control is not enabled, the row is deleted.
– If the user does not have write-down privilege and write-down control is enabled, the row is not

deleted.
• If the security label of the row dominates the security label of the user, the row is not deleted.

Deleting rows from a table for which row and column access control is enforced:
When a DELETE statement is issued for a table for which row access control is enforced, the rules
specified in the row permissions affect whether a row can be deleted. Typically those rules are based
on the authorization ID or role of the process.

A table for which row access control is enforced has at least one row permission, the default row
permission that prevents all access to the table. When multiple row permissions are defined and
enabled for a table, a row access control search condition is derived by using the logical OR operator
to the search condition in each enabled permission. This row access control search condition is
applied to the table to determine which rows are accessible to the authorization ID or role of the
DELETE statement. If the WHERE clause is specified in the DELETE statement, the user-specified
predicates are applied on the accessible rows to determine the rows to be deleted. If there is no
WHERE clause, the accessible rows are the rows to be deleted.

If there are rows to be deleted, and there is a DELETE trigger for the table, the trigger is activated.

When a DELETE statement is issued for a table for which column access control is enforced, column
masks do not affect the DELETE statement.

The preceding rules are not applicable to include-columns. include-columns are subject to the rules
for the select list because they are not the columns of the object table of the DELETE statement.

1866 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_updateretrieveddata.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_updateretrieveddata.html

Other SQL statements in the same unit of work:
The following statements cannot follow a DELETE statement in the same unit of work:

• An ALTER TABLE statement that changes the data type of a column (ALTER COLUMN SET DATA
TYPE)

• An ALTER INDEX statement that changes the padding attribute of an index with varying-length
columns (PADDED to NOT PADDED or vice versa)

• A CREATE TABLE statement that creates an accelerator-only table.
• An INSERT, UPDATE or DELETE statement that updates an accelerator-only table from a different

accelerator

Considerations for a system-period temporal table:
If the DELETE statement has a search condition that contains a correlated subquery that references
the history table (explicitly referencing the name of the history table or implicitly referenced through
the use of a period specification in the FROM clause), the deleted rows that are stored as historical
rows are potentially visible for delete operations for the rows that are subsequently processed for the
statement.

The mass delete operation is not used for a DELETE statement that does not contain a search
condition if the table is defined as a system-period temporal table.

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a non-null value, the underlying
target of the DELETE statement cannot be a system-period temporal table. This restriction applies
regardless of whether the system-period temporal table is directly or indirectly referenced.

Considerations for a history table:
When a row of a system-period temporal table is deleted, a historical copy of the row is inserted
into the corresponding history table and the end timestamp of the historical row is captured in the
form of a system determined value that corresponds to the time of the data change operation.
If the value of the SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME built-in global variable at
the time of the data change operation is null, the value is generated using a reading of the
time-of-day clock during execution of the first data change statement in the unit of work that
requires a value to be assigned to a row-begin column or transaction-start-ID column in a table,
or a row in a systemperiod temporal table is deleted. Otherwise, the value is assigned from the
SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME built-in global variable at the time of the data
change operation. If a conflicting transaction is updating the same row in the system-period temporal
table and the row that is to be inserted into the associated history table will have a value for the end
column that is greater than the value of the corresponding begin column, an error is returned.

Considerations for an application-period temporal table:
A DELETE statement that contains a FOR PORTION OF BUSINESS_TIME clause for an application-
period temporal table indicates the two points in time between which the specified delete operations
are effective.

Suppose that FOR PORTION OF BUSINESS_TIME is specified and the period value for a row is only
partially contained in the period that is specified from value1 up to value2 or between value1 and
value2. (The period value for a row is specified by the values of the begin column and end column.) In
this case, the row is deleted and one or two rows are automatically inserted to represent the portion
of the row that is not deleted. For each row that is automatically inserted as a result of a delete
operation on the table, new values are generated for each generated column in the application-period
temporal table. If a generated column is defined as part of a unique or primary key, parent key in a
referential constraint, or unique index, an automatic insert might violate a constraint or index. In this
case, an error is returned.

When an application-period table is the target of a DELETE statement and the value in effect for the
CURRENT TEMPORAL BUSINESS_TIME special register is not the null value, Db2 adds the following
additional predicates to the statement:

• inclusive-exclusive period:

Chapter 7. Statements 1867

 bt_begin <= CURRENT TEMPORAL BUSINESS_TIME AND
bt_end > CURRENT TEMPORAL BUSINESS_TIME

• inclusive-inclusive period:

 bt_begin <= CURRENT TEMPORAL BUSINESS_TIME AND
bt_end >= CURRENT TEMPORAL BUSINESS_TIME

In the preceding code, bt_begin and bt_end are the begin and end columns of the BUSINESS_TIME
period of the target table of the DELETE statement.

Deleting rows from archive-enabled tables:
If the target of the DELETE statement is an archive-enabled table, existing rows in the associated
archive table are not affected.

When a row of an archive-enabled table is deleted, the effect on the associated archive table
is determined by the setting of the SYSIBMADM.MOVE_TO_ARCHIVE global variable. If the global
variable is set to Y, a copy of a deleted row is inserted into the associated archive table. Otherwise, a
copy of a deleted row is not inserted into the associated archive table.

A data change statement cannot reference an archive-enabled table when a system-period temporal
table or application-period temporal table is also referenced.

Syntax alternatives:
For compatibility with other SQL implementations, the FROM keyword that immediately follows the
DELETE keyword can be omitted.

Examples for DELETE

Assume that the statements in the examples are embedded in PL/I programs.

Example 1
From the table DSN8C10.EMP delete the row on which the cursor C1 is currently positioned.

 EXEC SQL DELETE FROM DSN8C10.EMP WHERE CURRENT OF C1;

Example 2
From the table DSN8C10.EMP, delete all rows for departments E11 and D21.

 EXEC SQL DELETE FROM DSN8C10.EMP
 WHERE WORKDEPT = 'E11' OR WORKDEPT = 'D21';

Example 3
From employee table X, delete the employee who has the most absences.

 EXEC SQL DELETE FROM EMP X
 WHERE ABSENT = (SELECT MAX(ABSENT) FROM EMP Y
 WHERE X.WORKDEPT = Y.WORKDEPT);

Example 4
Assuming that cursor CS1 is positioned on a rowset consisting of 10 rows of table T1, delete all 10
rows in the rowset.

EXEC SQL DELETE FROM T1 WHERE CURRENT OF CS1;

Example 5
Assuming cursor CS1 is positioned on a rowset consisting of 10 rows of table T1, delete the fourth row
of the rowset.

EXEC SQL DELETE FROM T1 WHERE CURRENT OF CS1 FOR ROW 4 OF ROWSET;

1868 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 6
Delete rows in table T1 if the value for column COL2 matches the cardinality of array INTA. The array
INTA is specified as an argument for the CARDINALITY function in the DELETE statement.

CREATE TYPE INTARRAY AS INTEGER ARRAY[6];
CREATE VARIABLE INTA AS INTARRAY;
SET INTA = ARRAY[1, 2, 3, 4, 5];
CREATE TABLE T1 (COL1 CHAR(7), COL2 INT);
INSERT INTO T1 VALUES('abc', 10);
DELETE FROM T1 WHERE COL2 = CARDINALITY(INTA);

Example 7
Delete only 3 rows from table T1 where the value of column C2 is greater than 10.

DELETE FROM T1
 WHERE C2 > 10
 FETCH FIRST 3 ROWS ONLY;

DESCRIBE statement
The DESCRIBE statement obtains information about an object. You can obtain the following types of
information with this statement, each of which is described separately.

Cursors
Gets information about the result set that is associated with the cursor. This information, such as
column information, is put into a descriptor. See “DESCRIBE CURSOR statement” on page 1869.

Input parameter markers of a prepared statement.
Gets information about the input parameter markers in a prepared statement. This information is put
into a descriptor. See “DESCRIBE INPUT statement” on page 1871.

The output of a prepared statement
Gets information about a prepared statement or information about the select list columns in a
prepared SELECT statement. This information is put into a descriptor. See “DESCRIBE OUTPUT
statement” on page 1873.

Procedures
Gets information about the result sets returned by a stored procedure. The information, such as the
number of result sets, is put into a descriptor. See “DESCRIBE PROCEDURE statement” on page 1879.

Tables
Gets information about a table or view. This information is put into a descriptor. See “DESCRIBE
TABLE statement” on page 1881.

DESCRIBE CURSOR statement
The DESCRIBE CURSOR statement obtains information about the result set that is associated with the
cursor. The information, such as column information, is put into a descriptor. Use DESCRIBE CURSOR
for result set cursors from stored procedures. The cursor must be defined with the ALLOCATE CURSOR
statement.

Invocation for DESCRIBE CURSOR
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared.

Authorization for DESCRIBE CURSOR
None required.

Chapter 7. Statements 1869

Syntax for DESCRIBE CURSOR

DESCRIBE CURSOR cursor-name

host-variable

INTO descriptor-name

Description for DESCRIBE CURSOR
cursor-name or host-variable

Identifies a cursor by the specified cursor-name or the cursor name contained in host-variable. The
name must identify a cursor that has already been allocated in the source program.

A column of the result table of the cursor must not be an array.

If host-variable is used:

• It must be a character string variable that has a maximum length of 18 bytes.
• It must not be followed by an indicator variable.
• The cursor name must be left justified within the host variable and must not contain embedded

blanks.
• If the length of the cursor name is less than the length of the host variable, it must be padded on the

right with blanks.

Exception: The syntax described above applies to all languages except REXX. For REXX, the syntax is
DESCRIBE CURSOR :hostvar INTO :descriptor-name.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA). The information returned in the SQLDA describes the
columns in the result set associated with the named cursor.

The considerations for allocating and initializing the SQLDA are similar to those of a varying-list
SELECT statement. For more information, see Including dynamic SQL for varying-list SELECT
statements in your program (Db2 Application programming and SQL).

For REXX: The SQLDA is not allocated before it is used.

After the DESCRIBE CURSOR statement is executed, the contents of the SQLDA are the same as after
a DESCRIBE for a SELECT statement, with the following exceptions:

• The first 5 bytes of the SQLDAID field are set to 'SQLRS'.
• Bytes 6 to 8 of the SQLDAID field are reserved. If the cursor is declared WITH HOLD in a stored

procedure, the high-order bit of the 8th byte is set to 1.

These exceptions do not apply to a REXX SQLDA, which does not include the SQLDAID field.

Notes for DESCRIBE CURSOR
Using cursors for result sets

Column names are included in the information that DESCRIBE CURSOR obtains when the statement
that generates the result set is either:

• Dynamic
• Static and the value of field DESCRIBE FOR STATIC on installation panel DSNTIP4 was YES when the

package or stored procedure was bound. If the value of the field was NO, the returned information
includes only the data type and length of the columns.

Using host variables
If the DESCRIBE CURSOR statement contains host variables, the contents of the host variables are
assumed to be in the encoding scheme that was specified in the ENCODING parameter when the
package or plan that contains the statement was bound.

1870 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_includedynamicvaryinglistselect.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_includedynamicvaryinglistselect.html

Examples for DESCRIBE CURSOR

The statements in the following examples are assumed to be in PL/I programs.

Example 1
Place information about the result set associated with cursor C1 into the descriptor named by :sqlda1.

 EXEC SQL DESCRIBE CURSOR C1 INTO :sqlda1

Example 2
Place information about the result set associated with the cursor named by :hv1 into the descriptor
named by :sqlda2.

 EXEC SQL DESCRIBE CURSOR :hv1 INTO :sqlda2

DESCRIBE INPUT statement
The DESCRIBE INPUT statement obtains information about the input parameter markers of a prepared
statement.

For an explanation of prepared statements, see “PREPARE statement” on page 2042.

Invocation for DESCRIBE INPUT
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared.

Authorization for DESCRIBE INPUT
The statement can be executed if the privilege set for PREPARE includes the EXPLAIN privilege.

Syntax for DESCRIBE INPUT

DESCRIBE INPUT statement-name INTO descriptor-name

Description for DESCRIBE INPUT
statement-name

Identifies the prepared statement. When the DESCRIBE INPUT statement is executed, the name must
identify a statement that has been prepared by the application process at the current server. An input
parameter marker must not refer to an array value.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA), which is described in Appendix G, “SQL descriptor area
(SQLDA),” on page 2313. See “Identifying an SQLDA in C or C++” on page 2329 for how to represent
descriptor-name in C. The information returned in the SQLDA describes the parameter markers.

Before the DESCRIBE INPUT statement is executed, the user must set the SQLN field in the SQLDA
and the SQLDA must be allocated. Considerations for initializing and allocating the SQLDA are similar
to those for the DESCRIBE statement (see “DESCRIBE statement” on page 1869). An occurrence of
an extended SQLVAR is needed for each parameter in addition to the required base SQLVAR only if the
input data contains LOBs.

For REXX: The SQLDA is not allocated before it is used.

After the DESCRIBE INPUT statement is executed, all the fields in the SQLDA except SQLN are either
set by Db2 or ignored. The SQLDA contents are similar to the contents returned for the DESCRIBE
statement (see The SQLDA contents returned after DESCRIBE) with these exceptions:

Chapter 7. Statements 1871

• In the SQLDAID, Db2 sets the value of the seventh byte only to the space character or '2'. A value
of '3' is never used. The value '2' indicates that two SQLVAR entries (an occurrence of both a base
SQLVAR and an extended SQLVAR) are required for each parameter because the input data contains
LOBs. The seventh byte is a space character when either of the following conditions is true:

– The input data does not contain LOBs. Only a base SQLVAR occurrence is needed for each
parameter.

– Only a base SQLVAR occurrence is needed for each column of the result, and the SQLDA is not
large enough to contain the returned information.

• The SQLD field is set to the number of parameter markers being described. The value is 0 if the
statement being described does not have input parameter markers.

• The SQLNAME field is not used.
• The SQLDATATYPE is set to a nullable, regardless of the usage of the parameter markers in the

prepared statement.
• The SQLDATATYPE-NAME is not used if an extended SQLVAR entry is present. DESCRIBE INPUT

does not return information about distinct types.

For complete information on the contents of the fields, see Appendix G, “SQL descriptor area
(SQLDA),” on page 2313.

Notes for DESCRIBE INPUT
Preparing the SQLDA for OPEN or EXECUTE: This note is relevant if you are applying DESCRIBE INPUT to
a prepared statement and you intend to use the SQLDA in an OPEN or EXECUTE statement. To prepare the
SQLDA for that purpose:

• Set SQLDATA to a valid address.
• If SQLTYPE is odd, set SQLIND to a valid address.

For the meaning of those fields in that context, see Appendix G, “SQL descriptor area (SQLDA),” on page
2313.

Support for extended dynamic SQL in a distributed environment: Unlike the DESCRIBE statement, which
can be used in a distributed environment to describe static SQL statements generated by extended
dynamic SQL, you cannot describe host variables in static SQL statements that are generated by extended
dynamic SQL. A DESCRIBE INPUT statement issued against such static SQL statements always fails.

For information on how the DESCRIBE statement supports extended dynamic SQL, see Support for
extended dynamic SQL in a distributed environment.

Using host variables: If the DESCRIBE INPUT statement contains host variables, the contents of the host
variables are assumed to be in the encoding scheme that was specified in the ENCODING parameter
when the package or plan that contains the statement was bound.

Example for DESCRIBE INPUT
Execute a DESCRIBE INPUT statement with an SQLDA that has enough SQLVAR occurrences to describe
any number of input parameters a prepared statement might have. Assume that five parameter markers
at most will need to be described and that the input data does not contain LOBs.

 /* STMT1_STR contains INSERT statement with VALUES clause */
 EXEC SQL PREPARE STMT1_NAME FROM :STMT1_STR;
 … /* code to set SQLN to 5 and to allocate the SQLDA */
 EXEC SQL DESCRIBE INPUT STMT1_NAME INTO :SQLDA;
 .
 .
 .

This example uses the first technique described in Allocating the SQLDA to allocate the SQLDA.

1872 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

DESCRIBE OUTPUT statement
The DESCRIBE OUTPUT statement obtains information about a prepared statement.

For an explanation of prepared statements, see “PREPARE statement” on page 2042.

Invocation for DESCRIBE OUTPUT
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared. It must not be specified in Java.

Authorization for DESCRIBE OUTPUT
The statement can be executed if the privilege set for PREPARE includes the EXPLAIN privilege.

See “PREPARE statement” on page 2042 for the authorization required to create a prepared statement.

Syntax for DESCRIBE OUTPUT

DESCRIBE
OUTPUT

statement-name INTO descriptor-name

USING

NAMES

LABELS

ANY

BOTH

Description for DESCRIBE OUTPUT
OUTPUT

When a statement-name is specified, optional keyword to indicate that the describe will return
information about the select list columns in a the prepared SELECT statement.

statement-name
Identifies the prepared statement. When the DESCRIBE statement is executed, the name must
identify a statement that has been prepared by the application process at the current server. A column
of the result table of the prepared statement must not be an array.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA), which is described in Appendix G, “SQL descriptor area
(SQLDA),” on page 2313. See “Identifying an SQLDA in C or C++” on page 2329 for how to represent
descriptor-name in C.

For languages other than REXX: Before the DESCRIBE statement is executed, the user must set the
following variable in the SQLDA and the SQLDA must be allocated.
SQLN

Indicates the number of SQLVAR occurrences provided in the SQLDA. Db2 does not change
this value. For techniques to determine the number of required occurrences, see Allocating the
SQLDA.

For REXX: The SQLDA is not allocated before it is used. An SQLDA consists of a set of stem variables.
There is one occurrence of variable stem.SQLD, followed by zero or more occurrences of a set of
variables that is equivalent to an SQLVAR structure. Those variables begin with stem.n.

After the DESCRIBE statement is executed, all the fields in the SQLDA except SQLN are either set by
Db2 or ignored. For information on the contents of the fields, see The SQLDA contents returned after
DESCRIBE.

Chapter 7. Statements 1873

USING
Indicates what value to assign to each SQLNAME variable in the SQLDA. If the requested value does
not exist, SQLNAME is set to a length of 0.
NAMES

Assigns the name of the column. This is the default.
LABELS

Assigns the label of the column. (Column labels are defined by the LABEL statement.)
ANY

Assigns the label of the column. If the column has no label or the label is a string of length 0, the
column name is used instead.

BOTH
Assigns both the label and name of the column. In this case, two or three occurrences of
SQLVAR per column, depending on whether the result set contains distinct types, are needed
to accommodate the additional information. To specify this expansion of the SQLVAR array, set
SQLN to 2×n or 3×n, where n is the number of columns in the object being described. For each
of the columns, the first n occurrences of SQLVAR, which are the base SQLVAR entries, contain
the column names. Either the second or third n occurrences of SQLVAR, which are the extended
SQLVAR entries, contain the column labels. If there are no distinct types, the labels are returned
in the second set of SQLVAR entries. Otherwise, the labels are returned in the third set of SQLVAR
entries.

Notes for DESCRIBE OUTPUT
Using PREPARE INTO clause:

Information about a prepared statement can also be obtained by using the INTO clause of the
PREPARE statement.

Allocating the SQLDA:

Before the DESCRIBE or PREPARE INTO statement is executed, the value of SQLN must be set to
a value greater than or equal to zero to indicate how many occurrences of SQLVAR are provided
in the SQLDA. Also, enough storage must be allocated to contain the number of occurrences that
SQLN specifies. To obtain the description of the columns of the result table of a prepared SELECT
statement, the number of occurrences of SQLVAR must be at least equal to the number of columns.
Furthermore, if USING BOTH is specified, or if the columns include LOBs or distinct types, the number
of occurrences of SQLVAR should be two or three times the number of columns. See “Determining
how many SQLVAR occurrences are needed” on page 2316 for more information.

First technique

Allocate an SQLDA with enough occurrences of SQLVAR to accommodate any select list that the
application will have to process. At the extreme, the number of SQLVARs could equal three times
the maximum number of columns allowed in a result table. After the SQLDA is allocated, the
application can use the SQLDA repeatedly.

This technique uses a large amount of storage that is never deallocated, even when most of this
storage is not used for a particular select list.

Second technique
Repeat the following two steps for every processed select list:

1. Execute a DESCRIBE statement with an SQLDA that has no occurrences of SQLVAR; that is, an
SQLDA for which SQLN is zero.

2. Allocate a new SQLDA with enough occurrences of SQLVAR. Use the values that are returned
in SQLD and SQLCODE to determine the number of SQLVAR entries that are needed. The value
of SQLD is the number of columns in the result table, which is either the required number
of occurrences of SQLVAR or a fraction of the required number (see “Determining how many
SQLVAR occurrences are needed” on page 2316 for details). If the SQLCODE is +236, +237,
+238, or +239, the number of SQLVAR entries that is needed is two or three times the value

1874 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

in SQLD, depending on whether USING BOTH was specified. Set SQLN to reflect the number of
SQLVAR entries that have been allocated.

3. Execute the DESCRIBE statement again, u

This technique allows better storage management than the first technique, but it doubles the
number of DESCRIBE statements.

sing the new SQLDA.

Third technique
Allocate an SQLDA that is large enough to handle most (hopefully, all) select lists but is also
reasonably small. If an execution of DESCRIBE fails because SQLDA is too small, allocate a larger
SQLDA and execute the DESCRIBE statement again.

For the new larger SQLDA, use the values that are returned in SQLD and SQLCODE from the
failing DESCRIBE statement to calculate the number of occurrences of SQLVAR that are needed,
as described in technique two. Remember to check for SQLCODEs +236, +237, +238, and +239,
which indicate whether extended SQLVAR entries are needed because the data includes LOBs or
distinct types.

This third technique is a compromise between the first two techniques. Its effectiveness depends
on a good choice of size for the original SQLDA.

SQLDA contents returned on DESCRIBE:

After a DESCRIBE statement is executed, the following list describes the contents of the SQLDA fields
as they are set by Db2 or ignored. These descriptions do not necessarily apply to the uses of an
SQLDA in other SQL statements (EXECUTE, OPEN, FETCH). For more on the other uses, see Appendix
G, “SQL descriptor area (SQLDA),” on page 2313.
SQLDAID

Db2 sets the first 6 bytes to 'SQLDA ' (5 letters followed by the space character) and the eighth
byte to a space character. The seventh byte is set to indicate the number of SQLVAR entries that
are needed to describe each column of the result table as follows:
space

The value of space occurs when:

• USING BOTH was not specified and the columns being described do not include LOBs or
distinct types. Each column only needs one SQLVAR entry. If the SQL standard option is yes,
Db2 sets SQLCODE to warning code +236. Otherwise, SQLCODE is zero.

• USING BOTH was specified and the columns being described do not include LOBs or distinct
types. Each column needs two SQLVAR entries. Db2 sets SQLD to two times the number of
columns of the result table. The second set of SQLVARs is used for the labels.

2
Each column needs two SQLVAR entries. Two entries per column are required when:

• USING BOTH was not specified and the columns being described include LOBs or distinct
types or both. Db2 sets the second set of SQLVAR entries with information for the LOBs or
distinct types being described.

• USING BOTH was specified and the columns include LOBs but not distinct types. Db2 sets
the second set of SQLVAR entries with information for the LOBs and labels for the columns
being described.

3
Each column needs three SQLVAR entries. Three entries are required only when USING BOTH
is specified and the columns being described include distinct types. The presence of LOB data
does not matter. It is the distinct types and not the LOBs that cause the need for three SQLVAR
entries per column when labels are also requested. Db2 sets the second set of SQLVAR entries
with information for the distinct types (and LOBs, if any) and the third set of SQLVAR entries
with the labels of the columns being described.

A REXX SQLDA does not contain this field.

Chapter 7. Statements 1875

SQLDABC
The length of the SQLDA in bytes. Db2 sets the value to SQLN×44+16.

A REXX SQLDA does not contain this field.

SQLD
If the prepared statement is a query, Db2 sets the value to the number of columns in the object
being described. (For languages other than REXX, in the case where USING BOTH was specified
and the result table does not include LOBs or distinct types, the value is actually twice the number
of columns. For REXX, if USING BOTH is specified, the value is twice the number of columns,
regardless of whether the result table include LOBs or distinct types.) Otherwise, if the statement
is not a query, Db2 sets the value to 0.

SQLVAR
An array of field description information for the column being described. There are two types of
SQLVAR entries—the base SQLVAR and the extended SQLVAR.

If the value of SQLD is 0, or is greater than the value of SQLN, no values are assigned to
any occurrences of SQLVAR. If the value of SQLN was set so that there are enough SQLVAR
occurrences to describe the specified columns (columns with LOBs or distinct types and a request
for labels increase the number of SQLVAR entries that are needed), the values are assigned to the
first n occurrences of SQLVAR so that the first occurrence of SQLVAR contains a description of the
first column, the second occurrence of SQLVAR contains a description of the second column, and
so on. This first set of SQLVAR entries are referred to as base SQLVAR entries. Each column always
has a base SQLVAR entry.

If the DESCRIBE statement included the USING BOTH clause, or the columns being described
include LOBs or distinct types, additional SQLVAR entries are needed. These additional SQLVAR
entries are referred to as the extended SQLVAR entries. There can be up to two sets of extended
SQLVAR entries for each column.

For REXX, the SQLVAR is a set of stem variables that begin with stem.n, instead of a structure. The
REXX SQLDA uses only a base SQLVAR. However, REXX uses The way in which Db2 assigns values
to the SQLVAR variables is the same as for other languages. That is, the stem.1 variables describe
the first column in the result table, the stem.2 variables describe the second column in the result
table, and so on. If USING BOTH is specified, the stem+1 variables also describe the first column
in the result table, the stem.n+2 variables also describe the second column in the result table, and
so on.

The base SQLVAR:
SQLTYPE

A code that indicates the data type of the column and whether the column can contain null
values. For the possible values of SQLTYPE, see “SQLTYPE and SQLLEN” on page 2322.

SQLLEN
A length value depending on the data type of the result columns. SQLLEN is 0 for LOB and
XML data types. For the other possible values of SQLLEN, see “SQLTYPE and SQLLEN” on page
2322.

In a REXX SQLDA, for DECIMAL or NUMERIC columns, Db2 sets the SQLPRECISION and
SQLSCALE fields instead of the SQLLEN field.

SQLDATA
The CCSID of a string column. For possible values, see “SQLDATA” on page 2325.

In a REXX SQLDA, Db2 sets the SQLCCSID field instead of the SQLDATA field.

SQLIND
Reserved.

SQLNAME
The unqualified name or label of the column, depending on the value of USING (NAMES,
LABELS, ANY, or BOTH). The field is a string of length 0 if the column does not have a name
or label. For more details on unnamed columns, see the discussion of the names of result

1876 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

columns under “select-clause” on page 1010. This value is returned in the encoding scheme
specified by the ENCODING bind option for the plan or package that contains the statement.

SQLLONGL
For REXX only, the length attribute of a LOB column. Other languages use SQLLONGLEN in the
extended SQLVAR.

SQLCCSID
For REXX only, the length attribute of a LOB column.

SQLTNAME
For REXX only, the fully qualified distinct type name of the nth column in the result table. Other
languages use SQLDATATYPE-NAME in the extended SQLVAR.

The extended SQLVAR:

SQLLONGLEN
The length attribute of a BLOB, CLOB, or DBCLOB column.

*
Reserved.

SQLDATALEN
Not Used.

SQLDATATYPE-NAME
For a distinct type, the fully qualified distinct type name. Otherwise, the value is the fully
qualified name of the built-in data type.

For a label, the label for the column.

This value is returned in the encoding scheme specified by the ENCODING bind option for the
plan or package that contains this statement.

Performance considerations:
Although Db2 does not change the value of SQLN, you might want to reset this value after the
DESCRIBE statement is executed. If the contents of SQLDA from the DESCRIBE statement is used in
a later FETCH statement, set SQLN to n (where n is the number of columns of the result table) before
executing the FETCH statement. For details, see Preparing the SQLDA for data retrieval

Preparing the SQLDA for data retrievals

This note is relevant if you are applying DESCRIBE to a prepared query and you intend to use the
SQLDA in the FETCH statements you employ to retrieve the result table rows. To prepare the SQLDA
for that task, you must set the SQLDATA field of SQLVAR. SQLIND must be set if SQLTYPE is odd, and
SQLNAME must be set when overriding the CCSID. For the meaning of those fields in that context, see
Appendix G, “SQL descriptor area (SQLDA),” on page 2313.

Also, SQLN and SQLDABC should be reset (if necessary) to n and n×44+16, where n is the number of
columns in the result table. Doing so can improve performance when the rows of the result table are
fetched.

Support for extended dynamic SQL in a distributed environment:

In a distributed environment where Db2 for z/OS is the server and the requester supports extended
dynamic SQL, such as Db2 server for VSE and VM, a DESCRIBE statement that is executed against an
SQL statement in the extended dynamic package appears to Db2 as a DESCRIBE statement against a
static SQL statement in the Db2 package. A DESCRIBE statement cannot normally be issued against
a static SQL statement. However, a DESCRIBE against a static SQL statement that is generated by
extended dynamic SQL executes without error if the package has been rebound after field DESCRIBE
FOR STATIC on installation panel DSNTIP4 has been set to YES.

YES indicates that Db2 generates an SQLDA for the DESCRIBE at bind time so that DESCRIBE
requests for static SQL statements can be satisfied at execution time. For more information, see
DESCRIBE FOR STATIC field (DESCSTAT subsystem parameter) (Db2 Installation and Migration).

Chapter 7. Statements 1877

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_descstat.html

Avoiding double preparation when using REOPT(ALWAYS) or REOPT(ONCE):

If bind option REOPT(ALWAYS) or REOPT(ONCE) is in effect, DESCRIBE causes the statement to
be prepared if it is not already prepared. If issued before an OPEN or an EXECUTE, the DESCRIBE
causes the statement to be prepared without input variables. If the statement has input variables, the
statement must be prepared again when it is opened or executed. When REOPT(ONCE) is in effect, the
statement is always prepared twice even if there are no input variables. Therefore, to avoid preparing
statements twice, issue the DESCRIBE after the OPEN. For non-cursor statements, open and fetch
processing are performed on the EXECUTE. So, if a DESCRIBE must be issued, the statement will be
prepared twice.

The use of a prepared statement for an EXPLAIN statement can cause duplicate entries in the explain
tables when the prepared statement specifies the REOPT(ALWAYS) bind option and is executed using
the jcc driver.

Errors occurring on DESCRIBE:
In local and remote processing, the DEFER(PREPARE) and REOPT(ALWAYS)/REOPT(ONCE) bind
options can cause some errors that are normally issued during PREPARE processing to be issued
on DESCRIBE.

Considerations for implicitly hidden columns:
A DESCRIBED OUTPUT statement only returns information about implicitly hidden columns if the
column (of a base table that is defined as implicitly hidden) is explicitly specified as part of the SELECT
list of the final result table of the query described. If implicitly hidden columns are not part of the
result table of a query, a DESCRIBE OUTPUT statement that returns information about that query will
not contain information about any implicitly hidden columns.

Using host variables:
If the DESCRIBE statement contains host variables, the contents of the host variables are assumed to
be in the encoding scheme that was specified in the ENCODING parameter when the package or plan
that contains the statement was bound.

Considerations for array elements:
CCSID UNICODE is returned for a result column that corresponds to a reference to an array element
with a datetime data type.

Example for DESCRIBE OUTPUT
In a PL/I program, execute a DESCRIBE statement with an SQLDA that has no occurrences of SQLVAR. If
SQLD is greater than zero, use the value to allocate an SQLDA with the necessary number of occurrences
of SQLVAR and then execute a DESCRIBE statement using that SQLDA.

 EXEC SQL BEGIN DECLARE SECTION;
 DCL STMT1_STR CHAR(200) VARYING;
 EXEC SQL END DECLARE SECTION;
 EXEC SQL INCLUDE SQLDA;
 EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;
 … /* code to prompt user for a query, then to generate */
 /* a select-statement in the STMT1_STR */
 EXEC SQL PREPARE STMT1_NAME FROM :STMT1_STR;
 … /* code to set SQLN to zero and to allocate the SQLDA */
 EXEC SQL DESCRIBE STMT1_NAME INTO :SQLDA;
 … /* code to check that SQLD is greater than zero, to set */
 /* SQLN to SQLD, then to re-allocate the SQLDA */
 EXEC SQL DESCRIBE STMT1_NAME INTO :SQLDA;
 … /* code to prepare for the use of the SQLDA */
 EXEC SQL OPEN DYN_CURSOR;
 … /* loop to fetch rows from result table */
 EXEC SQL FETCH DYN_CURSOR USING DESCRIPTOR :SQLDA;
 .
 .
 .

1878 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

DESCRIBE PROCEDURE statement
The DESCRIBE PROCEDURE statement gets information about the result sets returned by a stored
procedure. The information, such as the number of result sets, is put into a descriptor.

Invocation for DESCRIBE PROCEDURE
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared.

Authorization for DESCRIBE PROCEDURE
None required.

Syntax for DESCRIBE PROCEDURE

DESCRIBE PROCEDURE procedure-name

host-variable

INTO descriptor-name

Description for DESCRIBE PROCEDURE
procedure-name or host-variable

Identifies the stored procedure that returned one or more result sets. When the DESCRIBE
PROCEDURE statement is executed, the procedure name must identify a stored procedure that the
requester has already invoked using the SQL CALL statement. The procedure name can be specified
as a one, two, or three-part name. The procedure name in the DESCRIBE PROCEDURE statement
must be specified the same way that it was specified on the CALL statement. For example, if a two-
part procedure name was specified on the CALL statement, you must specify a two-part procedure
name in the DESCRIBE PROCEDURE statement.

If a host variable is used:

• It must be a character string variable with a length attribute that is not greater than 254.
• It must not be followed by an indicator variable.
• The value of the host variable is a specification that depends on the database server. Regardless of

the server, the specification must:

– Be left justified within the host variable
– Not contain embedded blanks
– Be padded on the right with blanks if its length is less than that of the host variable

Exception: The syntax described above applies to all languages except REXX. For REXX, the syntax is
DESCRIBE PROCEDURE :hostvar.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA). The information returned in the SQLDA describes the result
sets returned by the stored procedure.

Considerations for allocating and initializing the SQLDA are similar to those for DESCRIBE TABLE.

The contents of the SQLDA after executing a DESCRIBE PROCEDURE statement are:

• The first 5 bytes of the SQLDAID field are set to 'SQLPR'.

A REXX SQLDA does not contain SQLDAID.
• Bytes 6 to 8 of the SQLDAID field are reserved.
• The SQLD field is set to the total number of result sets. A value of 0 in the field indicates there are no

result sets.

Chapter 7. Statements 1879

• There is one SQLVAR entry for each result set.
• The SQLDATA field of each SQLVAR entry is set to the result set locator value associated with the

result set.

For a REXX SQLDA, SQLLOCATOR is set to the result set locator value.
• The SQLIND field of each SQLVAR entry is set to the estimated number of rows in the result set

For a REXX SQLDA, the SQLIND field is not used for DESCRIBE.
• The SQLNAME field is set to the name of the cursor used by the stored procedure to return the result

set. This value is returned in the encoding scheme specified by the ENCODING bind option for the
plan or package that contains this statement.

Notes for DESCRIBE PROCEDURE
SQLDA information: A value of -1 in the SQLIND field indicates that an estimated number of rows in the
result set is not provided. Db2 for z/OS always sets SQLIND to -1. For a REXX SQLDA, the SQLIND field is
not used for DESCRIBE.

DESCRIBE PROCEDURE does not return information about the parameters expected by the stored
procedure.

Assignment of locator values: Locator values are assigned to the SQLVAR entries in the SQLDA in the
order that the associated cursors are opened at run time. Locator values are not provided for cursors that
are closed when control is returned to the invoking application. If a cursor was closed and later re-opened
before returning to the invoking application, the most recently executed OPEN CURSOR statement for the
cursor is used to determine the order in which the locator values are returned for the procedure result
sets. For example, assume procedure P1 opens three cursors A, B, C, closes cursor B and then issues
another OPEN CURSOR statement for cursor B before returning to the invoking application. The locator
values are assigned in the order A, C, B.

Alternatively, an ASSOCIATE LOCATORS statement can be used to copy the locator values to result set
locator variables.

Using host variables: If the DESCRIBE PROCEDURE statement contains host variables, the contents
of the host variables are assumed to be in the encoding scheme that was specified in the ENCODING
parameter when the package or plan that contains the statement was bound.

Examples for DESCRIBE PROCEDURE

The statements in the following examples are assumed to be in PL/I programs.

Example 1: Place information about the result sets returned by stored procedure P1 into the descriptor
named by SQLDA1. Assume that the stored procedure is called with a one-part name from current server
SITE2.

 EXEC SQL CONNECT TO SITE2;
 EXEC SQL CALL P1;
 EXEC SQL DESCRIBE PROCEDURE P1 INTO :SQLDA1;

Example 2: Repeat the scenario in Example 1, but use a two-part name to specify an explicit schema
name for the stored procedure to ensure that stored procedure P1 in schema MYSCHEMA is used.

 EXEC SQL CONNECT TO SITE2;
 EXEC SQL CALL MYSCHEMA.P1;
 EXEC SQL DESCRIBE PROCEDURE MYSCHEMA.P1 INTO :SQLDA1;

1880 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 3: Place information about the result sets returned by the stored procedure identified by host
variable HV1 into the descriptor named by SQLDA2. Assume that host variable HV1 contains the value
SITE2.MYSCHEMA.P1 and the stored procedure is called with a three-part name.

 EXEC SQL CALL SITE2.MYSCHEMA.P1;
 EXEC SQL DESCRIBE PROCEDURE :HV1 INTO :SQLDA2;

The preceding example would be invalid if host variable HV1 had contained the value MYSCHEMA.P1, a
two-part name. For the example to be valid with that two-part name in host variable HV1, the current
server must be the same as the location name that is specified on the CALL statement as the following
statements demonstrate. This is the only condition under which the names do not have to be specified
the same way and a three-part name on the CALL statement can be used with a two-part name on the
DESCRIBE PROCEDURES statement.

 EXEC SQL CONNECT TO SITE2;
 EXEC SQL CALL SITE2.MYSCHEMA.P1;
 EXEC SQL ASSOCIATE LOCATORS (:LOC1, :LOC2)
 WITH PROCEDURE :HV1;

DESCRIBE TABLE statement
The DESCRIBE TABLE statement obtains information about a designated table or view.

Invocation for DESCRIBE TABLE
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared. It must not be specified in Java.

Authorization for DESCRIBE TABLE
The privileges that are held by the authorization ID that owns the plan or package must include at least
one of the following (if there is a plan, authorization checking is done only against the plan owner):

• Ownership of the table or view
• The SELECT, INSERT, UPDATE, DELETE, or REFERENCES privilege on the object
• The ALTER or INDEX privilege on the object (tables only)
• DBADM authority over the database that contains the object (tables only)
• SYSADM authority
• SYSCTRL authority (catalog tables only)
• ACCESSCTRL authority (catalog tables only)
• System DBADM
• DATAACCESS authority
• EXPLAIN authority
• SQLADM authority

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

For an RRSAF application that does not have a plan and in which the requester and the server are Db2
for z/OS systems, authorization to execute the package is performed against the primary or secondary
authorization ID of the process.

Chapter 7. Statements 1881

Syntax for DESCRIBE TABLE

DESCRIBE TABLE host-variable INTO descriptor-name

USING

NAMES

LABELS

ANY

BOTH

Description for DESCRIBE TABLE
TABLE host-variable

Identifies the table or view. The name must not identify an auxiliary table. When the DESCRIBE
statement is executed, the host variable must contain a name which identifies a table or view that
exists at the current server. This variable must be a fixed-length or varying-length character string
with a length attribute less than 256. The name must be followed by one or more blanks if the length
of the name is less than the length of the variable. It cannot contain a period as the first character
and it cannot contain embedded blanks. In addition, the quotation mark is the escape character
regardless of the value of the string delimiter option. An indicator variable must not be specified for
the host variable.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA), which is described in Appendix G, “SQL descriptor area
(SQLDA),” on page 2313. See “Identifying an SQLDA in C or C++” on page 2329 for how to represent
descriptor-name in C.

For languages other than REXX: Before the DESCRIBE statement is executed, the user must set the
following variable in the SQLDA and the SQLDA must be allocated.
SQLN

Indicates the number of SQLVAR occurrences provided in the SQLDA. Db2 does not change this
value. For techniques to determine the number of required occurrences, see Allocating the SQLDA.

For REXX: The SQLDA is not allocated before it is used. An SQLDA consists of a set of stem variables.
There is one occurrence of variable stem.SQLD, followed by zero or more occurrences of a set of
variables that is equivalent to an SQLVAR structure. Those variables begin with stem.n.

After the DESCRIBE statement is executed, all the fields in the SQLDA except SQLN are either set by
Db2 or ignored. For information on the contents of the fields, see The SQLDA contents returned after
DESCRIBE.

USING
Indicates what value to assign to each SQLNAME variable in the SQLDA. If the requested value does
not exist, SQLNAME is set to a length of 0.
NAMES

Assigns the name of the column. This is the default.
LABELS

Assigns the label of the column. (Column labels are defined by the LABEL statement.)
ANY

Assigns the label of the column. If the column has no label or the label is a string of length 0, the
column name is used instead.

BOTH
Assigns both the label and name of the column. In this case, two or three occurrences of
SQLVAR per column, depending on whether the result set contains distinct types, are needed
to accommodate the additional information. To specify this expansion of the SQLVAR array, set
SQLN to 2xn or 3xn, where n is the number of columns in the object being described. For each

1882 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

of the columns, the first n occurrences of SQLVAR, which are the base SQLVAR entries, contain
the column names. Either the second or third n occurrences of SQLVAR, which are the extended
SQLVAR entries, contain the column labels. If there are no distinct types, the labels are returned
in the second set of SQLVAR entries. Otherwise, the labels are returned in the third set of SQLVAR
entries.

For a declared temporary table, the name of the column is assigned regardless of the value specified
in the USING clause because declared temporary tables cannot have labels.

Notes for DESCRIBE TABLE
Allocating the SQLDA:

Before the DESCRIBE or PREPARE INTO statement is executed, the value of SQLN must be set to
a value greater than or equal to zero to indicate how many occurrences of SQLVAR are provided
in the SQLDA. Also, enough storage must be allocated to contain the number of occurrences that
SQLN specifies. To obtain the description of the columns of the result table of a prepared SELECT
statement, the number of occurrences of SQLVAR must be at least equal to the number of columns.
Furthermore, if USING BOTH is specified, or if the columns include LOBs or distinct types, the number
of occurrences of SQLVAR should be two or three times the number of columns. See “Determining
how many SQLVAR occurrences are needed” on page 2316 for more information.

First technique

Allocate an SQLDA with enough occurrences of SQLVAR to accommodate any select list that the
application will have to process. At the extreme, the number of SQLVARs could equal three times
the maximum number of columns allowed in a result table. After the SQLDA is allocated, the
application can use the SQLDA repeatedly.

This technique uses a large amount of storage that is never deallocated, even when most of this
storage is not used for a particular select list.

Second technique
Repeat the following two steps for every processed select list:

1. Execute a DESCRIBE statement with an SQLDA that has no occurrences of SQLVAR; that is, an
SQLDA for which SQLN is zero.

2. Allocate a new SQLDA with enough occurrences of SQLVAR. Use the values that are returned
in SQLD and SQLCODE to determine the number of SQLVAR entries that are needed. The value
of SQLD is the number of columns in the result table, which is either the required number
of occurrences of SQLVAR or a fraction of the required number (see “Determining how many
SQLVAR occurrences are needed” on page 2316 for details). If the SQLCODE is +236, +237,
+238, or +239, the number of SQLVAR entries that is needed is two or three times the value
in SQLD, depending on whether USING BOTH was specified. Set SQLN to reflect the number of
SQLVAR entries that have been allocated.

3. Execute the DESCRIBE statement again, u

This technique allows better storage management than the first technique, but it doubles the
number of DESCRIBE statements.

sing the new SQLDA.

Third technique
Allocate an SQLDA that is large enough to handle most (hopefully, all) select lists but is also
reasonably small. If an execution of DESCRIBE fails because SQLDA is too small, allocate a larger
SQLDA and execute the DESCRIBE statement again.

For the new larger SQLDA, use the values that are returned in SQLD and SQLCODE from the
failing DESCRIBE statement to calculate the number of occurrences of SQLVAR that are needed,
as described in technique two. Remember to check for SQLCODEs +236, +237, +238, and +239,
which indicate whether extended SQLVAR entries are needed because the data includes LOBs or
distinct types.

Chapter 7. Statements 1883

This third technique is a compromise between the first two techniques. Its effectiveness depends
on a good choice of size for the original SQLDA.

SQLDA contents returned on DESCRIBE:

After a DESCRIBE statement is executed, the following list describes the contents of the SQLDA fields
as they are set by Db2 or ignored. These descriptions do not necessarily apply to the uses of an
SQLDA in other SQL statements (EXECUTE, OPEN, FETCH). For more on the other uses, see Appendix
G, “SQL descriptor area (SQLDA),” on page 2313.
SQLDAID

Db2 sets the first 6 bytes to 'SQLDA ' (5 letters followed by the space character) and the eighth
byte to a space character. The seventh byte is set to indicate the number of SQLVAR entries that
are needed to describe each column of the result table as follows:
space

The value of space occurs when:

• USING BOTH was not specified and the columns being described do not include LOBs or
distinct types. Each column only needs one SQLVAR entry. If the SQL standard option is yes,
Db2 sets SQLCODE to warning code +236. Otherwise, SQLCODE is zero.

• USING BOTH was specified and the columns being described do not include LOBs or distinct
types. Each column needs two SQLVAR entries. Db2 sets SQLD to two times the number of
columns of the result table. The second set of SQLVARs is used for the labels.

2
Each column needs two SQLVAR entries. Two entries per column are required when:

• USING BOTH was not specified and the columns being described include LOBs or distinct
types or both. Db2 sets the second set of SQLVAR entries with information for the LOBs or
distinct types being described.

• USING BOTH was specified and the columns include LOBs but not distinct types. Db2 sets
the second set of SQLVAR entries with information for the LOBs and labels for the columns
being described.

3
Each column needs three SQLVAR entries. Three entries are required only when USING BOTH
is specified and the columns being described include distinct types. The presence of LOB data
does not matter. It is the distinct types and not the LOBs that cause the need for three SQLVAR
entries per column when labels are also requested. Db2 sets the second set of SQLVAR entries
with information for the distinct types (and LOBs, if any) and the third set of SQLVAR entries
with the labels of the columns being described.

A REXX SQLDA does not contain this field.

SQLDABC
The length of the SQLDA in bytes. Db2 sets the value to SQLN×44+16.

A REXX SQLDA does not contain this field.

SQLD
If the prepared statement is a query, Db2 sets the value to the number of columns in the object
being described. (For languages other than REXX, in the case where USING BOTH was specified
and the result table does not include LOBs or distinct types, the value is actually twice the number
of columns. For REXX, if USING BOTH is specified, the value is twice the number of columns,
regardless of whether the result table include LOBs or distinct types.) Otherwise, if the statement
is not a query, Db2 sets the value to 0.

SQLVAR
An array of field description information for the column being described. There are two types of
SQLVAR entries—the base SQLVAR and the extended SQLVAR.

If the value of SQLD is 0, or is greater than the value of SQLN, no values are assigned to
any occurrences of SQLVAR. If the value of SQLN was set so that there are enough SQLVAR

1884 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

occurrences to describe the specified columns (columns with LOBs or distinct types and a request
for labels increase the number of SQLVAR entries that are needed), the values are assigned to the
first n occurrences of SQLVAR so that the first occurrence of SQLVAR contains a description of the
first column, the second occurrence of SQLVAR contains a description of the second column, and
so on. This first set of SQLVAR entries are referred to as base SQLVAR entries. Each column always
has a base SQLVAR entry.

If the DESCRIBE statement included the USING BOTH clause, or the columns being described
include LOBs or distinct types, additional SQLVAR entries are needed. These additional SQLVAR
entries are referred to as the extended SQLVAR entries. There can be up to two sets of extended
SQLVAR entries for each column.

For REXX, the SQLVAR is a set of stem variables that begin with stem.n, instead of a structure. The
REXX SQLDA uses only a base SQLVAR. However, REXX uses The way in which Db2 assigns values
to the SQLVAR variables is the same as for other languages. That is, the stem.1 variables describe
the first column in the result table, the stem.2 variables describe the second column in the result
table, and so on. If USING BOTH is specified, the stem+1 variables also describe the first column
in the result table, the stem.n+2 variables also describe the second column in the result table, and
so on.

The base SQLVAR:
SQLTYPE

A code that indicates the data type of the column and whether the column can contain null
values. For the possible values of SQLTYPE, see “SQLTYPE and SQLLEN” on page 2322.

SQLLEN
A length value depending on the data type of the result columns. SQLLEN is 0 for LOB and
XML data types. For the other possible values of SQLLEN, see “SQLTYPE and SQLLEN” on page
2322.

In a REXX SQLDA, for DECIMAL or NUMERIC columns, Db2 sets the SQLPRECISION and
SQLSCALE fields instead of the SQLLEN field.

SQLDATA
The CCSID of a string column. For possible values, see “SQLDATA” on page 2325.

In a REXX SQLDA, Db2 sets the SQLCCSID field instead of the SQLDATA field.

SQLIND
Reserved.

SQLNAME
The unqualified name or label of the column, depending on the value of USING (NAMES,
LABELS, ANY, or BOTH). The field is a string of length 0 if the column does not have a name
or label. For more details on unnamed columns, see the discussion of the names of result
columns under “select-clause” on page 1010. This value is returned in the encoding scheme
specified by the ENCODING bind option for the plan or package that contains the statement.

SQLLONGL
For REXX only, the length attribute of a LOB column. Other languages use SQLLONGLEN in the
extended SQLVAR.

SQLCCSID
For REXX only, the length attribute of a LOB column.

SQLTNAME
For REXX only, the fully qualified distinct type name of the nth column in the result table. Other
languages use SQLDATATYPE-NAME in the extended SQLVAR.

The extended SQLVAR:

SQLLONGLEN
The length attribute of a BLOB, CLOB, or DBCLOB column.

*
Reserved.

Chapter 7. Statements 1885

SQLDATALEN
Not Used.

SQLDATATYPE-NAME
For a distinct type, the fully qualified distinct type name. Otherwise, the value is the fully
qualified name of the built-in data type.

For a label, the label for the column.

This value is returned in the encoding scheme specified by the ENCODING bind option for the
plan or package that contains this statement.

Performance considerations:
Although Db2 does not change the value of SQLN, you might want to reset this value after the
DESCRIBE statement is executed. If the contents of SQLDA from the DESCRIBE statement is used in
a later FETCH statement, set SQLN to n (where n is the number of columns of the result table) before
executing the FETCH statement. For details, see Preparing the SQLDA for data retrieval

Using host variables:
If the DESCRIBE statement contains host variables, the contents of the host variables are assumed to
be in the encoding scheme that was specified in the ENCODING parameter when the package or plan
that contains the statement was bound.

Considerations for implicitly hidden columns:
A DESCRIBE TABLE statement does return information about implicitly hidden columns in tables.

DROP statement
The DROP statement removes an object at the current server. Except for storage groups, any objects that
are directly or indirectly dependent on that object are also removed. Whenever an object is dropped, its
description is deleted from the catalog at the current server, and any packages that refer to the object are
invalidated.

Invocation for DROP
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for DROP
To drop the following objects, the privilege set must include at least one of the listed authorities or
privileges:

Table, table space, or index:

• Ownership of the object (for an index, the owner is the owner of the table or index)
• DBADM authority
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

If the table space is in a database that is implicitly created, the database privileges must be on the
implicit database or on DSNDB04.

Database:

• The DROP privilege on the database
• DBADM or DBCTRL authority for the database
• SYSADM or SYSCTRL authority
• System DBADM

1886 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

If the database is implicitly created, the privileges must be on the implicit database or on DSNDB04.
Storage group:

• Ownership of the object
• SYSADM or SYSCTRL authority
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

View:

• Ownership of the object
• SYSADM or SYSCTRL authority
• System DBADM authority

Alias for a table or view:

• Ownership of the object
• SYSADM or SYSCTRL authority
• System DBADM

Alias for a sequence:

• Ownership of the object
• The DROPIN privilege on the schema
• SYSADM or SYSCTRL authority
• System DBADM

Package:

• Ownership of the package
• The BINDAGENT privilege granted from the package owner
• PACKADM authority for the collection or for all collections
• SYSADM or SYSCTRL authority

Synonym:
Ownership of the synonym

Role or trusted context:

• Ownership of the object
• SYSADM or SYSCTRL authority
• SECADM

If the installation parameter SEPARATE SECURITY is NO, SYSADM authority has implicit SECADM and
SYSCTRL authority and can drop a role or trusted context.

Row permission or column mask:
At least SECADM authority

User-defined type, global variable, sequence, stored procedure, trigger, or user-defined function:

• Ownership of the object 34

• The DROPIN privilege on the schema
• SYSADM or SYSCTRL authority
• System DBADM
• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

34 Not applicable for stored procedures defined in releases of Db2 for z/OS prior to Version 6.

Chapter 7. Statements 1887

The authorization ID that matches the schema name implicitly has the DROPIN privilege on the
schema.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the statement is dynamically prepared, the privilege
set is the union of the privilege sets that are held by each authorization ID of the process. If running in a
trusted context with a role, the privilege set also includes those privileges that are held by the role that is
associated with the primary authorization ID. However, the implicit schema match does not apply to the
role when determining if DROPIN schema privilege is held.

1888 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Syntax for DROP

DROP

alias-designator

DATABASE database-name

FUNCTION function-name

(
,

parameter-type

)

RESTRICT

SPECIFIC FUNCTION specific-name
RESTRICT

INDEX index-name

MASK mask-name

PACKAGE collection-id . package-name
VERSION

version-id

PERMISSION permission-name

PROCEDURE procedure-name
RESTRICT

ROLE role-name
RESTRICT

SEQUENCE sequence-name
RESTRICT

STOGROUP stogroup-name

SYNONYM synonym

TABLE table-name

alias-name

TABLESPACE

database-name .

 table-space-name

TRIGGER trigger-name

TRUSTED CONTEXT context-name

TYPE type-name
RESTRICT

VARIABLE variable-name
RESTRICT

VIEW view-name

alias-name

alias-designator:

PUBLIC
1

ALIAS alias-name
FOR TABLE

FOR SEQUENCE

Notes:

Chapter 7. Statements 1889

1 If PUBLIC is specified, FOR SEQUENCE must also be specified.

parameter type:

data-type

AS LOCATOR
1

Notes:
1 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data type.

data type:

built-in-type

distinct-type-name

array-type-name

built-in-type:

1890 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

BIT

DATA

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC( integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID ASCII

EBCDIC

UNICODE

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

ROWID

XML

Description for DROP
alias-designator

Chapter 7. Statements 1891

PUBLIC
Specifies that the alias to be dropped is a public alias. The alias-name must identify an alias that
exists in the SYSPUBLIC schema.

If the PUBLIC keyword is specified, alias-name must identify a public alias that exists at the
current server.

ALIAS alias-name
Identifies the alias to be dropped. The alias-name must identify an alias that exists at the current
server.

Dropping an alias for a table or view has no effect on any view, materialized query table, or
synonym that was defined using the alias. If the alias is referenced in the definition of a row
permission or a column mask, it cannot be dropped.

Dropping an alias for a sequence has no effect on any view or materialized query table that
was defined using the alias. If the alias is referenced in the definition of an inline SQL function,
it cannot be dropped. When an alias for a sequence is dropped, all packages that refer to the
sequence alias are invalidated.

If the alias is referenced in the definition of a row permission or a column mask, the alias cannot
be dropped.

FOR TABLE
Specifies that the alias to be dropped is for a table or view. Dropping an alias for a table has no
effect on any view, materialized query table, or synonym that was defined using the alias.

FOR SEQUENCE
Specifies that the alias to be dropped is for a sequence. Dropping an alias for a sequence has no
effect on any view, or materialized query table that was defined using the alias.

DATABASE database-name
Identifies the database to drop. The name must identify a database that exists at the current server.
DSNDB04 or DSNDB06 must not be specified. The privilege set must include SYSADM authority.

Whenever a database is dropped, all of its table spaces, tables, index spaces, and indexes are also
dropped. Any pending changes to the definitions of the table spaces and indexes in the database are
also dropped.

You can drop a database that contains a history table only if the database also contains the associated
system-period temporal table. You can drop a database that contains a system-period temporal table
when the associated history table is in another database. In this case, the action cascades to drop the
history table in the other database.

You can drop a database that contains an archive table only if the database also contains the
associated archive-enabled table. You can drop a database that contains an archive-enabled table
when the associated archive table is contained in another database. In this case, the action cascades
to drop the archive table in the other database.

The database cannot be dropped if it is associated with an accelerator-only table.

FUNCTION or SPECIFIC FUNCTION
Identifies the function to drop. The function must exist at the current server, and it must have been
defined with the CREATE FUNCTION statement. The particular function can be identified by its name,
function signature, or specific name. The specified function definition is dropped from the schema.

Functions that are implicitly generated by the CREATE TYPE statement cannot be dropped using the
DROP statement. They are implicitly dropped when the distinct type is dropped.

As indicated by the default keyword RESTRICT, the function is not dropped if any of the following
dependencies exist:

• Another function is sourced on the function.
• A view uses the function.
• A trigger package uses the function.

1892 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• The definition of a materialized query table uses the function.
• The definition of a row permission or a column mask uses the function.

When a function is dropped, all privileges on the function are also dropped. Any packages that
are dependent on the function dropped are made inoperative. All package copies are also marked
as VALID='NO'. If the function is a compiled SQL scalar function, the package associated with the
function is also dropped.

All versions of a compiled SQL scalar function are dropped. To drop a specific version of a compiled
SQL scalar function, use an “ALTER FUNCTION statement (compiled SQL scalar function)” on page
1113 statement with the DROP VERSION clause.

FUNCTION function-name
Identifies the function by its name. The function-name must identify exactly one function. The
function can have any number of parameters defined for it. If there is more than one function of
the specified name in the specified or implicit schema, an error is returned.

FUNCTION function-name (parameter-type,...)
Identifies the function by its function signature, which uniquely identifies the function. The
function-name (parameter-type, ...) must identify a function with the specified function signature.
The specified parameters must match the data types in the corresponding position that were
specified when the function was created. The number of data types, and the logical concatenation
of the data types is used to identify the specific function instance which is to be dropped.
Synonyms for data types are considered a match.

If the function was defined with a table parameter (the LIKE TABLE name AS LOCATOR clause was
specified in the CREATE FUNCTION statement to indicate that one of the input parameters is a
transition table), the function signature cannot be used to uniquely identify the function. Instead,
use one of the other syntax variations to identify the function with its function name, if unique, or
its specific name.

If function-name () is specified, the function identified must have zero parameters.

function-name
Identifies the name of the function.

(parameter-type,...)
Identifies the parameters of the function.

If an unqualified distinct type name is specified, Db2 searches the SQL path to resolve the
schema name for the distinct type.

For data types that have a length, precision, or scale attribute, use one of the following:

• Empty parentheses indicate that the database manager ignores the attribute when
determining whether the data types match. For example, DEC() will be considered a match
for a parameter of a function defined with a data type of DEC(7,2). Similarly DECFLOAT()
will be considered a match for DECFLOAT(16) or DECFLOAT(34). However, FLOAT cannot be
specified with empty parenthesis because its parameter value indicates a specific data type
(REAL or DOUBLE).

• If a specific value for a length, precision, or scale attribute is specified, the value must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement. If the data type is FLOAT, the precision does not have to exactly match the value
that was specified because matching is based on the data type (REAL or DOUBLE).

• If length, precision, or scale is not explicitly specified, and empty parentheses are not
specified, the default attributes of the data type are implied. The implicit length must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

For data types with a subtype or encoding scheme attribute, specifying the FOR subtype DATA
clause or the CCSID clause is optional. Omission of either clause indicates that Db2 ignores
the attribute when determining whether the data types match. If you specify either clause,

Chapter 7. Statements 1893

it must match the value that was implicitly or explicitly specified in the CREATE FUNCTION
statement.

AS LOCATOR
Specifies that the function is defined to receive a locator for this parameter. If AS LOCATOR is
specified, the data type must be a LOB or a distinct type based on a LOB.

SPECIFIC FUNCTION specific-name
Identifies the function by its specific name. The specific-name must identify a specific function
that exists at the current server.

INDEX index-name
Identifies the index to drop. The name must identify a user-defined index that exists at the current
server but must not identify a populated index on an auxiliary table or an index that was implicitly
created for a table that contains an XML column. (For details on dropping user-defined indexes on
catalog tables, see “SQL statements allowed on the catalog” on page 2739.) A populated index on
an auxiliary table can only be dropped by dropping the base table. The name must not identify an
auxiliary table for an object that is involved in a clone relationship.

If the index that is dropped was created by specifying the ENDING AT clause to define partition
boundaries, the table is converted to use table-controlled partitioning. The high limit key for the last
partition is set to the highest possible value for ascending key columns or the lowest possible value
for descending key columns.

Whenever an index is directly or indirectly dropped, its index space is also dropped. The name of a
dropped index space cannot be reused until a commit operation is performed. Any pending changes
to the definitions of the index is also dropped.

If the index is a unique index used to enforce a unique constraint (primary or unique key), the unique
constraint must be dropped before the index can be dropped. In addition, if a unique constraint
supports a referential constraint, the index cannot be dropped unless the referential constraint is
dropped.

However, a unique index (for a unique key only) can be dropped without first dropping the unique key
constraint if the unique key was created in a release of Db2 before Version 7 and if the unique key
constraint has no associated referential constraints. For information about dropping constraints, see
“ALTER TABLE statement” on page 1232.

If the index is used for the foreign key of a temporal referential constraint, the referential constraint
must be dropped before the index can be dropped.

If the table space is explicitly created and a unique index is dropped and that index was defined on
a ROWID column that is defined as GENERATED BY DEFAULT, the table can still be used, but rows
cannot be inserted into that table.

If the table space is implicitly created, the index cannot be dropped if it is defined on a ROWID column
that is defined as GENERATED BY DEFAULT.

If an empty index on an auxiliary table is dropped, the base table is marked incomplete. If the base
table space is implicitly created, the index on an auxiliary table cannot be dropped.

Drop index will result in the deletion of rows in the SYSCOLDIST and SYSCOLDISTATS catalog tables if
no other indexes on the table have the same column group in their key sequence prefix.

MASK mask-name
Identifies the column mask to drop. The name must identify a column mask that exists at the current
server.

PACKAGE collection-id.package-name
Identifies the package version to drop. The name plus the implicitly or explicitly specified version-id
must identify a package version that exists at the current server. Omission of the version-id is an
implicit specification of the null version.

The name must not identify a trigger package or a package that is associated with an SQL routine. A
trigger package can only be dropped by dropping the associated trigger or subject table. A package

1894 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

that is associated with a native SQL procedure can only be dropped with an ALTER PROCEDURE
statement with a DROP VERSION clause that specifies the particular version that is to be dropped, or
with a DROP PROCEDURE statement if it is the only version that is defined for the procedure.

Specify this clause to drop a package that is created as the result of a BIND COPY command used to
deploy a version of a native SQL procedure.

If a package has current, previous, and original copies, the DROP statement will drop all copies.

VERSION version-id
version-id is the version identifier that was assigned to the package's DBRM when the DBRM was
created. If version-id is not specified, a null version is used as the version identifier.

Delimit the version identifier when it:

• Is generated by the VERSION(AUTO) precompiler option
• Begins with a digit
• Contains lowercase or mixed-case letters

For more on version identifiers, see the information on preparing an application program for
execution in Creating a package version (Db2 Application programming and SQL).

PERMISSION permission-name
Identifies the row permission to drop. The name must identify a row permission that exists at the
current server. The name must not identify the default row permission that was created implicitly by
Db2.

PROCEDURE procedure-name
Identifies the stored procedure to drop. The name must identify a stored procedure that was defined
with the CREATE PROCEDURE statement at the current server. The specified procedure definition
is dropped from the schema. All privileges on the procedure are also dropped, and any packages
that are dependent on the procedure are marked invalid. If the procedure is an SQL procedure, the
package that is associated with the procedure is also dropped.

As indicated by the default keyword RESTRICT, the procedure is not dropped if any of the following
dependencies exist:

• A trigger definition contains a CALL statement that identifies the procedure.
• An SQL routine definition contains a CALL statement that identifies the procedure.

All versions of a native SQL procedure are dropped. To drop a specific version of a native SQL
procedure, use an “ALTER PROCEDURE statement (SQL - native procedure)” on page 1194 statement
with the DROP VERSION clause.

Use a DROP PACKAGE statement to drop a package for a version of a native SQL procedure that is
created using the BIND COPY command.

ROLE role-name
Identifies the role to drop. role-name must identify a role that exists at the current server.

When a role is dropped, all privileges and authorities that have been previously granted to that role
are revoked. If the role that is dropped is the owner of statements in the dynamic statement cache,
the cached statements are invalidated.

The role is not dropped if any REVOKE restrictions are encountered. REVOKE restrictions include the
following:

• Restrictions that are encountered when dependent privileges are included when the privileges of a
role are revoked.

• The role is the grantor of any privilege or authority that used ACCESSCTRL or SECADM authority to
perform the grant.

If RESTRICT is specified, the role is not dropped is any of the following dependencies exist:

• The role is associated with any trusted context or any user in a trusted context.

Chapter 7. Statements 1895

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createpackageversion.html

• The role is associated with a currently running thread.
• The role is the owner of any of the following objects:

Object Object

Alias
Array type
Column mask
Database
Distinct type
Global variable
Index
JAR file
Materialized query table
Package
Role

Row permission
Sequence
Storage group
Stored procedure
Table
Table space
Trigger
Trusted context
User-defined function
View

SEQUENCE sequence-name
Identifies the sequence to drop. The name must identify an existing sequence at the current server.

sequence-name must not be the name of an internal sequence object that is used by Db2 (including
an implicitly generated sequence for a DB2_GENERATED_DOCID_FOR_XML column). Sequences that
are generated by the system for identity columns or implicitly created databases cannot be dropped
by using the DROP SEQUENCE statement. A sequence object for an identity column is implicitly
dropped when the table that contains the identify column is dropped.

The default keyword RESTRICT indicates that the sequence is not dropped if any of the following
dependencies exist:

• A trigger that uses the sequence in a NEXT VALUE or PREVIOUS VALUE expression exists.
• An inline SQL function that uses the sequences in a NEXT VALUE or PREVIOUS VALUE expression

exists.

Whenever a sequence is dropped, all privileges on the sequence are also dropped, and the packages
that refer to the sequence are invalidated. Dropping a sequence, even if the drop process is rolled
back, results in the loss of the still-unassigned cache values for the sequence.

STOGROUP stogroup-name
Identifies the storage group to drop. The name must identify a storage group that exists at the current
server but not a storage group that is used by any table space or index space.

For information on the effect of dropping the default storage group of a database, see Dropping a
default storage group.

SYNONYM synonym
Identifies the synonym to drop. In a static DROP SYNONYM statement, the name must identify a
synonym that is owned by the owner of the plan or package. In a dynamic DROP SYNONYM statement,
the name must identify a synonym that is owned by the SQL authorization ID. Thus, using interactive
SQL, a user with SYSADM authority can drop any synonym by first setting CURRENT SQLID to the
owner of the synonym.

Dropping a synonym invalidates dependent packages and the dynamic statement cache. Dropping
a synonym has no effect on any view, materialized query table, or alias that was defined using the
synonym.

If the synonym is referenced in the definition of a row permission or a column mask, it cannot be
dropped.

TABLE table-name or alias-name
Identifies the table to drop. The name must identify a table that exists at the current server. It must
not identify any of the following types of tables:

1896 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• A catalog table
• A directory table
• FL 506 A table in a partitioned (non-UTS) table space
• A table that is implicitly created for an XML column
• A populated auxiliary table

A table in a partitioned (non-UTS) table space can be dropped only by dropping the table space. A
populated auxiliary table or a table that is implicitly created for an XML column can be dropped only
by dropping the associated base table.

If alias-name is specified, the actual table is dropped as if table-name were specified. However, the
alias is not dropped. It can be dropped by using the DROP ALIAS statement.

When a table is directly or indirectly dropped, the following items are also dropped:

• All privileges on the table
• All referential constraints in which the table is a parent or dependent
• All synonyms, views, and indexes that are defined on the table
• All row permissions (including the default row permission)
• All column masks that are created for the table

FL 506 If the table space for the table is a universal table space, a LOB table space, or implicitly
created, it is also dropped. However, if the containing database was implicitly created, it is not
dropped. Any pending changes to the definitions of the dropped table space and indexes are also
dropped.

For more information, see Dropping an implicitly created database.

When a table is directly or indirectly dropped, all materialized query tables that are defined on the
table are also dropped. When a materialized query table is directly or indirectly dropped, the following
items are also dropped:

• All privileges on the materialized query table
• All synonyms, views, and indexes that are defined on the materialized query table

Any alias that is defined on the materialized query table is not dropped. Any packages that are
dependent on the dropped materialized query table are marked invalid.

You cannot use DROP TABLE to drop a clone table. You must use the ALTER TABLE statement with
the DROP CLONE clause to drop a clone table. If a base table that is involved in a clone relationship is
dropped, the associated clone table is also dropped. You cannot drop an auxiliary table for an object
that is involved in a clone relationship.

The table cannot be dropped if it is defined as a history table for a system-period temporal table.

The table cannot be dropped if it is referenced in the definition of a row permission or a column mask.

To drop a system-period temporal table, the privilege set must also contain the authorization that is
required to drop the history table. The history table is dropped when a system-period temporal table
is dropped.

If a table with LOB columns is dropped, the auxiliary tables that are associated with the table and the
indexes on the auxiliary tables are also dropped. FL 506 Db2 also drops the LOB table spaces that
contain the auxiliary tables, regardless of whether the LOB table spaces were implicitly or explicitly
created.

If a table with XML columns is dropped, all implicitly created objects for all XML columns are also
dropped.

If an empty auxiliary table is dropped, the definition of the base table is marked incomplete. If the
base table space is implicitly created, the auxiliary table cannot be dropped.

Chapter 7. Statements 1897

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html

If the table has a security label column, the primary authorization ID of the DROP statement must
have a valid security label, and the RACF SECLABEL class must be active.

If a table that uses hash organization is dropped, all catalog entries for the hash organization are
cleaned up.

If an archive-enabled table is dropped, the archive table and any indexes that are defined on the
archive table are also dropped. To drop an archive-enabled table, the privilege set must also contain
the authorization that is required to drop the archive table. An archive table cannot be explicitly
dropped by using the DROP statement.

TABLESPACE database-name.table-space-name
Identifies the table space to drop. The name must identify a table space that exists at the current
server. The database name must not be DSNDB01 or DSNDB06. Omission of the database name is an
implicit specification of DSNDB04. table-space-name must not identify a table space that is implicitly
created for an XML column.

Whenever a table space is directly or indirectly dropped, all the tables in the table space are also
dropped. The name of a dropped table space cannot be reused until a commit operation is performed.
Any pending changes to the definitions of the table space and its indexes are also dropped.

A LOB table space can be dropped only if it does not contain an auxiliary table. If the LOB table space
is implicitly created, it cannot be dropped.

Whenever a base table space that contains tables with LOB columns is dropped, all the auxiliary
tables and indexes on those auxiliary tables that are associated with the base table space are also
dropped.

Whenever a base table space that contains tables with XML columns is dropped, all implicitly created
objects for all XML columns are also dropped.

The table space cannot be dropped if it contains a history table, an archive table, or is associated with
an accelerator-only table.

TRIGGER trigger-name
Identifies the trigger to drop. The name must identify a trigger that exists at the current server.

Whenever a trigger is directly or indirectly dropped, all privileges on the trigger are also dropped and
the associated trigger package is freed. The name of that trigger package is the same as the trigger
name and the collection ID is the schema name.

When an INSTEAD OF trigger is dropped, the associated privilege is revoked from anyone that
possesses the privilege as a result of an implicit grant that occurred when the trigger is created.

Dropping triggers causes certain packages to be marked invalid. For example, if trigger-name specifies
an INSTEAD OF trigger on a view V, another trigger might depend on trigger-name through an update
to the view V, and that trigger package is invalidated.

If a trigger has current, previous, and original copies, the DROP statement will drop all copies.

For an advanced trigger, all versions of the trigger are dropped. Use an ALTER TRIGGER statement
with the DROP VERSION clause to drop a specific version of a trigger.

TRUSTED CONTEXT context-name
Identifies the trusted context to drop. The context-name must identify a trusted context that exists
at the current server. When a trusted context is dropped, all associations to attributes (IP addresses,
job names) and associations to users of the trusted context are dropped. If the trusted context is
dropped while trusted connections for the context are active, the connections remain active until they
terminate or the next attempt at reuse is made.

TYPE type-name
Identifies the user-defined type to drop. The name must identify a user-defined type that exists at the
current server. The default keyword RESTRICT indicates that the user-defined type is not dropped if
any of the following dependencies exist:

• The definition of a column of a table uses the user-defined type.

1898 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• The definition of an input or result parameter of a user-defined function uses the user-defined type.
• The definition of a parameter of a stored procedure uses the user-defined type.
• The definition of an extended index uses a cast function that is implicitly generated for the user-
defined type.

• The definition of an SQL variable in a procedure or function uses the user-defined type.
• The definition of a row permission or a column mask uses the user-defined type.
• A sequence exists for which the data type of the sequence is the user-defined type.
• One of the following dependencies exists on one of the cast functions that are generated for the
user-defined type:

– Another function is sourced from one of the cast functions
– A view uses one of the cast functions
– A trigger package uses one of the cast functions
– The definition of a materialized query table uses one of the cast functions

Whenever a user-defined type is dropped, all privileges on the distinct type are also dropped. In
addition, the cast functions that were generated when the user-defined type was created and the
privileges on those cast functions are also dropped.

VARIABLE variable-name
Identifies the global variable to drop. The name must identify a global variable that exists at the
current server. The name must not identify a built-in global variable. The default keyword RESTRICT
indicates that the global variable is not dropped if any of the following dependencies exist:

• The definition of a function, trigger, or view is dependent on the global variable

Packages that are dependent on the global variable are marked invalid when the global variable is
dropped. If a statement that is in the dynamic statement cache depends on the global variable and
the global variable is dropped, the statement in the dynamic statement cache will be invalidated if it is
not in use.

VIEW view-name or alias-name
Identifies the view to drop. The name must identify a view that exists at the current server.

Whenever a view is directly or indirectly dropped, all privileges on the view and all synonyms and
views that are defined on the view are also dropped. Whenever a view is directly or indirectly dropped,
all materialized query tables defined on the view are also dropped.

If alias-name is specified, the actual view will be dropped as if view-name were specified. However,
the alias is not dropped and can be dropped using the DROP ALIAS statement.

If the view is referenced in the definition of a row permission or a column mask, it cannot be dropped.

Notes for DROP
Restrictions on DROP:

DROP is subject to these restrictions:

• DROP DATABASE cannot be performed while a Db2 utility has control of any part of the database.
• DROP INDEX cannot be performed while a Db2 utility has control of the index or its associated table

space.
• DROP INDEX cannot be performed if the index is a unique index that is defined on a ROWID column

that is defined as GENERATED BY DEFAULT and there are pending changes to the definition of the
table space or to any objects within the table space that are explicitly created.

• DROP INDEX cannot be performed if the index is an empty index on an auxiliary table that resides
in an explicitly created LOB table space and there are pending changes to the definition of the base
table space or to any objects within the base table space.

Chapter 7. Statements 1899

• DROP INDEX cannot be performed if the index is the hash overflow index for a table that uses hash
organization.

• DROP TABLE cannot be performed while a Db2 utility has control of the table space that contains
the table.

• DROP TABLE cannot be performed if the table is an empty auxiliary table and there are any pending
changes to the definition of the base table space or to any objects within the base table space.

• DROP TABLESPACE cannot be performed while a Db2 utility has control of the table space.

In a data sharing environment, the following restrictions also apply:

• If any member has an active resource limit specification table (RLST) you cannot drop the database
or table space that contains the table, the table itself, or any index on the table.

• If the member executing the drop cannot access the Db2-managed data sets, only the catalog and
directory entries for those data sets are removed.

Objects that have certain dependencies cannot be dropped. For information on these restrictions, see
Table 231 on page 1903.

Recreating objects:
After an index or table space is dropped, a commit must be performed before the object can be
re-created with the same name. If a table that was created without an IN clause (thereby causing a
table space to be implicitly created) is dropped, a table cannot be re-created with the same name
until a commit is performed.

Dropping a parent table:
DROP is not DELETE and therefore does not involve delete rules.

Dropping a default storage group:
If you drop the default storage group of a database, the database no longer has a legitimate default.
You must then specify USING in any statement that creates a table space or index in the database.
You must do this until you either:

• Create another storage group with the same name using the CREATE STOGROUP statement, or
• Designate another default storage group for the database using the ALTER DATABASE statement.

Dropping an accelerator-only table:

• When an accelerator-only table is dropped and the accelerator is not active, use the
SYSACCEL_DROP_TABLE procedure to drop the table in the accelerator.

• A DROP TABLE statement that identifies an accelerator-only table should be issued in a separate
unit of work from other SQL statements.

Dropping an implicitly created database:
When a table that resides in an implicitly created table space is dropped, the implicitly created table
space and related objects are dropped. However, the implicitly created database is not dropped. This
can result in a large number of empty databases in a system. These databases might be eventually
reused for newly created implicit table spaces. These implicitly created databases can be dropped
using DROP DATABASE.

Dropping a table space or index:
To drop a table space or index, the size of the buffer pool associated with the table space or index
must not be zero.

Dropping a LOB table space:

FL 506 When an auxiliary table that resides in a LOB table space is dropped, the LOB table space is
automatically dropped. An explicitly created LOB table space can be dropped if it does not contain an
auxiliary table.

Dropping a database when data sets for Db2 objects have already been deleted:
When some of the data sets for Db2 objects that associated with the database have already been
deleted, DROP DATABASE will perform in the following manner:

1900 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html

For Db2-managed objects:
The DROP DATABASE statement will delete the underlying data sets if they exist. If the data sets
do not exist, DROP DATABASE will delete only the catalog entries for those data sets.

For user-managed objects:
The DROP DATABASE statement will delete only the catalog entries for the data sets. The
underlying data sets will need to be manually deleted after the DROP DATABASE statement is
complete.

Dropping a table space in a work file database:
If one member of a data sharing group drops a table space in a work file database, or an entire work
file database, that belongs to another member, Db2-managed data sets that the executing member
cannot access are not dropped. However, the catalog and directory entries for those data sets are
removed.

Dropping resource limit facility (governor) indexes, tables, and table spaces:
While the RLST is active, you cannot issue a DROP DATABASE, DROP INDEX, DROP TABLE, or DROP
TABLESPACE statement for an object associated with an RLST that is active on any member of a data
sharing group. See Resource limit facility implications for data sharing (Db2 Data Sharing Planning and
Administration) for details.

Dropping a temporary table:
To drop a created temporary table or a declared temporary table, use the DROP TABLE statement.

Dropping a materialized query table:
To drop a materialized query table, use the DROP TABLE statement.

Dropping an alias:
Dropping a table or view does not drop its aliases. However, if you use the DROP TABLE statement and
specify an alias for a table or view, the table or view will be dropped. To drop an alias, use the DROP
ALIAS statement.

Dropping a table from an implicitly created table space:
If you drop a table from an implicitly created table space, the following related objects are also
dropped:

• The enforcing primary and unique key indexes
• Any LOB table spaces, auxiliary tables, and auxiliary indexes
• The ROWID index (if the ROWID column is defined as GENERATED BY DEFAULT)

FL 506 If any LOB columns are defined on the table, the LOB table space is dropped.

Dropping an index on a base table and auxiliary table:
You can explicitly drop an empty index on an auxiliary table with the DROP INDEX statement, unless
the base table space is implicitly created. An empty or populated index on an auxiliary table is
implicitly dropped when:

• The auxiliary table is empty and it is explicitly dropped (empty indexes only).
• The associated base table for the auxiliary table is dropped.
• The base table space that contains the associated base table is dropped.

You can explicitly drop an empty auxiliary table with the DROP TABLE statement, unless the base
table space is implicitly created. An empty or populated auxiliary table is implicitly dropped when:

• The associated base table for the auxiliary table is dropped.
• The base table space that contains the associated base table is dropped.

The following table shows which DROP statements implicitly or explicitly cause an auxiliary table and
the index on that table to be dropped, as indicated by the 'D' in the column.

Chapter 7. Statements 1901

https://www.ibm.com/docs/en/SSEPEK_12.0.0/dshare/src/tpc/db2z_resourcelimitfacilityds.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/dshare/src/tpc/db2z_resourcelimitfacilityds.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html

Table 230. Effect of various DROP statements on auxiliary tables and indexes that are in explicitly
created table spaces

Statement

Auxiliary table Index on auxiliary table

Populated Empty Populated Empty

DROP TABLESPACE (base
table space) D D D D

DROP TABLE (base table) D D D D

DROP TABLE (auxiliary
table) D D

DROP INDEX (index on
auxiliary table) D

Note: D indicates that the table or index is dropped.

Dropping a migrated index or table space:
Here, "migration" means migrated by the Hierarchical Storage Manager (DFSMShsm). Db2 does not
wait for any recall of the migrated data sets. Hence, recall is not a factor in the time it takes to execute
the statement.

Dropping a trusted context:
The drop of a trusted context takes effect after the DROP TRUSTED CONTEXT statement is committed.
If the DROP TRUSTED CONTEXT statement results in an error or is rolled back, the trusted context is
not dropped.

Avoiding DROP failure due to excessive locking
Dropping a table space, database, or index with the COPY YES attribute deletes all corresponding
records in the SYSCOPY and SYSLGRNX catalog statistics tables. The DROP fails if the lock structure
size cannot accommodate the number of locks obtained during DROP processing. DROP failure is
more likely if the SYSCOPY, SYSLGRNX, or other catalog statistics tables contain many entries,
especially if the object you are dropping was created long ago or contains many partitions. DROP
failure is also more likely if objects are copied frequently while the MODIFY RECOVERY and MODIFY
STATISTICS utilities are run relatively infrequently.

To avoid DROP failure, run the MODIFY RECOVERY and MODIFY STATISTICS utilities on objects before
dropping them. If you drop a clone table, you need to specify the CLONE keyword to delete recovery
and statistics information for the clone objects from the catalog and directory. You can Specify AGE(*)
or DATE(*) to remove all recovery and statistics information regardless of past update, copy, or
cleanup frequency. Be aware that running the MODIFY utility with AGE(*) or DATE(*) will leave objects
unrecoverable after they are dropped unless you make a copy or other form of back-up first.

Also, ensure that your applications commit drops frequently, especially for databases containing
multiple table spaces, and table spaces containing multiple tables. You can also increase the size of
your lock structures to accommodate the surge in lock requests during this type of activity.

Invalidation of packages:
This statement might invalidate all packages that depend on target objects, and sometimes other
related objects through cascading effects, depending on the clauses and keywords specified
and other factors. For more information, see Changes that invalidate packages (Db2 Application
programming and SQL).

Dependencies when dropping objects:
If other objects depend on the object specified in a DROP statement, the dependent objects might
also be dropped, invalidated, or become inoperative, or the DROP statement might fail. These effects
also cascade to any objects that depend on the dropped dependent objects. To determine the full
indirect effects of a DROP statement, check what happens for any dependent objects, check whether
each dependent object has its own dependent objects, and the check the rules for those object types.

1902 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

The following table indicates the result of DROP statements based on the type of object specified by
the DROP statement and the type of dependent object. The letters have the following meanings:

D (cascaded drop)
If any dependent objects of the indicated types exist, they are also dropped. The effect cascades
to any objects that depend on the dropped dependent objects.

R (restrict)
If any dependent objects of the indicated types exist, the DROP statement fails. Also, if any
dependent object cannot be dropped because of a restrict dependency for its own dependent
objects, the DROP statement fails.

V (invalidate)
If dependent packages exist, they become invalidated.

For example, assume that view B is defined on table A and view C is defined on view B. In the
following table, the 'D' in the View column of the DROP TABLE row indicates that view B is dropped
when table A is dropped. Next, because view C is dependent on view B, check the View column for
DROP VIEW. The 'D' in the column indicates that view C will also be dropped.

Table 231. Effect of dropping objects that have dependencies

DROP
statement

Dependent object type

A
l
i
a
s

C
o
l
u
m
n

m
a
s
k

F
u
n
c
t
i
o
n

G
l
o
b
a
l

v
a
r
i
a
b
l
e

I
n
d
e
x

P
r
o
c
e
d
u
r
e

R
o
w

p
e
r
m
i
s
s
i
o
n

S
e
q
u
e
n
c
e

S
t
o
g
r
o
u
p

S
y
n
o
n
y
m

T
a
b
l
e

T
a
b
l
e

s
p
a
c
e

T
r
i
g
g
e
r

T
y
p
e

V
i
e
w

DROP
ALIAS

R V V R V

DROP
FUNCTION

R “4”
on
page
1905

R
“12”
on
page
1905

R R

DROP
INDEX “1”
on page 1905

V V V

DROP
PROCEDUR
E

R
“12”
on
page
1905

R
“12”
on
page
1905

R

DROP ROLE R R R R R R R R R R R R R R R

Chapter 7. Statements 1903

Table 231. Effect of dropping objects that have dependencies (continued)

DROP
statement

Dependent object type

A
l
i
a
s

C
o
l
u
m
n

m
a
s
k

F
u
n
c
t
i
o
n

G
l
o
b
a
l

v
a
r
i
a
b
l
e

I
n
d
e
x

P
r
o
c
e
d
u
r
e

R
o
w

p
e
r
m
i
s
s
i
o
n

S
e
q
u
e
n
c
e

S
t
o
g
r
o
u
p

S
y
n
o
n
y
m

T
a
b
l
e

T
a
b
l
e

s
p
a
c
e

T
r
i
g
g
e
r

T
y
p
e

V
i
e
w

DROP
SEQUENCE

R“8”
on
page
1905

R
“12”
on
page
1905

R

DROP
STOGROUP

R“5”
on
page
1905

R“5”
on
page
1905

DROP
SYNONYM

R

DROP
TABLE “6” on
page 1905

R
“16”
on
page
1905

D
“14”
on
page
1905

D V R
“16”
on
page
1905

D D
“15”
on
page
1905

D “7”
on
page
1905

D

DROP
TABLESPAC
E

V D V D V

DROP
TRIGGER

V V V

DROP TYPE R R “2”
on
page
1905

R “9”
on
page
1905

R “3”
on
page
1905

R R R V“11”
on
page
1905

DROP
VARIABLE

R V R R

DROP
VIEW

R D
“14”
on
page
1905

V R D D
“15”
on
page
1905

D
“10”
on
page
1905

D

1904 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table notes:

1. The index space associated with the index is dropped.
2. If a function is dependent on the user-defined type being dropped, the user-defined type cannot

be dropped unless the function is one of the cast functions that was created for the user-defined
type.

3. If the definition of a parameter of a stored procedure uses the user-defined type, the user-
defined type cannot be dropped.

4. If other user-defined functions are sourced on the user-defined function being dropped, the
function cannot be dropped.

5. A storage group cannot be dropped if it is used by any table space or index space.
6. FL 506 If the table resides in an explicitly created universal table space or any implicitly created

table space, the table space is also dropped.
7. When a subject table is dropped, any associated triggers and related trigger packages are also

dropped.
8. This restriction is only for SQL functions.
9. The index in this case must be an expression-based index.

10. When a subject view is dropped, any associated triggers and related trigger packages are also
dropped.

11. Any packages that have a dependency on an INSTEAD OF trigger will be marked invalid.
12. A routine or sequence that is referenced by a native SQL procedure cannot be dropped.
13. An alias or synonym cannot be dropped if there is a dependent inline SQL table function.
14. When a table or view is dropped, any dependent inline SQL table functions are also dropped.
15. When a table or view is dropped, any dependent materialized query tables are also dropped.
16. When a table is dropped, any row permission or column masks defined directly on the table are

also dropped. If any row permissions or column masks reference the table in the body, the table
cannot be dropped.

Alternative syntax and synonyms:
To provide compatibility with previous releases of Db2 or other products in the Db2 family, Db2
supports the following keywords:

• DATA TYPE or DISTINCT TYPE as a synonym for TYPE
• PROGRAM as a synonym for PACKAGE
• DROP ALIAS SYSPUBLIC.name can be specified as an alternative to DROP PUBLIC ALIAS

SYSPUBLIC.name

Examples for DROP

Example 1
Drop table DSN8C10.DEPT.

 DROP TABLE DSN8C10.DEPT;

Example 2
Drop table space DSN8S12D in database DSN8D12A.

 DROP TABLESPACE DSN8D12A.DSN8S12D;

Example 3
Drop the view DSN8C10.VPROJRE1:

 DROP VIEW DSN8C10.VPROJRE1;

Chapter 7. Statements 1905

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m506.html

Example 4
Drop the package DSN8CC0 with the version identifier VERSZZZZ. The package is in the collection
DSN8CC61. Use the version identifier to distinguish the package to be dropped from another package
with the same name in the same collection.

 DROP PACKAGE DSN8CC61.DSN8CC0 VERSION VERSZZZZ;

Example 5
Drop the package DSN8CC0 with the version identifier "1994-07-14-09.56.30.196952". When a
version identifier is generated by the VERSION(AUTO) precompiler option, delimit the version
identifier.

 DROP PACKAGE DSN8CC61.DSN8CC0 VERSION "1994-07-14-09.56.30.196952";

Example 6
Drop the distinct type DOCUMENT, if it is not currently in use:

 DROP TYPE DOCUMENT;

Example 7
Assume that you are SMITH and that ATOMIC_WEIGHT is the only function with that name in schema
CHEM. Drop ATOMIC_WEIGHT.

 DROP FUNCTION CHEM.ATOMIC_WEIGHT;

Example 8
Assume that you are SMITH and that you created the function CENTER in schema SMITH. Drop
CENTER, using the function signature to identify the function instance to be dropped.

 DROP FUNCTION CENTER(INTEGER, FLOAT);

Example 9
Assume that you are SMITH and that you created another function named CENTER, which you gave
the specific name FOCUS97, in schema JOHNSON. Drop CENTER, using the specific name to identify
the function instance to be dropped.

 DROP SPECIFIC FUNCTION JOHNSON.FOCUS97;

Example 10
Assume that you are SMITH and that stored procedure OSMOSIS is in schema BIOLOGY. Drop
OSMOSIS.

 DROP PROCEDURE BIOLOGY.OSMOSIS;

Example 11
Assume that you are SMITH and that trigger BONUS is in your schema. Drop BONUS.

 DROP TRIGGER BONUS;

Example 12
Drop the role CTXROLE:

 DROP ROLE CTXROLE;

Example 13
Drop the trusted context CTX1:

 DROP TRUSTED CONTEXT CTX1;

Example 14
Drop public alias PUBALIAS1:

1906 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

DROP PUBLIC ALIAS PUBALIAS1 FOR SEQUENCE;

END DECLARE SECTION statement
The END DECLARE SECTION statement marks the end of an SQL declare section.

Invocation for END DECLARE SECTION
This statement can only be embedded in an application program. It is not an executable statement. It
must not be specified in Java or REXX.

Authorization for END DECLARE SECTION
None required.

Syntax for END DECLARE SECTION

END DECLARE SECTION

Description for END DECLARE SECTION
The END DECLARE SECTION statement can be coded in the application program wherever declarations
can appear in accordance with the rules of the host language. It is used to indicate the end of an SQL
declare section. An SQL declare section starts with a BEGIN DECLARE SECTION statement described in
“BEGIN DECLARE SECTION statement” on page 1383.

The following rules are enforced by the precompiler only if the host language is C or the STDSQL(YES)
precompiler option is specified:

• A variable referred to in an SQL statement must be declared within an SQL declare section of the source
program.

• BEGIN DECLARE SECTION and END DECLARE SECTION statements must be paired and must not be
nested.

• SQL declare sections can contain only host variable declarations, SQL INCLUDE statements that include
host variable declarations, or DECLARE VARIABLE statements.

Notes for END DECLARE SECTION
SQL declare sections are only required if the STDSQL(YES) option is specified or the host language is C.
However, SQL declare sections can be specified for any host language so that the source program can
conform to IBM SQL. If SQL declare sections are used, but not required, variables declared outside an
SQL declare section should not have the same name as variables declared within an SQL declare section.

Example for END DECLARE SECTION

 EXEC SQL BEGIN DECLARE SECTION;

 -- host variable declarations

 EXEC SQL END DECLARE SECTION;

Chapter 7. Statements 1907

EXCHANGE statement
The EXCHANGE statement switches the content of a base table and its associated clone table.

Invocation for EXCHANGE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for EXCHANGE
The privilege set that is defined below must include at least one of the following privileges:

• The INSERT and DELETE privileges on both the base table and the clone table
• Ownership of the both the base table and the clone table
• DBADM authority for the database
• SYSADM authority
• DATAACCESS authority

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the statement is dynamically prepared, the privilege
set is the union of the privilege sets that are held by each authorization ID of the process.

Syntax for EXCHANGE

EXCHANGE DATA BETWEEN TABLE table-name1 AND table-name2

Description for EXCHANGE
table-name1 and table-name2

Identifies the base table and the associated clone table for which the exchange of data will take place.
Either table-name1 or table-name2 can identify the base table. The other table name must identify a
clone table that is associated with the specified base table. The name of the base table and the name
of the clone table remain unchanged after a data exchange.

Notes for EXCHANGE
Committing after EXCHANGE

A commit is required before accessing a table after the EXCHANGE statement and between
consecutive data exchanges using the EXCHANGE statement.

Table partitions
Data exchanges cannot be done for a subset of table partitions.

Package rebinds might be needed
You might need to rebind packages that reference the base or clone tables before the applications can
pick up the exchanged data. For more information, see Changes that might require package rebinds
(Db2 Application programming and SQL).

Example for EXCHANGE

Exchange the data of the EMPLOYEE table and its clone table, EMPCLONE.

 EXCHANGE DATA BETWEEN TABLE EMPCLONE AND EMPLOYEE;

1908 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesmightrequirerebind.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesmightrequirerebind.html

Related concepts
Db2 tables (Introduction to Db2 for z/OS)
Related tasks
Exchanging data between a base table and clone table (Db2 Administration Guide)
Creating a clone table (Db2 Administration Guide)

EXECUTE statement
The EXECUTE statement executes a prepared SQL statement.

Invocation for EXECUTE
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared. It must not be specified in Java.

Authorization for EXECUTE
See “PREPARE statement” on page 2042 for the authorization required to create a prepared statement.

Syntax for EXECUTE

EXECUTE statement-name

USING

,

variable
1

array-variable [ array-index]
2

USING DESCRIPTOR descriptor-name

source-row-data
3

Notes:
1 A global variable must only be specified in an SQL PL context.
2 An array element must only be specified in an SQL PL context.
3 This option can be specified only when statement-name refers to a dynamic INSERT or MERGE statement
that is prepared with FOR MULTIPLE ROWS and is specified as part of the ATTRIBUTES clause on the
PREPARE statement.

source-row-data:

USING

,

host-variable-array

host-variable

USING DESCRIPTOR descriptor-name

FOR host-variable

integer-constant

ROWS

1

Notes:

Chapter 7. Statements 1909

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_tables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_exchangetabledata.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_createclonetable.html

1 The FOR n ROWS clause is required on the EXECUTE statement if it is not specified as part of the MERGE
statement and a host-variable array is specified. The FOR n ROWS clause is also required if MERGE is used
with multiple rows of source data. For an INSERT statement, the FOR n ROWS clause can only be specified
for a dynamic statement that contains only a single multiple-row INSERT statement.

Description for EXECUTE
statement-name

Identifies the prepared statement to be executed. statement-name must identify a statement that
was previously prepared within the unit of work and the prepared statement must not be a select-
statement.

USING
Introduces a list of variables or an array element specification, whose values are substituted for the
parameter markers (question marks) in the prepared statement. (For an explanation of parameter
markers, see “PREPARE statement” on page 2042.) If the prepared statement includes parameter
markers, you must include USING in the EXECUTE statement. USING is ignored if there are no
parameter markers.

The nth value corresponds to the nth parameter marker in the prepared statement. Where
appropriate, locator variables and file reference variables can be provided as the source of values
for parameter markers.

For more on the substitution of values for parameter markers, see Parameter marker replacement.
variable,...

Identifies a variable or a host structure that is declared in the application program in accordance
with the rules for declaring variables and host structures. When the statement is executed, a
reference to a structure is replaced by a reference to each of its variables. The number of
variables must be the same as the number of parameter markers in the prepared statement.
The nth variable corresponds to the nth parameter marker in the prepared statement. Where
appropriate, locator variables and file reference variables can be provided as the source of values
for parameter markers. A global variable must not be specified.

An array global variable must only be specified if the EXECUTE statement is issued in SQL PL.

array-variable[array-index]
Identifies an array element. An array element must only be specified if the EXECUTE statement is
issued in SQL PL.
array-variable

Specifies an array variable.
[array-index]

An expression that specifies which element in the array to use.

For an ordinary array, the array index expression must be castable to INTEGER, and must not
be the null value. The index value must be between 1 and the maximum cardinality that is
defined for the array.

For an associative array, the array index expression must be castable to the index data type of
the associative array, and must not be the null value.

array-index must not be:

• An expression that references the CURRENT DATE, CURRENT TIME, or CURRENT
TIMESTAMP special register

• A nondeterministic function
• A function that is defined with EXTERNAL ACTION
• A function that is defined with MODIFIES SQL DATA
• A sequence expression

1910 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

array-variable
Specifies an array variable.

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that contains a valid description of the input host variables.

Before invoking the EXECUTE statement, you must set the following fields in the SQLDA:

• SQLN to indicate the number of SQLVAR occurrences that are provided in the SQLDA

A REXX SQLDA does not contain this field.
• SQLABC to indicate the number of bytes of storage that are allocated for the SQLDA
• SQLD to indicate the number of variables that are used in the SQLDA when processing the statement
• SQLVAR entries to indicate the attributes of the variables

The SQLDA must have enough storage to contain all SQLVAR entries. If an SQLVAR entry includes
a LOB value or a distinct type based on a LOB, there must be additional SQLVAR entries for each
parameter. For more information on the SQLDA, which includes a description of the SQLVAR and an
explanation on how to determine the number of SQLVAR entries, see Appendix G, “SQL descriptor
area (SQLDA),” on page 2313.

SQLD must be set to a value that is greater than or equal to zero and less than or equal to SQLN. It
must be the same as the number of parameter markers in the prepared statement. The nth variable
described by the SQLDA corresponds to the nth parameter marker in the prepared statement.

See “Identifying an SQLDA in C or C++” on page 2329 for how to represent descriptor-name in C.

source-row-data
The prepared statement must be an INSERT or MERGE statement for which the FOR MULTIPLE ROWS
clause is specified as part of the ATTRIBUTES clause on the PREPARE statement.

USING host-variable-array or host-variable
Introduces a list of host variables or host-variable arrays whose values are substituted for the
parameter markers (question marks) in the prepared INSERT or MERGE statement. The number of
columns specified in the INSERT or MERGE statement must be less than or equal to the total number
of host variables or host-variable arrays that are specified.
host-variable-array

Identifies a host-variable array that must be defined in the application program in accordance with
the rules for declaring a host-variable array. A reference to a structure is replaced by a reference
to each of its variables. The number of variables must be the same as the number of parameter
markers in the prepared statement. The nth variable supplies the value for the nth parameter
marker in the prepared statement.

host-variable-array is supported in C/C++, COBOL, and PL/I. For more information, see “Host-
variable arrays in PL/I, C, C++, and COBOL” on page 236.

host-variable
Identifies a variable that must be described in the application program in accordance with the
rules for declaring host variables.

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of the host-variable arrays or host variables
that contain the values to insert.

Before invoking the EXECUTE statement for a dynamic INSERT or MERGE statement, you must set the
following fields in the SQLDA:

• SQLN to indicate the number of SQLVAR entries that are provided in the SQLDA.
• SQLABC to indicate the number of bytes of storage that are allocated for the SQLDA.
• SQLD to indicate the number of variables, plus one, that are used in the SQLDA that provide values

for columns that are the source of the INSERT or MERGE statement. SQLD must be set to a value
that is greater than or equal to zero and less than or equal to SQLN.

Chapter 7. Statements 1911

• SQLVAR entries to indicate the attributes of an element of the host-variable array for the SQLVAR
entries that correspond to values that are provided for the source columns of the INSERT or MERGE
statement. Within each SQLVAR, the following fields are set:

– SQLTYPE indicates the data type of the elements of the host-variable array.
– SQLDATA points to the corresponding host-variable array.
– SQLLEN and SQLLONGLEN indicate the length of a single element of the array.

• SQLNAME, the fifth and sixth bytes must contain a flag field and the seventh and eighth bytes must
contain a binary small integer (halfword) that contains the dimension of the host-variable array and,
if specified, the corresponding indicator array.

The SQLDA must have enough storage to contain a SQLVAR entry for each target column for which
values are provided, plus an additional SQLVAR entry for the number of rows. The Db2 system
generates code to enter the required information for this extra SQLVAR entry. Each SQLVAR entry
describes a host variable, host-variable array, or buffer that contains the values for a column of the
source table. The last SQLVAR entry contains the number of rows of data. For example, if the INSERT
or MERGE statement is providing values for five columns of the target table, six SQLVAR entries must
be provided. If any value is a LOB value, twice as many SQLVAR entries must be provided, and SQLN
must be set to the number of SQLVAR entries. Thus, if the INSERT or MERGE statement is providing
values for five columns of the source table, and some of the values to insert are LOB values, 12
SQLVAR entries must be provided.

The SQLVAR entry for the number of rows must also contain a flag value. See “Field descriptions of an
occurrence of a base SQLVAR” on page 2317 for more information.

You set the SQLDATA and SQLIND pointers to the beginning of the corresponding arrays.

FOR n ROWS

Specifies the number of rows of source data, where n is host-variable or integer-constant. The values
for the insert or merge operation are specified in the USING clause.

host-variable or integer-constant is assigned to an integral value k. If host-variable is specified, it must
be an exact numeric type with a scale of zero and must not include an indicator variable. k must be in
the range 0 to 32767.

FOR n ROWS cannot be specified on the EXECUTE statement if the statement being processed is a
dynamic INSERT or MERGE statement that includes a FOR n ROWS clause.

Notes for EXECUTE
Excessive processor time:

Db2 can stop the execution of a prepared SQL statement if the statement is taking too much
processor time to finish. When this happens, an error occurs. The application that issued the
statement is not terminated; it is allowed to issue another SQL statement.

Parameter marker replacement:
Before the prepared statement is executed, each parameter marker in the statement is effectively
replaced by its corresponding host variable. The replacement is an assignment operation in which
the source is the value of the host variable and the target is a variable within Db2. The assignment
rules are those described for assignment to a column in “Assignment and comparison” on page 143.
For a typed parameter marker, the attributes of the target variable are those specified by the CAST
specification. For an untyped parameter marker, the attributes of the target variable are determined
according to the context of the parameter marker. For the rules that affect parameter markers, see
Parameter markers.

Let V denote a host variable that corresponds to parameter marker P. The value of V is assigned to the
target variable for P in accordance with the rules for assigning a value to a column:

• V must be compatible with the target.
• If V is a string, its length must not be greater than the length attribute of the target.

1912 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• If V is a number, the absolute value of its integral part must not be greater than the maximum
absolute value of the integral part of the target.

• If the attributes of V are not identical to the attributes of the target, the value is converted to
conform to the attributes of the target.

• If the target cannot contain nulls, V must not be null.

When the prepared statement is executed, the value used in place of P is the value of the target
variable for P. For example, if V is CHAR(6) and the target is CHAR(8), the value used in place of P is
the value of V padded on the right with two blanks.

Errors occurring on EXECUTE:
In local and remote processing, the DEFER(PREPARE) and REOPT(ALWAYS)/REOPT(ONCE) bind
options can cause some errors that are normally issued during PREPARE processing to be issued
on EXECUTE.

Considerations for executing data definition statements written in native SQL language:
A data definition statement written in native SQL language can only be executed one time. To execute
the data definition statement multiple times, issue the PREPARE statement prior to each use of the
EXECUTE statement for the data definition statement.

Examples for EXECUTE

Example 1
In this example, an INSERT statement with parameter markers is prepared and executed. S1 is a
structure that corresponds to the format of DSN8C10.DEPT.

 EXEC SQL PREPARE DEPT_INSERT FROM
 'INSERT INTO DSN8C10.DEPT VALUES(?,?,?,?)';
 -- Check for successful execution and read values into S1
 EXEC SQL EXECUTE DEPT_INSERT USING :S1;

Example 2
Assume that the IWH.PROGPARM table has 9 columns. Prepare and execute a dynamic INSERT
statement that inserts 5 rows of data into the IWH.PROGPARM table. The values to be inserted are
provided in arrays, where all the values for a column are provided in an host-variable-array with the
EXECUTE statement.

STMT = 'INSERT INTO IWH.PROGPARM (IWHID, UPDATE_BY,UPDATE_TS,NAME,
 SHORT_DESCRIPTION, ORDERNO, PARMDATA,
 PARMDATALONG, VWPROGKEY)
VALUES (? , ? , ? , ? , ? , ? , ? , ? , ?)';
ATTRVAR = 'FOR MULTIPLE ROWS';
EXEC SQL PREPARE INS_STMT ATTRIBUTES :ATTRVAR FROM :STMT;
NROWS = 5;
EXEC SQL EXECUTE INS_STMT FOR :NROWS ROWS
 USING :V1, :V2, :V3, :V4, :V5, :V6, :V7, :V8, :V9;

In this example, each host variable in the USING clause represents an array of values for the
corresponding column of the target of the INSERT statement.

Example 3
Using dynamically supplied values for an employee row, update the master EMPLOYEE table if the
data is for an existing employee or insert a new row if the data is for a new employee.

hv_stmt =
 "MERGE INTO EMPLOYEE AS T
 USING (VALUES (CAST (? AS CHAR(6)), CAST (? AS VARCHAR(12)),
 CAST (? AS CHAR(1)), CAST (? AS VARCHAR(15)),
 CAST (? AS INTEGER)))
 AS S (EMPNO, FIRSTNAME, MI, LASTNAME, SALARY)
 ON T.EMPNO = S.EMPNO
 WHEN MATCHED THEN UPDATE
 SET SALARY = S.SALARY
 WHEN NOT MATCHED THEN INSERT (EMPNO, FIRSTNAME, MI, LASTNAME, SALARY)
 VALUES (S.EMPNO, S.FIRSTNAME, S.MI, S.LASTNAME, S.SALARY)
 NOT ATOMIC CONTINUE ON SQLEXCEPTION";

Chapter 7. Statements 1913

hv_attr = 'FOR MULTIPLE ROWS';
EXEC SQL
 PREPARE merge_stmt
 ATTRIBUTES :hv_attr FROM :hv_stmt;
hv_nrows = 5;
/* Initialize the hostvar array of hv_empno, hv_firstname... */
EXEC SQL
 EXECUTE merge_stmt
 USING :hv_empno, :hv_firstname, :hv_mi,
 :hv_lastname, :hv_salary
 FOR :hv_nrows ROWS;

Example 4

Suppose that the following array type, array variable, and table have been defined.

CREATE TYPE INTARRAY AS INTEGER ARRAY[100];
CREATE TYPE STRINGARRAY AS VARCHAR(10) ARRAY[100];
CREATE TABLE T1 (COL1 CHAR(10), COL2 INT);

Use as an array variable as an input value for an expression in an EXECUTE statement.

CREATE PROCEDURE PROCESSPERSONS (OUT WITHO STRINGARRAY, INOUT INT0 INT)
BEGIN
 DECLARE INTA INTARRAY;
 DECLARE STMT CHAR(100);
-- Initialize the array
 SET INTA = ARRAY[1,INTEGER(2),3+0,4,5,6] ;
-- Use dynamic sql with an array parameter marker to
-- provide a value for a dynamic INSERT statement
 SET STMT = 'INSERT INTO T1 VALUES('XYZ', CARDINALITY(CAST(? AS INTARRAY)))';
 PREPARE INS_STMT FROM STMT;
 EXECUTE INS_STMT USING INTA;
-- INTA is an array variable used as input for the
-- INSERT statement
…
END

EXECUTE IMMEDIATE statement
EXECUTE IMMEDIATE combines the basic functions of the PREPARE and EXECUTE statements. It can
be used to prepare and execute an SQL statement that contains neither host variables nor parameter
markers.

The EXECUTE IMMEDIATE statement:

• Prepares an executable form of an SQL statement from a string form of the statement
• Executes the SQL statement
• Destroys the executable form

Invocation for EXECUTE IMMEDIATE
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared. It must not be specified in Java.

Authorization for EXECUTE IMMEDIATE
The authorization rules are those defined for the dynamic preparation of the SQL statement specified by
EXECUTE IMMEDIATE. For example, see “INSERT statement” on page 1996 for the authorization rules
that apply when an INSERT statement is executed using EXECUTE IMMEDIATE.

1914 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Syntax for EXECUTE IMMEDIATE

EXECUTE IMMEDIATE variable

string-expression

Description for EXECUTE IMMEDIATE

variable
For languages other than PL/I, variable must be specified. It must identify a variable that is described
in the application program in accordance with the rules for declaring character or graphic string
variables. If the source string is over 32KB in length, the variable must be a CLOB or DBCLOB variable.
The maximum source length is 2MB, although the variable can be declared larger than 2MB. An
indicator variable must not be specified with a host variable. In Assembler, C, COBOL, and PL/I, a host
variable must be a varying-length string variable. In C, it must not be a NUL-terminated string. In SQL
PL, an SQL variable, SQL parameter, or transition variable can be used, and the value must not be null.

string-expression
string-expression is any PL/I expression that yields a string. string-expression cannot be preceded by
a colon. Variables that are within string-expression that include operators or functions should not be
preceded by a colon. When string-expression is specified, the precompiler-generated structures for
string-expression use an EBCDIC CCSID and an informational message is returned.

Notes for EXECUTE IMMEDIATE
Rules for statement strings:

The value of the identified host variable or the specified string-expression is called the statement
string.

The statement string must be one of the following SQL statements, and cannot be a select-statement:

Statements Statements

• ALLOCATE CURSOR
• ALTER
• ASSOCIATE LOCATORS
• COMMENT
• COMMIT
• CREATE
• DECLARE GLOBAL TEMPORARY TABLE
• DELETE
• DROP
• EXPLAIN
• FREE LOCATOR
• GRANT
• HOLD LOCATOR
• INSERT
• LABEL
• LOCK TABLE
• MERGE

• SET CURRENT APPLICATION COMPATIBILITY
• SET CURRENT DEGREE
• SET CURRENT DECFLOAT ROUNDING MODE
• SET CURRENT DEBUG MODE
• SET CURRENT EXPLAIN MODE
• SET CURRENT LOCALE LC_CTYPE
• SET CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION
• SET CURRENT OPTIMIZATION HINT
• SET CURRENT PRECISION
• SET CURRENT QUERY ACCELERATION
• SET CURRENT REFRESH AGE
• SET CURRENT ROUTINE VERSION
• SET CURRENT RULES
• SET CURRENT SQLID
• SET ENCRYPTION PASSWORD
• SET PATH
• SET SCHEMA

Chapter 7. Statements 1915

Statements Statements

• REFRESH TABLE
• RELEASE SAVEPOINT
• RENAME
• REVOKE
• ROLLBACK
• SET assignment-statement
• SAVEPOINT
• SET CURRENT ACCELERATOR

• SET CURRENT TEMPORAL BUSINESS_TIME
• SET CURRENT TEMPORAL SYSTEM_TIME
• SET SESSION TIME ZONE
• SIGNAL
• TRANSFER OWNERSHIP
• TRUNCATE
• UPDATE

The statement string must not have any of the following attributes:

• Begin with EXEC SQL
• End with END-EXEC or a semicolon
• Include references to variables, other than global variables
• Include parameter markers
• Include references to transition tables

Errors and error handling:
When an EXECUTE IMMEDIATE statement is executed, the specified statement string is parsed and
checked for errors. If the SQL statement is invalid, it is not executed and the error condition that
prevents its execution is reported in the SQLCA. If the SQL statement is valid, but an error occurs
during its execution, that error condition is reported in the SQLCA.

Db2 can stop the execution of a prepared SQL statement if the statement is taking too much CPU
time to finish. When this happens an error occurs. The application that issued the statement is not
terminated; it is allowed to issue another SQL statement.

Effect of the CURRENT EXPLAIN MODE special register:
If the CURRENT EXPLAIN MODE special register is set to EXPLAIN, the statement is prepared for
explain only and is not executable, unless the statement is a SET statement. Attempting to execute
the prepared statement will return an error. See the “CURRENT EXPLAIN MODE special register” on
page 194 special register for more information.

Performance considerations:
If the same SQL statement is to be executed more than once, it is more efficient to use the PREPARE
and EXECUTE statements rather than the EXECUTE IMMEDIATE statement.

Examples for EXECUTE IMMEDIATE

Example 1
In this PL/I example, the EXECUTE IMMEDIATE statement is used to execute a DELETE statement in
which the rows to be deleted are determined by a search-condition specified by the value of PREDS.

EXEC SQL EXECUTE IMMEDIATE 'DELETE FROM DSN8C10.DEPT
 WHERE' || PREDS;

Example 2

Use C to execute the SQL statement in the host variable Qstring.

EXEC SQL INCLUDE SQLCA;
void main ()
 {
 EXEC SQL BEGIN DECLARE SECTION;
 char Qstring[100] =
 "INSERT INTO WORK_TABLE SELECT * FROM EMPPROJACT WHERE ACTNO >= 100";

1916 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 EXEC SQL END DECLARE SECTION;
 .
 .
 .
 EXEC SQL EXECUTE IMMEDIATE :Qstring;
 return;
 }

:

EXPLAIN statement
The EXPLAIN statement obtains information about access path selection for an explainable statement. A
statement is explainable if it is a SELECT, MERGE, TRUNCATE, or INSERT statement, or the searched form
of an UPDATE or DELETE statement. The information that is obtained is placed in a set of supplied user
tables that are called EXPLAIN tables.

The plan table contains information about the access path for the specified statement or statements.
The statement table can be populated with information about the estimated cost of executing the
explainable statement. The function table can be populated with information about how Db2 resolves
the user-defined functions that are referred to in the explainable statement. Other EXPLAIN tables can be
populated with additional information about the execution of the explainable statement. For a complete
list of EXPLAIN tables, see EXPLAIN tables (Db2 Performance).

Using EXPLAIN for queries that reference system-period temporal tables that are enabled for system data
versioning, the result will show the system-period temporal tables and the history tables in EXPLAIN
output if the query needs to reference both tables to satisfy the query.

Invocation for EXPLAIN
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for EXPLAIN
The authorization rules are those defined for the SQL statement specified in the EXPLAIN statement.
For example, see the description of the DELETE statement for the authorization rules that apply when
EXPLAIN records are captured for DELETE statements.

If the EXPLAIN statement is embedded in an application program, the authorization rules that apply are
those defined for embedding the specified SQL statement in an application program. In addition, the
owner of the plan or package must also have one of the following characteristics:

• Be the owner of a plan table named PLAN_TABLE
• Have an alias on a plan table named owner.PLAN_TABLE and have SELECT and INSERT privileges on the

table

If the EXPLAIN statement is dynamically prepared, the authorization rules that apply are those defined for
dynamically preparing the specified SQL statement. In addition, the SQL authorization ID of the process
or the role this is associated with the process (if the EXPLAIN statement is running in a trusted context
that specifies the ROLE AS OBJECT OWNER AND QUALIFIER clause) must also have one of the following
characteristics:

• Be the creator of a plan table named PLAN_TABLE
• Have an alias on a plan table named creator.PLAN_TABLE and have SELECT and INSERT privileges on

the table

For EXPLAIN statements with the PLAN and ALL keywords, the privilege set that is defined below must
include at least one of the following:

• EXPLAIN

Chapter 7. Statements 1917

https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_explaintables.html

• SQLADM
• System DBADM
• The authorization rules that are defined for the SQL statement specified in the EXPLAIN statement.

For example, the authorization rules that apply when EXPLAIN records are captured for a DELETE
statement are the authorization rules for the DELETE statement.

The authorization rules are different if the STMTCACHE or STABILIZED DYNAMIC QUERY keywords are
specified. The privilege set must include at least one of the following:

• SQLADM authority
• SYSADM authority
• The authority that is required to share the cached statement.
• System DBADM authority

For EXPLAIN statements that contain the STMTCACHE ALL clause, the privilege set must include at least
one of the following:

• SQLADM authority
• System DBADM authority
• SYSADM authority

If the privilege set does not have the required authority, EXPLAIN records are captured only those
statements that have the same authorization ID as the privilege set.

For the PACKAGE keyword, the privilege set must include at least one of the following:

• SQLADM authority
• SYSADM authority
• SYSOPR authority
• SYSCTRL authority

Privilege set: The privilege set comprises the union of authorities that are held by the authorization IDs
of the process. If the process is running in a trusted context with a role, this role would be included as an
authorization ID of the process.

Syntax for EXPLAIN

EXPLAIN

PLAN

ALL SET QUERYNO=  integer

FOR explainable-sql-statement

STMTCACHE ALL

STMTID id-host-variable

integer-constant

STMTTOKEN token-host-variable

string-constant

PACKAGE package-scope-specification

STABILIZED DYNAMIC QUERY STMTID id-host-variable

integer-constant

COPY 'CURRENT'

COPY 'INVALID'

package-scope-specification:

1918 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

COLLECTION collection-name PACKAGE package-name

VERSION version-name COPY copy-id

Description for EXPLAIN
PLAN

Specifies that access path information is captured for the SQL statement. Under this option, Db2 uses
the access path selection process to generate the EXPLAIN records for the statement.

One row is inserted into the PLAN_TABLE for each step used in executing explainable-sql-statement.
The steps for enforcing referential constraints are not included.

If a statement table exists, one row that provides a cost estimate of processing the explainable
statement is inserted into the statement table. If the explainable statement is a SELECT FROM
data-change-statement, two rows are inserted into the statement table.

If a function table exists, one row is inserted into the function table for each user-defined function
that is referred to by the explainable statement.

If additional EXPLAIN tables exist, rows are also inserted into those tables.

For more information, see:

EXPLAIN tables (Db2 Performance)
PLAN_TABLE (Db2 Performance)
DSN_STATEMNT_TABLE (Db2 Performance)
DSN_FUNCTION_TABLE (Db2 Performance)

ALL
Has the same effect as PLAN.

SET QUERYNO = integer
Associates integer with explainable-sql-statement. The column QUERYNO is given the value integer in
every row inserted into the plan table, statement table, or function table by the EXPLAIN statement.
If QUERYNO is not specified, Db2 itself assigns a number. For an embedded EXPLAIN statement, the
number is the statement number that was assigned by the precompiler and placed in the DBRM.

FOR explainable-sql-statement
Specifies the text of an SQL statement for which EXPLAIN records are captured. explainable-sql-
statement can be any explainable SQL statement. A statement is explainable if it is a SELECT, MERGE,
TRUNCATE, or INSERT statement, or the searched form of an UPDATE or DELETE statement. If
the EXPLAIN statement is embedded in a program, the statement can contain references to host
variables. If EXPLAIN is dynamically prepared, the statement can contain parameter markers. Host
variables that appear in the statement must be defined in the statement's program.

The statement must refer to objects at the current server.

explainable-sql-statement must not contain a QUERYNO clause. To specify the value of the QUERYNO
column, use the SET QUERYNO = integer clause of the EXPLAIN statement.

explainable-sql-statement cannot be a statement-name or a host-variable. To use capture EXPLAIN
records for dynamic SQL statements, you must prepare the entire EXPLAIN statement dynamically.

To obtain information about an explainable SQL statement that references a declared temporary
table, the EXPLAIN statement must be executed in the same application process in which the table
was declared. For static EXPLAIN statements, the information is not obtained at bind-time but at run
time when the EXPLAIN statement is incrementally bound.

Chapter 7. Statements 1919

https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_explaintables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_plantable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_dsnstatemnttable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_dsnfunctiontable.html

STMTCACHE
Specifies that EXPLAIN records for the specified dynamic SQL statements in the dynamic statement
cache are extracted and written to EXPLAIN tables. Under this option, no new access path selection
processing occurs. The EXPLAIN records are extracted from the existing access paths that were
selected when the dynamic SQL statements were prepared and entered the statement cache. In a
data-sharing environment, the EXPLAIN records are extracted from the dynamic statement cache of
the data sharing member where EXPLAIN STMTCACHE statement is executed.
ALL

Specifies that EXPLAIN records are extracted for all cached statements. STMTCACHE ALL returns
one row for each cached statement to the DSN_STATEMENT_CACHE_TABLE. These rows contain
identifying information about the statements in the cache, as well as statistics that reflect the
execution of the statements by all processes that have executed the statement. Records are not
returned to other EXPLAIN tables when STMTCACHE ALL is specified.

STMTID id-host-variable or integer-constant
Specifies that EXPLAIN records are extracted for the cached statement with the specified
statement ID. The value contained in id-host-variable or specified by integer-constant identifies
the statement ID. STMTCACHE STMTID returns rows to the following EXPLAIN tables:

• PLAN_TABLE
• DSN_STATEMNT_TABLE
• DSN_FUNCTION_TABLE
• DSN_STATEMENT_CACHE_TABLE

The statement ID is an integer that uniquely identifies a statement that has been cached in the
dynamic statement cache. The statement ID of a cached statement can be retrieved through IFI
monitor facilities from IFCID 316 or 124. Some diagnostic trace records, such as IFCIDs 0173,
0196, and 0337, also show the statement ID.

The QUERYNO column of each EXPLAIN table record that is returned contains the statement ID
value.

STMTTOKEN id-host-variable or string-constant
Specifies that EXPLAIN records are extracted for the cached statements with the specified
statement token and written to certain EXPLAIN tables. The value contained in token-host-
variable or specified by string-constant identifies the statement token. STMTCACHE STMTTOKEN
writes records to the following EXPLAIN tables:

• PLAN_TABLE
• DSN_STATEMNT_TABLE
• DSN_FUNCTION_TABLE
• DSN_STATEMENT_CACHE_TABLE

The statement token must be a character string that is no longer than 240 bytes. The application
program that originally prepares and inserts a statement into the cache associates a statement
token with the cached statement. The program can make this association with the RRSAF SET_ID
function, or the sqleseti API if the program is connected remotely.

The STMTTOKEN column of each PLAN_TABLE record that is returned contains the statement
token value. The QUERYNO column of each EXPLAIN table record that is returned contains the
statement ID value.

For more information, see:

DSN_STATEMENT_CACHE_TABLE (Db2 Performance)
Capturing reoptimized access paths (Db2 Performance)

PACKAGE
Specifies that EXPLAIN records for all static SQL statements in the package that matches the
specified scope are extracted and written to EXPLAIN tables. Under this option, no new access
path selection processing occurs. The records are extracted from the existing access paths that were

1920 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_dsnstatementcachetable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_explainreoptaccesspath.html

selected when the package was bound. The EXPLAIN information is added to the PLAN_TABLE that is
owned by the current user. Other EXPLAIN tables are not populated.
COLLECTION collection-name

Specifies that EXPLAIN records are captured only for statements under the specified collection-
name. collection-name is a string constant or a host variable that represents the collection name.

PACKAGE package-name
Specifies that EXPLAIN records are captured only for statements under the specified package-
name. package-name is a string constant or a host variable that represents the package name.

VERSION version-name

Specifies that EXPLAIN records are captured only for statements under the specified version-
name. version-name is a string constant or a host variable that represents the version name. If
version-name is all blanks or an empty string, records are captured only for those versions of the
package that contain all blanks for the version name.

If the VERSION clause is not specified, EXPLAIN records are captured for statements in all
versions of the package package-name.

COPY copy-id
Specifies that EXPLAIN records are captured only for statements under the specified copy-id.
copy-id must be one of the following values:

• CURRENT
• PREVIOUS
• ORIGINAL

If the COPY clause is not specified, statements, EXPLAIN records are captured for the current,
previous, and original copies that exist for that package.

The HINT_USED column in the PLAN_TABLE is populated with EXPLAIN PACKAGE: copy-id.
copy-id in the HINT_USED column will be one of the following values:

• "CURRENT" - the current copy
• "PREVIOUS" - the previous copy
• "ORIGINAL" - the original copy

STABILIZED DYNAMIC QUERY
Specifies that the explain records for the stabilized dynamic statement identified by the STMTID
keyword are extracted and written to the following EXPLAIN tables:

• PLAN_TABLE
• DSN_STATEMNT_TABLE
• DSN_FUNCTION_TABLE

STMTID id-host-variable or integer-constant
Specifies that EXPLAIN information is captured for the statement with the specified statement
identifier. This value is inserted into the PER_STMT_ID column of the EXPLAIN tables.

COPY copy-id
Specifies that EXPLAIN information is captured only for statements under the specified copy
identifier value. copy-id is a string constant and must be one of the following values:

• CURRENT
• INVALID

The PLAN_TABLE.HINT_USED column is populated with the string 'EXPLAIN SDQ: copy-id-
number' where copy-id-number is one of the following values:

CURRENT
The current copy.

Chapter 7. Statements 1921

INVALID
The invalid copy.

The QUERYNO column of each EXPLAIN table record that is returned is set to the default value 0,
and the value of the COLLID column is set to 'DSNSTBLQRYEXPLAIN.'

Notes for EXPLAIN
Output from EXPLAIN:

Db2 inserts one or more rows of data into a plan table and other existing EXPLAIN tables.

For a list of all EXPLAIN tables, see EXPLAIN tables (Db2 Performance).

A plan table must exist before the operation that results in EXPLAIN output. You can find a sample
CREATE TABLE statement for each EXPLAIN table in member DSNTESC of the prefix.SDSNSAMP
library.

Unless you need the information that is provided by the additional EXPLAIN tables, it is not necessary
to create those tables to use EXPLAIN. However, a statement cache table is required when the
STMTCACHE ALL keyword is specified as part of an EXPLAIN statement.

Db2 uses the access path selection process to generate EXPLAIN records only for certain types of
EXPLAIN statements, as shown in the following table.

Table 232. Origin of EXPLAIN records for various EXPLAIN statement options

Options Specified How Db2 Creates EXPLAIN records

EXPLAIN PLAN FOR explainable-sql-
statement

Uses the access path selection process to
generate the EXPLAIN records

EXPLAIN PACKAGE ... Extracts existing access path information from
the package to create the EXPLAIN records.

EXPLAIN STMTCACHE ... Extracts access path information from the
dynamic statement cache to create the EXPLAIN
records.

EXPLAIN STABILIZED DYNAMIC QUERY ... Extracts access path information from catalog
tables for the specified stabilized dynamic SQL
statements.

Each row in an EXPLAIN table describes some aspect of a step in the execution of a query or subquery
in an explainable statement. The column values for the row identify, among other things, the query or
subquery, the tables and other objects involved, the methods used to carry out each step, and cost
information about those methods.

Instances of these tables might also be created and used by certain optimization tools. For
information about the meanings of different values in plan table and other EXPLAIN tables, see .

For information about how to correlate information across EXPLAIN tables, see Correlating
information across EXPLAIN tables (Db2 Performance).

EXPLAIN tables might contain names that begin with "DSN" that have been generated by Db2.

Important: Do not manually manipulate the data in EXPLAIN tables that are created by optimization
tools.

Column access control or row permissions enforced for EXPLAIN tables:
Column access control and row permissions can be enforced for EXPLAIN tables. However, row
permissions and column masks are not applied when Db2 inserts rows into those tables.

If the specified statement references tables for which row or column access control is activated, the
following information from row permission and column mask definitions created for the tables might
appear in the EXPLAIN tables:

1922 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_explaintables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_correlateexplaintables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_correlateexplaintables.html

• DSN_FUNCTION_TABLE - user-defined functions
• DSN_PREDICAT_TABLE - predicates (except predicates in CASE WHEN clauses)
• DSN_STRUCT_TABLE - query blocks
• PLAN_TABLE - access path of subqueries

In addition, the complete or partial definition text might appear in EXPLAIN tables
like DSN_FUNCTION_TABLE, DSN_PREDICAT_TABLE, DSN_QUERY_TABLE, DSN_SORTKEY_TABLE,
DSN_STATEMENT_CACHE_TABLE, and DSN_STATEMENT_RUNTIME_INFO.

Impact to the existing access paths when the table has enforced column access control or row
permissions:

The predicates from the row permissions are considered in the access path selection. Therefore, they
are shown in the EXPLAIN tables for the performance tuning purpose.

Impact to EXPLAIN tables when referencing a non-existing object in a dynamic SQL statement
In some situations in which EXPLAIN is run on a dynamic SQL statement that references a non-
existent object, a SQLCODE -204 is issued to indicate that the object is not defined in the Db2
subsystem. However, changes to the related EXPLAIN tables might not be rolled back.

Considerations when capturing EXPLAIN records for the acceleration of rowset queries:
A rowset query cannot be passed to an accelerator server for processing in the following cases:

• If the rowset query is run remotely
• If the rowset query is declared WITH RETURN
• If the rowset query is run under an SQL PL routine

You cannot use a static EXPLAIN statement to determine whether a rowset query is passed to an
accelerator server, because you cannot specify the WITH ROWSET POSITIONING cursor attribute for
a static EXPLAIN statement. Instead, you must use a dynamic EXPLAIN statement, where the WITH
ROWSET POSITIONING clause is specified in the attribute string. You also can specify the WITH
RETURN clause in the attribute string to see the ineligibility of result sets.

Also, the EXPLAIN statement cannot be used to determine that a rowset query cannot be passed
to an accelerator server because the query is being run remotely or under an SQL PL routine.
If the PREPARE of the EXPLAIN statement is run locally, Db2 determines if the rowset query
can be accelerated as a local query offload. However, if the PREPARE of the EXPLAIN statement
runs remotely, Db2 indicates that the rowset query cannot be accelerated. Instead, you can use
the CURRENT EXPLAIN MODE special register to determine the behavior for eligible dynamic SQL
statements during application execution. For more information, see “CURRENT EXPLAIN MODE
special register” on page 194.

EXPLAIN tables
For a descriptions of the EXPLAIN tables, see EXPLAIN tables (Db2 Performance).

Examples for EXPLAIN

Example 1: Determine the steps required to execute the query 'SELECT X.ACTNO...'. Assume that no
set of rows in the PLAN_TABLE has the value 13 for the QUERYNO column.

 EXPLAIN PLAN SET QUERYNO = 13
 FOR SELECT X.ACTNO, X.PROJNO, X.EMPNO, Y.JOB, Y.EDLEVEL
 FROM DSN8C10.EMPPROJACT X, DSN8C10.EMP Y
 WHERE X.EMPNO = Y.EMPNO
 AND X.EMPTIME > 0.5
 AND (Y.JOB = 'DESIGNER' OR Y.EDLEVEL >= 12)
 ORDER BY X.ACTNO, X.PROJNO;

Chapter 7. Statements 1923

https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_explaintables.html

Example 2: Retrieve the information returned in Example 1. Assume that a statement table exists, so also
retrieve the estimated cost of processing the query. Use the following query, which joins the plan table
and the statement table.

 SELECT * FROM PLAN_TABLE A, DSN_STATEMNT_TABLE B
 WHERE A.QUERYNO = 13 and B.QUERYNO = 13
 ORDER BY A.QBLOCKNO, A.PLANNO, A.MIXOPSEQ;

Example 3: Extract existing access path information to capture EXPLAIN records for the cached statement
with statement ID 124. Assume that host variable SID contains 124.

EXPLAIN STMTCACHE STMTID :SID;

Example 4: Extract existing access path information to capture one row of EXPLAIN data
for each statement in the dynamic statement cache. The records are written only to the
DSN_STATEMENT_CACHE_TABLE.

EXPLAIN STMTCACHE ALL;

Example 5: Assume that you want to use the plan table that was created by ADMF001 and
your authorization ID is SYSADM. If you have an alias on ADMF001.PLAN_TABLE (CREATE ALIAS
SYSADM.PLAN_TABLE FOR ADMF001.PLAN_TABLE) and sufficient INSERT and SELECT privileges on the
table, the following EXPLAIN statement will execute and ADMF001.PLAN_TABLE will be populated.

 EXPLAIN PLAN SET QUERYNO = 101
 FOR SELECT * FROM DSN8C10.EMP;

Example 6: Extract existing access path information to capture EXPLAIN records to the current user's
PLAN_TABLE for all static SQL statements in the current copy of the package 'COLLA.PACK52604':

 EXPLAIN PACKAGE COLLECTION 'COLLA' PACKAGE 'PACK52604' COPY 'CURRENT';

Related concepts
Interpreting data access by using EXPLAIN (Db2 Performance)
Related tasks
Checking how Db2 resolves functions by using DSN_FUNCTION_TABLE (Db2 Application programming
and SQL)
Capturing access path information in EXPLAIN tables (Db2 Performance)
Related reference
“ADMIN_EXPLAIN_MAINT stored procedure” on page 751
You can use the ADMIN_EXPLAIN_MAINT stored procedure to create EXPLAIN tables, upgrade the tables
to the format for the current Db2 version, and complete other administrative tasks.
EXPLAIN bind option (Db2 Commands)

FETCH statement
The FETCH statement positions a cursor on a row of its result table. It can return zero, one, or multiple
rows and assigns the values of the rows to variables if there is a target specification.

Invocation for FETCH
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared. Multiple row fetch is not supported in REXX, Fortran, or SQL Procedure
applications35. The FETCH statement with the WITH CONTINUE clause is not supported in REXX.

35 ASSEMBLER and other languages are supported, but this support is limited to statements that allow USING
DESCRIPTOR. The precompiler does not recognize host-variable-arrays except in C/C++, COBOL, and PL/I.

1924 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_interpretdataaccess.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_checkfunctionresolution.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_checkfunctionresolution.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_captureexplaininfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptexplain.html

Authorization for FETCH
See “DECLARE CURSOR statement” on page 1819 for an explanation of the authorization required to use
a cursor.

For an assignment to a global variable or an element of an array global variable, the privilege set must
include at least one of the following:

• The WRITE privilege on the variable
• Ownership of the variable
• DATAACCESS authority
• SYSADM authority

For an assignment to a transition variable, the privilege set must include at least one of the following:

• The UPDATE privilege on the table or view on which the trigger that contains the assignment statement
is defined

• The UPDATE privilege on the column corresponding to the transition variable to be assigned a value
• Ownership of the table or view on which the trigger that contains the assignment statement is defined
• DBADM authority on the database that contains the table on which the trigger that contains the

assignment statement is defined
• DATAACCESS authority
• SYSADM authority

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the package. If the statement is dynamically prepared, the privilege set is
determined by the DYNAMICRULES behavior in effect (run, bind, define, or invoke) and is summarized
in DYNAMICRULES behaviors and authorization checking. For more information on these behaviors,
including a list of the DYNAMICRULES bind option values that determine them, see “Authorization IDs
and dynamic SQL” on page 94.

Syntax for FETCH

FETCH

INSENSITIVE
1

SENSITIVE
2

WITH CONTINUE
3

fetch-orientation

FROM
cursor-name

single-row-fetch

multiple-row-fetch
4

Notes:
1 The default depends on the sensitivity of the cursor. If INSENSITIVE is specified on the DECLARE
CURSOR, then the default is INSENSITIVE and if SENSITIVE is specified on the DECLARE CURSOR, then
the default is SENSITIVE.
2 If INSENSITIVE or SENSITIVE is specified, single-row-fetch or multiple-row-fetch must be specified.
3 If WITH CONTINUE is specified, single-row-fetch must be specified.
4 If multiple-row-fetch is specified, a rowset-positioned fetch orientation must also be specified.

fetch-orientation

Chapter 7. Statements 1925

fetch-orientation

BEFORE
1

AFTER
1

row-positioned
2

rowset-positioned
3

row-positioned
NEXT

PRIOR

FIRST

LAST

CURRENT

CONTINUE

ABSOLUTE host-variable

integer-constant

RELATIVE host-variable

integer-constant

rowset-positioned
NEXT ROWSET

PRIOR ROWSET

FIRST ROWSET

LAST ROWSET

CURRENT ROWSET

ROWSET STARTING AT ABSOLUTE

RELATIVE

host-variable

integer-constant

Notes:
1 If BEFORE or AFTER is specified, SENSITIVE, INSENSITIVE, single-row-fetch, or multiple-row-fetch must
not be specified.
2 A row-positioned fetch orientation can be specified only if multiple-row-fetch is not specified.
3 If multiple-row-fetch is specified, a rowset-positioned fetch orientation must also be specified.

fetch-type

single-row-fetch

INTO

,

target-variable
1

array-variable [ array-index]
2

INTO DESCRIPTOR descriptor-name

target-variable

1926 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

global-variable-name
3

host-variable-name

SQL-parameter-name

SQL-variable-name

transition-variable-name

multiple-row-fetch
4

FOR host-variable

integer-constant

ROWS

5

INTO

,

 host-variable-array

INTO DESCRIPTOR descriptor-name

Notes:
1 For single-row-fetch, a host-variable-array can be specified instead of a host variable. The descriptor can
describe host-variable-arrays. In either case, data is returned only for the first entry of the host-variable-
array.
2 An array element must only be specified in an SQL PL context.
3 An array global variable must only be specified in an SQL PL context.
4 This clause must not be specified if a row-positioned fetch orientation or if no fetch orientation was
specified.
5 This clause is optional. If this clause is not specified and either a rowset size has not been established
yet or a row positioned FETCH statement was the last type of FETCH statement issued for this cursor, the
rowset size is implicitly one. If the last FETCH statement issued for this cursor was a rowset positioned
FETCH statement and this clause is not specified, the rowset size is the same size as the previous rowset
positioned FETCH.

Description for FETCH
INSENSITIVE

Returns the row from the result table as it is. If the row has been previously fetched with a FETCH
SENSITIVE, it reflects changes made outside this cursor before the FETCH SENSITIVE statement was
issued. Positioned updates and deletes are reflected with FETCH INSENSITIVE if the same cursor was
used for the positioned update or delete.

INSENSITIVE can only be specified for cursors declared as INSENSITIVE or SENSITIVE STATIC (or
if the cursor is declared as ASENSITIVE and Db2 defaults to INSENSITIVE). Otherwise, if the cursor
is declared as SENSITIVE DYNAMIC (or if the cursor is declared as ASENSITIVE and Db2 defaults to
SENSITIVE DYNAMIC), an error occurs and the FETCH statement has no effect. For an INSENSITIVE
cursor, specifying INSENSITIVE is optional because it is the default.

SENSITIVE
Updates the fetched row in the result table from the corresponding row in the base table of the
cursor's SELECT statement and returns the current values. Thus, it reflects changes made outside
this cursor. SENSITIVE can only be specified for a sensitive cursor. Otherwise, if the cursor is
insensitive, an error occurs and the FETCH statement has no effect. For a SENSITIVE cursor,
specifying SENSITIVE is optional because it is the default.

Chapter 7. Statements 1927

When the cursor is declared as SENSITIVE STATIC and a FETCH SENSITIVE is requested, the
following steps are taken:

1. Db2 retrieves the row of the database that corresponds to the row of the result table that is about
to be fetched.

2. If the corresponding row has been deleted, a "delete hole" occurs in the result table, a warning is
issued, the cursor is repositioned on the "hole", and no data is fetched. (Db2 marks a row in the
result table as a "delete hole" when the corresponding row in the database is deleted.)

3. If the corresponding row has not been deleted, the predicate of the underlying SELECT statement
is re-evaluated. If the row no longer satisfies the predicate, an "update hole" occurs in the result
table, a warning is issued, the cursor is repositioned on the "hole," and no data is fetched. (Db2
marks a row in the result table as an "update hole" when an update to the corresponding row in the
database causes the row to no longer qualify for the result table.)

4. If the corresponding row does not result in a delete or an update hole in the result table, the cursor
is repositioned on the row of the result table and the data is fetched.

WITH CONTINUE
Specifies that the Db2 subsystem should prepare to allow subsequent FETCH CURRENT CONTINUE
operations to access any truncated LOB or XML result column following an initial FETCH operation that
provides output variables that are not large enough to hold the entire LOB or XML columns. When the
WITH CONTINUE clause is specified, the Db2 subsystem takes the following actions that can differ
from the case where the FETCH statement does not include the WITH CONTINUE clause:

• If truncation occurs when returning an XML or LOB column, the Db2 subsystem will remember the
truncation position and will not discard the remaining data.

• If truncation occurs when returning an XML or LOB column, the Db2 subsystem returns the total
length that would have been required to hold all of the data of the LOB or XML column. This will
either be in the first four bytes of the LOB host variable structure or in the 4 byte area that is pointed
to by the SQLDATALEN pointer in the SQLVAR entry of the SQLDA for that host variable. What is
returned depends on the programming method that is used. See Appendix G, “SQL descriptor area
(SQLDA),” on page 2313 for details about the SQLDA contents.

• If returning XML data, the result column will be fully materialized in the database before the data is
returned.

If the CURRENT CONTINUE clause is specified, the WITH CONTINUE behavior is assumed.

AFTER
Positions the cursor after the last row of the result table. Values are not assigned to host variables.
The number of rows of the result table are returned in the SQLERRD1 and SQLERRD2 fields of the
SQLCA for cursors with an effective sensitivity of INSENSITIVE or SENSITIVE STATIC.

BEFORE
Positions the cursor before the first row of the result table. Values are not assigned to host variables.

row-positioned
Positioning of the cursor with row-positioned fetch orientations NEXT, PRIOR, CURRENT and
RELATIVE is done in relation to the current cursor position. Following a successful row-positioned
FETCH statement, the cursor is positioned on a single row of data. If the cursor is enabled for rowsets,
positioning is performed relative to the current row or the first row of the current rowset, and the
cursor is positioned on a rowset consisting of a single row.
NEXT

Positions the cursor on the next row or rows of the result table relative to the current cursor
position, and returns data if a target is specified. NEXT is the only row-positioned fetch operation
that can be explicitly specified for cursors that are defined as NO SCROLL. NEXT is the default if no
other cursor positioning is specified. If a specified row reflects a hole, a warning is issued and data
values are not assigned to host variables for that row.

Table 233 on page 1929 lists situations for different cursor positions and the results when NEXT is
used.

1928 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 233. Results when NEXT is used with different cursor positions

Current state of the cursor Result of FETCH NEXT

Before the first row Cursor is positioned on the first row“1” on page
1929 and data is returned if requested.

On the last row or after the last row A warning occurs, values are not assigned
to host variables, and the cursor position is
unchanged.

Before a hole For a SENSITIVE STATIC cursor, a warning
occurs for a delete hole or an update hole,
values are not assigned to host variables, and
the cursor is positioned on the hole.

Unknown An error occurs, values are not assigned to
host variables, and the cursor position remains
unknown.

Note:

1. This row is not applicable in the case of a forward-only cursor (that is when NO SCROLL was
specified implicitly or explicitly).

PRIOR
Positions the cursor on the previous row or rows of the result table relative to the current cursor
position, and returns data if a target is specified. If a specified row reflects a hole, a warning is
issued, and data values are not assigned to host variables for that row.

Table 234 on page 1929 lists situations for different cursor positions and the results when PRIOR
is used.

Table 234. Results when PRIOR is used with different cursor positions

Current state of the cursor Result of FETCH PRIOR

Before the first row or on the first row A warning occurs, values are not assigned
to host variables, and the cursor position is
unchanged.

After a hole For a SENSITIVE STATIC cursor, a warning
occurs for a delete hole or an update hole,
values are not assigned to host variables, and
the cursor is positioned on the hole.

After the last row Cursor is positioned on the last row.

Unknown An error occurs, values are not assigned to
host variables, and the cursor position remains
unknown.

FIRST
Positions the cursor on the first row of the result table, and returns data if a target is specified.
For a SENSITIVE STATIC cursor, if the first row of the result table is a hole, a warning occurs for a
delete hole or an update hole and values are not assigned to host variables.

LAST
Positions the cursor on the last row of the result table, and returns data if a target is specified.
The number of rows of the result table is returned in the SQLERRD1 and SQLERRD2 fields of the
SQLCA for an insensitive or sensitive static cursor. For a SENSITIVE STATIC cursor, if the last row
of the result table is a hole, a warning occurs for a delete hole or an update hole and values are not
assigned to host variables.

Chapter 7. Statements 1929

CURRENT
The cursor position is not changed, data is returned if a target is specified. If the cursor was
positioned on a rowset of more than one row, the cursor position is on the first row of the rowset.

Table 235 on page 1930 lists situations in which errors occur with the CURRENT clause.

Table 235. Situations in which errors occur with CURRENT

Current state of the cursor Result of FETCH CURRENT

Before the first row or after the last row A warning occurs, values are not assigned
to host variables, and the cursor position is
unchanged.

On a hole For a SENSITIVE STATIC, a warning occurs for
a delete hole or an update hole, values are not
assigned to host variables, and the cursor is
positioned on the hole.

If the cursor is defined as a rowset cursor,
with isolation level UR or a sensitive dynamic
scrollable cursor, it is possible that a different
row will be returned than the FETCH that
established the most recent cursor position.
This can occur while fetching a row again when
it is determined to not be there anymore. In this
case, fetching continues moving forward to get
the row of data.

Unknown An error occurs, values are not assigned to
host variables, and the cursor position remains
unknown.

CONTINUE
The cursor positioning is not changed, and data is returned if a target is specified. The FETCH
CURRENT CONTINUE statement retrieves remaining data for any LOB or XML column result
values that were truncated on a previous FETCH or FETCH CURRENT CONTINUE statement.
It assigns the remaining data for those truncated columns to the host variables that are
referenced in the statement or pointed to by the descriptor. The data that is returned for
previously-truncated result values begins at the point of truncation. This form of the CURRENT
clause must only be used after a single-row FETCH WITH CONTINUE or FETCH CURRENT
CONTINUE statement that has returned partial data for one or more LOB or XML columns. The
cursor must be open and positioned on a row.

FETCH CURRENT CONTINUE must pass host variables entries for all columns in the SELECT
list, even though the non-LOB columns or non-XML columns will not return any data.

ABSOLUTE
host-variable or integer-constant is assigned to an integral value k. If a host-variable is specified,
it must be an exact numeric type with zero scale and must not include an indicator variable.
The possible data types for the host variable are DECIMAL(n,0) or integer. The DECIMAL data
type is limited to DECIMAL(18,0). An integer-constant can be up to 31 digits, depending on the
application language.

If k=0, the cursor is positioned before the first row of the result table. Otherwise, ABSOLUTE
positions the cursor to row k of the result table if k>0, or to k rows from the bottom of the table if
k<0. For example, "ABSOLUTE -1" is the same as "LAST".

Data is returned if the specified position is within the rows of the result table, and a target is
specified.

If an absolute position is specified that is before the first row or after the last row of the result
table, a warning occurs, values are not assigned to host variables, and the cursor is positioned

1930 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

either before the first row or after the last row. If the resulting cursor position is after the last row
for INSENSITIVE and SENSITIVE STATIC scrollable cursors, the number of rows of the result table
are returned in the SQLERRD1 and SQLERRD2 fields of the SQLCA. If row k of the result table is a
hole, a warning occurs and values are not assigned to host variables.

FETCH ABSOLUTE 0 results in positioning before the first row and a warning is issued. FETCH
BEFORE results in positioning before the first row and no warning is issued.

Table 236 on page 1931 lists some synonymous specifications.

Table 236. Synonymous scroll specifications for ABSOLUTE

Specification Alternative

ABSOLUTE 0 (but with a warning) BEFORE (without a warning)

ABSOLUTE +1 FIRST

ABSOLUTE -1 LAST

ABSOLUTE -m, 0<m≤n ABSOLUTE n+1-m

ABSOLUTE n LAST

ABSOLUTE -n FIRST

ABSOLUTE x (with a warning) AFTER (without a warning)

ABSOLUTE -x (with a warning) BEFORE (without a warning)

Note: Assume: 0<=m<=n<x Where, n is the number of rows in the result table.

RELATIVE
host-variable or integer-constant is assigned to an integral value k. If a host-variable is specified,
it must be an exact numeric type with zero scale and must not include an indicator variable. The
possible data types for the host variable are DECIMAL(n,0) or integer. The DECIMAL data type is
limited to DECIMAL(18,0).

If the cursor is positioned before the first row, or after the last row of the result table, the cursor
position is determined as follows:

• If n is 0, the cursor position is unchanged, values are not assigned to host variables, and a
warning occurs

• If n is positive, and the cursor is positioned before the first row, the cursor is positioned on a
rowset starting at row n

• If n is positive, and the cursor is positioned after the last row, a warning occurs
• If n is negative, and the cursor is positioned before the first row, a warning occurs
• If n is negative, and the cursor is positioned after the last row, the cursor is positioned on a

rowset starting as row n from the end of the result table

An integer-constant can be up to 31 digits, depending on the application language.

Data is returned if the specified position is within the rows of the result table, and a target is
specified.

RELATIVE positions the cursor to the row in the result table that is either k rows after the current
row if k>0, or ABS(k) rows before the current row if k<0. For example, "RELATIVE -1" is the same
as "PRIOR". If k=0, the position of the cursor does not change (that is, "RELATIVE 0" is the same
as "CURRENT").

If a relative position is specified that results in positioning before the first row or after the last row,
a warning is issued, values are not assigned to host variables, and the cursor is positioned either
before the first row or after the last row. If the resulting cursor position is after the last row for
INSENSITIVE and SENSITIVE STATIC scrollable cursors, the number of rows of the result table

Chapter 7. Statements 1931

is returned in the SQLERRD1 and SQLERRD2 fields of the SQLCA. If the cursor is positioned on a
hole and RELATIVE 0 is specified or if the target row is a hole, a warning occurs and values are not
assigned to host variables.

If the cursor is defined as a rowset cursor, with isolation level UR or a sensitive dynamic scrollable
cursor, it is possible that a different row will be returned than the FETCH that established the most
recent cursor position. This can occur while fetching a row again when it is determined to not be
there anymore. In this case, fetching continues moving forward to get the row data.

If the cursor position is unknown and RELATIVE 0 is specified, an error occurs.

Table 237 on page 1932 lists some synonymous specifications.

Table 237. Synonymous Scroll Specifications for RELATIVE

Specification Alternative

RELATIVE +1 NEXT

RELATIVE -1 PRIOR

RELATIVE 0 CURRENT

RELATIVE +r (with a warning) AFTER (without a warning)

RELATIVE -r (with a warning) BEFORE (without a warning)

Note: r has to be large enough to position the cursor beyond either end of the result table.

rowset-positioned

Positioning of the cursor with rowset-positioned fetch orientations NEXT ROWSET, PRIOR ROWSET,
CURRENT ROWSET, and ROWSET STARTING AT RELATIVE is done in relation to the current cursor
position. Following a successful rowset-positioned FETCH statement, the cursor is positioned on a
rowset of data. The number of rows in the rowset is determined either explicitly or implicitly. The FOR
n ROWS clause in the multiple-row-fetch clause is used to explicitly specify the size of the rowset.
Positioning is performed relative to the current row or first row of the current rowset, and the cursor is
positioned on all rows of the rowset.

A rowset-positioned fetch orientation must not be specified if the current cursor position is not
defined to access rowsets. NEXT ROWSET is the only rowset-positioned fetch orientation that can be
specified for cursors that are defined as NO SCROLL.

If a row of the rowset reflects a hole, a warning is returned, data values are not assigned to host-
variable arrays for that row (that is, the corresponding positions in the target host-variable arrays are
untouched), and -3 is returned in all provided indicator variables for that row. If a hole is detected,
and at least one indicator variable is not provided, an error occurs.

NEXT ROWSET
Positions the cursor on the next rowset of the result table relative to the current cursor position,
and returns data if a target is specified. The next rowset is logically obtained by fetching the
row that follows the current rowset and fetching additional rows until the number of rows that is
specified implicitly or explicitly in the FOR n ROWS clause is obtained or the last row of the result
table is reached.

If the cursor is positioned before the first row of the result table, the cursor is positioned on the
first rowset.

If the cursor is positioned on the last row or after the last row of the result table, the cursor
position is unchanged, values are not assigned to host-variable arrays, and a warning occurs.

If a row of the rowset reflects a hole, the following actions occur:

• A warning is returned.

1932 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• Data values are not assigned to the host-variable-arrays for that row (that is, the corresponding
positions in the target host-variable-arrays are untouched).

• A value of -3 is returned in all of the indicator variables that are provided for the row.

If a hole is detected and at least one indicator variable is not provided, an error is returned.

If the cursor is not positioned because of a prior error, values are not assigned to the host-
variable-array, and an error is returned. If a row of the rowset would be after the last row of
the result table, values are not assigned to host-variable-arrays for that row and any subsequent
requested rows of the rowset, and a warning is returned.

NEXT ROWSET is the only rowset positioned fetch orientation that can be explicitly be specified
for cursors that are defined as NO SCROLL.

PRIOR ROWSET
Positions the cursor on the previous rowset of the result table relative to the current position, and
returns data if a target is specified.

The prior rowset is logically obtained by fetching the row that precedes the current rowset and
fetching additional rows until the number of rows that is specified implicitly or explicitly in the FOR
n ROWS clause is obtained or the last row of the result table is reached.

If the cursor is positioned after the last row of the result table, the cursor is positioned on the last
rowset.

If the cursor is positioned before the first row or on the first row of the result table, the cursor
position is unchanged, values are not assigned to host-variable arrays, and a warning occurs.

If a row would be before the first row of the result table, the cursor is positioned on a partial
rowset that consists of only those rows that are prior to the current position of the cursor starting
with the first row of the result table, and a warning is returned. Values are not assigned to the
host-variable-arrays for the rows in the rowset for which the warning is returned.

Although the rowset is logically obtained by fetching backwards from before the current rowset,
the data is returned to the application starting with the first row of the rowset, to the end of the
rowset.

If a row of the rowset reflects a hole, the following actions occur:

• A warning is returned.
• Data values are not assigned to the host-variable-arrays for that row (that is, the corresponding

positions in the target host-variable-arrays are untouched).
• A value of -3 is returned in all of the indicator variables that are provided for the row.

If a hole is detected and at least one indicator variable is not provided, an error is returned.

If the cursor is not positioned because of a prior error, values are not assigned to the host-
variable-array, and an error is returned.

FIRST ROWSET
Positions the cursor on the first rowset of the result table, and returns data if a target is specified.

If a row of the rowset reflects a hole, the following actions occur:

• A warning is returned.
• Data values are not assigned to the host-variable-arrays for that row (that is, the corresponding

positions in the target host-variable-arrays are untouched).
• A value of -3 is returned in all of the indicator variables that are provided for the row.

If a hole is detected and at least one indicator variable is not provided, an error is returned.

If the result table contains fewer rows than specified implicitly or explicitly in the FOR n ROWS
clause, values are not assigned to host-variable-arrays after the last row of the result table, and a
warning is returned.

Chapter 7. Statements 1933

LAST ROWSET
Positions the cursor on the last rowset of the result table and returns data if a target is specified.
The last rowset is logically obtained by fetching the last row of the result table and fetching prior
rows until the number of rows in the rowset is obtained or the first row of the result table is
reached. Although the rowset is logically obtained by fetching backwards from the bottom of the
result table, the data is returned to the application starting with the first row of the rowset, to the
end of the rowset, which is also the end of the result table.

If a row of the rowset reflects a hole, the following actions occur:

• A warning is returned.
• Data values are not assigned to the host-variable-arrays for that row (that is, the corresponding

positions in the target host-variable-arrays are untouched).
• A value of -3 is returned in all of the indicator variables that are provided for the row.

If a hole is detected and at least one indicator variable is not provided, an error is returned.

If the result table contains fewer rows than specified implicitly or explicitly in the FOR n ROWS
clause, the last rowset is the same as the first rowset, values are not assigned to host-variable-
arrays after the last row of the result table, and a warning is returned.

CURRENT ROWSET
If the FOR n ROWS clause specifies a number different from the number of rows specified
implicitly or explicitly in the FOR n ROWS clause on the most recent FETCH statement for this
cursor, the cursor is repositioned on the specified number of rows, starting with the first row of the
current rowset. If the cursor is positioned before the first row, or after the last row of the result
table, the cursor position is unchanged, values are not assigned to host-variable arrays, and a
warning occurs. If the FOR n ROWS clause is not specified, it is possible that the FETCH statement
will position the cursor on a partial rowset when the FETCH CURRENT ROWSET statement is
processed. In this case, Db2 attempts to position the cursor on a full rowset starting with the
first row of the current rowset. Otherwise, the position of the cursor on the current rowset is
unchanged. Data is returned if a target is specified.

With isolation level UR or a sensitive dynamic scrollable cursor, it is possible that different rows
will be returned than the FETCH that established the most recent rowset cursor position. This can
occur while refetching the first row of the rowset when it is determined to not be there anymore.
In this case, fetching continues moving forward to get the first row of data for the rowset. This can
also occur when changes have been made to other rows in the current rowset such that they no
longer exist or have been logically moved within (or out of) the result table of the cursor.

If the cursor is not positioned because of a prior error, values are not assigned to the host-
variable-array, and an error occurs.

If the current rowset contains fewer rows than specified implicitly or explicitly in the FOR n
ROWS clause, values are not assigned to host-variable-arrays after the last row, and a warning is
returned.

ROWSET STARTING AT ABSOLUTE or RELATIVE host-variable or integer-constant
Positions the cursor on the rowset beginning at the row of the result table that is indicated by the
ABSOLUTE or RELATIVE specification, and returns data if a target is specified.

host-variable or integer-constant is assigned to an integral value k. If host-variable is specified, it
must be an exact numeric type with scale zero, and must not include an indicator variable. The
possible data types for the host variable are DECIMAL(n,0) or integer, where the DECIMAL data
type is limited to DECIMAL(18,0). If a constant is specified, the value must be an integer.

If a row of the result table would be after the last row or before the first row of the result table,
values are not assigned to host-variable-arrays for that row and a warning is returned.

ABSOLUTE
If k=0, an error occurs. If k>0, the first row of the rowset is row k. If k<0, the rowset is
positioned on the ABS(k) rows from the bottom of the result table. Assume that ABS(k) is

1934 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

equal to the number of rows for the rowset and that there are enough row to return a complete
rowset:

• FETCH ROWSET STARTING AT ABSOLUTE -k is the same as FETCH LAST ROWSET.
• FETCH ROWSET STARTING AT ABSOLUTE 1 is the same as FETCH FIRST ROWSET.

RELATIVE
If k=0 and the FOR n ROWS clause does not specify a number different from the number most
recently specified implicitly or explicitly for this cursor, then the position of the cursor does
not change (that is, "RELATIVE ROWSET 0" is the same as "CURRENT ROWSET"). If k=0 and
the FOR n ROWS clause specifies a number different from the number most recently specified
implicitly or explicitly for this cursor, then the cursor is repositioned on the specified number of
rows, starting with the first row of the current rowset.

If the cursor is positioned before the first row, or after the last row of the result table, the
cursor position is determined as follows:

• If n is 0, the cursor position is unchanged, values are not assigned to host variables, and a
warning occurs. This is the same as FETCH CURRENT ROWSET.

• If n is positive, and the cursor is positioned before the first row, the cursor is positioned on a
rowset starting a row n.

• If n is positive, and the cursor is positioned after the last row, a warning occurs.
• If n is negative, and the cursor is positioned before the first row, a warning occurs.
• If n is negative, and the cursor is positioned after the last row, the cursor is positioned on a

rowset starting at row n from the bottom of the result table.

Otherwise, RELATIVE repositions the cursor so that the first row of the new rowset cursor
position is on the row in the result table that is either k rows after the first row of the current
rowset cursor position if k>0, or ABS(k) rows before the first row of the current rowset cursor
position if k<0. Assume that ABS(k) is equal to the number of rows for the resulting rowset

• FETCH ROWSET STARTING AT RELATIVE -k is the same as FETCH PRIOR ROWSET.
• FETCH ROWSET STARTING AT RELATIVE k is the same as FETCH NEXT ROWSET.
• FETCH ROWSET STARTING AT RELATIVE 0 is the same as FETCH CURRENT ROWSET.

When ROWSET STARTING AT RELATIVE -n is specified and there are not enough rows
between the current position of the cursor and the beginning of the result table to return
a complete rowset:

• A warning is returned.
• Values are not assigned to the host-variable-arrays.
• The cursor is positioned before the first row.

If a row of the rowset reflects a hole, If a row of the rowset reflects a hole, the following actions
occur:

• A warning is returned.
• Data values are not assigned to the host-variable-arrays for that row (that is, the corresponding

positions in the target host-variable-arrays are untouched).
• A value of -3 is returned in all of the indicator variables that are provided for the row.

If a hole is detected and at least one indicator variable is not provided, an error is returned. If a
row of the rowset is unknown, values are not assigned to host-variable arrays for that row, and
an error is returned. If a row of the rowset would be after the last row or before the first row
of the result table, values are not assigned to host-variable-arrays for that row, and a warning is
returned.

cursor-name
Identifies the cursor to be used in the fetch operation. The cursor name must identify a declared
cursor, as explained in the description of the DECLARE CURSOR statement in “DECLARE CURSOR

Chapter 7. Statements 1935

statement” on page 1819, or an allocated cursor, as explained in “ALLOCATE CURSOR statement” on
page 1093. When the FETCH statement is executed, the cursor must be in the open state.

If a single-row-fetch or multiple-row-fetch clause is not specified, the cursor position is adjusted as
specified, but no data is returned to the user.

single-row-fetch
When single-row-fetch is specified, SENSITIVE or INSENSITIVE can be specified though there is
a default. The default depends on the sensitivity of the cursor. If the sensitivity of the cursor is
INSENSITIVE, then the default is INSENSITIVE. If the effective sensitivity of the cursor is SENSITIVE
DYNAMIC or SENSITIVE STATIC, then the default is SENSITIVE. The single-row-fetch or multiple-row-
fetch clause must not be specified when the FETCH BEFORE or FETCH AFTER option is specified. They
are required when FETCH BEFORE or FETCH AFTER is not specified. If an individual fetch operation
causes the cursor to be positioned or to remain positioned on a row if there is a target specification,
the values of the result table are assigned to host variables as specified by the single-fetch-clause.
INTO target-variable or array-variable[array-index]

Identifies one or more targets for the assignment of output values. The number of targets in the
INTO clause must equal the number of values that are to be assigned. The first value in the result
row is assigned to the first target in the list, the second value to the second target, and so on. A
target variable must not be specified more than once in the INTO clause. Each assignment to a
target is made in sequence through the list according to the rules described in “Assignment and
comparison” on page 143.

The value 'W' is assigned to the SQLWARN3 field of the SQLCA if the number of targets is less than
the number of result column values.

If an error occurs on any assignment, the value is not assigned to the target, and no more
values are assigned to the specified targets. Any values that have already been assigned remain
assigned.

global-variable-name
Identifies the global variable that is the assignment target. A global variable must only be
specified in an SQL PL context. When a global variable is specified as the assignment target,
the cursor must be non-scrollable.

host-variable-name
Identifies the host variable that is the assignment target. For LOB output values, the target can
be a regular host variable (if it is large enough), a LOB locator variable, or a LOB file reference
variable.

SQL-parameter-name
Identifies the parameter that is the assignment target.

SQL-variable-name
Identifies the SQL variable that is the assignment target. SQL variables must be declared
before they are used.

array-variable [array-index]
Specifies an array element that is the target of the assignment.
array-variable

Specifies and array variable.
[array-index]

An expression that specifies which element in the array is the target of the assignment.

For an ordinary array, the array index expression must be castable to INTEGER, and must
not be the null value. The index value must be between 1 and the maximum cardinality
that is defined for the array.

For an associative array, the array index expression must be castable to the index data
type of the associative array, and must not be the null value.

array-index must not be:

1936 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• An expression that references the CURRENT DATE, CURRENT TIME, or CURRENT
TIMESTAMP special register

• A nondeterministic function
• A function that is defined with EXTERNAL ACTION
• A function that is defined with MODIFIES SQL DATA
• A sequence expression

transition-variable-name
Identifies the column that is to be updated in the transition table. A transition-variable-name
must identify a column in the subject table of a trigger, optionally qualified by a correlation
name that identifies the new value.

INTO DESCRIPTOR descriptor-name
Identifies an SQLDA that contains a valid description of the host output variables. Result values
from the associated SELECT statement are returned to the application program in the output host
variables.

Before the FETCH statement is processed, you must set the following fields in the SQLDA:

• SQLN to indicate the number of SQLVAR occurrences provided in the SQLDA

A REXX SQLDA does not contain this field.
• SQLABC to indicate the number of bytes of storage allocated in the SQLDA
• SQLD to indicate the number of variables used in the SQLDA when processing the statement
• SQLVAR occurrences to indicate the attributes of the variables

The SQLDA must have enough storage to contain all SQLVAR occurrences. Each SQLVAR
occurrence describes a host variable or buffer into which a value in the result table is to be
assigned. If LOBs are present in the results, there must be additional SQLVAR entries for each
column of the result table. If the result table contains only base types and distinct types, multiple
SQLVAR entries are not needed for each column. However, extra SQLVAR entries are needed
for distinct types as well as for LOBs in DESCRIBE and PREPARE INTO statements. For more
information on the SQLDA, which includes a description of the SQLVAR and an explanation on how
to determine the number of SQLVAR occurrences, see Appendix G, “SQL descriptor area (SQLDA),”
on page 2313.

SQLD must be set to a value greater than or equal to zero and less than or equal to SQLN.

See “Identifying an SQLDA in C or C++” on page 2329 for how to represent descriptor-name in C.

multiple-row-fetch
Retrieves multiple rows of data from the result table of a query. The FOR n ROWS clause of the FETCH
statement controls how many rows are returned on a single FETCH statement. The fetch orientation
determines whether the resulting cursor position (for example, on a single row, rowset, before, or
after the result table). Fetching stops when an error is returned, all requested rows are fetched, or the
end of data condition is reached.

Fetching multiple rows of data can be done with scrollable or non-scrollable cursors. The operations
used to define, open, and close a cursor used for fetching multiple rows of data are the same as for
those used for single row FETCH statements.

If the BEFORE or AFTER option is specified, neither single-row-fetch or multiple-row-fetch can be
specified.

FOR host-variable or integer-constant ROWS
host-variable or integer-constant is assigned to an integral value k. If a host variable is specified,
it must be an exact numeric type with a scale of zero and must not include an indicator variable.
Furthermore, k must be in the range, 0<k<=32767.

This clause must not be specified if a row-positioned fetch-orientation clause was specified. This
clause must also not be specified for a cursor that is defined without rowset access.

Chapter 7. Statements 1937

If a rowset fetch orientation is specified and this clause is not specified, the number of rows in the
resulting rowset is determined as follows:

• If the most recent FETCH statement for this cursor was a rowset-positioned FETCH, the number
of rows of the rowset is implicitly determined by the number of rows that was most recently
specified (implicitly or explicitly) for this cursor.

• When the most recent FETCH statement for this cursor was either FETCH BEFORE or FETCH
AFTER and the most recent FETCH statement for this cursor prior to that was a rowset-
positioned FETCH, the number of rows of the rowset is implicitly determined by the number
of rows that were most recently specified (implicitly or explicitly) for this cursor.

• Otherwise, the rowset consists of a single row.

For result set cursors, the number of rows for a rowset cursor position, established in the
procedure that defined the rowset, is not inherited by the caller when the rowset is returned.
Use the FOR n ROWS clause on the first rowset FETCH statement for the result set in the calling
program to establish the number of rows for the cursor. Otherwise, the rowset consists of a single
row.

The cursor is positioned on the row or rowset that is specified by the orientation clause (for
example, NEXT ROWSET), and those rows are fetched if a target is specified. After the cursor is
positioned on the first row being fetched, the next k-1 rows are fetched. Fetching moves forward
from the cursor position in the result table and continues until the end of data condition is
returned, k-1 rows have been fetched, or an assignment error is returned.

The resulting cursor position depends on the fetch orientation that is specified:

• For a row-positioned fetch orientation, the cursor is positioned at the last row successfully
retrieved.

• For a rowset-positioned fetch orientation, the cursor is positioned on all the rows retrieved.

The values from each individual fetch are placed in data areas that are described in the INTO
or USING clause. If a target specification is provided for a rowset-positioned FETCH, the host-
variable arrays must be specified as the target specification, and the arrays must be defined
with a dimension of 1 or greater. The target specification must be defined as an array for a
rowset-positioned FETCH even if the number of rows that is specified implicitly or explicitly is one.
See Diagnostics information for rowset positioned FETCH statements.

INTO host-variable-array
Identifies for each column of the result table a host-variable-array to receive the data that
is retrieved with this FETCH statement. If the number of host-variable-arrays is less than the
number of columns of the result table, the SQLWARN3 field of the SQLCA is set to 'W'. No warning
is given if there are more host-variable-arrays than the number of columns in the result table.

Each host-variable-array must be defined in the application program in accordance with the rules
for declaring an array. A host-variable-array is used to return the values for a column of the result
table. The number of rows to be fetched must be less than or equal to the dimension of each of
the host-variable-arrays.

An optional indicator array can be specified for a host-variable-array. It should be specified if
the SQLTYPE of any SQLVAR occurrence indicates that the column of the result table is nullable.
Additionally, if an operation may result in null values, such as an UPDATE operation that results in
a hole, is performed in the application, an indicator array should be specified. Otherwise an error
occurs if null values are encountered. The indicators are returned as small integers.

host-variable-array is supported in C/C++, COBOL, and PL/I. For more information, see “Host-
variable arrays in PL/I, C, C++, and COBOL” on page 236.

INTO DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of zero or more host-variable-arrays or
buffers into which the values for a column of the result table are to be returned.

Before the FETCH statement is processed, you must set the following fields in the SQLDA:

1938 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• SQLN to indicate the number of SQLVAR occurrences provided in the SQLDA.
• SQLABC to indicate the number of bytes of storage allocated for the SQLDA.
• SQLD to indicate the number of variables used in the SQLDA when processing the statement.
• SQLVAR occurrences to indicate the attributes of an element of the host-variable-array. Within

each SQLVAR representing an array:

– SQLTYPE indicates the data type of the elements of the host-variable-array.
– SQLDATA field points to the first element of the host-variable-array.
– The length fields (SQLLEN and SQLLONGLEN) are set to indicate the maximum length of a

single element of the array.
– SQLNAME - The length of SQLNAME must be set to 8, and the first two bytes of the data

portion of SQLNAME must be initialized to X'0000'. The fifth and sixth bytes must contain
a flag field and the seventh and eighth bytes must be initialized to a binary small integer
(half word) representation of the dimension of the host-variable-array, and the corresponding
indicator array, if one is specified.

The SQLVAR entry for the number of rows must also contain a flag value. The number of rows to
be fetched must be less than or equal to the dimension of each of the host-variable arrays.

You set the SQLDATA and SQLIND pointers to the beginning of the corresponding arrays. The
SQLDA must have enough storage to contain all SQLVAR occurrences. Each SQLVAR occurrence
describes a host-variable-array or buffer into which the values for a column in the result table are
to be returned. If any column of the result table is a LOB, two SQLVAR entries must be provided for
each SQLVAR, and SQLN must be set to two times the number of SQLVARS. SQLD must be set to a
value greater than or equal to zero and less than or equal to SQLN.

Notes for FETCH
Assignment to targets:

The nth target identified by the INTO clause or described in the SQLDA corresponds to the nth column
of the result table of the cursor. The data type of target must be compatible with its corresponding
value. If the value is numeric, the target must have the capacity to represent the whole part of the
value. For a datetime value, the target must be a character string variable of a minimum length as
defined in “String representations of datetime values” on page 120. When the target is a host variable,
if the value is null, an indicator variable must be specified.

Assignments are made in sequence through the list. Each assignment to a target is made according to
the rules described in Chapter 2, “Language elements in SQL,” on page 75. If the number of targets
is less than the number of values in the row, the SQLWARN3 field of the SQLCA is set to 'W'. There is
no warning if there are more targets than the number of result columns. If the target is a host variable
and the value is null, an indicator variable must be provided. If an assignment error occurs, the value
is not assigned to the target and no more values are assigned to targets. Any values that have already
been assigned to targets remain assigned.

If more than one assignment is included in the same assignment statement, all expressions are
evaluated before the assignments are performed. For example, a reference to a variable in an
expression always uses the value of the variable prior to any assignment in the assignment statement.

Normally, you use LOB locators to assign and retrieve data from LOB columns. However, because of
compatibility rules, you can also use LOB locators to assign data to targets with other data types.
For more information on using locators, see Saving storage when manipulating LOBs by using LOB
locators (Db2 Application programming and SQL).

A timestamp without time zone value must not be assigned to a timestamp with time zone target.

The default encoding scheme for the data is the value in the bind option ENCODING, which is
the option for application encoding. If this statement is used with functions such as LENGTH or
SUBSTRING that are operating on LOB locators, and the LOB data that is specifies by the locator is
in a different encoding scheme from the ENCODING bind option, LOB materialization and character

Chapter 7. Statements 1939

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_savestoragelob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_savestoragelob.html

conversion occur. To avoid LOB materialization and character conversion, select the LOB data from the
SYSIBM.SYSDUMMYA, SYSIBM.SYSDUMMYE, or SYSIBM.SYSDUMMYU sample table.

Restrictions on using the WITH CONTINUE and CURRENT CONTINUE clauses:
When using the WITH CONTINUE clause, the Db2 system will only reserve truncated data for result
set columns of the BLOB, CLOB, DBCLOB, or XML data type, and only when the output host variable
data type is the appropriate LOB data type.

If an application uses FETCH WITH CONTINUE, and truncated data remains after the FETCH
operation, the application cannot perform any intervening operation on that cursor before performing
the FETCH CURRENT CONTINUE. If intervening operations on that cursor are performed, the
truncated data is lost.

FETCH CURRENT CONTINUE is not supported with multi-row fetch. Also, FETCH CURRENT CONTINUE
is not supported for non-LOB and non-XML columns that have been truncated. If truncation occurs for
these non-LOB and non-XML columns, the truncated data will be discarded as usual.

Result column evaluation considerations:
If an error occurs as the result of an arithmetic expression in the SELECT list of an outer SELECT
statement (division by zero, or overflow) or a numeric conversion error occurs, the result is the null
value. As in any other case of a null value, an indicator variable must be provided and the main
variable is unchanged. In this case, however, the indicator variable is set to -2. Processing of the
statement continues as if the error had not occurred. (However, this error causes a positive SQLCODE.)
If you do not provide an indicator variable, a negative value is returned in the SQLCODE field of the
SQLCA. Processing of the statement terminates when the error is encountered. No value is assigned to
the host variable or to later variables, though any values that have already been assigned to variables
remain assigned.

If the specified host variable is not large enough to contain the result, a warning is returned and W
is assigned to SQLWARN1 in the SQLCA. The actual length of the result is returned in the indicator
variable associated with the host-variable, if an indicator is provided. It is possible that a warning
may not be returned on a FETCH operation. This occurs as a result of optimizations, such as the use
of system temporary tables or blocking. It is also possible that the returned warning applies to a
previously fetched row. When a datetime value is returned, the length of the variable must be large
enough to store the complete value. Otherwise, a warning or an error is returned.

Considerations when using the FETCH statement for a rowset cursor that was passed to an
accelerator server for processing:

Db2 provides limited support for rowset queries that are passed to an accelerator server for
processing. Db2 supports only high performance access to accelerated query data. The data is pre-
fetched in rowsets and returned by using multiple-row-fetch statements, returning multiple rows of
data in one FETCH statement. The following restrictions apply to FETCH statements that are executed
against a rowset cursor that was accelerated:

• All FETCH requests must be rowset fetches.
• All FETCH requests must specify a FOR n ROWS clause.
• All FETCH requests must specify the same rowset size.
• All FETCH requests must specify target host variables. (The FETCH operation must have a target for

positioning.)

Cursor positioning:
An open cursor has three possible positions:

• Before a row
• On a row or rowset
• After the last row

When a scrollable or non-scrollable cursor is opened, it is positioned before the first row in the result
table. If a cursor is on a row, that row is called the current row of the cursor. If a cursor is on a rowset,
the rows are called the current rowset of the cursor.

1940 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

A cursor referred to in an UPDATE or DELETE statement must be positioned on a row or rowset. A
cursor can only be on a row or rowset as a result of a FETCH statement.

If the cursor was declared SENSITIVE STATIC SCROLL, a row may be a hole, from which no values
may be fetched, updated, or deleted. Holes do not exist with sensitive dynamic cursors because there
is no temporary result table. For more information, see Holes in the result table of a scrollable cursor
(Db2 Application programming and SQL).

For scrollable cursors, the cursor position after an error varies depending on the type of error:

• When an operation is attempted against an update or delete hole, or when an update or delete hole
is detected, the cursor is positioned on the hole.

• When a FETCH operation is attempted past the end of file, the cursor is positioned after the last row.
• When a FETCH operation is attempted before the beginning of file, the cursor is positioned before

the first row.
• When an error causes the cursor position to be invalid such as when a single row positioned update

or positioned delete error occurs that causes a rollback, the cursor is closed.

Cursor position after exception condition:
If an error occurs during the execution of a fetch operation, the position of the cursor and the result
of any later fetch is unpredictable. It is possible for an error to occur that makes the position of the
cursor invalid, in which case the cursor is closed.

If an individual fetch operation specifies a destination that is outside the range of the cursor, a
warning is issued (except for FETCH BEFORE or FETCH AFTER), the cursor is positioned before or after
the result table, and values are not assigned to host variables.

Concurrency and scrollability:
The current row of a cursor cannot be updated or deleted by another application process if it is locked.
Unless it is already locked because it was inserted or updated by the application process during the
current unit of work, the current row of a cursor is not locked if:

• The isolation level is UR, or
• The isolation level is CS, and

– The result table of the cursor is read-only
– The bind option CURRENTDATA(NO) is in effect

A dynamic scrollable cursor is useful when it is more important to the application to see updated rows
and newly inserted rows and there is no need to see deleted rows. The isolation level of CS should
be used for maximum concurrency with dynamic scrollable cursors. Specifying an isolation level of RR
or RS severely restricts the update of the table, thus defeating the purpose of a SENSITIVE DYNAMIC
scrollable cursor. If the application needs a constant result table, a SENSITIVE STATIC scrollable
cursor with an isolation level of CS should be used.

Sensitivity of SENSITIVE STATIC SCROLL cursors to database changes:
When SENSITIVE STATIC SCROLL has been declared, the following rules apply:

• For the result of an update operation to be visible within a cursor after "open," the update operation
must be a positioned update executed against the cursor, or a FETCH SENSITIVE in a STATIC cursor
must be executed against a row which has been updated by some other means (that is, a searched
update, committed updates of others, or an update with another cursor in the same process).

• Another process can update the base table of the SELECT statement so that the current values no
longer satisfy the WHERE clause. In this case, an "update hole" effectively exists during the time
the values in the base table do not satisfy the WHERE clause, and the row is no longer accessible
through the cursor. When an attempt is made to fetch a row that has been identified as an update
hole, no values are returned, and a warning is issued.

Under SENSITIVE STATIC SCROLL cursors, update holes are only identified during positioned
update, positioned delete, and FETCH SENSITIVE operations. Each positioned update, positioned
delete, and FETCH SENSITIVE operation does the necessary tests to determine if an update hole
exists.

Chapter 7. Statements 1941

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_holesresulttable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_holesresulttable.html

• For the result of a delete operation to be visible within a SENSITIVE STATIC SCROLL cursor, the
delete operation must be a positioned delete executed against the cursor or a FETCH SENSITIVE
in a STATIC cursor must be executed against a row that has been deleted by some other means
(that is, a searched delete, committed deletes of others, or a delete with another cursor in the same
process).

• Another process, or the even the same process, may delete a row in the base table of the SELECT
statement so that a row of the cursor no longer has a corresponding row in the base table. In this
case, a "delete hole" effectively exists, and that row is no longer accessible through the cursor.
When an attempt is made to fetch a row that has been identified as a delete hole, no values are
returned, and a warning is issued.

Under SENSITIVE STATIC SCROLL cursors, delete holes are identified during positioned update,
positioned delete, and FETCH SENSITIVE operations.

• Inserts into the base table or tables of SENSITIVE STATIC SCROLL cursors are not seen after the
cursor is opened.

LOB locators:
When information is retrieved into LOB locators and it is not necessary to retain the locator across
FETCH statements, it is a good practice to issue a FREE LOCATOR statement before issuing another
FETCH statement because locator resources are limited.

Isolation level considerations:
The isolation level of the statement (specified implicitly or explicitly) can affect the result of a rowset-
positioned FETCH statement. This is possible when changes are made to the tables underlying the
cursor when isolation level UR is used with a dynamic scrollable cursor, or with other isolation levels
when rows have been added by the application fetching from the cursor. These situations can occur
with the following fetch orientations:
PRIOR ROWSET

With a dynamic scrollable cursor and isolation level UR, the content of a prior rowset can be
affected by other activity within the table. It is possible that a row that previously qualified for
the cursor, and was included as a member of the "prior" rowset, has since been deleted or
modified before it is actually returned as part of the rowset for the current statement. To avoid this
behavior, use an isolation level other than UR.

CURRENT ROWSET
With a dynamic scrollable cursor, additional rows can be added between rows that form the
rowset that was returned to the user. With isolation level RR, these rows can only be added by
the application fetching from the cursor. For isolation levels other than RR, other applications can
insert rows that can affect the results of a subsequent FETCH CURRENT ROWSET. To avoid this
behavior, use a static scrollable cursor instead of a dynamic scrollable cursor.

LAST ROWSET
With a dynamic scrollable cursor and isolation level UR, the content of the last rowset can be
affected by other activity within the table. It is possible that a row that previously qualified
for the cursor, and was included as a member of the "last" rowset, has since been deleted or
modified before it is actually returned as part of the rowset for the current statement. To avoid this
behavior, use an isolation level other than UR.

ROWSET STARTING AT RELATIVE -n (where -n is a negative number)
With a dynamic scrollable cursor and isolation level UR, the content of a prior rowset can be
affected by other activity within the table. It is possible that a row that previously qualified for
the cursor, and was included as a member of the "prior" rowset, has since been deleted or
modified before it is actually returned as part of the rowset for the current statement. To avoid this
behavior, use an isolation level other than UR.

Row positioned and rowset positioned FETCH statement interaction:
The following table demonstrates the interaction between row positioned and rowset positioned
FETCH statements. The table is based on the following assumptions:

• TABLE T1 has 15 rows
• CURSOR CS1 is declared as follows:

1942 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

DECLARE CS1 SCROLL CURSOR WITH ROWSET POSITIONING FOR
SELECT * FROM T1;

• An OPEN CURSOR statement has been successfully executed for CURSOR CS1 and the FETCH
statements in the table are executed in the order that they appear in the table.

Table 238. Interaction between row positioned and rowset positioned FETCH statements

FETCH Statement Cursor Position

FETCH FIRST Cursor is positioned on row 1.

FETCH FIRST ROWSET Cursor is positioned on a rowset of size 1, consisting of
row 1.

FETCH FIRST ROWSET FOR 5 ROWS Cursor is positioned on a rowset of size 5, consisting of
rows 1, 2, 3, 4, and 5.

FETCH CURRENT ROWSET Cursor is positioned on a rowset of size 5, consisting of
rows 1, 2, 3, 4, and 5.

FETCH CURRENT Cursor is positioned on row 1

FETCH FIRST ROWSET FOR 5 ROWS Cursor is positioned on a rowset of size 5, consisting of
rows 1, 2, 3, 4, and 5.

FETCH or FETCH NEXT Cursor is positioned on row 2.

FETCH NEXT ROWSET Cursor is positioned on a rowset of size 1, consisting of
row 3.

FETCH NEXT ROWSET FOR 3 ROWS Cursor is positioned on a rowset of size 3, consisting of
rows 4,5, and 6.

FETCH NEXT ROWSET Cursor is positioned on a rowset of size 3, consisting of
rows 7,8, and 9.

FETCH LAST Cursor is positioned on row 15.

FETCH LAST ROWSET FOR 2 ROWS Cursor is positioned on a rowset of size 2, consisting of
rows 14 and 15.

FETCH PRIOR ROWSET Cursor is positioned on a rowset of size 2, consisting of
rows 12 and 13.

FETCH ABSOLUTE 2 Cursor is positioned on row 2.

FETCH ROWSET STARTING AT
ABSOLUTE 2 FOR 3 ROWS

Cursor is positioned on a rowset of size 3, consisting of
rows 2, 3, and 4.

FETCH RELATIVE 2 Cursor is positioned on row 4.

FETCH ROWSET STARTING AT
ABSOLUTE 2 FOR 4 ROWS

Cursor is positioned on a rowset of size 4, consisting of
rows 2, 3, 4, and 5.

FETCH RELATIVE -1 Cursor is positioned on row 1.

FETCH ROWSET STARTING AT
ABSOLUTE 3 FOR 2 ROWS

Cursor is positioned on a rowset of size 2, consisting of
rows 3 and 4.

FETCH ROWSET STARTING AT RELATIVE
4

Cursor is positioned on a rowset of size 2, consisting of
rows 7 and 8.

FETCH PRIOR Cursor is positioned on row 6.

FETCH ROWSET STARTING AT
ABSOLUTE 13 FOR 5 ROWS

Cursor is positioned on a rowset of size 3, consisting of
rows 13, 14, and 15.

Chapter 7. Statements 1943

Table 238. Interaction between row positioned and rowset positioned FETCH statements (continued)

FETCH Statement Cursor Position

FETCH FIRST ROWSET Cursor is positioned on a rowset of size 5, consisting of
rows 1, 2, 3, 4, and 5.

Note: Even though the previous FETCH statement
returned only 3 rows because EOF was encountered,
Db2 will remember that 5 rows were requested by the
previous FETCH statement.

Considerations for using the FOR n ROWS clause with the FETCH FIRST n ROWS ONLY clause:
A clause specifying the number of rows that you want can be specified in the SELECT statement of a
cursor, the FETCH statement for a cursor, or both. However, these clauses have different effects:

• In the SELECT statement, a FETCH FIRST n ROWS ONLY clause controls the maximum number of
rows that can be accessed with the cursor. When a FETCH statement attempts to retrieve a row
beyond the number specified in the FETCH FIRST n ROWS ONLY clause of the SELECT statement, an
end-of-data condition occurs.

• In a FETCH statement, a FOR n ROWS clause controls the number of rows that are returned for a
single FETCH statement.

Both of these clauses can be specified.

Referencing columns that will be updated:
If a cursor uses FETCH statements to retrieve columns that will be updated later, specify FOR UPDATE
OF when you select the columns. Then specify WHERE CURRENT OF in the subsequent UPDATE
or DELETE statements. These clauses prevent Db2 from selecting access through an index on the
columns that are being updated, which might otherwise cause Db2 to read the same row more than
once.

For more information, see Updating previously retrieved data (Db2 Application programming and
SQL).

Diagnostics information for rowset positioned FETCH statements:
A single FETCH statement from a rowset cursor might encounter zero, one, or more conditions. If
the current cursor position is not valid for the fetch orientation, a warning occurs and the statement
terminates. If a warning or non-terminating error (such as a bind out error) occurs during the fetch of
a row, processing continues. In this case, a summary message is returned for the FETCH statement,
and additional information about each fetched row is available with the GET DIAGNOSTICS statement.
Use the GET DIAGNOSTICS statement to obtain information about all of the conditions that are
encountered for one of these FETCH statements. See “GET DIAGNOSTICS statement” on page 1949
for more information.

The SQLCA returns some information about errors and warnings that are found while fetching from a
rowset cursor. Processing stops when the end of data is encountered, or when a terminating condition
occurs. After each FETCH statement from a rowset cursor, information is returned to the program
through the SQLCA. The SQLCA is set as follows:

• SQLCODE contains the SQLCODE.
• SQLSTATE contains the SQLSTATE.
• SQLERRD1 and SQLERRD2 contain the number of rows of the result table if the cursor is positioned

on the last row of the result table.
• SQLERRD3 contains the actual number of rows returned. If SQLERRD3 is less than the number of

rows requested, an error or end-of-data condition occurred.
• SQLWARN flags are set to represent all the warnings that were accumulated while processing the

FETCH statement.

Consider the following examples, where 10 rows are fetched with a single FETCH statement.

1944 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_updateretrieveddata.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_updateretrieveddata.html

Example 1
Assume that an error is detected on the 5th row. SQLERRD3 is set to 4 for the 4 returned rows,
SQLSTATE is set to 22537, and SQLCODE is set to -354. This information is also available from
the GET DIAGNOSTICS statement (the information that is returned is generated from connected
server, which may differ across different servers). For example:

GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;
-- Results of the statement:
-- num_rows = 4 and num_cond = 1 (1 condition)

GET DIAGNOSTICS CONDITION 1 :sqlstate = RETURNED_SQLSTATE,
:sqlcode = DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;
-- Results of the statement:
-- sqlstate = 22537, sqlcode = -354, and row_num = 5

Example 2
Assume that an end-of-data condition is detected on the 6th row and that the cursor does not
have immediate sensitivity to updates. SQLERRD3 is set to 5 for the 5 returned rows, SQLSTATE
is set to 02000, and SQLCODE is set to +100. This information is also available from the GET
DIAGNOSTICS statement. For example:

GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;
-- Results of the statement:
-- num_rows = 5 and num_cond = 1 (1 condition)

GET DIAGNOSTICS CONDITION 1 :sqlstate = RETURNED_SQLSTATE,
:sqlcode = DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;
-- Results of the statement:
-- sqlstate = 02000, sqlcode = 100, and row_num = 6

Example 3
Assume that a bind error condition is detected on the 5th row, the condition is recorded, and
processing continues. Also, assume that an end-of-data condition is detected on the 8th row.
SQLERRD3 is set to 7 for the 7 returned rows, SQLSTATE is set to 02000, and SQLCODE is set
to +100. Processing to complete the FETCH statement is performed, and the bind out error that
occurred is noted. An additional SQLCODE is recorded for the bind out error. SQLCODE is set to
–354, and SQLSTATE is set to 01668. Use the GET DIAGNOSTICS statement to determine what
went on. For example:

GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;
-- Results of the statement:
-- num_rows = 7 and num_cond = 3 (3 conditions)

GET DIAGNOSTICS CONDITION 1 :sqlstate = RETURNED_SQLSTATE,
:sqlcode = RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;
-- Results of the statement:
-- sqlstate = 01668, sqlcode = -354, and row_num = 0

GET DIAGNOSTICS CONDITION 2 :sqlstate = RETURNED_SQLSTATE,
:sqlcode = RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;
-- Results of the statement:
-- sqlstate = 02000, sqlcode = 100, and row_num = 0

GET DIAGNOSTICS CONDITION 3 :sqlstate = RETURNED_SQLSTATE,
:sqlcode = RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;
-- Results of the statement:
-- sqlstate = 22003, sqlcode = -302, and row_num = 5

In some cases, Db2 returns a warning if indicator variables are provided, or an error if indicator
variables are not provided. These errors can be thought of as data mapping errors that result in a
warning if indicator variables are provided.

• If indicator variables are provided, Db2 returns all rows to the user, marking the errors in the
indicator variables. The SQLCODE and SQLSTATE contain the warning from the last data mapping

Chapter 7. Statements 1945

error. The GET DIAGNOSTICS statement can be used to retrieve information about all the data
mapping errors that have occurred.

• If some or no indicator variables are provided, all rows are returned as above until the first data
mapping error that does not have indicator variables is detected. The rows successfully fetched are
returned and the SQLSTATE, SQLCODE, and SQLWARN flags are set, if necessary. (The SQLCODE
may be 0 or a positive value).

It is possible, if a data mapping error occurs, for the positioning of the cursor to be successful. In this
case, the cursor is positioned on the rowset that encountered the data mapping error.

Consider the following examples, which try to fetch 10 rows with a single FETCH statement.

Example 1
Assume that indicators have been provided for values returned for column 1, but not for column 2.
The 5th row has a data mapping error (+802) for column 1, and the 7th row has a data mapping
error for column 2 (-802 is returned because an indicator was not provided for column 2).
SQLERRD3 is set to 6 for the 6 returned rows, SQLSTATE and SQLCODE are set to the error from
the 7th row fetched. The indicator variable for the 5th row column 1 indicates that a data mapping
error was found. This information is also available from the GET DIAGNOSTICS statement, for
example:

GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;
-- Results of the statement:
-- num_rows = 6 and num_cond = 2 (2 conditions)

GET DIAGNOSTICS CONDITION 1 :sqlstate = RETURNED_SQLSTATE,
:sqlcode = DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;
-- Results of the statement:
-- sqlstate = 01519, sqlcode = +802, and row_num = 5

GET DIAGNOSTICS CONDITION 2 :sqlstate = RETURNED_SQLSTATE,
:sqlcode = DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;
-- Results of the statement:
-- sqlstate = 22003, sqlcode = -802, and row_num = 7

The resulting cursor position is unknown.
Example 2

Assume that null indicators are provided, that rows 3 and 5 are holes, and that data exists for the
other requested rows. SQLERRD3 is set to 10 to reflect that 10 fetches were completed and that
information has been returned for the 10 requested rows. Eight rows actually contain data. For
two rows, indicator variables are set to indicate no data was returned for those rows. SQLSTATE
is set to 02502, SQLCODE is set to +222, and all null indicators for rows 3 and 5 are set to -3 to
indicate that a hole was detected. This information is also available from the GET DIAGNOSTICS
statement, for example:

GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;
-- Results of the statement:
-- num_rows = 10 and num_cond = 2 (2 conditions)

GET DIAGNOSTICS CONDITION 1 :sqlstate = RETURNED_SQLSTATE,
:sqlcode = DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;
-- Results of the statement:
-- sqlstate = 02502, sqlcode = +222, and row_num = 3

GET DIAGNOSTICS CONDITION 2 :sqlstate = RETURNED_SQLSTATE,
:sqlcode = DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;
-- Results of the statement:
-- sqlstate = 02502, sqlcode = +222, and row_num = 5

If a null indicator was not provided for any variable in a row that was a hole, an error occurs.
SQLCA usage summary:

For multiple-row-fetch, the fields of the SQLCA are set as follows:

1946 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Condition Action: Resulting Values Stored in the SQLCA Fields

Errors Data SQLSTATE SQLCODE SQLERRD3

No1 Return all requested rows 00000 0 Number of rows
requested

No1 Return data for subset of
requested rows, end of data

02000 +100 Number of rows

No1 Return all requested rows sqlstate(2) sqlcode(2) Number of rows
requested

Yes1 Return successfully fetched
rows

sqlstate(3) sqlcode(3) Number of rows

Yes1 Return successfully fetched
rows

sqlstate(4) sqlcode(4) Number of rows

Notes:

1. SQLWARN flags may be set in all cases, even if there are no other warnings or errors indicated.
The warning flags are an accumulation of all warning flags set while processing the multiple-row-
fetch.

2. sqlcode is the last positive SQLCODE, and sqlstate is the corresponding SQLSTATE value.
3. Database Server detected error. sqlcode is the first negative SQLCODE encountered, sqlstate is

the corresponding SQLSTATE value.
4. Client detected error. sqlcode is the first negative SQLCODE encountered, sqlstate is one of the

following SQLSTATEs: 22002, 22008, 22509, 22518, or 55021.

Providing indicator variables for error conditions:
If an error occurs as the result of an arithmetic expression in the SELECT list of an outer SELECT
statement (division by zero or overflow) or a numeric conversion error occurs, the result is the null
value. As in any other case of a null value, an indicator variable must be provided and the main
variable is unchanged. In this case, however, the indicator variable is set to -2. Processing of the
statement continues as if the error had not occurred. (However, this error causes a positive SQLCODE.)

If you do not provide an indicator variable, a negative value is returned in the SQLCODE field of the
SQLCA. Processing of the statement terminates when the error is encountered. No value is assigned to
the host variable or to later variables, though any values that have already been assigned to variables
remain assigned. Additionally, a -3 is returned in all indicators provided by the application when a hole
was detected for the row on a rowset positioned FETCH, and values were not returned for the row.
Processing of the statement terminates if a hole is detected and at least one indicator variable was
not provided by the application.

Alternative syntax and synonyms:
USING DESCRIPTOR can be specified as a synonym for INTO DESCRIPTOR.

Examples for FETCH

Example 1
The FETCH statement fetches the results of the SELECT statement into the application program
variables DNUM, DNAME, and MNUM. When no more rows remain to be fetched, the not found
condition is returned.

 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT DEPTNO, DEPTNAME, MGRNO FROM DSN8C10.DEPT
 WHERE ADMRDEPT = 'A00';
 EXEC SQL OPEN C1;
 DO WHILE (SQLCODE = 0);
 EXEC SQL FETCH C1 INTO :DNUM, :DNAME, :MNUM;

Chapter 7. Statements 1947

 END;
 EXEC SQL CLOSE C1;

Example 2
For an example of FETCH statements with a dynamic scrollable cursor, see “Example 8” on page
1828.

Example 3
Fetch the last 5 rows of the result table C1 using cursor C1:

FETCH ROWSET STARTING AT ABSOLUTE -5
 FROM C1 FOR 5 ROWS INTO DESCRIPTOR :MYDESCR;

Example 4
Fetch 6 rows starting at row 10 for cursor CURS1, and fetch the data into three host-variable-arrays:

FETCH ROWSET STARTING AT ABSOLUTE 10
 FROM CURS1 FOR 6 ROWS
 INTO :hav1, :hva2, :hva3;

Alternatively, a descriptor could have been specified in an INTO DESCRIPTOR clause where the
information in the SQLDA reflects the data types of the host-variable-arrays:

FETCH ROWSET STARTING AT ABSOLUTE 10
 FROM CURS1 FOR 6 ROWS
 INTO DESCRIPTOR :MYDESCR;

Example 5

Suppose that the following array type, array variable, and table have been defined.

CREATE TYPE INTARRAY AS INTEGER ARRAY[100];
CREATE TABLE T1 (COL1 CHAR(10), COL2 INT);

Use an array variable as an output target for a FETCH statement. The array variable is specified in the
INTO clause of the FETCH statement.

CREATE PROCEDURE PROCESSINTARRAY (OUT INTOUTARRAY INTARRAY)
BEGIN
 DECLARE INTA INTARRAY;
 DECLARE INTB INTARRAY;
 DECLARE INTV INTEGER DEFAULT 1;
 DECLARE STMT CHAR(100);
 DECLARE C2 CURSOR FOR S1;
--
-- Initialize the array
--
 SET INTA = ARRAY[1,INTEGER(2),3+0,4,5,6] ;
--
-- Use dynamic SQL with an array parameter marker and a parameter marker
-- containing the index to retrieve the value from the array parameter.
-- The array is referenced in a predicate.
--
 SET STMT = 'SELECT COL1 FROM T1 WHERE COL2 = CAST(? AS INTARRAY)[?]';
 PREPARE S1 FROM STMT;
 OPEN C2 USING INTA, INTV;
 FETCH C2 INTO INTB ; -- INTB is an array variable that is used
 -- as a target for the fetch statement.
 CLOSE C2;
SET INTOUTARRAY=INTB;
END

1948 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

FREE LOCATOR statement
The FREE LOCATOR statement removes the association between a LOB locator variable and its value.

Invocation for FREE LOCATOR
This statement can only be embedded in an application program. It cannot be issued interactively. It is
an executable statement that can be dynamically prepared. However, the EXECUTE statement with the
USING clause must be used to execute the prepared statement. FREE LOCATOR cannot be used with the
EXECUTE IMMEDIATE statement. It must not be specified in Java.

Authorization for FREE LOCATOR
None required.

Syntax for FREE LOCATOR

FREE LOCATOR

,

host-variable

Description for FREE LOCATOR
host-variable, ...

Identifies one or more locator variables that must be declared in accordance with the rules for
declaring locator variables. The locator variable type must be a binary large object locator, a character
large object locator, or a double-byte character large object locator.

The host-variable must currently have a locator assigned to it. That is, a locator must have been
assigned during this unit of work (by a FETCH, SELECT INTO, assignment statement, SET host-variable
statement, or VALUES INTO statement) and must not subsequently have been freed (by a FREE
LOCATOR statement); otherwise, an error is returned.

If more than one locator is specified and an error is returned on one of the locators, it is possible that
some locators have been freed and others have not been freed.

Example for FREE LOCATOR

Assume that the employee table contains columns RESUME, HISTORY, and PICTURE and that locators
have been established in a program to represent the column values. Free the CLOB locator variables
LOCRES and LOCHIST, and the BLOB locator variable LOCPIC.

 EXEC SQL FREE LOCATOR :LOCRES, :LOCHIST, :LOCPIC

GET DIAGNOSTICS statement
The GET DIAGNOSTICS statement provides diagnostic information about the last SQL statement (other
than a GET DIAGNOSTICS statement) that was executed. This diagnostic information is gathered as the
previous SQL statement is executed. Some of the information available through the GET DIAGNOSTICS
statement is also available in the SQLCA.

Invocation for GET DIAGNOSTICS
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared.

Chapter 7. Statements 1949

Authorization for GET DIAGNOSTICS
None required.

Syntax for GET DIAGNOSTICS

GET
CURRENT

STACKED

DIAGNOSTICS statement-information

condition-information

combined-information

statement-information:

statement-information
,

variable1 = statement-information-item-name

variable1 = DB2_GET_DIAGNOSTICS_DIAGNOSTICS

variable1 = DB2_SQL_NESTING_LEVEL

statement-information-item-name
,

DB2_LAST_ROW

DB2_NUMBER_PARAMETER_MARKERS

DB2_NUMBER_RESULT_SETS

DB2_NUMBER_ROWS

DB2_RETURN_STATUS

DB2_SQL_ATTR_CURSOR_HOLD

DB2_SQL_ATTR_CURSOR_ROWSET

DB2_SQL_ATTR_CURSOR_SCROLLABLE

DB2_SQL_ATTR_CURSOR_SENSITIVITY

DB2_SQL_ATTR_CURSOR_TYPE

MORE

NUMBER

ROW_COUNT

condition-information:

condition-information
CONDITION variable2

integer

,

variable3 = condition-information-item-name

connection-information-item-name

1950 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

condition-information-item-name
CATALOG_NAME

CONDITION_NUMBER

CURSOR_NAME

DB2_ERROR_CODE1

DB2_ERROR_CODE2

DB2_ERROR_CODE3

DB2_ERROR_CODE4

DB2_INTERNAL_ERROR_POINTER

DB2_LINE_NUMBER

DB2_MESSAGE_ID

DB2_MODULE_DETECTING_ERROR

DB2_ORDINAL_TOKEN_n

DB2_REASON_CODE

DB2_RETURNED_SQLCODE

DB2_ROW_NUMBER

DB2_SQLERRD_SET

DB2_SQLERRD1

DB2_SQLERRD2

DB2_SQLERRD3

DB2_SQLERRD4

DB2_SQLERRD5

DB2_SQLERRD6

DB2_TOKEN_COUNT

MESSAGE_TEXT

RETURNED_SQLSTATE

SERVER_NAME

connection-information-item-name
DB2_AUTHENTICATION_TYPE

DB2_AUTHORIZATION_ID

DB2_CONNECTION_STATE

DB2_CONNECTION_STATUS

DB2_ENCRYPTION_TYPE

DB2_SERVER_CLASS_NAME

DB2_PRODUCT_ID

combined-information:

combined-information

Chapter 7. Statements 1951

variable4 = ALL

,

STATEMENT
1

CONDITION

CONNECTION

2

variable5

integer

Notes:
1 STATEMENT can only be specified once.
2 CONDITION and CONNECTION can only be specified once if variable5 or integer is not also specified.

Description for GET DIAGNOSTICS
Diagnostic information is provided in three main areas: statement information, condition information, and
combined information. After the execution of an SQL statement, information about the execution of the
statement is provided as statement information, and at least one instance of condition information is
provided. The number of instances of the condition information is indicated by the NUMBER item that
is available in the statement information. Combined information contains a text representation of all the
information gathered about the execution of the SQL statement.

The diagnostic information that is provided is specific to the server. If you are connected to a server other
than Db2 for z/OS, see that product's documentation for the diagnostic information that is returned.

CURRENT
Specifies that information is to be returned from the first diagnostics area. It corresponds to
the previous SQL statement that was executed that was not a GET DIAGNOSTICS or compound
statement. CURRENT is the default.

STACKED
Specifies that information is to be returned from the stacked diagnostics area. The stacked
diagnostics area is only available within a handler in native SQL procedures, compiled SQL functions,
and triggers. The stacked diagnostics area corresponds to the previous SQL statement (that was not a
GET DIAGNOSTICS or compound statement) that was executed before the handler was entered. If the
GET DIAGNOSTICS statement is the first statement within a handler, the current diagnostics area and
the stacked diagnostics area contain the same diagnostics information.

statement-information
Provides information about the last SQL statement executed.

variable1
Identifies a variable described in the program in accordance with the rules for declaring variables.
The data type of the variable must be the data type as specified in Data types for GET DIAGNOSTICS
items.

The variable is assigned the value of the specified statement information item. If the
value is truncated when assigning it to the variable, a warning is returned and the
GET_DIAGNOSTICS_DIAGNOSTICS item of the diagnostics area is updated with the details of this
condition. If a DIAGNOSTICS item is not set, the variable is set to a default value, based on its data
type: 0 for an exact numeric field, an empty string for a VARCHAR field, and blanks for a CHAR field.

DB2_GET_DIAGNOSTICS_DIAGNOSTICS
Contains textual information about errors or warnings that might have occurred in the execution of the
GET DIAGNOSTICS statement. The format of the information is similar to what would be returned by a
GET DIAGNOSTICS :hv = ALL statement.

DB2_SQL_NESTING_LEVEL
Identifies the current level of nesting or recursion that is in effect when the GET DIAGNOSTICS
statement was executed. Each level of nesting corresponds to a nested or recursive invocation of

1952 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

a compiled SQL function, native SQL procedure, or trigger. If the GET DIAGNOSTICS statement is
executed outside of a level of nesting, the value of zero is returned.

statement-information-item-name:
DB2_LAST_ROW

For a multiple-row FETCH statement, contains a value of +100 if the last row currently in the
table is in the set of rows that have been fetched. For cursors that are not sensitive to updates,
there would be no need to do a subsequent FETCH, because the result would be an end-of-data
indication. For cursors that are sensitive to updates, a subsequent FETCH may return more data if
a row had been inserted before the FETCH was executed. For statements other than multiple-row
FETCH statements, or for multiple-row FETCH statements that do not contain the last row, this
variable contains the value 0.

An end of data warning might not occur and DB2_LAST_ROW might not contain +100 when the
number of rows returned is equal to the number of rows requested and the last row of data
returned is the last row of data.

DB2_NUMBER_PARAMETER_MARKERS
For a PREPARE statement, contains the number of parameter markers in the prepared statement.
Otherwise, or if the server only returns an SQLCA, the value zero is returned.

DB2_NUMBER_RESULT_SETS
For a CALL statement, contains the actual number of result sets returned by the procedure.
Otherwise, or if the server only returns an SQLCA, the value zero is returned.

DB2_NUMBER_ROWS
If the previous SQL statement was an OPEN or a FETCH that caused the size of the result table
to be known, returns the number of rows in the result table. For SENSITIVE DYNAMIC cursors,
this value can be thought of as an approximation because rows that are inserted and deleted will
affect the next retrieval of this value. If the previous SQL statement was a PREPARE statement,
returns the estimated number of rows in the result table for the prepared statement. Otherwise, or
if the server only returns an SQLCA, the value zero is returned.

DB2_RETURN_STATUS
Identifies the status value returned from the stored procedure associated with the previously
executed SQL statement, provided that the statement was a CALL statement that invoked a
procedure that returns a status. Otherwise, or if the server only returns an SQLCA, the value zero is
returned.

DB2_SQL_ATTR_CURSOR_HOLD
For an ALLOCATE or OPEN statement, indicates whether a cursor can be held open across multiple
units of work.

• N indicates that this cursor does not remain open across multiple units of work.
• Y indicates that this cursor remains open across multiple units of work.

Otherwise, a blank is returned.
DB2_SQL_ATTR_CURSOR_ROWSET

For an ALLOCATE or OPEN statement, indicates whether or not a cursor can be accesses using
rowset positioning.

• N indicates that this cursor supports only row positioned operations.
• Y indicates that this cursor supports rowset positioned operations.

Otherwise, a blank is returned.
DB2_SQL_ATTR_CURSOR_SCROLLABLE

For an ALLOCATE or OPEN statement, indicates whether or not a cursor can be scrolled forward
and backward.

• N indicates that this cursor is not scrollable.
• Y indicates that this cursor is scrollable.

Otherwise, a blank is returned.

Chapter 7. Statements 1953

DB2_SQL_ATTR_CURSOR_SENSITIVITY
For an ALLOCATE or OPEN statement, indicates whether or not a cursor does or does not show
updates to cursor rows made by other connections.

• I indicates insensitive.
• S indicates sensitive.

Otherwise, a blank is returned.
DB2_SQL_ATTR_CURSOR_TYPE

For an ALLOCATE or OPEN statement, indicates the type of cursor, whether a cursor type is
forward-only, static, or dynamic.

• F indicates a forward cursor.
• D indicates a dynamic cursor.
• S indicates a static cursor.

Otherwise, a blank is returned.
MORE

Indicates whether some of the warning and errors from the previous SQL statement were stored
or discarded.

• N indicates that all the warnings and errors from the previous SQL statement are stored in the
diagnostic area.

• Y indicates that some of the warnings and errors from the previous SQL statement were
discarded because the amount of storage needed to record warnings and errors exceeded
65535 bytes.

NUMBER
Returns the number of errors and warnings detected by the execution of the previous SQL
statement, other than a GET DIAGNOSTICS statement, that have been stored in the diagnostics
area. If the previous SQL statement returned an SQLSTATE of 00000 or no previous SQL statement
has been executed, the number returned is one.

The GET DIAGNOSTICS statement itself may return information via the SQLSTATE parameter,
but does not modify the previous contents of the diagnostics area, except for the
DB2_GET_DIAGNOSTICS_DIAGNOSTICS item.

ROW_COUNT
Identifies the number of rows associated with the previous SQL statement that was executed.

If the previous SQL statement is a DELETE, INSERT, UPDATE, or MERGE statement, ROW_COUNT
indicates the number of rows that are qualified to be deleted, inserted, or updated by that
statement, excluding rows that are affected by triggers or referential integrity constraints. The
count does not include rows that are inserted as a result of processing a FOR PORTION OF clause
for in an SQL data change statement.

For the OPEN of a cursor for a SELECT with a data change statement, or a SELECT INTO statement,
SQLERRD(3) contains the number of rows affected by the embedded data change statement. The
value is 0 if the SQL statement fails, indicating that all changes made in executing the statement
canceled.

A value of -1 indicates a mass delete from a table in a segmented table space and the DELETE
statement did not include selection criteria, or a truncate operation. If the delete was against a
view, then neither the DELETE statement nor the definition of the view included selection criteria.

For a REFRESH TABLE statement, SQLERRD(3) contains the number of rows inserted into the
materialized query table.

If the previous SQL statement is a multiple-row FETCH, ROW_COUNT identifies the number of
rows fetched.

Otherwise, or if the server only returns an SQLCA, the value zero is returned.

1954 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

condition-information
Assigns the values of the specified condition information to the associated variables. The variable
specified must be of the data type that is compatible with the data type of the specified diagnostic-ID
or an error occurs. If the value of the condition is truncated when assigning it to the variable, an
error occurs. If an indicator variable was provided, the length of the value is returned in the indicator
variable.

If a DIAGNOSTICS item is not set, then the variable is set to a default value, based on the data type
of the item. The specific value will be 0 for a numeric field, an empty string for a VARCHAR field, and
blanks for a CHAR field.

variable2 or integer
Identifies a variable described in the program in accordance with the rules for declaring variables.
The value identifies the diagnostic for which information is requested. Each diagnostic that occurs
while executing an SQL statement is assigned an integer. The value 1 indicates the first diagnostic,
2 indicates the second diagnostic, and so on. If the value is 1, the diagnostic information that is
retrieved corresponds to the condition that is indicated by the SQLSTATE value actually returned
by the execution of the previous SQL statement (other than a GET DIAGNOSTICS statement). The
variable specified must be an integer data type, or an error occurs. An indicator variable is not allowed
when this is a host variable; an error occurs. If a value is specified that is less than or equal to zero, or
greater than the number of available diagnostics, an error occurs.

variable3
Identifies a variable described in the program in accordance with the rules for declaring variables. The
data type of the variable must be the data type as specified in Data types for GET DIAGNOSTICS items
for the indicated condition-information item.

condition-information-item-name
CATALOG_NAME

If the returned SQLSTATE is any one of the following values, the constraint that caused the error
is a referential, check, or unique constraint. The location (RDB) name of the server that generated
the condition is returned.

• Class 09 (Triggered Action Exception),
• Class 23 (Integrity Constraint Violation)
• Class 27 (Triggered Data Change Violation)
• 40002 (Transaction Rollback - Integrity Constraint Violation)
• 40004 (Transaction Rollback - Triggered Action Exception)

If the returned SQLSTATE is class 42 (Syntax Error or Access Rule Violation), the server name of
the table that caused the error is returned.

If the returned SQLSTATE is class 44 (WITH CHECK OPTION Violation), the server name of the
view that caused the error is returned.

Otherwise, the empty string is returned.

The actual server name may be different than the server name specified, either implicitly or
explicitly, on the CONNECT statement because of the use of aliases or synonyms.

CONDITION_NUMBER
Returns the number of the diagnostic returned.

CURSOR_NAME
If the returned SQLSTATE is class 24 (Invalid Cursor State), the name of the cursor is returned.
Otherwise, the empty string is returned.

DB2_ERROR_CODE1
Returns an internal error code. Otherwise, or if the server only returns an SQLCA, the value 0 is
returned.

Chapter 7. Statements 1955

DB2_ERROR_CODE2
Returns an internal error code. Otherwise, or if the server only returns an SQLCA, the value 0 is
returned.

DB2_ERROR_CODE3
Returns an internal error code. Otherwise, or if the server only returns an SQLCA, the value 0 is
returned.

DB2_ERROR_CODE4
Returns an internal error code. Otherwise, or if the server only returns an SQLCA, the value 0 is
returned.

DB2_INTERNAL_ERROR_POINTER
For some errors, this is a negative value that is an internal error pointer. Otherwise, the value 0 is
returned.

DB2_LINE_NUMBER
Returns the line number where an error is encountered in parsing a dynamic statement. Also
returns the line number where an error is encountered in parsing, binding, or executing a
CREATE or ALTER statement for a native SQL procedure, compiled SQL function, or trigger.
DB2_LINE_NUMBER also returns the line number when a CALL statement invokes a native SQL
procedure and the procedure returns with an error. This information is not returned for an external
SQL procedure.

This value will only be meaningful if the statement source contains new line control characters.

DB2_MESSAGE_ID
Corresponds to the message that is contained in the MESSAGE_TEXT diagnostic item (for
example, DSNT102I or DSNU180I).

DB2_MODULE_DETECTING_ERROR
Returns an identifier indicating which module detected the error. For a SIGNAL statement that is
issued from a routine, the value 'ROUTINE' is returned. Otherwise, the string 'DSN ' is returned.

DB2_ORDINAL_TOKEN_n
Returns the nth token. n must be a value 1–100. For example, DB2_ORDINAL_TOKEN_1 would
return the value of the first token, DB2_ORDINAL_TOKEN_2 the second token, and so on. A
numeric value for a token is converted to characters before being returned. If there is no value for
the token, or if the server only returns an SQLCA, an empty string is returned.

DB2_REASON_CODE
Contains the reason code for errors that have a reason code token in the message text. Otherwise,
the value zero is returned.

DB2_RETURNED_SQLCODE
Returns the SQLCODE for the specified diagnostic.

DB2_ROW_NUMBER
For a statement that involves multiple rows, returns the number of the row where the condition
was encountered, when such information is available and applicable. If SQLCODE +1 or +20237 is
returned, DB2_ROW_NUMBER returns a value of 0.

DB2_SQLERRD_SET
A value of Y indicates that the DB2_SQLERRD1 through DB2_SQLERRD items might be set. These
items are set only when communicating with a server that returns the SQLCA SQL communications
area and not the new diagnostics area. Otherwise, a blank is returned.

DB2_SQLERRD1
Returns the value of sqlerrd(1) from the SQLCA that is returned by the server. Otherwise, the value
zero is returned.

DB2_SQLERRD2
Returns the value of sqlerrd(2) from the SQLCA that is returned by the server. Otherwise, the value
zero is returned.

1956 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

DB2_SQLERRD3
Returns the value of sqlerrd(3) from the SQLCA that is returned by the server. Otherwise, the value
zero is returned.

DB2_SQLERRD4
Returns the value of sqlerrd(4) from the SQLCA that is returned by the server. Otherwise, the value
zero is returned.

DB2_SQLERRD5
Returns the value of sqlerrd(5) from the SQLCA that is returned by the server. Otherwise, the value
zero is returned.

DB2_SQLERRD6
Returns the value of sqlerrd(6) from the SQLCA that is returned by the server. Otherwise, the value
zero is returned.

DB2_TOKEN_COUNT
Returns the number of tokens available for the specified diagnostic ID.

MESSAGE_TEXT
Returns the message text that is associated with the SQLCODE. This is the short text, including
substituted tokens. The message text does not contain the message number. When the SQLCODE
is 0, the empty string is returned, even if the RETURNED_SQLSTATE value indicates a warning
condition.

RETURNED_SQLSTATE
Returns the SQLSTATE for the specified diagnostic.

SERVER_NAME
If the previous SQL statement is a CONNECT, DISCONNECT, or SET CONNECTION statement,
returns the name of the server specified in the previous statement is returned. Otherwise, the
name of the server where the statement executes is returned.

connection-information-item-name
Provides information about the last SQL statement executed if it was a CONNECT statement.
DB2_AUTHENTICATION_TYPE

Contains an authentication type value of:

• ‘S' for a server authentication
• ‘C' for client authentication
• ‘T' for trusted server authentication
• Otherwise, or if the server only returns an SQLCA, a blank is returned

DB2_AUTHORIZATION_ID
Authorization ID used by connected server. Because of user ID translation and authorization exits,
the local user ID may not be the authorized ID used by the server.

DB2_CONNECTION_STATE
Contains the connection state:

• -1 if the connection is unconnected
• 1 if the connection is connected

Otherwise, or if the server only returns an SQLCA, the value zero is returned.
DB2_CONNECTION_STATUS

Contains a value of:

• 1 if committable updates can be performed on the connection for this unit of work
• 2 if no committable updates can be performed on the connection for this unit of work

Otherwise, or if the server only returns an SQLCA, the value zero is returned.
DB2_SERVER_CLASS_NAME

For a CONNECT or SET CONNECTION statement, contains one of the following values:

Chapter 7. Statements 1957

• QAS for Db2 for i
• QDB2 forDb2 for z/OS
• QDB2/2 for Db2 for OS/2
• QDB2/6000 for Db2 for AIX®

• QDB2/6000 PE for Db2 for AIX Parallel Edition
• QDB2/AIX64 for Db2 for AIX 64-bit
• QDB2/HPUX for Db2 for HP-UX
• QDB2/HP64 for Db2 for HP-UX 64-bit
• QDB2/LINUX for Db2 for Linux, UNIX, and Windows
• QDB2/LINUX390 for Db2 for Linux, UNIX, and Windows
• QDB2/LINUXIA64 for Db2 for Linux, UNIX, and Windows
• QDB2/LINUXPPC forDb2 for Linux, UNIX, and Windows
• QDB2/LINUXPPC64 for Db2 for Linux, UNIX, and Windows
• QDB2/LINUXZ64 for Db2 for Linux, UNIX, and Windows
• QDB2/NT for Db2 for Linux, UNIX, and Windows
• QDB2/NT64 for Db2 for Linux, UNIX, and Windows
• QDB2/PTX for Db2 for NUMA-Q®

• QDB2/SCO for Db2 for SCO UnixWare
• QDB2/SGI for Db2 for Silicon Graphics
• QDB2/SNI for Db2 for Siemens Nixdorf
• QDB2/SUN for Db2 for SUN Solaris
• QDB2/SUN64 for Db2 for SUN Solaris 64-bit
• QDB2/Windows 95 for Db2 for Linux, UNIX, and Windows
• QSQLDS/VM for Db2 server for VSE and VM
• QSQLDS/VSE for Db2 server for VSE and VM

Otherwise, the empty string is returned.
DB2_ENCRYPTION_TYPE

The level of encryption for the connection:

• A indicates only the authentication tokens (authid and password) are encrypted.
• D indicates all data is encrypted for the connection.
• Otherwise, a blank is returned.

DB2_PRODUCT_ID
Returns a product signature. If the application server is an IBM relational database product, the
form is pppvvrrm.

combined-information
Provides a text representation of all the information gathered about the execution of the SQL
statement.
ALL

Indicates that all diagnostic items that are set for the last SQL statement executed are to be
combined into one string. The format of the string is a semicolon separated list of all of the
available diagnostic information in the form: item-name[(condition-number)]=value-converted-to-
character...; as shown in the following example:

NUMBER=1;RETURNED_SQLSTATE=02000;DB2_RETURNED_SQLCODE=+100;

1958 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

variable4
Identifies a variable described in the program in accordance with the rules for declaring variables.
The data type of the variable must be VARCHAR. If the length of variable4 is not sufficient to
hold the full returned diagnostic string, the string is truncated, a warning is returned, and the
GET_DIAGNOSTICS_DIAGNOSTICS item of the diagnostics area is updated with the details of this
condition.

STATEMENT
Indicates that all statement-information-item-name diagnostic items that are set for the last SQL
statement executed should be combined into one string. The format is the same as described for
the ALL option.

CONDITION
Indicates that all condition-information-item-name diagnostic items that are set for the last SQL
statement executed should be combined into one string. If variable5 or integer is supplied after
CONDITION, the format is the same as described above for the ALL option. If variable5 or integer
is not supplied, the format includes a condition number entry at the beginning of the information
for that condition in the form:

CONDITION_NUMBER=x;item-name=value-converted-to-character;... where x is the number of
the condition, as shown in the following example:

CONDITION_NUMBER=1;RETURNED_SQLSTATE=02000;RETURNED_SQLCODE=100;
 CONDITION_NUMBER=2;RETURNED_SQLSTATE=01004;

CONNECTION
Indicates that all connection-information-item-name diagnostic items that are set for the last SQL
statement executed should be combined into one string. If variable5 or integer is supplied after
CONNECTION, the format is the same as described for the ALL option. If variable5 or integer is not
supplied, then the format includes a condition number entry at the beginning of the information
for that condition in the form:

CONNECTION_NUMBER=x;item-name=value-converted-to-character;... where x is the number of
the connection, as shown in the following example:

CONNECTION_NUMBER=1;CONNECTION_NAME=SVL1;DB2_PRODUCT_ID=DSN12015;

variable5 or integer
Identifies a variable described in the program in accordance with the rules for declaring variables.
The value identifies the diagnostic for which ALL CONDITION or ALL CONNECTION information is
requested. The variable specified must be an integer data type or an error occurs. An indicator
variable is not allowed when this is a host variable; an error occurs. If a value is specified that is
less than or equal to zero or greater than the number of available diagnostics, an error occurs.

Notes for GET DIAGNOSTICS
Effect of the statement in a native SQL routine or trigger:

A successful GET DIAGNOSTICS statement does not change the contents of the diagnostics area,
except for DB2_GET_DIAGNOSTICS_DIAGNOSTICS.

If you want information about an error, the GET DIAGNOSTICS statement must be the first executable
statement specified in the handler that will handle the error condition.

If you want information about a warning and a handler will get control for the warning condition, the
GET DIAGNOSTICS statement must be the first executable statement specified in that handler.

If you want information about a warning and a handler will not get control for the warning
condition, the GET DIAGNOSTICS statement must be the next statement executed after that previous
statement.

Considerations for the SQLSTATE and SQLCODE SQL variables
A successful GET DIAGNOSTICS statement does not change the value of the SQLSTATE and SQLCODE
SQL variables (as used in SQL functions and SQL procedures).

Chapter 7. Statements 1959

Data types for items:
When a diagnostic item is assigned to a variable, SQL variable, or SQL parameter, the data type of the
target must be compatible with the data type of the requested diagnostic item.

Data types for GET DIAGNOSTICS items

Table 239. Data types for GET DIAGNOSTICS items

Type of information Item Data type

Statement Information DB2_GET_DIAGNOSTICS_DIAGNOSTICS VARCHAR(32672)

DB2_LAST_ROW INTEGER

DB2_NUMBER_PARAMETER_MARKERS INTEGER

DB2_NUMBER_RESULT_SETS INTEGER

DB2_NUMBER_ROWS DECIMAL(31,0)

DB2_RETURN_STATUS INTEGER

DB2_SQL_ATTR_CURSOR_HOLD CHAR(1)

DB2_SQL_ATTR_CURSOR_ROWSET CHAR(1)

DB2_SQL_ATTR_CURSOR_SCROLLABLE CHAR(1)

DB2_SQL_ATTR_CURSOR_SENSITIVITY CHAR(1)

DB2_SQL_ATTR_CURSOR_TYPE CHAR(1)

MORE CHAR(1)

NUMBER INTEGER

ROW_COUNT DECIMAL(31,0)

Statement Information DB2_SQL_NESTING_LEVEL INTEGER

1960 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 239. Data types for GET DIAGNOSTICS items (continued)

Type of information Item Data type

Condition Information CATALOG_NAME VARCHAR(128)

CONDITION_NUMBER INTEGER

CURSOR_NAME VARCHAR(128)

DB2_ERROR_CODE1 INTEGER

DB2_ERROR_CODE2 INTEGER

DB2_ERROR_CODE3 INTEGER

DB2_ERROR_CODE4 INTEGER

DB2_INTERNAL_ERROR_POINTER INTEGER

DB2_LINE_NUMBER INTEGER

DB2_MESSAGE_ID CHAR(10)

DB2_MODULE_DETECTING_ERROR CHAR(8)

DB2_ORDINAL_TOKEN_n VARCHAR(515)

DB2_REASON_CODE INTEGER

DB2_RETURNED_SQLCODE INTEGER

DB2_ROW_NUMBER DECIMAL(31,0)

DB2_SQLERRD1 INTEGER

DB2_SQLERRD2 INTEGER

DB2_SQLERRD3 INTEGER

DB2_SQLERRD4 INTEGER

DB2_SQLERRD5 INTEGER

DB2_SQLERRD6 INTEGER

DB2_TOKEN_COUNT INTEGER

MESSAGE_TEXT VARCHAR(32672)

RETURNED_SQLSTATE CHAR(5)

SERVER_NAME VARCHAR(128)

Connection
Information

DB2_AUTHENTICATION_TYPE CHAR(1)

DB2_AUTHORIZATION_ID VARCHAR(128)

DB2_CONNECTION_STATE INTEGER

DB2_CONNECTION_STATUS INTEGER

DB2_ENCRYPTION_TYPE CHAR(1)

DB2_PRODUCT_ID VARCHAR(8)

DB2_SERVER_CLASS_NAME CHAR(128)

Combined Information ALL VARCHAR(32672)

Chapter 7. Statements 1961

DRDA considerations
The GET DIAGNOSTICS statement is supported from a current Db2 for z/OS client, regardless of the
level of the server (a Db2 for z/OS Version 7 or a Db2 for Windows Version 7, for example). When the
application is connected to servers that do not support the Open Group Version 3 DRDA standard, the
diagnostic information that is returned by the servers is available in the condition information.

Alternative syntax and synonyms:
To provide compatibility with previous releases of Db2 or other products in the Db2 family, Db2
supports the following keywords:

• RETURN_STATUS as a synonym for DB2_RETURN_STATUS
• EXCEPTION as a synonym for CONDITION

Examples for GET DIAGNOSTICS
Example 1

In an application, use the GET DIAGNOSTICS statement to determine how many rows were updated.

long rcount;
EXEC SQL UPDATE T1 SET C1 = C1 + 1;
EXEC SQL GET DIAGNOSTICS :rcount = ROW_COUNT;

After execution of this code segment, rcount will contain the number of rows that were updated.

Example 2

In an application, use the GET DIAGNOSTICS statement to handle multiple SQL Errors.

long numerrors, counter;
char retsqlstate[5];
long hva[5];
EXEC SQL INSERT INTO T1 FOR 5 ROWS VALUES (:hva) NOT ATOMIC
 CONTINUE ON SQLEXCEPTION;
EXEC SQL GET DIAGNOSTICS :numerrors = NUMBER;
for (i=1;i < numerrors;i++)
 {
 EXEC SQL GET DIAGNOSTICS CONDITION :i :retsqlstate = RETURNED_SQLSTATE;
...

Execution of this code segment sets and prints retsqlstate with the SQLSTATE for each error that was
encountered in the previous SQL statement.

Example 3

Retrieve information about a connection.

EXEC SQL GET DIAGNOSTICS CONDITION :HV_PRODUCT_ID = DB2_PRODUCT_ID;

Example 4

Use the GET DIAGNOSTICS statement to retrieve information that is similar to what is returned in the
SQLCA

EXEC SQL GET DIAGNOSTICS CONDITION 1
 :dasqlcode = DB2_RETURNED_SQLCODE,
 :datokencnt = DB2_TOKEN_COUNT,
 :datoken1 = DB2_ORDINAL_TOKEN_1,
 :datoken2 = DB2_ORDINAL_TOKEN_2,
 :datoken3 = DB2_ORDINAL_TOKEN_3,
 :datoken4 = DB2_ORDINAL_TOKEN_4,
 :datoken5 = DB2_ORDINAL_TOKEN_5,
 :dasqlerrd1b = DB2_MESSAGE_ID,
 :damsgtext = MESSAGE_TEXT,
 :dasqlerrp = DB2_MODULE_DETECTING_ERROR,
 :dasqlstate = RETURNED_SQLSTATE;

1962 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 5

:Specify the STACKED keyword on a GET DIAGNOSTICS statement that is used within a handler to
access information in the diagnostics area that caused the handler to be activated:

 CREATE PROCEDURE divide2 (IN numerator INTEGER,
 IN denominator INTEGER,
 OUT divide_result INTEGER,
 OUT divide_error VARCHAR(70))
 LANGUAGE SQL
 BEGIN
 DECLARE msg_text CHAR(70) DEFAULT '';
 DECLARE divide_error CHAR(70) DEFAULT '';

 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 BEGIN
 INSERT; -- insert row into a log table

 -- get diagnostic information for the INSERT statement
 GET CURRENT DIAGNOSTICS CONDITION 1 msg_text = MESSAGE_TEXT;

 -- get information about condition that activated the handler
 GET STACKED DIAGNOSTICS CONDITION 1 divide_error = MESSAGE_TEXT;
 END;

 SET divide_result = numerator/denominator;
 END;

The first GET DIAGNOSTICS statement obtains diagnostic information about the INSERT statement.

The second GET DIAGNOSTICS statement specifies the STACKED keyword. The use of the STACKED
keyword allows access the stacked diagnostics area which contains the diagnostic information for
the condition that caused the handler to be activated. The information about the original condition is
still accessible within the handler even after another statement has been issued, such as the INSERT
statement in the example.

Example 6: The following application logs information whenever a routine is invoked directly by an
application rather than indirectly by another routine. The application uses the GET DIAGNOSTICS
statement that specifies DB2_SQL_NESTING_LEVEL to obtain the current nesting level, and invokes
the LOG_INVOCATION procedure if the nesting level is 1:

CREATE PROCEDURE TEST
 MODIFIES SQL DATA
 LANGUAGE SQL
 BEGIN
 DECLARE NESTING_LEVEL INT DEFAULT 0;

 GET DIAGNOSTICS NESTING_LEVEL = DB2_SQL_NESTING_LEVEL;

 --
 -- If routine is invoked at nesting level 1,
 -- invoke a routine to log the invocation.
 --
 IF (NESTING_LEVEL = 1) THEN
 CALL LOG_INVOCATION();
 END IF;

 --
 -- Remainder of procedure logic
 --
 ...
END

GRANT statement
The Db2 GRANT statement grants privileges to authorization IDs. There is a separate form of the
statement for each of these classes of privilege:

• Collection
• Database
• Function or stored procedure

Chapter 7. Statements 1963

• Package
• Plan
• Schema
• Sequence
• System
• Table or view
• Type or JAR
• Variable
• Use

The applicable objects are always at the current server. The grants are recorded in the current server's
catalog.

Invocation for GRANT
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

If the authorization mechanism was not activated when the Db2 subsystem was installed, an error
condition occurs.

Authorization for GRANT
To grant a privilege P, the privilege set must include one of the following:

• The privilege P WITH GRANT OPTION
• Ownership of the object on which P is a privilege
• SECADM authority

Note: If installation parameter SEPARATE SECURITY is NO, SYSADM authority has implicit SECADM
authority.

• ACCESSCTRL authority

The presence of ACCESSCTRL authority in the privilege set allows the granting of all authorities except:

– System DBADM
– CREATE_SECURE_OBJECT privilege
– DATAACCESS
– ACCESSCTRL

Note: If installation parameter SEPARATE SECURITY is NO, SYSCTRL authority has implicit
ACCESSCTRL authority that allows the granting of all privileges except:

- DBADM on databases
- DELETE, INSERT, SELECT, and UPDATE on user tables or views
- EXECUTE on plans, packages, functions, or stored procedures
- PACKADM on collections
- SYSADM authority
- USAGE on distinct types, JARs, and sequences
- READ, WRITE on global variables

• Installation SYSOPR authority (when the current SQLID of the process is set to SYSINSTL)

The Installation SYSOPR authority with the current SQLID set to SYSINSTL allows the granting of the
following privileges:

1964 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

– All database, table, and table space privileges on objects in database DSNDB04 and system
databases DSNRGFDB, DSNRLST, DSNOPTDB, DSNMDCDB, DSNADMDB, DSNATPDB, SN5JSDB,
DSNMQDB, SYSIBMTA, SYSIBMTS, and DSNXSR

– The USE privilege on buffer pools and storage groups
– All privileges on plans that begin with 'DSN'
– All privileges on packages whose collection-ID and package-name begin with 'DSN'
– The EXECUTE privilege on system-defined routines.

To grant the CREATE_SECURE_OBJECT system privilege, the privileges that are held by the authorization
ID of the statement must include SECADM authority.

Except for views, the GRANT option for privileges on a table is also inherent in DBADM authority for
its database, provided DBADM authority was acquired with the GRANT option. See “CREATE VIEW
statement” on page 1812 for a description of the rules that apply to views.

If the statement is embedded in an application program, the privilege set is the privileges that are held
by the owner of the plan or package. The owner can be a role. If the statement is dynamically prepared,
the privilege set is the privileges that are held by the SQL authorization ID of the process. However, if the
process is running in a trusted context that is defined with the ROLE AS OBJECT OWNER CLAUSE, the
privilege set is the privileges that are held by the role in effect.

Syntax for GRANT

GRANT authorization-specification TO

,

authorization-name

ROLE role-name

PUBLIC

WITH GRANT OPTION

Description for GRANT
authorization-specification

Specifies one or more privileges for the class of privilege. The same privilege must not be specified
more than once.

TO
Specifies to what authorization IDs the privileges are granted.
authorization-name,...

Lists one or more authorization IDs.
ROLE role-name

Lists one or more role names. Each name must identify a role that exists at the current server.

The value of the CURRENT RULES special register determines whether you can use the ID or role
of the GRANT statement itself (to grant privileges to yourself). When CURRENT RULES is:
DB2

You cannot use the ID or role of the GRANT statement.
STD

You can use the ID or role of the GRANT statement.

PUBLIC
Grants the privileges to all users at the current server, including database requesters using DRDA
access.

Chapter 7. Statements 1965

CREATE_SECURE_OBJECT must not be granted to PUBLIC.

ACCESSCTRL, DATAACCESS and system DBADM authorities cannot be granted to PUBLIC.

WITH GRANT OPTION
Allows the named users to grant the privileges to others. Granting an administrative authority with this
option allows the user to specifically grant any privilege belonging to that authority. If you omit WITH
GRANT OPTION, the named users cannot grant the privileges to others unless they have that authority
from some other source.

GRANT authority cannot be passed to PUBLIC. When WITH GRANT OPTION is used with PUBLIC, a
warning is issued, and the named privileges are granted, but without GRANT authority.

If you grant the CREATE_SECURE_OBJECT system privilege, the WITH GRANT OPTION clause is
ignored because the CREATE_SECURE_OBJECT system privilege cannot be granted to others.

GRANT ACCESSCTRL, DATAACCESS and system DBADM authorities cannot be passed to others. If
WITH GRANT OPTION is used when granting these authorities, a warning is issued and the named
authorities are granted, but without GRANT authority.

Notes for GRANT
A grant is the granting of a specific privilege by a specific grantor to a specific grantee. The grantor for
a given GRANT statement is the authorization ID for the privilege set; that is, the SQL authorization ID
of the process or a role, or the authorization ID of the owner of the plan or package. Grant statements
that are made in a trusted context that is defined with the ROLE AS OBJECT OWNER clause result in the
grantor being the role that is in effect. If the statement is prepared dynamically, the grantor is the role that
is associated with the ID that is running the statement. If the statement is embedded in an application
program that was bound in a trusted context that was defined with the ROLE AS OBJECT OWNER clause
the owner of the plan or package is a role which is the grantor. If the ROLE AS OBJECT OWNER clause is
not specified for the trusted context, the grantor is the authorization ID of the process.

The grantee, as recorded in the catalog, is an authorization ID or PUBLIC. Any instances of PUBLIC* in the
catalog mean the same as PUBLIC.

Duplicate grants from the same grantor are not recorded in the catalog. Otherwise, the result of executing
a GRANT statement is recorded as one or more grants in the current server's catalog.

If more than one privilege or authorization-name is specified after the TO keyword and one of the grants
is in error, execution of the statement is stopped and no grants are made. The status of the privilege or
privileges granted is recorded in the catalog for each authorization-name.

Different grantors can grant the same privilege to a single grantee. The grantee retains that privilege as
long as one or more of those grants are recorded in the catalog. Privileges that imply other privileges are
also termed authorities. Grants are removed from the catalog by executing SQL REVOKE statements.

Whenever a grant is made for a database, distinct type, package, plan, schema, stored procedure, table,
trigger, user-defined function, view, or USE privilege for an object that does not exist, an SQL return code
is issued and the grant is not made.

Related tasks
Granting privileges with the GRANT statement (Managing Security)

1966 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_grantprivilegethrugrant.html

GRANT statement (collection privileges)
This form of the GRANT statement grants privileges on collections.

Syntax for GRANT (collection privileges)

GRANT CREATE

PACKADM

ON

IN

COLLECTION

,

collection-id

*

TO

,

authorization-name

ROLE role-name

PUBLIC

WITH GRANT OPTION

Description for GRANT (collection privileges)
CREATE IN

Grants the privilege to use the BIND subcommand to create packages in the designated collections.

The word ON can be used instead of IN.

PACKADM ON
Grants package administrator authority for the designated collections.

The word IN can be used instead of ON.

COLLECTION collection-id,...
Identifies the collections on which the specified privilege is granted. The collections do not have to
exist.

COLLECTION *
Indicates that the specified privilege is granted on all collections including those that do not currently
exist.

TO
Refer to “GRANT statement” on page 1963 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT statement” on page 1963 for a description of the WITH GRANT OPTION clause.

Examples for GRANT (collection privileges)

Example 1: Grant the privilege to create new packages in collections QAACLONE and DSN8CC61 to
CLARK.

 GRANT CREATE IN COLLECTION QAACLONE, DSN8CC61 TO CLARK;

Example 2: Grant the privileges to create new packages in collection DSN8CC91 to role ROLE1:

 GRANT CREATE IN COLLECTION DSN8CC91 TO ROLE ROLE1;

Chapter 7. Statements 1967

GRANT statement (database privileges)
This form of the GRANT statement grants privileges on databases.

Syntax for GRANT (database privileges)

GRANT

,

DBADM

DBCTRL

DBMAINT

CREATETAB

CREATETS

DISPLAYDB

DROP

IMAGCOPY

LOAD

RECOVERDB

REORG

REPAIR

STARTDB

STATS

STOPDB

ON DATABASE

,

database-name TO

,

authorization-name

ROLE role-name

PUBLIC

WITH GRANT OPTION

Description for GRANT (database privileges)
Each keyword listed grants the privilege described, but only as it applies to or within the databases named
in the statement.
DBADM

Grants the database administrator authority.
DBCTRL

Grants the database control authority.
DBMAINT

Grants the database maintenance authority.
CREATETAB

Grants the privilege to create new tables. To create tables in an implicitly created database,
CREATETAB privileges are needed on the DSNDB04 database. For a work file database, PUBLIC
implicitly has the CREATETAB privilege (without GRANT authority) to define declared temporary
tables; this privilege is not recorded in the Db2 catalog, and it cannot be revoked.

CREATETS
Grants the privilege to create new table spaces.

1968 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

DISPLAYDB
Grants the privilege to issue the DISPLAY DATABASE command.

DROP
Grants the privilege to issue the DROP or ALTER DATABASE statements for the designated databases.

IMAGCOPY
Grants the privilege to run the COPY, MERGECOPY, and QUIESCE utilities against table spaces of the
specified databases, and to run the MODIFY RECOVERY utility.

LOAD
Grants the privilege to use the LOAD utility to load tables.

RECOVERDB
Grants the privilege to use the RECOVER and REPORT utilities to recover table spaces and indexes.

REORG
Grants the privilege to use the REORG utility to reorganize table spaces and indexes.

REPAIR
Grants the privilege to use the REPAIR and DIAGNOSE utilities.

STARTDB
Grants the privilege to issue the START DATABASE command.

STATS
Grants the privilege to use the RUNSTATS utility to update statistics, the CHECK utility to test
whether indexes are consistent with the data they index, and the MODIFY STATISTICS utility to delete
unwanted statistics history records from the corresponding catalog tables.

STOPDB
Grants the privilege to issue the STOP DATABASE command.

ON DATABASE database-name,...
Identifies databases on which privileges are to be granted. For each named database, the grantor
must have all the specified privileges with the GRANT option. Each name must identify a database
that exists at the current server. DSNDB01 must not be identified; however, a grant of a privilege on
DSNDB06 implies the granting of the same privilege on DSNDB01 for utility operations only.

Database privileges granted on DSNDB04 are applicable to all implicitly created databases. This
means that a user with the STOPDB privilege on DSNDB04 can also stop database objects in any
implicitly created database. Similarly, having DBADM on DSNDB04 allows access to all tables in
all implicitly created databases. However, having a database privilege on DSNDB04 does not allow
granting of this privilege on an implicitly created database to others.

TO
Refer to “GRANT statement” on page 1963 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT statement” on page 1963 for a description of the WITH GRANT OPTION clause.

Examples for GRANT (database privileges)

Example 1: Grant drop privileges on database DSN8D12A to user PEREZ.

 GRANT DROP
 ON DATABASE DSN8D12A
 TO PEREZ;

Example 2: Grant repair privileges on database DSN8D12A to all local users.

 GRANT REPAIR
 ON DATABASE DSN8D12A
 TO PUBLIC;

Chapter 7. Statements 1969

Example 3: Grant authority to create new tables and load tables in database DSN8D12A to users
WALKER, PIANKA, and FUJIMOTO, and give them grant privileges.

 GRANT CREATETAB,LOAD
 ON DATABASE DSN8D12A
 TO WALKER,PIANKA,FUJIMOTO
 WITH GRANT OPTION;

Example 4: Grant load privileges to database DSN9D91A to role ROLE1:

 GRANT LOAD
 ON DATABASE DSN9D91A
 TO ROLE ROLE1;

GRANT statement (function or procedure privileges)
This form of the GRANT statement grants privileges on user-defined functions, cast functions that are
generated for distinct types, array types, and stored procedures.

Syntax for GRANT (function or procedure privileges)

GRANT EXECUTE ON

FUNCTION

,

function-name

(
,

parameter-type

)

*

SPECIFIC FUNCTION

,

specific-name

PROCEDURE

,

procedure-name

*

TO

,

authorization-name

ROLE role-name

PUBLIC

WITH GRANT OPTION

parameter-type:

data-type

AS LOCATOR
1

Notes:
1 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data type.

data-type:

1970 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

built-in-type

distinct-type-name

array-type-name

built-in-type:

Chapter 7. Statements 1971

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

BIT

DATA

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC (length)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID ASCII

EBCDIC

UNICODE

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

ROWID

XML

1972 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Description for GRANT (function or procedure privileges)
EXECUTE

Grants the privilege to run the identified user-defined function, cast function that was generated for a
distinct type, or stored procedure.

FUNCTION or SPECIFIC FUNCTION
Identifies the function on which the privilege is granted. The function must exist at the current server,
and it must be a function that was defined with the CREATE FUNCTION statement or a cast function
that was generated by a CREATE TYPE statement. The function can be identified by name, function
signature, or specific name.

If the function was defined with a table parameter (the LIKE TABLE was specified in the CREATE
FUNCTION statement to indicate that one of the input parameters is a transition table), the function
signature cannot be used to identify the function. Instead, identify the function with its function name,
if unique, or with its specific name.

FUNCTION function-name
Identifies the function by its name. The function-name must identify exactly one function. The
function can have any number of parameters defined for it. If there is more than one function of
the specified name in the specified or implicit schema, an error is returned.

An asterisk (*) can be specified for an unqualified function name. The function can be identified as
a qualified or unqualified function-name. For example, * indicates that the privilege is granted on
all the functions in the default schema, including those that do not currently exist. schema-name.*
indicates that the privilege is granted on all the functions in the specified schema, including
those that do not currently exist. SYSADM authority is required if * or schema-name.* is specified.
Specifying an asterisk does not affect any EXECUTE privileges that are already granted on a
function.

FUNCTION function-name (parameter-type,...)
Identifies the function by its function signature, which uniquely identifies the function. The
function-name (parameter-type, ...) must identify a function with the specified function signature.
The specified parameters must match the data types in the corresponding position that were
specified when the function was created. The number of data types, and the logical concatenation
of the data types is used to identify the specific function instance on which the privilege is to be
granted. Synonyms for data types are considered a match.

If the function was defined with a table parameter (the LIKE TABLE name AS LOCATOR clause was
specified in the CREATE FUNCTION statement to indicate that one of the input parameters is a
transition table), the function signature cannot be used to uniquely identify the function. Instead,
use one of the other syntax variations to identify the function with its function name, if unique, or
its specific name.

If function-name () is specified, the function identified must have zero parameters.

function-name
Identifies the name of the function. If you do not explicitly qualify the function name with a
schema name, the function name is implicitly qualified with a schema name as described in
the preceding description for FUNCTION function-name.

(parameter-type,...)
Identifies the parameters of the function.

If an unqualified distinct type name is specified, Db2 searches the SQL path to resolve the
schema name for the distinct type.

For data types that have a length, precision, or scale attribute, use one of the following:

• Empty parentheses indicate that the database manager ignores the attribute when
determining whether the data types match. For example, DEC() will be considered a match
for a parameter of a function defined with a data type of DEC(7,2). Similarly, DECFLOAT()
will be considered a match for DECFLOAT(16) or DECFLOAT(34). However, FLOAT cannot be

Chapter 7. Statements 1973

specified with empty parenthesis because its parameter value indicates a specific data type
(REAL or DOUBLE).

• If a specific value for a length, precision, or scale attribute is specified, the value must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement. If the data type is FLOAT, the precision does not have to exactly match the value
that was specified because matching is based on the data type (REAL or DOUBLE).

• If length, precision, or scale is not explicitly specified, and empty parentheses are not
specified, the default attributes of the data type are implied. The implicit length must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

For data types with a subtype or encoding scheme attribute, specifying the FOR subtype DATA
clause or the CCSID clause is optional. Omission of either clause indicates that Db2 ignores
the attribute when determining whether the data types match. If you specify either clause,
it must match the value that was implicitly or explicitly specified in the CREATE FUNCTION
statement.

AS LOCATOR
Specifies that the function is defined to receive a locator for this parameter. If AS LOCATOR is
specified, the data type must be a LOB or a distinct type based on a LOB.

SPECIFIC FUNCTION specific-name
Identifies the function by its specific name. The specific-name must identify a specific function
that exists at the current server.

PROCEDURE procedure-name
Identifies a stored procedure that is defined at the current server. The name, including the implicit or
explicit schema name, must identify a stored procedure that exists at the current server.

An asterisk (*) can be specified for an unqualified procedure name. The procedure can be identified
as a qualified or unqualified procedure-name. For example, * indicates that the privilege is granted on
all the procedures in the default schema, including those that do not currently exist. schema-name.*
indicates that the privilege is granted on all the procedures in the specified schema, including those
that do not currently exist. SYSADM authority is required if * or schema-name.* is specified. Specifying
an asterisk does not affect any EXECUTE privileges that are already granted on a procedure.

TO
Refer to “GRANT statement” on page 1963 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT statement” on page 1963 for a description of the WITH GRANT OPTION clause.

Examples for GRANT (function or procedure privileges)

Example 1: Grant the EXECUTE privilege on function CALC_SALARY to user JONES. Assume that there is
only one function in the schema with function name CALC_SALARY.

 GRANT EXECUTE ON FUNCTION CALC_SALARY TO JONES;

Example 2: Grant the EXECUTE privilege on procedure VACATION_ACCR to all users at the current server.

 GRANT EXECUTE ON PROCEDURE VACATION_ACCR TO PUBLIC;

Example 3: Grant the EXECUTE privilege on function DEPT_TOTALS to the administrative assistant and
give the assistant the ability to grant the EXECUTE privilege on this function to others. The function has
the specific name DEPT85_TOT. Assume that the schema has more than one function that is named
DEPT_TOTALS.

 GRANT EXECUTE ON SPECIFIC FUNCTION DEPT85_TOT TO ADMIN_A
 WITH GRANT OPTION;

1974 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 4: Grant the EXECUTE privilege on function NEW_DEPT_HIRES to HR (Human Resources). The
function has two input parameters with data types of INTEGER and CHAR(10), respectively. Assume that
the schema has more than one function that is named NEW_DEPT_HIRES.

 GRANT EXECUTE ON FUNCTION NEW_DEPT_HIRES (INTEGER, CHAR(10))
 TO HR;

You can also code the CHAR(10) data type as CHAR().

Example 5: Grant the EXECUTE privilege on function FIND_EMPDEPT to role ROLE1:

GRANT EXECUTE ON FUNCTION FIND_EMPDEPT TO ROLE ROLE1;

GRANT statement (package privileges)
This form of the GRANT statement grants privileges on packages.

Syntax for GRANT (package privileges)

GRANT ALL
,

BIND

COPY

EXECUTE

RUN

ON PACKAGE

,

collection-id . package-name

*

TO

,

authorization-name

ROLE role-name

PUBLIC

WITH GRANT OPTION

Description for GRANT (package privileges)
BIND

Grants the privilege to use the BIND and REBIND subcommands for the designated packages.

The BIND package privilege can also be used to allow a user to add a new version of an existing
package. For details on the authorization required to create new packages and new versions of
existing packages, see “Notes for GRANT (package privileges)” on page 1976.

COPY
Grants the privilege to use the COPY option of the BIND subcommand for the designated packages.

EXECUTE
Grants the privilege to run application programs that use the designated packages and to specify the
packages following PKLIST for the BIND PLAN and REBIND PLAN commands. RUN is an alternate
name for the same privilege.

ALL
Grants all package privileges for which you have GRANT authority for the packages named in the ON
clause.

Chapter 7. Statements 1975

ON PACKAGE collection-id.package-name,...
Identifies packages for which you are granting privileges. The granting of a package privilege applies
to all versions of a package. The list can simultaneously contain items of the following two forms:

• collection-id.package-name explicitly identifies a single package. The name must identify a package
that exists at the current server.

• collection-id.* applies to every package in the indicated collection. This includes packages that
currently exist and future packages. The grant applies to a collection at the current server, but the
collection-id does not have to identify a collection that exists when the grant is made.

To grant a privilege in this form requires PACKADM with the WITH GRANT OPTION over the
collection or all collections, SYSADM, or SYSCTRL authority. Because of this fact, WITH GRANT
OPTION, if included in the statement, is ignored for grants of this form, but not for grants for specific
packages.

TO
Refer to “GRANT statement” on page 1963 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT statement” on page 1963 for a description of the WITH GRANT OPTION clause.

Notes for GRANT (package privileges)
The authorization required to add a new package or a new version of an existing package depends on the
value of field BIND NEW PACKAGE on installation panel DSNTIPP. The default value is BINDADD.

If the value of BIND NEW PACKAGE is BINDADD, the owner must have one of the following to add a new
package or a new version of an existing package to a collection:

• The BINDADD system privilege and either the CREATE IN privilege or PACKADM authority for the
collection or for all collections

• SYSADM or SYSCTRL authority

If the value of BIND NEW PACKAGE is BIND, the owner must have one of the following to add a new
package or a new version of an existing package to a collection:

• The BINDADD system privilege and either the CREATE IN privilege or PACKADM authority for the
collection or for all collections

• SYSADM or SYSCTRL authority
• PACKADM authority for the collection or for all collections
• Users with the BIND package privilege can also add a new version of an existing package

Alternative syntax and synonyms: To provide compatibility with previous releases of Db2 or other
products in the Db2 family, Db2 supports specifying PROGRAM as a synonym for PACKAGE.

Examples for GRANT (package privileges)

Example 1: Grant the privilege to copy all packages in collection DSN8CC61 to LEWIS.

 GRANT COPY ON PACKAGE DSN8CC61.* TO LEWIS;

Example 2: You have the BIND privilege with GRANT authority over the package CLCT1.PKG1. You have
the EXECUTE privilege with GRANT authority over the package CLCT2.PKG2. You have no other privileges
with GRANT authority over any package in the collections CLCT1 AND CLCT2. Hence, the following
statement, when executed by you, grants LEWIS the BIND privilege on CLCT1.PKG1 and the EXECUTE
privilege on CLCT2.PKG2, and makes no other grant. The privileges granted include no GRANT authority.

 GRANT ALL ON PACKAGE CLCT1.PKG1, CLCT2.PKG2 TO JONES;

1976 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 3: Grant the privileges to run all packages in collection DSN9CC13 to role ROLE1:

GRANT EXECUTE ON PACKAGE DSN9CC13.* TO ROLE ROLE1;

GRANT statement (plan privileges)
This form of the GRANT statement grants privileges on plans.

Syntax for GRANT (plan privileges)

GRANT

,

BIND

EXECUTE

ON PLAN

,

plan-name TO

,

authorization-name

ROLE role-name

PUBLIC

WITH GRANT OPTION

Description for GRANT (plan privileges)
BIND

Grants the privilege to use the BIND, REBIND, and FREE subcommands for the identified plans. (The
authority to create new plans using BIND ADD is a system privilege.)

EXECUTE
Grants the privilege to run programs that use the identified plans.

ON PLAN plan-name,...
Identifies the application plans on which the privileges are granted. For each identified plan, you must
have all specified privileges with the GRANT option.

TO
Refer to “GRANT statement” on page 1963 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT statement” on page 1963 for a description of the WITH GRANT OPTION clause.

Examples for GRANT (plan privileges)

Example 1: Grant the privilege to bind plan DSN8IP12 to user JONES.

 GRANT BIND ON PLAN DSN8IP12 TO JONES;

Example 2: Grant privileges to bind and execute plan DSN8CP12 to all users at the current server.

 GRANT BIND,EXECUTE ON PLAN DSN8CP12 TO PUBLIC;

Example 3: Grant the privilege to execute plan DSN8CP12 to users ADAMSON and BROWN with grant
option.

 GRANT EXECUTE ON PLAN DSN8CP12 TO ADAMSON,BROWN WITH GRANT OPTION;

Example 4: Grant the privileges to bind the DSN91PLN plan to role ROLE1:

GRANT BIND ON PLAN DSN91PLN TO ROLE ROLE1;

Chapter 7. Statements 1977

GRANT statement (schema privileges)
This form of the GRANT statement grants privileges on schemas.

Syntax for GRANT (schema privileges)

GRANT

,

ALTERIN

CREATEIN

DROPIN

ON SCHEMA

,

schema-name

*

TO

,

authorization-name

ROLE role-name

PUBLIC

WITH GRANT OPTION

Description for GRANT (schema privileges)
ALTERIN

Grants the privilege to alter stored procedures and user-defined functions, or specify a comment for
distinct types, cast functions that are generated for distinct types, sequences, stored procedures,
triggers, and user-defined functions in the designated schemas.

CREATEIN
Grants the privilege to create distinct types, sequences, stored procedures, triggers, and user-defined
functions in the designated schemas.

DROPIN
Grants the privilege to drop distinct types, sequences, stored procedures, triggers, and user-defined
functions in the designated schemas.

SCHEMA schema-name
Identifies the schemas on which the privilege is granted. The schemas do not need to exist when the
privilege is granted.

SCHEMA *
Indicates that the specified privilege is granted on all schemas including those that do not currently
exist.

TO
Refer to “GRANT statement” on page 1963 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT statement” on page 1963 for a description of the WITH GRANT OPTION clause.

Notes for GRANT (schema privileges)
Grant on SYSPUBLIC:

Privileges can be granted on the reserved schema SYSPUBLIC. Granting CREATEIN privilege allows
the user to create a public alias and granting DROPIN privilege allows the user to drop any public
alias.

Examples for GRANT (schema privileges)

Example 1: Grant the CREATEIN privilege on schema T_SCORES to user JONES.

 GRANT CREATEIN ON SCHEMA T_SCORES TO JONES;

1978 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 2: Grant the CREATEIN privilege on schema VAC to all users at the current server.

 GRANT CREATEIN ON SCHEMA VAC TO PUBLIC;

Example 3: Grant the ALTERIN privilege on schema DEPT to the administrative assistant and give the
grantee the ability to grant ALTERIN privileges on this schema to others.

 GRANT ALTERIN ON SCHEMA DEPT TO ADMIN_A
 WITH GRANT OPTION;

Example 4: Grant the CREATEIN, ALTERIN, and DROPIN privileges on schemas NEW_HIRE, PROMO, and
RESIGN to HR (Human Resources).

 GRANT CREATEIN, ALTERIN, DROPIN ON SCHEMA NEW_HIRE, PROMO, RESIGN TO HR;

Example 5: Grant the ALTERIN privileges on the EMPLOYEE schema to role ROLE1:

GRANT ALTERIN ON SCHEMA EMPLOYEE TO ROLE ROLE1;

GRANT statement (sequence privileges)
This form of the GRANT statement grants privileges on a user-defined sequence.

Syntax for GRANT (sequence privileges)

GRANT

,

ALTER

USAGE
1

ON SEQUENCE

,

sequence-name TO

,

authorization-name

ROLE role-name

PUBLIC

WITH GRANT OPTION

Notes:
1 The keyword SELECT is an alternative keyword for USAGE.

Description for GRANT (sequence privileges)
ALTER

Grants the privilege to alter a sequence or record a comment on a sequence.
USAGE

Grants the USAGE privilege to use a sequence. This privilege is needed when the NEXT VALUE or
PREVIOUS VALUE expression is invoked for a sequence name.

SEQUENCE sequence-name
Identifies the sequence. The name, including the implicit or explicit schema qualifier, must uniquely
identify an existing sequence at the current server. If no sequence by this name exists in the explicitly
or implicitly specified schema, an error occurs. sequence-name must not be the name of an internal
sequence object that is used by Db2.

TO
Refer to “GRANT statement” on page 1963 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT statement” on page 1963 for a description of the WITH GRANT OPTION clause.

Chapter 7. Statements 1979

Examples for GRANT (sequence privileges)

Example 1: Grant USAGE privilege on sequence MYNUM to user JONES.

 GRANT USAGE
 ON SEQUENCE MYNUM
 TO JONES;

Example 2: Grant USAGE privileges on sequence ORDER_SEQ to role ROLE1:

 GRANT USAGE ON SEQUENCE ORDER_SEQ TO ROLE ROLE1;

1980 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

GRANT statement (system privileges)
This form of the GRANT statement grants system privileges.

Chapter 7. Statements 1981

Syntax for GRANT (system privileges)

GRANT

,

ACCESSCTRL

ARCHIVE

BINDADD

BINDAGENT

BSDS

CREATEALIAS

CREATEDBA

CREATEDBC

CREATESG

CREATETMTAB

CREATE_SECURE_OBJECT

DATAACCESS

DBADM
1

WITH ACCESSCTRL

WITHOUT ACCESSCTRL

WITH DATAACCESS

WITHOUT DATAACCESS

DEBUGSESSION

DISPLAY

EXPLAIN

MONITOR1

MONITOR2

RECOVER

SQLADM

STOPALL

STOSPACE

SYSADM

SYSCTRL

SYSOPR

TRACE

ON SYSTEM
TO

,

authorization-name

ROLE role-name

PUBLIC

WITH GRANT OPTION
2

Notes:
1 The ACCESSCTRL and DATAACCESS clauses can be specified in any order.

1982 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

2 The WITH GRANT OPTION can be specified but is ignored for DBADM, DATAACCESS, and ACCESSCTRL.
The WITH GRANT OPTION is also ignored if BINDAGENT grant is issued by SECADM authority.

Description for GRANT (system privileges)
ACCESSCTRL

Grants the ACCESSCTRL authority. ACCESSCTRL allows the user to grant all authorities and privileges,
except system DBADM, DATAACCESS, ACCESSCTRL, and privileges on security related objects.

A warning is issued if the WITH GRANT OPTION is specified when granting this authority.

ACCESSCTRL cannot be granted to PUBLIC.

ARCHIVE
Grants the privilege to use the ARCHIVE LOG and SET LOG commands.

BINDADD
Grants the privilege to create plans and packages by using the BIND subcommand with the ADD
option.

BINDAGENT
Grants the privilege to issue the BIND, FREE PACKAGE, or REBIND commands for plans and packages
and the DROP PACKAGE statement on behalf of the grantor. The privilege also allows the holder to
copy and replace plans and packages on behalf of the grantor.

A warning is issued if WITH GRANT OPTION is specified when granting this privilege.

When BINDAGENT is granted using SECADM authority, it grants the privilege to issue the BIND or
REBIND commands for plans and packages by specifying any owner.

This SECADM granted BINDAGENT privilege will not allow the following:

• Rebind the package or plan without specifying OWNER keyword
• FREE PACKAGE or FREE PLAN
• COPY PACKAGE
• DROP PACKAGE

The BINDAGENT privilege cannot be granted to PUBLIC using SECADM authority.

If WITH GRANT OPTION is specified when granting this privilege using SECADM authority, the option
is ignored.

BSDS
Grants the privilege to issue the RECOVER BSDS command.

CREATEALIAS
Grants the privilege to use the CREATE ALIAS statement.

CREATEDBA
Grants the privilege to issue the CREATE DATABASE statement and acquire DBADM authority over
those databases.

CREATEDBC
Grants the privilege to issue the CREATE DATABASE statement and acquire DBCTRL authority over
those databases.

CREATESG
Grants the privilege to create new storage groups.

CREATETMTAB
Grants the privilege to use the CREATE GLOBAL TEMPORARY TABLE statement.

CREATE_SECURE_OBJECT
Grants the privilege to create a secure object.

Chapter 7. Statements 1983

DATAACCESS
Grants the DATAACCESS authority. DATAACCESS allows the user to access data in all user tables,
views, materialized query tables, and global variables in a Db2 subsystem, and allows the user to
execute plans, packages, functions, and procedures, and use sequences.

DATAACCESS authority implicitly includes the SELECT privilege on all catalog tables and implicitly
includes the INSERT, DELETE, and UPDATE privileges on updatable catalog tables, except for the
SYSIBM.SYSAUDITPOLICIES catalog table.

A warning is issued if the WITH GRANT OPTION is specified when granting this authority.

DATAACCESS cannot be granted to PUBLIC.

DBADM
Grants the DBADM authority. DBADM allows the user to manage all objects in the Db2 subsystem,
except security objects.

A warning is issued if the WITH GRANT OPTION is specified when granting this authority.

DBADM cannot be granted to PUBLIC.

WITH ACCESSCTRL
Specifies that the ACCESSCTRL authority is granted along with the system DBADM authority.
ACCESSCTRL allows system DBADM to grant all authorities and privileges, except system DBADM,
DATAACCESS, ACCESSCTRL authorities and privileges on security related objects. ACCESSCTRL
can be used to REVOKE privileges using the BY clause.

WITH ACCESSCTRL is the default.

WITHOUT ACCESSCTRL
Specifies that system DBADM authority is not granted the ACCESSCTRL authority.

WITH DATAACCESS
Specifies that the DATAACCESS authority is granted along with the system DBADM authority.
DATAACCESS allows the system DBADM to access data in all user tables, views, and materialized
query tables in a Db2 subsystem and allows the user to execute plans, packages, functions, and
procedures.

WITH DATAACCESS is the default.

WITHOUT DATAACCESS
Specifies that system DBADM authority is not granted the DATAACCESS authority.

DISPLAY
Grants the privilege to issue the DISPLAY commands, with the following exceptions:

• DISPLAY DYNQUERYCAPTURE
• DISPLAY ML
• DISPLAY PROFILE
• DISPLAY RLIMIT

No authorization is required for the DISPLAY UTILITY command.

DEBUGSESSION
Grants the privilege to attach a debug client to the current application process connection, which
enables client application debugging of native SQL or Java procedures that are executed within the
session.

EXPLAIN
Grants the privilege to issue the following without requiring the privileges needed to execute the
statement:

• EXPLAIN statement with the options:

– PLAN
– ALL

1984 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• PREPARE statement
• DESCRIBE TABLE statement
• Explain dynamic SQL statements that execute under the special register CURRENT EXPLAIN MODE,

when CURRENT EXPLAIN MODE = EXPLAIN
• BIND options: EXPLAIN(ONLY) and SQLERROR(CHECK)

EXPLAIN(ONLY) allows to explain the statements.

SQLERROR(CHECK) performs all syntax and semantic checks on the SQL statements that are being
bound.

MONITOR1
Grants the privilege to obtain IFC data classified as serviceability data, statistics, accounting, and
other performance data that does not contain potentially secure data.

MONITOR2
Grants the privilege to obtain IFC data classified as containing potentially sensitive data such as SQL
statement text and audit data. Users with MONITOR2 privileges have MONITOR1 privileges.

RECOVER
Grants the privilege to issue the RECOVER INDOUBT command.

SQLADM
Grants the authority to perform the following actions without requiring any additional privileges:

• DESCRIBE TABLE statement
• EXPLAIN statement with the following options:

– PLAN
– ALL
– STMTCACHE ALL
– STMTID
– STMTTOKEN
– MONITORED STMTS

• PREPARE statement
• Explain dynamic SQL statements that execute under the special register CURRENT EXPLAIN MODE,

when CURRENT EXPLAIN MODE = EXPLAIN
• BIND options: EXPLAIN(ONLY) and SQLERROR(CHECK)

EXPLAIN(ONLY) allows to explain the statements.

SQLERROR(CHECK) performs all syntax and semantic checks on the SQL statements that are being
bound.

• START DYNQUERYCAPTURE command
• START ML command
• START PROFILE command
• START TRACE command
• STOP DYNQUERYCAPTURE command
• STOP ML command
• STOP PROFILE command
• STOP TRACE command
• DISPLAY DYNQUERYCAPTURE command
• DISPLAY ML command
• DISPLAY PROFILE command
• Execute the RUNSTATS utility and the MODIFY STATISTICS utility in any database.

Chapter 7. Statements 1985

• MONITOR2 privilege to obtain IFC data classified as containing potentially sensitive data, such as
SQL statement text and audit data, as well as IFC data classified as serviceability data, statistics,
accounting, and other performance data.

STOPALL
Grants the privilege to issue the STOP DB2 command.

STOSPACE
Grants the privilege to use the STOSPACE utility.

SYSADM
Grants all Db2 privileges except for a few reserved for installation SYSADM authority. The privileges
the user possesses are all grantable, including the SYSADM authority itself. The privileges the user
lacks restrict what the user can do with the directory and the catalog. Using WITH GRANT OPTION
when granting SYSADM is redundant but valid. For more on SYSADM and installation SYSADM
authority, see Managing administrative authorities (Managing Security).

SYSCTRL
Grants the system control authority, which allows the user to have most of the privileges of a system
administrator but excludes the privileges to read or change user data. Using WITH GRANT OPTION
when granting SYSCTRL is redundant but valid. For more information on SYSCTRL authority, see
SYSCTRL (Managing Security).

SYSOPR
Grants the privilege to have system operator authority.

TRACE
Grants the privilege to issue the MODIFY TRACE, START TRACE, and STOP TRACE commands.

ON SYSTEM
Identifies that the system privilege is granted for the entire Db2 subsystem.

TO
Refer to “GRANT statement” on page 1963 for a description of the TO clause.

WITH GRANT OPTION
If you grant the SYSADM or SYSCTRL system privilege, WITH GRANT OPTION is valid but unnecessary.
It is unnecessary because whoever is granted SYSADM or SYSCTRL has that authority and all the
privileges it implies, with the GRANT option.

Examples for GRANT (system privileges)
Example 1

Grant DISPLAY privileges to user LUTZ.

 GRANT DISPLAY
 TO LUTZ;

Example 2
Grant BSDS and RECOVER privileges to users PARKER and SETRIGHT, with the WITH GRANT OPTION.

 GRANT BSDS,RECOVER
 TO PARKER,SETRIGHT
 WITH GRANT OPTION;

Example 3
Grant TRACE privileges to all local users.

 GRANT TRACE
 TO PUBLIC;

Example 4
Grant ARCHIVE privileges to role ROLE1:

 GRANT ARCHIVE TO ROLE ROLE1;

1986 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_manageadmauthorities.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_sysctrlauthority.html

Example 5
SECADM Linda grants the privilege to Steve to create a secure object:

 GRANT CREATE_SECURE_OBJECT
 TO STEVE;

Example 6
Grant system DBADM with ACCESSCTRL and with DATAACCESS to role, ADMINROLE and authid,
SALLY. Since GRANT system DBADM also grants ACCESSCTRL and DATAACCESS by default, WITH
ACCESSCTRL and WITH DATAACCESS clauses need not be specified explicitly.

 GRANT DBADM ON SYSTEM
 TO ROLE ADMINROLE;
 GRANT DBADM, ACCESSCTRL, DATAACCESS
 ON SYSTEM
 TO SALLY;

Example 7
Grant system DBADM without ACCESSCTRL and without DATAACCESS to John. The WITHOUT
ACCESSCTRL and WITHOUT DATAACCESS clauses need to be specified explicitly.

 GRANT DBADM WITHOUT ACCESSCTRL
 WITHOUT DATAACCESS
 ON SYSTEM
 TO JOHN;

Related tasks
Managing explicit privileges (Managing Security)
Related reference
Explicit system privileges (Managing Security)

Chapter 7. Statements 1987

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_manageexplicitprivilege.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_explicitsysprivilege.html

GRANT statement (table or view privileges)
This form of the GRANT statement grants privileges on tables and views.

Syntax for GRANT (table or view privileges)

GRANT ALL
PRIVILEGES

,

ALTER

DELETE

INDEX

INSERT

REFERENCES

(

,

column-name)

SELECT

TRIGGER

UNLOAD

UPDATE

(

,

column-name)

ON

TABLE
,

table-name

view-name

TO

,

authorization-name

ROLE role-name

PUBLIC

WITH GRANT OPTION

Description for GRANT (table or view privileges)
ALL or ALL PRIVILEGES

Grants all table or view privileges for which you have GRANT authority, for the tables and views named
in the ON clause.

If you do not use ALL, you must use one or more of the keywords in the following list. For each
keyword that you use, you must have GRANT authority for that privilege on every table or view
identified in the ON clause.

ALTER
Grants the privilege to alter the specified table or create a trigger on the specified table. ALTER cannot
be used if the statement identifies an auxiliary table or a view.

DELETE
Grants the privilege to delete rows in the specified table or view. DELETE cannot be granted on an
auxiliary table.

1988 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

INDEX
Grants the privilege to create an index on the specified table. INDEX cannot be granted on a view.

INSERT
Grants the privilege to insert rows into the specified table or view. INSERT cannot be granted on an
auxiliary table.

REFERENCES
Grants the privilege to add a referential constraint in which the specified table is a parent. If a list of
column names is not specified or if REFERENCES is granted via the specification of ALL PRIVILEGES,
the grantee can define referential constraints using all columns of the table as a parent key, even
those added later via the ALTER TABLE statement. This privilege cannot be granted on a view or
auxiliary table.

REFERENCES(column-name,...)
Grants the privilege to add or drop a referential constraint in which the specified table is a parent
using only those columns that are specified in the column list as a parent key. Each column-name
must be an unqualified name that identifies a column of the table identified in the ON clause. This
privilege cannot be granted on a view or auxiliary table.

SELECT
Grants the privilege to create a view or read data from the specified table or view. SELECT cannot be
granted on an auxiliary table.

TRIGGER
Grants the privilege to create a trigger on the specified table. TRIGGER cannot be granted on an
auxiliary table or a view.

UNLOAD
Grants the privilege to use the UNLOAD utility. UNLOAD cannot be granted on an auxiliary table or a
view.

UPDATE
Grants the privilege to update rows in the specified table or view. UPDATE cannot be granted on an
auxiliary table.

UPDATE(column-name,...)
Grants the privilege to update only the columns named. Each column-name must be the unqualified
name of a column of every table or view identified in the ON clause. Each column-name must not
identify a column of an auxiliary table.

ON table-name or view-name
Specifies the tables or views on which you are granting the privileges. The list can be a list of table
names or view names, or a combination of the two. A declared temporary table and a table that is
implicitly created for an XML column must not be identified.

If you use GRANT ALL, then for each named table or view, the privilege set (described in
"“Authorization for GRANT” on page 1964" in “GRANT statement” on page 1963) must include at
least one privilege with the GRANT option.

TO
Refer to “GRANT statement” on page 1963 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT statement” on page 1963 for a description of the WITH GRANT OPTION clause.

Notes for GRANT (table or view privileges)
The REFERENCES privilege does not replace the ALTER privilege. It was added to conform to the SQL
standard. To define a foreign key that references a parent table, you must have either the REFERENCES or
the ALTER privilege, or both.

For a created temporary table, only ALL or ALL PRIVILEGES can be granted. Specific table privileges
cannot be granted. In addition, only the ALTER, DELETE, INSERT, and SELECT privileges apply to a created
temporary table.

Chapter 7. Statements 1989

For a view of a created temporary table, either ALL or the specific UPDATE, DELETE, INSERT and
SELECT privileges can be granted. When ALL is specified only the UPDATE, DELETE, INSERT, and SELECT
privileges apply to a view on created temporary table. However, the UPDATE operation of the view is not
allowed.

To grant table privileges on a created temporary table, the privilege set must include one of the following:

• SYSADM
• DBADM on DSNDB06
• Ownership of the created temporary table

To grant table privileges on a view of a created temporary table, the privilege set must include one of the
following:

• SYSADM
• ownership of the created temporary table

For a declared temporary table, no privileges can be granted. When a declared temporary table is defined,
PUBLIC implicitly receives all table privileges (without GRANT authority) for the table. These privileges are
not recorded in the Db2 catalog, and they cannot be revoked.

For an auxiliary table, only the INDEX privilege can be granted. DELETE, INSERT, SELECT, and UPDATE
privileges on the base table that is associated with the auxiliary table extend to the auxiliary table.

• ALTER
• INDEX
• REFERENCES
• TRIGGER

Examples for GRANT (table or view privileges)

Example 1: Grant SELECT privileges on table DSN8C10.EMP to user PULASKI.

 GRANT SELECT ON DSN8C10.EMP TO PULASKI;

Example 2: Grant UPDATE privileges on columns EMPNO and WORKDEPT in table DSN8C10.EMP to all
users at the current server.

 GRANT UPDATE (EMPNO,WORKDEPT) ON TABLE DSN8C10.EMP TO PUBLIC;

Example 3: Grant all privileges on table DSN8C10.EMP to users KWAN and THOMPSON, with the WITH
GRANT OPTION.

 GRANT ALL ON TABLE DSN8C10.EMP TO KWAN,THOMPSON WITH GRANT OPTION;

Example 4: Grant the SELECT and UPDATE privileges on the table DSN8C10.DEPT to every user in the
network.

 GRANT SELECT, UPDATE ON TABLE DSN8C10.DEPT
 TO PUBLIC;

Even with this grant, it is possible that some network users do not have access to the table at all, or to
any other object at the subsystem where the table exists. Controlling access to the subsystem involves
the communications databases at the subsystems in the network. The tables for the communication
databases are described in Appendix H, “Db2 catalog tables,” on page 2333. Controlling access is
described in Securing Db2 (Db2 for z/OS in IBM Documentation).

Example 5: Grant ALTER privileges on table DSN9910.EMP to role ROLE1:

 GRANT ALTER ON TABLE DSN9910.EMP TO ROLE ROLE1;

1990 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/nav/src/tpc/db2z_securityintro.html

GRANT statement (type or JAR file privileges)
This form of the GRANT statement grants the privilege to use distinct types, array types, or JAR files.

Syntax for GRANT (type or JAR file privileges)

GRANT USAGE ON TYPE

,

type-name

JAR

,

jar-name

TO

,

authorization-name

ROLE role-name

PUBLIC

WITH GRANT OPTION

Description for GRANT (type or JAR file privileges)
USAGE

Grants the privilege to use the distinct type in tables, functions procedures, or the privilege to use the
JAR file.

TYPE type-name
Identifies the user-defined type. The name, including the implicit or explicit schema name, must
identify a unique user-defined type that exists at the current server.

JAR jar-name
Identifies the JAR file. The name, including the implicit or explicit schema name, must identify a
unique JAR file that exists at the current server.

TO
Refer to “GRANT statement” on page 1963 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT statement” on page 1963 for a description of the WITH GRANT OPTION clause.

Notes for GRANT (type or JAR file privileges)
Alternative syntax and synonyms: To provide compatibility with previous releases of Db2 or other
products in the Db2 family, Db2 supports DATA TYPE or DISTINCT TYPE as a synonym for TYPE.

Examples for GRANT (type or JAR file privileges)

Example 1: Grant the USAGE privilege on distinct type SHOE_SIZE to user JONES. This GRANT statement
does not give JONES the privilege to execute the cast functions that are associated with the distinct type
SHOE_SIZE.

 GRANT USAGE ON TYPE SHOE_SIZE TO JONES;

Example 2: Grant the USAGE privilege on distinct type US_DOLLAR to all users at the current server.

 GRANT USAGE ON TYPE US_DOLLAR TO PUBLIC;

Example 3: Grant the USAGE privilege on distinct type CANADIAN_DOLLAR to the administrative assistant
(ADMIN_A), and give this user the ability to grant the USAGE privilege on the distinct type to others. The
administrative assistant cannot grant the privilege to execute the cast functions that are associated with

Chapter 7. Statements 1991

the distinct type CANADIAN_DOLLAR because WITH GRANT OPTION does not give the administrative
assistant the EXECUTE authority on these cast functions.

 GRANT USAGE ON TYPE CANADIAN_DOLLAR TO ADMIN_A
 WITH GRANT OPTION;

Example 4: Grant the USAGE privilege on the distinct type MILES to role ROLE1 at the current server:

GRANT USAGE ON TYPE MILES
 TO ROLE ROLE1;

GRANT statement (variable privileges)
This form of the GRANT statement grants privileges on global variables.

Syntax for GRANT (variable privileges)

GRANT ALL
PRIVILEGES

,

READ

WRITE

ON VARIABLE variable-name

TO

,

authorization-name

ROLE role-name

PUBLIC

WITH GRANT OPTION

Description for GRANT (variable privileges)
ALL PRIVILEGES

Grants both READ and WRITE privileges on the specified global variable.
READ

Grants the privilege to access the content of the specified global variable.
WRITE

Grants the privilege to modify the content of the specified global variable.
ON VARIABLE variable-name

Identifies the global variable for which you are granting privileges. variable-name, including an
implicit or explicit qualifier, must identify a global variable that exists at the current server.

TO
Refer to “GRANT statement” on page 1963 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT statement” on page 1963 for a description of the WITH GRANT OPTION clause.

Examples for GRANT (variable privileges)

Example 1: Grant the read privilege on the ACCOUNTNO variable on the current server to user Jones:

GRANT READ ON VARIABLE ACCOUNTNO TO JONES;

1992 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

GRANT statement (use privileges)
This form of the GRANT statement grants authority to use particular buffer pools, storage groups, or table
spaces.

Syntax for GRANT (use privileges)

GRANT USE OF BUFFERPOOL

,

 bpname

ALL BUFFERPOOLS

STOGROUP

,

stogroup-name

TABLESPACE

,

database-name .

table-space-name

TO

,

authorization-name

ROLE role-name

PUBLIC

WITH GRANT OPTION

Description for GRANT (use privileges)
BUFFERPOOL bpname,...

Grants the privilege to refer to any of the identified buffer pools in a CREATE INDEX, CREATE
TABLESPACE, ALTER INDEX, or ALTER TABLESPACE statement. See “Naming conventions in SQL”
on page 79 for more details about bpname.

ALL BUFFERPOOLS
Grants the privilege to refer to any buffer pool in a CREATE INDEX, CREATE TABLESPACE, ALTER
INDEX, or ALTER TABLESPACE statement.

STOGROUP stogroup-name,...
Grants the privilege to refer to any of the identified storage groups in a CREATE INDEX, CREATE
TABLESPACE, ALTER INDEX, or ALTER TABLESPACE statement.

TABLESPACE database-name.table-space-name,...
Grants the privilege to refer to any of the identified table spaces in a CREATE TABLE statement. The
default for database-name is DSNDB04.

You cannot grant the privilege for table spaces that are for declared temporary tables (table spaces
in a work file database). For these table spaces, PUBLIC implicitly has the TABLESPACE privilege
(without GRANT authority); this privilege is not recorded in the Db2 catalog, and it cannot be revoked.

TO
Refer to “GRANT statement” on page 1963 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT statement” on page 1963 for a description of the WITH GRANT OPTION clause.

Chapter 7. Statements 1993

Notes for GRANT (use privileges)
You can grant privileges for only one type of object with each statement. Thus, you can grant the use of
several table spaces with one statement, but not the use of a table space and a storage group. For each
object you identify, you must have the USE privilege with GRANT authority.

Examples for GRANT (use privileges)

Example 1: Grant authority to use buffer pools BP1 and BP2 to user MARINO.

 GRANT USE OF BUFFERPOOL BP1,BP2
 TO MARINO;

Example 2: Grant to all local users the authority to use table space DSN8S12D in database DSN8D12A.

 GRANT USE OF TABLESPACE
 DSN8D12A.DSN8S12D
 TO PUBLIC;

Example 3: Grant authority to use storage group SG1 to role ROLE1:

 GRANT USE OF STOGROUP SG1
 TO ROLE ROLE1;

HOLD LOCATOR statement
The HOLD LOCATOR statement allows a LOB locator variable to retain its association with a value beyond
a unit of work.

Invocation for HOLD LOCATOR
This statement can only be embedded in an application program. It cannot be issued interactively. It is
an executable statement that can be dynamically prepared. However, the EXECUTE statement with the
USING clause must be used to execute the prepared statement. HOLD LOCATOR cannot be used with the
EXECUTE IMMEDIATE statement.

Authorization for HOLD LOCATOR
None required.

Syntax for HOLD LOCATOR

HOLD LOCATOR

,

host-variable

Description for HOLD LOCATOR
host-variable, ...

Identifies one or more locator variables that must be declared in accordance with the rules for
declaring locator variables. The locator variable type must be a binary large object locator, a character
large object locator, or a double-byte character large object locator.

The host-variable must currently have a locator assigned to it. That is, a locator must have been
assigned during this unit of work (by a FETCH, SELECT INTO, assignment statement, SET host-variable
statement, or VALUES INTO statement); otherwise, an error is returned.

If more than one locator is specified and an error is returned on one of the locators, it is possible that
some locators have been held and others have not been held.

1994 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Notes for HOLD LOCATOR
A host-variable LOB locator variable that has the hold property is freed (has its association between it and
its value removed) when:

• The SQL FREE LOCATOR statement is executed for the locator variable.
• The SQL ROLLBACK statement is executed.
• The SQL session is terminated.

Example for HOLD LOCATOR

Assume that the employee table contains columns RESUME, HISTORY, and PICTURE and that locators
have been established in a program to represent the values represented by the columns. Give the CLOB
locator variables LOCRES and LOCHIST, and the BLOB locator variable LOCPIC the hold property.

 EXEC SQL HOLD LOCATOR :LOCRES, :LOCHIST, :LOCPIC

INCLUDE statement
The INCLUDE statement inserts application code, including declarations and statements, into a source
program.

Invocation for INCLUDE
This statement can only be embedded in an application program. It is not an executable statement. It
must not be specified in Java or REXX.

Authorization for INCLUDE
None required.

Syntax for INCLUDE

INCLUDE SQLCA

SQLDA

member-name

Description for INCLUDE
SQLCA

Indicates that the description of an SQL communication area (SQLCA) is to be included. INCLUDE
SQLCA must not be specified more than once in the same application program. In COBOL, INCLUDE
SQLCA must be specified in the Working-Storage Section or the Linkage Section. INCLUDE SQLCA
must not be specified if the program is prepared (either with the Db2 precompiler or coprocessor)
with the STDSQL(YES) SQL processing option.

For a description of the SQLCA, see Appendix F, “SQL communication area (SQLCA),” on page 2303.

SQLDA
Indicates that the description of an SQL descriptor area (SQLDA) is to be included. It must not be
specified in a Fortran. For a description of the SQLDA, see Appendix G, “SQL descriptor area (SQLDA),”
on page 2313.

member-name
Names a member of the partitioned data set to be the library input when your application program is
prepared (either with the Db2 precompiler or coprocessor). It must be an SQL identifier.

Chapter 7. Statements 1995

The member can contain any host language source statements and any SQL statements other than an
INCLUDE statement. In COBOL, INCLUDE member-name must not be specified in other than the Data
Division or the Procedure Division.

Notes for INCLUDE
When your application program is prepared (either with the Db2 precompiler or coprocessor), the
INCLUDE statement is replaced by source statements. Thus, the INCLUDE statement must be specified at
a point in your application program where the resulting source statements are acceptable to the compiler.

The INCLUDE statement cannot refer to source statements that themselves contain INCLUDE statements.

The declarations that are generated by DCLGEN can be used in an application program by specifying the
same member in the INCLUDE statement as in the DCLGEN LIBRARY parameter.

Example for INCLUDE

Include an SQL communications area in a PL/I program.

 EXEC SQL INCLUDE SQLCA;

INSERT statement
The INSERT statement inserts rows into a table or view. Inserting a row into a view inserts the row into
the table on which the view is based if no INSTEAD OF INSERT trigger is defined for this view. If such a
trigger is defined, the trigger is activated instead.

The table or view can be at the current server or any Db2 subsystem with which the current server can
establish a connection.

The INSERT statement has the following three forms:
VALUES form

The VALUES form of the INSERT statement inserts a single row into the table or view using the values
provided or referenced.

fullselect form

The fullselect form of the INSERT statement inserts one or more rows into the table or view using
values from other tables, or views, or both.

FOR n ROWS form

The FOR n ROWS form of the INSERT statement inserts multiple rows into the table or view using
values provided or referenced. Although not required, the values can come from host-variable arrays.

This form of INSERT is supported in SQL procedure applications. However, because host-variable
arrays are not supported in SQL procedure applications, the support is limited to insertion of scalar
values.

Invocation for INSERT
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for INSERT
Authority requirements depend on whether the object identified in the statement is a user-defined table,
a catalog table for which inserts are allowed, or a view:

When a user-defined table is identified: The privilege set must include at least one of the following:

1996 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• The INSERT privilege on the table
• Ownership of the table
• DBADM authority on the database that contains the table
• SYSADM authority
• DATAACCESS authority

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

When a catalog table is identified: The privilege set must include at least one of the following:

• ACCESSCTRL authority
• DATAACCESS authority
• DBADM authority on the catalog database
• Installation SYSOPR authority
• SQLADM authority
• SYSCTRL authority
• SYSADM authority
• System DBADM authority

When a view is identified: The privilege set must include at least one of the following:

• DATAACCESS authority
• INSERT privilege on the view
• SYSADM authority

The owner of a view, unlike the owner of a table, might not have INSERT authority on the view (or can
have INSERT authority without being able to grant it to others). The nature of the view itself can preclude
its use for INSERT. For more information, see the discussion of authority in “CREATE VIEW statement” on
page 1812.

If the INSERT statement is embedded in a SELECT statement, the privilege set must include the SELECT
privilege on the table or view.

If a fullselect is specified, the privilege set must include authority to execute the fullselect. For more
information about the authorization rules, see “Authorization for queries” on page 1007.

If the statement is embedded in an application program, the privilege set is the privileges that are
held by the owner of the plan or package. If the statement is dynamically prepared, the privilege set is
determined by the DYNAMICRULES behavior in effect (run, bind, define, or invoke) and is summarized in
Table 171 on page 1089. (For more information on these behaviors, including a list of the DYNAMICRULES
bind option values that determine them, see “Authorization IDs and dynamic SQL” on page 94.)

Chapter 7. Statements 1997

Syntax for INSERT

INSERT INTO table-name

view-name

(

,

column-name)

include-column OVERRIDING USER VALUE

VALUES expression

DEFAULT

NULL

(

,

expression

DEFAULT

NULL

)

WITH

,

common-table-expression

fullselect

isolation-clause QUERYNO integer

for-n-rows-insert

include-column:

INCLUDE (

,

column-name data-type)

data-type:

built-in-type

distinct-type

built-in-type:

1998 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

FOR BIT DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC ( integer)

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

isolation-clause:

Chapter 7. Statements 1999

WITH RR

RS

CS

for-n-rows-insert:

VALUES expression

host-variable-array

NULL

DEFAULT

(

,

expression

host-variable-array

NULL

DEFAULT

)

FOR

host-variable

integer-constant

ROWS
1

ATOMIC

NOT ATOMIC CONTINUE ON SQLEXCEPTION
2

Notes:
1 The FOR n ROWS clause must be specified for this form of a static INSERT statement. However, this
clause is optional for a dynamic INSERT statement. For a dynamic statement, the FOR n ROWS clause can
be specified on the EXECUTE statement.
2 The ATOMIC or NOT ATOMIC CONTINUE ON SQLEXCEPTION clauses can be specified for a static
multiple-row-insert. However, this clause must not be specified for a dynamic INSERT statement. For a
dynamic statement, the ATOMIC or NOT ATOMIC CONTINUE ON SQLEXCEPTION clause is specified as an
attribute on the PREPARE statement.

Description for INSERT
INTO table-name or view-name

Identifies the object of the INSERT statement. The name must identify a table or view that exists at
the current server. The name must not identify:

• An auxiliary table
• A catalog table
• A directory table
• A read-only view unless an instead of trigger is defined for the insert operation on the view. (For a

description of a read-only view, see “CREATE VIEW statement” on page 1812.)
• A view column that is derived from a constant, expression, or scalar function
• A view column that is derived from the base table column as some other column of the view
• A materialized query table
• A table that is implicitly created for an XML column

In an IMS or CICS application, the Db2 subsystem that contains the identified table or view must be a
remote server that supports two-phase commit.

2000 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

column-name,...
Specifies the columns for which insert values are provided. Each name must identify a column of the
table or view. The columns can be identified in any order, but the same column must not be identified
more than one time. If extended indicators are not enabled, a view column that cannot accept insert
values must not be identified. If extended indicators are not enabled, and the object of the INSERT
statement is a view with columns that cannot accept insert values, a list of column names must be
specified, and the list must not identify those columns. If a qualifier is specified, it must be valid (that
is, the table name must be the table or view name specified after the INTO keyword, and if a qualifier
is specified for the table name, it must match the default qualifier).

Omission of the column list is an implicit specification of a list in which every column of the table (that
is not defined as implicitly hidden) or view is identified in left-to-right order. This list is established
when the statement is prepared and therefore does not include columns that were added to the table
after the statement was prepared.

The effect of a rebind on INSERT statements that do not include a column list is that the implicit list
of names is re-established. Therefore, the number of column values that an INSERT statement must
specify can change, resulting in an error when the statement is rebound. For this reason, it is best to
always specify the column names in INSERT statements.

include-column
Specifies a set of columns that are included, along with the columns of table-name or view-name, in
the result table of the INSERT statement when it is nested in the FROM clause of the outer fullselect
that is used in a subselect, a SELECT statement, or in a SELECT INTO statement. The included
columns are appended to the end of the list of columns that is identified by table-name or view-name.
INCLUDE

Introduces a list of columns that is to be included in the result table of the INSERT statement. The
included columns are only available if the INSERT statement is nested in the FROM clause of a
SELECT statement or a SELECT INTO statement.

column-name
Specifies the name for a column of the result table of the INSERT statement that is not the same
name as another included column nor a column in the table or view that is specified in table-name
or view-name.

data-type
Specifies the data type of the included column. The included columns are nullable.
built-in-type

Specifies a built-in data type. See “CREATE TABLE statement” on page 1650 for a description
of each built-in type.

The CCSID 1208 and CCSID 1200 clauses must not be specified for an INCLUDE column.

distinct-type
Specifies a distinct type. Any length, precision, or scale attributes for the column are those of
the source type of the distinct type as specified by using the CREATE TYPE statement.

OVERRIDING USER VALUE
Specifies that the value specified in the VALUES clause or produced by a fullselect for a column
that is defined as either GENERATED ALWAYS or GENERATED BY DEFAULT is ignored. Instead, a
system-generated value is inserted, overriding the user-specified value.

If OVERRIDING USER VALUE is specified, the implicit or explicit list of column must include a column
that is defined as either GENERATED ALWAYS or GENERATED BY DEFAULT. For example, a ROWID
column, an identity column, or a row change timestamp column.

VALUES form descriptions
The following descriptions apply to the VALUES form of INSERT.
VALUES

Specifies one new row in the form of a list of values. The number of values in the VALUES clause
must be equal to the number of names in the column list and the columns that are identified in the
INCLUDE clause. The first value is inserted in the first column in the list, the second value in the

Chapter 7. Statements 2001

second column, and so on. If more than one value is specified, the list of values must be enclosed
in parentheses. Assignments to included columns are only processed when the INSERT statement
is nested in the FROM clause in a SELECT statement or a SELECT INTO statement.
expression

Any expression of the type described in “Expressions” on page 245. The expression must
not include a column name. If expression is a host variable, the host variable can identify a
structure. Any host variable or structure that is specified must be described in the application
program according to the rules for declaring host structures and variables.

If expression is a host variable, it can include an indicator variable or an indicator array (in the
case of a host structure).

If extended indicators are enabled, and the expression is not a single variable, the extended
indicator values of DEFAULT (-5) and UNASSIGNED (-7) must not be used for that expression.

In addition:

• A CAST specification can be used if either of the following is true:

– The target column is defined as nullable.
– The target column is defined as NOT NULL with a non-null default, the source of the CAST

specification is a single host variable, and the data attributes (data type, length, precision,
and scale) of the host variable are the same as the result of the cast specification.

• A scalar fullselect can be used if either of the following is true for each expression in the
select list of the fullselect:

– The target column that corresponds to the expression is defined as nullable.
– The expression is not more complex than a reference to a single host variable for which

the indicator is set to an extended indicator value of DEFAULT (-5) or UNASSIGNED (-7),
or the expression is a CAST specification which would have been valid as a stand-alone
expression.

DEFAULT
Specifies the default value for the column. If the column is a generated column, Db2 will
generate a value for the column.

For information on default values of data types, see the description of the DEFAULT clause for
“CREATE TABLE statement” on page 1650.

NULL
Specifies the null value as the value of the column. Specify NULL only for nullable columns.

If the implicit or explicit list of columns includes a ROWID, an identity column, or a row change
timestamp column that was defined as GENERATED ALWAYS, you must specify DEFAULT unless
you specify the OVERRIDING USER VALUE clause to indicate that any user-specified value will be
ignored and a unique system-generated value will be inserted.

For a ROWID or identity column that is defined as GENERATED BY DEFAULT, you can specify
a value. However, a value can be inserted into ROWID column defined BY DEFAULT only if a
single-column unique index is defined on the ROWID column and the specified value is a valid row
ID value that was previously generated by Db2. When a value is inserted into an identity column
defined BY DEFAULT, Db2 does not verify that the specified value is a unique value for the column
unless the identity column has a single-column unique index.

Although an implicitly hidden DOCID column for XML values is defined as GENERATED ALWAYS,
you can include the DOCID column in the explicit list of columns and specify a value for it.
However, Db2 will ignore the value.

fullselect form desriptions

The following descriptions apply to the fullselect form of INSERT.

2002 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

WITH common-table-expression
Specifies a common table expression. For an explanation of common table expression, see
“common-table-expression” on page 1069.

fullselect
Specifies a set of new rows in the form of the result table of a fullselect. If the result table is
empty, SQLCODE is set to +100, and SQLSTATE is set to '02000'.

The base object of the INSERT statement and the base object of the fullselect or any subquery of
the fullselect can be the same table. In this case, the fullselect is evaluated completely before any
rows are inserted.

For an explanation of fullselect, see “fullselect” on page 1060.

The number of columns in the result table must be equal to the number of names in the column
list and the columns that are identified in the INCLUDE clause. The value of the first column of the
result is inserted in the first column in the list, the second value in the second column, and so on.
Any values that are produced for a generated column must conform to the rules that are described
for those columns under the VALUES clause. Assignments to included columns are only processed
when the INSERT statement is nested in the FROM clause of a SELECT statement or a SELECT
INTO statement.

If the expression that specifies the value of a result column is a variable, the host variable can
include an indicator variable. When extended indicator variables are enabled, the target column
that corresponds to an expression in the select list of the fullselect that involves a host variable
with an extended indicator value of DEFAULT (-5) or UNASSIGNED (-7), must be defined as
nullable and either of the following expressions:

• The expression must not be more complex than a reference to a single host variable.
• The expression must be a CAST specification with the following characteristics:

– The source of the CAST specification must be a single host variable.
– The data attributes (data type, length, precision, and scale) of the host variable are the same

as the result of the cast specification.

If the object table is self-referencing, the fullselect must not return more than one row.

isolation-clause
Specifies the isolation level that is used when the fullselect is executed.
WITH

Introduces the isolation level, which can be one of the following values:
RR

Repeatable read
RS

Read stability
CS

Cursor stability

The default isolation level of the statement is the isolation level of the package or plan in
which the statement is bound, with the package isolation taking precedence over the plan
isolation. When a package isolation is not specified, the plan isolation is the default.

QUERYNO integer
Specifies the number to be used for this SQL statement in EXPLAIN output and trace records.
The number is used for the QUERYNO column of the plan table for the rows that contain
information about this SQL statement. This number is also used in the QUERYNO column of
the SYSIBM.SYSSTMT and SYSIBM.SYSPACKSTMT catalog tables.

If the clause is omitted, the number that is associated with the SQL statement is the
statement number that is assigned during precompilation. Thus, if the application program
is changed and then precompiled, that statement number might change.

Chapter 7. Statements 2003

Using the QUERYNO clause to assign unique numbers to the SQL statements in a program is
helpful:

• For simplifying the use of optimization hints for access path selection
• For correlating SQL statement text with EXPLAIN output in the plan table

For more information about enabling and using optimization hints, see Influencing access path
selection (Db2 Performance)

For information on accessing the plan table, see Investigating SQL performance by using
EXPLAIN (Db2 Performance).

FOR n ROWS form descriptions

The following descriptions apply to the FOR n ROWS form of the INSERT.

VALUES
Specifies the items for the rows to be inserted. The number of items in the VALUES clause must
equal the number of names in the implicit or explicit column list. The first item in the list provides
the value (or values) for the first column in the list. The second item in the list provides the value
(or values) for the second column, and so on.
expression

Any expression of the type described in “Expressions” on page 245. The expression must not
include a column name. For each row that is inserted, the corresponding column is assigned
the value of the expression.

host-variable-array
Each host-variable array must be defined in the application program in accordance with the
rules for declaring an array. A host-variable array contains the data for a column of table that
is a target of the INSERT. The number of rows to be inserted must be less than or equal to the
dimension of each of the host-variable arrays.

An optional indicator array can be specified for each host-variable array. It should be specified
if the SQLTYPE of any SQLVAR occurrence indicates that the SQLVAR is nullable. The indicators
must be small integers. The indicator array must be large enough to contain an indicator for
each row of input data.

If extended indicator variables are enabled, the extended indicator variable values of DEFAULT
or UNASSIGNED can be used inside the indicator array.

host-variable-array is supported in C/C++, COBOL, and PL/I. For more information, see “Host-
variable arrays in PL/I, C, C++, and COBOL” on page 236.

DEFAULT
Specifies the default value for the column. If the column is a generated column, Db2 will
generate a value for the column.

For information on default values of data types, see the description of the DEFAULT clause for
“CREATE TABLE statement” on page 1650.

NULL
Specifies the null value as the value of the column in each row inserted. For each row inserted,
the corresponding column is assigned the NULL value. Specify NULL only for nullable columns.

FOR n ROWS

Specifies the number of rows to be inserted, where n is host-variable or integer-constant. For a
dynamic INSERT statement, this clause can be specified on the EXECUTE statement. For more
information, see “EXECUTE statement” on page 1909. However, this clause is required when a
dynamic SELECT statement contains more than one multiple-row INSERT statement.

host-variable or integer-constant is assigned to an integral value k. If host-variable is specified,
it must be an exact numeric type with scale zero, and must not include an indicator variable.

2004 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_influenceaccesspaths.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_influenceaccesspaths.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_useexplain2capturesqlinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_useexplain2capturesqlinfo.html

Furthermore, k must be in the range, 0<k<=32767. k rows are inserted into the target table from
the specified source data.

If the statement runs on accelerator, FOR integer-constant ROWS is supported only if the VALUES
clause uses a host variable array.

If a parameter marker is specified in this clause, a value must be provided with the USING clause
of the associated EXECUTE or OPEN statement.

ATOMIC or NOT ATOMIC CONTINUE ON SQLEXCEPTION
Specifies whether all of the rows should be inserted as an atomic operation or not.
ATOMIC

Specifies that if the insert for any row fails, all changes made to the database by any of the
inserts, including changes made by successful inserts, are undone. This is the default.

NOT ATOMIC CONTINUE ON SQLEXCEPTION
Specifies that, regardless of the failure of any particular insert of a row, the INSERT statement
will not undo any changes made to the database by the successful inserts of other rows, and
inserting will be attempted for subsequent rows. However, the minimum level of atomicity is at
least that of a single insert (that is, it is not possible for a partial insert to complete), including
any triggers that might have been executed as a result of the INSERT statement.

This clause is only valid for a static INSERT statement. This clause must also not be
specified if the INSERT statement is contained within a SELECT statement. For a dynamic
INSERT statement, specify the clause on the PREPARE statement. For more information, see
“PREPARE statement” on page 2042.

Notes for INSERT
Insert rules:

Insert values must satisfy the following rules. If they do not, or if any other errors occur during the
execution of the INSERT statement, no rows are inserted and the position of the cursors are not
changed.

• Default values. The value inserted in any column that is not in the column list is the default value of
the column. Columns without a default value must be included in the column list. Similarly, if you
insert into a view, the default value is inserted into any column of the base table that is not included
in the view. Hence, all columns of the base table that are not in the view must have a default value.

• Length. If the insert value of a column is a number, the column must be a numeric column with the
capacity to represent the integral part of the number. If the insert value of a column is a string, the
column must be either a string column with a length attribute at least as great as the length of the
string, or a datetime column if the string represents a date, time, or timestamp.

• Assignment. Insert values are assigned to columns in accordance with the assignment rules
described in Chapter 2, “Language elements in SQL,” on page 75.

• Uniqueness constraints. If the identified table or the base table of the identified view has one or
more unique indexes, each row inserted into the table must conform to the constraints imposed by
those indexes.

• Referential constraints. Each non-null insert value of a foreign key must be equal to some value of
the parent key of the parent table in the relationship.

• Check constraints. The identified table or the base table of the identified view might have one
or more check constraints. Each row inserted must conform to the conditions imposed by those
constraints. Thus, each check condition must be true or unknown.

• Field and validation procedures. If the identified table or the base table of the identified view has
a field or validation procedure, each row inserted must conform to the constraints imposed by that
procedure.

• Indexes with VARBINARY columns. If the identified table has an index on a VARBINARY column or
a column that is a distinct type that is based on VARBINARY data type, that index column cannot

Chapter 7. Statements 2005

specify the DESC attribute. To use the SQL data change operation on the identified table, either drop
the index or alter the data type of the column to BINARY and then rebuild the index.

• Views and the WITH CHECK OPTION. For views defined with WITH CHECK OPTION, each row you
insert into the view must conform to the definition of the view. If the view you name is dependent on
other views whose definitions include WITH CHECK OPTION, the inserted rows must also conform
to the definitions of those views. For an explanation of the rules governing this situation, see
“CREATE VIEW statement” on page 1812.

For views that are not defined with WITH CHECK OPTION, you can insert rows that do not conform
to the definition of the view. Those rows cannot appear in the view but are inserted into the base
table of the view.

• Omitting the column list. When you omit the column list, you must specify a value for every column
that was present in the table when the INSERT statement was bound or (for dynamic execution)
prepared.

• Triggers. An INSERT statement might cause triggers to be activated. A trigger might cause other
statements to be executed or raise error conditions based on the insert values. If an INSERT
statement for a view activates an INSTEAD OF trigger, the validity, referential integrity, and check
constraints are checked against the data changes that are performed in the trigger, and not against
the definition of the view that activates the trigger or the definition of the underlying tables or views.

When triggers are processed for an INSERT statement that inserts multiple rows depends on the
atomicity option that is in effect for the INSERT statement:

– ATOMIC. The inserts are processed as a single statement. Any statement level triggers are
activated one time for the statement, and the transition tables will include all of the rows that
were inserted.

– NOT ATOMIC CONTINUE ON SQLEXCEPTION. The inserts are processed separately. Any
statement level triggers are processed for each row that is inserted, and the transition table
includes the individual row that is inserted. When errors are encountered with this option in
effect, processing continues, and some of the specified rows will not be inserted. In this case, if
an insert trigger is defined on the underlying base table, the statement level triggers will only be
activated for rows that were successfully inserted.

Regardless of the failure of any particular source row, the INSERT statement will not undo any
changes that are made to the database by the statement. Insert will be attempted for rows that
follow the failed row. However, the minimum level of atomicity is at least that of a single source
row (that is, it is not possible for a partial insert operation to complete), including any triggers that
might have been activated as a result of the INSERT statement.

Inserting XML documents:
When XML documents are inserted into a table that contains an XML index, the XML values that are
inserted into the index are cast to the data type that is specified on the CREATE INDEX statement.
If the XML value cannot be cast to the specified data type, the XML value is ignored for the XML
index but the document is still inserted into the table. If the data type that is specified for casting is
DECFLOAT, values can be rounded when they are inserted into the index. If the index is unique, the
rounding that happens during the cast can result in duplicate values.

Number of rows inserted:
Normally, after an INSERT statement completes execution, the value of SQLERRD(3) in the SQLCA is
the number of rows inserted. The value in SQLERRD(3) does not include the number of rows that were
inserted as the result of a trigger.

For a complete description of the SQLCA, including exceptions to the above statement, see Appendix
F, “SQL communication area (SQLCA),” on page 2303.

Nesting user-defined functions or stored procedures:
An INSERT statement can implicitly or explicitly refer to user-defined functions or stored procedures.
This is known as nesting of SQL statements. A user-defined function or stored procedure that is
nested within the INSERT must not access the table into which you are inserting values.

2006 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Locking:
Unless appropriate locks already exist, one or more exclusive locks are acquired at the execution
of a successful insert operation. Until a commit or rollback operation releases the locks, only the
application process that performed the insert can access the inserted row. If LOBs are not inserted
into the row, application processes that are running with uncommitted read can also access the
inserted row. The locks can also prevent other application processes from performing operations on
the table. However, application processes that are running with uncommitted read can access locked
pages and rows.

Locks are not acquired on declared temporary tables.

Inserting rows into a table with multilevel security :
When you insert rows into a table with multilevel security, Db2 determines the value for the security
label column of the row according to the following rules:

• If the user (the primary authorization ID) has write-down privilege or write-down control is not
enabled, the user can set the security label for the row to any valid security label. The value that is
specified must be assignable to a column that is defined as CHAR(8) FOR SBCS DATA NOT NULL. If
the user does not specify a value for the security label or specifies DEFAULT, the security label of the
row becomes the same as the security label of the user.

• If the user does not have write-down privilege and write-down control is enabled, the security label
of the row becomes the same as the security label of the user.

Inserting rows into a table for which row or column access control is enforced:
When an INSERT statement is issued for a table for which row or column access control is enforced,
the rules specified in the enabled row permissions or column masks determine whether the row
can be inserted. Typically those rules are based on the authorization ID or role of the process.
The following rules describe how the enabled row permissions and column masks are used during
INSERT:

• A row to be inserted must not be effected by enabled column masks whose columns are referenced
while deriving the source values for the row.

When a column is referenced while deriving the values of a new row, if the column has an enabled
column mask, the masked value is used to derive the new values. If the object table is also column
access control activated, the column mask that is applied to derive the new values must ensure that
the evaluation of the access control rules defined in the column mask resolves the column to itself,
not to a constant or to an expression. If the column mask does not mask the column to itself, the
new value cannot be used for insert and an error is returned at run time.

If the OVERRIDING USER VALUE clause is specified, the corresponding values in the new row are
ignored, and the above rule for column masks is not applicable to those values.

• If the row can be inserted, and there is a BEFORE INSERT trigger for the table, the trigger is
activated.

Within the trigger actions, the new values for insert can be modified in the transition variables. When
the values return from the trigger, the final values for the new values are the ones for insert.

• A row to be inserted must conform to the enabled row permissions.

When multiple enabled row permissions are defined for a table, a row access control search
condition is derived by application of the logical OR operator to the search condition in each enabled
row permission. A row that conforms to the enabled row permissions is a row that if the row is
inserted it can be retrieved back using the row access control search condition.

Column masks are not applicable in this process.
• If the rows can be inserted, and there is an AFTER INSERT trigger for the table, the trigger is

activated.

The preceding rules are not applicable to the include-columns. The include-columns are subject to the
rules for the select list because they are not the columns of the object table of the INSERT statement.

Chapter 7. Statements 2007

Extended indicators usage:
When extended indicators are enabled, indicator values other than positive values and 0 through -7
must not be specified. The DEFAULT and UNASSIGNED extended indicator values must not appear in
contexts where they are not supported.

Extended indicators:
In an INSERT statement, the extended indicator value of UNASSIGNED has the effect of setting the
column to its default value. If a target column is not updatable, it can only be assigned the extended
indicator value of UNASSIGNED, unless it is an identity column defined as GENERATED ALWAYS. If the
target column is an identity column defined as GENERATED ALWAYS, it must be assigned the DEFAULT
keyword, or the extended indicator value of DEFAULT or UNASSIGNED.

Extended indicators and insert triggers:
The activation of insert triggers is not affected by the use of extended indicators. If all columns in
the implicit or explicit column list have been assigned an extended indicator value of UNASSIGNED
or DEFAULT, an insert in which all columns have their respective default values is attempted. If that
insert is successful, the insert trigger is activated.

Extended indicators and deferred error checks:
When extended indicators are enabled, validation that would normally be done during statement
preparation to recognize an insert into a non-updatable column is deferred until the statement is
executed.

Table space data compression during an insert operation:
If the table space is defined with compression, and data is inserted into a table in the table space,
the first rows are stored uncompressed. When a Db2-determined amount of data has been inserted
into the table, a compression dictionary is created and stored in the table space. The rows that are
inserted into the table after the dictionary is created are stored compressed using the compression
dictionary.

Generated columns:
A generated column that is defined as GENERATED ALWAYS should not be specified in the column-list
unless the corresponding entry in the VALUES list is DEFAULT or an extended indicator that specifies
that a default value is to be assigned. Specify the OVERRIDING USER VALUE clause to indicate that
any user-specified value should be ignored and Db2 should assign the default value when a row is
inserted.

Inserting rows into system-period temporal tables:
When a row is inserted into a system-period temporal table, Db2 assigns values to the following
columns as indicated:

• A row-begin column is assigned a value for the data type of the column. If the value of
the SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME built-in global variable at the time of
the insert is null, the value is generated using a reading of the time-of-day clock during
execution of the first data change statement in the unit of work that requires a value to be
assigned to a row-begin column or transaction-start-ID column in a table, or a row in a system-
period temporal table is deleted. Otherwise, the row-begin column is assigned the value of the
SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME built-in global variable at the time of the insert.

• A row-end column is assigned a value for the data type of the column.
• A transaction-start-ID column is assigned a unique value per unit of work or the null value. The null

value is assigned to the transaction-start-ID column if the column is nullable. Otherwise, the value
is generated by reading the time-of-day clock during execution of the first data change statement in
the unit of work that requires a value to be assigned to a row-begin column or transaction-start-ID
column in a table. This also occurs when a row in a system-period temporal table is deleted. If
multiple rows are inserted within a single SQL transaction, the values for the transaction-start-ID
column are the same for all the rows and are unique from the values that are generated for the
column by another unit of work.

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a non-null value, the underlying
target of the INSERT statement cannot be a system-period temporal table. This restriction applies
regardless of whether the system-period temporal table is directly or indirectly referenced.

2008 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Inserting rows into application-period temporal tables:
When a row is inserted into an application-period temporal table, an error is returned if the period that
is defined by the begin column and end column of the application period overlap with the period that
is defined by the begin column and end column of the application period for another row in the table.

Inserting rows into archive-enabled tables:
You cannot insert rows into an archive-enabled table if the value of the
SYSIBMADM.MOVE_TO_ARCHIVE global variable is Y. Otherwise, if this global variable is not set to
Y, you can specify an archive-enabled table as the target of the INSERT statement. In this case, the
content of the associated archive table is not affected.

A data change statement must not reference an archive-enabled table when a system-period
temporal table or application-period temporal table is also referenced.

INSERT without a column list:
An INSERT statement without a column list does not include implicitly hidden columns, so columns
that are defined as implicitly hidden must have a defined default value.

Inserting a row into catalog table SYSIBM.SYSSTRINGS:
If the object table is SYSIBM.SYSSTRINGS, only certain values can be specified, as described in
Specifying conversion procedures (Db2 Administration Guide).

Datetime representation when using datetime registers:
As explained in Datetime special registers, when two or more datetime registers are implicitly or
explicitly specified in a single SQL statement, they represent the same point in time. This is also true
when multiple rows are inserted. When ATOMIC is in effect for the INSERT statement, the special
registers are evaluated one time for the processing of the statement. If NOT ATOMIC is in effect, the
special registers are evaluated as each row of source data is processed.

Non-atomic processing of an INSERT statement:
When NOT ATOMIC is specified the rows of source data are processed separately. Any references to
special registers, sequence expressions, and functions in the INSERT statement are evaluated as each
row of source data is processed, Statement level triggers are activated as each row of source data is
processed.

If one or more errors occur during the execution of an insert of a row, processing continues. The row
that was being inserted at the time of the error is not inserted. Execution continues with the next
row to be inserted, and any other changes made during the execution of the multiple-row INSERT
statement are not backed out. However, the insert of an individual row is an atomic action.

Diagnostics information for a multiple-row INSERT statement:
A single multiple-row INSERT statement might encounter multiple conditions. These conditions can
be errors or warnings. Use the GET DIAGNOSTICS statement to obtain information about all of
the conditions that are encountered for one of these INSERT statements. See “GET DIAGNOSTICS
statement” on page 1949 for more information.

If a warning occurs during the execution of an insert of a row, processing continues.

When multiple errors or warnings occur with a non-atomic INSERT statement, diagnostic information
for each row is available using the GET DIAGNOSTICS statement. The SQLSTATE and SQLCODE reflect
a summary of what happened during the INSERT statement:

• SQLSTATE 01659, SQLCODE +252. All rows were inserted, but one or more warnings occurred.
• SQLSTATE 22529, SQLCODE -253. At least one row was successfully inserted, but one or more

errors occurred. Some warnings might also have occurred.
• SQLSTATE 22530, SQLCODE -254. No row was inserted. One or more errors occurred while trying

to insert multiple rows of data.
• SQLSTATE 429BI, SQLCODE -20252. More errors occurred that Db2 is capable of recording.

Statement processing is terminated.

When ATOMIC is in effect, if an insert value violates any constraints or if any other error occurs during
the execution of an insert of a row, all changes made during the execution of the multiple-row INSERT
statement are backed out. The SQLCA reflects the last warning encountered.

Chapter 7. Statements 2009

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_specifyconversionprocedure.html

After an INSERT statement that inserts multiple rows of data, both atomic and non-atomic,
information is returned to the program through the SQLCA. The SQLCA is set as follows:

• SQLCODE contains the SQLCODE.
• SQLSTATE contains the SQLSTATE.
• SQLERRD3 contains the number of rows actually inserted. SQLERRD3 is the number of rows

inserted, if this is less than the number of rows requested, then an error occurred.
• SQLWARN flags are set if they were set during any single insert operation.

The SQLCA is used to return information on errors and warnings found during a multiple-row insert.
If indicator arrays are provided, the indicator variable values are used to determine if the value from
the host-variable array, or NULL, will be used. The SQLSTATE contains the warning from the last data
mapping error.

Specifying the number of rows for a dynamic multiple-row INSERT statement:
Be aware of these considerations when specifying the number of rows to be inserted with a dynamic
multiple-row INSERT statement that uses host-variable arrays:

• The FOR n ROWS clause can be specified as part of an INSERT statement or as part of an EXECUTE
statement, but not both

• In the INSERT statement, you can specify a numeric constant in the FOR n ROWS clause to indicate
the number of rows to be inserted or specify a parameter marker to indicate that the number of
rows will be specified with the associated EXECUTE or OPEN statement. A multiple-row INSERT
statement that is contained within a SELECT statement must include a FOR n ROWS clause.

• In an EXECUTE statement, when a dynamic INSERT statement is not contained within a SELECT
statement, the number of rows can be specified with either the FOR n ROWS clause or the USING
clause of the EXECUTE statement:

– If the INSERT statement did not contain a FOR n ROWS clause, a value for the number of rows to
be inserted can be specified in the FOR n ROWS clause of the EXECUTE statement with a numeric
constant or host variable.

– If a parameter marker was specified as part of a FOR n ROWS clause in the INSERT statement,
a value for the number of rows must be specified with the USING clause of the EXECUTE
statement.

• In an OPEN statement, when a dynamic SELECT statement contains one or more INSERT
statements that have FOR n ROWS clauses with parameter markers, the values for the number
of rows to be inserted (that is, the values for the parameter markers) must be specified with the
USING clause of the OPEN statement.

DRDA considerations for a multiple-row INSERT statement:
Db2 for z/OS limits the size of user data and control information to 10M (except for LOBs, which are
processed in a different data stream) for a single multiple-row INSERT statement using host-variable
arrays.

When a multiple-row INSERT statement is executed at a Db2 for z/OS requester, the number of rows
being inserted at the requester might not be known in some cases. These cases include:

• The FOR n ROWS clause contains a constant value for n for either a static or dynamic INSERT
statement.

• Host variables are specified on the USING clause of an EXECUTE statement for a dynamic INSERT
statement.

In either case, if the number of rows that is being inserted is not known, the requester might
flow more data than is required to the server. The number of rows that is actually inserted will be
correct because the server knows the correct number of rows to insert. However, performance can be
adversely affected. Consider the following scenario:

...
long serial_num [10];
struct {
short len;

2010 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

char data [18];
}name [20]
...
EXEC SQL INSERT INTO T1 VALUES (:serial_num, :name) FOR 5 ROWS

At the requester, when this statement is executed, the number of rows being inserted, 5, is not known.
As a result, the requester will flow 10 values for serial_num and 10 values for name to the server
(because the maximum number of rows that can be inserted without error is 10, which is the size of
the smallest host-variable array).

Use the following programming techniques to avoid or minimize problems:

• Avoid using constant values for n in the FOR n ROWS clause of INSERT statements. For static
INSERT statements, this technique ensures that the value for n will be known at the requester.

• For dynamic INSERT statements, use the USING DESCRIPTOR clause instead of the USING host-
variables clause on the EXECUTE statement. If a USING DESCRIPTOR clause is used on the
EXECUTE statement, the value for 'n' must be indicated in the DESCRIPTOR.

• If neither of the above methods can be used:

– Declare your host-variable arrays as small as possible, or indicate that the size of your host-
variable arrays are the size of 'n' in your descriptor. This avoids sending large numbers of host-
variable-array entries that will not be used to the server.

– Ensure that varying length string arrays are initialized to a length of 0 (zero). This minimizes the
amount of data that is sent to the server.

– Ensure that decimal host-variable arrays are initialized to valid values. This avoids a negative
SQLCODE from being returned if the requester encounters invalid decimal data.

Other SQL statements in the same unit of work:
The following statements cannot follow an INSERT statement in the same unit of work:

• An ALTER TABLE statement that changes the data type of a column (ALTER COLUMN SET DATA
TYPE)

• An ALTER INDEX statement that changes the padding attribute of an index with varying-length
columns (PADDED to NOT PADDED or vice versa)

• A CREATE TABLE statement that creates an accelerator-only table.
• An INSERT, UPDATE, or DELETE statement that updates accelerator-only tables from a different

accelerator.

Examples for INSERT

Example 1
Insert values into sample table DSN8C10.EMP.

 INSERT INTO DSN8C10.EMP
 VALUES ('000205','MARY','T','SMITH','D11','2866',
 '1981-08-10','ANALYST',16,'F','1956-05-22',
 16345,500,2300);

Example 2
Assume that SMITH.TEMPEMPL is a created temporary table. Populate the table with data from
sample table DSN8C10.EMP.

 INSERT INTO SMITH.TEMPEMPL
 SELECT *
 FROM DSN8C10.EMP;

Chapter 7. Statements 2011

Example 3
Assume that SESSION.TEMPEMPL is a declared temporary table. Populate the table with data from
department D11 in sample table DSN8C10.EMP.

 INSERT INTO SESSION.TEMPEMPL
 SELECT *
 FROM DSN8C10.EMP
 WHERE WORKDEPT='D11';

Example 4

Insert a row into sample table DSN8C10.EMP_PHOTO_RESUME. Set the value for column EMPNO to
the value in host variable HV_ENUM. Let the value for column EMP_ROWID be generated because it
was defined with a row ID data type and with clause GENERATED ALWAYS.

 INSERT INTO DSN8C10.EMP_PHOTO_RESUME(EMPNO, EMP_ROWID)
 VALUES (:HV_ENUM, DEFAULT);

You can only insert user-specified values into ROWID columns that are defined as GENERATED BY
DEFAULT and not as GENERATED ALWAYS. Therefore, in the above example, if you were to try to
insert a value into EMP_ROWID instead of specifying DEFAULT, the statement would fail unless you
also specify OVERRIDING USER VALUE. For columns that are defined as GENERATED ALWAYS, the
OVERRIDING USER VALUE clause causes Db2 to ignore any user-specified value and generate a value
instead.

For example, assume that you want to copy the rows in DSN8C10.EMP_PHOTO_RESUME to another
table that has a similar definition (both tables have a ROWID columns defined as GENERATED
ALWAYS). For the following INSERT statement, the OVERRIDING USER VALUE clause causes Db2
to ignore the EMP_ROWID column values from DSN8C10.EMP_PHOTO_RESUME and generate values
for the corresponding ROWID column in B.EMP_PHOTO_RESUME.

 INSERT INTO B.EMP_PHOTO_RESUME
 OVERRIDING USER VALUE
 SELECT * FROM DSN8C10.EMP_PHOTO_RESUME;

Example 5
Assume that the T1 table has one column. Insert a variable (:hv) number of rows of data into the T1
table. The values to be inserted are provided in a host-variable array (:hva).

EXEC SQL INSERT INTO T1 VALUES (:hva:hvind) FOR :hv ROWS ATOMIC;

In this example, :hva represents the host-variable array and :hvind represents the array of indicator
variables.

Example 6

Assume that the T2 table has 2 columns, C1 is a SMALL INTEGER column, and C2 is an INTEGER
column. Insert 10 rows of data into the T2 table. The values to be inserted are provided in host-
variable arrays :hva1 (an array of INTEGERS) and :hva2 (an array of DECIMAL(15,0) values). The data
values for :hva1 and :hva2 are represented in Table 240 on page 2012:

Table 240. Data values for :hva1 and :hva2

Array entry :hva1 :hva2

1 1 32768

2 -12 90000

3 79 2

4 32768 19

5 8 36

6 5 24

2012 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 240. Data values for :hva1 and :hva2 (continued)

Array entry :hva1 :hva2

7 400 36

8 73 4000000000

9 -200 2000000000

10 35 88

EXEC SQL INSERT INTO T2 (C1, C2)
 VALUES (:hva1:hvind1, :hva2:hvind2) FOR 10 ROWS
 NOT ATOMIC CONTINUE ON SQLEXCEPTION;

After execution of the INSERT statement, the following information will be in the SQLCA:

SQLCODE = -253
SQLSTATE = 22529
SQLERRD3 = 8

Although an attempt was made to insert 10 rows, only 8 rows of data were inserted. Processing
continued after the first failed insert because NOT ATOMIC CONTINUE ON SQLEXCEPTION was
specified. You can use the GET DIAGNOSTICS statement to find further information, for example:

GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;

The result of this statement is num_rows = 8 and num_cond = 2 (2 conditions).

GET DIAGNOSTICS CONDITION 2 :sqlstate = RETURNED_SQLSTATE,
 :sqlcode = DB2_RETURNED_SQLCODE,
 :row_num = DB2_ROW_NUMBER;

The result of this statement is sqlstate = 22003, sqlcode = -302, and row_num = 4.

GET DIAGNOSTICS CONDITION 1 :sqlstate = RETURNED_SQLSTATE,
 :sqlcode = DB2_RETURNED_SQLCODE,
 :row_num = DB2_ROW_NUMBER;

The result of this statement is sqlstate = 22003, sqlcode = -302, and row_num = 8.

Example 7

Assume the above table T2 with two columns. C1 is a SMALL INTEGER column, and C2 is an INTEGER
column. Insert 8 rows of data into the T2 table. The values to be inserted are provided in host-variable
arrays :hva1 (an array of INTEGERS) and :hva2 (an array of DECIMAL(15,0) values.) The data values
for :hva1 and :hva2 are represented in Table 240 on page 2012.

EXEC SQL INSERT INTO T2 (C1, C2)
 VALUES (:hva1:hvind1, :hva2:hvind2) FOR 8 ROWS
 NOT ATOMIC CONTINUE ON SQLEXCEPTION;

After execution of the INSERT statement, the following information will be in the SQLCA:

SQLCODE = -253
SQLSTATE = 22529
SQLERRD3 = 6

Although an attempt was made to insert 8 rows, only 6 rows of data were inserted. Processing
continued after the first failed insert because NOT ATOMIC CONTINUE ON SQLEXCEPTION was
specified. You can use the GET DIAGNOSTICS statement to find further information, for example:

GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;

The result of this statement is num_rows = 68 and num_cond = 2 (2 conditions).

Chapter 7. Statements 2013

GET DIAGNOSTICS CONDITION 2 :sqlstate = RETURNED_SQLSTATE,
 :sqlcode = DB2_RETURNED_SQLCODE,
 :row_num = DB2_ROW_NUMBER;

The result of this statement is sqlstate = 22003, sqlcode = -302, and row_num = 4.

GET DIAGNOSTICS CONDITION 1 :sqlstate = RETURNED_SQLSTATE,
 :sqlcode = DB2_RETURNED_SQLCODE,
 :row_num = DB2_ROW_NUMBER;

The result of this statement is sqlstate = 22003, sqlcode = -302, and row_num = 8.

Example 8
Assume that table T1 has two columns. Insert a variable number (:hvn) or rows into T1. The values
to be inserted are in host-variable arrays :hva and :hvb. In this example, the INSERT statement is
contained within the SELECT statement of cursor CS1. The SELECT statement makes use of two other
input host variables (:hv1 and :hv2) in the WHERE clause. Either a static or dynamic INSERT statement
can be used.

-- Static INSERT statement:
DECLARE CS1 CURSOR WITH ROWSET POSITIONING FOR
 SELECT *
 FROM FINAL TABLE
 (INSERT INTO T1 VALUES (:hva, :hvb) FOR :hvn ROWS)
 WHERE C1 > :hv1 AND C2 < :hv2;
OPEN CS1;
-- Dynamic INSERT statement:
PREPARE INSSTMT FROM
 'SELECT *
 FROM FINAL TABLE
 (INSERT INTO T1 VALUES (? , ?) FOR ? ROWS)
 WHERE C1 > ? AND C2 < ?';
DECLARE CS1 CURSOR WITH ROWSET POSITIONING FOR :INSSTMT;
OPEN CS1 USING :hva, :hvb, :hvn, :hv1, :hv2; (or OPEN CS1 USING DESCRIPTOR ...)

If the host-variable arrays for the multiple-row INSERT statement were to be specified using a
descriptor, that descriptor (SQLDA) would have to describe all input host variables in the statement,
and the order of the entries in the SQLDA should be the same as the order of the order of the host
variables, host-variable arrays, and values for the FOR n ROWS clauses in the statement. For example,
given the statement above, the SQLVAR entries in the descriptor must be assigned in the following
order: :hvn, :hva, :hvb, :hv1, hv2. In addition, the SQLVAR entries for host-variable arrays must be
tagged in the SQLDA as column arrays (by specifying a special value in part of the SQLNAME field for
a host variable), and the SQLVAR entry for the number of rows value must be tagged in the SQLDA (by
specifying another special value in part of the SQLNAME field for the host variable).

Example 9
Insert a row into table T1. The row contains the value 'xyz' for column COL1, and the cardinality of
array INTA for column COL2.

CREATE TYPE INTARRAY AS INTEGER ARRAY [6];
CREATE VARIABLE INTA AS INTARRAY;
SET INTA = ARRAY [1, 2, 3, 4, 5];
CREATE TABLE T1 (COL1 CHAR(7), COL2 INT);
INSERT INTO T1 VALUES ('xyz', CARDINALITY(INTA));

Example 10

Insert the values from arrays CHARA and INTA into table T1. For a row of T1, a value of the CHARA
array is used for column COL1, and the value of the INTA array with the same array index is used for
column COL2.

CREATE TYPE INTARRAY AS INTEGER ARRAY[10];
CREATE TYPE CHARARRAY AS CHAR(7) ARRAY[10];
CREATE VARIABLE INTA AS INTARRAY;
CREATE VARIABLE CHARA AS CHARARRAY;
SET INTA = ARRAY[1, 2, 3, 4, 5];
SET CHARA = ARRAY['a', 'b', 'c', 'd'];
CREATE TABLE T1 (COL1 CHAR(7), COL2 INT);
INSERT INTO T1

2014 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 SELECT *
 FROM UNNEST(CHARA, INTA) AS (COL1, COL2);

Example 11

Insert three rows of data into table T1. For each inserted row, assign the value of the tenth element in
the INTA array variable to the COL1 column.

CREATE TYPE INTARRAY AS INTEGER ARRAY[10];
CREATE VARIABLE INTA AS INTARRAY;
CREATE VARIABLE VAR1 AS INTEGER;
CREATE VARIABLE VAR2 AS INTEGER;
SET INTA = ARRAY[10, 20, 30, 40, 50, 60, 70, 80, 90, 100];
CREATE TABLE T1 (COL1 INT, COL2 CHAR(10));
SET VAR1 = 10;
SET VAR2 = 3;
-- Perform a multiple row insert (specifying a FOR n ROWS clause).
-- The value to be inserted is specified by a reference to an array element.
INSERT INTO T1 (COL1) VALUES(INTA[VAR1]) FOR VAR2 ROWS;

The result of the these operations is that a value of 100 is assigned to column COL1 for three rows.

LABEL statement
The LABEL statement adds or replaces labels in the descriptions of tables, views, aliases, or columns in
the catalog at the current server.

Invocation for LABEL
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for LABEL
The privilege set that is defined below must include at least one of the following:

• Ownership of the table, view, or alias
• DBADM authority for its database (tables only)
• SYSADM or SYSCTRL authority
• System DBADM

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the statement is dynamically prepared, the
privilege set is determined by the DYNAMICRULES behavior in effect (run, bind, define, or invoke) and
is summarized in Table 171 on page 1089. (For more details on these behaviors, including a list of the
DYNAMICRULES bind option values that determine them, see “Authorization IDs and dynamic SQL” on
page 94.)

Chapter 7. Statements 2015

Syntax for LABEL

LABEL ON

TABLE table-name

view-name

ALIAS alias-name

COLUMN table-name . column-name

view-name . column-name

IS string-constant

table-name

view-name

(

,

column-name IS string-constant)

Description for LABEL
TABLE table-name or view-name

Identifies the table or view to which the label applies. The name must identify a table or view that
exists at the current server. table-name must not identify a declared temporary table. The label is
placed into the LABEL column of the SYSIBM.SYSTABLES catalog table for the row that describes the
table or view.

ALIAS alias-name
Identifies the alias to which the label applies. The name must identify an alias for a table or view
that exists at the current server. The label is placed in the LABEL column of the SYSIBM.SYSTABLES
catalog table for the row that describes the alias.

COLUMN table-name.column-name or view-name.column-name
Identifies the column to which the label applies. The name must identify a column of a table or view
that exists at the current server. The name must not identify a column of a declared temporary table.
The label is placed in the LABEL column of the SYSIBM.SYSCOLUMNS catalog table in the row that
describes the column.

Do not use TABLE or COLUMN to define a label for more than one column in a table or view. Give
the table or view name and then, in parentheses, a list in the form:

 column-name IS string-constant,
 column-name IS string-constant,...

See Example 2 below.

The column names must not be qualified, each name must identify a column of the specified table or
view, and that table or view must exist at the current server.

IS
Introduces the label you want to provide.

string-constant
Can be any SQL character string constant of up to 30 bytes in length.

Examples for LABEL

Example 1: Enter a label on the DEPTNO column of table DSN8C10.DEPT.

 LABEL ON COLUMN DSN8C10.DEPT.DEPTNO
 IS 'DEPARTMENT NUMBER';

2016 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 2: Enter labels on two columns in table DSN8C10.DEPT.

 LABEL ON DSN8C10.DEPT
 (MGRNO IS 'EMPLOYEE NUMBER FOR THE MANAGER',
 ADMRDEPT IS 'ADMINISTERING DEPARTMENT');

LOCK TABLE statement
The LOCK TABLE statement requests a lock on a table or table space at the current server. The lock is not
acquired if the process already holds an appropriate lock.

Invocation for LOCK TABLE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for LOCK TABLE
The privilege set that is defined below must include at least one of the following:

• The SELECT privilege on the identified table (the SELECT privilege does not apply to the auxiliary table)
• Ownership of the table
• DBADM authority for the database
• SYSADM or SYSCTRL authority
• DATAACCESS authority

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the statement is dynamically prepared, the
privilege set is determined by the DYNAMICRULES behavior in effect (run, bind, define, or invoke) and
is summarized in Table 171 on page 1089. (For more details on these behaviors, including a list of the
DYNAMICRULES bind option values that determine them, see “Authorization IDs and dynamic SQL” on
page 94.)

Syntax for LOCK TABLE

LOCK TABLE table-name

PARTITION integer

IN SHARE

EXCLUSIVE

MODE

Description for LOCK TABLE
table-name

Identifies the table to be locked. The name must identify a table that exists at the current server. It
must not identify a view, a temporary table (created or declared), an accelerator-only table, a catalog
table, or a directory table. The lock might or might not apply exclusively to the table. The effect of
locking an auxiliary table is to lock the LOB table space that contains the auxiliary table.

PARTITION integer
Identifies the partition of a partitioned table space to lock. The table identified by table-name must
belong to a partitioned table space. The value specified for integer must be an integer that is no
greater than the number of partitions in the table space.

Chapter 7. Statements 2017

IN SHARE MODE
For a lock on a table that is not an auxiliary table, requests the acquisition of a lock that prevents
other processes from executing anything but read-only operations on the table. For a lock on a LOB
table space, IN SHARE mode requests a lock that prevents storage from being reallocated. When a
LOB table space is locked, other processes can delete LOBs or update them to a null value, but they
cannot insert LOBs with a nonnull value. The type of lock that the process holds after execution of the
statement depends on what lock, if any, the process already holds.

IN EXCLUSIVE MODE
Requests the acquisition of an exclusive lock for the application process. Until the lock is released, it
prevents concurrent processes from executing any operations on the table.

Exceptions: Unless the lock is on a LOB table space, a partitioned (non-UTS) table space, or
a universal table space (UTS), concurrent processes that are running with an isolation level of
uncommitted read (UR) can execute read-only operations on the table. Concurrent processes that are
running with an isolation level of cursor stability (CS) with CURRENTDATA(NO) can execute read-only
operations on the table when lock avoidance is used to read data that is already committed.

Be aware that an exclusive lock on a table space, table, or partition does not prevent other
transactions from holding claims on the locked object.

Notes for LOCK TABLE
Releasing locks

If LOCK TABLE is a static SQL statement, the RELEASE option of bind determines when Db2
releases a lock. For RELEASE(COMMIT), Db2 releases the lock at the next commit point. For
RELEASE(DEALLOCATE), Db2 releases the lock when the plan is deallocated (the application ends).

If LOCK TABLE is a dynamic SQL statement, Db2 uses RELEASE(COMMIT) and releases the lock at
the next commit point, unless the table or table space is referenced by cached dynamic statements.
Caching allows Db2 to keep prepared statements in memory past commit points. In this case, Db2
holds the lock until deallocation or until the commit after the prepared statements are freed from
memory. Under some conditions, if a lock is held past a commit point, Db2 demotes the lock state of a
segmented table or a nonsegmented table space to an intent lock at the commit point.

When you issue a MODIFY DDF command with the PKGREL(BNDOPT) or PKGREL(BNDPOOL) options,
the use of processor resources for package allocation and deallocation are minimized for packages
that use database access threads and are bound with the RELEASE(DEALLOCATE) option. When the
MODIFY DDF PKGREL command is issued with these options, Db2 honors the RELEASE bind option
even for dynamic SQL statements.

Syntax alternatives and synonyms
For compatibility with previous releases of Db2, PART can be specified as a synonym for PARTITION.

Example for LOCK TABLE

Obtain a lock on the sample table named DSN8C10.EMP, which resides in a partitioned table space. The
lock obtained applies to every partition and prevents other application programs from either reading or
updating the table. However, under one of the conditions that are noted above under Exceptions, Db2
might allow read-only operations on the table.

LOCK TABLE DSN8C10.EMP IN EXCLUSIVE MODE;

Related concepts
Lock size (Db2 Performance)
The duration of a lock (Db2 Performance)
Lock avoidance (Db2 Performance)
Related tasks
Controlling concurrent access to tables (Db2 Performance)

2018 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_sizeoflock.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_lockduration.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_lockavoidance.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_locktablestatement.html

Programming for concurrency (Db2 Performance)
Related reference
ISOLATION bind option (Db2 Commands)
RELEASE bind option (Db2 Commands)
DYNAMICRULES bind option (Db2 Commands)

MERGE statement
The MERGE statement updates a target (a table or view) using data from a source (the result of a table
reference or the specified input data). Rows in the target that match the input data can be deleted or
updated as specified, and rows that do not exist in the target can be inserted. Updating, deleting, or
inserting a row into a view updates, deletes, or inserts the row into the tables on which the view is based,
if no INSTEAD OF trigger is defined on this view.

Invocation for MERGE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for MERGE
The privileges that are held by the privilege set that is defined below must include at least one of the
following privileges:

• SYSADM authority
• Ownership of the table
• DATAACCESS authority
• If the search condition contains a reference to a column of the table or view, the SELECT privilege for

the referenced table or view
• If the delete operation is specified, the DELETE privilege for the table or view
• If the insert operation is specified, the INSERT privilege for the table or view
• If the update operation is specified, at least one of the following privileges is required:

– the UPDATE privilege for the table or view
– the UPDATE privilege on each column that is updated
– If the right side of the assignment clause contains a reference to a column of the table or view, the

SELECT privilege for the referenced table or view

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

If the insert operation or assignment clause includes a subquery, the privileges that are held by the
privilege set must also include at least one of the following privileges:

• SYSADM authority
• The SELECT privilege on every table or view that is identified in the subquery
• Ownership of the tables or views that are identified in the subquery
• DATAACCESS authority

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the statement is dynamically prepared, the
privilege set is determined by the DYNAMICRULES behavior in effect (run, bind, define, or invoke) and
is summarized in Table 171 on page 1089. (For more information on these behaviors, including a list of
the DYNAMICRULES bind option values that determine them, see “Authorization IDs and dynamic SQL” on
page 94.)

Chapter 7. Statements 2019

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_programapps4concurrency.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptisolation.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptrelease.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptdynamicrules.html

Syntax for MERGE

MERGE INTO table-name

view-name correlation-clause
1 include-columns

USING table-reference
1

source-values
1

ON search-condition

WHEN matching-condition THEN modification-operation

signal-statement
1

ELSE IGNORE
1

NOT ATOMIC CONTINUE ON SQLEXCEPTION

QUERYNO integer

Notes:
1 For information on the interaction between this option and the NOT ATOMIC CONTINUE ON
SQLEXCEPTION clause, see “Considerations for the NOT ATOMIC CONTINUE ON SQLEXCEPTION clause”
on page 2031.

correlation-clause:

AS
correlation-name

(

,

column-name)

include-columns:

INCLUDE (

,

column-name data-type)

data-type:

built-in-type

distinct-type

built-in-type:

2020 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

FOR BIT DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC ( integer)

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

source-values:

Chapter 7. Statements 2021

(VALUES values-single-row

values-multiple-row
1

)
AS

correlation-name

(

,

column-name)

Notes:
1 The NOT ATOMIC CONTINUE ON SQLEXCEPTION clause must be specified when values-multiple-row is
specified.

values-single-row:

expression

NULL

(

,

expression

NULL

)

values-multiple-row:

expression

host-variable-array

NULL

(

,

expression

host-variable-array

NULL

)

FOR host-variable

integer-constant

ROWS
1

Notes:
1 For a static MERGE statement, if FOR n ROWS is not specified, values-multiple-row is treated as values-
single-row. For a dynamic MERGE statement, FOR n ROWS does not need to be specified in the MERGE
statement. It can be specified in the EXECUTE statement, but cannot be specified in both the MERGE and
EXECUTE statements.

matching-condition:

NOT

MATCHED

AND search-condition
1

Notes:
1 For information on the interaction between this option and the NOT ATOMIC CONTINUE ON
SQLEXCEPTION clause, see “Considerations for the NOT ATOMIC CONTINUE ON SQLEXCEPTION clause”
on page 2031.

2022 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

modification-operation:

update-operation

delete-operation
1

insert-operation

Notes:
1 For information on the interaction between this option and the NOT ATOMIC CONTINUE ON
SQLEXCEPTION clause, see “Considerations for the NOT ATOMIC CONTINUE ON SQLEXCEPTION clause”
on page 2031.

assignment-clause:

,

column-name = expression

DEFAULT

NULL

(

,

column-name) = (

,

expression
1

DEFAULT

NULL

row-fullselect
2 3

)

Notes:
1 The number of expressions, DEFAULT, and NULL keywords must match the number of column-names.
2 The number of columns in the SELECT list must match the number of column-names.
3 For information on the interaction between this option and the NOT ATOMIC CONTINUE ON
SQLEXCEPTION clause, see “Considerations for the NOT ATOMIC CONTINUE ON SQLEXCEPTION clause”
on page 2031.

update-operation:

UPDATE SET assignment-clause

delete-operation:

DELETE

insert-operation:

Chapter 7. Statements 2023

INSERT

(

,

column-name)

VALUES

expression

DEFAULT

NULL

1

(

,

expression

DEFAULT

NULL

)
2

Notes:
1 The number of expressions, DEFAULT, and NULL keywords must match the number of column-names.
2 The number of columns in the SELECT list must match the number of column-names.

Description for MERGE
INTO table-name or view-name

Identifies the target of the update, insert, or delete operations of the merge. The name must identify a
table or view that exists at the current server. The name must not identify:

• A catalog table
• A directory table
• A created global temporary table
• A read-only view
• A system-maintained materialized query table
• A table that is implicitly created for an XML column
• An accelerator-only table

If a view is specified as the target of the MERGE statement, the view must not be defined with any
INSTEAD OF triggers.

AS correlation-name
correlation-name provides an alternative name that can be used when referencing columns of target
table.

The correlation name can be used within search-condition, matching-condition, or as part of a source
value for an assignment, to designate the target table or view. The correlation-name is used to
qualify references to the columns of the table or view. For a description of correlation-clause, see
“table-reference” on page 1018.

column-name
Specifies a column name. When a correlation-name is specified, column-names can also be
specified to give names to the columns of the target table-name or view-name. If a column list is
specified, there must be a name in the column list for each column in the table or view.

include-columns
Specifies a set of columns that are included, along with the columns of the specified table or view, in
the result table of the MERGE statement when it is nested in the FROM clause of the outer fullselect
that is used in a SELECT statement, or in a SELECT INTO statement. The included columns are

2024 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

appended to the end of the list of columns that are identified by table-name or view-name. If a value is
not specified for an included column, a null value is returned for that column.
INCLUDE

Introduces a list of columns that is to be included in the result table of the MERGE statement. The
included columns are only available if the MERGE statement is nested in the FROM clause of a
SELECT statement or a SELECT INTO statement. INCLUDE can only be specified when the MERGE
statement is nested in the FROM clause of a SELECT statement.

column-name
Specifies the name for a column of the result table of the MERGE statement that is not the same
name as another included column or a column in the table or view that is specified in table-name
or view-name.

data-type
Specifies the data type of the included column. The included columns are nullable.

Columns with the following data types can not be used as INCLUDE columns:

• LONG VARCHAR,
• LONG VARGRAPHIC,
• XML
• LOBs
• distinct types that are based on any of the listed data types.

built-in-type
Specifies a built-in data type. See “CREATE TABLE statement” on page 1650 for a description
of each built-in type.

The CCSID 1208 and CCSID 1200 clauses must not be specified for an INCLUDE column.

distinct-type
Specifies a distinct type. Any length, precision, or scale attributes for the column are those of
the source type of the distinct type as specified by using the CREATE TYPE statement.

USING
Specifies a set of rows as a result table to be merged into the target.
table-reference

Specifies a set of rows as a result table to be merged into the target. If the result table is empty, a
warning is returned.

source-values
VALUES values-single-row or values-multiple-row

Specifies the values for a set of rows as a result table to be merged into the target. values-
single-row specifies a single row of source data. values-multiple-row specifies multiple rows of
source data. The number of values must not exceed 750.
expression

Specifies an expression of the type that is described in “Expressions” on page 245. The
expression must not include a column name. The expression must not reference a NEXT
VALUE or PREVIOUS VALUE expression. If the expression is a single host variable, the host
variable can identify a structure. Any host variable or structure that is specified must be
described in the application program according to the rules for declaring host structures
and variables.

host-variable-array
Specifies a host-variable array. Each host-variable array must be defined in the application
program in accordance with the rules for declaring an array. A host-variable array contains
the data to merge into a target column. The number of rows must be less than or equal
to the dimension of each of the host-variable arrays. An optional indicator array can
be specified for each host-variable array. An indicator array should be specified if the
SQLTYPE of any SQLVAR occurrence indicates that a column is nullable. The indicator array

Chapter 7. Statements 2025

can be enabled for extended indicator variables. The dimension of the indicator array must
be large enough to contain an indicator for each row of input data.

A host structure is not supported in host-variable-array.

host-variable-array is supported in C/C++, COBOL, and PL/I. For more information, see
“Host-variable arrays in PL/I, C, C++, and COBOL” on page 236.

NULL
Specifies a null value.

The column-name that is specified in source-values corresponding to the NULL keyword is
used to determine the data type of the null value. The column-name that is specified in
source-values must be referenced elsewhere in the MERGE statement such that its data
type can be determined from the context in which it is used, and all such references must
resolve to the same data type. References to date-time data types and CHAR or VARCHAR
are considered the same type.

FOR host-variable or integer-constant ROWS
Specifies the number of rows to merge. For a dynamic MERGE statement, this clause can
be specified on the EXECUTE statement. host-variable or integer-constant is assigned to a
value k. If host-variable is specified, it must be an exact numeric type with a scale of zero
and must not include an indicator variable. k must be in the range 1–32767. k rows are
merged into the target from the specified source data.

If a parameter marker is specified in FOR n ROWS, a value must be provided with the
USING clause of the associated EXECUTE statement.

AS correlation-name
Specifies a correlation name for the source-values. The correlation-name is used to qualify
references to the columns of source-values.
column-name

Specifies a column name. When a correlation-name is specified, column-names can
also be specified to give names to the columns of source-values for an assignment. If
a column list is specified, there must be a name in the column list for each column in
source-values.

ON search-condition
Specifies the predicates that are used to determine whether a row from table-reference or source-
values matches rows in the target table.

Each column-name in the search condition must name a column of the target table or view, or
table-reference or source-values. If a column-name exists in both the target and the source-values, the
column name must be qualified.

Logically, a right join is performed between the target table and the table-reference (or source-values)
using the ON search-condition. For those rows of the join result table where the search condition is
true, the specified update or delete operation is performed. For those rows of the join result table
where the result of the search condition is not true, the specified insert operation is performed.

A subquery is not allowed in the search-condition of the ON clause. The search-condition of the ON
clause cannot contain expressions that use aggregate functions or non-deterministic scalar functions.

The search-condition of the ON clause must not include an IN predicate that includes a fullselect, or a
quantified predicate that includes a fullselect.

WHEN matching-condition
Specifies the condition under which the modification-operation or the signal-statement is executed.
Each matching-condition is evaluated in order of specification. When NOT ATOMIC CONTINUE ON
SQLEXCEPTION is not specified, rows for which the matching-condition evaluates to true are not
considered in subsequent matching conditions.

2026 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

MATCHED
Indicates the operation to perform on the rows where the ON search-condition is true. Only
UPDATE, DELETE, or signal-statement can be specified after the THEN clause.
AND search-condition

Specifies a further search condition to be applied against the rows that matched the ON
search condition for the operation to be performed after THEN. The search-condition must not
include an IN predicate that includes a fullselect, or a quantified predicate that includes a
fullselect.

NOT MATCHED
Indicates the operation to perform on the rows where the ON search-condition is false or
unknown, or the target table is empty. Only INSERT or signal-statement can be specified after
the THEN clause, and must not reference a column of the target table.
AND search-condition

Specifies a further search condition to be applied against the rows that did not match the ON
search condition for the operation to be performed after THEN. The search-condition must not
include a column of the target table.

THEN modification-operation
Specifies the operation to be executed when the matching-condition evaluates to true.
update-operation

Specifies the update operation to be executed when the matching-condition evaluates to true.
UPDATE

Introduces the update operation.

When extended indicators are enabled, a column of the source table must not be referenced
multiple times in a single modification-operation. Extended indicators are enabled when
EXTENDEDINDICATOR(YES) is used, or when the WITH EXTENDED INDICATORS prepare
attribute has been specified for the MERGE statement.

When NOT ATOMIC CONTINUE ON SQLEXCEPTION is specified, or the NOT ATOMIC
CONTINUE ON SQLEXCEPTION clause is not specified, and source-values (VALUES) is
specified, the rows that are updated from a source row are subject to more updates by
subsequent source rows in the same statement. The update is cumulative.

An update-operation in a MERGE statement does not reset the AREO* status on a table.

SET
Introduces the assignment of values to column names.
assignment-clause

Specifies a list of column updates.

If row-fullselect is specified, the number of columns in the result of row-fullselect
must match the number of column-names that are specified. If row-fullselect is not
specified, the number of expressions, and NULL and DEFAULT keywords must match
the number of column-names that are specified.

column-name
Identifies a column to update. column-name must identify a column of the specified
table or view, and that column must be updatable. The column must not be a
generated column, or a column of a view that is derived from a scalar function, a
constant, or an expression. column-name can also identify an included column. The
same column-name must not be specified more than one time. A view column that is
derived from the same column as another column of the view can be updated, but both
columns cannot be updated in the same MERGE statement.

Assignments to included columns are only processed when the MERGE statement is
nested in the FROM clause of a SELECT statement or a SELECT INTO statement. There
must be at least one assignment clause that specifies a column-name that is not an
included column.

Chapter 7. Statements 2027

expression
Specifies the new value of the column. The expression is any expression of the type
that is described in “Expressions” on page 245. The expression must not include an
aggregate function.

The expression can contain references to columns of table-name, view-name, table-
reference, or source-values. For each row that is updated, the value of a target column
in an expression is the value of the column in the row before the row is updated.
expression cannot contain references to an included column.

If expression is a reference to a single column of the source table, the source
table column value might have been specified with an extended indicator value. The
effects of extended indicator values apply to the corresponding target columns of the
assignment-clause.

When extended indicators are enabled, the extended indicator values of DEFAULT
(-5) or UNASSIGNED (-7) must not be used if expression is more complex than the
following references:

• A single column of the source table
• A single host variable

DEFAULT
Specifies the default value for the column. DEFAULT can be specified only for columns
that have a default value. DEFAULT must not be specified for a ROWID column. The
value that is assigned depends on how the column is defined. For more information
about default values, see the description of the DEFAULT clause in “CREATE TABLE
statement” on page 1650.

DEFAULT must be specified for a column that was defined as GENERATED ALWAYS. A
valid value can be specified for a column that was defined as GENERATED BY DEFAULT.

NULL
Specifies the null value as the new value of the column. Specify NULL only for nullable
columns.

row-fullselect
Specifies a fullselect that returns a single row. The column values are assigned to each
of the corresponding column-names. If the fullselect returns no rows, the null value is
assigned to each column; an error occurs if any column that is to be updated is not
nullable.

If the fullselect refers to columns that are to be updated, the value of such a column in
the fullselect is the value of the column in the row before the row is updated.

delete-operation
Specifies the delete operation that is to be executed for the rows where the matching-condition
evaluates to true.
DELETE

Introduces the delete operation.
insert-operation

Specifies the insert operation that is to be executed for the rows where the matching-condition
evaluates to true.
INSERT

Specifies a list of column names and row value expressions to use for the insert operation.

The number of values for the row in the row-value expression must be equal to the number of
names in the insert column list. The first value is inserted into the first column in the list, the
second value into the second column, and so on.

2028 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

(column-name,...)
Specifies the column for which the insert values are provided. Each name must identify a
column of the table or view. The same column must not be identified more than once.

If extended indicators are not enabled, a view column that is not updatable must not be
identified. If extended indicator variables are not enabled and the object of the insert
operation is a view with non-updatable columns, a list of column names must be specified,
and the list must not identify those columns. For an explanation of updatable columns in
views, see “CREATE VIEW statement” on page 1812.

If an included column is not specified in the list of column names, the value of the included
column is set to null. The column list cannot contain only included columns.

A view column that cannot accept insert values must not be specified. A value cannot be
inserted into a view column that is derived from one of the following items:

• A constant, an expression, or a scalar function
• The same column of the base table as another column of the view

If the object of the operation is a view that contains columns that cannot accept insert
values, a list of column names must be specified and the list must not specify these
columns.

Omission of the column list is an implicit specification of a list in which every column of
the table (that is not defined as implicitly hidden) or view is identified in left-to-right order.
This list is established when the statement is prepared and therefore does not include
columns that were added to the table after the statement was prepared.

VALUES
Introduces one or more rows of values to insert.
expression

Specifies an expression that does not include a column name of the target. If expression
is a host variable, the host variable can include an indicator variable, or in the case of a
host structure, an indicator array. When extended indicators are enabled, the extended
indicator values of DEFAULT (-5) or UNASSIGNED (-7) must not be used if expression is
more complex than the following references:

• A single column of the source table
• A single host variable
• A host variable that is being explicitly cast

In addition, a CAST specification can be used if either:

• The target column is defined as nullable.
• The target column is defined as NOT NULL with a non-null default, the source of

the CAST specification is a single host variable, and the data attributes (data type,
length, precision, and scale) of the host variable are the same as the result of the cast
specification.

DEFAULT
Specifies the default value for the column. DEFAULT must only be specified for columns
that have a default value. The value that is assigned depends on how the column is
defined. For more information about default values, see the descriptions of the DEFAULT
clause in “CREATE TABLE statement” on page 1650 and in “INSERT statement” on page
1996.

If the column is specified in the INCLUDE column list, the column value is set to null.

DEFAULT must be specified for a column that is defined as GENERATED ALWAYS. A valid
value can be specified for a column that is defined as GENERATED BY DEFAULT.

NULL
Specifies the null value as the value of the column. Specify NULL only for nullable columns.

Chapter 7. Statements 2029

signal-statement
Specifies the SIGNAL statement that is to be executed to return an error when the matching-condition
evaluates to true.

ELSE IGNORE
Specifies that no action is to be taken for the rows where no matching-condition evaluates to true. If
all rows of table-reference are ignored, a warning is returned.

NOT ATOMIC CONTINUE ON SQLEXCEPTION

The rows of input data are processed separately. Any statement level triggers are processed for
each row of source data that is processed, and the transition table includes the individual row that
was processed. When errors are encountered and this option is in effect, processing continues, and
some of the specified rows will not be processed. In this case, if an appropriate trigger is defined
on the underlying base table, the statement level trigger will only be activated for rows that were
successfully processed.

Regardless of the failure of any particular source row, the MERGE statement will not undo any changes
that are made to the database by the statement. Merge will be attempted for rows that follow the
failed row. However, the minimum level of atomicity is at least that of a single source row (that is, it is
not possible for a partial merge to complete), including any triggers that might have been activated as
a result of the MERGE statement.

QUERYNO integer
Specifies the number for this SQL statement that is used in EXPLAIN output and trace records. The
number is used for the QUERYNO column of the plan table for the rows that contain information about
this SQL statement. This number is also used in the QUERYNO column of the SYSIBM.SYSSTMT and
SYSIBM.SYSPACKSTMT catalog tables.

If QUERYNO is not specified, the number that is associated with the SQL statement is the statement
number that is assigned during precompilation. Thus, if the application program is changed and then
precompiled, the statement number might change.

MERGE rules
If table-reference is specified:

• More than one modification-operation (update-operation, delete-operation, or insert-operation), or
signal-statement can be specified in a single MERGE statement.

• Each row in the target can only be operated on once. A row in the target can only be identified as
MATCHED with one row in the result table of the table-reference. A nested SQL operation (RI or trigger
except INSTEAD OF trigger) cannot specify the target table (or a table within the same table hierarchy)
as a target of an UPDATE, DELETE, INSERT, or MERGE statement.

• A row that is inserted by the MERGE statement cannot also be updated by that MERGE statement. There
is no attempt to update a row in the target that did not already exist before the MERGE statement was
executed.

• If an error occurs during execution of the MERGE statement, the whole statement is rolled back.

If NOT ATOMIC CONTINUE ON SQLEXCEPTION is specified, or the NOT ATOMIC CONTINUE ON
SQLEXCEPTION clause is not specified and source-values (VALUES) is specified:

• A MERGE statement can contain one update-operation and one insert-operation.
• The rows that are updated from a source row are subject to more updates by subsequent source rows in

the same statement. The update is cumulative.
• When NOT ATOMIC CONTINUE ON SQLEXCEPTION is specified, the rows of source data are processed

separately. Any references to special registers, sequence expressions, and functions in the MERGE
statement are evaluated as each row of source data is processed. Statement-level triggers are activated
as each row of source data is processed.

2030 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• If one or more errors occur during the operation for a row of source data, processing continues. The
row that was being processed at the time of the error is not inserted or updated. Execution continues
with the next row to be processed, and any other changes that are made during the execution of the
multiple-row MERGE statement are not backed out. However, the processing of an individual row is an
atomic action.

For other rules that affect the update, insert, or delete portion of the MERGE statement, see the rules
section of the corresponding statement description, in the following topics:

• “INSERT statement” on page 1996
• “DELETE statement” on page 1853
• “UPDATE statement” on page 2178

Notes for MERGE

Considerations for the NOT ATOMIC CONTINUE ON SQLEXCEPTION clause
When the NOT ATOMIC CONTINUE ON SQLEXCEPTION clause is specified, or the NOT ATOMIC
CONTINUE ON SQLEXCEPTION clause is not specified and source-values (VALUES) is specified, the
following clauses must not be specified:

• table-reference
• correlation-clause that contains a list of column names
• AND search-condition
• delete-operation
• SIGNAL
• ELSE IGNORE
• row-fullselect

In addition:

• The WHEN MATCHED clause must not be specified more than one time.
• The WHEN NOT MATCHED clause must not be specified more than one time.

Logical order of processing for a not-atomic MERGE statement
For a not-atomic MERGE statement (a MERGE statement that includes the NOT ATOMIC CONTINUE
ON SQLEXCEPTION clause, or the NOT ATOMIC CONTINUE ON SQLEXCEPTION clause is not specified
and source-values (VALUES) is specified), each source row is processed independently, as if a
separate MERGE statement were executed for each source row. For example, a source row that
causes an update of a target row activates any triggers (including statement-level triggers) when
the update of the row is performed. Thus, if five rows are updated, any update triggers (including
statement-level update triggers) are activated five times.

For a not-atomic MERGE statement, the logical order of processing for each row is:

1. Determine the row that is to be processed from the source and target.
2. Use the ON clause to classify these rows as either MATCHED or NOT MATCHED.
3. Evaluate any expression in any assignment-clause and insert-operation.
4. Apply the modification-operation to the applicable row. The triggers that are activated by the

modification-operation are executed for the modification-operation. Statement-level triggers are
activated even if no rows satisfy the modification-operation.

Logical order of processing for an atomic MERGE statement
For an atomic MERGE statement (the NOT ATOMIC CONTINUE ON SQLEXCEPTION clause is not
specified), the source rows are processed as if a set of rows is processed by each WHEN clause.
Thus, if five rows are updated, any row-level update triggers are activated five times. In addition, n
statement-level update triggers are activated , where n is the number of WHEN clauses that contain

Chapter 7. Statements 2031

an UPDATE, including any WHEN clauses that contain an UPDATE that did not process any of the
source rows.

For an atomic MERGE, the logical order of processing is:

1. Determine the set of rows that are to be processed from the source and target. If any of the special
registers CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP are used in this statement,
only one clock reading is done for the whole statement.

2. Use the ON clause to classify these rows as either MATCHED or NOT MATCHED.
3. Evaluate any matching-condition in the WHEN clauses.
4. Evaluate any expression in any assignment-clause and insert-operation.
5. Execute each signal-statement.
6. Apply each modification-operation to the applicable rows in the order of specification. The triggers

that are activated by each modification-operation are executed for the modification-operation.
Statement-level triggers are activated even if no rows satisfy the modification-operation. Each
modification-operation can affect the triggers and referential constraints of each subsequent
modification-operation.

Trigger considerations
A MERGE statement might cause triggers to be activated. A trigger might cause other statements
to be executed or raise error conditions depending on the source data values. A before-update or
before-insert trigger processes immediately before the update or insert operation.

If a source row results in an insert, any after-insert triggers are activated after the insert operation
completes.

If a source row results in updates, any after-update triggers are activated after all of the update
operations complete.

If a source row results in deletes, any after-delete triggers are activated after all of the delete
operations complete.

Number of rows updated
After a MERGE statement is executed, the ROW_COUNT statement information item in the SQL
Diagnostics Area (or SQLERRD(3) of the SQLCA) is the number of rows that are operated on by the
MERGE statement, excluding rows that are identified by the ELSE IGNORE clause. The ROW_COUNT
item and SQLERRD(3) do not include the number of rows that were operated on as a result of triggers.

For a description of ROW_COUNT, see “GET DIAGNOSTICS statement” on page 1949. For a
description of the SQLCA, see Appendix F, “SQL communication area (SQLCA),” on page 2303.

SQLCA and GET DIAGNOSTICS considerations
The GET DIAGNOSTICS statement can be used immediately after the MERGE statement to check
which input rows fail during the merge operation. The GET DIAGNOSTICS statement information
item, NUMBER, indicates the number of conditions that are raised. The GET DIAGNOSTICS condition
information item, DB2_ROW_NUMBER, indicates the input source rows that cause an error.

Considerations for a MERGE without a column list in insert-operation
A MERGE statement without a specified column list as part of insert-operation does not include
implicitly hidden columns. Therefore, such columns must have a defined default value.

DRDA considerations when NOT ATOMIC CONTINUE ON SQLEXCEPTION is specified (or the NOT
ATOMIC CONTINUE ON SQLEXCEPTION clause is not specified and source-values (VALUES) is
specified)

Db2 Connect Version 9.1 and subsequent releases support the MERGE statement. The support is for
CLI only, with no embedded static SQL support.

When you run a MERGE statement at a Db2 for z/OS requester, cases might exist where the requester
does not know the number of rows in the source table. This situation includes the following cases:

• For static or dynamic MERGE statements, of the FOR n ROWS clause contains a constant value for n.

2032 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• For dynamic MERGE statements, of host variables are specified on the USING clause of an EXECUTE
statement.

For both of these cases, if the number of rows in the source table is not known, the requester might
send more data than is required to the server. The number of rows that are processed is correct
because the server knows the correct numbers of rows to process. However, performance might be
adversely affected. Consider the following example:

...long serial num [10];
struct { short len;
char data [18];
 }
name[20]...
EXEC SQL
MERGE INTO T1
 USING (VALUES (:serial_num, :name))
 FOR 5 ROWS...

When this statement is run at the requester, the number of rows to merge (five) is not known. As
a result, the requester sends 10 values for serial-name and name to the server because 10 is
the size of the smallest host-variable array and is, therefore, the maximum number of rows that can
merge without causing an error.

Do the following to help minimize performance problems:

• Avoid using numeric constants in the FOR n ROWS clause of the MERGE statement. For static
MERGE statements, avoiding numeric constants ensures that the values for n are known at the
requester.

• For dynamic MERGE statements, use the USING DESCRIPTOR clause instead of the USING host-
variable clause on the EXECUTE statement. If a USING DESCRIPTOR clause is used on the EXECUTE
statement, the value for n must be indicated in the descriptor.

• If either of the previous methods cannot be used, perform the following actions:

– Make your host-variable arrays as small as possible, or declare that the size of your host-variable
arrays are the size of n in the descriptor. This action avoids sending many unused host-variable
array entries to the server.

– Ensure that varying length string arrays are initialized to a length of 0 (zero). Doing so minimizes
the amount of data that is sent to the server.

– Ensure that decimal host-variable arrays are initialized to valid values. Doing so causes the
requester to avoid sending a negative SQLCODE if the requester encounters invalid decimal data.

Extended indicators usage
When extended indicators are enabled, indicator values other than positive values and 0 (zero)
through -7 must not be specified. The DEFAULT and UNASSIGNED extended indicator values must not
appear in contexts where they are not supported.

Extended indicators
In an update operation of the MERGE statement:

• An extended indicator value of UNASSIGNED has the same effect as if it had not been specified in
the statement.

• An extended indicator value of DEFAULT must not be specified for a row-begin, row-end,
transaction-start-ID, or generated expression column.

• An extended indicator value of UNASSIGNED must not be assigned to all of the target columns.

In an insert operation of the MERGE statement, an extended indicator value of UNASSIGNED has the
effect of setting the column to its default value.

Extended indicators and update triggers
If a target column is assigned an extended indicator value of unassigned, that column is not
considered to have been updated. That column is treated as if it had not been specified in the OF
column-name list of any update trigger that is defined on the target table.

Chapter 7. Statements 2033

Extended indicators and insert triggers
The activation of insert triggers is not affected by the use of extended indicator variables. Suppose
that all columns in the implicit or explicit column list are assigned an extended indicator value of
unassigned or default. Then, assume that an insert operation where all columns are assigned to the
respective default values is attempted. If that operation is successful, the insert trigger is activated.

Table space data compression during an insert operation
If the table space is defined with compression, and data is inserted into a table in the table space,
the first rows are stored uncompressed. When a amount of data that is determined by Db2 is inserted
into the table, a compression dictionary is created and stored in the table space. The rows that are
inserted into the table after the dictionary is created are stored compressed by using the compression
dictionary.

System-period temporal tables
When a MERGE statement is processed for a system-period temporal table, the rows are affected in
the same way as if the specific data change operation was invoked.

Archive-enabled tables
Consider the case when the target of a MERGE statement is an archive-enabled table, and the merge
operation includes an insert or update operation. In this case, the involved rows are affected in the
same way as if the insert or update operation was directly invoked on the table.

Tables with enforced row and column access controls
For information about how enabled row permissions and column masks affect the update and insert
operations in the MERGE statement, see the INSERT and UPDATE statement information.

Examples for MERGE

Example 1
For activities whose description has been changed, update the description in the RECORDS table.
For new activities, insert into the RECORDS table. The RECORDS and ACTIVITIES tables both have
ACTIVITY as a primary key.

MERGE INTO RECORDS AR
 USING (SELECT ACTIVITY, DESCRIPTION FROM ACTIVITIES) AC
 ON (AR.ACTIVITY = AC.ACTIVITY)
 WHEN MATCHED THEN
 UPDATE SET
 DESCRIPTION = AC.DESCRIPTION
 WHEN NOT MATCHED THEN
 INSERT
 (ACTIVITY, DESCRIPTION)
 VALUES (AC.ACTIVITY, AC.DESCRIPTION);

Example 2
Using the SHIPMENT table, merge rows into the INVENTORY table: Increase the quantity by the part
count in the SHIPMENT table for rows that match; else insert a row for the new part number into the
inventory table.

MERGE INTO INVENTORY AS IN
 USING (SELECT PARTNO, DESCRIPTION, COUNT FROM SHIPMENT
 WHERE SHIPMENT.PARTNO IS NOT NULL) AS SH
 ON (IN.PARTNO = SH.PARTNO)
 WHEN MATCHED THEN
 UPDATE SET
 DESCRIPTION = SH.DESCRIPTION,
 QUANTITY = IN.QUANTITY + SH.COUNT
 WHEN NOT MATCHED THEN
 INSERT
 (PARTNO, DESCRIPTION, QUANTITY)
 VALUES (SH.PARTNO, SH.DESCRIPTION, SH.COUNT);

Example 3
Using the TRANSACTION table, merge rows into the ACCOUNT table: Update the balance from the
set of transactions against an account ID, and insert new accounts from the consolidated transactions
where they do not already exist.

2034 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

MERGE INTO ACCOUNT AS A
 USING (SELECT ID, SUM(AMOUNT) SUM_AMOUNT FROM TRANSACTION
 GROUP BY ID) AS T
 ON A.ID = T.ID
 WHEN MATCHED THEN
 UPDATE SET
 BALANCE = A.BALANCE + T.SUM_AMOUNT
 WHEN NOT MATCHED THEN
 INSERT
 (ID, BALANCE)
 VALUES (T.ID, T.SUM_AMOUNT);

Example 4
Using the TRANSACTION_LOG table, merge rows into the EMPLOYEE_FILE table: Update the phone
and office with the latest TRANSACTION_LOG row based on the transaction time, and insert the latest
new EMPLOYEE_FILE row where the row does not already exist.

MERGE INTO EMPLOYEE_FILE AS E
 USING (SELECT EMPID, PHONE, OFFICE
 FROM (SELECT EMPID, PHONE, OFFICE,
 ROW_NUMBER() OVER (PARTITION BY EMPID
 ORDER BY TRANSACTION_TIME DESC) RN
 FROM TRANSACTION_LOG) AS NT
 WHERE RN = 1) AS T
 ON E.EMPID = T.EMPID
 WHEN MATCHED THEN
 UPDATE SET
 (PHONE, OFFICE) =
 (T.PHONE, T.OFFICE)
 WHEN NOT MATCHED THEN
 INSERT
 (EMPID, PHONE, OFFICE)
 VALUES (T.EMPID, T.PHONE, T.OFFICE);

Example 5
Update the list of activities organized by Group A in the RECORDS table. Delete all outdated activities
and update the activities information (DESCRIPTION and DATE) in the RECORDS table if they have
been changed. For new upcoming activities, insert into the RECORDS table. Signal an error if the date
of the activity is not known. The date of the activities in the RECORDS table must be specified. Each
group has an activities table. For example, ACTIVITIES_GROUPA contains all activities that group A
organizes, and the RECORDS table contains all upcoming activities organized by different groups in a
company. The RECORDS table has (GROUP, ACTIVITY) as the primary key, and DATE is not nullable.
All activities tables have ACTIVITY as the primary key. The LAST_MODIFIED column in the RECORDS
table is defined with CURRENT TIMESTAMP as the default value.

MERGE INTO RECORDS AR
 USING (SELECT ACTIVITY, DESCRIPTION, DATE, LAST_MODIFIED
 FROM ACTIVITIES_GROUPA) AC
 ON (AR.ACTIVITY = AC.ACTIVITY) AND AR.GROUP = 'A'
 WHEN MATCHED AND AC.DATE IS NULL THEN
 SIGNAL SQLSTATE '70001'
 SET MESSAGE_TEXT =
 AC.ACTIVITY CONCAT ' CANNOT BE MODIFIED. REASON: DATE IS NOT KNOWN'
 WHEN MATCHED AND AC.DATE < CURRENT DATE THEN
 DELETE
 WHEN MATCHED AND AR.LAST_MODIFIED < AC.LAST_MODIFIED THEN
 UPDATE SET
 (DESCRIPTION, DATE, LAST_MODIFIED) = (AC.DESCRIPTION, AC.DATE, DEFAULT)
 WHEN NOT MATCHED AND AC.DATE IS NULL THEN
 SIGNAL SQLSTATE '70002'
 SET MESSAGE_TEXT =
 AC.ACTIVITY CONCAT ' CANNOT BE INSERTED. REASON: DATE IS NOT KNOWN'
 WHEN NOT MATCHED AND AC.DATE >= CURRENT DATE THEN
 INSERT
 (GROUP, ACTIVITY, DESCRIPTION, DATE)
 VALUES ('A', AC.ACTIVITY, AC.DESCRIPTION, AC.DATE)
 ELSE IGNORE;

Example 6
Update the descriptions for activities that exist in the RECORDS table. Otherwise, insert the activity
and its description into the RECORDS table.

Chapter 7. Statements 2035

MERGE INTO RECORDS AR
 USING (VALUES (:hv_activity, :hv_description)
 FOR :hv_nrows ROWS)
 AS AC (ACTIVITY, DESCRIPTION)
 ON (AR.ACTIVITY = AC.ACTIVITY)
 WHEN MATCHED THEN UPDATE SET DESCRIPTION = AC.DESCRIPTION
 WHEN NOT MATCHED THEN INSERT (ACTIVITY, DESCRIPTION)
 VALUES (AC.ACTIVITY, AC.DESCRIPTION)
 NOT ATOMIC CONTINUE ON SQLEXCEPTION;

Example 7
Use the transaction data to merge rows into the account table. Update the balance from the
transaction data against an account ID and insert new accounts from the transaction data where
the accounts do not already exist.

MERGE INTO ACCOUNT AS A
 USING (VALUES (:hv_id, :hv_amount)
 FOR 3 ROWS)
 AS T (ID, AMOUNT)
 ON (A.ID = T.ID)
 WHEN MATCHED THEN UPDATE SET BALANCE = A.BALANCE + T.AMOUNT
 WHEN NOT MATCHED THEN INSERT (ID, BALANCE)
 VALUES (T.ID, T.AMOUNT)
 NOT ATOMIC CONTINUE ON SQLEXCEPTION;

Example 8
Update the list of activities that are organized by group A in the RECORDS table. Update the activities
information (description and date when last modified) in the RECORDS table if the activities exist in
the RECORDS table and are also organized by group A. Insert new activities into the RECORDS table.

-- hv_nrows = 3
-- hv_activity(1) = 'D'; hv_description(1) = 'Dance'; hv_date(1) = '03/01/07'
-- hv_activity(2) = 'S'; hv_description(2) = 'Singing'; hv_date(2) = '03/17/07'
-- hv_activity(3) = 'T'; hv_description(3) = 'Tai-chi'; hv_date(3) = '05/01/07'
-- hv_group = 'A';
-- note that hv_group is not an array. All 3 values contain the same values
MERGE INTO RECORDS AR
 USING (VALUES (:hv_activity, :hv_description, :hv_date, :hv_group)
 FOR :hv_nrows ROWS)
 AS AC (ACTIVITY, DESCRIPTION, DATE, GROUP)
 ON AR.ACTIVITY = AC.ACTIVITY AND AR.GROUP = AC.GROUP
 WHEN MATCHED
 THEN UPDATE SET (DESCRIPTION, DATE, LAST_MODIFIED)
 = (AC.DESCRIPTION, AC.DATE, CURRENT TIMESTAMP)
 WHEN NOT MATCHED
 THEN INSERT (GROUP, ACTIVITY, DESCRIPTION, DATE, LAST_MODIFIED)
 VALUES (AC.GROUP, AC.ACTIVITY, AC.DESCRIPTION, AC.DATE, CURRENT TIMESTAMP)
 NOT ATOMIC CONTINUE ON SQLEXCEPTION;

Example 9

Use two arrays, CHARA and INTA, as input to a MERGE statement. Column COL2 is set to the
cardinality of CHARA for matching rows, and COL2 is set to the cardinality of INTA for non-matching
rows.

CREATE TYPE INTARRAY AS INTEGER ARRAY[6];
CREATE TYPE CHARARRAY AS CHAR(20) ARRAY[7];
CREATE VARIABLE INTA AS INTARRAY;
CREATE VARIABLE CHARA AS CHARARRAY;
CREATE VARIABLE SI INT;
SET CHARA = ARRAY['a', 'b', 'c'];
SET INTA = ARRAY [1, 2, 3, 4, 5];
CREATE TABLE T1 (COL1 CHAR(7), COL2 INT);
INSERT INTO T1 VALUES ('abc', 10);
MERGE INTO T1 AS A
 USING TABLE (VALUES ('rsk', 3)) AS T (ID, AMOUNT)
 ON A.COL1 = T.ID
 WHEN MATCHED
 THEN UPDATE SET COL2 = CARDINALITY(CHARA)
 WHEN NOT MATCHED
 THEN INSERT (COL1, COL2) VALUES (T.ID, CARDINALITY(INTA));

2036 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

OPEN statement
The OPEN statement opens a cursor so that it can be used to process rows from its result table.

Invocation for OPEN
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared. It must not be specified in Java.

Authorization for OPEN
See “DECLARE CURSOR statement” on page 1819 for the authorization required to use a cursor.

Syntax for OPEN

OPEN cursor-name

USING

,

variable
1

array-variable [ array-index]
2

USING DESCRIPTOR descriptor-name

Notes:
1 A global variable must only be specified in an SQL PL context.
2 An array element must only be specified in an SQL PL context.

OPEN cursor-name

USING

,

variable

USING DESCRIPTOR descriptor-name

Description for OPEN
cursor-name

Identifies the cursor to be opened. The cursor-name must identify a declared cursor as explained
in “DECLARE CURSOR statement” on page 1819. When the OPEN statement is executed, the cursor
must be in the closed state.

The SELECT statement of the cursor is either one of the following types of SELECT statements:

• The select-statement that is specified in the DECLARE CURSOR statement
• The prepared select-statement that is identified by the statement-name that is specified in the

DECLARE CURSOR statement.

If the statement has not been successfully prepared, or is not a select-statement, the cursor cannot be
successfully opened.

The result table of the cursor is derived by evaluating the SELECT statement. The evaluation uses
the current values of any special registers or PREVIOUS VALUE expressions that are specified in the
SELECT statement, and the current values of any host variables that are specified in the SELECT

Chapter 7. Statements 2037

statement or the USING clause of the OPEN statement. The rows of the result table can be derived
during the execution of the OPEN statement, and a temporary copy of a result table can be created to
hold those rows. They can be derived during the execution of later FETCH statements. In either case,
the cursor is placed in the open state and positioned before the first row of its result table.

If the table is empty, the position of the cursor is effectively “after the last row.” The Db2 system does
not indicate an empty table when the OPEN statement is executed. A subsequent fetch for the cursor
might return the SQLSTATE warning of '02000'.

USING
Introduces a list of variables or array element expressions whose values are substituted for the
parameter markers (question marks) in the statement of the cursor, depending on the declaration of
the cursor:

• If the DECLARE CURSOR statement included statement-name, the statement was prepared with a
PREPARE statement. The variables specified in the USING clause of the OPEN statement replace
any parameter markers in the prepared statement. This reflects the typical use of the USING
clause of the OPEN statement. For an explanation of parameter marker replacement, see “PREPARE
statement” on page 2042.

If the prepared statement includes parameter markers, you must use USING. If the prepared
statement does not include parameter markers, USING is ignored.

• If the DECLARE CURSOR statement included select-statement and the SELECT statement included
variables, the USING clause of the OPEN statement can be used to specify variables that are
to override the values that were specified when the cursor was defined. In this case, the OPEN
statement is executed as if each variable in the SELECT statement were a parameter marker except
that the attributes of the target variable are the same as the variables in the SELECT statement. The
effect is to override the values of the variables in the SELECT statement of the cursor with the values
of the variables specified in the USING clause. The overriding value is always the value of the main
variable because indicator variables are ignored in this context without warning.

The nth variable corresponds to the nth parameter marker in the prepared statement. Where
appropriate, locator variables and file reference variables can be provided as the source of values
for parameter markers.

variable
Identifies a variable or a host structure that is declared in the application program in accordance
with the rules for declaring variables and host structures. When the statement is executed, a
reference to a structure is replaced by a reference to each of its variables. The number of variables
must be the same as the number of parameter markers in the prepared statement.

An array global variable must only be specified if the OPEN statement is issued in SQL PL.

array-variable [array-index]
Identifies an array element. An array element must only be specified if the OPEN statement is
issued in SQL PL.
array-variable

Specifies an array variable.
[array-index]

An expression that specifies which element in the array to use.

For an ordinary array, the array index expression must be castable to INTEGER, and must not
be the null value. The index value must be between 1 and the maximum cardinality that is
defined for the array.

For an associative array, the array index expression must be castable to the index data type of
the associative array, and must not be the null value.

array-index must not be:

• An expression that references the CURRENT DATE, CURRENT TIME, or CURRENT
TIMESTAMP special register

2038 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• A nondeterministic function
• A function that is defined with EXTERNAL ACTION
• A function that is defined with MODIFIES SQL DATA
• A sequence expression

DESCRIPTOR descriptor-name
Identifies an SQLDA that contains a valid description of the input host variables.

Before the OPEN statement is processed, the user must set the following fields in the SQLDA:

• SQLN to indicate the number of SQLVAR occurrences provided in the SQLDA

A REXX SQLDA does not contain this field.
• SQLABC to indicate the number of bytes of storage allocated for the SQLDA
• SQLD to indicate the number of variables used in the SQLDA when processing the statement
• SQLVAR occurrences to indicate the attributes of the variables

The SQLDA must have enough storage to contain all SQLVAR occurrences. If LOBs or distinct
types are present in the result table, there must be additional SQLVAR entries for each input host
variable. For more information on the SQLDA, which includes a description of the SQLVAR and
an explanation on how to determine the number of SQLVAR occurrences, see Appendix G, “SQL
descriptor area (SQLDA),” on page 2313.

SQLD must be set to a value greater than or equal to zero and less than or equal to SQLN. It must
be the same as the number of parameter markers in the prepared statement.

See “Identifying an SQLDA in C or C++” on page 2329 for how to represent descriptor-name in C.

Notes for OPEN

Errors occurring on OPEN: In local and remote processing, the DEFER(PREPARE) and REOPT(ALWAYS)/
REOPT(ONCE) bind options can cause some SQL statements to receive "delayed" errors. For example, an
OPEN statement might receive an SQLCODE that normally occurs during PREPARE processing. Or a FETCH
statement might receive an SQLCODE that normally occurs at OPEN time.

Closed state of cursors: All cursors in an application process are in the closed state when:

• The application process is started.
• A new unit of work is started for the application process unless the WITH HOLD option has been used in

the DECLARE CURSOR statement.
• The application was precompiled with the CONNECT(1) option (which implicitly closes any open

cursors).

A cursor can also be in the closed state because:

• A CLOSE statement was executed.
• An error was detected that made the position of the cursor unpredictable.

To retrieve rows from the result table of a cursor, you must execute a FETCH statement when the cursor is
open. The only way to change the state of a cursor from closed to open is to execute an OPEN statement.

Effect of a temporary copy of a result table: Db2 can process a cursor in two different ways:

• It can create a temporary copy of the result table during the execution of the OPEN statement. You can
specify INSENSITIVE SCROLL on the cursor to force the use of a temporary copy of the result table.

• It can derive the result table rows as they are needed during the execution of later FETCH statements.

If the result table is not read-only, Db2 uses the latter method. If the result table is read-only, either
method could be used. The results produced by these two methods could differ in the following respects:

Chapter 7. Statements 2039

When a temporary copy of the result table is used: An error can occur that would otherwise not occur until
some later FETCH statement. insert operations that are executed while the cursor is open cannot affect
the result table once all the rows have been materialized in the temporary copy of the result table. For
a scrollable insensitive cursor, update and delete operations that are executed while the cursor is open
cannot affect the result table. For a scrollable sensitive static cursor, update and delete operations can
affect the result table if the rows are subsequently fetched with sensitive FETCH statements.

When a temporary copy of the result table is not used: Insert, update, and delete operations that are
executed while the cursor is open can affect the result table. The effect of such operations is not always
predictable.

For example, if cursor C is positioned on a row of its result table defined as SELECT * FROM T, and you
insert a row into T, the effect of that insert on the result table is not predictable because its rows are not
ordered. A later FETCH C might or might not retrieve the new row of T. To avoid these changes, you can
specify INSENSITIVE SCROLL for the cursor to force the use of a temporary copy of the result table.

Parameter marker replacement: Before the OPEN statement is executed, each parameter marker in
the query is effectively replaced by its corresponding host variable. The replacement is an assignment
operation in which the source is the value of the host variable and the target is a variable within Db2. The
assignment rules are those described for assignment to a column in “Assignment and comparison” on
page 143. For a typed parameter marker, the attributes of the target variable are those specified by the
CAST specification. For an untyped parameter marker, the attributes of the target variable are determined
according to the context of the parameter marker. For the rules that affect parameter markers, see
Parameter markers.

Let V denote a host variable that corresponds to parameter marker P. The value of V is assigned to the
target variable for P in accordance with the rules for assigning a value to a column:

• V must be compatible with the target.
• If V is a string, its length (excluding trailing blanks) must not be greater than the length attribute of the

target.
• If V is a number, the absolute value of its integral part must not be greater than the maximum absolute

value of the integral part of the target.
• If the attributes of V are not identical to the attributes of the target, the value is converted to conform to

the attributes of the target.
• If the target cannot contain nulls, V must not be null.

When the SELECT statement of the cursor is evaluated, each parameter marker in the statement is
effectively replaced by the value of its corresponding host variable. For example, if V is CHAR(6) and the
target is CHAR(8), the value used in place of P is the value of V padded on the right with two blanks. For
more on the process of replacement, see Parameter marker replacement.

Considerations for scrollable cursors: Following an OPEN cursor statement, a GET DIAGNOSTICS
statement can be used to get the attributes of the cursor such as the following information (for more
information, see “GET DIAGNOSTICS statement” on page 1949):

• DB2_SQL_ATTR_CURSOR _HOLD. Whether the cursor was defined with the WITH HOLD attribute.
• DB2_SQL_ATTR_CURSOR_SCROLLABLE. Scrollability of the cursor.
• DB2_SQL_ATTR_CURSOR_SENSITIVITY. Effective sensitivity of the cursor.

The sensitivity information can be used by applications (such as an ODBC driver) to determine what
type of FETCH (INSENSITIVE or SENSITIVE) to issue for a cursor defined as ASENSITIVE.

• DB2_SQL_ATTR_CURSOR_ROWSET. Whether the cursor can be used to access rowsets.
• DB2_SQL_ATTR_CURSOR_TYPE. Whether a cursor type is forward-only, static, or dynamic.

• The scrollability of the cursor is in SQLWARN1.
• The sensitivity of the cursor is in SQLWARN4.
• The effective capability of the cursor is in SQLWARN5.

2040 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Number of rows inserted: SQL data change statements and routines that modify SQL data embedded in
the cursor definition are completely executed, and the result table is stored in a temporary table when the
cursor opens. If statement execution is successful, the SQLERRD(3) field contains the sum of the number
of rows that qualified for insert, update, and delete operations. If an error occurs during execution of
an OPEN statement that involves a cursor that contains a data change statement within a fullselect, the
results of that data change statement are rolled back.

Materialization of the rows of the result table and NEXT VALUE expressions: If the rows of the result
table of a cursor are materialized when the cursor is opened and the SELECT statement of the cursor
contains NEXT VALUE expressions, the expressions are processed when the cursor is opened. Otherwise,
the NEXT VALUE expressions are evaluated as the rows of the result table are retrieved.

Opening the same cursor multiple times: A cursor in an SQL procedure that is declared as WITH RETURN
TO CLIENT can be opened even when a cursor with the same name is already in the open state. In
this case, the existing open cursor becomes a result set cursor and is no longer accessible by its cursor
name. A new cursor is opened and becomes accessible by the cursor name. Closing the new cursor does
not make the cursor that was previously accessible by that name accessible by the cursor name again.
Cursors that become result set cursors in this way cannot be accessed at the server and can be processed
only at the client.

Examples for OPEN

Example 1: Execute an OPEN statement, which places the cursor at the beginning of the rows to be
fetched.

 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT DEPTNO, DEPTNAME, MGRNO FROM DSN8C10.DEPT
 WHERE ADMRDEPT = 'A00';
 EXEC SQL OPEN C1;
 DO WHILE (SQLCODE = 0);
 EXEC SQL FETCH C1 INTO :DNUM, :DNAME, :MNUM;
 END;
 EXEC SQL CLOSE C1;

Example 2: Suppose that the following array type, array variable, and table have been defined.

CREATE TYPE INTARRAY AS INTEGER ARRAY[100];
CREATE TYPE STRINGARRAY AS VARCHAR(10) ARRAY[100];
CREATE TABLE T1 (COL1 CHAR(10), COL2 INT);

Use an array variable as input for a dynamic SQL statement. The dynamic statement references an array
element in the array variable. The dynamic statement contains two parameter markers, one for the array
variable and one for the index of the array element. The OPEN statement provides two input values in the
USING clause: the array variable, and a variable that contains the index for the array element.

CREATE PROCEDURE PROCESSPERSONS (OUT WITHO STRINGARRAY, INOUT INT0 INT)
BEGIN
 DECLARE INTA INTARRAY;
 DECLARE INTB INTARRAY;
 DECLARE INTV INTEGER;
 DECLARE STMT CHAR(100);
 DECLARE C2 CURSOR FOR S1;
--
-- Initialize the array
--
 SET INTA = ARRAY[1,INTEGER(2),3+0,4,5,6] ;
--
-- Use dynamic SQL with an array parameter marker and a parameter marker
-- containing the index to retrieve the value from the array parameter.
-- The array is referenced in a predicate.
--
 SET STMT = 'SELECT COL1 FROM T1 WHERE COL2 = CAST(? AS INTARRAY)[?]';
 PREPARE S1 FROM STMT;
 OPEN C2 USING INTA, INTV; -- Input: INTA is an array, and INTV is the
 -- index for the array element
 FETCH C2 INTO INTB ; -- Output: INTB is an array variable
…

Chapter 7. Statements 2041

 CLOSE C2;
…
END

PREPARE statement
The PREPARE statement creates an executable SQL statement from a string form of the statement. The
character-string form is called a statement string. The executable form is called a prepared statement.

Invocation for PREPARE
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared. It must not be specified in Java.

Authorization for PREPARE
The authorization rules are those defined for the dynamic preparation of the SQL statement specified by
the PREPARE statement. For example, see Chapter 6, “Queries,” on page 1007 for the authorization rules
that apply when a SELECT statement is prepared.

The statement that is prepared using only the EXPLAIN privilege cannot be executed, and only the
descriptive information can be obtained for that statement.

Syntax for PREPARE

PREPARE statement-name

INTO descriptor-name

USING

NAMES

LABELS

ANY

BOTH

ATTRIBUTES attr-host-variable
1

FROM variable

FROM string-expression
2

Notes:
1 attr-host-variable must be a string host variable and the content must conform to the rules for attribute-
string. The ATTRIBUTES clause can only be specified before variable.
2 string-expression is only supported for PLI.

attribute-string

2042 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

1

ASENSITIVE

INSENSITIVE

SENSITIVE
DYNAMIC

STATIC

NO SCROLL

SCROLL

holdability

returnability

rowset-positioning

offset-clause

fetch-clause

read-only-clause

update-clause

optimize-clause

isolation-clause

FOR MULTIPLE ROWS

FOR SINGLE ROW

2

ATOMIC

NOT ATOMIC CONTINUE ON SQLEXCEPTION

3

concurrent-access-resolution

WITHOUT EXTENDED INDICATORS

WITH EXTENDED INDICATORS

CONCENTRATE STATEMENTS OFF

CONCENTRATE STATEMENTS WITH LITERALS

Notes:
1 The same clause must not be specified more than one time. If the options are not specified, their
defaults are whatever was specified for the corresponding option in an associated statement.
2 The FOR SINGLE ROW or FOR MULTIPLE ROWS clause must only be specified for an INSERT or a MERGE
statement.
3 The ATOMIC or NOT ATOMIC CONTINUE ON SQLEXCEPTION clause must only be specified for an INSERT
statement.

holdability:

WITHOUT HOLD

WITH HOLD

returnability:

Chapter 7. Statements 2043

WITHOUT RETURN

WITH RETURN
TO CALLER

TO CLIENT

rowset-positioning:

WITHOUT ROWSET POSITIONING

WITH ROWSET POSITIONING

concurrent-access-resolution

SKIP LOCKED DATA

USE CURRENTLY COMMITTED

WAIT FOR OUTCOME

Description for PREPARE
statement-name

Names the prepared statement. If the name identifies an existing prepared statement, that prepared
statement is destroyed. The name must not identify a prepared statement that is the SELECT
statement of an open cursor.

INTO
If you use INTO, and the PREPARE statement is successfully executed, information about the
prepared statement is placed in the SQLDA specified by the descriptor name. Thus, the PREPARE
statement:

 EXEC SQL PREPARE S1 INTO :SQLDA FROM :V1;

is equivalent to:

 EXEC SQL PREPARE S1 FROM :V1;
 EXEC SQL DESCRIBE S1 INTO :SQLDA;

descriptor-name
Identifies the SQLDA. For languages other than REXX, SQLN must be set to indicate the number
of SQLVAR occurrences. See “DESCRIBE statement” on page 1869 for information about how to
determine the number of SQLVAR occurrences to use and for an explanation of the information
that is placed in the SQLDA.

See “Identifying an SQLDA in C or C++” on page 2329 for how to represent descriptor-name in C.

USING
Indicates what value to assign to each SQLNAME variable in the SQLDA when INTO is used. If the
requested value does not exist, SQLNAME is set to length 0.
NAMES

Assigns the name of the column. This is the default.
LABELS

Assigns the label of the column. (Column labels are defined by the LABEL statement.)
ANY

Assigns the label of the column. If the column has no label or the label is a string of length 0,
the column name is used instead.

2044 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

BOTH
Assigns both the label and name of the column. In this case, two or three occurrences
of SQLVAR per column, depending on whether the result table contains distinct types, are
needed to accommodate the additional information. To specify this expansion of the SQLVAR
array, set SQLN to 2×n or 3×n, where n is the number of columns in the object being
described. For each of the columns, the first n occurrences of SQLVAR, which are the base
SQLVAR entries, contain the column names. Either the second or third n occurrences of
SQLVAR, which are the extended SQLVAR entries, contain the column labels. If there are no
distinct types, the labels are returned in the second set of SQLVAR entries. Otherwise, the
labels are returned in the third set of SQLVAR entries.

A REXX SQLDA does not include the SQLN field, so you do not need to set SQLN for REXX
programs.

ATTRIBUTES attr-host-variable
Specifies the attributes that are in effect if a corresponding attribute has not been specified as
part of the associated statement. If attributes are specified as part of the associated statement,
they are used instead of the corresponding attributes specified on the PREPARE statement. In turn,
if attributes are specified in the PREPARE of a SELECT statement, they are used instead of the
corresponding attributes specified on a DECLARE CURSOR statement.

attr-host-variable must identify a host variable that is described in the program in accordance with
the rules for declaring string variables. attr-host-variable must be a string variable (either fixed-length
or varying-length) that has a length attribute that does not exceed 32758 bytes. Leading and trailing
blanks are removed from the value of the host variable. The host variable must contain a valid
attribute-string.

An indicator variable can be used to indicate whether or not attributes are actually provided on the
PREPARE statement. Thus, applications can use the same PREPARE statement regardless of whether
attributes need to be specified or not.

The options that can be specified as part of the attribute-string are as follows:

ASENSITIVE, INSENSITIVE, SENSITIVE STATIC, or SENSITIVE DYNAMIC
Specifies the sensitivity of the cursor to inserts, updates, or deletes that made to the rows
underlying the result table. The sensitivity of the cursor determines whether Db2 can materialize
the rows of the result into a temporary table. The default is ASENSITIVE.
ASENSITIVE

Specifies that the cursor should be as sensitive as possible. A cursor that defined as
ASENSITIVE will be either insensitive or sensitive dynamic; it will not be sensitive static. For
information about how the effective sensitivity of the cursor is returned to the application with
the GET DIAGNOSTICS statement or in the SQLCA, see “OPEN statement” on page 2037.

The sensitivity of a cursor is a factor in the choice of access path. Explicitly specify the
sensitivity level that you need, instead of specifying ASENSITIVE.

INSENSITIVE
Specifies that the cursor does not have sensitivity to inserts, updates, or deletes that are made
to the rows underlying the result table. As a result, the size of the result table, the order of
the rows, and the values for each row do not change after the cursor is opened. In addition,
the cursor is read-only. The SELECT statement or attribute-string of the PREPARE statement
cannot contain a FOR UPDATE clause, and the cursor cannot be used for positioned updates or
deletes.

SENSITIVE
Specifies that the cursor has sensitivity to changes made to the database after the result
table is materialized. The cursor is always sensitive to positioned updates and deletes that
are made using the same cursor. However, the select-statement of the cursor must not contain

36 The scrollability and sensitivity of the cursor are independent and do not have to be specified together.
Thus, the cursor might be defined as SCROLL INSENSITIVE, but the PREPARE statement might specify
SENSITIVE STATIC as an override for the sensitivity.

Chapter 7. Statements 2045

an SQL data change statement if the cursor is defined as either SENSITIVE DYNAMIC or
SENSITIVE STATIC. When the current value of a row no longer satisfies the select-statement
or statement-name, that row is no longer visible through the cursor. When a row of the result
table is deleted from the underlying base table, the row is no longer visible through the cursor.

In addition, the cursor has sensitivity to changes made to values outside the cursor (that is,
by other cursors or committed changes by other application processes). If Db2 can not make
changes made outside the cursor visible to the cursor, an error is issued at OPEN CURSOR.
Whether the cursor is sensitive to changes made outside this cursor depends on whether
DYNAMIC or STATIC is in effect for the cursor and whether SENSITIVE or INSENSITIVE FETCH
statements are used.

Whether the cursor is sensitive to newly inserted rows depends on whether DYNAMIC or
STATIC is in effect for the cursor. The default is DYNAMIC.

DYNAMIC
Specifies that the result table of the cursor is dynamic in that the size of the result table
can change after the cursor is opened as rows are inserted into or deleted from the
underlying table, and the order of the rows can change. Inserts, deletes, and updates that
are made by the same application process are immediately visible. Inserts, deletes, and
updates that are made by other application processes are visible after they are committed.

All FETCH statements for sensitive dynamic cursors are sensitive to changes made by this
cursor, changes made by other cursors in the same application process, and committed
changes made by other application processes.

If a SENSITIVE DYNAMIC cursor is not possible, an error is returned. The FETCH FIRST n
ROWS ONLY clause and the OFFSET clause must not be specified (either in the outermost
fullselect for the cursor or as prepare attributes) for a sensitive dynamic cursor.

STATIC
Specifies that the order of the rows and size of the result table is static. The size of the
result table does not grow after the cursor is opened and the rows are materialized. The
order of the rows is established as the result table is materialized. Rows that are inserted
into the underlying table are not added to the result table of the cursor regardless of how
the rows were inserted. Rows in the result table do not move if columns in the ORDER BY
clause are updated in rows that have already been materialized.

Whether the changes that are made outside the cursor are visible to the cursor depends
on the type of FETCH that is used with a SENSITIVE STATIC cursor. For more information,
see Considerations for FETCH statements used with a sensitive static cursor.

Using a function that is not deterministic (built-in or user-defined) in the WHERE
clause of select-statement or statement-name of a SENSITIVE STATIC cursor can cause
misleading results. This occurs because Db2 constructs a temporary result table and
retrieves rows from this table for INSENSITIVE FETCH statements. When Db2 processes a
SENSITIVE FETCH statement, rows are fetched from the underlying table and predicates
are re-evaluated if they contain non-correlated subqueries. Using a function that is not
deterministic can yield a different result for the re-evaluated query causing the row to no
longer be considered a match.

If SENSITIVE STATIC is specified and a sensitive static cursor is not possible, then an error
is returned.

If ASENSITIVE, INSENSITIVE, SENSITIVE DYNAMIC, or SENSITIVE STATIC is specified as part of
the ATTRIBUTES clause, SCROLL must be specified.

SCROLL or NO SCROLL
Specifies whether the cursor is scrollable.
SCROLL

Specifies that the cursor is scrollable.

2046 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

NO SCROLL
Specifies that the cursor is not scrollable.

WITHOUT RETURN or WITH RETURN
Specifies whether the result table of the cursor is intended to be used as a result set that will
be returned from a procedure. If statement-name is specified, the default is the corresponding
prepare attribute of the statement. Otherwise, the default is WITHOUT RETURN.
WITHOUT RETURN

Specifies that the result table of the cursor is not intended to be used as a result set that will
be returned from a procedure.

WITH RETURN
Specifies that the result table of the cursor is intended to be used as a result set that will
be returned from a procedure. WITH RETURN is relevant only if the PREPARE statement is
contained within the source code for a procedure. In other cases, the precompiler might
accept the clause, but it has not effect.

When a cursor that is declared using the WITH RETURN TO CALLER clause remains open at
the end of a program or routine, that cursor defines a result set from the program or routine.
Use the CLOSE statement to close a cursor that is not intended to be a result set from the
program or routine. Although Db2 will automatically close any cursors that are not declared
using with a WITH RETURN clause, the use of the CLOSE statement is recommended to
increase the portability of applications.

For non-scrollable cursors, the result set consists of all rows from the current cursor position
to the end of the result table. For scrollable cursors, the result set consists of all rows of the
result table.

TO CALLER
Specifies that the cursor can return a result set to the caller of the procedure. The caller is
the program or routine that executed the SQL CALL statement that invokes the procedure
that contains the PREPARE statement. For example, if the caller is a procedure, the result
set, is returned to the procedure. If the caller is a client application, the result set is
returned to the client application.

If the statement is contained within the source code for a procedure, WITH RETURN TO
CALLER specifies that the cursor can be used as a result set cursor. A result set cursor is
used when the result table of a cursor is to be returned from a procedure. Specifying TO
CALLER is optional.

In other cases, the clause is ignored and the cursor cannot be used as a result set cursor.

TO CLIENT
Specifies that the cursor can return a result set to the client application. This cursor is
invisible to any intermediate nested procedures. If a function or trigger calls the procedure
(either directly or indirectly), the result set cannot be returned to the client and the cursor
will be closed after the procedure finishes.

rowset-positioning
Specifies whether rows of data can be accessed as a rowset on a single FETCH statement for this
cursor.
WITHOUT ROWSET POSITIONING

Specifies that the cursor can only be used with row positioned FETCH statements.
WITH ROWSET POSITIONING

Specifies that this cursor can be used with rowset positioned or row positioned FETCH
statements

offset-clause
The offset-clause specifies the number of rows to skip from the beginning of the intermediate
result table. offset-row-count is a constant that specifies a numeric value that is a positive number
or zero. If the value is not BIGINT, the value is cast to a BIGINT value. The offset of the beginning
row is zero (not 1). offset-row-count must not be the null value.

Chapter 7. Statements 2047

The offset-clause must not be specified for the outermost fullselect for a sensitive dynamic cursor.

For more information, see “offset-clause” on page 1046.

fetch-clause
The fetch-clause specifies the maximum number of rows that can be retrieved. fetch-row-count
is a constant that specifies a numeric value that is a positive number or zero. If the value is not
BIGINT, the value is cast to a BIGINT value. fetch-row-count must not be the null value.

The fetch-clause must not be specified for the outermost fullselect for a sensitive dynamic cursor.

The use of the fetch-clause can improve the performance of queries with potentially large result
sets when only a limited number of rows are needed. If the clause is specified, the number of rows
retrieved will not exceed n, where n is the value of the integer. An attempt to fetch n+1 rows is
handled the same way as a normal end of data.

For more information, see “fetch-clause” on page 1047.

read-only-clause
Declares that the result table is read-only and therefore the cursor cannot be referred to in
positioned UPDATE and DELETE statements.

update-clause
Identifies the columns that can updated in a later positioned UPDATE statement. Each column
must be unqualified and must identify a column of the table or view identified in the first FROM
clause of the fullselect. The clause must not be specified if the result table of the fullselect is
read-only. The clause must also not be specified if a created temporary table is referenced in the
first FROM clause of the select-statement.

If the clause is specified without a list of columns, the columns that can be updated include all the
updatable columns of the table or view that is identified in the first FROM clause of the fullselect.

optimize-clause
Requests special optimization of the select-statement. If the clause is omitted, optimization is
based on the assumption that all rows of the result table will be retrieved. If the clause is
specified, optimization is based on the assumption that the number of rows retrieved will not
exceed n, where n is the value of the integer. The clause does not limit the number of rows that
can be fetched or affect the result in any way other than performance.

isolation-clause
Specifies the isolation level at which the select statement is executed. See “isolation-clause” on
page 1073.

concurrent-access-resolution
Specifies the type concurrent access resolution to use for the select statement. Each clause
in concurrent-access-resolution can only be specified one time. Only one of the clauses can be
specified for each PREPARE statement. If none of the clauses is specified, the locking semantic
depends on other attributes of the statement.
SKIP LOCKED DATA

Specifies to skip data on which incompatible locks are held by other transactions. See “SKIP
LOCKED DATA” on page 1076.

USE CURRENTLY COMMITTED
Specifies that Db2 can use the currently committed version of the data when the data is in the
process of being updated. USE CURRENTLY COMMITTED only applies in the following cases:

• The table that is being accessed is defined in a universal table space
• The access is for a select-statement with an isolation level of cursor stability (CS) or read

stability (RS) specified in the isolation-clause:

– When a read transaction accesses a record that is locked by an insert transaction, both
ISOLATION(CS) and ISOLATION(RS) are applicable.

– When a read transaction accesses a record that is locked by a delete transaction only
ISOLATION(CS) is applicable and only when CURRENTDATA(NO) is in effect.

2048 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

USE CURRENTLY COMMITTED is ignored if used in any other context.

When this clause is specified, the setting of the subsystem parameter EVALUNC applies. If the
row qualifies, this clause determines if the row is accessed or skipped.

When this clause is specified and the subsystem parameter SKIPUNCI is in effect, PREPARE
uses the specification of this clause. See the Notes section for more information.

When this clause is specified and XML data that does not support multiple XML versions is
being selected, Db2 cannot determine whether the data has been committed. In this case,
Db2 uses WAIT FOR OUTCOME behavior when accessing the data.

WAIT FOR OUTCOME
Specifies that Db2 waits for the commit or rollback when encountering data that is in the
process of being updated or deleted. Rows that are in the process of being inserted are not
skipped.

FOR MULTIPLE ROWS or FOR SINGLE ROW
Specifies if a variable number of rows will be provided with host-variable arrays for a dynamic
INSERT or MERGE statement.
FOR MULTIPLE ROWS

Specifies that multiple rows can be provided with host-variable arrays on an EXECUTE
statement for the statement that is being prepared. FOR MULTIPLE ROWS must only be
specified for an INSERT or a MERGE statement.

FOR SINGLE ROW
Specifies that multiple rows must not be provided with host-variable arrays on an EXECUTE
statement for the statement that is being prepared. FOR SINGLE ROW must only be specified
for an INSERT or a MERGE statement.

ATOMIC or NOT ATOMIC CONTINUE ON SQLEXCEPTION
Specifies if all rows are inserted as an atomic operation. This clause can only be specified for
dynamic INSERT statements.
ATOMIC

Specifies that if the insert for any row fails, all changes that are made to the database by any
of the inserts, including changes that are made by successful inserts, are undone. This is the
default.

NOT ATOMIC CONTINUE ON SQLEXCEPTION
Specifies that, regardless of the failure of any particular insert of a row, the INSERT statement
will not undo any changes that are made to the database by the successful inserts of other
rows, and inserting will be attempted for subsequent rows. However, the minimum level of
atomicity is at least that of a single insert (that is, it is not possible for a partial insert operation
to complete), including any triggers that might have been activated as a result of the INSERT
statement.

This clause must not be specified if the INSERT statement is contained within a SELECT
statement.

For preparing the MERGE statement, atomicity is specified only on the MERGE statement
itself.

WITHOUT EXTENDED INDICATORS or WITH EXTENDED INDICATORS
Specifies whether the values that are provided for indicator variables during execution of an
INSERT, MERGE, or UPDATE follow standard SQL semantics for indicating NULL values, or can use
extended indicator values, including DEFAULT or UNASSIGNED.

WITH EXTENDED INDICATORS is ignored unless the statement is an INSERT statement with a
VALUES clause, a MERGE statement, or an UPDATE statement.

CONCENTRATE STATEMENTS OFF or CONCENTRATE STATEMENTS WITH LITERALS
Specifies whether a dynamic SQL statement that specifies literal constants will be cached as a
separate unique statement entry in the dynamic statement cache instead of sharing an existing
statement in the cache. Dynamic SQL statements are eligible to share an existing statement in the

Chapter 7. Statements 2049

cache if the new statement meets all of the conditions for sharing a cached version of the same
dynamic statement except that the new statement specifies one or more literal constants that are
different than the cached statement.
CONCENTRATE STATEMENTS OFF

Specifies that the dynamic SQL statement that specifies literal constants will be cached as a
unique statement entry if it specifies one or more constants that are different than the cached
version of the same dynamic statement. CONCENTRATE STATEMENTS OFF is the default
dynamic statement caching behavior.

CONCENTRATE STATEMENTS WITH LITERALS
Specifies that the dynamic SQL statement that specifies literal constants will share a cached
version of the same dynamic statement that is also prepared using the CONCENTRATE
STATEMENTS WITH LITERALS option if the new dynamic statement meets all of the
conditions for sharing the cached statement and the constants that are specified can be
reused in place of the constants in the cached statement.

FROM
Specifies the statement string. The statement string is the value of the specified string-expression or
the identified variable.
variable

Must identify a variable that is described in the application program in accordance with the rules
for declaring string variables. If the source string is over 32KB in length, the variable must be a
CLOB or DBCLOB variable. The maximum source string length is 2MB although the variable can be
declared larger than 2MB. An indicator variable must not be specified with a host variable. In PL/I,
COBOL and Assembler language, a host variable must be a varying-length string variable. In C, a
host variable must not be a NUL-terminated string. In SQL PL, an SQL variable is used in place of a
host variable, and the value must not be null.

string-expression
string-expression is any PL/I expression that yields a string. string-expression cannot be preceded
by a colon. Variables that are within string-expression that include operators or functions should
not be preceded by a colon. When string-expression is specified, the precompiler-generated
structures for string-expression use an EBCDIC CCSID and an informational message is returned.

Notes for PREPARE
Rules for statement strings:

The value of the specified statement-name is called the statement string. The statement string must be
one of the following SQL statements:

Statements Statements

• ALLOCATE CURSOR
• ALTER
• ASSOCIATE LOCATORS
• COMMENT
• COMMIT
• CREATE
• DECLARE GLOBAL TEMPORARY TABLE
• DELETE
• DROP
• EXPLAIN
• FREE LOCATOR
• GRANT

• SET CURRENT APPLICATION COMPATIBILITY
• SET CURRENT DEGREE
• SET CURRENT DEBUG MODE
• SET CURRENT DECFLOAT ROUNDING MODE
• SET CURRENT EXPLAIN MODE
• SET CURRENT LOCALE LC_CTYPE
• SET CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION
• SET CURRENT OPTIMIZATION HINT
• SET CURRENT PRECISION
• SET CURRENT QUERY ACCELERATION
• SET CURRENT REFRESH AGE

2050 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Statements Statements

• HOLD LOCATOR
• INSERT
• LABEL
• LOCK TABLE
• MERGE
• REFRESH TABLE
• RELEASE SAVEPOINT RENAME
• REVOKE
• ROLLBACK
• SAVEPOINT
• select-statement
• SET assignment-statement
• SET CURRENT ACCELERATOR

• SET CURRENT ROUTINE VERSION
• SET CURRENT RULES
• SET CURRENT SQLID
• SET PATH
• SET SCHEMA
• SET CURRENT TEMPORAL BUSINESS_TIME
• SET CURRENT TEMPORAL SYSTEM_TIME
• SET SESSION TIME ZONE
• SIGNAL
• TRANSFER OWNERSHIP
• TRUNCATE
• UPDATE

The statement string must not have any of the following attributes:

• Begin with EXEC SQL
• End with END-EXEC or a semicolon
• Include references to variables, other than global variables
• Include references to transition variables

Parameter markers:
Although a statement string cannot include references to variables, other than global variables, it can
include parameter markers. The parameter markers are replaced by the values of variables when the
prepared statement is executed. A parameter marker is a question mark (?) that appears where a
variable could appear if the statement string were a static SQL statement.

For an explanation of how parameter markers are replaced by values, see the EXECUTE statement,
“OPEN statement” on page 2037, and Dynamically executing a data change statement (Db2
Application programming and SQL).

The two types of parameter markers are typed and untyped:
Typed parameter marker

A parameter marker that is specified with its target data type. A typed parameter marker has the
general form:

 CAST(? AS data-type)

This invocation of a CAST specification is a "promise" that the data type of the parameter at run
time will be of the data type that is specified or some data type that is assignable to the specified
data type. For example, in the following UPDATE statement, the value of the argument of the
TRANSLATE function will be provided at run time:

 UPDATE EMPLOYEE
 SET LASTNAME = TRANSLATE(CAST(? AS VARCHAR(12)))
 WHERE EMPNO = ?

The data type of the value that is provided for the TRANSLATE function will either be
VARCHAR(12), or some data type that can be converted to VARCHAR(12). For more information,
refer to “Assignment and comparison” on page 143.

Typed parameter markers can be used in dynamic SQL statements wherever a host variable is
supported and the data type is based on the promise made in the CAST specification.

Chapter 7. Statements 2051

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_dynamicexecutedatachangestmt.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_dynamicexecutedatachangestmt.html

Untyped parameter marker

A parameter marker that is specified without its target data type. An untyped parameter marker
has the form of a single question mark. The context in which the parameter marker appears
determines its data type. For example, in the above UPDATE statement, the data type of the
untyped parameter marker in the predicate is the same as the data type of the EMPNO column.

Untyped parameters markers can be used in dynamic SQL statements in selected locations
where variables are supported. These locations and the resulting data type are found in the
following tables. The tables group the locations into expressions, predicates, functions, and other
statements to help show where untyped parameter markers are allowed. Untyped parameter
markers are not supported in other locations.

Expressions

Location of untyped parameter marker Data type (or error if not supported)

Alone in a select list. For example:

SELECT ?

Error

Both operands of a single arithmetic
operator, after considering operator
precedence and the order of operation rules.
Includes cases such as:

? + ? + 10

DECFLOAT(34)

One operand of a single operator in
an arithmetic expression (except datetime
arithmetic expressions). Includes cases such
as:

? + ? * 10

The data type of the other operand

Any operand of a datetime expression. For
example:

'timecol + ?' or '? - datecol'

Error

A labeled duration in a datetime expression
with a type unit other than SECONDS (the
portion of a labeled duration that indicates
the type of units cannot be a parameter
marker).

DECIMAL(15,0)

A labeled duration in a datetime expression
with a type unit of SECONDS (the portion of
a labeled duration that indicates the type of
units cannot be a parameter marker).

DECIMAL(27,12)

Both operands of a CONCAT operator Error

One operand of a CONCAT operator when
the other operand is any character data type
except CLOB

If the other operand is CHAR(n) or
VARCHAR(n), where n is less than 128, the
data type is VARCHAR(254 - n). In all other
cases, the data type is VARCHAR(254).

One operand of a CONCAT operator when the
other operand is any graphic data type except
DBCLOB

If the other operand is GRAPHIC(n) or
VARGRAPHIC(n), where n is less than
64, the data type is VARGRAPHIC(127 -

2052 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Location of untyped parameter marker Data type (or error if not supported)

n). In all other cases, the data type is
VARGRAPHIC(127).

One operand of a CONCAT operator when the
other operand is any binary type except BLOB

If the other operand is BINARY(n) or
VARBINARY(n) where n is less than 128, the
data type is VARBINARY(255-n). In all other
cases, the data type is VARBINARY(255)

One operand of a CONCAT operator when the
other operand is a LOB string

The data type of the other operand (the LOB
string)

The expression following the CASE keyword
in a simple CASE expression

Error

Any or all expressions following the WHEN
keyword in a simple CASE expression

The result of applying the “Rules for result
data types” on page 166 to the expression
following CASE and the expressions following
WHEN that are not untyped parameter
markers

A result-expression in any CASE expression
when all the other result-expressions are
either NULL or untyped parameter markers.

Error

A result-expression in any CASE expression
when at least one other result-expression
is neither NULL nor an untyped parameter
marker.

The result of applying the “Rules for result
data types” on page 166 to all the result-
expressions that are not NULL or untyped
parameter markers

Alone as a column-expression in a single-row
VALUES clause that is not within an INSERT
statement or the VALUES clause of in insert
operation of a MERGE statement

Error

Alone as a column-expression in a single-row
VALUES clause within an INSERT statement

The data type of the column or, if the column
is defined as a distinct type, the source data
type of the distinct type

Alone as a column-expression in a values-
single-row or values-multiple-row clause of
source-table for a MERGE statement

The data type of the column of the source-
table, or if the data type is a distinct
type, the source data type of the distinct
type. The column of the source-table must
be referenced elsewhere in the MERGE
statement such that its data type can be
determined from the context in which it is
used, and all such references must resolve to
the same data type.

Alone as a column-expression in the VALUES
clause of an insert operation of a MERGE
statement

The data type of the column or, if the column
is defined as a distinct type, the source data
type of the distinct type

Alone as a column-expression on the right
side of assignment-clause for an update
operation of a MERGE statement

The data type of the column or, if the column
is defined as a distinct type, the source data
type of the distinct type

Alone as a column-expression on the right
side of a SET clause in an UPDATE statement

The data type of the column or, if the column
is defined as a distinct type, the source data
type of the distinct type

Chapter 7. Statements 2053

Location of untyped parameter marker Data type (or error if not supported)

Alone as offset-row-count in an OFFSET
clause

BIGINT

Alone as fetch-row-count in a FETCH clause BIGINT

Predicates

Location of untyped parameter marker Data type (or error if not supported)

Both operands of a comparison operator Error

One operand of a comparison operator
when the other operand is not an untyped
parameter marker

The data type of the other operand. If the
operand has a datetime data type, the result
of DESCRIBE INPUT will show the data
type as CHAR(255) although Db2 uses the
datetime data type in any comparisons.

All the operands of a BETWEEN predicate Error

Two operands of a BETWEEN predicate
(either the first and second, or the first and
third)

The data type of the operand that is not a
parameter marker

Only one operand of a BETWEEN predicate The result of applying the “Rules for result
data types” on page 166 on the other
operands that are not parameter markers

All the operands of an IN predicate, for
example, ? IN (?,?,?)

Error

The first and second operands of an IN
predicate, for example, ? IN (?,A,B)

The result of applying the “Rules for result
data types” on page 166 on the operands in
the IN list that are not parameter markers

The first operand of an IN predicate and zero
or more operands of the IN list except for the
first operand of the IN list, for example, ? IN
(A,?,B,?)

The result of applying the “Rules for result
data types” on page 166 on the operands in
the IN list that are not parameter markers

The first operand of an IN predicate when
the right side is a fullselect of fullselect, for
example, ? IN (fullselect)

The data type of the selected column

Any or all operands of the IN list of the
IN predicate and the first operand of the
IN predicate is not an untyped parameter
marker, for example, A IN (?,A,?)

The data type of the first operand (the
operand on the left side of the IN list)

All the operands of a LIKE predicate The first and second operands (match-
expression and pattern-expression) are
VARCHAR(4000). The third operand (escape-
expression) is VARCHAR(1).

The first operand of a LIKE predicate (the
match-expression) when at least one other
operand (the pattern-expression or escape-
expression) is not an untyped parameter
marker.

VARCHAR(4000), VARGRAPHIC(2000), or
VARBINARY(4000), depending on the data
type of the first operand that is not an
untyped parameter marker

The second operand of a LIKE predicate (the
pattern-expression) when at least one other

VARCHAR(4000), VARGRAPHIC(2000), or
VARBINARY(4000), depending on the data

2054 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Location of untyped parameter marker Data type (or error if not supported)

operand (the match-expression or escape-
expression) is not an untyped parameter
marker. When the pattern specified in a
LIKE predicate is a parameter marker and a
fixed-length character host variable is used
to replace the parameter marker, specify
a value for the host variable that is the
correct length. If you do not specify the
correct length, the select does not return the
intended results.

type of the first operand that in not an
untyped parameter marker.

The third operand of a LIKE predicate (the
escape-expression) when at least one other
operand (the match-expression or pattern-
expression) is not an untyped parameter
marker

CHAR(1), GRAPHIC(1), or BINARY(1),
depending on the data type of the first
operand that in not an untyped parameter
marker

Operand of a NULL predicate Error

Functions

Location of untyped parameter marker Data type (or error if not supported)

All arguments of COALESCE or NULLIF Error

Any argument of COALESCE or NULLIF when
at least one other argument is not an untyped
parameter marker

The result of applying the “Rules for result
data types” on page 166 on the arguments
that are not untyped parameter markers, the
data type of the other argument

First argument of COLLATION_KEY VARGRAPHIC(2000)

Second argument of COLLATION_KEY VARCHAR(255)

First argument of LOWER VARCHAR(4000)

Second argument of LOWER VARCHAR(255)

Any argument other than the first argument
of MAX

The data type of the corresponding
parameter in the function instance

Any argument other than the first argument
of MIN

The data type of the corresponding
parameter in the function instance

Both arguments of POSSTR or POSITION VARCHAR(4000) for both arguments

One argument of POSSTR or POSITION when
the other argument is a character data type

VARCHAR(4000)

One argument of POSSTR or POSITION when
the other argument is a graphic data type

VARGRAPHIC(2000)

One argument of POSSTR or POSITION
when the other argument is a BINARY or
VARBINARY data type

VARBINARY(4000)

One argument of POSSTR or POSITION when
the other argument is a BLOB

BLOB(4000)

First argument of SUBSTR or SUBSTRING VARCHAR(4000)

Chapter 7. Statements 2055

Location of untyped parameter marker Data type (or error if not supported)

Second or third argument of SUBSTR or
SUBSTRING

INTEGER

One argument of TIMESTAMP TIME

First argument of TIMESTAMP_FORMAT VARCHAR(255)

First argument of TRANSLATE Error

Second or third argument of TRANSLATE VARCHAR(4000), VARGRAPHIC(2000),
depending on whether the data type of the
first argument is character or graphic

Fourth argument of TRANSLATE VARCHAR(1) or VARGRAPHIC(1), depending
on whether the data type of the first
argument is character or graphic

Second argument of TRIM_ARRAY BIGINT

array-index for array-element-specification BIGINT

First argument of UPPER VARCHAR(4000)

Second argument of UPPER VARCHAR(255)

First argument of VARCHAR_FORMAT TIMESTAMP WITHOUT TIME ZONE

Unary minus DECFLOAT(34)

Unary plus Error

The argument of any built-in scalar function
(except those that are described in this table)

Error

The argument of a built-in aggregate function Error

The argument of a user-defined scalar
function, user-defined aggregate function, or
user-defined table function

The data type of the corresponding
parameter in the function instance

Statements

Location of untyped parameter marker Data type (or error if not supported)

FOR n ROWS clause of an INSERT or MERGE
statement

Integer

The value on the right side of a SET clause in
an UPDATE statement or the UPDATE clause
of the MERGE statement

The data type of the column of the source-
table, or if the column is defined as a
distinct type, the source data type of the
distinct type. The column of the source-table
must be referenced elsewhere in the MERGE
statement such that its data type can be
determined from the context in which it is
used, and all such references must resolve to
the same data type.

value, value1, or value2 in a period
specification or period clause

The data type of the columns of the period
referenced in the period specification or
period clause

2056 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Location of untyped parameter marker Data type (or error if not supported)

value, value1, or value2 in a period
specification for a table, or period clause for
a data change statement if the target of the
statement is a table

The data type of the columns of the period
referenced in the period specification or
period clause

value, value1, or value2 in a period
specification for a view

Error

value1 or value2 in a period clause in a
data change statement if the target of the
statement is a view

Error

Considerations for FETCH statements used with a sensitive static cursor:
Whether changes made outside the cursor are visible to the cursor depends on the type of FETCH that
is used with a SENSITIVE STATIC cursor:

• A SENSITIVE FETCH is sensitive to all updates and deletes that are made by this cursor (including
changes made by triggers) and committed updates and deletes by all other application processes
because every fetched row is retrieved from the underlying base table and not a temporary table.
This is the default type of FETCH statement for a SENSITIVE cursor.

Changes that are made to the underlying data using this cursor result in an automatic refresh of the
row. The changes that are made using this type of cursor can result in holes in the result table of
the cursor. In addition, re-fetching rows (fetching rows that have already been retrieved) can result
in holes in the result table. If a sensitive FETCH is issued to re-fetch a row and the row no longer
qualifies for the search condition of the query, it results in a "delete hole" or an "update hole". In this
case, no data is returned, and the cursor is left positioned on the hole.

• An INSENSITIVE FETCH is not sensitive to updates and deletes that are made outside this cursor;
however, it is sensitive to all updates and deletes that are made by this cursor. Changes that made
with triggers are not visible with an INSENSITIVE FETCH until the content of the rows are updated in
the result table with a SENSITIVE FETCH statement. If an application does not want to be sensitive
to changes that are made outside this cursor (that is, the application does not want to see changes
made either with another cursor or by another application process), INSENSITIVE can be explicitly
specified as part of the FETCH statement for a SENSITIVE STATIC cursor. This type of FETCH is
useful for refreshing data in user data buffers. For more information, see INSENSITIVE.

Error checking:
When a PREPARE statement is executed, the statement string is parsed and checked for errors. If the
statement string is invalid, a prepared statement is not created and the error condition that prevents
its creation is reported in the SQLCA.

In local and remote processing, the DEFER(PREPARE) and REOPT(ALWAYS)/REOPT(ONCE) bind
options can cause some SQL statements to receive "delayed" errors. For example, DESCRIBE,
EXECUTE, and OPEN might receive an SQLCODE that normally occurs during PREPARE processing.

Reference and execution rules:
Prepared statements can be referred to in the following kinds of statements, with the following
restrictions:

Type of statement Restriction for prepared statement

DESCRIBE no restriction

DECLARE CURSOR Statement must be SELECT when the cursor is
opened

EXECUTE Statement must not be SELECT

Chapter 7. Statements 2057

A prepared statement can be executed many times. Indeed, if a prepared statement is not executed
more than once and does not contain parameter markers, it is more efficient to use the EXECUTE
IMMEDIATE statement rather than the PREPARE and EXECUTE statements.

Prepared statement persistence:
All prepared statements created by a unit of work are destroyed when the unit of work is terminated,
with the following exceptions:

• A SELECT statement whose cursor is declared with the option WITH HOLD persists over the
execution of a commit operation if the cursor is open when the commit operation is executed.

• SELECT, INSERT, UPDATE, MERGE, and DELETE statements that are bound with
KEEPDYNAMIC(YES) are kept past the point of commit or rollback if your system is enabled for
dynamic statement caching, and none of the following are true:

– SQL RELEASE has been issued for the site
– Bind option DISCONNECT(AUTOMATIC) was used
– Bind option DISCONNECT(CONDITIONAL) was used and there are no hold cursors for the site

• INSERT, UPDATE, MERGE, and DELETE statements that are bound with or use the
RELEASE(DEALLOCATE) option and that reference a declared global temporary table are kept past
commit operations unless one of the following statements is true:

– The declared global temporary table is defined with the ON COMMIT DROP TABLE option.
– The statement also references a Db2 base object (for example, a table or view), and one of the

following statements is true:

- The base object reference is for a Db2 catalog table.
- At the commit point, Db2 determines that another Db2 thread is waiting for an X-lock on the

base object's database descriptor (DBD).
- The statement references an XML function or operation, and at the commit point Db2

determines that the base object DBD S-lock for the XML operation must be released.
- At the commit point, Db2 determines that a base object DBD S-lock that is used by the

statement must be released and cannot be maintained across the commit point.
– Db2 determines that another Db2 thread is waiting for an X-lock on the Db2 package that

contains the statement.

Scope of a statement name:
The scope of a statement-name is the same as the scope of a cursor-name. See “DECLARE CURSOR
statement” on page 1819 for more information about the scope of a cursor-name.

Preparation with PREPARE INTO and REOPT bind option:
If bind option REOPT(ALWAYS) or REOPT(ONCE) is in effect, PREPARE INTO is equivalent to a
PREPARE and a DESCRIBE being performed. If a statement has input variables, the DESCRIBE causes
the statement to be prepared with default values, and the statement must be prepared again when
it is opened or executed. When REOPT(ONCE) is in effect, the statement is always prepared twice
even if there are no input variables. Therefore, to avoid having a statement prepared twice, avoid using
PREPARE INTO when REOPT(ALWAYS) or REOPT(ONCE) is in effect.

Relationship of cursor attributes on PREPARE statements and SELECT or DECLARE CURSOR
statements:

Cursor attributes that are specified as part of the select-statement are used instead of any
corresponding options that specified with the ATTRIBUTES clause on PREPARE. Attributes that are
specified as part of the ATTRIBUTES clause of PREPARE take precedence over any corresponding
option that is specified with the DECLARE CURSOR statement. The order for using cursor attributes is
as follows:

• SELECT (highest priority)
• PREPARE statement ATTRIBUTES clause
• DECLARE CURSOR (lowest priority)

2058 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

For example, assume that host variable MYQ has been set to the following SELECT statement:

 SELECT WORKDEPT, EMPNO, SALARY, BONUS, COMM
 FROM EMP
 WHERE WORKDEPT IN ('D11', 'D21')
 FOR UPDATE OF SALARY, BONUS, COMM

If the following PREPARE statement were issued, then the FOR UPDATE clause specified as part
of the SELECT statement would be used instead of the FOR READ ONLY clause specified with the
ATTRIBUTES clause as part of the PREPARE statement. Thus, the cursor would be updatable.

 attrstring = 'FOR READ ONLY';
 EXEC SQL PREPARE stmt1 ATTRIBUTES :attrstring FROM :MYQ;

Effect of the CURRENT EXPLAIN MODE special register:
If the CURRENT EXPLAIN MODE special register is set to EXPLAIN, the statement is prepared for
explain only and is not executable, unless the statement is a SET statement. Attempting to execute
the prepared statement will return an error. See the “CURRENT EXPLAIN MODE special register” on
page 194 special register for more information.

Precedence of attributes for SELECT and UPDATE WHERE CURRENT OF for positioned updates:
If an UPDATE WHERE CURRENT OF statement and the associated SELECT statement are both
prepared and both statements have the same PREPARE attributes, the values of the PREPARE
attributes for the UPDATE WHERE CURRENT OF statement override the values of the PREPARE
attributes for the SELECT statement.

Effect of extended indicator PREPARE attributes on dynamically executed positioned updates:
If an UPDATE statement with the WHERE CURRENT OF clause and the associated SELECT statement
are both prepared, if extended indicator variables are used depends on the WITH EXTENDED
INDICATORS or WITHOUT EXTENDED INDICATORS attributes in each of the PREPARE statements.

Interaction between EXTENDED INDICATOR attributes of PREPARE statements for SELECT and
UPDATE statements

Extended indicator
attribute of
PREPARE for SELECT
statement

Extended indicator
attribute of PREPARE
for UPDATE statement
with WHERE
CURRENT OF clause

Result

WITH EXTENDED
INDICATORS

WITH EXTENDED
INDICATORS

The PREPARE attributes of the UPDATE statement
override the PREPARE attributes of the SELECT
statement. Non-updatable columns can be in the
select-list.

WITH EXTENDED
INDICATORS

WITHOUT EXTENDED
INDICATORS

The UPDATE statement is executed without
extended indicator parameters.

WITH EXTENDED
INDICATORS

Default (without
attribute specified)

The PREPARE attributes of the SELECT statement
override the default PREPARE attributes for the
UPDATE statement. Non-updatable columns can be
in the select-list.

WITHOUT EXTENDED
INDICATORS

WITH EXTENDED
INDICATORS

The PREPARE attributes of the UPDATE statement
override the PREPARE attributes of the SELECT
statement. Non-updatable columns are not in the
implicit or explicit select-list.

WITHOUT EXTENDED
INDICATORS

WITHOUT EXTENDED
INDICATORS

The UPDATE statement is executed without
extended indicator parameters.

WITHOUT EXTENDED
INDICATORS

Default (without
attribute specified)

The PREPARE attributes of the SELECT statement
override the default PREPARE attributes for the

Chapter 7. Statements 2059

Extended indicator
attribute of
PREPARE for SELECT
statement

Extended indicator
attribute of PREPARE
for UPDATE statement
with WHERE
CURRENT OF clause

Result

UPDATE statement. The UPDATE statement is
executed without extended indicator parameters.

Default (without
attribute specified)

WITH EXTENDED
INDICATORS

The PREPARE attributes of the UPDATE statement
override the PREPARE attributes of the SELECT
statement. Non-updatable columns are not in the
implicit or explicit select-list.

Default (without
attribute specified)

WITHOUT EXTENDED
INDICATORS

The PREPARE attributes of the UPDATE statement
override the PREPARE attributes of the SELECT
statement. The UPDATE statement is executed
without extended indicator parameters.

Default (without
attribute specified)

Default (without
attribute specified)

The UPDATE statement is executed without
extended indicator parameters.

Interactions between the SKIPUNCI subsystem parameter and the PREPARE statement:
When the PREPARE statement is specified with either the CURRENTLY COMMITTED or WAIT FOR
OUTCOME clauses and the subsystem parameter SKIPUNCI is in effect, the following table describes
whether uncommitted inserts are skipped, or if the transaction will wait until a commit or rollback
before completing:

Interaction between SKIPUNCI subsystem parameter and PREPARE statement

Value of SKIPUNCI
subsystem parameter

PREPARE statement attributeworking Skip uncommitted inserts,
or wait for commit
or rollback

YES CURRENTLY COMMITTED Skip

YES WAIT FOR OUTCOME Wait

YES Not specified Skip

NO CURRENTLY COMMITTED Skip

NO WAIT FOR OUTCOME Wait

NO Not specified Wait

Extended indicator variables and deferred error checks:
When extended indicator variables are enabled, the indicator value of unassigned causes the
associated target column to be omitted from the statement. Because of that, validation that is
normally done in statement preparation (to recognize an INSERT into, or UPDATE of, a non-updatable
column) is deferred until statement execution. If statement validation fails, an error is returned when
the statement is run, not when the statement is prepared.

Reuse of prepared statements in the dynamic statement cache with CONCENTRATE STATEMENTS
WITH LITERALS

To be eligible for reuse of constants, the constants in both the new statement and the cached
statement must have the same:

1. immediate usage context
2. data type
3. data type length and size

2060 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If Db2 determines that both instances of the constant meet the criteria for reuse, a cached statement
that is prepared using the CONCENTRATE STATEMENTS WITH LITERALS option can be shared by
the same SQL statement with different constants. Even though the new dynamic SQL statement will
share the cached statement, the new statement will use its own literal constants when the statement
is run, not the constants of the cached statement.

There are some exceptions. For example, the built-in function SUBSTR, for which, because of the
immediate usage context, constant reuse in the cached statement that uses a different constant value
can not be done without the risk of returning incorrect output or results. In such cases, only an SQL
statement instance with the exact same constant value as the cached version of the statement is
eligible for reuse. Db2 determines when and where this immediate usage context restriction applies.

When the CONCENTRATE STATEMENTS WITH LITERALS option is specified, Db2 considers the
values of the literal constants for access path selection only for statements that are bound with the
REOPT(ONCE) or REOPT(AUTO) bind options.

The DECFLOAT defined constants NAN, SNAN, and INFINITY can qualify for literal constant reuse.

The following examples show how PREPARE is used with CONCENTRATE STATEMENTS WITH
LITERALS. X, Y, and Z are columns of defined as DECIMAL data type:

DECLARE C1 CURSOR
 FOR DYNSQL_WITH_LITERAL;

DYNSQL_SELECT = ‘SELECT X, Y, Z
 FROM TABLE1
 WHERE X < 9';

attrstring = ‘CONCENTRATE STATEMENTS WITH LITERALS';

EXEC SQL PREPARE DYNSQL_WITH_LITERAL
 ATTRIBUTES :attrstring
 FROM :DYNSQL_SELECT;

EXEC SQL OPEN C1;

DYNSQL_INSERT = ‘INSERT INTO
 TABLE1 (X, Y, Z)
 VALUES (8,109,29)';

attrstring = ‘CONCENTRATE STATEMENTS WITH LITERALS';

EXEC SQL PREPARE DYNSQL_INSERT_WITH_LITERAL
 ATTRIBUTES :attrstring
 FROM :DYNSQL_INSERT;

EXEC SQL EXECUTE DYNSQL_INSERT_WITH_LITERAL;

Examples for PREPARE

Example 1
In this PL/I example, an INSERT statement with parameter markers is prepared and executed. Before
execution, values for the parameter markers are read into the host variables S1, S2, S3, S4, and S5.

 EXEC SQL PREPARE DEPT_INSERT FROM
 'INSERT INTO DSN8C10.DEPT VALUES(?,?,?,?,?)';
 -- Check for successful execution and read values into host variables
 EXEC SQL EXECUTE DEPT_INSERT USING :S1, :S2, :S3, :S4, :S5;

Example 2
Prepare a dynamic SELECT statement specifying the attributes of the cursor with a host variable on
the PREPARE statement. Assume that the text of the SELECT statement is in a variable named stmttxt,
and that the attributes of the cursor are in a variable named attrvar.

 EXEC SQL DECLARE mycursor CURSOR FOR mystmt;
 EXEC SQL PREPARE mystmt ATTRIBUTES :attrvar
 FROM :stmttxt;
 EXEC SQL DESCRIBE mystmt INTO :mysqlda;

Chapter 7. Statements 2061

 EXEC SQL OPEN mycursor;
 EXEC SQL FETCH FROM mycursor USING DESCRIPTOR :mysqlda;

REFRESH TABLE statement
The REFRESH TABLE statement refreshes the data in a materialized query table. The statement deletes
all rows in the materialized query table, executes the fullselect in the table definition to recalculate the
data from the tables specified in the fullselect, inserts the calculated result into the materialized query
table, and updates the catalog for the refresh timestamp and cardinality of the table. The table can exist
at the current server or at any Db2 subsystem with which the current server can establish a connection.

Invocation for REFRESH TABLE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for REFRESH TABLE
The privilege set for REFRESH TABLE must include at least one of the following authorities:

• Ownership of the materialized query table
• DBADM or DBCTRL authority on the database that contains the materialized query table
• SYSADM or SYSCTRL authority
• DATAACCESS authority

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the statements dynamically prepared, the
privilege set is determined by the DYNAMICRULES behavior in effect (run, bind, define, or invoke). For
more information on these behaviors, including a list of the DYNAMICRULES bind option values, see
“Authorization IDs and dynamic SQL” on page 94.

Syntax for REFRESH TABLE

REFRESH TABLE table-name

QUERYNO integer

Description for REFRESH TABLE
table-name

Identifies the table to be refreshed. The name must identify a materialized query table. REFRESH
TABLE evaluates the fullselect in the materialized-query-definition clause to refresh the table. The
isolation level for the fullselect is the isolation level of the materialized query table recorded when
CREATE TABLE or ALTER TABLE was issued.

QUERYNO integer
Specifies the number to be used for this SQL statement in EXPLAIN output and trace records. The
number is used for the QUERYNO column of the plan table for the rows that contain information about
this SQL statement. This number is also used in the QUERYNO column of the SYSIBM.SYSSTMT and
SYSIBM.SYSPACKSTMT catalog tables.

If the clause is omitted, the number associated with the SQL statement is the statement number
assigned during precompilation. Thus, if the application program is changed and then precompiled,
that statement number might change.

2062 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Notes for REFRESH TABLE
Automatic query rewrite using materialized query tables is not attempted for the fullselect in the
materialized query table definition during the processing of REFRESH TABLE statement.

After successful execution of a REFRESH TABLE statement, the SQLCA field SQLERRD(3) will contain the
number of rows inserted into the materialized query table.

The EXPLAIN output for REFRESH TABLE table-name is the same as the EXPLAIN output for INSERT INTO
table-name fullselect where fullselect is from the materialized query table definition.

If the materialized query table has a security label column, the REFRESH TABLE statement does not do
any checking for multilevel security with row-level granularity when it deletes and repopulates the data
in the table by executing the fullselect. Instead, Db2 performs the checking for multilevel security with
row-level granularity when the materialized query table is exploited in automatic query rewrite or is used
directly.

The REFRESH TABLE statement can be used to remove a table space from the logical page list and reset
recover-pending status. This can only be done by using REFRESH TABLE to repopulate a materialized
query table where the materialized query table is the only table in the table space.

Example for REFRESH TABLE
Issue a statement to refresh the content of a materialized query table that is named SALESCOUNT. The
statement recalculates the data from the fullselect that was used to define SALESCOUNT and refreshes
the content of SALESCOUNT with the recalculated results.

REFRESH TABLE SALESCOUNT;

RELEASE statement (connection)
The RELEASE (connection) statement places one or more connections in the release pending state.

Invocation for RELEASE (connection)
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared. It must not be specified in Java.

Authorization for RELEASE (connection)
None required.

Syntax for RELEASE (connection)

RELEASE location-name

host-variable

CURRENT

ALL

SQL

Description for RELEASE (connection)
location-name or host-variable

Identifies an SQL connection by the specified location name or the location name contained in the
host variable. If a host variable is specified:

Chapter 7. Statements 2063

• It must be a character string variable with a length attribute that is not greater than 16. (A C
NUL-terminated character string can be up to 17 bytes.)

• It must not be followed by an indicator variable.
• The location name must be left-justified within the host variable and must conform to the rules for

forming an ordinary location identifier.
• If the length of the location name is less than the length of the host variable, it must be padded on

the right with blanks.

The specified location name or the location name contained in the host variable must identify an
existing SQL connection of the application process.

CURRENT
Identifies the current SQL connection of the application process. The application process must be in
the connected state.

ALL or ALL SQL
Identifies all existing connections (including local, and SQL) of the application process. An error or
warning does not occur if no connections exist when the statement is executed.

If the RELEASE (connection) statement is successful, each identified connection is placed in the
release-pending state and, therefore, will be ended during the next commit operation. If the RELEASE
(connection) statement is unsuccessful, the connection state of the application process and the states of
its connections are unchanged.

Notes for RELEASE (connection)
RELEASE and CONNECT (Type 1): Using CONNECT (Type 1) semantics does not prevent using RELEASE
(connection).

Scope of RELEASE: RELEASE (connection) does not close cursors, does not release any resources, and
does not prevent further use of the connection.

Resource considerations for remote connections: Resources are required to create and maintain remote
connections. Thus, a remote connection that is not going to be reused should be in the release
pending status and one that is going to be reused should not be in the release pending status. Remote
connections can also be ended during a commit operation as a result of the DISCONNECT(AUTOMATIC) or
DISCONNECT(CONDITIONAL) bind option.

If the current SQL connection is in the release pending status when a commit operation is performed,
the connection is ended and the application process is in the unconnected state. In this case, the next
executed SQL statement should be CONNECT or SET CONNECTION.

Connection states: ROLLBACK does not reset the state of a connection from release pending to held.

If the current SQL connection is in the release pending state when a commit operation is performed,
the connection is ended and the application process is in the unconnected state. In this case, the next
executed SQL statement must be CONNECT or SET CONNECTION.

For further information, see “Application process connection states” on page 71.

Location names CURRENT and ALL: A database server named CURRENT or ALL can only be identified by a
host variable or a delimited identifier. A connection in the release pending state is ended during a commit
operation even though it has an open cursor defined with WITH HOLD.

Encoding scheme of a host variable: If the RELEASE statement contains host variables, the contents
of the host variables are assumed to be in the encoding scheme that was specified in the ENCODING
parameter when the package or plan that contains the statement was bound.

Examples for RELEASE (connection)

2064 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 1: The SQL connection to TOROLAB1 is not needed in the next unit of work. The following
statement causes it to be ended during the next commit operation:

 EXEC SQL RELEASE TOROLAB1;

Example 2: The current SQL connection is not needed in the next unit of work. The following statement
causes it to be ended during the next commit operation:

 EXEC SQL RELEASE CURRENT;

RELEASE SAVEPOINT statement
The RELEASE SAVEPOINT statement releases the identified savepoint and any subsequently established
savepoints within a unit of recovery.

Invocation for RELEASE SAVEPOINT
This statement can be imbedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for RELEASE SAVEPOINT
None required.

Syntax for RELEASE SAVEPOINT

RELEASE
TO

SAVEPOINT savepoint-name

Description for RELEASE SAVEPOINT
savepoint-name

Identifies the savepoint to release. If the named savepoint does not exist, an error occurs. The name
must identify a savepoint that exists at the current server. After a savepoint is released, it is no longer
maintained and rollback to the savepoint is no longer possible.

Notes for RELEASE SAVEPOINT
Savepoint names: The name of the savepoint that was released can be reused in another SAVEPOINT
statement, regardless of whether the UNIQUE keyword was specified on an earlier SAVEPOINT statement
that specified this same savepoint name.

Example for RELEASE SAVEPOINT

Assume that a main routine sets savepoint A and then invokes a subroutine that sets savepoints B and
C. When control returns to the main routine, release savepoint A and any subsequently set savepoints.
Savepoints B and C, which were set by the subroutine, are released in addition to A.

 ⋮
 RELEASE SAVEPOINT A;

Chapter 7. Statements 2065

RENAME statement
The RENAME statement renames an existing table or index. An accelerator-only table cannot be renamed.

Invocation for RENAME
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for RENAME
To rename a table, the privilege set that is defined below must include at least one of the following
privileges:

• Ownership of the table
• DBADM, DBCTRL, or DBMAINT authority for the database that contains the table
• SYSADM or SYSCTRL authority
• System DBADM

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

To rename an index, the privilege set that is defined below must include at least one of the following
privileges:

• Ownership of the table for which the index is defined
• Ownership of the index that is being renamed
• DBADM, DBCTRL, or DBMAINT authority for the database that contains the index
• SYSADM or SYSCTRL authority
• System DBADM

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the statement is dynamically prepared, the privilege
set is the union of the privilege sets that are held by each authorization ID of the process.

Syntax for RENAME

RENAME
TABLE

source-table-name TO new-table-identifier

INDEX source-index-name TO new-index-identifier

Description for RENAME
source-table-name

Identifies the existing table that is to be renamed. The name, including the implicit or explicit qualifier,
must identify a table that exists at the current server. The name must not identify any of the following
types of tables:

• A declared temporary table
• A catalog table
• A directory table

2066 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• An active resource limit specification table
• A materialized query table
• A clone table
• A system-period temporal table
• A history table for a system-period temporal table
• A table with a trigger defined on it
• A table that is referenced in the definition of a row permission
• A table that is referenced in the definition of a column mask
• A view
• A synonym
• An archive-enabled table
• An archive table
• An SQL table function

If you specify a three-part name or alias for the source table, the source table must exist at the
current server. If any view definitions or materialized query table definitions currently reference the
source table, an error occurs.

new-table-identifier
Specifies the new name for the table without a qualifier. The qualifier of the source-table-name is used
to qualify the new name for the table. The qualified name must not identify a table, view, alias, or
synonym that exists at the current server, or a table that exists in the SYSIBM.SYSPENDINGOBJECTS
catalog table.

For more information, see Guidelines for table names (Db2 Administration Guide).

source-index-name
Identifies the existing index that is to be renamed. The name, including an implicit or explicit qualifier,
must identify an index that exists at the current server. The name must not identify a system defined
catalog index, a directory index, an index on a declared temporary table, or an index on an active
resource limit specification table.

new-index-identifier
Specifies that new name for the index without a qualifier. The qualifier of the source-index-name is
used to qualify the new name for the index. The qualified name must not identify an index that exists
at the current server or an index that exists in the SYSIBM.SYSPENDINGOBJECTS catalog table.

For more information, see Index names and guidelines (Db2 Administration Guide).

Notes for RENAME
Effects of the statement

The specified table or index is renamed to the new name. For a renamed table, all privileges and
indexes on the table are preserved. For a renamed index, all privileges are preserved.

Invalidation of packages:
This statement might invalidate all packages that depend on target objects, and sometimes other
related objects through cascading effects, depending on the clauses and keywords specified
and other factors. For more information, see Changes that invalidate packages (Db2 Application
programming and SQL).

Restriction when there are pending changes to the definition
A RENAME INDEX statement is not allowed if there are pending changes to the definition of the index.

A RENAME TABLE statement is not allowed if there are pending changes to the definition of the table .

Chapter 7. Statements 2067

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_guidelinesfortablenames.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_guidelinesfordefiningindexes.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

Alias considerations
If an alias name is specified for table-name, the table must exist at the current server, and the table
that is identified by the alias is renamed. The name of the alias is not changed and continues to refer
to the old table name after the rename.

Changing the name of an alias with the RENAME statement is not supported. To change the name to
which an alias refers, you must drop the alias and then re-create it.

PLAN_TABLE considerations
The RENAME INDEX statement does not update the contents of a plan table. Rows that exist in a plan
table that are generated from a EXPLAIN statement can contain the name of an index in the access
path selections. When an index is renamed, any entries in existing plan tables that refer to the old
index name are not updated.

Transfer of authorization, referential integrity constraints, and indexes
All authorizations associated with the source table name are transferred to the new (target) table
name. The authorization catalog tables are updated appropriately.

Referential integrity constraints involving the source table are updated to refer to the new table. The
catalog tables are updated appropriately.

Indexes that are defined for the source table are transferred to the new table. The index catalog tables
are updated appropriately.

Object identifier
Renamed tables and indexes keep the same object identifier as the original table or index.

Renaming registration tables
If an application registration table (ART) or object registration table (ORT) or an index of an ART or
ORT is specified as the source table for RENAME, when RENAME completes, it is as if that table had
been dropped. There is no ART or ORT once the ART or ORT table has been renamed.

Renaming a table with dependent views or SQL table functions
The RENAME TABLE statement returns an error if the target table is referenced in a view
definition or an SQL table function, unless the RENAMETABLE subsystem parameter is set to
ALLOW_DEP_VIEW_SQLTUDF.

Catalog table updates
Entries in the following catalog tables are updated to reflect the new table:

• SYSAUXRELS
• SYSCHECKS
• SYSCHECKS2
• SYSCHECKDEP
• SYSCOLAUTH
• SYSCOLDIST
• SYSCOLDIST_HIST
• SYSCOLDISTSTATS
• SYSCOLSTATS
• SYSCOLUMNS
• SYSCOLUMNS_HIST
• SYSCONSTDEP
• SYSFIELDS
• SYSFOREIGNKEYS
• SYSINDEXES
• SYSINDEXES_HIST
• SYSKEYCOLUSE
• SYSPLANDEP

2068 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• SYSPACKDEP
• SYSRELS
• SYSSEQUENCESDEP
• SYSSYNONYMS
• SYSTABAUTH
• SYSTABCONST
• SYSTABLES
• SYSTABLES_HIST
• SYSTABSTATS
• SYSTABSTATS_HIST

Entries in SYSSTMT and SYSPACKSTMT are not updated.

Entries in the following catalog tables are updated to reflect the new index:

• SYSDEPENDENCIES
• SYSINDEXES
• SYSINDEXES_HIST
• SYSINDEXESPART
• SYSINDEXESPART_HIST
• SYSINDEXSPACESTATS
• SYSINDEXSTATS
• SYSINDEXSTATS_HIST
• SYSKEYS
• SYSKEYTARGETS
• SYSKEYTARGETS_HIST
• SYSKEYTARGETSTATS
• SYSKEYTGTDIST
• SYSKEYTGTDIST_HIST
• SYSKEYTGTDISTSTATS
• SYSOBJROLEDEP
• SYSPACKDEP
• SYSPLANDEP
• SYSRELS
• SYSTABCONST
• SYSTABLEPART

Examples for RENAME

Example 1: Change the name of the EMP table to EMPLOYEE:

 RENAME TABLE EMP TO EMPLOYEE;

Example 2: Change the name of the EMP_USA_HIS2002:

 RENAME TABLE EMP_USA_HIS2002 TO EMPLOYEE_UNITEDSTATES_HISTORY2002;

Chapter 7. Statements 2069

Example 3: Change the name of the EMPINDX1 to EMPLOYEE_INDEX:

 RENAME INDEX COMPANY.EMPINDX1 TO EMPLOYEE_INDEX;

REVOKE statement
The REVOKE statement revokes privileges from authorization IDs.

A separate form of the statement exists for each of the following privilege classes:

• Collection
• Database
• Function or stored procedure
• Package
• Plan
• Schema
• Sequence
• System
• Table or view
• Type or JAR file
• Variable
• Use

The applicable objects are always at the current server.

Invocation for REVOKE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

If the authorization mechanism was not activated when the Db2 subsystem was installed, an error
condition occurs.

Authorization for REVOKE
If the BY clause is not specified, the authorization ID of the statement must have granted at least one
of the specified privileges to every authorization-name specified in the FROM clause (including PUBLIC,
if specified). If the BY clause is specified, the authorization ID of the statement must have SECADM or
ACCESSCTRL authority.

Note: If installation parameter SEPARATE SECURITY is NO, SYSADM authority has implicit SECADM
authority and SYSCTRL authority has implicit ACCESSCTRL authority.

If the BY clause is specified and the privilege set includes ACCESSCTRL, all privileges and authorities can
be revoked except for the following:

• System DBADM
• ACCESSCTRL
• DATAACCESS
• CREATE_SECURE_OBJECT privilege

To revoke the CREATE_SECURE_OBJECT privilege, with or without the BY clause, the privilege set must
include SECADM authority.

If the statement is embedded in an application program, the privilege set is the privileges that are held
by the owner of the plan or package. The owner can be a role. If the statement is dynamically prepared,

2070 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

the privilege set is the privileges that are held by the SQL authorization ID of the process. However, if the
process is running in a trusted context that is defined with the ROLE AS OBJECT OWNER AND QUALIFIER
CLAUSE, the privilege set is the privileges that are held by the role that is in effect.

Syntax for REVOKE

REVOKE authorization-specification FROM

,

authorization-name

ROLE role-name

PUBLIC

BY

,

authorization-name

ROLE role-name

ALL

INCLUDING DEPENDENT PRIVILEGES

NOT INCLUDING DEPENDENT PRIVILEGES

RESTRICT
1

Notes:
1 The RESTRICT clause is the default only for the forms of the REVOKE statement that allow it.

Description for REVOKE
authorization-specification

Specifies one or more privileges for the class of privilege. The same privilege must not be specified
more than once.

FROM
Specifies from what authorization IDs the privileges are revoked.
authorization-name,...

Lists one or more authorization IDs. Do not use the same authorization ID more than one time. If
the authorization-name is specified in lowercase, it must be delimited using double quotes.

The value of CURRENT RULES determines if you can use the ID of the REVOKE statement itself (to
revoke privileges from yourself). When CURRENT RULES is:
 Db2

You cannot use the ID of the REVOKE statement.
 STD

You can use the ID of the REVOKE statement.

ROLE role-name
Lists one or more roles. Do not specify the same role more than one time.

PUBLIC
Revokes a grant of privileges to PUBLIC.

BY
Lists grantors who have granted privileges and revokes each named privilege that was explicitly
granted to some named user by one of the named grantors. Only an authorization ID or role with

Chapter 7. Statements 2071

SYSADM or SYSCTRL authority can use BY, even if the authorization ID or role names only itself in the
BY clause.
authorization-name,…

Lists one or more authorization IDs of users who were the grantors of the privileges named. Do
not use the same authorization ID more than once. Each grantor that is listed must have explicitly
granted some named privilege to all of the named users or roles.

ROLE role-name
Lists one or more roles that were the grantors of the privileges named. Do not specify the same
role more than one time. Each grantor that is listed must have explicitly granted some named
privilege to all of the named users or roles.

ALL
Revokes each named privilege from all named users who were explicitly granted the privilege,
regardless of who granted it.

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization ID or a role also results
in revoking the grants that were made by that user. The default value is based on the authority that is
being revoked and the REVOKE_DEP_PRIVILEGES system parameter:

• When ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked, NOT INCLUDING
DEPENDENT PRIVILEGES is assumed and the clause must be specified on the REVOKE statement.

• When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT INCLUDING DEPENDENT
PRIVILEGES is assumed and an error is returned if the statement includes INCLUDING
DEPENDENT PRIVILEGES.

• Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the clause must be specified on
the REVOKE statement.

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role also results
in revoking dependent privileges. This means that any grants that were made by the user will
continue to be revoked, until all grants in the chain have been revoked.

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set to NO, which enforces the behavior to not include the dependent
privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role does not cause
the grants that were made by the user to be revoked. However, for the revoked privileges, all
implications of the privilege being revoked are applied. For example, if the revoked privileges were
required to bind a package successfully, that package would continue to be invalidated as a result
of the package owner losing these privileges. An object might be dropped if a privilege is revoked
that was used to create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when ACCESSCTRL,
DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set toYES, which enforces the behavior to include dependent
privileges in the revoke.

RESTRICT
Prevents the named privilege from being revoked when certain conditions apply. RESTRICT is the
default only for the forms of the REVOKE statement that allow it. These forms are revoking the USAGE
privilege on distinct types, the EXECUTE privilege on user-defined functions and stored procedures,
the USAGE privilege on sequences, and READ or WRITE privileges for variables.

Notes for REVOKE

2072 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Revoked privileges
The privileges revoked from an authorization ID or a role are those that are identified in the statement
and which were granted to the user by the grantor. Other privileges can be revoked as the result of
revoking dependent privileges. For more on Db2 privileges, see Privileges and authorities (Managing
Security).

Revoke dependent privileges
Revoking a privilege from a user can also cause that privilege to be revoked from other users. This was
previously known as cascade revoke. When revoking a privilege from an authorization ID or a role, Db2
looks for and revokes any grants of the privilege where the grantor is the same as the authorization ID
or role of the original revoke. The following rules must be true for privilege P' to be revoked from U3
when U1 revokes privilege P from U2:

• P and P' are the same privilege.
• U2 granted privilege P' to U3.
• No one granted privilege P to U2 prior to the grant by U1.
• U2 does not have installation SYSADM authority.

The rules also apply to the implicit grants that are made as a result of a CREATE VIEW statement.

Revoking dependent privileges does not occur under any of the following conditions:

• The privilege was granted by a current installation SYSADM user.
• The privilege is the USAGE privilege on a distinct type and the revokee owns any of these items:

– A user-defined function or stored procedure that uses the distinct type
– A table that has a column that uses the distinct type
– A sequence whose data type is the distinct type

• The privilege is the USAGE privilege on a sequence and the revokee owns any of these items:

– A trigger that has a NEXT VALUE or PREVIOUS VALUE expression that specifies the sequence
– An inline SQL function that has a NEXT VALUE or PREVIOUS VALUE expression in the function

body that specifies the sequence
• The privilege is the EXECUTE privilege on a user-defined function and the revokee owns any of these

items:

– A user-defined function that is sourced on the function
– A view that uses the function
– A trigger package that uses the function
– A table that uses the function in a check constraint or a user-defined default type

• The privilege is the EXECUTE privilege on a stored procedure and the revoke owns any of these
items:

– A trigger package that refers to the stored procedure in a CALL statement.
• If the ACCESSCTRL administrative authority is revoked from a user, grants that are made by this

ACCESSCTRL user are not revoked.

If this user revoked grants made by it, those revokes will continue to revoke the dependent
privileges, unless the behavior to not include the dependent privileges was specified either by
using the system parameter REVOKE_DEP_PRIVILEGES or by using the REVOKE statement if
REVOKE_DEP_PRIVILEGES is set to SQLSTMT.

• If SECADM is removed from a user, grants that are made by this SECADM user are not revoked.

If this user revoked grants made by it, those revokes will continue to revoke the dependent
privileges, unless the behavior to not include the dependent privileges was specified either by
using the system parameter REVOKE_DEP_PRIVILEGES or by using the REVOKE statement if
REVOKE_DEP_PRIVILEGES is set to SQLSTMT.

Chapter 7. Statements 2073

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_privilegeauthority.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_privilegeauthority.html

• If NOT INCLUDING DEPENDENT PRIVILEGES option is specified, the grants made by this user are
not revoked.

Refer to the diagrams for the following example:

1. Suppose BOB grants SYSADM authority to WADE. Later, CLAIRE grants the SELECT privilege on a
table with the WITH GRANT OPTION to WADE.

User: WADE User: WADE
Authority: SYSADM

User: WADE
Authority: SYSADM
Privilege: SELECT WITH
 GRANT OPTION

BOB grants SYSADM
 to WADE

CLAIRE grants SELECT WITH
 GRANT OPTION to WADE

2. WADE grants the SELECT privilege to JOHN on the same table.

User: JOHN User: JOHN
Privilege: SELECT

WADE grants SELECT
to JOHN

3. When CLAIRE revokes the SELECT privilege on the table from WADE, the SELECT privilege on that
table is also revoked from JOHN.

User: WADE
Authority: SYSADM
Privilege: SELECT WITH
 GRANT OPTION

User: WADE
Authority: SYSADM

User: JOHN
Privilege: SELECT

User: JOHN

CLAIRE revokes SELECT from WADE
SELECT is cascade revoked from JOHN

The grant from WADE to JOHN is removed because WADE had not been granted the SELECT privilege
from any other source before CLAIRE made the grant. The SYSADM authority granted to WADE from
BOB does not affect the cascade revoke. For more on SYSADM and installation SYSADM authority, see
Managing administrative authorities (Managing Security). For another example of cascading revokes,
see Revoking privileges with the REVOKE statement (Managing Security).

Revoking a SELECT privilege that was exercised to create a view or materialized query table causes
the view to be dropped, unless the owner of the view was directly granted the SELECT privilege from
another source before the view was created. Revoking a SYSADM privilege that was required to create
a view causes the view to be dropped. For details on when SYSADM authority is required to create a
view, see Authorization in “CREATE VIEW statement” on page 1812.

Invalidation of packages
A revoke or cascaded revoke of any privilege or role that was exercised to create a package makes the
package invalid when the revokee no longer holds the privilege from any other source. Corresponding
authorization caches are cleared even if the revokee has the privilege from any other source. For more
information, see Changes that invalidate packages (Db2 Application programming and SQL). 37

Inoperative packages
A revoke or cascaded revoke of the EXECUTE privilege on a user-defined function that was exercised
to create a package makes the package inoperative and causes the corresponding authorization
caches to be cleared when the revokee no longer holds the privilege from any other source.37

Privileges belonging to an authority
You can revoke an administrative authority, but you cannot separately revoke the specific privileges
inherent in that administrative authority.

Let P be a privilege inherent in authority X. A user with authority X can also have privilege P as a result
of an explicit grant of P. In this case:

2074 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_manageadmauthorities.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_revokeprivilegethrurevoke.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_changesinvalidateplanspkgs.html

• If X is revoked, the user still has privilege P.
• If P is revoked, the user still has the privilege because it is inherent in X.

Revoking of privileges in a trusted context
Revokes that are made in a trusted context that is defined with the ROLE AS OBJECT OWNER clause
result in the revoker being the role in effect. If the statement is prepared dynamically, the revoker is
the role that is associated with the user that is running the statement. If the statement is embedded in
a program, the revoker is the owner of the plan or package. If the ROLE AS OBJECT OWNER clause is
not specified for the trusted context, the revoker is the authorization ID of the process.

Ownership privileges
The privileges inherent in the ownership of an object cannot be revoked.

Revoke not including dependent privileges
When a privilege is revoked from a user by specifying NOT INCLUDING DEPENDENT PRIVILEGES,
the grants that were made by this user are not revoked and the grantor remains unchanged. If that
user is later granted the same privilege and then this privilege is revoked by specifying INCLUDING
DEPENDENT PRIVILEGES, that would also revoke all the grants that were previously made by this
user. Refer to the following examples:

User U1 is granted SELECT on table T1 with GRANT OPTION:

1. U1 grants this privilege to U2.
2. SELECT privilege is revoked from U1 without including dependent privileges. As a result, the grant

from U1 to U2 is not revoked.
3. U1 is again granted SELECT on T1.
4. SELECT is now revoked from U1 with including dependent privileges and the grant from U1 to U2 is

now revoked.

1.

User U1 is granted SYSADM authority:

1. U1 grants privilege P1 to U2 and privilege P2 to U3.
2. SYSADM is revoked from U1 without including dependent privileges. The grants of privileges P1

and P2 to U2 and U3 are not revoked.
3. U1 is again granted SYSADM. U1 grants privilege P3 to U3.
4. SYSADM is now revoked from U1 including dependent privileges. Now, P1 granted to U2 and P2

and P3 granted to U3 are also revoked.

1.

Related tasks
Revoking privileges with the REVOKE statement (Managing Security)

37 Dependencies on stored procedures can be checked only if the procedure name is specified as a constant
and not via a host variable in the CALL statement.

Chapter 7. Statements 2075

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_revokeprivilegethrurevoke.html

REVOKE statement (collection privileges)
This form of the REVOKE statement revokes privileges on collections.

Syntax for REVOKE (collection privileges)

REVOKE CREATE

PACKADM

IN

ON

COLLECTION

,

collection-id

*

FROM

,

authorization-name

ROLE role-name

PUBLIC

BY

,

authorization-name

ROLE role-name

ALL

INCLUDING DEPENDENT PRIVILEGES

NOT INCLUDING DEPENDENT PRIVILEGES

Description for REVOKE (collection privileges)
CREATE IN

Revokes the privilege to use the BIND subcommand to create packages in the designated collections.

The word ON can be used instead of IN.

PACKADM ON
Revokes the package administrator authority for the designated collections.

The word IN can be used instead of ON.

COLLECTION collection-id,...
Identifies the collections on which the specified privilege is revoked. For each identified collection,
you (or the indicated grantors) must have granted the specified privilege on that collection to all
identified users (including PUBLIC if specified). The same collection must not be identified more than
once.

COLLECTION *
Indicates that the specified privilege on COLLECTION * is revoked. You (or the indicated grantors)
must have granted the specified privilege on COLLECTION * to all identified users (including PUBLIC if
specified). Privileges granted on specific collections are not affected.

FROM
Refer to “REVOKE statement” on page 2070 for a description of the FROM clause.

BY
Refer to “REVOKE statement” on page 2070 for a description of the BY clause.

2076 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization ID or a role also results
in revoking the grants that were made by that user. The default value is based on the authority that is
being revoked and the REVOKE_DEP_PRIVILEGES system parameter:

• When ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked, NOT INCLUDING
DEPENDENT PRIVILEGES is assumed and the clause must be specified on the REVOKE statement.

• When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT INCLUDING DEPENDENT
PRIVILEGES is assumed and an error is returned if the statement includes INCLUDING
DEPENDENT PRIVILEGES.

• Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the clause must be specified on
the REVOKE statement.

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role also results
in revoking dependent privileges. This means that any grants that were made by the user will
continue to be revoked, until all grants in the chain have been revoked.

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set to NO, which enforces the behavior to not include the dependent
privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role does not cause
the grants that were made by the user to be revoked. However, for the revoked privileges, all
implications of the privilege being revoked are applied. For example, if the revoked privileges were
required to bind a package successfully, that package would continue to be invalidated as a result
of the package owner losing these privileges. An object might be dropped if a privilege is revoked
that was used to create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when ACCESSCTRL,
DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set toYES, which enforces the behavior to include dependent
privileges in the revoke.

Examples for REVOKE (collection privileges)

Example 1: Revoke the privilege to create new packages in collections QAACLONE and DSN8CC61 from
CLARK.

 REVOKE CREATE IN COLLECTION QAACLONE, DSN8CC61 FROM CLARK;

Example 2: Revoke the privilege to create new packages in collections DSN8CC91 from role ROLE1:

 REVOKE CREATE IN COLLECTION DSN8CC91 FROM ROLE ROLE1;

Chapter 7. Statements 2077

REVOKE statement (database privileges)
This form of the REVOKE statement revokes database privileges.

Syntax for REVOKE (database privileges)

REVOKE

,

DBADM

DBCTRL

DBMAINT

CREATETAB

CREATETS

DISPLAYDB

DROP

IMAGCOPY

LOAD

RECOVERDB

REORG

REPAIR

STARTDB

STATS

STOPDB

ON DATABASE

,

database-name FROM

,

authorization-name

ROLE role-name

PUBLIC

BY

,

authorization-name

ROLE role-name

ALL

INCLUDING DEPENDENT PRIVILEGES

NOT INCLUDING DEPENDENT PRIVILEGES

Description for REVOKE (database privileges)
Each keyword listed revokes the privilege described, but only as it applies to or within the databases
named in the statement.
DBADM

Revokes the database administrator authority.
DBCTRL

Revokes the database control authority.

2078 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

DBMAINT
Revokes the database maintenance authority.

CREATETAB
Revokes the privilege to create new tables. If CREATETAB privilege is revoked from DSNDB04, tables
cannot be created in implicitly created databases. For a work file database, you cannot revoke
the privilege from PUBLIC. When a work file database is created, PUBLIC implicitly receives the
CREATETAB privilege (without GRANT authority); this privilege is not recorded in the Db2 catalog, and
it cannot be revoked.

CREATETS
Revokes the privilege to create new table spaces.

DISPLAYDB
Revokes the privilege to issue the DISPLAY DATABASE command.

DROP
Revokes the privilege to issue the DROP or ALTER statements in the specified databases.

IMAGCOPY
Revokes the privilege to run the COPY, MERGECOPY, and QUIESCE utilities against table spaces of the
specified databases, and to run the MODIFY RECOVERY utility.

LOAD
Revokes the privilege to use the LOAD utility to load tables.

RECOVERDB
Revokes the privilege to use the RECOVER and REPORT utilities to recover table spaces and indexes.

REORG
Revokes the privilege to use the REORG utility to reorganize table spaces and indexes.

REPAIR
Revokes the privilege to use the REPAIR and DIAGNOSE utilities.

STARTDB
Revokes the privilege to issue the START DATABASE command.

STATS
Revokes the privilege to use the RUNSTATS utility to update statistics, and the CHECK utility to test
whether indexes are consistent with the data they index, and the MODIFY STATISTICS utility to delete
unwanted statistics history records from the corresponding catalog tables.

STOPDB
Revokes the privilege to issue the STOP DATABASE command.

ON DATABASE database-name,...
Identifies databases on which you are revoking the privileges. For each database you identify, you (or
the indicated grantors) must have granted at least one of the specified privileges on that database to
all identified users (including PUBLIC, if specified). The same database must not be identified more
than once.

FROM
Refer to “REVOKE statement” on page 2070 for a description of the FROM clause.

BY
Refer to “REVOKE statement” on page 2070 for a description of the BY clause.

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization ID or a role also results
in revoking the grants that were made by that user. The default value is based on the authority that is
being revoked and the REVOKE_DEP_PRIVILEGES system parameter:

• When ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked, NOT INCLUDING
DEPENDENT PRIVILEGES is assumed and the clause must be specified on the REVOKE statement.

• When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT INCLUDING DEPENDENT
PRIVILEGES is assumed and an error is returned if the statement includes INCLUDING
DEPENDENT PRIVILEGES.

Chapter 7. Statements 2079

• Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the clause must be specified on
the REVOKE statement.

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role also results
in revoking dependent privileges. This means that any grants that were made by the user will
continue to be revoked, until all grants in the chain have been revoked.

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set to NO, which enforces the behavior to not include the dependent
privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role does not cause
the grants that were made by the user to be revoked. However, for the revoked privileges, all
implications of the privilege being revoked are applied. For example, if the revoked privileges were
required to bind a package successfully, that package would continue to be invalidated as a result
of the package owner losing these privileges. An object might be dropped if a privilege is revoked
that was used to create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when ACCESSCTRL,
DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set toYES, which enforces the behavior to include dependent
privileges in the revoke.

Examples for REVOKE (database privileges)

Example 1: Revoke drop privileges on database DSN8D12A from user PEREZ.

 REVOKE DROP
 ON DATABASE DSN8D12A
 FROM PEREZ;

Example 2: Revoke repair privileges on database DSN8D12A from all local users. (Grants to specific users
will not be affected.)

 REVOKE REPAIR
 ON DATABASE DSN8D12A
 FROM PUBLIC;

Example 3: Revoke authority to create new tables and load tables in database DSN8D12A from users
WALKER, PIANKA, and FUJIMOTO.

 REVOKE CREATETAB,LOAD
 ON DATABASE DSN8D12A
 FROM WALKER,PIANKA,FUJIMOTO;

Example 4: Revoke load privileges on database DSN8D12A from role ROLE1:

 REVOKE LOAD
 ON DATABASE DSN8D12A
 FROM ROLE ROLE1;

2080 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

REVOKE statement (function or procedure privileges)
This form of the REVOKE statement revokes privileges on user-defined functions, cast functions that were
generated for distinct types, and stored procedures.

Syntax for REVOKE (function or procedure privileges)

REVOKE EXECUTE ON

FUNCTION

,

function-name

(

,

parameter-type

)

*

SPECIFIC FUNCTION

,

specific-name

PROCEDURE

,

procedure-name

*

FROM

,

authorization-name

ROLE role-name

PUBLIC

BY

,

authorization-name

ROLE role-name

ALL

INCLUDING DEPENDENT PRIVILEGES

NOT INCLUDING DEPENDENT PRIVILEGES

RESTRICT

parameter-type:

data-type

AS LOCATOR
1

Notes:
1 AS LOCATOR can be specified only for a LOB data type or a distinct type that is based on a LOB data type.

Chapter 7. Statements 2081

data-type:

built-in-type

distinct-type-name

array-type-name

built-in-type:

2082 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

BIT

DATA

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

) CCSID ASCII

EBCDIC

UNICODE

FOR SBCS

MIXED

DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC (integer)

DBCLOB

(1M)

( integer
K

M

G

)

CCSID ASCII

EBCDIC

UNICODE

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

ROWID

XML

Chapter 7. Statements 2083

Description for REVOKE (function or procedure privileges)
EXECUTE

Revokes the privilege to run the identified user-defined function, cast function that was generated for
a distinct type, or stored procedure.

FUNCTION or SPECIFIC FUNCTION
Identifies the function from which the privilege is revoked. The function must exist at the current
server, and it must be a function that was defined with the CREATE FUNCTION statement or a cast
function that was generated by a CREATE TYPE statement. The function can be identified by name,
function signature, or specific name.

If the function was defined with a table parameter (the LIKE TABLE was specified in the CREATE
FUNCTION statement to indicate that one of the input parameters is a transition table), the function
signature cannot be used to identify the function. Instead, identify the function with its function name,
if unique, or with its specific name.

FUNCTION function-name
Identifies the function by its name. The function-name must identify exactly one function. The
function can have any number of parameters defined for it. If there is more than one function of
the specified name in the specified or implicit schema, an error is returned.

An * can be specified for a qualified or unqualified function-name. An * (or schema-name.*)
indicates that the privilege is revoked for all the functions in the schema. You (or the indicated
grantors) must have granted the privilege on FUNCTION * to all identified users (including PUBLIC
if specified). Privileges granted on specific functions are not affected.

FUNCTION function-name (parameter-type,...)
Identifies the function by its function signature, which uniquely identifies the function. The
function-name (parameter-type, ...) must identify a function with the specified function signature.
The specified parameters must match the data types in the corresponding position that were
specified when the function was created. The number of data types, and the logical concatenation
of the data types is used to identify the specific function instance on which the privilege is to be
granted. Synonyms for data types are considered a match.

If the function was defined with a table parameter (the LIKE TABLE name AS LOCATOR clause was
specified in the CREATE FUNCTION statement to indicate that one of the input parameters is a
transition table), the function signature cannot be used to uniquely identify the function. Instead,
use one of the other syntax variations to identify the function with its function name, if unique, or
its specific name.

If function-name () is specified, the function identified must have zero parameters.

function-name
Identifies the name of the function. If you do not explicitly qualify the function name with a
schema name, the function name is implicitly qualified with a schema name as described in
the preceding description for FUNCTION function-name.

(parameter-type,...)
Identifies the parameters of the function.

If an unqualified distinct type name is specified, Db2 searches the SQL path to resolve the
schema name for the distinct type.

For data types that have a length, precision, or scale attribute, use one of the following:

• Empty parentheses indicate that the database manager ignores the attribute when
determining whether the data types match. For example, DEC() will be considered a match
for a parameter of a function defined with a data type of DEC(7,2). Similarly DECFLOAT()
will be considered a match for DECFLOAT(16) or DECFLOAT(34). However, FLOAT cannot be
specified with empty parenthesis because its parameter value indicates a specific data type
(REAL or DOUBLE).

• If a specific value for a length, precision, or scale attribute is specified, the value must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION

2084 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

statement. If the data type is FLOAT, the precision does not have to exactly match the value
that was specified because matching is based on the data type (REAL or DOUBLE).

• If length, precision, or scale is not explicitly specified, and empty parentheses are not
specified, the default attributes of the data type are implied. The implicit length must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

For data types with a subtype or encoding scheme attribute, specifying the FOR subtype DATA
clause or the CCSID clause is optional. Omission of either clause indicates that Db2 ignores
the attribute when determining whether the data types match. If you specify either clause,
it must match the value that was implicitly or explicitly specified in the CREATE FUNCTION
statement.

AS LOCATOR
Specifies that the function is defined to receive a locator for this parameter. If AS LOCATOR is
specified, the data type must be a LOB or a distinct type based on a LOB.

SPECIFIC FUNCTION specific-name
Identifies the function by its specific name. The specific-name must identify a specific function
that exists at the current server.

PROCEDURE procedure-name
Identifies a stored procedure that is defined at the current server.

An * can be specified for a qualified or unqualified procedure-name. An * (or schema-name.*) indicates
that the privilege is revoked for all the procedures in the schema. You (or the indicated grantors) must
have granted the privilege on PROCEDURE * to all identified users (including PUBLIC if specified).
Privileges granted on specific procedures are not affected.

FROM
Refer to “REVOKE statement” on page 2070 for a description of the FROM clause.

BY
Refer to “REVOKE statement” on page 2070 for a description of the BY clause.

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization ID or a role also results
in revoking the grants that were made by that user. The default value is based on the authority that is
being revoked and the REVOKE_DEP_PRIVILEGES system parameter:

• When ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked, NOT INCLUDING
DEPENDENT PRIVILEGES is assumed and the clause must be specified on the REVOKE statement.

• When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT INCLUDING DEPENDENT
PRIVILEGES is assumed and an error is returned if the statement includes INCLUDING
DEPENDENT PRIVILEGES.

• Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the clause must be specified on
the REVOKE statement.

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role also results
in revoking dependent privileges. This means that any grants that were made by the user will
continue to be revoked, until all grants in the chain have been revoked.

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set to NO, which enforces the behavior to not include the dependent
privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role does not cause
the grants that were made by the user to be revoked. However, for the revoked privileges, all
implications of the privilege being revoked are applied. For example, if the revoked privileges were
required to bind a package successfully, that package would continue to be invalidated as a result

Chapter 7. Statements 2085

of the package owner losing these privileges. An object might be dropped if a privilege is revoked
that was used to create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when ACCESSCTRL,
DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set toYES, which enforces the behavior to include dependent
privileges in the revoke.

RESTRICT
Prevents the EXECUTE privilege from being revoked on a user-defined function or stored procedure if
the revokee owns any of the following objects and does not have the EXECUTE privilege from another
source:

• A function that is sourced on the function
• A view that uses the function
• A trigger package that uses the function or stored procedure
• A table that uses the function in a check constraint or user-defined default clause
• A materialized query table whose fullselect uses the function
• An extended index that uses the function

Examples for REVOKE (function or procedure privileges)

Example 1: Revoke the EXECUTE privilege on function CALC_SALARY for user JONES. Assume that there
is only one function in the schema with function CALC_SALARY.

 REVOKE EXECUTE ON FUNCTION CALC_SALARY FROM JONES;

Example 2: Revoke the EXECUTE privilege on procedure VACATION_ACCR from all users at the current
server.

 REVOKE EXECUTE ON PROCEDURE VACATION_ACCR FROM PUBLIC;

Example 3: Revoke the privilege of the administrative assistant to grant EXECUTE privileges on function
DEPT_TOTAL to other users. The administrative assistant will still have the EXECUTE privilege on function
DEPT_TOTALS.

 REVOKE EXECUTE ON FUNCTION DEPT_TOTALS
 FROM ADMIN_A;

Example 4: Revoke the EXECUTE privilege on function NEW_DEPT_HIRES for HR (Human Resources). The
function has two input parameters with data types of INTEGER and CHAR(10), respectively. Assume that
the schema has more than one function that is named NEW_DEPT_HIRES.

 REVOKE EXECUTE ON FUNCTION NEW_DEPT_HIRES (INTEGER, CHAR(10))
 FROM HR;

You can also code the CHAR(10) data type as CHAR().

Example 5: Revoke the EXECUTE privilege on function FIND_EMPDEPT from role ROLE1:

 REVOKE EXECUTE ON FUNCTION FIND_EMPDEPT
 FROM ROLE ROLE1;

2086 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

REVOKE statement (package privileges)
This form of the REVOKE statement revokes privileges on packages.

Syntax for REVOKE (package privileges)

REVOKE ALL
,

BIND

COPY

EXECUTE

RUN

ON PACKAGE

,

collection-id . package-name

*

FROM

,

authorization-name

ROLE role-name

PUBLIC

BY

,

authorization-name

ROLE role-name

ALL

INCLUDING DEPENDENT PRIVILEGES

NOT INCLUDING DEPENDENT PRIVILEGES

Description for REVOKE (package privileges)
BIND

Revokes the privilege to use the BIND and REBIND subcommands for the designated packages.
In addition, if the value of field BIND NEW PACKAGE on installation panel DSNTIPP is BIND, the
additional BIND privilege of adding new versions of packages is revoked. (For details, see “GRANT
statement (package privileges)” on page 1975.)

COPY
Revokes the privilege to use the COPY option of the BIND subcommand for the designated packages.

EXECUTE
Revokes the privilege to run application programs that use the designated packages and to specify
the packages following PKLIST for the BIND PLAN and REBIND PLAN commands. RUN is an alternate
name for the same privilege.

ALL
Revokes all package privileges for which you have authority for the packages named in the ON clause.

Chapter 7. Statements 2087

ON PACKAGE collection-id.package-name,...
Identifies packages for which you are revoking privileges. The revoking of a package privilege applies
to all versions of that package. For each package that you identify, you (or the indicated grantors)
must have granted at least one of the specified privileges on that package to all identified users
(including PUBLIC, if specified). An authorization ID with PACKADM authority over the collection or all
collections, SYSADM, or SYSCTRL authority can specify all packages in the collection by using * for
package-name. The same package must not be specified more than once.

FROM
Refer to “REVOKE statement” on page 2070 for a description of the FROM clause.

BY
Refer to “REVOKE statement” on page 2070 for a description of the BY clause.

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization ID or a role also results
in revoking the grants that were made by that user. The default value is based on the authority that is
being revoked and the REVOKE_DEP_PRIVILEGES system parameter:

• When ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked, NOT INCLUDING
DEPENDENT PRIVILEGES is assumed and the clause must be specified on the REVOKE statement.

• When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT INCLUDING DEPENDENT
PRIVILEGES is assumed and an error is returned if the statement includes INCLUDING
DEPENDENT PRIVILEGES.

• Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the clause must be specified on
the REVOKE statement.

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role also results
in revoking dependent privileges. This means that any grants that were made by the user will
continue to be revoked, until all grants in the chain have been revoked.

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set to NO, which enforces the behavior to not include the dependent
privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role does not cause
the grants that were made by the user to be revoked. However, for the revoked privileges, all
implications of the privilege being revoked are applied. For example, if the revoked privileges were
required to bind a package successfully, that package would continue to be invalidated as a result
of the package owner losing these privileges. An object might be dropped if a privilege is revoked
that was used to create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when ACCESSCTRL,
DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set toYES, which enforces the behavior to include dependent
privileges in the revoke.

Notes for REVOKE (package privileges)
Alternative syntax and synonyms: To provide compatibility with previous releases of Db2 or other
products in the Db2 family, Db2 supports specifying PROGRAM as a synonym for PACKAGE.

Examples for REVOKE (package privileges)

Example 1: Revoke the privilege to copy all packages in collection DSN8CC61 from LEWIS.

 REVOKE COPY ON PACKAGE DSN8CC61.* FROM LEWIS;

2088 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 2: Revoke the privilege to run all packages in collection DSN9CC13 from role ROLE1:

 REVOKE EXECUTE ON PACKAGE DSN9CC13.* FROM ROLE ROLE1;

REVOKE statement (plan privileges)
This form of the REVOKE statement revokes privileges on application plans.

Syntax for REVOKE (plan privileges)

REVOKE

,

BIND

EXECUTE

ON PLAN

,

plan-name FROM

,

authorization-name

ROLE role-name

PUBLIC

BY

,

authorization-name

ROLE role-name

ALL

INCLUDING DEPENDENT PRIVILEGES

NOT INCLUDING DEPENDENT PRIVILEGES

Description for REVOKE (plan privileges)
BIND

Revokes the privilege to use the BIND, REBIND, and FREE subcommands for the identified plans.
EXECUTE

Revokes the privilege to run application programs that use the identified plans.
ON PLAN plan-name,...

Identifies application plans for which you are revoking privileges. For each plan that you identify, you
(or the indicated grantors) must have granted at least one of the specified privileges on that plan to all
identified users (including PUBLIC, if specified). The same plan must not be specified more than once.

FROM
Refer to “REVOKE statement” on page 2070 for a description of the FROM clause.

BY
Refer to “REVOKE statement” on page 2070 for a description of the BY clause.

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization ID or a role also results
in revoking the grants that were made by that user. The default value is based on the authority that is
being revoked and the REVOKE_DEP_PRIVILEGES system parameter:

Chapter 7. Statements 2089

• When ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked, NOT INCLUDING
DEPENDENT PRIVILEGES is assumed and the clause must be specified on the REVOKE statement.

• When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT INCLUDING DEPENDENT
PRIVILEGES is assumed and an error is returned if the statement includes INCLUDING
DEPENDENT PRIVILEGES.

• Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the clause must be specified on
the REVOKE statement.

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role also results
in revoking dependent privileges. This means that any grants that were made by the user will
continue to be revoked, until all grants in the chain have been revoked.

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set to NO, which enforces the behavior to not include the dependent
privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role does not cause
the grants that were made by the user to be revoked. However, for the revoked privileges, all
implications of the privilege being revoked are applied. For example, if the revoked privileges were
required to bind a package successfully, that package would continue to be invalidated as a result
of the package owner losing these privileges. An object might be dropped if a privilege is revoked
that was used to create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when ACCESSCTRL,
DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set toYES, which enforces the behavior to include dependent
privileges in the revoke.

Examples for REVOKE (plan privileges)

Example 1: Revoke authority to bind plan DSN8IP12 from user JONES.

 REVOKE BIND ON PLAN DSN8IP12 FROM JONES;

Example 2: Revoke authority previously granted to all users at the current server to bind and execute plan
DSN8CP12. (Grants to specific users will not be affected.)

 REVOKE BIND,EXECUTE ON PLAN DSN8CP12 FROM PUBLIC;

Example 3: Revoke authority to execute plan DSN8CP12 from users ADAMSON and BROWN.

 REVOKE EXECUTE ON PLAN DSN8CP12 FROM ADAMSON,BROWN;

Example 4: Revoke authority to bind plan DSN91PLN from role ROLE1:

 REVOKE BIND ON PLAN DSN91PLN FROM ROLE ROLE1;

2090 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

REVOKE statement (schema privileges)
This form of the REVOKE statement revokes privileges on schemas.

Syntax for REVOKE (schema privileges)

REVOKE

,

ALTERIN

CREATEIN

DROPIN

ON SCHEMA

,

schema-name

*

FROM

,

authorization-name

ROLE role-name

PUBLIC

BY

,

authorization-name

ROLE role-name

ALL

INCLUDING DEPENDENT PRIVILEGES

NOT INCLUDING DEPENDENT PRIVILEGES

Description for REVOKE (schema privileges)
ALTERIN

Revokes the privilege to alter sequences, stored procedures, and user-defined functions, or specify
a comment for distinct types, cast functions that are generated for distinct types, sequences, stored
procedures, triggers, and user-defined functions in the designated schemas.

CREATEIN
Revokes the privilege to create distinct types, sequences, stored procedures, triggers, and user-
defined functions in the designated schemas.

DROPIN
Revokes the privilege to drop distinct types, sequences, stored procedures, triggers, and user-defined
functions in the designated schemas.

SCHEMA schema-name
Identifies the schema on which the privilege is revoked.

SCHEMA *
Indicates that the specified privilege on all schemas is revoked. You (or the indicated grantors) must
have previously granted the specified privilege on SCHEMA * to all identified users (including PUBLIC
if specified). Privileges granted on specific schemas are not affected.

FROM
Refer to “REVOKE statement” on page 2070 for a description of the FROM clause.

BY
Refer to “REVOKE statement” on page 2070 for a description of the BY clause.

Chapter 7. Statements 2091

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization ID or a role also results
in revoking the grants that were made by that user. The default value is based on the authority that is
being revoked and the REVOKE_DEP_PRIVILEGES system parameter:

• When ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked, NOT INCLUDING
DEPENDENT PRIVILEGES is assumed and the clause must be specified on the REVOKE statement.

• When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT INCLUDING DEPENDENT
PRIVILEGES is assumed and an error is returned if the statement includes INCLUDING
DEPENDENT PRIVILEGES.

• Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the clause must be specified on
the REVOKE statement.

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role also results
in revoking dependent privileges. This means that any grants that were made by the user will
continue to be revoked, until all grants in the chain have been revoked.

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set to NO, which enforces the behavior to not include the dependent
privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role does not cause
the grants that were made by the user to be revoked. However, for the revoked privileges, all
implications of the privilege being revoked are applied. For example, if the revoked privileges were
required to bind a package successfully, that package would continue to be invalidated as a result
of the package owner losing these privileges. An object might be dropped if a privilege is revoked
that was used to create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when ACCESSCTRL,
DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set toYES, which enforces the behavior to include dependent
privileges in the revoke.

Examples for REVOKE (schema privileges)

Example 1: Revoke the CREATEIN privilege on schema T_SCORES from user JONES.

 REVOKE CREATEIN ON SCHEMA T_SCORES FROM JONES;

Example 2: Revoke the CREATEIN privilege on schema VAC from all users at the current server.

 REVOKE CREATEIN ON SCHEMA VAC FROM PUBLIC;

Example 3: Revoke the ALTERIN privilege on schema DEPT from the administrative assistant.

 REVOKE ALTERIN ON SCHEMA DEPT FROM ADMIN_A;

Example 4: Revoke the ALTERIN and DROPIN privileges on schemas NEW_HIRE, PROMO, and RESIGN
from HR (Human Resources).

 REVOKE ALTERIN, DROPIN ON SCHEMA NEW_HIRE, PROMO, RESIGN FROM HR;

Example 5: Revoke the ALTERIN privilege on schemas EMPLOYEE from role ROLE1:

 REVOKE ALTERIN ON SCHEMA EMPLOYEE FROM ROLE ROLE1;

2092 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

REVOKE statement (sequence privileges)
This form of the REVOKE statement revokes the privileges on a user-defined sequence.

Syntax for REVOKE (sequence privileges)

REVOKE

,

ALTER

USAGE
1

ON SEQUENCE

,

sequence-name FROM

,

authorization-name

ROLE role-name

PUBLIC

BY

,

authorization-name

ROLE role-name

ALL

INCLUDING DEPENDENT PRIVILEGES

NOT INCLUDING DEPENDENT PRIVILEGES

RESTRICT

Notes:
1 The keyword SELECT is an alternative keyword for USAGE.

Description for REVOKE (sequence privileges)
ALTER

Revokes the privilege to alter a sequence or record a comment on a sequence.
USAGE

Revokes the USAGE privilege to use a sequence. This privilege is needed when the NEXT VALUE or
PREVIOUS VALUE expression is invoked for a sequence name.

SEQUENCE sequence-name
Identifies the sequence. The name, including the implicit or explicit schema qualifier, must uniquely
identify an existing sequence at the current server. If no sequence by this name exists in the explicitly
or implicitly specified schema, an error occurs. sequence-name must not be the name of an internal
sequence object that is generated by the system for an identity column.

FROM
Refer to “REVOKE statement” on page 2070 for a description of the FROM clause.

BY
Refer to “REVOKE statement” on page 2070 for a description of the BY clause.

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization ID or a role also results
in revoking the grants that were made by that user. The default value is based on the authority that is
being revoked and the REVOKE_DEP_PRIVILEGES system parameter:

Chapter 7. Statements 2093

• When ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked, NOT INCLUDING
DEPENDENT PRIVILEGES is assumed and the clause must be specified on the REVOKE statement.

• When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT INCLUDING DEPENDENT
PRIVILEGES is assumed and an error is returned if the statement includes INCLUDING
DEPENDENT PRIVILEGES.

• Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the clause must be specified on
the REVOKE statement.

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role also results
in revoking dependent privileges. This means that any grants that were made by the user will
continue to be revoked, until all grants in the chain have been revoked.

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set to NO, which enforces the behavior to not include the dependent
privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role does not cause
the grants that were made by the user to be revoked. However, for the revoked privileges, all
implications of the privilege being revoked are applied. For example, if the revoked privileges were
required to bind a package successfully, that package would continue to be invalidated as a result
of the package owner losing these privileges. An object might be dropped if a privilege is revoked
that was used to create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when ACCESSCTRL,
DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set toYES, which enforces the behavior to include dependent
privileges in the revoke.

RESTRICT
Prevents the USAGE privilege from being revoked on a sequence if the revokee owns one of the
following objects and does not have the USAGE privilege from another source:

• A trigger that specifies the sequence in a NEXT VALUE or PREVIOUS VALUE expression
• An inline SQL function that specifies the sequence in a NEXT VALUE or PREVIOUS VALUE expression

Examples for REVOKE (sequence privileges)

Example 1: Revoke USAGE privilege on sequence MYNUM to user JONES.

 REVOKE USAGE
 ON SEQUENCE MYNUM
 FROM JONES;

Example 2: Revoke the USAGE privilege on sequence ORDER_SEQ from role ROLE1:

 REVOKE USAGE
 ON SEQUENCE ORDER_SEQ
 FROM ROLE ROLE1;

2094 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

REVOKE statement (system privileges)
This form of the REVOKE statement revokes system privileges.

Chapter 7. Statements 2095

Syntax for REVOKE (system privileges)

REVOKE

,

ACCESSCTRL

ARCHIVE

BINDADD

BINDAGENT

BSDS

CREATEALIAS

CREATEDBA

CREATEDBC

CREATESG

CREATETMTAB

CREATE_SECURE_OBJECT

DATAACCESS

DBADM

DEBUGSESSION

DISPLAY

EXPLAIN

MONITOR1

MONITOR2

RECOVER

SQLADM

STOPALL

STOSPACE

SYSADM

SYSCTRL

SYSOPR

TRACE

ON SYSTEM
FROM

,

authorization-name

ROLE role-name

PUBLIC

BY

,

authorization-name

ROLE role-name

ALL

INCLUDING DEPENDENT PRIVILEGES

NOT INCLUDING DEPENDENT PRIVILEGES
1 2

Notes:

2096 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

1 INCLUDING DEPENDENT PRIVILEGES must not be specified when ACCESSCTRL, DATAACCESS, or
DBADM is specified.
2 NOT INCLUDING DEPENDENT PRIVILEGES must be specified when ACCESSCTRL, DATAACCESS, or
DBADM is specified

Description for REVOKE (system privileges)
ACCESSCTRL

Revokes the ACCESSCTRL authority, but does not revoke any privileges that are dependent on it.
ARCHIVE

Revokes the privilege to use the ARCHIVE LOG command.
BINDADD

Revokes the privilege to create plans and packages using the BIND subcommand with the ADD option.
BINDAGENT

Revokes the privilege to issue the BIND, FREE PACKAGE, or REBIND subcommands for plans and
packages and the DROP PACKAGE statement on behalf of the grantor. The privilege also allows the
holder to copy and replace plans and packages on behalf of the grantor.

A revoke of this privilege does not cascade.

BSDS
Revokes the privilege to issue the RECOVER BSDS command.

CREATEALIAS
Revokes the privilege to use the CREATE ALIAS statement.

CREATEDBA
Revokes the privilege to issue the CREATE DATABASE statement and acquire DBADM authority over
those databases.

CREATEDBC
Revokes the privilege to issue the CREATE DATABASE statement and acquire DBCTRL authority over
those databases.

CREATESG
Revokes the privilege to create new storage groups.

CREATETMTAB
Revokes the privilege to use the CREATE GLOBAL TEMPORARY TABLE statement.

CREATE_SECURE_OBJECT
Revokes the privilege to create a secure object.

DATAACCESS
Revokes the DATAACCESS authority, but does not revoke any privileges that are dependent on it.
Revoking DATAACCESS can result in authorization cache entries (plan, package, routine, and dynamic
statement) being updated if they were dependent on it. The RESTRICT semantics on objects prevents
the DATAACCESS authority from being revoked if the revokee owns an object that was created with
dependencies on the authority to be revoked.

Revoking DATAACCESS is similar to revoking the individual privileges that DATAACCESS includes. For
example, if a view was created based on the view owner having the SELECT privilege as acquired
through the DATAACCESS authority, revoking DATAACCESS would be the equivalent of revoking the
SELECT privilege and the view would be dropped.

DBADM
Revokes the DBADM authority from the user. If this user was also granted DATACCESS or ACCESSCTRL
authority along with DBADM authority, DATACCESS or ACCESSCTRL would not be revoked.

DISPLAY
Revokes the privilege to use the following commands:

• The DISPLAY ARCHIVE command for archive log information

Chapter 7. Statements 2097

• The DISPLAY BUFFERPOOL command for the status of buffer pools
• The DISPLAY DATABASE command for the status of all databases
• The DISPLAY FUNCTION SPECIFIC command for statistics about accessed external user-defined

functions
• The DISPLAY LOCATION command for statistics about threads with a distributed relationship
• The DISPLAY PROCEDURE command for statistics about accessed stored procedures
• The DISPLAY THREAD command for information on active threads with in Db2
• The DISPLAY TRACE command for a list of active traces

DEBUGSESSION
Revokes the privilege to create a debug session, which prevents client application debugging of native
SQL or Java procedures that are executed within the session.

EXPLAIN
Revokes the privilege to issue the following:

• The EXPLAIN statement with the following options:

– PLAN
– ALL

• The PREPARE statement
• The DESCRIBE TABLE statement
• The ability to explain dynamic SQL statements that are executing with the special register CURRENT

EXPLAIN MODE = EXPLAIN
• The BIND options EXPLAIN(ONLY) and SQLERROR(CHECK)

EXPLAIN(ONLY) allows to explain the statements. SQLERROR(CHECK) performs all syntax and
semantic checks on the SQL statements being bound.

MONITOR1
Revokes the privilege to obtain IFC data classified as serviceability data, statistics, accounting, and
other performance data that does not contain potentially secure data.

MONITOR2
Revokes the privilege to obtain IFC data classified as containing potentially sensitive data such as
SQL statement text and audit data. (Having the MONITOR2 privilege also implies having MONITOR1
privileges, however, revoking the MONITOR2 privilege does not cause the revoke of an explicitly
granted MONITOR1 privilege.)

RECOVER
Revokes the privilege to issue the RECOVER INDOUBT command.

SQLADM
Revokes the privilege to issue the following:

• The DESCRIBE TABLE statement
• The EXPLAIN statement with the following options:

– PLAN
– ALL
– STMTCACHE ALL
– STMTID
– STMTTOKEN
– MONITORED STMTS

• The PREPARE statement
• The ability to explain dynamic SQL statements that are executing with the special register CURRENT

EXPLAIN MODE = EXPLAIN

2098 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• The BIND options EXPLAIN(ONLY) and SQLERROR(CHECK)

EXPLAIN(ONLY) allows to explain the statements. SQLERROR(CHECK) performs all syntax and
semantic checks on the SQL statements being bound.

• The START command
• The STOP command
• The DISPLAY PROFILE command
• The ability to execute the RUNSTATS utility and the MODIFY STATISTICS utility in any database
• MONITOR2 privilege, which allows users to obtain IFC data that is classified as containing

potentially sensitive data, such as SQL statement text and audit data, as well as IFC data that is
classified as serviceability data, statistics, accounting, and other performance data.

STOPALL
Revokes the privilege to use the STOP DB2 command.

STOSPACE
Revokes the privilege to use the STOSPACE utility.

SYSADM
Revokes the system administrator authority.

SYSCTRL
Revokes the system control authority.

SYSOPR
Revokes the system operator authority.

TRACE
Revokes the privilege to use the MODIFY TRACE, START TRACE, and STOP TRACE commands.

ON SYSTEM
Identifies that the system privilege is revoked for the entire Db2 subsystem.

FROM
Refer to “REVOKE statement” on page 2070 for a description of the FROM clause.

BY
Refer to “REVOKE statement” on page 2070 for a description of the BY clause.

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization ID or a role also results
in revoking the grants that were made by that user. The default value is based on the authority that is
being revoked and the REVOKE_DEP_PRIVILEGES system parameter:

• When ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked, NOT INCLUDING
DEPENDENT PRIVILEGES is assumed and the clause must be specified on the REVOKE statement.

• When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT INCLUDING DEPENDENT
PRIVILEGES is assumed and an error is returned if the statement includes INCLUDING
DEPENDENT PRIVILEGES.

• Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the clause must be specified on
the REVOKE statement.

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role also results
in revoking dependent privileges. This means that any grants that were made by the user will
continue to be revoked, until all grants in the chain have been revoked.

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set to NO, which enforces the behavior to not include the dependent
privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role does not cause
the grants that were made by the user to be revoked. However, for the revoked privileges, all

Chapter 7. Statements 2099

implications of the privilege being revoked are applied. For example, if the revoked privileges were
required to bind a package successfully, that package would continue to be invalidated as a result
of the package owner losing these privileges. An object might be dropped if a privilege is revoked
that was used to create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when ACCESSCTRL,
DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set toYES, which enforces the behavior to include dependent
privileges in the revoke.

Examples for REVOKE (system privileges)

Example 1: Revoke DISPLAY privileges from user LUTZ.

 REVOKE DISPLAY
 FROM LUTZ;

Example 2: Revoke BSDS and RECOVER privileges from users PARKER and SETRIGHT.

 REVOKE BSDS,RECOVER
 FROM PARKER,SETRIGHT;

Example 3: Revoke TRACE privileges previously granted to all local users. (Grants to specific users will not
be affected.)

 REVOKE TRACE
 FROM PUBLIC;

Example 4: Revoke ARCHIVE privileges from role ROLE1:

 REVOKE ARCHIVE
 FROM ROLE ROLE1;

Example 5: SECADM Mary revokes the privilege to create a secure object from Steve that was granted by
another SECADM.

 REVOKE CREATE_SECURE_OBJECT
 FROM STEVE BY MARY;

Example 6: Revoke system DBADM from the role, ADMINROLE. This only revokes system DBADM
authority from the role. If DATAACCESS and ACCESSCTRL authorities were granted during GRANT DBADM,
those authorities are not revoked.

 REVOKE DBADM ON SYSTEM
 FROM ROLE ADMINROLE
 NOT INCLUDING DEPENDENT PRIVILEGES;

Example 7: Revoke system DBADM, DATAACCESS, and ACCESSCTRL authorities from the role,
ADMINROLE.

 REVOKE DBADM, DATAACCESS, ACCESSCTRL ON SYSTEM
 FROM ROLE ADMINROLE
 NOT INCLUDING DEPENDENT PRIVILEGES;

2100 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

REVOKE statement (table or view privileges)
This form of the REVOKE statement revokes privileges on one or more tables or views.

Syntax for REVOKE (table or view privileges)

REVOKE ALL
PRIVILEGES

,

ALTER

DELETE

INDEX

INSERT

REFERENCES

SELECT

TRIGGER

UNLOAD

UPDATE

ON
TABLE

,

table-name

view-name

FROM

,

authorization-name

ROLE role-name

PUBLIC

BY

,

authorization-name

ROLE role-name

ALL

INCLUDING DEPENDENT PRIVILEGES

NOT INCLUDING DEPENDENT PRIVILEGES

Description for REVOKE (table or view privileges)
ALL or ALL PRIVILEGES

If you specify ALL, the authorization ID of the statement must have granted a least one privilege on
each identified table or view to each authorization-name. The privilege revoked from an authorization
ID are those privileges on the table or view that the authorization ID of the statement granted to the
authorization ID.

If you do not use ALL, you must use one or more of the keywords listed below. Each keyword revokes
the privilege described, but only as it applies to the tables or views named in the ON clause.

ALTER
Revokes the privilege to alter the specified table or create a trigger on the specified table.

DELETE
Revokes the privilege to delete rows in the specified table or view.

Chapter 7. Statements 2101

INDEX
Revokes he privilege to create an index on the specified table.

INSERT
Revokes the privilege to insert rows into the specified table or view.

REFERENCES
Revokes the privilege to define and drop referential constraints. Although you can use a list of column
names with the GRANT statement, you cannot use a list of column names with REVOKE; the privilege
is revoked for all columns.

SELECT
Revokes the privilege to create a view or read data from the specified table or view. A view or a
materialized query table is dropped when the SELECT privilege that was used to create it is revoked,
unless the owner of the view or materialized query table was directly granted the SELECT privilege
from another source before the view or materialized query table was created.

TRIGGER
Revokes the privilege to create a trigger on the specified table.

UNLOAD
Revokes the UNLOAD privilege to use the UNLOAD utility.

UPDATE
Revokes the privilege to update rows in the specified table or view. A list of column names can be
used only with GRANT, not with REVOKE.

ON table-name or view-name
Names one or more tables or views on which you are revoking the privileges. The list can consist of
table names, view names, or a combination of the two. A table or view must not be identified more
than one time, and a declared temporary table and a table that is implicitly created for an XML column
must not be identified.

FROM
Refer to “REVOKE statement” on page 2070 for a description of the FROM clause.

BY
If you omit BY, you must have granted each named privilege to each of the named users. More
precisely, each privilege must have been granted to each user by a GRANT statement whose
authorization ID is also the authorization ID of your REVOKE statement. Each of these grants is then
revoked. (No single privilege need be granted on all tables and views.)

If BY is specified, each named grantor must satisfy the above requirement. In that case, the
authorization ID of the statement need not satisfy the requirement unless it is one of the named
grantors.

Refer to “REVOKE statement” on page 2070 for a description of the BY clause.

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization ID or a role also results
in revoking the grants that were made by that user. The default value is based on the authority that is
being revoked and the REVOKE_DEP_PRIVILEGES system parameter:

• When ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked, NOT INCLUDING
DEPENDENT PRIVILEGES is assumed and the clause must be specified on the REVOKE statement.

• When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT INCLUDING DEPENDENT
PRIVILEGES is assumed and an error is returned if the statement includes INCLUDING
DEPENDENT PRIVILEGES.

• Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the clause must be specified on
the REVOKE statement.

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role also results
in revoking dependent privileges. This means that any grants that were made by the user will
continue to be revoked, until all grants in the chain have been revoked.

2102 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set to NO, which enforces the behavior to not include the dependent
privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role does not cause
the grants that were made by the user to be revoked. However, for the revoked privileges, all
implications of the privilege being revoked are applied. For example, if the revoked privileges were
required to bind a package successfully, that package would continue to be invalidated as a result
of the package owner losing these privileges. An object might be dropped if a privilege is revoked
that was used to create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when ACCESSCTRL,
DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set toYES, which enforces the behavior to include dependent
privileges in the revoke.

Notes for REVOKE (table or view privileges)
For a created temporary table, only ALL or ALL PRIVILEGES can be revoked. Specific table privileges
cannot be revoked.

For a view of a created temporary table, either ALL or the specific UPDATE, DELETE, INSERT and SELECT
privileges can be revoked.

For a declared temporary table, no privileges can be revoked because none can be granted. When
a declared temporary table is defined, PUBLIC implicitly receives all table privileges (without GRANT
authority) for the table. These privileges are not recorded in the Db2 catalog.

Examples for REVOKE (table or view privileges)

Example 1: Revoke SELECT privileges on table DSN8C10.EMP from user PULASKI.

 REVOKE SELECT ON TABLE DSN8C10.EMP FROM PULASKI;

Example 2: Revoke update privileges on table DSN8C10.EMP previously granted to all local Db2 users.
(Grants to specific users are not affected.)

 REVOKE UPDATE ON TABLE DSN8C10.EMP FROM PUBLIC;

Example 3: Revoke all privileges on table DSN8C10.EMP from users KWAN and THOMPSON.

 REVOKE ALL ON TABLE DSN8C10.EMP FROM KWAN,THOMPSON;

Example 4: Revoke the grant of SELECT and UPDATE privileges on the table DSN8C10.DEPT to every user
in the network. Doing so does not affect users who obtained these privileges from some other grant.

 REVOKE SELECT, UPDATE ON TABLE DSN8C10.DEPT
 FROM PUBLIC;

Example 5: Revoke the ALTER privileges on the table DSN8C10.EMP that were previously granted to role
ROLE1:

 REVOKE ALTER ON TABLE DSN8C10.EMP
 FROM ROLE ROLE1;

Chapter 7. Statements 2103

REVOKE (type or JAR file privileges)
This form of the REVOKE statement revokes the privilege to use distinct types, array types, or JAR files.

Syntax for REVOKE (type or JAR file privileges)

REVOKE USAGE ON TYPE

,

type-name

JAR

,

jar-name

FROM

,

authorization-name

ROLE role-name

PUBLIC

BY

,

authorization-name

ROLE role-name

ALL

INCLUDING DEPENDENT PRIVILEGES

NOT INCLUDING DEPENDENT PRIVILEGES

RESTRICT

Description for REVOKE (type or JAR file privileges)
USAGE

Revokes the privilege to use the distinct type in tables, functions procedures, or the privilege to use
the JAR file.

TYPE type-name
Identifies the user-defined type. The name, including the implicit or explicit schema name, must
identify a unique user-defined type that exists at the current server.

JAR jar-name
Identifies the JAR file. The name, including the implicit or explicit schema name, must identify a
unique JAR file that exists at the current server.

FROM
Refer to “REVOKE statement” on page 2070 for a description of the FROM clause.

BY
Refer to “REVOKE statement” on page 2070 for a description of the BY clause.

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization ID or a role also results
in revoking the grants that were made by that user. The default value is based on the authority that is
being revoked and the REVOKE_DEP_PRIVILEGES system parameter:

2104 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• When ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked, NOT INCLUDING
DEPENDENT PRIVILEGES is assumed and the clause must be specified on the REVOKE statement.

• When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT INCLUDING DEPENDENT
PRIVILEGES is assumed and an error is returned if the statement includes INCLUDING
DEPENDENT PRIVILEGES.

• Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the clause must be specified on
the REVOKE statement.

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role also results
in revoking dependent privileges. This means that any grants that were made by the user will
continue to be revoked, until all grants in the chain have been revoked.

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set to NO, which enforces the behavior to not include the dependent
privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role does not cause
the grants that were made by the user to be revoked. However, for the revoked privileges, all
implications of the privilege being revoked are applied. For example, if the revoked privileges were
required to bind a package successfully, that package would continue to be invalidated as a result
of the package owner losing these privileges. An object might be dropped if a privilege is revoked
that was used to create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when ACCESSCTRL,
DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set toYES, which enforces the behavior to include dependent
privileges in the revoke.

RESTRICT
Prevents the USAGE privilege from being revoked on a user-defined type or JAR file if any of the
following conditions exist and the revokee does not have the USAGE privilege from another source:

• The revokee owns a function or stored procedure that uses the user-defined type or references the
JAR file.

• The revokee owns a JAR file whose path references the JAR file for which USAGE is being revoked.
• The revokee owns a table that has a column that uses the user-defined type.
• A sequence exists for which the data type of the sequence is the user-defined type.

Notes for REVOKE (type or JAR file privileges)
Alternative syntax and synonyms: To provide compatibility with previous releases of Db2 or other
products in the Db2 family, Db2 supports DATA TYPE or DISTINCT TYPE as a synonym for TYPE.

Examples for REVOKE (type or JAR file privileges)

Example 1: Revoke the USAGE privilege on distinct type SHOESIZE from user JONES.

 REVOKE USAGE ON TYPE SHOESIZE FROM JONES;

Example 2: Revoke the USAGE privilege on distinct type US_DOLLAR from all users at the current server
except for those who have been specifically granted USAGE and not through PUBLIC.

 REVOKE USAGE ON TYPE US_DOLLAR FROM PUBLIC;

Chapter 7. Statements 2105

Example 3: Revoke the USAGE privilege on distinct type CANADIAN_DOLLARS from the administrative
assistant (ADMIN_A).

 REVOKE USAGE ON TYPE CANADIAN_DOLLARS
 FROM ADMIN_A;

Example 4: Revoke the USAGE privilege on distinct type MILES from the role ROLE1:

 REVOKE USAGE ON TYPE MILES
 FROM ROLE ROLE1;

REVOKE (variable privileges)
This form of the REVOKE statement revokes privileges on global variables.

Syntax for REVOKE (variable privileges)

REVOKE ALL
PRIVILEGES

,

READ

WRITE

ON VARIABLE variable-name FROM

,

authorization-name

ROLE role-name

PUBLIC

BY

,

authorization-name

ROLE role-name

ALL

RESTRICT

INCLUDING DEPENDENT PRIVILEGES

NOT INCLUDING DEPENDENT PRIVILEGES

Description for REVOKE (variable privileges)
ALL PRIVILEGES

Revokes both READ and WRITE privileges on the specified global variable.
READ

Revokes the privilege to read the value of the specified global variable.
WRITE

Revokes the privilege to assign a value to the specified global variable.

2106 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

ON VARIABLE variable-name
Identifies the global variable from which privileges are revoked. variable-name must identify a global
variable that exists at the current server.

FROM
Refer to “REVOKE statement” on page 2070 for a description of the FROM clause.

BY
Refer to “REVOKE statement” on page 2070 for a description of the BY clause.

RESTRICT
Prevents the specified privileges from being revoked on a global variable if the following conditions
exist:

• A function that is owned by the revokee references (READ or WRITE privilege) the specified global
variable

• A view that is owned by the revokee references (READ or WRITE privilege) the specified global
variable

• A trigger that is owned by the revokee references (READ or WRITE privilege) the specified global
variable

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization ID or a role also results
in revoking the grants that were made by that user. The default value is based on the authority that is
being revoked and the REVOKE_DEP_PRIVILEGES system parameter:

• When ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked, NOT INCLUDING
DEPENDENT PRIVILEGES is assumed and the clause must be specified on the REVOKE statement.

• When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT INCLUDING DEPENDENT
PRIVILEGES is assumed and an error is returned if the statement includes INCLUDING
DEPENDENT PRIVILEGES.

• Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the clause must be specified on
the REVOKE statement.

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role also results
in revoking dependent privileges. This means that any grants that were made by the user will
continue to be revoked, until all grants in the chain have been revoked.

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set to NO, which enforces the behavior to not include the dependent
privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role does not cause
the grants that were made by the user to be revoked. However, for the revoked privileges, all
implications of the privilege being revoked are applied. For example, if the revoked privileges were
required to bind a package successfully, that package would continue to be invalidated as a result
of the package owner losing these privileges. An object might be dropped if a privilege is revoked
that was used to create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when ACCESSCTRL,
DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set toYES, which enforces the behavior to include dependent
privileges in the revoke.

Chapter 7. Statements 2107

Notes for REVOKE (variable privileges)
Global variables and statements in the dynamic statement cache: If a cached dynamic statement
depends on the revoked authorization for the specified global variable and the cache statement is not in
use, the cached dynamic statement will be invalidated.

REVOKE statement (use privileges)
This form of the REVOKE statement revokes authority to use particular buffer pools, storage groups, or
table spaces.

Syntax for REVOKE (use privileges)

REVOKE USE OF BUFFERPOOL

,

bpname

ALL BUFFERPOOLS

STOGROUP

,

stogroup-name

TABLESPACE

,

database-name .

table-space-name

FROM

,

authorization-name

ROLE role-name

PUBLIC

BY

,

authorization-name

ROLE role-name

ALL

INCLUDING DEPENDENT PRIVILEGES

NOT INCLUDING DEPENDENT PRIVILEGES

Description for REVOKE (use privileges)
BUFFERPOOL bpname,...

Revokes the privilege to refer to any of the identified buffer pools in a CREATE INDEX, CREATE
TABLESPACE, ALTER INDEX, or ALTER TABLESPACE statement. See “Naming conventions in SQL” on
page 79 for more details about bpname.

ALL BUFFERPOOLS
Revokes the privilege to refer to any buffer pool in a CREATE INDEX, CREATE TABLESPACE, ALTER
INDEX, or ALTER TABLESPACE statement.

2108 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

STOGROUP stogroup-name,...
Revokes the privilege to refer to any of the identified storage groups in a CREATE INDEX, CREATE
TABLESPACE, ALTER INDEX, or ALTER TABLESPACE statement.

TABLESPACE database-name.table-space-name,...
Revokes the privilege to refer to any of the specified table spaces in a CREATE TABLE statement. The
default database-name is DSNDB04.

For table spaces in a work file database you cannot revoke the privilege from PUBLIC. When a table
space is created in a work file database, PUBLIC implicitly receives the TABLESPACE privilege (without
GRANT authority); this privilege is not recorded in the Db2 catalog, and it cannot be revoked.

FROM
Refer to “REVOKE statement” on page 2070 for a description of the FROM clause.

BY
Refer to “REVOKE statement” on page 2070 for a description of the BY clause.

INCLUDING DEPENDENT PRIVILEGES or NOT INCLUDING DEPENDENT PRIVILEGES
Specifies whether revoking a privilege or an authority from an authorization ID or a role also results
in revoking the grants that were made by that user. The default value is based on the authority that is
being revoked and the REVOKE_DEP_PRIVILEGES system parameter:

• When ACCESSCTRL, DATAACCESS, or system DBADM authority is revoked, NOT INCLUDING
DEPENDENT PRIVILEGES is assumed and the clause must be specified on the REVOKE statement.

• When the REVOKE_DEP_PRIVILEGES system parameter is set to NO, NOT INCLUDING DEPENDENT
PRIVILEGES is assumed and an error is returned if the statement includes INCLUDING
DEPENDENT PRIVILEGES.

• Otherwise, INCLUDING DEPENDENT PRIVILEGES is assumed and the clause must be specified on
the REVOKE statement.

INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role also results
in revoking dependent privileges. This means that any grants that were made by the user will
continue to be revoked, until all grants in the chain have been revoked.

INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set to NO, which enforces the behavior to not include the dependent
privileges.

NOT INCLUDING DEPENDENT PRIVILEGES
Specifies that revoking a privilege or an authority from an authorization ID or a role does not cause
the grants that were made by the user to be revoked. However, for the revoked privileges, all
implications of the privilege being revoked are applied. For example, if the revoked privileges were
required to bind a package successfully, that package would continue to be invalidated as a result
of the package owner losing these privileges. An object might be dropped if a privilege is revoked
that was used to create the object.

NOT INCLUDING DEPENDENT PRIVILEGES must be specified when ACCESSCTRL,
DATAACCESS, or system DBADM authority is revoked.

NOT INCLUDING DEPENDENT PRIVILEGES cannot be specified if the system parameter
REVOKE_DEP_PRIVILEGES is set toYES, which enforces the behavior to include dependent
privileges in the revoke.

Notes for REVOKE (use privileges)
You can revoke privileges for only one type of object with each statement. Thus you can revoke the use of
several table spaces with one statement, but not the use of a table space and a storage group.

For each object you name, you (or the indicated grantors) must have granted the USE privilege on that
object to all identified users (including PUBLIC, if specified). The same object must not be identified more
than once.

Chapter 7. Statements 2109

Revoking the privilege USE OF ALL BUFFERPOOLS does not cascade to all other privileges that can be
granted under that privilege. A user with the privilege USE OF ALL BUFFERPOOLS WITH GRANT OPTION
can make two types of grants:

• GRANT USE OF ALL BUFFERPOOLS TO userid. This privilege is revoked when the original user's privilege
is revoked.

• GRANT USE OF BUFFERPOOL BPn TO userid. This privilege is not revoked when the original user's
privilege is revoked.

Examples for REVOKE (use privileges)

Example 1: Revoke authority to use buffer pool BP2 from user MARINO.

 REVOKE USE OF BUFFERPOOL BP2
 FROM MARINO;

Example 2: Revoke a grant of the USE privilege on the table space DSN8S12D in the database DSN8D12A.
The grant is to PUBLIC, that is, to everyone at the local Db2 subsystem. (Grants to specific users are not
affected.)

 REVOKE USE OF TABLESPACE DSN8D12A.DSN8S12D
 FROM PUBLIC;

Example 3: Revoke the authority to use storage group SG1 from role ROLE1:

 REVOKE USE OF STOGROUP SG1
 FROM ROLE ROLE1;

ROLLBACK statement
The ROLLBACK statement can be used to end a unit of recovery and back out all the relational database
changes that were made by that unit of recovery. If relational databases are the only recoverable
resources used by the application process, ROLLBACK also ends the unit of work. ROLLBACK can also
be used to back out only the changes made after a savepoint was set within the unit of recovery without
ending the unit of recovery. Rolling back to a savepoint enables selected changes to be undone.

Invocation for ROLLBACK
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared. It can be used in the IMS or CICS environment only if the TO
SAVEPOINT clause is specified.

Authorization for ROLLBACK
None required.

Syntax for ROLLBACK

ROLLBACK
WORK

TO SAVEPOINT

savepoint-name

Description for ROLLBACK
When ROLLBACK is used without the SAVEPOINT clause, the unit of recovery in which the ROLLBACK
statement is executed is ended and a new unit of recovery is started.

2110 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

All changes that are made by the following statements during the unit of recovery are backed out:

• ALTER
• COMMENT
• CREATE
• DELETE
• DROP
• EXPLAIN
• GRANT
• INSERT
• LABEL
• MERGE
• REFRESH TABLE
• RENAME
• REVOKE
• SELECT INTO with an SQL data change statement
• select-statement with an SQL data change statement
• TRUNCATE when the IMMEDIATE clause is not specified
• UPDATE

ROLLBACK without the TO SAVEPOINT clause also causes the following actions to occur:

• All locks that are implicitly acquired during the unit of recovery are released. See “LOCK TABLE
statement” on page 2017 for an explanation of the duration of explicitly acquired locks.

• All cursors are closed, all prepared statements are destroyed, and any cursors that are associated with
the prepared statements are invalidated.

• All rows and all logical work files of every created temporary table of the application process are
deleted. (All the rows of a declared temporary table are not implicitly deleted. As with base tables, any
changes that are made to a declared temporary table during the unit of recovery are undone to restore
the table to its state at the last commit point.)

• All LOB locators, including those that are held, are freed.

TO SAVEPOINT
Specifies that the unit of recovery is not to be ended and that only a partial rollback (to a savepoint)
is to be performed. If a savepoint name is not specified, rollback is to the last active savepoint. For
example, if in a unit of recovery, savepoints A, B, and C are set in that order and then C is released,
ROLLBACK TO SAVEPOINT causes a rollback to savepoint B.
savepoint-name

Identifies the savepoint to which to roll back. The name must identify a savepoint that exists at
the current server.

All database changes (including changes made to a declared temporary tables but excluding changes
made to created temporary tables) that were made after the savepoint was set are backed out.
Changes that are made to created temporary tables are not logged and are not backed out; a warning
is issued instead. (A warning is also issued when a created temporary table is changed and there is an
active savepoint.)

In addition, none of the following items are backed out:

• The opening or closing of cursors
• Changes in cursor positioning
• The acquisition and release of locks
• The caching of the rolled back statements

Chapter 7. Statements 2111

Any savepoints that are set after the one to which rollback is performed are released. The savepoint to
which rollback is performed is not released.

ROLLBACK with or without the TO SAVEPOINT clause has no effect on connections.

Notes for ROLLBACK
The following information applies only to rolling back all changes in the unit of recovery (the ROLLBACK
statement without the TO SAVEPOINT clause):

• Stored procedures. The ROLLBACK statement cannot be used if the procedure is in the calling chain of a
user-defined function or a trigger or if Db2 is not the commit coordinator.

• IMS or CICS. Using a ROLLBACK to SAVEPOINT statement in an IMS or CICS environment only rolls
back Db2 resources. Any other recoverable resources updated in the environment are not rolled back.
To do a rollback operation in these environments, SQL programs must use the call prescribed by their
transaction manager. The effect of these rollback operations on Db2 data is the same as that of the SQL
ROLLBACK statement.

A rollback operation in an IMS or CICS environment might handle the closing of cursors that were
declared with the WITH hold option differently than the SQL ROLLBACK statement does. If an
application requests a rollback operation from CICS or IMS, but no work has been performed in Db2
since the last commit point, the rollback request will not be broadcast to Db2. If the application had
opened cursors using the WITH HOLD option in a previous unit of work, the cursors will not be closed,
and any prepared statements associated with those cursors will not be destroyed.

• Implicit rollback operations: In all Db2 environments, the abend of a process is an implicit rollback
operation.

ROLLBACK and non-LOB table spaces that are not logged: If ROLLBACK is executed for a unit of work
that includes changes to a non-LOB table space that is not logged (specifies the NOT LOGGED attribute),
that table space is marked RECOVER-pending and the table space is placed in the logical page list. The
table space is therefore not available after the rollback operation completes. For more information about
the RECOVER utility, see RECOVER (Db2 Utilities).

ROLLBACK and declared global temporary tables that are not logged: When NOT LOGGED is specified
on a declared global temporary table and Db2 must roll back because of an error such as a duplicate key
error, rows are deleted or preserved depending on the option that was specified for ON ROLLBACK.

If the ON ROLLBACK DELETE ROWS option was specified for the table, insert, update, and delete activity
is not logged. During a ROLLBACK or ROLLBACK TO SAVEPOINT operation, if the table was updated
since the last COMMIT statement, all rows are deleted from the table. Any open cursors for the table
do not have positions. If the declaration of the declared global temporary table was not committed, the
declaration of the table is rolled back.

If the ON ROLLBACK PRESERVE ROWS option was specified for the table, insert, update, and delete
activity is not logged. During a ROLLBACK or ROLLBACK TO SAVEPOINT operation, all rows in the table
are preserved regardless of any updates to the table since the last COMMIT statement. Any open cursors
for the table do not have positions. If the declaration of the declared global temporary table was not
committed, the declaration of the table is rolled back.

Effect of ROLLBACK on global variables: Global variables are not controlled at the transaction level.
Issuing a ROLLBACK statement does not affect the contents of a global variable.

Effect of ROLLBACK on insert operations: If execution of an INSERT statement results in creation of a
data set in a table space, and the INSERT operation is rolled back, the inserted data is deleted, but the
data set is not deleted.

Effect of ROLLBACK on prepared dynamic statements: All prepared dynamic statements in a package
that is bound with KEEPDYNAMIC(YES) are kept past rollback points.

Examples for ROLLBACK

2112 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_recover.html

Example 1: Roll back all Db2 database changes made since the unit of recovery was started.

 ROLLBACK WORK;

Example 2: After a unit of recovery started, assume that three savepoints A, B, and C were set and that C
was released:

 ...
 SAVEPOINT A ON ROLLBACK RETAIN CURSORS;
 ...
 SAVEPOINT B ON ROLLBACK RETAIN CURSORS;
 ...
 SAVEPOINT C ON ROLLBACK RETAIN CURSORS;
 ...
 RELEASE SAVEPOINT C;
 ...

Roll back all Db2 database changes only to savepoint A:

 ROLLBACK WORK TO SAVEPOINT A;

If a savepoint name was not specified (that is, ROLLBACK WORK TO SAVEPOINT), the rollback would be
to the last active savepoint that was set, which is B.

SAVEPOINT statement
The SAVEPOINT statement sets a savepoint within a unit of recovery to identify a point in time within the
unit of recovery to which relational database changes can be rolled back.

Invocation for SAVEPOINT
This statement can be imbedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for SAVEPOINT
None required.

Syntax for SAVEPOINT

SAVEPOINT savepoint-name

UNIQUE

ON ROLLBACK RETAIN CURSORS
1

ON ROLLBACK RETAIN LOCKS
1

Notes:
1 These clauses can be specified in either order.

Description for SAVEPOINT
savepoint-name

Names the savepoint. savepoint-name must not begin with 'SYS'.
UNIQUE

Specifies that the application program cannot reuse the savepoint name within the unit of recovery.
An error occurs if a savepoint with the same name as savepoint-name already exists within the unit of
recovery.

Chapter 7. Statements 2113

Omitting UNIQUE indicates that the application can reuse the savepoint name within the unit of
recovery. If svpt-name identifies a savepoint that already exists within the unit of recovery and the
savepoint was not created with the UNIQUE option, the existing savepoint is destroyed and a new
savepoint is created. Destroying a savepoint to reuse its name for another savepoint is not the
same as releasing the savepoint. Reusing a savepoint name destroys only one savepoint. Releasing
a savepoint with the RELEASE SAVEPOINT statement releases the savepoint and all savepoints that
have been subsequently set.

ON ROLLBACK RETAIN CURSORS
Specifies that any cursors that are opened after the savepoint is set are not tracked, and thus, are
not closed upon rollback to the savepoint. Although these cursors remain open after rollback to the
savepoint, they might not be usable. For example, if rolling back to the savepoint causes the insertion
of a row on which the cursor is positioned to be rolled back, using the cursor to update or delete the
row results in an error.

ON ROLLBACK RETAIN LOCKS
Specifies that any locks that are acquired after the savepoint is set are not tracked, and thus, are not
released on rollback to the savepoint. ON ROLLBACK RETAIN LOCKS is the default behavior.

Example for SAVEPOINT

Assume that you want to set three savepoints at various points in a unit of recovery. Name the first
savepoint A and allow the savepoint name to be reused. Name the second savepoint B and do not allow
the name to be reused. Because you no longer need savepoint A when you are ready to set the third
savepoint, reuse A as the name of the savepoint.

 SAVEPOINT A ON ROLLBACK RETAIN CURSORS;
 ⋮
 SAVEPOINT B UNIQUE ON ROLLBACK RETAIN CURSORS;
 ⋮
 SAVEPOINT A ON ROLLBACK RETAIN CURSORS;

SELECT statement
The select-statement is the form of a query that can be directly specified in a DECLARE CURSOR
statement, or prepared and then referenced in a DECLARE CURSOR statement. It can also be issued
interactively using SPUFI or the command line processor which causes a result table to be displayed at
your terminal. In any case, the table specified by select-statement is the result of the fullselect.

Authorization for SELECT
See “Authorization for queries” on page 1007.

2114 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Syntax for select-statement

WITH

,

common-table-expression

fullselect
1

update-clause

read-only-clause
2

optimize-clause

isolation-clause

queryno-clause

SKIP LOCKED DATA

3

Notes:
1 If fullselect is a VALUES clause, common-table-expression, update-clause, read-only-clause, optimize-
clause, isolation-clause, queryno-clause, and SKIP LOCKED DATA must not also be specified
2 The read-only-clause must not be specified if update-clause is specified.
3 The same clause must not be specified more than one time.

Description for select-statement
The select-statement is the form of a query that can be directly specified in a DECLARE CURSOR statement
or FOR statement, prepared and then referenced in a DECLARE CURSOR statement, or directly specified
in an SQLJ assignment clause. It can also be issued using SPUFI or the command line processor which
causes a result table to be displayed at your terminal. In any case, the result table specified by a
select-statement is the result of the fullselect. For for more information, see “select-statement” on page
1067.

The tables and view identified in a select statement can be at the current server or any Db2 subsystem
with which the current server can establish a connection.

For local queries on Db2 for z/OS or remote queries in which the server and requester are Db2 for z/OS,
if a table is encoded as ASCII or Unicode, the retrieved data is encoded in EBCDIC. For information on
retrieving data encoded in ASCII or Unicode, see Distributed queries against ASCII or Unicode tables (Db2
Application programming and SQL).

A select statement can implicitly or explicitly invoke user-defined functions or implicitly invoke stored
procedures. This technique is known as nesting of SQL statements. A function or procedure is implicitly
invoked in a select statement when it is invoked at a lower level. For instance, if you invoke a user-defined
function from a select statement and the user-defined function invokes a stored procedure, you are
implicitly invoking the stored procedure.

Chapter 7. Statements 2115

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_distributedqueryasciiunicode.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_distributedqueryasciiunicode.html

Syntax for fullselect

subselect

( fullselect)

values-clause
1

UNION

EXCEPT

INTERSECT

DISTINCT

ALL

subselect

( fullselect)

order-by-clause offset-clause fetch-clause

values-clause
VALUES sequence-reference

(

,

 sequence-reference)

Notes:
1 If values-clause is specified, UNION, EXCEPT, INTERSECT, order-by-clause, or fetch-clause must not
also be specified. If fullselect contains a values-clause, the fullselect must only be specified in a select-
statement that is referenced by statement-name in a PREPARE statement.

Description for fullselect
The fullselect is a component of the select-statement, ALTER TABLE statement for the definition of
a materialized query table, CREATE TABLE statement, CREATE VIEW statement, DECLARE GLOBAL
TEMPORARY TABLE statement, INSERT statement, UPDATE statement, and MERGE statement. For more
information, see “fullselect” on page 1060

Syntax for subselect

select-clause from-clause

where-clause group-by-clause

having-clause order-by-clause offset-clause

fetch-clause

Description for subselect
The subselect is a component of the fullselect. A subselect specifies a result table that is derived from
the tables or views that are identified in the FROM clause. For more information, see “subselect” on page
1009.

2116 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Related concepts
Queries
A query specifies a result table or an intermediate table. A query is a component of certain SQL
statements.

SELECT INTO statement
The SELECT INTO statement produces a result table that contains at most one row. The statement
assigns the values in that row to variables. If the table is empty, the statement does not assign values to
the host variables or global variables.

Invocation for SELECT INTO
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared.

Authorization for SELECT INTO
The privilege set that is defined below must include at least one of the following:

• The SELECT privilege on every table and view identified in the statement
• Ownership of every table and view identified in the statement
• READ privileges on any global variables that are identified in the statement
• Ownership of any global variables that are identified in the statement
• DBADM authority for the database (tables only)
• DATAACCESS authority
• SYSADM authority
• SYSCTRL authority (catalog tables only)

If the SELECT INTO statement includes an SQL data change statement, the privilege set must also include
at least the privileges (INSERT, UPDATE, or DELETE) that are associated with that SQL data change
statement on the table or view.

For an assignment to a global variable or an element of an array global variable, the privilege set must
include at least one of the following:

• The WRITE privilege on the variable
• Ownership of the variable
• DATAACCESS authority
• SYSADM authority

For an assignment to a transition variable, the privilege set must include at least one of the following:

• The UPDATE privilege on the table or view on which the trigger that contains the assignment statement
is defined

• The UPDATE privilege on the column corresponding to the transition variable to be assigned a value
• Ownership of the table or view on which the trigger that contains the assignment statement is defined
• DBADM authority on the database that contains the table on which the trigger that contains the

assignment statement is defined
• DATAACCESS authority
• SYSADM authority

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the package. If the statement is dynamically prepared, the privilege set is
determined by the DYNAMICRULES behavior in effect (run, bind, define, or invoke) and is summarized
in DYNAMICRULES behaviors and authorization checking. For more information on these behaviors,

Chapter 7. Statements 2117

including a list of the DYNAMICRULES bind option values that determine them, see “Authorization IDs
and dynamic SQL” on page 94.

Syntax for SELECT INTO

WITH

,

common-table-expression

select-clause
1

INTO

,

target-variable

array-variable [ array-index]

from-clause

where-clause

group-by-clause having-clause order-by-clause

offset-clause fetch-clause

2

isolation-clause

SKIP LOCKED DATA

QUERYNO integer

target-variable
global-variable-name

host-variable-name

SQL-parameter-name

SQL-variable-name

transition-variable-name

Notes:
1 The select-clause cannot reference both a system-period temporal table and an archive-enabled table.
2 The same clause must not be specified more than once.

Description for SELECT INTO
The result table is derived by logically evaluating the isolation-clause, from-clause, where-clause, group-
by-clause, having-clause, order-by-clause, offset-clause, fetch-clause, and the select-clause, in this order.
The actual order might be slightly different based on the plan that is chosen by the Db2 subsystem. See
the topics under Chapter 6, “Queries,” on page 1007 for a description of these clauses.

The tables or views identified in the statement can exist at the current server or at any Db2 subsystem
with which the current server can establish a connection.

WITH common-table-expression
Refer to “common-table-expression” on page 1069 for information about specifying a common-table-
expression.

2118 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

INTO target-variable or array-variable[array-index]
Identifies one or more targets for the assignment of output values. The number of targets in the INTO
clause must equal the number of values that are to be assigned. The first value in the result row
is assigned to the first target in the list, the second value to the second target, and so on. A target
variable must not be specified more than once in the INTO clause. Each assignment to a target is
made in sequence through the list, according to the rules described in “Assignment and comparison”
on page 143.

The value 'W' is assigned to the SQLWARN3 field of the SQLCA if the number of targets is less than the
number of result column values.

If an error occurs on any assignment, the value is not assigned to the target, and no more values are
assigned to the specified targets. Any values that have already been assigned remain assigned.

global-variable-name
Identifies the global variable that is the assignment target.

host-variable-name
Identifies the host variable that is the assignment target. For LOB output values, the target can
be a regular host variable (if it is large enough), a LOB locator variable, or a LOB file reference
variable.

SQL-parameter-name
Identifies the parameter that is the assignment target.

SQL-variable-name
Identifies the SQL variable that is the assignment target. SQL variables must be declared before
they are used.

transition-variable-name
Identifies the column that is to be updated in the transition table. A transition-variable-name must
identify a column in the subject table of a trigger, optionally qualified by a correlation name that
identifies the new value.

array-variable [array-index]
Specifies an array element that is the target of the assignment.

An array element must not be specified as the target for an assignment if common-table-
expression is also specified in the statement.

array-variable
Specifies an array variable.

[array-index]
An expression that specifies which element in the array is the target of the assignment.

For an ordinary array, the array index expression must be castable to INTEGER, and must not
be the null value. The index value must be between 1 and the maximum cardinality that is
defined for the array.

For an associative array, the array index expression must be castable to the index data type of
the associative array, and must not be the null value.

array-index must not be:

• An expression that references the CURRENT DATE, CURRENT TIME, or CURRENT
TIMESTAMP special register

• A nondeterministic function
• A function that is defined with EXTERNAL ACTION
• A function that is defined with MODIFIES SQL DATA
• A sequence expression
• A column that is not in a scalar fullselect.

The data type of a variable must be compatible with the value assigned to it. If the value is numeric,
the variable must have the capacity to represent the integral part of the value. For a date or time

Chapter 7. Statements 2119

value, the variable must be a character string variable of a minimum length as defined in “Assignment
and comparison” on page 143.

Each assignment to a variable is made according to the rules described in “Assignment and
comparison” on page 143. Assignments are made in sequence through the list.

If an error occurs as the result of an arithmetic expression in the SELECT list of a SELECT INTO
statement (division by zero or overflow) or a numeric conversion error occurs, the result is the null
value. As in any other case of a null value, an indicator variable must be provided and the main
variable is unchanged. In this case, however, the indicator variable is set to -2. Processing of the
statement continues as if the error had not occurred. (However, this error causes a positive SQLCODE.)
If you do not provide an indicator variable, a negative value is returned in the SQLCODE field of the
SQLCA. Processing of the statement terminates when the error is encountered.

If an error occurs, no value is assigned to the variable or to later variables, though any values that
have already been assigned to variables remain assigned.

If an error occurs because the result table has more than one row, values might be assigned to the
variables. If values are assigned to the variables, the row that is the source of the values is undefined
and not predictable.

SKIP LOCKED DATA
Specifies that rows are skipped when incompatible locks are held on the row by other transactions.
These rows can belong to any accessed table that is specified in the statement. SKIP LOCKED DATA
can be used only when isolation CS or RS is in effect and applies only to row level or page level locks.

SKIP LOCKED DATA is ignored if it is specified when the isolation level that is in effect is repeatable
read (WITH RR) or uncommitted read (WITH UR).

QUERYNO integer
Specifies the number to be used for this SQL statement in EXPLAIN output and trace records. The
number is used for the QUERYNO columns of the plan tables for the rows that contain information
about this SQL statement. This number is also used in the QUERYNO column of the SYSIBM.SYSSTMT
and SYSIBM.SYSPACKSTMT catalog tables.

If the clause is omitted, the number associated with the SQL statement is the statement number
assigned during precompilation. Thus, if the application program is changed and then precompiled,
that statement number might change.

Using the QUERYNO clause to assign unique numbers to the SQL statements in a program is helpful:

• For simplifying the use of optimization hints for access path selection
• For correlating SQL statement text with EXPLAIN output in the plan table

For more information about enabling and using optimization hints,, see Influencing access path
selection (Db2 Performance).

Notes for SELECT INTO
Assignment to targets

The nth target identified by the INTO clause or described in the SQLDA corresponds to the nth column
of the result table of the cursor. The data type of target must be compatible with its corresponding
value. If the value is numeric, the target must have the capacity to represent the whole part of the
value. For a datetime value, the target must be a character string variable of a minimum length as
defined in “String representations of datetime values” on page 120. When the target is a host variable,
if the value is null, an indicator variable must be specified.

Assignments are made in sequence through the list. Each assignment to a target is made according to
the rules described in Chapter 2, “Language elements in SQL,” on page 75. If the number of targets
is less than the number of values in the row, the SQLWARN3 field of the SQLCA is set to 'W'. There is
no warning if there are more targets than the number of result columns. If the target is a host variable
and the value is null, an indicator variable must be provided. If an assignment error occurs, the value

2120 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_influenceaccesspaths.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_influenceaccesspaths.html

is not assigned to the target and no more values are assigned to targets. Any values that have already
been assigned to targets remain assigned.

If more than one assignment is included in the same assignment statement, all expressions are
evaluated before the assignments are performed. For example, a reference to a variable in an
expression always uses the value of the variable prior to any assignment in the assignment statement.

Normally, you use LOB locators to assign and retrieve data from LOB columns. However, because of
compatibility rules, you can also use LOB locators to assign data to targets with other data types.
For more information on using locators, see Saving storage when manipulating LOBs by using LOB
locators (Db2 Application programming and SQL).

A timestamp without time zone value must not be assigned to a timestamp with time zone target.

Default encoding scheme
The default encoding scheme for the data is the value in the bind option ENCODING, which is
the option for application encoding. If this statement is used with functions such as LENGTH or
SUBSTRING that are operating on LOB locators, and the LOB data that is specifies by the locator is
in a different encoding scheme from the ENCODING bind option, LOB materialization and character
conversion occur. To avoid LOB materialization and character conversion, select the LOB data from the
SYSIBM.SYSDUMMYA, SYSIBM.SYSDUMMYE, or SYSIBM.SYSDUMMYU sample table.

If the result table is empty
If the table is empty, the statement assigns +100 to SQLCODE, '02000' to SQLSTATE, and does not
assign values to the host variables or global variables.

Number of rows inserted
If the SELECT INTO statement of the cursor contains an SQL data change statement, the SELECT INTO
operation sets SQLERRD(3) to the number of rows inserted.

offset-clause considerations

• The offset-clause can be used in the SELECT INTO statement when the query can result in more
than a single row.

• To influence which row is returned, you can use the order-by-clause. When you specify the order-by-
clause, the rows of the result are ordered, the specified number of rows are skipped, and the first
row is returned. If the fetch-clause is not specified and the result table contains more than a single
row, an error occurs.

fetch-clause considerations

• The fetch-clause can be used in a SELECT INTO statement when the query can result in more than
a single row. Specifying FETCH FIRST 1 ROW ONLY indicates that at most one row can be retrieved,
regardless of how many rows are in the result table.

• Using the fetch-clause to explicitly limit the result table to a single row provides a way for a SELECT
INTO statement to be used with a query that might return more than a single row. Using the
clause helps you to avoid using a cursor when you know that you want to retrieve only one row.
To influence which row is returned, you can use the order-by-clause. When you specify the order-by-
clause, the rows of the result are ordered and then the first row is returned. If the fetch-clause is not
specified and the result table contains more than a single row, an error occurs.

Examples for SELECT INTO

Example 1
Put the maximum salary in DSN8C10.EMP into the host variable MAXSALRY.

 EXEC SQL SELECT MAX(SALARY)
 INTO :MAXSALRY
 FROM DSN8C10.EMP;

Chapter 7. Statements 2121

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_savestoragelob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_savestoragelob.html

Example 2
Put the row for employee 528671, from DSN8C10.EMP, into the host structure EMPREC.

 EXEC SQL SELECT * INTO :EMPREC
 FROM DSN8C10.EMP
 WHERE EMPNO = '528671'
 END-EXEC.

Example 3
Put the row for employee 528671, from DSN8C10.EMP, into the host structure EMPREC. Assume that
the row will be updated later and should be locked when the query executes.

 EXEC SQL SELECT * INTO :EMPREC
 FROM DSN8C10.EMP
 WHERE EMPNO = '528671'
 WITH RS USE AND KEEP EXCLUSIVE LOCKS
 END-EXEC.

Example 4
Using a SELECT INTO statement, retrieve the value of INTCOL1 from table T1 into an element in array
MYINTARRAY1, which is indexed by the value of the expression INTCOL2+MYINTVAR+1.

SELECT INTCOL1 INTO MYINTARRAY1[INTCOL2+MYINTVAR+1]
 FROM T1
 WHERE INTCOL1 = MYINTARRAY1[INTCOL2] ;

Related concepts
Interaction between FETCH and OPTIMIZE FOR clauses (Db2 Performance)
Related reference
fetch-clause
The fetch-clause limits the number of rows that can be fetched.

SET CONNECTION statement
The SET CONNECTION statement establishes the database server of the process by identifying one of its
existing connections.

Invocation for SET CONNECTION
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared. It must not be specified in Java.

Authorization for SET CONNECTION
None required.

Syntax for SET CONNECTION

SET CONNECTION location-name

host-variable

Description for SET CONNECTION
location-name or host-variable

Identifies the SQL connection by the specified location name or the location name contained in the
host variable. If a host variable is specified:

• It must be a character string variable with a length attribute that is not greater than 16. (A C
NUL-terminated character string can be up to 17 bytes.)

2122 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_fetchfirstoptimizefor.html

• It must not be followed by an indicator variable.
• The location name must be left-justified within the host variable and must conform to the rules for

forming an ordinary location identifier.
• If the length of the location name is less than the length of the host variable, it must be padded on

the right with blanks.

Let S denote the specified location name or the location name contained in the host variable. S
must identify an existing SQL connection of the application process. If S identifies the current SQL
connection, the state of S and all other connections of the application process are unchanged. The
following rules apply when S identifies a dormant SQL connection.

If the SET CONNECTION statement is successful:

• SQL connection S is placed in the current state.
• S is placed in the CURRENT SERVER special register.
• Information about server S is placed in the SQLERRP field of the SQLCA. If the server is an IBM product,

the information has the form pppvvrrm.

The product identifier (PRDID) value is an 8-byte character value in pppvvrrm format, where: ppp is a
3-letter product code; vv is the version;rr is the release; and m is the modification level. In Db2 12 for
z/OS, the modification level indicates a range of function levels:

DSN12015 for V12R1M500 or higher.
DSN12010 for V12R1M100.

For more information, see Product identifier (PRDID) values in Db2 for z/OS (Db2 Administration Guide).
• Any previously current SQL connection is placed in the dormant state.

If the SET CONNECTION statement is unsuccessful, the connection state of the application process and
the states of its SQL connections are unchanged.

Notes for SET CONNECTION
SET CONNECTION after CONNECT (Type 1): The use of CONNECT (Type 1) statements does not prevent
the use of SET CONNECTION, but the statement either fails or does nothing because dormant SQL
connections do not exist. The SQLRULES(DB2) bind option does not prevent the use of SET CONNECTION,
but the statement is unnecessary because CONNECT (Type 2) statements can be used instead. Use the
SET CONNECTION statement to conform to the SQL standard.

Status of locks, cursors, and prepared statements: When an SQL connection is used, made dormant, and
then restored to the current state in the same unit of work, the status of locks, cursors, and prepared
statements for that SQL connection reflects its last use by the application process.

Host variables: If the SET CONNECTION statement contains host variables, the contents of the host
variables are assumed to be in the encoding scheme that was specified in the ENCODING parameter
when the package or plan that contains the statement was bound.

Restrictions on array types and array variables: In any SQL statement other than a CALL statement,
array types and array variables must not be referenced after a connection at a remote server has been
established. This restriction includes an SQL statement that executes at a remote server as a result
of a three-part name or alias that resolves to an object at a remote server. An exception is that an
array element can be the target of a FETCH, SELECT INTO, SET assignment-statement, or VALUES INTO
statement in an SQL routine even when the statement is executed at a remote server.

Example for SET CONNECTION

Execute SQL statements at TOROLAB1, execute SQL statements at TOROLAB2, and then execute more
SQL statements at TOROLAB1.

Chapter 7. Statements 2123

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_prdidvalues.html

 EXEC SQL CONNECT TO TOROLAB1;

 -- execute statements referencing objects at TOROLAB1

 EXEC SQL CONNECT TO TOROLAB2;

 -- execute statements referencing objects at TOROLAB2

 EXEC SQL SET CONNECTION TOROLAB1;

 -- execute statements referencing objects at TOROLAB1

The first CONNECT statement creates the TOROLAB1 connection, the second CONNECT statement places
it in the dormant state, and the SET CONNECTION statement returns it to the current state.

SET assignment-statement statement
The SET assignment-statement statement assigns values to variables and array elements.

Invocation for SET assignment-statement
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared if the targets of all assignments are global variables.

Authorization for SET assignment-statement
The privileges that are held by the privilege set must include those required to execute any of the
expressions.

If a row-subselect is specified, see Chapter 6, “Queries,” on page 1007 for an explanation of the
authorization that is required for each subselect.

If a global variable or an element of an array global variable is referenced, the privilege set must include
at least one of the following:

• The READ privilege on the variable
• Ownership of the variable
• DATAACCESS authority
• SYSADM authority

For an assignment to a global variable or an element of an array global variable, the privilege set must
include at least one of the following:

• The WRITE privilege on the variable
• Ownership of the variable
• DATAACCESS authority
• SYSADM authority

For an assignment to a transition variable, the privilege set must include at least one of the following:

• The UPDATE privilege on the table or view on which the trigger that contains the assignment statement
is defined

• The UPDATE privilege on the column corresponding to the transition variable to be assigned a value
• Ownership of the table or view on which the trigger that contains the assignment statement is defined
• DBADM authority on the database that contains the table on which the trigger that contains the

assignment statement is defined
• DATAACCESS authority
• SYSADM authority

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the package. If the statement is dynamically prepared, the privilege set is

2124 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

determined by the DYNAMICRULES behavior in effect (run, bind, define, or invoke) and is summarized
in DYNAMICRULES behaviors and authorization checking. For more information on these behaviors,
including a list of the DYNAMICRULES bind option values that determine them, see “Authorization IDs
and dynamic SQL” on page 94.

Syntax for SET assignment-statement

SET assignment-clause

assignment-clause
array-variable-name [array-index] = expression

NULL
,

target-variable = expression

NULL

DEFAULT
1

(

,

target-variable) = (

,

expression

NULL

DEFAULT
1

2

row-subselect

VALUES expression

NULL

DEFAULT
1

(

,

expression

NULL

DEFAULT
1

)

)

target-variable
global-variable-name

host-variable-name

SQL-parameter-name

SQL-variable-name

transition-variable-name

Notes:
1 DEFAULT must only be specified when the corresponding target is a global variable or a transition
variable. If DEFAULT is specified for a transition variable in an advanced trigger, then all target variables
must be transition variables, and all source values must be specified with the DEFAULT keyword.
2 The number of source value specifications (expression, NULL, or DEFAULT) on the right side of the equal
sign must match the number of target specifications on the left side of the statement.

Description for SET assignment-statement
array-variable [array-index]

Specifies an array element that is the target of the assignment.

Chapter 7. Statements 2125

An array element must not be specified as the target for an assignment if common-table-expression is
also specified in the statement.

array-variable
Specifies an array variable.

[array-index]
An expression that specifies which element in the array is the target of the assignment.

For an ordinary array, the array index expression must be castable to INTEGER, and must not be
the null value. The index value must be between 1 and the maximum cardinality that is defined for
the array.

For an associative array, the array index expression must be castable to the index data type of the
associative array, and must not be the null value.

array-index must not be:

• An expression that references the CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP
special register

• A nondeterministic function
• A function that is defined with EXTERNAL ACTION
• A function that is defined with MODIFIES SQL DATA
• A sequence expression

The value that is to be assigned to an array element must be specified immediately following the array
element. For example:

array-variable[array-index]=expression

expression
Specifies the value that is to be assigned to the corresponding assignment target. The expression is
any expression of the type described in “Expressions” on page 245. All expressions are evaluated
before any result is assigned to a target. If an expression refers to a variable or array element that is
used in the list of assignment targets, the value of the variable or array element in the expression is
the value of the variable or array element prior to any assignments.

Each assignment to a target is made according to the assignment rules described in “Assignment and
comparison” on page 143. When the target variables and expressions are in the following form, the
first value is assigned to the first target variable in the list, the second value is assigned to the second
target variable in the list, and so on.

(target-variable,target-variable,…)=(expression,expression,…)

DEFAULT
Specifies that the new value for the variable is the initial default value for a global variable or the
default value of a column that corresponds to a transition variable. DEFAULT can only be assigned
to a global variable, or to a transition variable. If DEFAULT is specified for a transition variable in an
advanced trigger, then all target variables must be transition variables, and all source values must be
specified with the DEFAULT keyword.

A ROWID column must not be set to the DEFAULT keyword.

NULL
Specifies the null value and can only be specified for host variables that have an associated indicator
variable.

VALUES
Specifies the values that are to be assigned to the corresponding assignment targets. When more than
one value is specified, the values must be enclosed in parentheses. Each value can be an expression
or NULL, as previously described. The following syntaxes are equivalent:

• (target-variable, target-variable) = (VALUES(expression, NULL))

2126 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• (target-variable, target-variable) = (expression, NULL)

A parameter marker must not be specified.

row-subselect
A subselect that returns a single row. The number of columns corresponds to the number of target
variables that are specified for assignment. Each result column value is assigned to the corresponding
variable. If the result of the row subselect is no rows, then null values are assigned. An error is
returned if there is more than one row in the result. row-subselect can be specified only in the
outermost subselect within SQL PL. row-subselect must not be specified in a basic trigger.

target-variable
Identifies one or more targets for the assignment of values. The number of targets must equal the
number of values that are to be assigned.

If the statement is issued in a basic trigger, each target variable must be a transition variable.

The value that is to be assigned to each target variable can be specified immediately following the
variable. For example:

variable=expression, variable=expression

Alternatively, sets of parentheses can be used to specify all of the target variables, and then all of the
values. For example:

(variable,variable)=(expression,expression)

The data type of each variable in the variable list must be compatible with its corresponding result
column. Each assignment to a target-variable is made in sequence through the list, according to the
rules described in “Assignment and comparison” on page 143.

The value 'W' is assigned to the SQLWARN3 field of the SQLCA if the number of targets is less than the
number of result column values.

If an error occurs on any assignment, the value is not assigned to the target, and no more values are
assigned to the specified targets. Any values that have already been assigned remain assigned.

global-variable-name
Identifies the global variable that is the assignment target.

host-variable-name
Identifies the host variable that is the assignment target. For LOB output values, the target can
be a regular host variable (if it is large enough), a LOB locator variable, or a LOB file reference
variable.

SQL-parameter-name
Identifies the parameter that is the assignment target.

SQL-variable-name
Identifies the SQL variable that is the assignment target. SQL variables must be declared before
they are used.

transition-variable-name
Identifies the column that is to be updated in the transition row. A transition variable name must
identify a column in the subject table of a trigger, and is optionally qualified by a correlation name
that identifies the new value.

transition-variable-name must not correspond to a begin column or end column of a
BUSINESS_TIME period, and must not be specified if the statement contains a period-clause.

Notes for SET assignment-statement
Multiple assignments:

If more than one assignment is included in the same SET statement, all expressions and row-
subselects are completely evaluated before the assignments are performed. Thus, references to a

Chapter 7. Statements 2127

target variable in an expression or row-subselect are always the value of the target variable prior to
any assignment in the SET statement.

LOBs assignments:
Normally, you use LOB locators to assign and retrieve data from LOB columns. However, because of
compatibility rules, you can also use LOB locators to assign data to targets with other data types.
For more information on using locators, see Saving storage when manipulating LOBs by using LOB
locators (Db2 Application programming and SQL).

Default encoding scheme:
The default encoding scheme for the data is the value in the bind option ENCODING, which is
the option for application encoding. If this statement is used with functions such as LENGTH or
SUBSTRING that are operating on LOB locators, and the LOB data that is specifies by the locator is
in a different encoding scheme from the ENCODING bind option, LOB materialization and character
conversion occur. To avoid LOB materialization and character conversion, select the LOB data from the
SYSIBM.SYSDUMMYA, SYSIBM.SYSDUMMYE, or SYSIBM.SYSDUMMYU sample table.

Examples for SET assignment-statement

Example 1: Set the host variable HVL to the value of the CURRENT PATH special register.

 SET :HVL = CURRENT PATH;

Example 2: Set the host variable PATH to the contents of the SQL PATH special register, the host variable
XTIME to the local time at the current server, and the host variable MEM to the current member of the
data sharing environment.

 SET :SERVER = CURRENT PATH,
 :XTIME = CURRENT TIME,
 :MEM = CURRENT MEMBER;

Example 3: Set the host variable DETAILS to a portion of a LOB value, using a LOB expression with a LOB
locator to refer the extracted portion of the value.

 SET :DETAILS = SUBSTR(:LOCATOR,1,35);

If the LOB data that is specified by the LOB locator LOCATOR is in a different encoding scheme from the
value of the ENCODING bind option, and you want to avoid LOB materialization and character conversion,
use the following statement instead of the SET statement:

 SELECT SUBSTR(:LOCATOR,1,35)
 INTO :DETAILS
 FROM SYSIBM.SYSDUMMYU;

Example 4: Set host variable HV1 to the results of external function CALC_SALARY and host variable HV2
to the value of special register CURRENT PATH. Use an indicator value with HV1 in case CALC_SALARY
returns a null value.

 SET (:HV1:IND1, :HV2) =
 (CALC_SALARY(:HV3, :HF4), CURRENT PATH);

Example 5: Assume that you want to create a before trigger that sets the salary and commission columns
to default values for newly inserted rows in the EMPLOYEE table and that you will define the trigger
only with NEW in the REFERENCING clause. Assign the default values to the SALARY and COMMISSION
columns.

 SET (SALARY, COMMISSION) = (50000, 8000);

Example 6: Assume that you want to create a before trigger that detects any commission increases
greater than 10% for updated rows in the EMPLOYEE table and limits the commission increase to 10%.

2128 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_savestoragelob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_savestoragelob.html

You will define the trigger with both OLD and NEW in the REFERENCING clause. Limit an increase to the
COMMISSION column to 10%.

 SET NEWROW.COMMISSION = 1.1 * OLDROW.COMMISSION;

Example 7: Suppose that the associative array variable CANADACAPITALS has array type
CAPITALSARRAY. Use SET assignment-statement statements to assign values to CANADACAPITALS.

SET CANADACAPITALS['British Columbia'] = 'Victoria';
SET CANADACAPITALS['Alberta'] = 'Edmonton';
SET CANADACAPITALS['Manitoba'] = 'Winnipeg';
SET CANADACAPITALS['Ontario'] = 'Toronto';
SET CANADACAPITALS['Nova Scotia'] = 'Halifax';

In the CANADACAPITALS array, the array index values are province names, and the associated array
element values are the names of the corresponding capital cities. The order in which values are assigned
to associative array elements does not matter. The elements of an associative array are stored in the array
in ascending order of the associated array index values.

Example 8: Suppose that the associative array variables CANADACAPITALSA and CANADACAPITALSB
have array type CAPITALSARRAY. The following SET assignment-statement statements have been used to
assign values to CANADACAPITALSA.

SET CANADACAPITALSA['British Columbia'] = 'Victoria';
SET CANADACAPITALSA['Alberta'] = 'Edmonton';
SET CANADACAPITALSA['Manitoba'] = 'Winnipeg';
SET CANADACAPITALSA['Ontario'] = 'Toronto';
SET CANADACAPITALSA['Nova Scotia'] = 'Halifax';

Use a single SET assignment-statement statement to assign all of the values that are in
CANADACAPITALSA to CANADACAPITALSB.

SET CANADACAPITALSB = CANADACAPITALSA;

Example 9: Suppose that P_PHONENUMBERS SQL array variable is defined as an ordinary array. Set
P_PHONENUMBERS to an array of fixed numbers.

SET P_PHONENUMBERS = ARRAY[9055553907, 4165554213, 4085553678];

Example 10: Set the SQL array variable P_PHONENUMBERS to an array of numbers that are retrieved from
the PHONENUMBER table.

SET P_PHONENUMBERS =
 ARRAY [SELECT NUMBER
 FROM PHONENUMBERS
 WHERE EMPID = 624];

Example 11: Suppose that no values have been assigned to SQL array variable P_PHONENUMBERS.
Assign the value of SQL variable P_MYNUMBER to the first and tenth elements of P_PHONENUMBERS.
After the first assignment, the cardinality of P_PHONENUMBERS is 1. After the second assignment, the
cardinality is 10, and elements 2 to 9 have been implicitly assigned the null value.

SET P_PHONENUMBERS[1] = P_MYNUMBER;
SET P_PHONENUMBERS[10] = P_MYNUMBER;

SET CURRENT ACCELERATOR statement
The SET CURRENT ACCELERATOR statement changes the value of the CURRENT ACCELERATOR special
register.

Invocation for SET CURRENT ACCELERATOR
This statement can be embedded in an application program, or it can be issued interactively. SET
CURRENT ACCELERATOR is an executable statement that can be dynamically prepared.

Chapter 7. Statements 2129

Authorization for SET CURRENT ACCELERATOR
None required.

Syntax for SET CURRENT ACCELERATOR

SET CURRENT ACCELERATOR = accelerator-name

host-variable

Description for SET CURRENT ACCELERATOR
accelerator-name

A character string constant that represents an accelerator name or an accelerator logical name that is
recorded in SYSIBM.LOCATIONS.

host variable
A variable that represents an accelerator name or an accelerator logical name that is recorded in
SYSIBM.LOCATIONS.

The accelerator name or host variable that you specify must meet these criteria:

• It must be unique within the Db2 subsystem or data sharing group.
• It must be 8 characters or fewer.
• It must consist of the characters A-Z and 0-9.

Examples for SET CURRENT ACCELERATOR
The following statement sets the CURRENT ACCELERATOR special register so that ACCEL1 is the
preferred accelerator.

SET CURRENT ACCELERATOR = ACCEL1;

The following statement sets the CURRENT ACCELERATOR special register to an alias that includes two
accelerators, ACCLPRO1 and ACCLPRO2.

INSERT INTO SYSIBM.LOCATIONS (LOCATION, LINKNAME, DBALIAS)
VALUES ('IDAATEST', 'DSNACCELERATORALIAS', 'ACCLPRO1 ACCLPRO2');

SET CURRENT ACCELERATOR = IDAATEST;

Related tasks
Enabling acceleration of SQL queries (Db2 Performance)
Related reference
“CURRENT ACCELERATOR special register” on page 184The CURRENT ACCELERATOR special register
specifies a particular accelerator to which Db2 sends dynamic SQL. The CURRENT ACCELERATOR special
register does not apply to static SQL.

SET CURRENT APPLICATION COMPATIBILITY statement
The SET CURRENT APPLICATION COMPATIBILITY statement assigns a value to the CURRENT
APPLICATION COMPATIBILITY special register. This special register allows users to control the package
compatibility level behavior for dynamic SQL.

Invocation for SET CURRENT APPLICATION COMPATIBILITY
This statement can be embedded in an application program or dynamically prepared.

2130 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_enablequeryaccel.html

Authorization for SET CURRENT APPLICATION COMPATIBILITY
None required.

Syntax for SET CURRENT APPLICATION COMPATIBILITY

SET CURRENT APPLICATION COMPATIBILITY
=

string-constant

variable

Description for SET CURRENT APPLICATION COMPATIBILITY
string-constant

Specifies a character string constant. The value must represent a valid release compatibility level, in
uppercase.

variable
A variable with a data type of CHAR or VARCHAR. The value of variable must not be null and must
represent a valid release compatibility level, in uppercase.

The value must:

• Be left-aligned within the variable
• Be padded on the right with blanks if its length is less than the variable

The following levels can be specified to set to specify the compatibility behavior of dynamic SQL
statements in packages:

VvvRrMmmm

Compatibility with the behavior of the identified Db2 function level. For example, V12R1M510
specifies compatibility with the highest available Db2 12 function level. The equivalent function level
or higher must be activated.

For the new capabilities that become available in each application compatibility level, see:

• SQL changes in Db2 13 application compatibility levels
• SQL changes in Db2 12 application compatibility levels

Tip: Extra program preparation steps might be required to increase the application compatibility level
for applications that use data server clients or drivers to access Db2 for z/OS. For more information,
see Setting application compatibility levels for data server clients and drivers (Db2 Application
programming and SQL).

V12R1
Compatibility with the behavior of Db2 12 function level 500. This value has the same result as
specifying V12R1M500.

V11R1
Compatibility with the behavior of Db2 11 new-function mode. After migration to Db2 12, this
value has the same result as specifying V12R1M100. For more information, see V11R1 application
compatibility level (Db2 Application programming and SQL)

V10R1
Compatibility with the behavior of DB2 10 new-function mode. For more information, see V10R1
application compatibility level (Db2 Application programming and SQL).

Notes:

• After the activation of function level 500 or higher, the source value for CURRENT APPLICATION
COMPATIBILITY cannot be higher than the APPLCOMPAT bind option value.

Chapter 7. Statements 2131

https://www.ibm.com/docs/en/SSEPEK_13.0.0/wnew/src/tpc/db2z_13_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html

• Function level V12R1M500 is the same as V12R1, and V12R1M100 is the same as V11R1.

Examples for SET CURRENT APPLICATION COMPATIBILITY

The following examples set the CURRENT APPLICATION COMPATIBILITY special register to 'V11R1' (in
the second example, host variable HV1 = 'V11R1').

 EXEC SQL SET CURRENT APPLICATION COMPATIBILITY = 'V11R1';
 EXEC SQL SET CURRENT APPLICATION COMPATIBILITY = :HV1;

Related reference
CURRENT APPLICATION COMPATIBILITY special register
CURRENT APPLICATION COMPATIBILITY specifies the application compatibility level support for
dynamic SQL statements in packages.
-ACTIVATE command (Db2) (Db2 Commands)
Db2 12 function levels (Db2 for z/OS What's New?)

SET CURRENT APPLICATION ENCODING SCHEME
The SET CURRENT APPLICATION ENCODING SCHEME statement assigns a value to the CURRENT
APPLICATION ENCODING SCHEME special register. This special register allows users to control which
encoding scheme will be used for dynamic SQL statements after the SET statement has been executed.

Invocation for SET CURRENT APPLICATION ENCODING SCHEME
This statement can be embedded only in an application program. It is an executable statement that
cannot be dynamically prepared.

Authorization for SET CURRENT APPLICATION ENCODING SCHEME
None required.

Syntax for SET CURRENT APPLICATION ENCODING SCHEME

SET CURRENT
APPLICATION

ENCODING SCHEME
=

string-constant

host-variable

Description for SET CURRENT APPLICATION ENCODING SCHEME
string-constant

A character string constant that represents a valid encoding scheme (ASCII, EBCDIC, UNICODE, or a
character representation of a number in the range 1–65533).

host variable
A variable with a data type of CHAR or VARCHAR. The value of host-variable must not be null and must
represent a valid encoding scheme or a character representation of a number in the range 1–65533).
An associated indicator variable must not be provided.

The value must:

• Be left justified within the host variable
• Be padded on the right with blanks if its length is less than that of the host variable

2132 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_activate.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_db2functionlevels.html

Examples for SET CURRENT APPLICATION ENCODING SCHEME

The following examples set the CURRENT APPLICATION ENCODING SCHEME special register to 'EBCDIC'
(in the second example, Host variable HV1 = 'EBCDIC').

 EXEC SQL SET CURRENT APPLICATION ENCODING SCHEME = 'EBCDIC';
 EXEC SQL SET CURRENT ENCODING SCHEME = :HV1;

Related reference
CURRENT APPLICATION ENCODING SCHEME special register
CURRENT APPLICATION ENCODING SCHEME specifies which encoding scheme is to be used for dynamic
statements. It allows an application to indicate the encoding scheme that is used to process data. This
register is not supported in REXX applications or in stored procedures written in REXX.

SET CURRENT DEBUG MODE statement
The SET CURRENT DEBUG MODE statement assigns a value to the CURRENT DEBUG MODE special
register.

The special register sets the default value for the DEBUG MODE option for the following statements:

• CREATE FUNCTION statements that define an SQL scalar function
• ALTER FUNCTION statements that create or replace a version of an SQL scalar function
• CREATE PROCEDURE statements that define a native SQL or Java procedure
• ALTER PROCEDURE statements that create or replace a version of a native SQL procedure
• CREATE TRIGGER (advanced) statement that defines a trigger
• ALTER TRIGGER (advanced) statement that changes a trigger

Invocation for SET CURRENT DEBUG MODE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for SET CURRENT DEBUG MODE
None required.

Syntax for SET CURRENT DEBUG MODE

SET CURRENT DEBUG MODE
=

host-variable

DISALLOW

ALLOW

DISABLE

Description for SET CURRENT DEBUG MODE
host-variable

Specifies a host variable that contains the debugging option. The host variable must conform to the
following rules:

• Be a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC variable. The actual length of the contents of the
host variable must not exceed the length of the special register.

• Include a keyword value of DISALLOW, ALLOW, or DISABLE that is left justified
• Be padded on the right with blanks if the host variable is a fixed length character

Chapter 7. Statements 2133

• Not contain lowercase letters or characters that cannot be specified in an ordinary identifier
• Not be empty or contain only blanks
• Not be the null value

DISALLOW
Specifies that DISALLOW DEBUG MODE is the default option for CREATE statements when defining an
SQL scalar function, native SQL procedure, Java procedure, or trigger, ALTER statements that create or
replace a version of an SQL scalar function or native SQL procedure, or ALTER statements that change
a trigger.

ALLOW
Specifies that ALLOW DEBUG MODE is the default option for CREATE statements when defining an
SQL scalar function, native SQL procedure, Java procedure, or trigger, ALTER statements that create or
replace a version of an SQL scalar function or native SQL procedure, or ALTER statements that change
a trigger.

DISABLE
Specifies that DISABLE DEBUG MODE is the default option for CREATE statements when defining an
SQL scalar function, native SQL procedure, Java procedure, or trigger, ALTER statements that add a
version of an SQL scalar function or native SQL procedure, or ALTER statements that change a trigger.

Examples for SET CURRENT DEBUG MODE

Example: The following statement sets the CURRENT DEBUG MODE special register so that the default
option for CREATE PROCEDURE statements will be ALLOW DEBUG MODE:

 SET CURRENT DEBUG MODE = ALLOW;

Related reference
CURRENT DEBUG MODE special register
CURRENT DEBUG MODE specifies the default value for the DEBUG MODE option when advanced triggers
and certain routines are created. The DEBUG MODE option specifies whether the trigger or routine should
be built with the ability to run in debugging mode.

SET CURRENT DECFLOAT ROUNDING MODE statement
The SET CURRENT DECFLOAT ROUNDING MODE statement assigns a value to the CURRENT DECFLOAT
ROUNDING MODE special register. The special register sets the default rounding mode that is used with
decimal floating point values (DECFLOAT).

Invocation for SET CURRENT DECFLOAT ROUNDING MODE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for SET CURRENT DECFLOAT ROUNDING MODE
None required.

2134 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Syntax for SET CURRENT DECFLOAT ROUNDING MODE

SET CURRENT DECFLOAT ROUNDING MODE
=

ROUND_CEILING

ROUND_DOWN

ROUND_FLOOR

ROUND_HALF_DOWN

ROUND_HALF_EVEN

ROUND_HALF_UP

ROUND_UP

string-constant

host-variable

Description for SET CURRENT DECFLOAT ROUNDING MODE
ROUND_CEILING

Round towards positive infinity. If all of the discarded digits are zero or if the sign is negative, the
result is unchanged other than the removal of discarded digits. Otherwise, the result coefficient is
incremented by 1 (round up).

ROUND_DOWN
Round towards 0 (truncation). The discarded digits are ignored.

ROUND_FLOOR
Round towards negative infinity. If all of the discarded digits are zero or if the sign is positive, the
result is unchanged other than the removal of discarded digits. Otherwise, the sign is negative and the
result coefficient is incremented by 1 (round down).

ROUND_HALF_DOWN
Round to nearest value; if values are equidistant, rounds down. If the discarded digits represent
greater than half (0.5) of the value of a number in the next left position, the result coefficient is
incremented by 1 (round up). Otherwise, the discarded digits are ignored. This rounding mode is not
recommended when creating a portable application because it is not supported by the IEEE draft
standard for floating-point arithmetic.

ROUND_HALF_EVEN
Round to nearest value; if values are equidistant, round so that the final digit is even. If the discarded
digits represent greater than half (0.5) of the value of a number in the next left position, the result
coefficient is incremented by 1 (round up). If the discarded digits represent less than half of the value,
the result coefficient is not adjusted (that is, the discarded digits are ignored). Otherwise, the result
coefficient is unaltered if its rightmost digit is even, or is incremented by 1 (round up) if its rightmost
digit is odd (to make an even digit).

ROUND_HALF_UP
Round to nearest value; if values are equidistant, round up. If the discarded digits represent greater
than or equal to half (0.5) of the value of a number in the next left position, the result coefficient is
incremented by 1 (round up). Otherwise the discarded digits are ignored.

ROUND_UP
Round away from 0. If all of the discarded digits are zero, the result is unchanged other than the
removal of discarded digits. Otherwise, the result coefficient is incremented by 1 (round up). This
rounding mode is not recommended when creating a portable application because it is not supported
by the IEEE draft standard for floating-point arithmetic.

string-constant
Specifies a string constant that contains a specification of the rounding mode. The string-constant
must have the following characteristics:

Chapter 7. Statements 2135

• Must be a string constant. The actual length of the contents of the string constant, after trailing
blanks have been removed, must not exceed 19 characters.

• Must not be the null value.
• Must not contain lower case letters or characters that cannot be specified in an ordinary identifier.
• Must specify one of the seven rounding mode keywords as a string constant.

host-variable
Specifies a variable that contains a specification of the rounding mode. The variable must have the
following characteristics:

• Must have a length, after trailing blanks have been removed, that does not exceed 19 bytes.
• Must not be followed by an indicator variable.
• Must not be a CLOB or DBCLOB.
• Must include a rounding mode that is left justified and conforms to the rules for forming an ordinary
identifier.

• Must not contain lower case letters or characters that cannot be specified in an ordinary identifier.
• Must be padded on the right with blanks if the variable is a fixed length string.
• Must contain one of the seven rounding mode keywords.

Examples for SET CURRENT DECFLOAT ROUNDING MODE

Example: The following statement sets the CURRENT DECFLOAT ROUNDING MODE to ROUND_CEILING,
using a string constant and a keyword.

 SET CURRENT DECFLOAT ROUNDING MODE = ROUND_CEILING;

Related reference
CURRENT DECFLOAT ROUNDING MODE special register
CURRENT DECFLOAT ROUNDING MODE specifies the default rounding mode that is used for DECFLOAT
values.

SET CURRENT DEGREE statement
The SET CURRENT DEGREE statement assigns a value to the CURRENT DEGREE special register.

Invocation for SET CURRENT DEGREE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for SET CURRENT DEGREE
None required.

Syntax for SET CURRENT DEGREE

SET CURRENT DEGREE = string-constant

host-variable

Description for SET CURRENT DEGREE
The value of CURRENT DEGREE is replaced by the value of the string constant or host variable. The value
must be a character string that is not longer than 3 bytes and the value must be 'ANY', '1', or '1 '.

2136 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Notes for SET CURRENT DEGREE
If the value of CURRENT DEGREE is '1' when a query is dynamically prepared, the execution of that query
will not use parallel operations. If the value of CURRENT DEGREE is 'ANY' when a query is dynamically
prepared, the execution of that query can involve parallel operations.

For distributed applications, the default value at the server is used unless the requesting application
issues the SQL statement SET CURRENT DEGREE. For requests using DRDA, the SET CURRENT DEGREE
statement must be within the scope of the CONNECT statement.

The value specified in the SET CURRENT DEGREE statement remains in effect until it is changed by the
execution of another SET CURRENT DEGREE statement or until deallocation of the application process.
For applications that connect to Db2 using the call attachment facility, the value of register CURRENT
DEGREE can be requested to remain in effect for a longer duration. For more information, see CAF
connection functions (Db2 Application programming and SQL).

Examples for SET CURRENT DEGREE

Example 1: The following statement inhibits parallel operations:

 SET CURRENT DEGREE = '1';

Example 2: The following statement allows parallel operations:

 SET CURRENT DEGREE = 'ANY';

Related concepts
Parallel processing (Db2 Performance)
Call attachment facility (Db2 Application programming and SQL)
Related tasks
Enabling parallel processing (Db2 Performance)
Disabling query parallelism (Db2 Performance)
Related reference
CURRENT DEGREE special register
CURRENT DEGREE specifies the degree of parallelism for the execution of queries that are dynamically
prepared by the application process.
CURRENT DEGREE field (CDSSRDEF subsystem parameter) (Db2 Installation and Migration)
CONNECT statement
The CONNECT statement connects an application process to a database server. This server becomes the
current server for the process. The CONNECT statement of Db2 for z/OS is equivalent to CONNECT (Type 2)

in SQL Reference for Cross-Platform Development - Version 6.

SET CURRENT EXPLAIN MODE statement
The SET CURRENT EXPLAIN MODE statement assigns a value to the CURRENT EXPLAIN MODE special
register.

Invocation for SET CURRENT EXPLAIN MODE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for SET CURRENT EXPLAIN MODE
None required.

Chapter 7. Statements 2137

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_cafconnectionfunctions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_cafconnectionfunctions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_parallelprocessing.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_caf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_enableparallelprocess.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_disablequeryparallel.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_cdssrdef.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/pdf/cpsqlrv6.pdf

Syntax for SET CURRENT EXPLAIN MODE

SET CURRENT EXPLAIN MODE
=

NO

YES

EXPLAIN

host-variable

Description for SET CURRENT EXPLAIN MODE
This statement replaces the value of the CURRENT EXPLAIN MODE special register with the value of the
specified keyword or host variable.
NO

Specifies that no EXPLAIN information is captured. NO is the initial value of the EXPLAIN MODE
special register.

YES
Enables the EXPLAIN facility and causes EXPLAIN information to be inserted into the EXPLAIN tables
for eligible dynamic SQL statements after the statement is prepared and executed. All dynamic SQL
statements are compiled and executed normally.

EXPLAIN
Enables the EXPLAIN facility and causes EXPLAIN information to be captured for any eligible dynamic
SQL statement after the statement is prepared. This setting behaves similarly to YES, however,
dynamic statements, except for SET statements, are not executed.

host-variable
host-variable must be a CHAR or VARCHAR value and must be NO, YES, or EXPLAIN. Leading blanks
are not allowed. All input values must be uppercase, must be left justified within the host variable, and
must be padded on the right with blanks if the length of the value is less than the length of the host
variable.

For values YES and EXPLAIN, prepared statements are not saved into the dynamic statement cache.

Examples for SET CURRENT EXPLAIN MODE

Example 1: The following statement sets the CURRENT EXPLAIN MODE special register, so that EXPLAIN
information will be captured for any subsequent eligible dynamic SQL statements during execution.

 SET CURRENT EXPLAIN MODE = YES;

Related reference
CURRENT EXPLAIN MODE special register
The CURRENT EXPLAIN MODE special register contains the values that control the EXPLAIN behavior in
regards to eligible dynamic SQL statements.

SET CURRENT GET_ACCEL_ARCHIVE statement
The SET CURRENT GET_ACCEL_ARCHIVE statement changes the value of the CURRENT
GET_ACCEL_ARCHIVE special register.

Invocation for SET CURRENT GET_ACCEL_ARCHIVE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

2138 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Authorization for SET CURRENT GET_ACCEL_ARCHIVE
None required.

Syntax for SET CURRENT GET_ACCEL_ARCHIVE

SET CURRENT GET_ACCEL_ARCHIVE
=

NO

YES

host-variable

Description for SET CURRENT GET_ACCEL_ARCHIVE
NO

Specifies that if a table is archived in an accelerator server, and a query references that table, the
query does not use the data that is archived.

YES
Specifies that if a table is archived in an accelerator server, and a query references that table, the
query uses the data that is archived.

host-variable
A variable with a data type of CHAR or VARCHAR. The length must not exceed 255 bytes. Valid values
are YES or NO. If host-variable has an associated indicator variable, the value of that indicator variable
must not indicate a null value. The value of host-variable must be left justified and must be padded on
the right with blanks.

Examples for SET CURRENT GET_ACCEL_ARCHIVE

The following statement sets the CURRENT GET_ACCEL_ARCHIVE special register to NO to indicate that
when a table is archived in an accelerator server, the table reference does not include the archived data.

 SET CURRENT GET_ACCEL_ARCHIVE=NO;

Related tasks
Enabling acceleration of SQL queries (Db2 Performance)
Related reference
CURRENT GET_ACCEL_ARCHIVE special register
The CURRENT GET_ACCEL_ARCHIVE special register specifies whether a dynamic SQL query that
references a table that is archived on an accelerator server uses the archived data. The special register
does not apply to static SQL queries.

SET CURRENT LOCALE LC_CTYPE statement
The SET CURRENT LOCALE LC_CTYPE statement assigns a value to the CURRENT LOCALE LC_CTYPE
special register. The special register allows control over the LC_CTYPE locale for statements that use a
built-in function that refers to a locale, such as LCASE, UCASE, and TRANSLATE (with a single argument).

Invocation for SET CURRENT LOCALE LC_CTYPE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for SET CURRENT LOCALE LC_CTYPE
None required.

Chapter 7. Statements 2139

https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_enablequeryaccel.html

Syntax for SET CURRENT LOCALE LC_CTYPE

SET CURRENT
LOCALE

LC_CTYPE

CURRENT_LC_CTYPE

=
string-constant

host-variable

Description for SET CURRENT LOCALE LC_CTYPE
The value of CURRENT LOCALE LC_CTYPE is replaced by the value specified.

string-constant
A character string constant that must not be longer than 50 bytes and must represent a valid locale.

host-variable
A variable with a data type of CHAR or VARCHAR and a length that is not longer than 50 bytes. The
value of host-variable must not be null and must represent a valid locale. If the host variable has an
associated indicator variable, the value of the indicator variable must not indicate a null value.

The locale must:

• Be left justified within the host variable
• Be padded on the right with blanks if its length is less than that of the host variable

A locale can be specified in uppercase characters, lowercase characters, or a combination of the two. For
more information, see CURRENT LOCALE LC_CTYPE.

Note: The existence of a locale is not validated when the CURRENT LOCALE LC_CTYPE special register is
set. For example, a locale name that is misspelled is not detected, which could affect the way subsequent
SQL operates. When the special register value is used at execution time, an error is returned if the locale
does not exist. For example, if the LOWER function is invoked without specifying a locale name, the
special register determines the locale that is used.

Examples for SET CURRENT LOCALE LC_CTYPE

Example 1: Set the CURRENT LOCALE LC_CTYPE special register to the locale 'En_US'.

 EXEC SQL SET CURRENT LOCALE LC_CTYPE = 'En_US';

Example 2: Set the CURRENT LOCALE LC_CTYPE special register to the value of host variable HV1, which
contains 'Fr_FR@EURO'.

 EXEC SQL SET CURRENT LOCALE LC_CTYPE = :HV1;

Related concepts
z/OS Unicode Services User’s Guide and Reference
Related reference
CURRENT LOCALE LC_CTYPE special register

2140 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/abstract.htm

CURRENT LOCALE LC_CTYPE specifies the LC_CTYPE locale that will be used to execute SQL statements
that use a built-in function that references a locale. Functions LCASE, UCASE, and TRANSLATE (with a
single argument) refer to the locale when they are executed.

SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
statement

The SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION statement changes the value of the
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special register.

Invocation for SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
None required.

Syntax for SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

SET CURRENT MAINTAINED
TABLE

TYPES
FOR OPTIMIZATION

=
ALL

NONE

SYSTEM

USER

host-variable

Description for SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
The value indicates which materialized query tables that are enabled for optimization are considered
when optimizing the processing of dynamic SQL queries.

ALL
Indicates that all materialized query tables will be considered.

NONE
Indicates that no materialized query tables will be considered.

SYSTEM
Indicates that only system-maintained materialized query tables that are refresh deferred will be
considered.

USER
Indicates that only user-maintained materialized query tables that are refresh deferred will be
considered.

host-variable
A variable of type CHAR or VARCHAR. The length of the contents of host-variable must not exceed 255
bytes. It cannot be set to null. If host-variable has an associated indicator variable, the value of that
indicator variable must not indicate a null value.

The characters of host-variable must be left justified. The content of the host variable must be a
string that would match what can be specified as keywords for the special register in the exact case
intended as there is no conversion to uppercase characters.

Chapter 7. Statements 2141

Notes for SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
The CURRENT REFRESH AGE special register needs to be set to a value other than zero in order for the
specified types of objects to be considered for optimizing the processing of dynamic SQL queries.

The CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special register affects dynamic
statement cache matching.

Examples for SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

Example 1: The following statement sets the CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
special register:

 SET CURRENT MAINTAINED TABLE TYPES ALL;

Example 2: The following example retrieves the current value of the CURRENT MAINTAINED TABLE
TYPES FOR OPTIMIZATION special register into the host variable called CURMAINTYPES.

 EXEC SQL VALUES (CURRENT MAINTAINED TABLE TYPES) INTO :CURMAINTYPES;

The value would be ALL if set by the previous example.

Example 3: The following example resets the CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
special register so that no materialized query tables can be considered to optimize the processing of
dynamic SQL queries.

 SET CURRENT MAINTAINED TABLE TYPES NONE;

Related reference
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special register
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION specifies a value that identifies the types of
objects that can be considered to optimize the processing of dynamic SQL queries. This register contains
a keyword representing table types.

SET CURRENT OPTIMIZATION HINT statement
The SET CURRENT OPTIMIZATION HINT statement assigns a value to the CURRENT OPTIMIZATION
HINT special register.

Invocation for SET CURRENT OPTIMIZATION HINT
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for SET CURRENT OPTIMIZATION HINT
None required.

Syntax for SET CURRENT OPTIMIZATION HINT

SET CURRENT OPTIMIZATION HINT = string-constant

host-variable

Description for SET CURRENT OPTIMIZATION HINT
The value of special register CURRENT OPTIMIZATION HINT is replaced by the value of the string
constant or host variable. The value must be a character string that is not longer than 128 bytes.

2142 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Notes for SET CURRENT OPTIMIZATION HINT
Using the OPTIMIZATION HINT special register: The CURRENT OPTIMIZATION HINT special register
specifies whether optimization hints are used in determining the access path of dynamic statements.
An empty string or all blanks indicates that Db2 uses normal optimization techniques and ignores
optimization hints.

Example for SET CURRENT OPTIMIZATION HINT

Example 1: Assume that string constant 'NOHYB' identifies a user-defined optimization hint in
owner.PLAN_TABLE. Set the CURRENT OPTIMIZATION HINT special register so that Db2 uses this
optimization hint to generate the access path for dynamic statements.

 SET CURRENT OPTIMIZATION HINT = 'NOHYB';

If you set the register this way, Db2 validates and considers information in the rows in owner.PLAN_TABLE
where the value in the OPTHINT column matches 'NOHYB' for dynamic SQL statements.

Example 2: Clear the CURRENT OPTIMIZATION HINT special register by specifying an empty string.

 SET CURRENT OPTIMIZATION HINT = '';

Related reference
CURRENT OPTIMIZATION HINT special register
CURRENT OPTIMIZATION HINT specifies the user-defined optimization hint that Db2 should use to
generate the access path for dynamic statements.

SET CURRENT PACKAGE PATH statement
The SET CURRENT PACKAGE PATH statement assigns a value to the CURRENT PACKAGE PATH special
register.

Invocation for SET CURRENT PACKAGE PATH
This statement can be embedded only in an application program. It is an executable statement that
cannot be dynamically prepared.

Authorization for SET CURRENT PACKAGE PATH
None required.

Syntax for SET CURRENT PACKAGE PATH

SET CURRENT PACKAGE PATH
=

,
1

collection-id

SESSION_USER

USER

CURRENT PACKAGE PATH

CURRENT PATH

host-variable

string-constant

Notes:

Chapter 7. Statements 2143

1 SESSION_USER (or USER), CURRENT PACKAGE PATH, and CURRENT PATH can each be specified only
once on the right side of the statement.

Description for SET CURRENT PACKAGE PATH
The value of CURRENT PACKAGE PATH is replaced by the values specified.

collection-id
Identifies a collection. collection-id must not be a delimited identifier that is empty or contains only
blanks.

SESSION_USER or USER
Specifies the value of the SESSION_USER (USER) special register.

CURRENT PACKAGE PATH
Specifies the value of the CURRENT PACKAGE PATH special register before the execution of the SET
CURRENT PACKAGE PATH statement.

CURRENT PATH
Specifies the value of the CURRENT PATH special register.

host-variable
Specifies a host variable that contains one or more collection IDs, separated by commas. The host
variable must:

• Have a data type of CHAR or VARCHAR. The actual length of the contents of the host variable must
not exceed the maximum length of the CURRENT PACKAGE PATH special register.

• Not be the null value if an indicator variable is provided.
• Contain an empty or blank string, or one or more collection IDs that are separated by commas.
• Be padded on the right with blanks if the host variable is fixed-length, or if the actual length of the

host variable is longer than the content.
• Not contain a delimited identifier that is empty or contains only blanks.

string-constant
Specifies a string constant that contains one or more collection IDs, separated by commas. The string
constant must:

• Have a length that does not exceed the maximum length of the CURRENT PACKAGE PATH special
register.

• Contain an empty or blank string, or one or more collection IDs separated by commas.
• Not contain a delimited identifier that is empty or contains only blanks.

Notes for SET CURRENT PACKAGE PATH
Contents of host variable or string constant: The contents of a host variable or string constant are
interpreted as a list of collection IDs if the value contains at least one comma. If multiple collection IDs
are specified, they must be separated by commas. Each collection ID in the list must conform to the rules
for forming an ordinary identifier or be specified as a delimited identifier.

Checking for the existence of collections: No validation that the collections exist is made at the time that
the CURRENT PACKAGE PATH special register is set. For example, a collection ID that is misspelled is not
detected, which could affect the way subsequent SQL operates. At package execution time, authorization
to the specific package is checked, and if this authorization check fails, an error is issued.

Resulting contents of the special register: The special register string is built by taking each collection
ID specified and removing trailing blanks, delimiting with double quotation marks, doubling any double
quotation marks within the collection ID as necessary, and then separating each collection ID by a
comma. If the same collection ID appears more than once in the list, the first occurrence of the collection

2144 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

is used, and a warning is issued. The length of the resulting list cannot exceed the length of the special
register. For example, assume that the following statements are issued:

SET CURRENT PACKAGE PATH = MYPKGS, "ABC E", SYSIBM
SET :HVPKLIST = CURRENT PACKAGE PATH

These statements result in the value of the host variable being set to: "MYPKGS", "ABC E", "SYSIBM".

A collection ID that does not conform to the rules for an ordinary identifier must be specified as a
delimited collection ID and must not be specified within a host variable or string constant.

Considerations for keywords: A difference exists between specifying a single keyword, such as
SESSION_USER, as a single keyword or as a delimited identifier. To indicate that the current value of
a special register that is specified as a single keyword should be used in the package path, specify the
name of the special register as a keyword. If you specify the name of the special register as a delimited
identifier, it is interpreted as a collection ID of that value. For example, assume that the current value of
the SESSION_USER special register is SMITH and that the following statement is issued:

SET CURRENT PACKAGE PATH = SYSIBM, SESSION_USER, "USER"

The result is that the value of the CURRENT PACKAGE PATH special register is set to: "SYSIBM, "SMITH",
"USER".

Specifying a collection ID in an SQL procedure: Because a host variable (SQL variable) in an SQL
procedure does not begin with a colon, Db2 uses the following rules to determine whether a value that is
specified in a SET PACKAGE PATH = name statement is a variable or a collection ID:

• If name is the same as a parameter or SQL variable in the SQL procedure, Db2 uses name as a
parameter or SQL variable and assigns the value in name to the package path.

• If name is not the same as a parameter or SQL variable in the SQL procedure, Db2 uses name as a
collection ID and assigns and the value in name is the package path.

DRDA classification: The SET CURRENT PACKAGE PATH statement is executed by the database server
and, therefore, is classified as a non-local SET statement in DRDA. The SET CURRENT PACKAGE PATH
statement requires a new level of DRDA support. If SET CURRENT PACKAGE PATH is issued when
connected to the local server, the SET CURRENT PACKAGE PATH special register at the local server is set.
Otherwise, when SET CURRENT PACKAGE PATH is issued when connected to a remote server, the SET
CURRENT PACKAGE PATH special register at the remote server is set.

Examples for SET CURRENT PACKAGE PATH

Example 1: Set the CURRENT PACKAGE PATH special register to the list of collections COLL4 and COLL5,
where :hvar1 contains the value COLL4,COLL5:

 SET CURRENT PACKAGE PATH :hvar1;

The value of CURRENT PACKAGE PATH is set to the following two collection IDs: "COLL4","COLL5".

Example 2: Set the CURRENT PACKAGE PATH special register to the list of collections: COLL1, COLL#2,
COLL3, COLL4, and COLL5, where :hvar1 contains the value COLL4,COLL5:

 SET CURRENT PACKAGE PATH = "COLL1","COLL#2","COLL3", :hvar1;

The value of CURRENT PACKAGE PATH is set to the following five collection IDs:
"COLL1,"COLL#2","COLL3","COLL4","COLL5".

Example 3: Clear the CURRENT PACKAGE PATH special register.

 SET CURRENT PACKAGE PATH = ' ';

Example 4: In preparation of calling a stored procedure that is named SUMARIZE, temporarily add
two collections, COLL_PROD1" and "COLL_PROD2, to the end of the CURRENT PACKAGE PATH special

Chapter 7. Statements 2145

register (the values of the collections are in host variables :prodcoll1 and prodcoll2, respectively).
Because the stored procedure SUMARIZE is not defined with a COLLID value and is defined with INHERIT
SPECIAL REGISTERS, the stored procedure will inherit the value of CURRENT PACKAGE PATH. When
the stored procedure returns, set the value of the CURRENT PACKAGE PATH special register back to its
original value.

 SET :oldCPP = CURRENT PACKAGE PATH;
 SET CURRENT PACKAGE PATH = CURRENT PACKAGE PATH, :prodcoll1, :prodcoll2;
 CALL SUMARIZE(:V1,:V2);
 SET CURRENT PACKAGE PATH = :oldCPP;

Related reference
CURRENT PACKAGE PATH special register
CURRENT PACKAGE PATH specifies a value that identifies the path used to resolve references to packages
that are used to execute SQL statements. This special register applies to both static and dynamic
statements.

SET CURRENT PACKAGESET statement
The SET CURRENT PACKAGESET statement assigns a value to the CURRENT PACKAGESET special
register.

Invocation for SET CURRENT PACKAGESET
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared.

Authorization for SET CURRENT PACKAGESET
None required.

Syntax for SET CURRENT PACKAGESET

SET CURRENT PACKAGESET = SESSION_USER

USER

string-constant

host-variable

Description for SET CURRENT PACKAGESET
The value of CURRENT PACKAGESET is replaced by the value of the SESSION_USER special register,
string-constant, or host-variable. The value specified by string-constant or host-variable must be a
character string that is not longer than 128 bytes.

Notes for SET CURRENT PACKAGESET

Selection of plan elements: A plan element is a DBRM that has been bound into the plan or a package
that is implicitly or explicitly identified in the package list of the plan. Plan elements contain the control
structures used to execute certain SQL statements.

Since a plan can have many elements, one of the first steps involved in the execution of an SQL statement
that requires a control structure is the selection of the plan element that contains its control structure.
The information used by Db2 to select plan elements includes the value of CURRENT PACKAGESET.

2146 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SET CURRENT PACKAGESET is used to specify the collection ID of a package that exists at the current
server. SET CURRENT PACKAGESET is optional and should not be used without an understanding of the
following rules for selecting a plan element.

If the CURRENT PACKAGESET special register is an empty string, Db2 searches for a DBRM or a package
in one of these sequences:

At the local location (if CURRENT SERVER is blank or explicitly names that location), the order is:

1. All DBRMs bound directly to the plan
2. All packages that have already been allocated for the application process
3. All unallocated packages explicitly named in, and all collections completely included in, the package

list of the plan. The order of search is the order those packages are named in the package list.

At a remote location, the order is:

1. All packages that have already been allocated for the application process at that location
2. All unallocated packages explicitly named in, and all collections completely included in, the package

list of the plan, whose locations match the value of CURRENT SERVER. The order of search is the order
those packages are named in the package list.

If the special register CURRENT PACKAGESET is set, Db2 skips the check for programs that are
part of the plan and uses the value of CURRENT PACKAGESET as the collection. For example, if
CURRENT PACKAGESET contains COL5, then Db2 uses COL5.PROG1.timestamp for the search. For
more information, see Overriding the values that Db2 uses to resolve package lists (Db2 Application
programming and SQL).

DRDA classification: SET CURRENT PACKAGESET is executed by the requester and is therefore classified
as a local SET statement in DRDA.

CURRENT PACKAGESET special register with stored procedures and user-defined functions: The initial
value of the CURRENT PACKAGESET special register in a stored procedure or user-defined function is the
value of the COLLID parameter with which the stored procedure or user-defined function was defined.
If the routine was defined without a value for the COLLID parameter, the value of the special register
is inherited from the calling program. A stored procedure or user-defined function can use the SET
CURRENT PACKAGESET statement to change the value of the special register. This allows the routine to
select the version of the Db2 package that is used to process the SQL statements in a called routine that
is not defined with a COLLID value.

When control returns from the stored procedure to the calling program, the special register CURRENT
PACKAGESET is restored to the value it contained before the stored procedure was called.

Examples for SET CURRENT PACKAGESET

Example 1: Limit the plan element selection to packages in the PERSONNEL collection at the current
server.

 EXEC SQL SET CURRENT PACKAGESET = 'PERSONNEL';

Example 2: Eliminate collections as a factor in plan element selection.

 EXEC SQL SET CURRENT PACKAGESET = '';

Related reference
CURRENT PACKAGESET special register

Chapter 7. Statements 2147

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_overridevaluespackagelist.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_overridevaluespackagelist.html

CURRENT PACKAGESET specifies an empty string, a string of blanks, or the collection ID of the package
that will be used to execute SQL statements.

SET CURRENT PRECISION statement
The SET CURRENT PRECISION statement assigns a value to the CURRENT PRECISION special register.

Invocation for SET CURRENT PRECISION
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for SET CURRENT PRECISION
None required.

Syntax for SET CURRENT PRECISION

SET CURRENT PRECISION = string-constant

host-variable

Description for SET CURRENT PRECISION
This statement replaces the value of the CURRENT PRECISION special register with the value of the string
constant or host variable. The value must be a character string 5 bytes in length. The value must be
'DEC15,' 'DEC31,' or 'Dpp.s', where 'pp' is either 15 or 31 and 's' is a number in the range 1–9. If the form
'Dpp.s' is used, 'pp' represents the precision that will be used with the rules that are used for DEC15 or
DEC31, and 's' represents the minimum divide scale to use for division operations. The separator used
in the form 'Dpp.s' can be either the '.'or the ',' character, regardless of the setting of the default decimal
point.

Example for SET CURRENT PRECISION

Set the CURRENT PRECISION special register so that subsequent statements that are prepared use
DEC15 rules for decimal arithmetic.

 EXEC SQL SET CURRENT PRECISION = 'DEC15';

Related reference
CURRENT PRECISION special register
CURRENT PRECISION specifies the rules to be used when both operands in a decimal operation have
precisions of 15 or less.

SET CURRENT QUERY ACCELERATION statement
The SET CURRENT QUERY ACCELERATION statement changes the value of the CURRENT QUERY
ACCELERATION special register.

Invocation for SET CURRENT QUERY ACCELERATION
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

2148 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Authorization for SET CURRENT QUERY ACCELERATION
None required.

Syntax for SET CURRENT QUERY ACCELERATION

SET CURRENT QUERY ACCELERATION
=

NONE

ENABLE

ENABLE WITH FAILBACK

ELIGIBLE

ALL

host-variable

Description for SET CURRENT QUERY ACCELERATION
NONE

Specifies that no query acceleration is done.
ENABLE

Specifies that queries are accelerated only if Db2 determines that it is advantageous to do so. If an
accelerator failure occurs while a query is running or if the accelerator returns an error, Db2 returns a
negative SQLCODE to the application.

ENABLE WITH FAILBACK
Specifies that queries are accelerated only if Db2 determines that it is advantageous to do so. If the
accelerator returns an error during the PREPARE or first OPEN for the query, Db2 executes the query
without the accelerator. If the accelerator returns an error during a FETCH or a subsequent OPEN, Db2
returns the error to the user and does not execute the query.

Restriction: FL 504 If the query contains a passthrough-only expression, Db2 returns an error and
does not accelerate the query, even if a matching user-defined function exists. For more information
about passthrough-only expressions, see Accelerating queries with passthrough-only expressions.

ELIGIBLE
Specifies that queries are accelerated if they are eligible for acceleration. Db2 does not use
cost information to determine whether to accelerate the queries. Queries that are not eligible for
acceleration are executed by Db2. If an accelerator failure occurs while a query is running or if the
accelerator returns an error, Db2 returns a negative SQLCODE to the application.

ALL
Specifies that queries are accelerated if they are eligible for acceleration. Db2 does not use
cost information to determine whether to accelerate the queries. Queries that are not eligible for
acceleration are not executed by Db2, and an SQL error is returned. If an accelerator failure occurs
while a query is running or if the accelerator returns an error, Db2 returns a negative SQLCODE to the
application.

Exceptions:

• If a dynamic query cannot be processed by IBM Db2 Analytics Accelerator because the tables do
not exist on the accelerator, the query usually fails with an error message (-4742, reason code 12).
However, such a query is processed by Db2 if it references tables with the following qualifiers only:

– SYSIBM
– SYSACCEL
– DB2GSE
– SYSXSR
– DGTT

Chapter 7. Statements 2149

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html

• Dynamic queries whose top query block is pruned, and which therefore return an empty result set,
are processed by Db2. To check whether a query falls into this category, follow these steps:

1. Explain the query using the Db2 EXPLAIN function. Use the following special register setting in
the SQL statement:

SET CURRENT QUERY ACCELERATION = NONE

2. Check the PLAN_TABLE. If the top query block has been pruned, the entry for the query block
shows PRUNED in the QBLOCK_TYPE column and no value in the ACCESSTYPE column.

host-variable
A variable with a data type of CHAR or VARCHAR. The length must not exceed 255 bytes. Valid values
are NONE, ENABLE, ENABLE WITH FAILBACK, ELIGIBLE, or ALL. If host-variable has an associated
indicator variable, the value of that indicator variable must not indicate a null value. The value of
host-variable must be left justified and must be padded on the right with blanks.

Notes for SET CURRENT QUERY ACCELERATION
The precedence order (lowest to highest) for setting the value of the special register is as follows:

• The QUERY_ACCELERATION subsystem parameter
• The QUERYACCELERATION bind option, if specified
• An explicit SET CURRENT QUERY ACCELERATION statement

Examples for SET CURRENT QUERY ACCELERATION

The following statement sets the CURRENT QUERY ACCELERATION special register to NONE to indicate
that no acceleration is done.

 SET CURRENT QUERY ACCELERATION NONE;

Related concepts
How Db2 determines whether to accelerate eligible queries (Db2 Performance)
Related tasks
Enabling acceleration of SQL queries (Db2 Performance)
Related reference
CURRENT QUERY ACCELERATION special register
The CURRENT QUERY ACCELERATION special register specifies a value that identifies when Db2 sends
dynamic SQL queries to an accelerator server and what Db2 does if the accelerator server fails. The
special register does not apply to static SQL queries.

SET CURRENT QUERY ACCELERATION WAITFORDATA statement
The SET CURRENT QUERY ACCELERATION WAITFORDATA statement assigns a value to the CURRENT
QUERY ACCELERATION WAITFORDATA special register.

Invocation for SET CURRENT QUERY ACCELERATION WAITFORDATA
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for SET CURRENT QUERY ACCELERATION WAITFORDATA
None required.

2150 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_determineaccelqueries.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_enablequeryaccel.html

Syntax for SET CURRENT QUERY ACCELERATION WAITFORDATA

SET CURRENT QUERY ACCELERATION WAITFORDATA = nnnn.m

variable

Description for SET CURRENT QUERY ACCELERATION WAITFORDATA
nnnn.m

Is a DECIMAL(5,1) numeric-constant value that specifies the maximum number of seconds that the
accelerator will delay a query while the accelerator waits for the replication of committed Db2 data
changes that occurred prior to Db2 running the query.

You can specify a value in the range of 0.0–3600.0 seconds. For example, a value of 20.0 represents
20.0 seconds (or 20000 milliseconds), and a value of 30.5 represents 30.5 seconds (or 30500
milliseconds). The maximum value of 3600.0 means that the query is delayed for 60 minutes.

The default value is 0.0, which means that the query is not delayed and is run immediately on the
accelerator. Other WAITFORDATA behavior is not applied to the query.

The wait time value can also be specified as an INTEGER numeric constant value in the range 0–3600
seconds, which Db2 will convert to a DECIMAL (5,1) value.

variable
Is a language host-variable or SQL variable that has a data type of DECIMAL(5,1) or other data type
that is assignable to DECIMAL(5,1). Any value that is specified for variable must conform to the
specifications for nnnn.m. Additionally, variable cannot be a global variable.

Notes for SET CURRENT QUERY ACCELERATION WAITFORDATA
The precedence order (lowest to highest) for setting the value of the special register is as follows:

• The QUERY_ACCEL_WAITFORDATA subsystem parameter
• The ACCELERATIONWAITFORDATA bind option, if specified
• An explicit SET CURRENT QUERY ACCELERATION WAITFORDATA statement

The WAITFORDATA special register is used only for dynamic queries and applies only when query
acceleration behavior is also requested by using the CURRENT QUERY ACCELERATION special register.
The WAITFORDATA special register is not applied to accelerated queries that reference only accelerator-
only tables (AOTs).

The delay wait time begins when the query reaches the accelerator, not when the query starts running
in Db2. For more information about how to determine appropriate WAITFORDATA delay time values for
query acceleration with replication in your environment, see the IBM Db2 Analytics Accelerator for z/OS
documentation for Hybrid Transactional and Analytical Processing (HTAP) and the WAITFORDATA feature.

Setting CURRENT QUERY ACCELERATION WAITFORDATA to a value greater than 0 specifies that Db2
and the accelerator will apply WAITFORDATA delay behavior and restrictions to all dynamic queries
to be accelerated afterward. The following behaviors, requirements, and restrictions apply to using
WAITFORDATA to delay queries:

• When Db2 sends a query to the accelerator, Db2 also sends the specified WAITFORDATA delay wait
time and an internal value that represents the latest committed Db2 data change on the entire Db2
subsystem (for a data sharing environment, across all the Db2 subsystems of the data sharing group)
at the time Db2 sends the query to the accelerator. The committed data change might or might not be
related to an accelerated table that is referenced in the query, but the internal value that represents this
committed change is still used for the query that is accelerated.

• If the specified WAITFORDATA delay wait time expires before the expected committed Db2 data change
is replicated to the accelerator, the accelerator will fail the query and issue SQLCODE -904 accompanied
by additional message information.

Chapter 7. Statements 2151

If the delay wait time expires on the first OPEN for the query in the current Db2 unit of work, the failing
query qualifies for failback to Db2 if CURRENT QUERY ACCELERATION has been set to ENABLE WITH
FAILBACK.

This default WAITFORDATA delay wait time expiration behavior can be changed by modifying
the accelerator configuration settings for replication. For information about changing the default
WAITFORDATA delay wait time expiration behavior, see the WAITFORDATA information in the IBM Db2
Analytics Accelerator for z/OS documentation.

• All accelerated Db2 tables referenced in the query must be subscribed to and enabled for replication
to the target accelerator. If all accelerated tables in the query do not meet this requirement,
the accelerator will fail the query and issue SQLCODE -904 accompanied by additional message
information.

If this failure occurs on the first OPEN for the query in the current Db2 unit of work, the failing
query qualifies for failback to Db2 if CURRENT QUERY ACCELERATION has been set to ENABLE WITH
FAILBACK.

This default WAITFORDATA behavior can be changed by modifying the accelerator configuration
settings for replication. For information about changing this default WAITFORDATA behavior
requirement, see the WAITFORDATA information in the IBM Db2 Analytics Accelerator for z/OS
documentation.

• WAITFORDATA behavior is dependent on the replication process. Therefore, accelerated queries can
be directly affected by current replication status, function, and performance, possibly resulting in the
accelerated query failing on the accelerator with SQLCODE -904 if replication is not functioning or
performing properly.

• In the following situations, Db2 changes that are committed before the query is sent to the accelerator
will not be available to the query when it is run on the accelerator, even if WAITFORDATA delay behavior
is requested for the query:

– The query specifies a Db2 accelerated table, but the same Db2 unit of work includes a previous
uncommitted Db2 change that will not be available to the query when it is run on the accelerator. In
this situation, accelerator WAITFORDATA behavior cannot be achieved for the query, and the query
will not be accelerated. The Db2 change might or might not be related to the Db2 accelerated table
that is referenced in the query.

– The query specifies a Db2 accelerated table, but the same Db2 unit of work includes a previous
uncommitted accelerator-only table (AOT) change. This uncommitted change resulted in the creation
of an accelerator database snapshot isolation (SI) for this unit of work before the query was run;
therefore, accelerator WAITFORDATA behavior cannot be achieved for the query, and the query will
not be accelerated. This accelerator database SI can prevent committed and replicated Db2 changes,
made by either this transaction or by a different transaction, from being available to the accelerated
query, even if the Db2 changes are replicated to the accelerator before the query is run there.

For these situations, Db2 will not accelerate the query but instead will run it only in Db2, if possible.
If the QUERY ACCELERATION behavior requested does not allow the query to be run only in Db2
or if the query also references an AOT, then Db2 will fail the query and issue SQLCODE -4742. The
default WAITFORDATA behavior for these situations can be changed only by modifying the transaction
application with the changes that are described in the associated reason codes in SQLCODE -4742.

Examples for SET CURRENT QUERY ACCELERATION WAITFORDATA

The following statement sets the CURRENT QUERY ACCELERATION WAITFORDATA special register to 180
seconds, which specifies that the accelerator waits for the query to execute for as long as three minutes:

SET CURRENT QUERY ACCELERATION WAITFORDATA = 180.0;

The following statement sets the CURRENT QUERY ACCELERATION WAITFORDATA special register to 2.5
seconds:

SET CURRENT QUERY ACCELERATION WAITFORDATA = 2.5;

2152 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Related tasks
Enabling acceleration of SQL queries (Db2 Performance)
Related reference
CURRENT QUERY ACCELERATION WAITFORDATA special register
The CURRENT QUERY ACCELERATION WAITFORDATA special register specifies the maximum amount
of time, if any, that the accelerator delays a dynamic SQL query while the accelerator waits for the
replication of committed Db2 data changes that occurred prior to Db2 running the query. This special
register does not apply to static SQL queries.
WAIT FOR DATA field (QUERY_ACCEL_WAITFORDATA subsystem parameter) (Db2 Installation and
Migration)
CURRENT QUERY ACCELERATION special register
The CURRENT QUERY ACCELERATION special register specifies a value that identifies when Db2 sends
dynamic SQL queries to an accelerator server and what Db2 does if the accelerator server fails. The
special register does not apply to static SQL queries.

SET CURRENT REFRESH AGE statement
The SET CURRENT REFRESH AGE statement changes the value of the CURRENT REFRESH AGE special
register.

The CURRENT REFRESH AGE value corresponding to ANY (99 999 999 999 999) cannot be used in
timestamp arithmetic operations because the result would be outside the valid range of dates.

Invocation for SET CURRENT REFRESH AGE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for SET CURRENT REFRESH AGE
None required.

Syntax for SET CURRENT REFRESH AGE

SET CURRENT REFRESH AGE
=

numeric-constant

ANY

host-variable

Description for SET CURRENT REFRESH AGE
numeric-constant

A DECIMAL(20,6) value representing a timestamp duration. The value must be 0 or 99 999 999 999
999, the partial seconds of which is ignored and thus can be any value.
0

Indicates that query optimization using materialized query tables will not be attempted.
99999999999999

Indicates that any materialized query tables identified by the CURRENT MAINTAINED TABLE
TYPES FOR OPTIMIZATION special register may be used to optimize the processing of a query.
This value represents 9999 years, 99 months, 99 days, 99 hours, 99 minutes, and 99 seconds.

ANY
Shorthand for 99999999999999.

Chapter 7. Statements 2153

https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_enablequeryaccel.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_queryaccelerationwfd.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_queryaccelerationwfd.html

host-variable
A variable of type DECIMAL(20,6) or other type that is assignable to DECIMAL(20,6). It cannot be set
to null. If host-variable has an associated indicator variable, the value of that indicator variable must
not indicate a null value. The value of host-variable must be 0 or 99 999 999 999 999, the partial
seconds of which is ignored and thus can be any value.

Notes for SET CURRENT REFRESH AGE
Materialized query tables created or altered with DISABLE QUERY OPTIMIZATION specified are not
eligible for automatic query rewrite. Thus, they are not affected by the setting of this special register.

Setting the CURRENT REFRESH AGE special register to a value other than zero should be done with
caution. Allowing a materialized query table that may not represent the values of the underlying base
table to be used to optimize the processing of a query may produce results that do not accurately
represent the data in the underlying table. This situation may be acceptable when you know the
underlying data has not changed or you are willing to accept the degree of error in the results based
on your knowledge of the data.

Examples for SET CURRENT REFRESH AGE

Example: Set the CURRENT REFRESH AGE special register to 99 999 999 999 999 to indicate that any
materialized query tables identified by the CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
special register can be used to optimize the processing of a query.

 SET CURRENT REFRESH AGE ANY;

Related reference
CURRENT REFRESH AGE special register
CURRENT REFRESH AGE specifies a timestamp duration value. This duration is the maximum duration
since a REFRESH TABLE statement has been processed on a system-maintained REFRESH DEFERRED
materialized query table such that the materialized query table can be used to optimize the processing of
a query. This special register affects dynamic statement cache matching.

SET CURRENT ROUTINE VERSION statement
The SET CURRENT ROUTINE VERSION statement assigns a value to the CURRENT ROUTINE VERSION
special register. The special register sets the override value for the version identifier of native SQL
procedures when they are invoked.

Invocation for SET CURRENT ROUTINE VERSION
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for SET CURRENT ROUTINE VERSION
None required.

Syntax for SET CURRENT ROUTINE VERSION

SET CURRENT ROUTINE VERSION
=

routine-version-id

host-variable

string-constant

2154 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Description for SET CURRENT ROUTINE VERSION
routine-version-id

Specifies a routine version identifier.
host-variable

Specifies a host variable that contains a version identifier. The host variable must conform to the
following rules:

• Be a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC variable. The actual length of the contents of the
host variable must not exceed the length of a version identifier.

• Include a routine version identifier that is left justified and conforms to the rules for forming an
ordinary identifier or a delimited identifier, or must be blank or empty.

• Be padded on the right with blanks if the host variable is a fixed length character.
• Not be empty or contain only blanks if the identifier is delimited.
• Not be the null value.

string-constant
Specifies a string constant that contains a version identifier. The string constant must conform to the
following rules:

• Have a length that does not exceed the length of a routine-version-id.
• Include a routine version identifier that is left justified and conforms to the rules for forming an

ordinary identifier or a delimited identifier, or must be blank or an empty string
• Not be empty or contain only blanks if the identifier is delimited

Notes for SET CURRENT ROUTINE VERSION
Resetting the special register: To reset the special register, specify an empty string constant, a string of
blanks, or a host variable that is empty or contains only blanks. A routine version override is not in effect
when the special register is reset.

Implications of using the special register: Setting the CURRENT ROUTINE VERSION special register to a
version identifier will affect all SQL procedures that are subsequently invoked using CALL statements that
specify the name of the procedure using a host variable, until the value of CURRENT ROUTINE VERSION
is changed. If a version of the procedure that is identified by the version identifier in the special register
exists for an SQL procedure that is being invoked, that version of the procedure is used. Otherwise, the
currently active version of the procedure (as noted in the catalog) is used.

When you use the CURRENT ROUTINE VERSION special register to test a version of one or more native
SQL procedures, you should use a routine version identifier that is a value other than the default value
(V1) on the CREATE PROCEDURE statement. This will avoid having the special register affect more
procedures that you intend when testing a new version of a procedure. For example, assume that you
want to run version VER2 of procedure P1, and procedure P1 invokes another procedure, P2. If a version
exists for both procedures P1 and P2 with the routine version identifier VER2, that version will be used for
both procedures.

Examples for SET CURRENT ROUTINE VERSION

Example: The following statement sets the CURRENT ROUTINE VERSION special register so that the
override value for the version identifier of native SQL procedures will be the value that is specified in the
host variable rvid:

 SET CURRENT ROUTINE VERSION = :rvid;

Related reference
CURRENT ROUTINE VERSION special register

Chapter 7. Statements 2155

CURRENT ROUTINE VERSION specifies the version identifier that is to be used when invoking a native
SQL procedure. CURRENT ROUTINE VERSION is used for CALL statements that use a host variable to
specify the procedure name.

SET CURRENT RULES statement
The SET CURRENT RULES statement assigns a value to the CURRENT RULES special register.

Invocation for SET CURRENT RULES
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for SET CURRENT RULES
None required.

Syntax for SET CURRENT RULES

SET CURRENT RULES = string-constant

host-variable

Description for SET CURRENT RULES
This statement replaces the value of the CURRENT RULES special register with the value of the string
constant or host variable. The value must be a character string that is 3 bytes in length, and the value
must be 'DB2' or 'STD'.

Notes for SET CURRENT RULES
For the effect of the values 'DB2' and 'STD' on the execution of certain SQL statements, see “CURRENT
RULES special register” on page 205.

Example for SET CURRENT RULES

Set the SQL rules to be followed to Db2 rules.

 EXEC SQL SET CURRENT RULES = 'DB2';

Related reference
CURRENT RULES special register
CURRENT RULES specifies whether certain SQL statements are executed in accordance with Db2 rules or
the rules of the SQL standard.

SET CURRENT SQLID statement
The SET CURRENT SQLID statement assigns a value to the CURRENT SQLID special register.

Invocation for SET CURRENT SQLID
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared. The value to which special register CURRENT SQLID is set
is used as the SQL authorization ID for dynamic SQL statements only if DYNAMICRULES run behavior is in
effect. The CURRENT SQLID value is ignored for the other DYNAMICRULES behaviors.

2156 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Authorization for SET CURRENT SQLID
The specified value must be equal to one of the authorization IDs of the application process. This rule
always applies, even when SET CURRENT SQLID is issued as a static SQL statement.

Exceptions:

• If any of the authorization IDs of the process has SYSADM authority, CURRENT SQLID can be
set to any value when the SEPARATE SECURITY system parameter is set to NO. Note that the
SEPARATE_SECURITY subsystem parameter does not apply to or affect users with installation SYSADM
authority.

• If any of the authorization IDs has the installation SYSOPR authority, CURRENT SQLID can be set to
SYSINSTL, regardless of the SEPARATE_SECURITY value.

CURRENT SQLID cannot be set to the name of a role.

Syntax for SET CURRENT SQLID

SET CURRENT SQLID = SESSION_USER

USER

string-constant

host-variable

Description for SET CURRENT SQLID
The value of CURRENT SQLID is replaced based on the value that is specified. With certain exceptions,
the specified value must be equal to one of the authorization IDs of the application process. For more
information, see “Authorization for SET CURRENT SQLID” on page 2157.
SESSION_USER or USER

Specifies the value of the SESSION_USER (USER) special register.
string-constant

Specifies a character string constant of 8 characters or fewer that identifies an authorization ID. The
content is not folded to uppercase.

host-variable
Specifies a character string constant of 8 characters or fewer that identifies a host variable that
contains an authorization ID. The content is not folded to uppercase.

Notes for SET CURRENT SQLID
Effect on authorization IDs

SET CURRENT SQLID does not change the primary authorization ID of the process.

If the SET CURRENT SQLID statement is executed in a stored procedure or user-defined function
package that has a dynamic SQL behavior other than run behavior, the SET CURRENT SQLID
statement does not affect the authorization ID that is used for dynamic SQL statements in the
package. The dynamic SQL behavior determines the authorization ID. For more information, see
DYNAMICRULES bind option (Db2 Commands).

Effect on special register CURRENT PATH
When the value of the PATH special register depends on the value of the CURRENT SQLID special
register, any changes to the CURRENT SQLID special register are not reflected in the value of the PATH
special register until a commit operation is performed or a SET PATH statement is issued to change
the SQL path to use the new value of the CURRENT SQLID.

DRDA classification
SET CURRENT SQLID is executed by the database server and is therefore classified as a non-local SET
statement in DRDA.

Chapter 7. Statements 2157

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindoptdynamicrules.html

Examples for SET CURRENT SQLID

Example 1
Set the CURRENT SQLID to the primary authorization ID.

SET CURRENT SQLID = SESSION_USER;

Example 2
Set the SQL authorization ID to 'GROUP34' (one of the authorization IDs of the process).

 SET CURRENT SQLID = 'GROUP34';

Related reference
CURRENT SQLID special register
CURRENT SQLID specifies the SQL authorization ID of the process.
SESSION_USER special register
SESSION_USER specifies the primary authorization ID of the process.

SET CURRENT TEMPORAL BUSINESS_TIME statement
The SET CURRENT TEMPORAL BUSINESS_TIME statement changes the value of the CURRENT TEMPORAL
BUSINESS_TIME special register.

Invocation for SET CURRENT TEMPORAL BUSINESS_TIME
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for SET CURRENT TEMPORAL BUSINESS_TIME
None required.

Syntax for SET CURRENT TEMPORAL BUSINESS_TIME

SET CURRENT TEMPORAL BUSINESS_TIME
=

NULL

expression

Description for SET CURRENT TEMPORAL BUSINESS_TIME
NULL

Specifies the null value.
expression

Specifies an expression that returns the null value or the value of one of the following built-in data
types:

• Timestamp
• Character string
• Graphic string

If the expression is a character or graphic string, it must meet the following requirements:

• It must not be a CLOB or DBCLOB.
• The value of the expression must be a valid character-string or graphic-string representation of a

timestamp.

2158 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• The result of the expression must be castable to TIMESTAMP(12).

expression can contain any of the following supported operands:

• Constant
• Special register
• Variable (host variable, SQL parameter, SQL variable, or global variable)
• Scalar function whose arguments are supported operands
• CAST specification where the cast operand is a supported operand
• Expression that uses arithmetic operators and operands

For more information, see:

“String representations of datetime values” on page 120
“Casting between data types” on page 130

Notes for SET CURRENT TEMPORAL BUSINESS_TIME
Transactions

The SET CURRENT TEMPORAL BUSINESS_TIME statement is not a committable operation. The
ROLLBACK statement has no effect on CURRENT TEMPORAL BUSINESS_TIME.

Effects on other special registers
The setting of the CURRENT TEMPORAL BUSINESS_TIME special register does not affect other special
registers, such as the CURRENT DATE and CURRENT TIMESTAMP special registers.

Examples for SET CURRENT TEMPORAL BUSINESS_TIME
Example of setting the special register to a valid value

Both of the following statements set the CURRENT TEMPORAL BUSINESS_TIME special register to
'2008-01-06-00.00.00.000000000000'.

SET CURRENT TEMPORAL BUSINESS_TIME = TIMESTAMP('2008-01-01') + 5 DAYS ;
SET CURRENT TEMPORAL BUSINESS_TIME = '2008-01-06-00.00.00.000000000000';

Example of how setting the special register affects subsequent SQL statements
In the following example, the first statement sets the CURRENT TEMPORAL BUSINESS_TIME special
register to last month. Assume that table att1 is an application-period temporal table. The setting of
the CURRENT TEMPORAL BUSINESS_TIME special register affects the update of att1.

SET CURRENT TEMPORAL BUSINESS_TIME = CURRENT TIMESTAMP - 1 MONTH
UPDATE att1 SET c1 = 5 WHERE pk = 100

Assume that the att1 table has columns bt_begin and bt_end to indicate the beginning and end of the
BUSINESS_TIME period. In this example, Db2 interprets the UPDATE statement as follows:

UPDATE att1 SET c1 = 5 WHERE pk = 100
AND bt_begin <= CURRENT TEMPORAL BUSINESS_TIME
AND bt_end > CURRENT TEMPORAL BUSINESS_TIME

Example of setting the special register so that it does not affect subsequent SQL statements
The following statement sets the CURRENT TEMPORAL BUSINESS_TIME special register to the null
value. Subsequent SQL statements that reference application-period temporal tables are not affected
by the CURRENT TEMPORAL BUSINESS_TIME special register.

SET CURRENT TEMPORAL BUSINESS_TIME = NULL

Related concepts
Data types

Chapter 7. Statements 2159

Db2 supports both IBM-supplied data types (built-in data types) and user-defined data types (distinct
types).
Related reference
CURRENT TEMPORAL BUSINESS_TIME special register
The CURRENT TEMPORAL BUSINESS_TIME special register specifies a TIMESTAMP(12) value that is used
in the default BUSINESS_TIME period specification for references to application-period temporal tables.

SET CURRENT TEMPORAL SYSTEM_TIME statement
The SET CURRENT TEMPORAL SYSTEM_TIME statement changes the value of the CURRENT TEMPORAL
SYSTEM_TIME special register.

Invocation for SET CURRENT TEMPORAL SYSTEM_TIME
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for SET CURRENT TEMPORAL SYSTEM_TIME
None required.

Syntax for SET CURRENT TEMPORAL SYSTEM_TIME

SET CURRENT TEMPORAL SYSTEM_TIME
=

NULL

expression

Description for SET CURRENT TEMPORAL SYSTEM_TIME
NULL

Specifies the null value.
expression

Specifies an expression that returns the null value or the value of one of the following built-in data
types:

• Timestamp
• Character string
• Graphic string

If the expression is a character or graphic string, it must meet the following requirements:

• It must not be a CLOB or DBCLOB.
• The value of the expression must be a valid character-string or graphic-string representation of a

timestamp.
• The result of the expression must be castable to TIMESTAMP(12).

expression can contain any of the following supported operands:

• Constant
• Special register
• Variable (host variable, SQL parameter, SQL variable, or global variable)
• Scalar function whose arguments are supported operands
• CAST specification where the cast operand is a supported operand
• Expression that uses arithmetic operators and operands

2160 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

For more information, see:

“String representations of datetime values” on page 120
“Casting between data types” on page 130

Notes for SET CURRENT TEMPORAL SYSTEM_TIME
Transactions

The SET CURRENT TEMPORAL SYSTEM_TIME statement is not a committable operation. The
ROLLBACK statement has no effect on CURRENT TEMPORAL SYSTEM_TIME.

Effects on other special registers
The setting of the CURRENT TEMPORAL SYSTEM_TIME special register does not affect other special
registers, such as the CURRENT DATE and CURRENT TIMESTAMP special registers.

Examples for SET CURRENT TEMPORAL SYSTEM_TIME
Example of setting the special register to a valid value

Both of the following statements set the CURRENT TEMPORAL SYSTEM_TIME special register to
'2008-01-06-00.00.00.000000000000'.

SET CURRENT TEMPORAL SYSTEM_TIME = TIMESTAMP('2008-01-01') + 5 DAYS;
SET CURRENT TEMPORAL SYSTEM_TIME = '2008-01-06-00.00.00.000000000000';

Example of setting the special register so that it does not affect subsequent SQL statements
The following statement sets the CURRENT TEMPORAL SYSTEM_TIME special register to the null
value. Subsequent SQL statements that reference system-period temporal tables are not affected by
the CURRENT TEMPORAL SYSTEM_TIME special register.

SET CURRENT TEMPORAL SYSTEM_TIME = NULL

Related concepts
Data types
Db2 supports both IBM-supplied data types (built-in data types) and user-defined data types (distinct
types).
Related reference
CURRENT TEMPORAL SYSTEM_TIME special register
The CURRENT TEMPORAL SYSTEM_TIME special register specifies a TIMESTAMP(12) value that is used in
the default SYSTEM_TIME period specification for references to system-period temporal tables.

SET ENCRYPTION PASSWORD statement
The SET ENCRYPTION PASSWORD statement sets the value of the encryption password and, optionally,
the password hint. The ENCRYPT_TDES, DECRYPT_BIT, DECRYPT_CHAR, and DECRYPT_DB built-in
functions use this password and password hint for data encryption unless the functions are invoked
with an explicitly specified password and hint. The password is not tied to Db2 authentication and is used
only for data encryption.

Invocation for SET ENCRYPTION PASSWORD
The statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for SET ENCRYPTION PASSWORD
None required.

Chapter 7. Statements 2161

Syntax for SET ENCRYPTION PASSWORD

SET ENCRYPTION PASSWORD
=

password-variable

password-string-constant

WITH HINT
=

hint-variable

hint-string-constant

Description for SET ENCRYPTION PASSWORD
password-variable

Specifies a variable that contains an encryption password. The variable:

• Must be a CHAR or VARCHAR variable. The actual length of the contents of the variable must be in
the range 6–127 inclusive or must be an empty string. If an empty string is specified, the default
encryption password is set to no value.

• Must not be the null value.
• All characters are case-sensitive and are not converted to uppercase characters.

password-string-constant
A character constant that contains an encryption password. The length of the constant must be in
the range 6–127 inclusive or must be an empty string. If an empty string is specified, the default
encryption password is set to no value. All characters are case-sensitive and are not converted to
uppercase characters.

WITH HINT
Indicates that a value is specified that will help you remember passwords (for example, 'Ocean' as a
hint to remember 'Pacific'). If a hint value is specified, the hint is used as the default for encryption
functions. The hint can subsequently be retrieved for an encrypted value using the GETHINT function.
If this clause is not specified and a hint is not explicitly specified on the encryption function, no hint
will be embedded in encrypted data result.

hint-variable
Specifies a variable that contains an encryption password hint. The variable:

• Must be a CHAR or VARCHAR variable. The actual length of the contents of the variable must not
be greater than 32. If an empty string is specified, the default encryption password hint is set to an
empty string.

• Must not be the null value.
• All characters are case-sensitive and are not converted to uppercase characters.

hint-string-constant
A character string constant that contains an encryption password hint. The length of the constant
must not be greater than 32. If the value is an empty string, the default encryption password hint is
set to an empty string.

Notes for SET ENCRYPTION PASSWORD
Normal Db2 mechanisms are used to transmit the host variable or constant to the database server.

Examples for SET ENCRYPTION PASSWORD

Example 1: Set the ENCRYPTION PASSWORD to the value in :hv1. Do not specify a hint for the password.

 SET ENCRYPTION PASSWORD = :hv1

2162 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 2: Set the ENCRYPTION PASSWORD to the value in :hv1. Specify the value in :hv2 as the hint for
the password.

 SET ENCRYPTION PASSWORD = :hv1 WITH HINT :hv2

Related reference
ENCRYPTION PASSWORD special register
The ENCRYPTION PASSWORD special register specifies the encryption password and the password hint
(if one exists) that are used by the ENCRYPT_TDES, DECRYPT_BIT, DECRYPT_CHAR, and DECRYPT_DB
built-in functions.
ENCRYPT_TDES or ENCRYPT scalar function
The ENCRYPT_TDES function returns a value that is the result of encrypting the first argument by using
the Triple DES encryption algorithm. The function can also set the password that is used for encryption.
DECRYPT_BINARY, DECRYPT_BIT, DECRYPT_CHAR, and DECRYPT_DB scalar functions
The decryption functions return a value that is the result of decrypting encrypted data. The decryption
functions can decrypt only values that are encrypted by using the ENCRYPT_TDES function.

SET PATH statement
The SET PATH statement assigns a value to the CURRENT PATH special register.

Invocation for SET PATH
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for SET PATH
None required.

Syntax for SET PATH

SET
CURRENT

PATH
=

,
1

schema-name

SYSTEM PATH

SESSION_USER

USER

CURRENT
PATH

CURRENT PACKAGE PATH

host-variable

string-constant

Notes:
1 SYSTEM PATH, SESSION_USER or USER, and CURRENT PATH can be specified only once each.

Description for SET PATH
The value of PATH is replaced by the values specified.

Chapter 7. Statements 2163

schema-name
Identifies a schema. Db2 does not verify that the schema exists. For example, a schema name that is
misspelled is not detected, which could affect the way subsequent SQL operates.

SYSTEM PATH
Specifies the schema names "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM".

SESSION_USER or USER
Specifies the value of the SESSION_USER (USER) special register.

PATH
Specifies the value of the CURRENT PATH special register before the execution of this statement.

CURRENT PACKAGE PATH
Specifies the value of the CURRENT PACKAGE PATH special register.

host-variable
A variable with a data type of CHAR or VARCHAR. The value of host-variable must not be null and must
represent a valid schema name.

The schema name must:

• Be left justified within the host variable
• Be padded on the right with blanks if its length is less than that of the host variable

string-constant
A character string constant that represents a valid schema name. The schema name must be left
justified within the string constant.

If the schema name specified in string-constant will also be specified in other SQL statements and
the schema name does not conform to the rules for ordinary identifiers, the schema name must be
specified as a delimited identifier in the other SQL statements.

Notes for SET PATH
Restrictions on SET PATH:

These restrictions apply to the SET PATH statement:

• If the same schema name appears more than one time in the path, the first occurrence of the name
is used and a warning is issued.

• The length of the CURRENT PATH special register limits the number of schema names that can
be specified. The special register string is built by taking each schema name that is specified and
removing trailing blanks, delimiting with double quotes, changing each double quote character to
two double quote characters within the schema name as necessary, and then separating each
schema name with a comma. The length of the resulting string cannot exceed 2048 bytes.

• The schema name SYSPUBLIC cannot be specified in the SQL path, even if you specify the value as a
delimited identifier.

Specifying "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM":
Schemas "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM" do not need to be specified in the special
register. If these schemas are not explicitly specified in the CURRENT PATH special register, each
schema is implicitly assumed at the front of the SQL path; if any of these schemas are not specified,
they are assumed in the order of "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM" (see “SQL path” on
page 85 for an example). Only the schemas that are explicitly specified in the CURRENT PATH register
are included in the 2048 byte limit.

To avoid having "SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM" implicitly added to the front of the
SQL path, explicitly specify them in the path when setting the value of the register. If you specify them
at the end of the path, Db2 will check all the other schemas in the path first.

Specifying keywords versus delimited identifiers:
There is a difference between specifying a keyword and specifying a delimited identifier. For example,
specifying SESSION_USER with and without escape characters. To indicate that the value of the
SESSION_USER special register should be used in the SQL path, specify the keyword SESSION_USER.

2164 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If you specify SESSION_USER is as a delimited identifier instead (for example, "SESSION_USER"), it is
interpreted as a schema name of 'SESSION_USER'. For example, assume that the current value of the
SESSION_USER special register is SMITH and that the following statement is issued:

SET PATH = SYSIBM, SYSPROC, SESSION_USER, "SESSION_USER"

The result is that the value of the SQL path is set to: "SYSIBM","SYSPROC","SMITH","SESSION_USER".
Specifying a schema name in an SQL procedure:

Because a host variable (SQL variable) in an SQL procedure does not begin with a colon, Db2 uses
the following rules to determine whether a value that is specified in a SET PATH=name statement is a
variable or a schema-name:

• If name is the same as a parameter or SQL variable in the SQL procedure, Db2 uses name as a
parameter or SQL variable and assigns the value in name to PATH.

• If name is not the same as a parameter or SQL variable in the SQL procedure, Db2 uses name as a
schema-name and assigns the value name to PATH.

The use of the path to resolve object names:
For information on when the SQL path is used to resolve unqualified data type, function, and
procedure names and when the CURRENT PATH special register provides the SQL path, see “SQL
path” on page 85.

DRDA classification:
The SET PATH statement is executed by the database server and, therefore, is classified as a non-
local SET statement in DRDA.

Alternative syntax and synonyms:
For compatibility with previous releases of Db2 or other products in the Db2 family, Db2 supports
CURRENT FUNCTION PATH or CURRENT_PATH as a synonym for CURRENT PATH.

Examples for SET PATH

Example 1: Set the CURRENT PATH special register to the list of schemas: "SCHEMA1", "SCHEMA#2",
"SYSIBM".

 SET PATH = SCHEMA1,"SCHEMA#2", SYSIBM;

When the SQL path specified in the special register is used for name resolution the system schemas which
were not explicitly specified in the special register are implicitly assumed at the front of the SQL path,
making the effective value of the path:

 SYSFUN, SYSPROC, SYSIBMADM, SCHEMA1, SCHEMA#2, SYSIBM

Example 2: Add schema SMITH and SYSPROC to the value of the CURRENT PATH special register that was
set in Example 1.

 SET PATH = CURRENT PATH, SMITH, SYSPROC;

The effective value of the SQL path specified by the special register becomes:

 SYSFUN, SYSIBMADM, SCHEMA1, SCHEMA#2, SYSIBM, SMITH, SYSPROC

Related reference
CURRENT PATH special register

Chapter 7. Statements 2165

CURRENT PATH specifies the SQL path used to resolve unqualified data type names and function names
in dynamically prepared SQL statements. It is also used to resolve unqualified procedure names that are
specified as host variables in SQL CALL statements (CALL host-variable).

SET SCHEMA statement
The SET SCHEMA statement assigns a value to the CURRENT SCHEMA special register. If the package is
bound with the DYNAMICRULES BIND option, this statement does not affect the qualifier that is used for
unqualified database object references.

Invocation for SET SCHEMA
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for SET SCHEMA
None required.

Syntax for SET SCHEMA

SET
CURRENT

SCHEMA

CURRENT_SCHEMA

=
schema-name

SESSION_USER

USER

host-variable

string-constant

DEFAULT

Description for SET SCHEMA
schema-name

Identifies a schema. No validation that the schema exists is made at the time the CURRENT SCHEMA
is set. For example, if a schema name is misspelled, it could affect the way subsequent SQL operates.

SESSION_USER or USER
Specifies the value of the SESSION_USER (USER) special register.

host-variable
Specifies a host variable that contains a schema name. The content is not folded to uppercase.

The host variable must:

• Be a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC variable. The actual length of the contents of the
host-variable must not exceed the length of a schema name.

• Not be set to null. If host-variable has an associated indicator variable, the value of that indicator
variable must not indicate a null value.

• Include a schema name that is left justified and conforms to the rules for forming an ordinary
identifier or delimited identifier. If the identifier is delimited, it must not be empty or contain only
blanks.

• Be padded on the right with blanks if the host variable is fixed length.
• Not contain SESSION_USER, USER, or DEFAULT.

string-constant
Specifies a string constant that contains a schema name. The content is not folded to uppercase.

2166 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The string constant must:

• Have a length that does not exceed the maximum length of a schema name.
• Include a schema name that is left justified and conforms to the rules for forming an ordinary
identifier or delimited identifier. If the identifier is delimited, it must not be empty or contain only
blanks.

• Not contain SESSION_USER, USER, or DEFAULT.

DEFAULT
Specifies that CURRENT SCHEMA is to be set to its initial value, as if it had never been explicitly
set during the application process. For information about the initial value of CURRENT SCHEMA, see
“CURRENT SCHEMA special register” on page 206.

Notes for SET SCHEMA
Considerations for keywords:

There is a difference between specifying a single keyword (such as SESSION_USER or DEFAULT) as
a single keyword or as a delimited identifier. To indicate that the current value of the SESSION_USER
special register should be used for setting the current schema, specify SESSION_USER as a keyword.
To indicate that the special register should be set to its default value, specify DEFAULT as a
keyword. If SESSION_USER or DEFAULT is specified as a delimited identifier instead (for example,
"SESSION_USER"), it is interpreted as a schema name of that value ("SESSION_USER").

Transaction considerations:
The SET SCHEMA statement is not a committable operation. ROLLBACK has no effect on CURRENT
SCHEMA.

Usage of the assigned value:
The value of the CURRENT SCHEMA special register, as set by this statement, is used as the schema
name in all dynamic SQL statements. The QUALIFIER bind option specifies the schema name for use
as the qualifier for unqualified database object names in static SQL statements.

Impact on other special registers:
Setting the CURRENT SCHEMA special register does not affect any other special register. Therefore,
the CURRENT SCHEMA is not be included in the SQL path that is used to resolve the schema name
for unqualified references to function, procedures and user-defined types in dynamic SQL statements.
To include the current schema value in the SQL path, whenever the SET SCHEMA statement is issued,
also issue the SET PATH statement including the schema name from the SET SCHEMA statement.

Examples for SET SCHEMA

Example 1: The following statement sets the CURRENT SCHEMA special register.

 EXEC SQL SET SCHEMA RICK;

Example 2: The following example retrieves the current value of the CURRENT SCHEMA special register
into the host variable called CURSCHEMA.

 EXEC SQL SELECT CURRENT SCHEMA INTO :CURSCHEMA
 FROM SYSIBM.SYSDUMMY1;

The value of the host variable is RICK.

Example 3: Assume that the following statements are issued:

SET CURRENT SQLID = 'USRT001';
SET CURRENT SCHEMA = 'USRT002';

At this point, the two special registers contain different values. Any subsequent CREATE statements will
use USRT002 as the implicit qualifier, but the owner of the newly created objects is USRT001.

Chapter 7. Statements 2167

Example 4: Assume that the value of CURRENT SCHEMA is 'Jane' and that the default value of the PATH
special register was established using that value (that is, the value of PATH is "SYSIBM", "SYSFUN",
"SYSPROC", "SYSIBMADM", "JANE"). Change the value of the CURRENT SCHEMA special register to 'John'.

 SET CURRENT SCHEMA = 'JOHN';

To change the SQL path to use the updated CURRENT SCHEMA value of "JOHN", issue a SET PATH
statement to change the value of the PATH special register to specify "JOHN" as the first schema to
check:

SET PATH = 'JOHN', CURRENT PATH;

Alternatively, a commit would cause PATH to be re-initialized. Otherwise, the path remains "SYSIBM",
"SYSFUN", "SYSPROC", "SYSIBMADM", "JANE"), which might cause unqualified object names to resolve to
"JANE" when you want them to resolve to "JOHN".

SET SESSION TIME ZONE statement
The SET SESSION TIME ZONE statement assigns a value to the SESSION TIME ZONE special register.

Invocation for SET SESSION TIME ZONE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for SET SESSION TIME ZONE
None required.

Syntax for SET SESSION TIME ZONE

SET
SESSION

TIME ZONE

TIMEZONE

=
string-constant

variable

Description for SET SESSION TIME ZONE
string-constant

Identifies a time zone with a value of the form '±th:tm' , where th represents the time zone hour
between -12 and +14, and tm represents the time zone minutes in the range 0–59, with values
ranging from -12:59 to +14:00.

variable
Specifies a variable that contains a time zone. The variable must be a CHAR or VARCHAR variable that
is not followed by an indicator variable. The variable must not be the null value. The value must be
left justified and be of the form '±th:tm' , where th represents the time zone hour between -12 and
+14, and tm represents the time zone minutes in the range 0–59, with values ranging from -12:59 to
+14:00.

Notes for SET SESSION TIME ZONE
Impact on other special registers:

Setting the SESSION TIME ZONE special register does not affect the CURRENT TIMEZONE special
register.

Syntax alternatives:
SESSIONTIMEZONE can be specified as an alternative to SESSION TIME ZONE or TIME ZONE.

2168 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example for SET SESSION TIME ZONE

Set the SESSION TIME ZONE as -8:00:

 SET SESSION TIME ZONE = '-8:00';

Related reference
SESSION TIME ZONE special register
The SESSION TIME ZONE special register specifies a value that identifies the time zone of the application
process.

SIGNAL statement
The SIGNAL statement is used to signal an error. It causes an error to be returned with the specified
SQLSTATE and error description.

Syntax

label:

SIGNAL

SQLSTATE
VALUE

sqlstate-string-constant

SQL-variable-name

SQL-parameter-name

SQL-condition-name

signal-information

signal-information:

SET MESSAGE_TEXT = diagnostic-string-expression

(diagnostic-string-expression)
1

Notes:
1 (diagnostic-string-expression) must only be specified within a trigger body.

Description
label

Specifies the label for the SIGNAL statement. A label name cannot be the same as the routine
name, advanced trigger name, or another label within the same scope. For additional information, see
“References to SQL labels” on page 2210.

SQLSTATE VALUE
Specifies the SQLSTATE that will be returned. Any valid SQLSTATE value can be used. It must be a
character string constant with exactly five characters that follow the rules for SQLSTATEs:

• Each character must be from the set of digits ('0' through '9') or non-accented upper case letter ('A'
through 'Z').

Chapter 7. Statements 2169

• The SQLSTATE class (the first two characters) cannot be '00' because it represents successful
completion.

In the context of a MERGE statement, the following rules also apply:

• The SQLSTATE class (first two characters) cannot be '01' or '02', because these are not error
classes.

• If the SQLSTATE class starts with the numbers '0' through '6' or the letters 'A' through 'H', the
subclass (the last three characters) must start with a letter in the range of 'I' through 'Z'.

• If the SQLSTATE class starts with the numbers '7', '8', '9', or the letters 'I' through 'Z', the subclass
can be any of '0' through '9' or 'A' through 'Z'.

If the SQLSTATE does not conform to these rules, an error occurs.

sqlstate-string-constant
A character string constant with an actual length of five bytes that is a valid SQLSTATE value.

SQL-variable-name or SQL-parameter-name
Specifies an SQL variable or SQL parameter that contains a valid SQLSTATE value.
SQL-variable-name

Specifies an SQL variable that is declared within the compound-statement that contains the
SIGNAL statement, or within a compound statement in which that compound statement is
nested. SQL-variable-name must be defined as a CHAR or VARCHAR data type with an actual
length of five bytes, must not be null, and must contain a valid SQLSTATE value.

SQL-parameter-name
Specifies an SQL parameter that is defined for the routine and contains the SQLSTATE value.
The SQL parameter must be defined as a CHAR or VARCHAR data type with an actual length of
five bytes, must not be null, and must contain a valid SQLSTATE value.

SQL-condition-name
Specifies the name of the condition that will be returned. The SQL-condition-name must be declared
within the compound statement that contains the SIGNAL statement, or within a compound
statement in which that compound statement is nested.

SET MESSAGE_TEXT
Specifies a string that describes the error or warning. The string is returned in the SQLERRMC field of
the SQLCA or with the GET DIAGNOSTICS statement.
diagnostic-string-expression

An expression with a data type of CHAR or VARCHAR that returns a character string of up to 1000
bytes that describes the error or warning condition. For information on how to obtain the complete
message text, see “GET DIAGNOSTICS statement” on page 1949.

(diagnostic-string-expression)
An expression with a data type of CHAR or VARCHAR that returns a character string of up to 1000
bytes that describes the error or warning condition. For information on how to obtain the complete
message text, see “GET DIAGNOSTICS statement” on page 1949.

This syntax variation is only provided within the scope of a CREATE TRIGGER statement for
compatibility with previous versions of Db2. To conform with the ANS and ISO standards, this form
should not be used.

Notes
While any valid SQLSTATE value can be used in the SIGNAL statement, programmers should define new
SQLSTATEs based on ranges reserved for applications. This practice prevents the unintentional use of an
SQLSTATE value that might be defined by the database manager in a future release.

If the SQLSTATE or condition indicates that an exception is signaled:

• If a condition handler exists in the same compound statement as the SIGNAL statement, and the
compound statement contains a condition handler for SQLEXCEPTION or the specified SQLSTATE or
condition, the exception is handled and control is transferred to that condition handler.

2170 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• If the compound statement is nested and the outer level compound statement has a condition handler
for SQLEXCEPTION or the specified SQLSTATE or condition, the exception is handled and control is
transferred to that condition handler.

• Otherwise, the exception is not handled and control is immediately returned to the end of the
compound statement.

If the SQLSTATE or condition indicates that a warning or not found condition is signaled:

• If a condition handler exists in the same compound statement as the SIGNAL statement, and the
compound statement contains a condition handler for SQLWARNING, NOT FOUND, or the specified
SQLSTATE or condition, the warning or not found condition is handled and control is transferred to that
condition handler.

• If the compound statement is nested and an outer level compound statement contains a condition
handler for SQLWARNING, NOT FOUND, or the specified SQLSTATE or condition, the warning or not
found condition is handled and control is transferred to that condition handler.

• Otherwise, the warning or not found condition is not handled and processing continues with the next
statement.

Considerations for the diagnostics area: The SIGNAL statement starts with a clear diagnostics area
and sets the RETURNED_SQLSTATE to reflect the specified SQLSTATE or condition-name. If message
text is specified, the MESSAGE_TEXT item of the condition area is assigned the specified value.
DB2_RETURNED_SQLCODE is set to +438 or -438 corresponding to the specified SQLSTATE or condition-
name.

Examples

• The following example shows an SQL procedure for an order system that signals an application error
when a customer number is not known to the application. The ORDERS table includes a foreign key to
the CUSTOMER table, requiring that the CUSTNO exist before an order can be inserted.

CREATE PROCEDURE SUBMIT_ORDER
 (IN ONUM INTEGER, IN CNUM INTEGER,
 IN PNUM INTEGER, IN QNUM INTEGER)
 LANGUAGE SQL
 SPECIFIC SUBMIT_ORDER
 MODIFIES SQL DATA
BEGIN
 DECLARE EXIT HANDLER FOR SQLSTATE VALUE '23503'
 SIGNAL SQLSTATE '75002'
 SET MESSAGE_TEXT = 'Customer number is not known';
 INSERT INTO ORDERS (ORDERNO, CUSTNO, PARTNO, QUANTITY)
 VALUES (ONUM, CNUM, PNUM, QNUM);
END

• The following example shows a trigger for an order system that allows orders to be recorded in an
ORDERS table (ORDERNO, CUSTNO, PARTNO, QUANTITY) only if there is sufficient stock in the PARTS
tables. When there is insufficient stock for an order, SQLSTATE '75001' is returned along with an
appropriate error description.

 CREATE TRIGGER CK_AVAIL
 NO CASCADE BEFORE INSERT ON ORDERS
 REFERENCING NEW AS NEW_ORDER
 FOR EACH ROW MODE DB2SQL
 WHEN (NEW_ORDER.QUANTITY > (SELECT ON_HAND FROM PARTS
 WHERE NEW_ORDER.PARTNO = PARTS.PARTNO))
 BEGIN ATOMIC
 SIGNAL SQLSTATE '75001' ('Insufficient stock for order');
 END

Related concepts
SQL procedural language (SQL PL)

Chapter 7. Statements 2171

TRANSFER OWNERSHIP statement
The TRANSFER OWNERSHIP statement transfers the ownership of a database or system object from one
owner to another. The new owner can be an authorization ID or a role.

Invocation for TRANSFER OWNERSHIP
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES RUN behavior is in effect. For more
information, see “Authorization IDs and dynamic SQL” on page 94.

Authorization for TRANSFER OWNERSHIP
Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the package. If the owner of the package is a role, the role must hold the
privileges for the privilege set.

If the statement is dynamically prepared, the privilege set is the privileges that are held by the SQL
authorization ID of the process unless the process is within a trusted context and the ROLE AS OBJECT
OWNER AND QUALIFIER clause is specified. If ROLE AS OBJECT OWNER is in effect, the role must hold
the privileges for the privilege set.

The privilege set must include at least one of the following privileges:

• Ownership of the object
• SECADM authority

Explicit SECADM authority is always required regardless of the SEPARATE_SECURITY subsystem
parameter setting. For more information, see Separating the SYSADM authority (Managing Security). If
the Access Control Authorization exit is active, Db2 calls the exit to check for the SECADM authority. Only
the SECADM authority is checked regardless of the SEPARATE_SECURITY system parameter value.

Syntax for TRANSFER OWNERSHIP
TRANSFER OWNERSHIP OF object TO new-owner REVOKE PRIVILEGES

object:

DATABASE database-name

INDEX index-name

STOGROUP stogroup-name

TABLE table-name

TABLESPACE

database-name .

tablespace-name

VIEW view-name

new-owner:

ROLE role-name

USER authorization-name

SESSION_USER

2172 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_separatesysadm.html

Description for TRANSFER OWNERSHIP
DATABASE database-name

Identifies the database for ownership transfer. The database must exist on the current server. The
name of the database must not identify DSNDB01, DSNDB04, DSNDB06, or any implicitly created
database owned by SYSIBM. When the ownership of the database is transferred, the CREATOR and
CREATORTYPE values for the database in SYSIBM.SYSDATABASE are updated with the authorization
ID or role and the type of the new owner. Transferring the ownership of a database does not transfer
the ownership of any other object in the database that was created by the current owner.

INDEX index-name
Identifies the index for ownership transfer. The index must exist on the current server. The index must
not be defined on a catalog table, a directory table or a declared temporary table. When the ownership
of the index is transferred, the OWNER and OWNERTYPE values for the index in SYSIBM.SYSINDEXES
are updated with the authorization ID or role and the type of the new owner.

STOGROUP stogroup-name
Identifies the storage group for ownership transfer. The storage group must exist the current server.
When the ownership of the storage group is transferred, the CREATOR and CREATORTYPE values for
the group in SYSIBM.SYSSTOGROUP are updated with the authorization ID or role and the type of the
new owner.

TABLE table-name
Identifies the table for ownership transfer. The table must exist on the current server, and it must not
be a view, a catalog table, a directory table, a table with the SECURITY LABEL column, or a table that
is implicitly created for an XML column. If the table is referenced by a qualified name, the name can
be a two-part or three-part name. If a three-part name is used, the first part must match the value
of the field Db2 LOCATION NAME on installation panel DSNTIPR at the current server. If the current
server is not the local Db2, this name is not necessarily the name in the CURRENT SERVER special
register.

If table-name is an alias for a table and alias-name is specified, ownership of the table is transferred
to the new owner and the alias is unchanged.

When the ownership of a table is transferred, the ownership of any implicitly created object, such
as a table space, auxiliary table, auxiliary table space, XML table, XML table space, or index, is
also transferred if the table and the implicitly created object have the same owner. In addition, the
ownership of an explicitly created auxiliary table or auxiliary table space is also transferred if the table
and the explicitly created object have the same owner.

When the ownership of the table is transferred, the OWNER and OWNERTYPE values for the table in
SYSIBM.SYSTABLES are updated with the authorization ID or role and the type of the new owner.

TABLESPACE tablespace-name
Identifies the table space for ownership transfer. The table space must exist on the current server,
but it must not have been implicitly created for an XML column. The database must not be
DSNDB01, DSNDB06, or DSNDB04. Omitting a database name implicitly specifies DSNDB04. When
the ownership of the table space is transferred, the CREATOR and CREATORTYPE values for the table
space in SYSIBM.SYSTABLESPACE are updated with the authorization ID or role and the type of the
new owner.

VIEW view-name
Identifies the view for ownership transfer. The view must exist on the current server. If the view is
referenced by a qualified name, the name can be a two-part or three-part name. If a three-part name
is used, the first part must match the value of the field Db2 LOCATION NAME on installation panel
DSNTIPR at the current server. If the current server is not the local Db2, this name is not necessarily
the name in the CURRENT SERVER special register.

If view-name is an alias for a view and alias-name is specified, ownership of the view is transferred to
the new owner and the alias is unchanged.

When the ownership of the view is transferred, the OWNER and OWNERTYPE values for the view in
SYSIBM.SYSTABLES and SYSIBM.SYSVIEWS are updated with the authorization ID or role and the
type of the new owner.

Chapter 7. Statements 2173

TO
Specifies the authorization ID or the role to which the ownership of an object is transferred.
ROLE role-name

Specifies the role to which the ownership of an object is transferred. The new role must exist on
the current server.

USER authorization-name
Specifies the authorization ID to which the ownership of the object is transferred.

SESSION_USER
Specifies that the value of the SESSION_USER special register is used as the authorization ID to
which the ownership of an object is transferred.

REVOKE PRIVILEGES
Specifies that the current owner no longer has any implicit privileges on the object after the transfer is
complete. The corresponding authorization cache entries for the current owner are cleared.

If any packages or objects are dependent on an implicit privilege that the current owner has on the
object of the statement, a TRANSFER OWNERSHIP statement fails because existing privileges are
revoked. For the current owner to maintain access to those dependent packages, authorization must
be explicitly granted to the current owner from another source before the TRANSFER OWNERSHIP
statement is executed. For example, assume that a user created a package that references one of
their tables. The user implicitly has the SELECT privilege on tables they created. To transfer that table
to another owner and still be able to use the package, the user must be explicitly granted the SELECT
privilege on the table before the TRANSFER OWNERSHIP statement is executed.

Notes for TRANSFER OWNERSHIP
• The TRANSFER OWNERSHIP statement does not change the schema of the transferred object.
• The ownership of any system object whose OWNER is SYSIBM or whose schema begins with SYS cannot

be transferred.
• The new owner is automatically granted the same privileges that the current owner holds on the object

at the time of the object's creation. For example, if the current owner has the DBADM authority on the
database when the database was created, the new owner is automatically granted the DBADM authority
on the database.

• An authorization ID with the SECADM authority cannot transfer the ownership of an object to itself.
• Db2 issues a warning when the current owner of an object attempts to transfer the ownership to itself.
• If the current owner of an object is a role, the dependency record for that role in

SYSIBM.SYSOBJROLEDEP is deleted when the object ownership is transferred. If the new owner is
a role, the dependency record for that role is added to SYSIBM.SYSOBJROLEDEP.

• A SECADM or ACCESSCTRL authority can use the REVOKE statement with the BY clause to revoke any
privilege that is granted on the object by the current owner.

• When the ownership of an object is transferred, the new owner must have the same set of privileges on
the object as specified in the dependency record of the object. The privileges are required for the object
to continue to exist. The new owner does not need additional privileges that are required for creating
the object. Consider the following examples.

– If a view has SELECT and INSERT dependencies on an underlying table and when the ownership is
transferred, the new owner of the view must be granted the same SELECT and INSERT privileges.
If the dependencies are SELECT WITH GRANT OPTION and INSERT WITH GRANT OPTION, the new
owner must be granted the same SELECT WITH GRANT OPTION and INSERT WITH GRANT OPTION
privileges.

– If a view has a dependency on a routine and when the ownership of the view is transferred, the new
owner must be granted the EXECUTE privilege on the dependent routine.

– If a table has a distinct type column and when the ownership of the table is transferred, the new
owner must be granted the USAGE privilege on the distinct type.

2174 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Examples for TRANSFER OWNERSHIP

Example 1: Transfer the ownership of database DBCC001 to user USRT001 and remove the current
owner's privileges on the database:

 TRANSFER OWNERSHIP OF DATABASE DBCC001 TO USER USRT001
 REVOKE PRIVILEGES;

Example 2: Transfer the ownership of database DBCC002 to role OWNRROLE and remove the current
owner's privileges on the database:

 TRANSFER OWNERSHIP OF DATABASE DBCC002 TO ROLE OWNRROLE
 REVOKE PRIVILEGES;

Example 3: Transfer the ownership of database DBCC003 to session user SESSION_USER and remove the
current owner's privileges on the database:

 TRANSFER OWNERSHIP OF DATABASE DBCC003 TO SESSION_USER
 REVOKE PRIVILEGES;

Example 4: Transfer the ownership of table EMPLOYEE.DEPT to ROLE TBOWNR_ROLE and remove the
current owner's privileges on the table:

 TRANSFER OWNERSHIP OF TABLE EMPLOYEE.DEPT TO ROLE TBOWNR_ROLE
 REVOKE PRIVILEGES;

Example 5: Transfer the ownership of index EMPLOYEE.SALARYIX to USER IXOWNER and remove the
current owner's privileges on the index:

 TRANSFER OWNERSHIP OF INDEX EMPLOYEE.SALARYIX TO USER IXOWNER
 REVOKE PRIVILEGES;

TRUNCATE statement
The Db2 TRUNCATE statement deletes all rows for either base tables or declared global temporary tables.
The base table can be in a simple table space, a segmented (non-UTS) table space, a partitioned (non-
UTS) table space, or a universal table space. If the table contains LOB or XML columns, the corresponding
table spaces and indexes are also truncated.

Invocation for TRUNCATE
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization for TRUNCATE
The privilege set that is defined below must include at least one of the following privileges:

• The DELETE privilege for the table
• Ownership of the table
• DBADM authority for the database
• DATAACCESS authority
• SYSADM authority

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

If the IGNORE DELETE TRIGGERS option is in effect, the privilege set must include at least one of the
following privileges:

Chapter 7. Statements 2175

• The ALTER privilege for the table
• Ownership of the table
• DBADM authority for the database
• System DBADM authority
• SYSADM authority

If row access control is activated for the table, the privilege set must include at least one of the following
privileges or authorities:

• Ownership of the table
• DBADM authority
• SYSADM authority
• SYSCTRL authority
• System DBADM authority

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the statement is dynamically prepared, the
privilege set is determined by the DYNAMICRULES behavior in effect (run, bind, define, or invoke) and is
summarized in “Dynamic preparation and execution” on page 1088. (For more details on these behaviors,
including a list of the DYNAMICRULES bind option values that determine them, see “Authorization IDs and
dynamic SQL” on page 94.)

Syntax for TRUNCATE

TRUNCATE
TABLE

table name
DROP STORAGE

REUSE STORAGE

IGNORE DELETE TRIGGERS

RESTRICT WHEN DELETE TRIGGERS IMMEDIATE

Description for TRUNCATE
table-name

Identifies the table that is to be truncated. The name must identify a table that exists at the current
server. The name must not identify the following objects:

• a view
• an auxiliary table
• an XML table
• a catalog table
• a system-period temporal table
• an accelerator-only table

If table-name is a base table of a table space, all tables that are defined under the table will also be
truncated (for example: auxiliary LOB table spaces and XML table spaces), and all of its associated
indexes will also be truncated.

DROP STORAGE or REUSE STORAGE
Specifies whether to drop or reuse the existing storage that is allocated for the table.
DROP STORAGE

Specifies that all storage that is allocated for the table is released and made available for use for
the same table or any other table that resides in the table space. The scope of DROP STORAGE

2176 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

is always at the table space level and the deallocated space is always available for reuse by all
tables in the table space.

DROP STORAGE is the default.

REUSE STORAGE
Specifies that all storage that is allocated for the table will be emptied, but will continue to be
allocated for the table. REUSE STORAGE is ignored for a table in a simple table space and the
statement is processed as if DROP STORAGE is specified.

RESTRICT WHEN DELETE TRIGGERS or IGNORE DELETE TRIGGERS
Specifies what to do when delete triggers are defined on the table.
RESTRICT WHEN DELETE TRIGGERS

Specifies that an error is returned if delete triggers are defined on the table.
IGNORE DELETE TRIGGERS

Specifies that any delete triggers that are defined for the table are not activated by the truncate
operation. Additional authorization is required for this option; see “Authorization for TRUNCATE”
on page 2175.

IGNORE DELETE TRIGGERS is the default.

IMMEDIATE
Specifies that the truncate operation is processed immediately and cannot be undone. If the
IMMEDIATE option is specified, the table must not contain any uncommitted updates. In the case
of a table in a multi-table table space, if there are any uncommitted updates to any table in the table
space, the truncate operation will fail. Also, if there are any uncommitted CREATE, ALTER or DROP
statements for any table in the table space, the truncate operation will fail.

The truncated table is immediately available for use in the same unit of work. Although a ROLLBACK
statement is allowed to execute after a TRUNCATE statement, the truncate operation is not undone,
and the table remains in a truncated state. For example, if another data change operation is done on
the table after the TRUNCATE IMMEDIATE statement and then the ROLLBACK statement is executed,
the truncate operation will not be undone, but all other data change operations are undone.

If IMMEDIATE is not specified, a ROLLBACK statement can undo the truncate operation.

The IMMEDIATE option can be specified for a table in a segmented (non-UTS) table space or a
universal table space which allows deallocated spaces to be reclaimed immediately for subsequent
insert operations in the same unit of work without committing the truncate operation.

Notes for TRUNCATE
Rules and restrictions:

The truncate operation cannot be executed if the table is a parent table in an enforced referential
constraint. The Db2 subsystem issues an error when it detects the existence of rule violations.
Therefore, if the referential integrity constraint exists, the TRUNCATE statement will be restricted
regardless of whether the child table contains rows.

The TRUNCATE statement cannot be used if the table is a system-maintained temporal table.

If the TRUNCATE statement is used on a tables where any of the following conditions is true, the
truncate operation will perform in a similar way to a mass delete operation:

• Tables with Change Data Capture (CDC) attribute

The Db2 subsystem allows a table with the CDC-enabled attribute to be truncated without imposing
any new restrictions.

• Tables with multi-level security

If the table contains a column that is defined as a security label, the truncate operation needs to
examine each row to determine if the security label of the authorization ID or role has the authority
to delete that row. However, if the primary authorization ID or role has write-down privilege,
verification of each row in the table is not necessary.

Chapter 7. Statements 2177

• Tables with a VALIDPROC attribute

If a VALIDPROC is defined for the table, the truncate operation needs to verify the validity of each
row in the table.

TRUNCATE and table spaces that are not logged:
The TRUNCATE TABLE statement can be used to remove a table space from the logical page list
and to reset recover-pending status. When the table space is a segmented (non-UTS) table space
or universal table space, the table is the only table in the table space, and the table does not
have a VALIDPROC, referential constraints, delete triggers, or a SECURITY LABEL column, use the
TRUNCATE TABLE statement to empty the table and the table space will be removed from the LPL and
recover-pending status will be reset.

Truncating rows from a table with activated row permissions or column access control:
Row permissions and column access control is not enforced for the TRUNCATE statement.

Examples for TRUNCATE

Example 1: Empty an unused inventory table regardless of any existing triggers and return its allocated
space.

 TRUNCATE TABLE INVENTORY
 DROP STORAGE
 IGNORE DELETE TRIGGERS;

Example 2: Empty an unused inventory table regardless of any existing delete triggers but preserve its
allocated space for later reuse.

 TRUNCATE TABLE INVENTORY
 REUSE STORAGE
 IGNORE DELETE TRIGGERS;

Example 3: Empty an unused inventory table permanently (a ROLLBACK statement cannot undo the
truncate operation when the IMMEDIATE option is specified) regardless of any existing delete triggers and
preserve its allocated space for immediate use.

 TRUNCATE TABLE INVENTORY
 REUSE STORAGE
 IGNORE DELETE TRIGGERS
 IMMEDIATE;

UPDATE statement
The UPDATE statement updates the values of specified columns in rows of a table or view. Updating a row
of a view updates a row of its base table if no INSTEAD OF UPDATE trigger is defined for this view. If such
a trigger is defined, the trigger is activated instead.

The table or view can exist at the current server or at any Db2 subsystem with which the current server
can establish a connection.

There are two forms of this statement:

• The searched UPDATE form is used to update one or more rows optionally determined by a search
condition.

• The positioned UPDATE form specifies that one or more rows corresponding to the current cursor
position are to be updated.

Invocation for UPDATE
This statement can be embedded in an application program or issued interactively. A positioned UPDATE
can be embedded in an application program. Both forms are executable statements that can be
dynamically prepared.

2178 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Authorization for UPDATE
Authority requirements depend on whether the object identified in the statement is a user-defined table,
a catalog table for which updates are allowed, or a view, and whether SQL standard rules are in effect:

When a user-defined table is identified: The privilege set must include at least one of the following:

• DATAACCESS authority
• The UPDATE privilege on the table
• The UPDATE privilege on each column to be updated
• Ownership of the table
• DBADM authority on the database that contains the table
• SYSADM authority

If the database is implicitly created, the database privileges must be on the implicit database or on
DSNDB04.

When a catalog table is identified: The privilege set must include at least one of the following:

• ACCESSCTRL authority
• DATAACCESS authority
• The UPDATE privilege on each column to be updated
• DBADM authority on the catalog database
• Installation SYSOPR authority
• SYSCTRL authority
• SYSADM authority
• SYSADM authority
• System DBADM authority

When a view is identified: The privilege set must include at least one of the following:

• DATAACCESS authority
• SYSADM authority
• UPDATE privilege on the view
• UPDATE privilege on each column to be updated

If the expression in the assignment-clause contains a reference to a column of the table or view, or if the
search-condition in a searched UPDATE contains a reference to a column of the table or view, the privilege
set must include at least one of the following:

• The SELECT privilege on the table or view
• Ownership of the table or view
• DBADM authority on the database that contains the table, if the target is a table and that table that is

not a catalog table
• DATAACCESS
• SYSADM authority

When FOR PORTION OF BUSINESS_TIME is specified: The privilege set must include at least one of the
following:

• The UPDATE privilege on the columns of the BUSINESS_TIME period
• The UPDATE privilege on the table
• Ownership of the table or view
• DBADM authority on the database that contains the table, if the target is a table and that table that is

not a catalog table

Chapter 7. Statements 2179

• DATAACCESS
• SYSADM authority

If the search-condition in a searched UPDATE includes a subquery, or if the assignment-clause includes a
scalar-fullselect or a row-fullselect, see “Authorization for queries” on page 1007 for an explanation of the
authorization required.

The owner of a view, unlike the owner of a table, might not have UPDATE authority on the view (or might
have UPDATE authority without being able to grant it to others). The nature of the view itself can preclude
its use for UPDATE. For more information, see the discussion of authority in “CREATE VIEW statement” on
page 1812.

FL 509 If the statement attempts to update a row in the SYSIBM.SYSAUDITPOLICIES catalog table that
is subject to a tamper-proof audit policy, additional RACF authorization is required. During statement
execution, the primary authorization ID or one of the groups associated with the primary authorization ID
must be authorized to access the tamper-proof audit policy profile in RACF. For more information on the
authorization rules, see Db2 audit policies (Managing Security).

Privilege set: If the statement is embedded in an application program, the privilege set is the privileges
that are held by the owner of the plan or package. If the statement is dynamically prepared, the
privilege set is determined by the DYNAMICRULES behavior in effect (run, bind, define, or invoke)
and is summarized in “Dynamic preparation and execution” on page 1088. (For more information on
these behaviors, including a list of the DYNAMICRULES bind option values that determine them, see
“Authorization IDs and dynamic SQL” on page 94).

searched update:

UPDATE table-name

view-name period-clause correlation-name

include-column

SET assignment-clause

WHERE search-condition

1

isolation-clause

SKIP LOCKED DATA

QUERYNO integer

Notes:
1 The same clause must not be specified more than one time.

positioned update:

UPDATE table-name

view-name correlation-name

SET assignment-clause

WHERE CURRENT OF cursor-name

FOR ROW host-variable

integer-constant

OF ROWSET

period-clause:

2180 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_auditpolicy.html

FOR PORTION OF BUSINESS_TIME FROM value1 TO value2

BETWEEN value1 AND value2

include-column:

INCLUDE (

,

column-name data-type)

data-type:

built-in-type

distinct-type

built-in-type:

Chapter 7. Statements 2181

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

FOR BIT DATA

GRAPHIC

(1)

( integer)

VARGRAPHIC ( integer)

BINARY

(1)

( integer)

BINARY VARYING

VARBINARY

( integer)

DATE

TIME

TIMESTAMP

(6)

(integer)

WITHOUT TIME ZONE

WITH TIME ZONE

assignment clause:

2182 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

,

column-name = expression

DEFAULT

NULL

(

,

column-name) = (

,
1

expression

DEFAULT

NULL

row-fullselect
2

UNPACK-function-invocation
3

)

Notes:
1 The number of expressions, DEFAULT, and NULL keywords must match the number of column-names.
Expressions must not refer to UNPACK-function-invocation..
2 The number of columns in the select list must match the number of column-names.
3 The number of items returned from UNPACK-function-invocation must match the number of column
names.

isolation-clause:

WITH RR

RS

CS

Description for UPDATE
table-name or view-name

Identifies the object of the UPDATE statement. The name must identify a table or view that exists at
the Db2 subsystem that is identified by the implicitly or explicitly specified location name. The name
must not identify one of the following tables:

• An auxiliary table
• A created temporary table or a view of a created temporary table
• A catalog table with no updatable columns or a view of a catalog table with no updatable columns
• A directory table
• A read-only view that has no INSTEAD OF trigger defined for its update operations. (For a

description of a read-only view, see “CREATE VIEW statement” on page 1812.)
• A system-maintained materialized query table
• A table that is implicitly created for an XML column
• An archive-enabled table if any of the following conditions are true:

– The SYSIBMADM.MOVE_TO_ARCHIVE global variable is set to Y.
– The SYSIBMADM.GET_ARCHIVE global variable is set to Y, the ARCHIVESENSITIVE bind option is

set to YES, and the operation is a positioned update.

Chapter 7. Statements 2183

In an IMS or CICS application, the Db2 subsystem that contains the identified table or view must be a
remote server that supports two-phase commit.

A catalog table or a view of a catalog table can be identified if every column identified in the SET
clause is an updatable column. If a column of a catalog table is updatable, its description in Appendix
H, “Db2 catalog tables,” on page 2333 indicates that the column can be updated. If the object table
is SYSIBM.SYSSTRINGS, any column other than IBMREQD can be updated, but the rows that are
selected for update must be rows that are provided by the user (the value of the IBMREQD column
is N) and only certain values can be specified as explained in How an entry in SYSIBM.SYSSTRINGS
works with character conversion (Db2 Installation and Migration).

period-clause
Specifies that a period clause applies to the target of the update operation. The same period name
must not be specified more than one time. If the target of the update operation is a view:

• The FROM clause of the outer fullselect of the view definition must include a reference, directly or
indirectly, to an application-period temporal table.

• The result table of the outer fullselect of the view definition must include, explicitly or implicitly, the
start and end columns of the BUSINESS_TIME period.

• An INSTEAD OF trigger must not be defined for the view.

FOR PORTION OF BUSINESS_TIME
Specifies that the update only applies to row values for the portion of the BUSINESS_TIME period
in the row that is specified by the period clause. BUSINESS_TIME must be a period that is defined
on the table.

FOR PORTION OF BUSINESS_TIME must not be specified if the value of the CURRENT TEMPORAL
BUSINESS_TIME special register is not NULL when the BUSTIMESENSITIVE bind option is set to
YES.

FROM value1 TO value2
Specifies that the update applies to rows for the period that is specified from value1 to value2. No
rows are updated if value1 is greater than or equal to value2 or if value1 or value2 is the null value.

This clause must not be specified for an inclusive-inclusive period.

For the period condition that is specified with FROM value1 TO value2, the period that is specified
with period-name in a row of the target update:

• Overlaps the beginning of the specified period if the value of the begin column is less than
value1 and the value of the end column is greater than value1.

• Overlaps the end of the specified period if the value of the end column is greater than or equal to
value2 and the value of the begin column is less than value2.

• Is fully contained within the specified period if the value for the begin column is greater than or
equal to value1 and the value for the end column is less than or equal to value2.

• Is not contained in the period if both columns of period-name are less than value1 or greater
than or equal to value2.

• Is partially contained in the specified period if the period in the row overlaps the beginning of
the specified period or the end of the specified period, but not both.

• Fully overlaps the specified period if the period in the row overlaps both the beginning and the
end of the specified period.

If the period, period-name in a row is not contained in the specified period, the row is not updated.
Otherwise, the update is applied based on the specification of PORTION OF and how the values in
the columns of period-name overlap the specified period as follows:

• If the period, period-name in a row is fully contained within the specified period, the row is
updated and the values of the begin column and end column of period-name are unchanged.

• If the period, period-name in a row is partially contained in the specified period and overlaps the
beginning of the specified period:

2184 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_charconvertsysstrings.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_charconvertsysstrings.html

– The row is updated. In the updated row, the value of the begin column is set to value1 and the
value of the end column is the original value of the end column.

– An additional row is inserted using the original values from the row, except that the end
column is set to value1, and new values are used for other generated columns.

• If the period, period-name in a row is partially contained in the specified period and overlaps the
end of the specified period:

– The row is updated. In the updated row, the value of the begin column is the original value of
the begin column and the end column is set to value2.

– An additional row is inserted using the original values from the row, except that the begin
column is set to value2, and new values are used for other generated columns.

• If the period, period-name in a row fully overlaps the specified period:

– The row is updated. In the updated row, the value of the begin column is set to value1 and the
value of the end column is set to value2.

– An additional row is inserted using the original values from the row, except that the end
column is set to value1, a column defined as DATA CHANGE OPERATION is set to 'I', and new
values are used for other generated columns.

– An additional row is inserted using the original values from the row, except that the begin
column is set to value2, a column defined as DATA CHANGE OPERATION is set to 'I', and new
values are used for other generated columns.

Any existing update triggers are activated for the updated rows and any existing insert triggers are
activated for rows that are implicitly inserted.

BETWEEN value1 AND value2
Specifies that the update operation applies to rows for the period that is specified from value1
up to and including value2. No rows are updated if value1 is greater than value2, or if value1 or
value2 is the null value. This clause must not be specified for an inclusive-exclusive period.

For the period clause that is specified with BETWEEN value1 AND value2, period period-name in a
row in the target of the update operation:

• Overlaps the beginning of the specified period if the value of the begin column is less than
value1 and the value of the end column is greater than value1.

• Overlaps the end of the specified period if the value of the end column is greater than or equal to
value2 and the value of the begin column is less than value2.

• Is fully contained within the specified period if the value for the begin column for period-name in
the row is greater than or equal to value1 and the value for the corresponding end column in the
row is less than or equal to value2.

• Is partially contained in the specified period if the row overlaps the beginning of the specified
period or the end of the specified period, but not both.

• Fully overlaps the specified period if the period in the row overlaps the beginning of the specified
period and overlaps the end of the specified period.

• Is not contained in the period if both columns of period-name are less than value1 or greater
than value2.

If the period period-name in a row is not contained in the specified period, the row is not updated.
Otherwise, the update operation is based on the following items:

• The specification of the PORTION OF clause.
• How the values in the columns of period-name overlap the specified period.
• spu (smallest period unit), which depends on the data type of the columns of the period as

follows:

– For a period containing DATE columns, spu is 1 day.
– For a period containing TIMESTAMP(6) columns, spu is 1 microsecond.

Chapter 7. Statements 2185

Based on those items, the update operation is applied as follows:

• If the period period-name in a row is fully contained within the specified period, the row is
updated and the values of the begin column and end column of period-name are unchanged.

• If the period period-name in a row is partially contained in the specified period and overlaps the
beginning of the specified period:

– The row is updated. In the updated row the value of the begin column is set to value1 and the
value of the end column is the original value of the end column.

– A row is inserted using the original values from the row, except that the end column is set to
value1 - spu, and new values are used for other generated columns.

• If the period period-name in a row is partially contained in the specified period and overlaps the
end of the specified period:

– The row is updated. In the updated row the value of the begin column is the original value of
the begin column and the end column is set to value2

– A row is inserted using the original values from the row, except that the begin column is set to
value2 + spu, and new values are used for other generated columns.

• If the period period-name in a row fully overlaps the specified period:

– The row is updated. In the updated row the value of the begin column is set to value1 and the
value of the end column is set to value2.

– A row is inserted using the original values from the row, except that the end column is set to
value1 - spu, a column defined as DATA CHANGE OPERATION is set to 'I', and new values are
used for other generated columns.

– An additional row is inserted using the original values from the row, except that the begin
column is set to value2 + spu, a column defined as DATA CHANGE OPERATION is set to 'I', and
new values are used for other generated columns.

value1, value2
Specifies expressions that return a value of a built-in data type. The result of each expression
must be comparable to the data type of the columns of the specified period. See the comparison
rules described in “Assignment and comparison” on page 143. Each expression can contain any of
the following supported operands:

• A constant
• A special register
• A variable
• An array element specification
• A built-in scalar function whose arguments are supported operands
• A CAST specification where the cast operand is a supported operand
• An expression that uses arithmetic operators and operands

Each expression must not have a timestamp precision that is greater than the precision of the
columns for the period.

If the begin and end columns of the period are defined as TIMESTAMP WITHOUT TIME ZONE,
each expression must not return a value of a timestamp with a time zone.

A period clause for a view must not contain an untyped parameter marker.

correlation-name
Can be used within search-condition or assignment-clause to designate the table or view. (For an
explanation of correlation-name, see “Correlation names” on page 220.)

include-column
Specifies a set of columns that are included, along with the columns of table-name or view-name, in
the result table of the UPDATE statement when it is nested in the FROM clause of the outer fullselect
that is used in a subselect, SELECT statement, or in a SELECT INTO statement. The included columns

2186 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

are appended to the end of the list of columns that is identified by table-name or view-name. If no
value is assigned to a column that is specified by an include-column, a NULL value is returned for that
column.
INCLUDE

Introduces a list of columns that are to be included in the result table of the UPDATE statement.
The included columns are only available if the UPDATE statement is nested in the FROM clause of
a SELECT statement or a SELECT INTO statement.

column-name
Specifies the name for a column of the result table of the UPDATE statement that is not the same
name as another included column nor a column in the table or view that is specified in table-name
or view-name.

data-type
Specifies the data type of the included column. The included columns are nullable.
built-in-type

Specifies a built-in data type. See “CREATE TABLE statement” on page 1650 for a description
of each built-in type.

The CCSID 1208 and CCSID 1200 clauses must not be specified for an INCLUDE column.

distinct-type
Specifies a distinct type. Any length, precision, or scale attributes for the column are those of
the source type of the distinct type as specified by using the CREATE TYPE statement.

SET
Introduces the assignment of values to column names.
assignment-clause

If row-fullselect is specified, the number of columns in the result of row-fullselect must match
the number of column-names that are specified. If row-fullselect is not specified, the number of
expressions, and NULL and DEFAULT keywords must match the number of column-names that are
specified.

column-name
Identifies a column that is to be updated. column-name must identify a column of the specified
table or view. If extended indicators are not enabled, that column must be an updatable column.
The column must not identify a generated column or a view column where the column is derived
from a scalar function, constant, or expression. column-name can also identify an INCLUDE
column that must not be qualified. The same column name must not be specified more than
once.

A column that is defined as part of a BUSINESS_TIME period must not be specified if the UPDATE
statement contains a period-clause.

Assignments to included columns are only processed when the UPDATE statement is nested in
the FROM clause of a SELECT statement or a SELECT INTO statement. There must be at least one
assignment clause that specifies a column-name that is not an INCLUDE column. The null value is
returned for an included column that is not set by using an explicit SET clause.

For a positioned update, allowable column names can be further restricted to those in a certain
list. This list appears in the FOR UPDATE clause of the SELECT statement for the associated cursor.
The clause can be omitted by using the conditions that are described in “Positioned updates of
columns” on page 326.

A view column that is derived from the same column as another column of the view can be
updated, but both columns cannot be updated in the same UPDATE statement.

expression
Indicates the new value of the column. The expression is any expression of the type described in
“Expressions” on page 245. It must not include an aggregate function.

Chapter 7. Statements 2187

A column-name in an expression must identify a column of the table or view. For each row that is
updated, the value of the column in the expression is the value of the column in the row before the
row is updated.

If expression is a single host variable, the host variable can include an indicator with an extended
indicator value. If extended indicators are enabled, and an expression in the assignment clause is
not a single host variable, the extended indicator values of DEFAULT and UNASSIGNED must not
be used.

A CAST specification can be used if either of the following is true:

• The target column is defined as nullable.
• The target column is defined as NOT NULL with a non-null default, the source of the CAST
specification is a single host variable, and the data attributes (data type, length, precision, and
scale) of the host variable are the same as the result of the cast specification.

DEFAULT
Specifies that the default value is used based on how the corresponding column is defined in the
table. DEFAULT must not be specified for a ROWID column. The value that is assigned depends on
how the column is defined.

• If the column is a generated expression, the column value will be generated by the Db2
subsystem based on the result of the expression.

• If the column is an identity column, row change timestamp column, row-begin column, row-end
column, or transaction-start-ID column, the Db2 subsystem will generate a new value.

• If the column is defined using the WITH DEFAULT clause, the value is set to the default that is
defined for the column.

• If the column is defined without specifying the WITH DEFAULT clause, the GENERATED clause,
or the NOT NULL clause, the value is NULL.

• If the column is specified in the INCLUDE column list, the column value is set to null.

DEFAULT must be specified for a column that was defined as GENERATED ALWAYS. A valid value
can be specified for a column that was defined as GENERATED BY DEFAULT.

If the column is defined using the NOT NULL clause and the GENERATED clause is not used, or the
WITH DEFAULT clause is not used, the DEFAULT keyword cannot be specified for that column.

NULL
Specifies the null value as the new value of the column. Specify NULL only for nullable columns.

row-fullselect
Specifies a fullselect that returns a single row. The column values are assigned to each of the
corresponding column-names. If the fullselect returns no rows, the null value is assigned to each
column; an error occurs if any column to be updated is not nullable. An error also occurs if there is
more than one row in the result.

For a positioned update, if the table or view that is the object of the UPDATE statement is used in
the fullselect, a column from the instance of the table or view in the fullselect cannot be the same
as column-name, a column being updated.

If the fullselect refers to columns to be updated, the value of such a column in the fullselect is the
value of the column in the row before the row is updated.

UNPACK-function-invocation
Specifies an invocation of the UNPACK built-in function. The number of fields that are returned by
the UNPACK function invocation must be the same as the number of column-names.

WHERE
Specifies the rows to be updated. You can omit the clause, give a search condition, or specify a cursor.
If you omit the clause, all rows of the table or view are updated.

2188 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

search-condition
Specifies any search condition described in Chapter 2, “Language elements in SQL,” on page 75.
Each column-name in the search condition, other than in a subquery, must identify a column of the
table or view.

The search-condition is applied to each row of the table or view and the updated rows are those
for which the result of the search-condition is true. If the unique key or primary key is a parent key,
the constraints are effectively checked at the end of the operation.

If the search condition contains a subquery, the subquery can be thought of as being executed
each time the search condition is applied to a row, and the results used in applying the search
condition. In actuality, a subquery with no correlated references is executed just once, whereas it
is possible that a subquery with a correlated reference must be executed once for each row.

WHERE CURRENT OF cursor-name
Identifies the cursor to be used in the update operation. cursor-name must identify a declared cursor
as explained in the description of the DECLARE CURSOR statement in “DECLARE CURSOR statement”
on page 1819. If the UPDATE statement is embedded in a program, the DECLARE CURSOR statement
must include select-statement rather than statement-name.

The object of the UPDATE statement must also be identified in the FROM clause of the SELECT
statement of the cursor. The columns to be updated can be identified in the FOR UPDATE clause of
that SELECT statement though they do not have to be identified. If the columns are not specified, the
columns that can be updated include all the updatable columns of the table or view that is identified
in the first FROM clause of the fullselect.

The result table of the cursor must not be read-only. For an explanation of read-only result tables, see
Read-only cursors. Note that the object of the UPDATE statement must not be identified as the object
of the subquery in the WHERE clause of the SELECT statement of the cursor.

When the UPDATE statement is executed, the cursor must be open and positioned on a row or rowset
of the result table.

• If the cursor is positioned on a single row, that row is the one updated.
• If the cursor is positioned on a rowset, all rows corresponding to the rows of the current rowset are

updated.

A positioned UPDATE must not be specified for a cursor that references a view on which an instead of
update trigger is defined, even if the view is an updatable view.

FOR ROW n OF ROWSET
Specifies which row of the current rowset is to be updated. The corresponding row of the rowset is
updated, and the cursor remains positioned on the current rowset.

host-variable or integer-constant is assigned to an integral value k. If host-variable is specified, it must
be an exact numeric type with scale zero, must not include an indicator variable, and k must be in the
range 1–32767.

The cursor must be positioned on a rowset, and the specified value must be a valid value for the
set of rows most recently retrieved for the cursor. If the specified row cannot be updated, an error
is returned. It is possible that the specified row is within the bounds of the rowset most recently
requested, but the current rowset contains less than the number of rows that were implicitly or
explicitly requested when that rowset was established.

If this clause is not specified, the cursor position determines the rows that will be affected. If the
cursor is positioned on a single row, that row is the one updated. In the case where the most recent
FETCH statement returned multiple rows of data (but not as a rowset), this position would be on the
last row of data that was returned. If the cursor is positioned on a rowset, all rows corresponding to
the current rowset are updated. The cursor position remains unchanged.

It is possible for another application process to update a row in the base table of the SELECT
statement so that the specified row of the cursor no longer has a corresponding row in the base table.
An attempt to update such a row results in an error.

Chapter 7. Statements 2189

isolation-clause
Specifies the isolation level used when locating the rows to be updated by the statement.
WITH

Introduces the isolation level, which may be one of the following:
RR

Repeatable read
RS

Read stability
CS

Cursor stability

The default isolation level of the statement is the isolation level of the package or plan in which the
statement is bound, with the package isolation taking precedence over the plan isolation. When a
package isolation is not specified, the plan isolation is the default.

SKIP LOCKED DATA
Specifies that rows are skipped when incompatible locks are held on the row by other transactions.
These rows can belong to any accessed table that is specified in the statement. SKIP LOCKED DATA
can be used only when isolation CS or RS is in effect and applies only to row level or page level locks.

SKIP LOCKED DATA can be specified only in the searched UPDATE statement (or the searched
update operation of a MERGE statement). SKIP LOCKED DATA is ignored if it is specified when the
isolation level that is in effect is repeatable read (WITH RR) or uncommitted read (WITH UR). The
default isolation level of the statement depends on the isolation level of the package or plan with
which the statement is bound, with the package isolation taking precedence over the plan isolation.
When a package isolation is not specified, the plan isolation is the default.

QUERYNO integer
Specifies the number to be used for this SQL statement in EXPLAIN output and trace records. The
number is used for the QUERYNO column of the plan table for the rows that contain information about
this SQL statement. This number is also used in the QUERYNO column of the SYSIBM.SYSSTMT and
SYSIBM.SYSPACKSTMT catalog tables.

If the clause is omitted, the number associated with the SQL statement is the statement number
assigned during precompilation. Thus, if the application program is changed and then precompiled,
that statement number might change.

Using the QUERYNO clause to assign unique numbers to the SQL statements in a program is helpful:

• For simplifying the use of optimization hints for access path selection
• For correlating SQL statement text with EXPLAIN output in the plan table

For more information about enabling and using optimization hints, see Influencing access path
selection (Db2 Performance)

For information on accessing the plan table, see Investigating SQL performance by using EXPLAIN
(Db2 Performance).

Notes for UPDATE

Update rules:
Update values must satisfy the following rules. If they do not, or if other errors occur during the
execution of the UPDATE statement, no rows are updated and the position of the cursors are not
changed.

• Assignment. Update values are assigned to columns using the assignment rules described in
Chapter 2, “Language elements in SQL,” on page 75.

• Validity. Updates must obey the following rules. If they do not, or if any other errors occur during the
execution of the UPDATE statement, no rows are updated.

2190 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_influenceaccesspaths.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_influenceaccesspaths.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_useexplain2capturesqlinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_useexplain2capturesqlinfo.html

– Fullselects: The row-fullselect and expressions that contain a scalar-fullselect must return no
more than one row.

– Unique constraints and unique indexes: If the identified table (or base table of the identified view)
has any unique indexes or unique constraints, each row that is updated in the table must conform
to the limitations that are imposed by those indexes and constraints.

All uniqueness checks are effectively made at the end of the statement. In the case of a multi-row
update, this validation occurs after all the rows are updated.

– Check constraints: If the identified table (or base table of the identified view) has any check
constraints, each check constraint must be true or unknown for each row that is updated in the
table.

All checks constraints are effectively validated at the end of the statement. In the case of a
multi-row update, this validation occurs after all the rows are updated.

– Views and the WITH CHECK OPTION. For views defined with WITH CHECK OPTION, an updated
row must conform to the definition of the view. If the view you name is dependent on other views
whose definitions include WITH CHECK OPTION, the updated rows must also conform to the
definitions of those views. For an explanation of the rules governing this situation, see “CREATE
VIEW statement” on page 1812.

For views that are not defined with WITH CHECK OPTION, you can change the rows so that they
no longer conform to the definition of the view. Such rows are updated in the base table of the
view and no longer appear in the view.

– Field and validation procedures. The updated rows must conform to any constraints imposed by
any field or validation procedures on the identified table (or on the base table of the identified
view).

• Referential constraints. The value of the parent key in a parent row must not be changed. If the
update value produces a foreign key that is nonnull, the foreign key must be equal to some value of
the parent key of the parent table of the relationship.

All referential constraints are effectively checked at the end of the statement. In the case of a
multi-row update, this validation occurs after all the rows are updated.

• Indexes with VARBINARY columns. If the identified table has an index on a VARBINARY column or
a column that is a distinct type that is based on VARBINARY data type, that index column cannot
specify the DESC attribute. To use the SQL data change operation on the identified table, either drop
the index or alter the data type of the column to BINARY and then rebuild the index.

• Triggers. An UPDATE statement might cause triggers to activate. A trigger might cause other
statements to be executed or raise error conditions based on the update values. If an UPDATE
statement for a view causes an instead of trigger to activate, validity, referential integrity, and check
constraints are checked against the data changes that are performed in the trigger and not against
the view that causes the trigger to activate or its underlying base tables.

Number of rows updated:
Normally, after an UPDATE statement completes execution, the value of SQLERRD(3) in the SQLCA is
the number of rows updated. (For a complete description of the SQLCA, including exceptions to the
preceding sentence, see Appendix F, “SQL communication area (SQLCA),” on page 2303.)

Nesting user-defined functions or stored procedures:
An UPDATE statement can implicitly or explicitly refer to user-defined functions or stored procedures.
This is known as nesting of SQL statements. A user-defined function or stored procedure that is
nested within the UPDATE must not access the table being updated.

Locking:
Unless appropriate locks already exist, one or more exclusive locks are acquired by the execution
of a successful update operation. Until a commit or rollback operation releases the locks, only the
application process that performed the insert can access the updated row. If LOBs are not updated,
application processes that are running with uncommitted read can also access the updated row. The
locks can also prevent other application processes from performing operations on the table. However,
application processes that are running with uncommitted read can access locked pages and rows.

Chapter 7. Statements 2191

Locks are not acquired on declared temporary tables.

Datetime representation when using datetime registers:
As explained under Datetime special registers, when two or more datetime registers are implicitly or
explicitly specified in a single SQL statement, they represent the same point in time. This is also true
when multiple rows are updated.

Rules for positioned UPDATE with a SENSITIVE STATIC scrollable cursor:
When a SENSITIVE STATIC scrollable cursor has been declared, the following rules apply:

• Update attempt of delete holes. If, with a positioned update against a SENSITIVE STATIC scrollable
cursor, an attempt is made to update a row that has been identified as a delete hole, an error occurs.

• Update operations. Positioned update operations with SENSITIVE STATIC scrollable cursors perform
as follows:

1. The SELECT list items in the target row of the base table of the cursor are compared with the
values in the corresponding row of the result table (that is, the result table must still agree with
the base table). If the values are not identical, then the update operation is rejected, and an
error occurs. The operation may be attempted again after a successful FETCH SENSITIVE has
occurred for the target row.

2. The WHERE clause of the SELECT statement is re-evaluated to determine whether the current
values in the base table still satisfy the search criteria. The values in the SELECT list are
compared to determine that these values have not changed. If the WHERE clause evaluates as
true, and the values in the SELECT have not changed, the update operation is allowed to proceed.
Otherwise, the update operation is rejected, an error occurs, and an update hole appears in the
cursor.

• Update of update holes. Update holes are not permanent. It is possible for another process, or a
searched update in the same process, to update an update hole row so that it is no longer an update
hole. Update holes become visible with a FETCH SENSITIVE for positioned updates and positioned
deletes.

• Result table. After the base table is updated, the row is re-evaluated and updated in the temporary
result table. At this time, it is possible that the positioned update changed the data such that the
row does not qualify the search condition, in which case the row is marked as an update hole for
subsequent FETCH operations.

Referencing columns that will be updated:
If a cursor uses FETCH statements to retrieve columns that will be updated later, specify FOR UPDATE
OF when you select the columns. Then specify WHERE CURRENT OF in the subsequent UPDATE
or DELETE statements. These clauses prevent Db2 from selecting access through an index on the
columns that are being updated, which might otherwise cause Db2 to read the same row more than
once.

For more information, see Updating previously retrieved data (Db2 Application programming and
SQL).

Updating rows in a table with multilevel security:
When you update rows in a table with multilevel security, Db2 compares the security label of the user
(the primary authorization ID) to the security label of the row. The update proceeds according to the
following rules:

• If the security label of the user and the security label of the row are equivalent, the row is updated
and the value of the security label is determined by whether the user has write-down privilege:

– If the user has write-down privilege or write-down control is not enabled, the user can set the
security label of the row to any valid security label. The value that is specified for the security
label column must be assignable to a column that is defined as CHAR(8) FOR SBCS DATA NOT
NULL.

– If the user does not have write-down privilege and write-down control is enabled, the security
label of the row is set to the value of the security label of the user.

2192 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_updateretrieveddata.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_updateretrieveddata.html

• If the security label of the user dominates the security label of the row, the result of the UPDATE
statement is determined by whether the user has write-down privilege:

– If the user has write-down privilege or write-down control is not enabled, the row is updated and
the user can set the security label of the row to any valid security label.

– If the user does not have write-down privilege and write-down control is enabled, the row is not
updated.

• If the security label of the row dominates the security label of the user, the row is not updated.

Updating rows in a table for which row or column access control is enforced:
When an UPDATE statement is issued for a table for which row or column access control is enforced,
the rules specified in the enabled row permissions or column masks determine whether the row
can be updated. Typically those rules are based on the authorization ID or role of the process. The
following describes how enabled row permissions and column masks are used during UPDATE:

• Row permissions are used to identify the set of rows to be updated.

When multiple enabled row permissions are defined for a table, a row access control search
condition is derived by application of the logical OR operator to the search condition in each enabled
permission. This row access control search condition is applied to the table to determine which
rows are accessible to the authorization ID or role of the UPDATE statement. If the WHERE clause is
specified in the UPDATE statement, the user-specified predicates are applied on the accessible rows
to determine the rows to be updated. If there is no WHERE clause, the accessible rows are the rows
to be updated.

Column masks are not applicable in this step.

If the table is not enforced by row access control, the WHERE clause determines the rows to be
updated, otherwise all rows in the table are to be updated.

• If there are rows to be updated, the following rules determine whether those rows can be updated:

– For every column to be updated, the new value of the column must not be affected by enabled
column masks whose columns are referenced when deriving the new value.

When a column is referenced while deriving the values of a new row, if the column has an enabled
column mask, the masked value is used to derive the new values. If the object table is also
column access control activated, the column mask applied to derive the new values must ensure
the evaluation of the access control rules defined in the column mask resolves the column to
itself, not to a constant or an expression. If the column mask does not mask the column to itself,
the new value cannot be used for update and an error is returned at run time.

– If the rows are updatable, and there is a BEFORE UPDATE trigger for the table, the trigger is
activated.

Within the trigger actions, the new values for update might be modified in transition variables.
When the final values are returned from the trigger, the new values are used for the update.

– The rows that are to be updated must conform to the enabled row permissions:

For each row that is to be updated, the old values are replaced with the new values that were
specified in the UPDATE statement. A row that conforms to the enabled row permissions is a row
that, if updated, can be retrieved using the derived row access control search condition.

– If the rows are updatable, and there is an AFTER UPDATE trigger for the table, the trigger is
activated.

The above rules are not applicable to the included columns. The included columns are subject to the
rules for the select list because they are not the columns of the object table of the UPDATE statement.

Extended indicators usage:
When extended indicators are enabled, indicator values other than positive values and 0 (zero)
through -7 must not be specified. The DEFAULT and UNASSIGNED extended indicator values must not
appear in contexts where they are not supported.

Chapter 7. Statements 2193

Extended indicators:
Specifying an indicator value with the extended indicator value of UNASSIGNED has the same effect
as if the column had not been specified in the statement. Assigning an extended indicator value of
DEFAULT assigns the default value to the column, and must only be specified for a column that is
defined with a default value.

If a target column is not updatable, such as an identity column that is defined as GENERATED
ALWAYS, it must be assigned the extended indicator value of UNASSIGNED.

An UPDATE statement must not specify the extended indicator value of UNASSIGNED for all target
columns.

Extended indicators and update triggers:
If the indicator value for a target column is UNASSIGNED, that column is not considered to have been
updated. That column is treated as if it had not been specified in the OF column-name list of any
update trigger that is defined on the target table or view.

Extended indicators and deferred error checks:
When extended indicators are enabled, validation that would normally be done during statement
preparation to recognize an insert into a non-updatable column is deferred until the statement is
executed.

Considerations for a generated column:
A generated column that is defined as GENERATED ALWAYS should not be specified as the target of an
assignment clause unless the value that is to be assigned is specified with the DEFAULT keyword or an
extended indicator that specifies that a default value is to be assigned.

Considerations for a system-period temporal table:
When a row of a system-period temporal table is updated, Db2 updates the values of the row-begin
and transaction-start-ID columns as follows:

• A row-begin column is assigned a value for the data type of the column. If the value of
the SYSIBM. TEMPORAL_LOGICAL_TRANSACTION_TIME built-in global variable at the time of
the update is null, the value is generated using a reading of the time-of-day clock during
execution of the first data change statement in the unit of work that requires a value to be
assigned to a row-begin column or transaction-start-ID column in a table, or a row in a system-
period temporal table is deleted. Otherwise, the row-begin column is assigned the value of the
SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME built-in global variable at the time of the insert.

• A transaction-start-ID column is assigned a unique timestamp value per unit of work or the null
value. The null value is assigned to the transaction-start-ID column if the column is nullable.
Otherwise, the value is generated by using the time-of-day clock during execution of the first data
change statement in the unit of work that requires a value to be assigned to a row-begin column
or transaction-start-ID column in a table. This also occurs when a row in a system-period temporal
table is deleted. If multiple rows are updated within a single SQL unit of work, the values for the
transaction-start-ID column are the same for all the rows and are unique from the values that are
generated for the column for another unit of work.

If the UPDATE statement has a search condition that contains a correlated subquery that references
historical rows (explicitly referencing the name of the history table or implicitly referenced through
the use of a period specification in the FROM clause), the old version of the updated rows that are
inserted as historical rows (into the history table) are potentially visible to update operations for the
rows that are subsequently processed for the statement.

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a non-null value, the underlying
target of the UPDATE statement cannot be a system-period temporal table. This restriction applies
regardless of whether the system-period temporal table is directly or indirectly referenced.

Considerations for a history table:
When a row of a system-period temporal table is updated, a historical copy of the row is inserted
into the corresponding history table and the end timestamp of the historical row is captured in the
form of a system determined value that corresponds to the time of the data change operation. Db2
generates the value by using the time-of-day clock during the execution of the first data change
statement in the transaction that requires a value to be assigned to a row-begin or transaction-start-

2194 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

ID column in a table. This also occurs when a row in a system-period temporal table is deleted.
If the value of the SYSIBM. TEMPORAL_LOGICAL_TRANSACTION_TIME built-in global variable at
the time of the data change operation is null, the value is generated using a reading of the
time-of-day clock during execution of the first data change statement in the unit of work that
requires a value to be assigned to a row-begin column or transaction-start-ID column in a table,
or a row in a system-period temporal table is deleted. Otherwise, the value is assigned from the
SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME built-in global variable at the time of the data
change operation.

Considerations for an application-period temporal table:
An UPDATE statement that contains a FOR PORTION OF BUSINESS_TIME clause for an application-
period temporal table indicates the two points in time between which the specified updates are
effective.

Suppose that FOR PORTION OF BUSINESS_TIME is specified, and the period value for a row is only
partially contained in the period that is specified from value1 up to value2 or between value1 and
value2. (The period value for a row is specified by the values of the begin column and end column for
the BUSINESS_TIME period.) In this case, the row is updated and one or two rows are automatically
inserted to represent the portion of the row that is not changed. For each row that is automatically
inserted as a result of an update operation on the table, new values are generated for each generated
column in the application-period temporal table. If a generated column is defined as part of a unique
or primary key, parent key in a referential constraint, or unique index, an automatic insert might
violate a constraint or index. In this case, an error is returned.

When an application-period table is the target of an UPDATE statement and the value in effect for the
CURRENT TEMPORAL BUSINESS_TIME special register is not the null value, Db2 adds the following
additional predicates to the statement:

• inclusive-exclusive period:

 bt_begin <= CURRENT TEMPORAL BUSINESS_TIME AND
bt_end > CURRENT TEMPORAL BUSINESS_TIME

• inclusive-inclusive period:

 bt_begin <= CURRENT TEMPORAL BUSINESS_TIME AND
bt_end >= CURRENT TEMPORAL BUSINESS_TIME

In the preceding code, bt_begin and bt_end are the begin and end columns of the BUSINESS_TIME
period of the target table of the UPDATE statement.

Archive-enabled tables:
A reference to an archive-enabled table as the target of the UPDATE statement does not affect rows in
the associated archive table.

A data change statement must not reference an archive-enabled table when a system-period
temporal table or application-period temporal table is also referenced.

Other SQL statements in the same unit of work:
The following statements cannot follow an UPDATE statement in the same unit of work:

• An ALTER TABLE statement that changes the data type of a column (ALTER COLUMN SET DATA
TYPE)

• An ALTER INDEX statement that changes the padding attribute of an index with varying-length
columns (PADDED to NOT PADDED or vice versa)

• A CREATE TABLE statement that creates an accelerator-only table.
• An INSERT, UPDATE, or DELETE statement that updates accelerator-only tables from a different

accelerator.

Using UPDATE to reset AREO* status on a table:
An UPDATE statement will reset the AREO* state of a table if all conditions are true:

Chapter 7. Statements 2195

• The statement is a searched UPDATE statement. An UPDATE statement within a SELECT statement
will not reset the AREO* state.

• The expression in the SET clause is not a scalar-fullselect or row-fullselect
• The update operation is against a table in a universal table space
• The table does not have row access control activated
• The SKIP LOCKED DATA clause is not specified
• The WHERE clause is not specified
• A resource unavailable condition is not encountered.

No error or warning SQLCODE is returned if a resource unavailable condition is encountered. Only a
resource unavailable console message will be displayed.

A DISPLAY DATABASE command can be used to determine if AREO* is reset.

Examples for UPDATE

Example 1
Change employee 000190's telephone number to 3565 in DSN8C10.EMP.

 UPDATE DSN8C10.EMP
 SET PHONENO='3565'
 WHERE EMPNO='000190';

Example 2
Give each member of department D11 a 100-dollar raise.

 UPDATE DSN8C10.EMP
 SET SALARY = SALARY + 100
 WHERE WORKDEPT = 'D11';

Example 3
Employee 000250 is going on a leave of absence. Set the employee's pay values (SALARY, BONUS,
and COMMISSION) to null.

 UPDATE DSN8C10.EMP
 SET SALARY = NULL, BONUS = NULL, COMM = NULL
 WHERE EMPNO='000250';

Alternatively, the statement could also be written as follows:

 UPDATE DSN8C10.EMP
 SET (SALARY, BONUS, COMM) = (NULL, NULL, NULL)
 WHERE EMPNO='000250';

Example 4
Assume that a column named PROJSIZE has been added to DSN8C10.EMP. The column records
the number of projects for which the employee's department has responsibility. For each employee
in department E21, update PROJSIZE with the number of projects for which the department is
responsible.

 UPDATE DSN8C10.EMP
 SET PROJSIZE = (SELECT COUNT(*)
 FROM DSN8C10.PROJ
 WHERE DEPTNO = 'E21')
 WHERE WORKDEPT = 'E21';

Example 5
Double the salary of the employee represented by the row on which the cursor C1 is positioned.

 EXEC SQL UPDATE DSN8C10.EMP
 SET SALARY = 2 * SALARY
 WHERE CURRENT OF C1;

2196 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 6
Assume that employee table EMP1 was created with the following statement:

 CREATE TABLE EMP1
 (EMP_ROWID ROWID GENERATED ALWAYS,
 EMPNO CHAR(6),
 NAME CHAR(30),
 SALARY DECIMAL(9,2),
 PICTURE BLOB(250K),
 RESUME CLOB(32K));

Assume that host variable HV_EMP_ROWID contains the value of the ROWID column for employee
with employee number '350000'. Using that ROWID value to identify the employee and user-defined
function UPDATE_RESUME, increase the employee's salary by $1000 and update that employee's
resume.

 EXEC SQL UPDATE EMP1
 SET SALARY = SALARY + 1000,
 RESUME = UPDATE_RESUME(:HV_RESUME)
 WHERE EMP_ROWID = :HV_EMP_ROWID;

Example 7
In employee table X, give each employee whose salary is below average a salary increase of 10%.

 EXEC SQL UPDATE EMP X
 SET SALARY = 1.10 * SALARY
 WHERE SALARY < (SELECT AVG(SALARY) FROM EMP Y
 WHERE X.JOBCODE = Y.JOBCODE);

Example 8
Raise the salary of the employees in department 'E11' whose salary is below average to the average
salary.

 EXEC SQL UPDATE EMP T1
 SET SALARY = (SELECT AVG(T2.SALARY) FROM EMP T2)
 WHERE WORKDEPT = 'E11' AND
 SALARY < (SELECT AVG(T3.SALARY) FROM EMP T3);

Example 9
Give the employees in department 'E11' a bonus equal to 10% of their salary.

 EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT BONUS
 FROM DSN8710.EMP
 WHERE WORKDEPT = 'E12'
 FOR UPDATE OF BONUS;
 EXEC SQL
 UPDATE DSN8710.EMP
 SET BONUS = (SELECT .10 * SALARY FROM DSN8710.EMP Y
 WHERE EMPNO = Y.EMPNO)
 WHERE CURRENT OF C1;

Example 10
Assuming that cursor CS1 is positioned on a rowset consisting of 10 rows in table T1, update all 10
rows in the rowset.

EXEC SQL UPDATE T1 SET C1 = 5 WHERE CURRENT OF CS1;

Example 11
Assuming that cursor CS1 is positioned on a rowset consisting of 10 rows in table T1, update the
fourth row of the rowset.

short ind1, ind2;

int n, updt_value;

stmt = 'UPDATE T1 SET C1 = ? WHERE CURRENT OF CS1 FOR ROW ? OF ROWSET'

Chapter 7. Statements 2197

ind1 = 0;

ind2 = 0;

n = 4;

updt_value = 5;

...

strcpy(my_sqlda.sqldaid,"SQLDA");

my_sqlda.sqln = 2;

my_sqlda.sqld = 2;

my_sqlda.sqlvar[0].sqltype = 497;
my_sqlda.sqlvar[0].sqllen = 4;
my_sqlda.sqlvar[0].sqldata = (int *) &updt_value;
my_sqlda.sqlvar[0].sqlind = (short *) &ind1;

my_sqlda.sqlvar[1].sqltype = 497;
my_sqlda.sqlvar[1].sqllen = 4;
my_sqlda.sqlvar[1].sqldata = (int *) &n;
my_sqlda.sqlvar[1].sqlind = (short *) &ind2;

EXEC SQL PREPARE S1 FROM :stmt;

EXEC SQL EXECUTE S1 USING DESCRIPTOR :my_sqlda;

Example 12
Assume that table POLICY exists and that it is defined with a single inclusive-exclusive period,
BUSINESS_TIME. The table contains a row where column BK has a value of 'P138', column CLIENT
has a value of 'C882', column TYPE has a value of 'PPO', and the period has value ('2013-01-01',
'2020-12-31'). Update the portion of the row beginning from '2014-01-01' to set the TYPE column to
'HMO':

UPDATE POLICY
 FOR PORTION OF BUSINESS_TIME
 FROM '2014-01-01' TO '9999-12-31'
 SET TYPE='HMO'
 WHERE BK='P138', CLIENT='C882';

After the UPDATE statement is processed, the table contains 2 rows in place of the original row. One
row with period value ('2013-01-01', '2014-01-01') represents a value of 'PPO' for the TYPE column
(the value before the update) and the other row with period value ('2014-01-01', '2020-12-31')
represents a value of 'HMO' for the TYPE column (that began with the UPDATE statement).

Example 13
Suppose that the INTARRAY and CHARARRAY array types, the INTA, CHARA, and SI variables, and the
T1 table are defined as follows:

CREATE TYPE INTARRAY AS INTEGER ARRAY [6];
CREATE TYPE CHARARRAY AS CHAR(20) ARRAY [7];
CREATE VARIABLE INTA AS INTARRAY;
CREATE VARIABLE CHARA AS CHARARRAY;
CREATE VARIABLE SI INT;
CREATE TABLE T1 (COL1 CHAR(7), COL2 INT);

Assign values to CHARA, INTA, and SI.

SET CHARA = ARRAY ['a', 'b', 'c'];
SET INTA = ARRAY [1, 2, 3, 4, 5];
SET SI = 1;

Insert a row into table T1, and then update the row values using values from the CHARA and INTA
arrays, which are indexed by the value of variable SI.

INSERT INTO T1 VALUES ('abc', 10);
UPDATE T1
 SET COL1 = CHARA[SI],
 COL2 = INTA[SI];

2198 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

In the table row, COL1 now contains 'a', and COL2 contains 1.

Set the value of column COL2 for all rows to the cardinality of array INTA.

UPDATE T1
 SET COL2 = CARDINALITY(INTA);

In the table row, COL2 now contains 5.

Example 14
Assume that table POLICY exists and that it is defined with a single inclusive-inclusive period,
BUSINESS_TIME. The table contains a row where column BK has a value of 'P138', column CLIENT
has a value of 'C882', column TYPE has a value of 'PPO', and period has value ('2013-01-01',
'2020-12-31'). Suppose that you issue the following UPDATE statement:

UPDATE POLICY
FOR PORTION OF BUSINESS_TIME
BETWEEN '2014-01-01' AND '9999-12-31'
SET TYPE='HMO'
WHERE BK='P138', CLIENT='C882';

After the UPDATE statement is processed, the table contains 2 rows in place of the original row. One
row with period value ('2013-01-01', '2013-12-31') has a value of 'PPO' for the TYPE column (the
value before the update) and the other row with period value ('2014-01-01', '2020-12-31') has a
value of 'HMO' for the TYPE column.

VALUES statement
The VALUES statement provides a method for invoking a user-defined function from a trigger. Transition
variables and transition tables can be passed to the user-defined function.

Invocation for VALUES
This statement can only be used in the triggered action of a basic trigger.

VALUES followed by a sequence-reference is a values-clause, which is a form of fullselect. For information
about invocation of the values-clause, see “fullselect” on page 1060.

Authorization for VALUES
Authorization is required for any expressions that are used in the statement. For more information, see
“Expressions” on page 245.

Syntax for VALUES

VALUES expression

(

,

expression)

Description for VALUES
VALUES

Specifies one or more expressions. If more than one expression is specified, the expressions must be
enclosed within parentheses.
expression

Any expression of the type described in “Expressions” on page 245. The expression must not
contain a host variable.

Chapter 7. Statements 2199

The expressions are evaluated, but the resulting values are discarded and are not assigned to any
output variables.

If a user-defined function is specified as part of an expression, the user-defined function is invoked.
If a negative SQLCODE is returned when the function is invoked, Db2 stops executing the trigger and
rolls back any triggered actions that were performed.

Example for VALUES

Example: Create an after trigger EMPISRT1 that invokes user-defined function NEWEMP when the trigger
is activated. An insert operation on table EMP activates the trigger. Pass transition variables for the new
employee number, last name, and first name to the user-defined function.

 CREATE TRIGGER EMPISRT1
 AFTER INSERT ON EMP
 REFERENCING NEW AS N
 FOR EACH ROW
 MODE DB2SQL
 BEGIN ATOMIC
 VALUES(NEWEMP(N.EMPNO, N.LASTNAME, N.FIRSTNAME));
 END

VALUES INTO statement
The VALUES INTO statement assigns one or more values to variables.

Invocation for VALUES INTO
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared.

Authorization for VALUES INTO
The privileges that are held by the authorization ID of the statement must include at least one of the
following privileges or authorities:

• The SELECT privilege on every table and view identified in the statement
• Ownership of every table and view identified in the statement
• READ and WRITE privileges on any global variables that are identified in the statement
• Ownership of any global variables that are identified in the statement
• DBADM authority for the database (tables only)
• DATAACCESS authority
• SYSADM authority
• SYSCTRL authority (catalog tables only)

For an assignment to a global variable or an element of an array global variable, the privilege set must
include at least one of the following:

• The WRITE privilege on the variable
• Ownership of the variable
• DATAACCESS authority
• SYSADM authority

For an assignment to a transition variable, the privilege set must include at least one of the following:

• The UPDATE privilege on the table or view on which the trigger that contains the assignment statement
is defined

• The UPDATE privilege on the column corresponding to the transition variable to be assigned a value

2200 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• Ownership of the table or view on which the trigger that contains the assignment statement is defined
• DBADM authority on the database that contains the table on which the trigger that contains the

assignment statement is defined
• DATAACCESS authority
• SYSADM authority

Privilege set: The privilege set is the privileges that are held by the owner of the package.

Authorization is required for any expressions that are used in the statement. For more information, see
“Expressions” on page 245.

Syntax for VALUES INTO

VALUES expression

NULL

(

,

expression

NULL

)

INTO

,

target-variable

array-variable [array-index]

1

target-variable
global-variable-name

host-variable-name

SQL-parameter-name

SQL-variable-name

transition-variable-name

Notes:
1 The number of source value specifications (expression, NULL, or DEFAULT) on the right side of the equal
sign must match the number of target specifications on the left side of the statement.

Description for VALUES INTO
VALUES

Introduces a single row that consists of one or more columns. If more than one value is specified, the
list of values must be enclosed within parentheses.
expression

The expression is any expression of the type described in “Expressions” on page 245. The
expression must not include a column name.

NULL
The null value. NULL can only be specified for host variables that have an associated indicator
variable.

INTO target-variable or array-variable[array-index]
Identifies one or more targets for the assignment of output values. The number of targets in the INTO
clause must equal the number of values that are to be assigned. The first value in the result row
is assigned to the first target in the list, the second value to the second target, and so on. A target

Chapter 7. Statements 2201

variable must not be specified more than once in the INTO clause. Each assignment to a target is
made in sequence through the list, according to the rules described in “Assignment and comparison”
on page 143.

The value 'W' is assigned to the SQLWARN3 field of the SQLCA if the number of targets is less than the
number of result column values.

If an error occurs on any assignment, the value is not assigned to the target, and no more values are
assigned to the specified targets. Any values that have already been assigned remain assigned.

global-variable-name
Identifies the global variable that is the assignment target.

host-variable-name
Identifies the host variable that is the assignment target. For LOB output values, the target can
be a regular host variable (if it is large enough), a LOB locator variable, or a LOB file reference
variable.

SQL-parameter-name
Identifies the parameter that is the assignment target.

SQL-variable-name
Identifies the SQL variable that is the assignment target. SQL variables must be declared before
they are used.

transition-variable-name
Identifies the column that is to be updated in the transition table. A transition-variable-name must
identify a column in the subject table of a trigger, optionally qualified by a correlation name, that
identifies the new value.

array-variable [array-index]
Specifies an array element that is the target of the assignment.

An array element must not be specified as the target for an assignment if common-table-
expression is also specified in the statement.

array-variable
Specifies an array variable.

[array-index]
An expression that specifies which element in the array is the target of the assignment.

For an ordinary array, the array index expression must be castable to INTEGER, and must not
be the null value. The index value must be between 1 and the maximum cardinality that is
defined for the array.

For an associative array, the array index expression must be castable to the index data type of
the associative array, and must not be the null value.

array-index must not be:

• An expression that references the CURRENT DATE, CURRENT TIME, or CURRENT
TIMESTAMP special register

• A nondeterministic function
• A function that is defined with EXTERNAL ACTION
• A function that is defined with MODIFIES SQL DATA
• A sequence expression

Notes for VALUES INTO
Assignment to targets:

The nth target identified by the INTO clause corresponds to the nth column of the result table of the
cursor. The data type of the target must be compatible with its corresponding value. If the value is
numeric, the target must have the capacity to represent the whole part of the value. For a datetime
value, the target must be a character string variable of a minimum length as defined in “String

2202 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

representations of datetime values” on page 120. When the value that is to be assigned is null, an
indicator variable must be specified for the target variable.

Assignments are made in sequence through the list. Each assignment to a target is made according to
the rules described in Chapter 2, “Language elements in SQL,” on page 75. If the number of targets
is less than the number of values in the row, the SQLWARN3 field of the SQLCA is set to 'W'. There is
no warning if there are more targets than the number of result columns. If a null value is assigned to a
target variable, an indicator variable must be provided. If an assignment error occurs, the value is not
assigned to the target and no more values are assigned to targets. Any values that have already been
assigned to targets remain assigned. However, if LOB values are involved, there is a possibility that the
corresponding target was modified, but the variable's contents are unpredictable.

If more than one assignment is included in the same assignment statement, all expressions are
evaluated before the assignments are performed. For example, a reference to a variable in an
expression always uses the value of the variable prior to any assignment in the assignment statement.

Normally, you use LOB locators to assign and retrieve data from LOB columns. However, because of
compatibility rules, you can also use LOB locators to assign data to targets with other data types.
For more information on using locators, see Saving storage when manipulating LOBs by using LOB
locators (Db2 Application programming and SQL).

Default encoding scheme:
The default encoding scheme for the data is the value in the bind option ENCODING, which is
the option for application encoding. If this statement is used with functions such as LENGTH or
SUBSTRING that are operating on LOB locators, and the LOB data that is specifies by the locator is
in a different encoding scheme from the ENCODING bind option, LOB materialization and character
conversion occur. To avoid LOB materialization and character conversion, select the LOB data from the
SYSIBM.SYSDUMMYA, SYSIBM.SYSDUMMYE, or SYSIBM.SYSDUMMYU sample table.

Examples for VALUES INTO

Example 1: Assign the value of the CURRENT PATH special register to host variable HV1.

 EXEC SQL VALUES(CURRENT PATH)
 INTO :HV1;

Example 2: Assign the value of the CURRENT MEMBER special register to host variable MEM.

 EXEC SQL VALUES(CURRENT MEMBER)
 INTO :MEM;

Example 3: Assume that LOB locator LOB1 is associated with a CLOB value. Assign a portion of the CLOB
value to host variable DETAILS using the LOB locator.

 EXEC SQL VALUES (SUBSTR(:LOB1,1,35))
 INTO :DETAILS;

If the LOB data that is specified by the LOB locator LOB1 is in a different encoding scheme from the value
of the ENCODING bind option, and you want to avoid LOB materialization and character conversion, use
the following statement instead of the VALUES INTO statement:

 EXEC SQL SELECT SUBSTR(:LOB1,1,35)
 INTO :DETAILS
 FROM SYSIBM.SYSDUMMYU;

Example 4: Using a VALUES INTO statement, retrieve the value of INTVAR1 into an element in array
MYINTARRAY1, which is indexed by the value of the expression INTCOL2+MYINTVAR+1.

VALUES INTVAR1 INTO MYINTARRAY1[INTCOL2+MYINTVAR+1];

Chapter 7. Statements 2203

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_savestoragelob.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_savestoragelob.html

WHENEVER statement
The WHENEVER statement specifies the host language statement to be executed when a specified
exception condition occurs.

Invocation for WHENEVER
This statement can only be embedded in an application program. It is not an executable statement. It
must not be specified in Java or REXX.

Authorization for WHENEVER
None required.

Syntax for WHENEVER

WHENEVER NOT FOUND

SQLERROR

SQLWARNING

CONTINUE

GOTO

GO TO :
host-label

Description for WHENEVER
The NOT FOUND, SQLERROR, or SQLWARNING clause is used to identify the type of exception condition.
NOT FOUND

Identifies any condition that results in an SQLCODE of +100 (equivalently, an SQLSTATE code of
'02000').

SQLERROR
Identifies any condition that results in a negative SQLCODE.

SQLWARNING
Identifies any condition that results in a warning condition (SQLWARN0 is W), or that results in a
positive SQLCODE other than +100.

The CONTINUE or GO TO clause specifies the next statement to be executed when the identified type of
exception condition exists.
CONTINUE

Specifies the next sequential statement of the source program.
GOTO or GOTO host-label

Specifies the statement identified by host-label. For host-label, substitute a single token, optionally
preceded by a colon. The form of the token depends on the host language. In COBOL, for example, it
can be section-name or an unqualified paragraph-name.

Notes for WHENEVER
There are three types of WHENEVER statements:

• WHENEVER NOT FOUND
• WHENEVER SQLERROR
• WHENEVER SQLWARNING

Every executable SQL statement in an application program is within the scope of one implicit or explicit
WHENEVER statement of each type. The scope of a WHENEVER statement is related to the listing
sequence of the statements in the application program, not their execution sequence.

An SQL statement is within the scope of the last WHENEVER statement of each type that is specified
before that SQL statement in the source program. If a WHENEVER statement of some type is not specified

2204 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

before an SQL statement, that SQL statement is within the scope of an implicit WHENEVER statement of
that type in which CONTINUE is specified. If a WHENEVER statement is specified in a Fortran subprogram,
its scope is that subprogram, not the source program.

The GET DIAGNOSTICS statement can be used to provide additional information.

Examples for WHENEVER

The following statements can be embedded in a COBOL program.

Example 1: Go to the label HANDLER for any statement that produces an error.

 EXEC SQL WHENEVER SQLERROR GOTO HANDLER END-EXEC.

Example 2: Continue processing for any statement that produces a warning.

 EXEC SQL WHENEVER SQLWARNING CONTINUE END-EXEC.

Example 3: Go to the label ENDDATA for any statement that does not return.

 EXEC SQL WHENEVER NOT FOUND GO TO ENDDATA END-EXEC.

Chapter 7. Statements 2205

2206 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Chapter 8. SQL procedural language (SQL PL)
SQL can be used as a structured programming language to write the body for SQL functions, native SQL
procedures, and advanced triggers. This is known as the SQL procedural language (SQL PL). SQL PL
includes a set of SQL control statements.

SQL procedures and SQL functions are collectively referred to as SQL routines. SQL procedures are
created by specifying an SQL routine body on the CREATE PROCEDURE statement. SQL functions are
created by specifying an SQL routine body on the CREATE FUNCTION statement. Triggers are created by
specifying an SQL trigger body on the CREATE TRIGGER statement.

SQL control statements
SQL control statements are SQL statements that allow SQL to be used as a structured programming
language. SQL control statements provide the capability to control the logic flow, declare and set
variables, and handle warnings and exceptions. Some SQL control statements include other nested SQL
statements.

SQL-control-statement:
assignment-statement

CALL statement

CASE statement

compound-statement

FOR statement

GET DIAGNOSTICS statement

GOTO statement

IF statement

ITERATE statement

LEAVE statement

LOOP statement

REPEAT statement

RESIGNAL statement

RETURN statement

SIGNAL statement

WHILE statement

Control statements are supported in native SQL procedures, compiled SQL functions, and advanced
triggers.

• SQL functions are created by specifying LANGUAGE SQL and an SQL routine body in a CREATE
FUNCTION (compiled SQL) statement. An SQL function can be changed. A new SQL routine body can be
specified in an ALTER FUNCTION (compiled SQL) statement.

• SQL procedures are created by specifying LANGUAGE SQL and an SQL routine body in a CREATE
PROCEDURE (SQL - native) statement. An SQL procedure can be changed. A new SQL routine body can
be specified in an ALTER PROCEDURE (SQL - native) statement.

• Triggers are created by specifying a trigger body on the CREATE TRIGGER (advanced) statement. See
“CREATE TRIGGER statement (advanced trigger)” on page 1740. Advanced triggers can be changed.
The body of a trigger can be changed by specifying the OR REPLACE clause on a CREATE TRIGGER
(advanced) statement, or with an ALTER TRIGGER (advanced) statement.

© Copyright IBM Corp. 1982, 2024 2207

The SQL routine body or trigger body is the executable part of the routine or trigger and is transformed by
Db2 into a program. The body must be a single SQL statement, which might be an SQL control statement.

The remainder of this section contains a description of the control statements that are supported by
SQL routines and advanced triggers, and includes syntax diagrams, semantic descriptions, usage notes,
and examples of the use of the statements that constitute the SQL routine body or trigger body. In
addition, you can find information about referencing SQL parameters and variables in “References to SQL
parameters and variables in SQL PL” on page 2208.

The two common elements that are used in describing specific SQL control statements are:

• SQL control statements as described above
• “SQL-procedure-statement (SQL PL)” on page 2212

Related reference
CREATE PROCEDURE statement (SQL - native procedure)
The CREATE PROCEDURE statement defines an SQL procedure, or a version of a procedure, at the current
server and specifies the source statements for the procedure.
CREATE FUNCTION statement (compiled SQL scalar function)
The CREATE FUNCTION (compiled SQL scalar) statement defines a compiled SQL scalar function at the
current server and specifies the source statements for the function. The body of the function is written in
the SQL procedural language. The function returns a single value each time it is invoked.
CREATE TRIGGER statement (advanced trigger)

References to SQL parameters and variables in SQL PL
Variables can be referenced in SQL statements in SQL functions, SQL procedures, and triggers. However,
host variables cannot be specified in these objects. Instead, depending on the context, SQL variables, SQL
parameters, transition variables, and global variables can be referenced anywhere in an SQL statement
where an expression or variable can be specified in SQL functions, SQL procedures, and triggers. SQL
variables can be referenced anywhere in the compound statement in which they are declared, including
any SQL statement that is directly or indirectly nested within that compound statement. SQL parameters
can be referenced in an SQL function or SQL procedure body. Transition variables can be referenced in a
trigger body.

Ambiguity can arise in an SQL statement with variables, particularly when two or more variables have the
same name or when a variable and another object have the same name. In such situations, it might be
confusing to determine which variable is referenced and whether the identifier is the name of a variable
or another object, such as a column. If the identifier is the name of a variable, it might be difficult to
determine whether the reference is intended for an SQL variable, SQL parameter, transition variable, or
global variable.

The name of an SQL variable, SQL parameter, or global variable in an SQL function or SQL procedure
can be the same as the name of a column in a table or view referenced in the function or procedure.
The name of an SQL variable, transition variable, or global variable in a trigger can be the same as the
name of a column in a table or view that is referenced in the trigger. The name of an SQL variable
can also be the same as the name of another SQL variable declared in the same function, procedure,
or trigger. This can occur when the two SQL variables are declared in different compound statements.
The compound-statement that contains the declaration of an SQL variable determines the scope of that
variable. See “compound-statement” on page 2221 for additional information.

Names that are the same should be explicitly qualified. Qualifying a name can clarify whether the name
refers to a column, global variable, SQL variable, SQL parameter, or transition variable:

• An SQL parameter can be qualified with the name of the SQL function or SQL procedure.
• An SQL variable can be qualified with the label of the compound statement where an SQL variable is

declared.
• A transition variable can be qualified with the correlation name specified in the CREATE TRIGGER or

ALTER TRIGGER statement.

2208 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• A global variable can be qualified with the schema implicitly or explicitly specified when the global
variable is created.

If the name is not qualified, or qualified but still ambiguous, the following rules describe how the name is
resolved. The name is resolved by checking for a match in the following order:

• If the tables and views specified in an SQL function or SQL procedure at the time the function or
procedure is created, the name is first checked as a column.

• If not found as a column, the name is checked as an SQL variable, SQL parameter, or transition variable.
An SQL variable can be declared within the compound-statement that contains the reference, or within
a compound statement in which that compound statement is nested. If two SQL variables, an SQL
variable and an SQL parameter, or an SQL variable and a transition variable, have the same name, the
SQL variable that is declared in the innermost compound statement is used.

• If not found as an SQL variable name, the name is checked as an SQL parameter name or transition
variable.

• If not found as an SQL parameter or transition variable, the name is checked as a global variable.

If the name is still not resolved as a column, SQL variable, SQL parameter, global variable, or transition
variable and the scope of the name included a table or view that does not exist at the current server, it is
assumed to be a column. If all the tables and views exist at the current server, it is assumed to be a global
variable. Otherwise, an error is returned.

The name of an SQL variable, SQL parameter, transition variable, or global variable in an SQL function, SQL
procedure, or trigger can be the same as an identifier used as a name in certain SQL statements. Qualified
names for SQL variables, SQL parameters, or transition variables are not supported in these statements.
The following rules describe how the name is resolved in these statements.

• In the SET PATH or SET SCHEMA statements, the name is checked as an SQL variable, SQL parameter,
transition variable, or global variable. If an SQL variable, SQL parameter, transition variable, or global
variable by that name is not found, the name is assumed to be a schema name.

• In the CONNECT, RELEASE, and SET CONNECTION statements, the name is used as a server name.
• In the CALL statement, the name is used as the procedure name.
• In the ASSOCIATE LOCATORS, or DESCRIBE PROCEDURE statement, the name is used as the procedure

name.

Related concepts
Variables
A variable in an SQL statement specifies a value that can be changed when the SQL statement is
executed. There are several types of variables used in SQL statements.

References to SQL condition names
A condition name can only be referenced within the compound statement in which it is declared, including
any compound statements that are nested within that compound statement. When there is a reference to
a condition name, the condition that is declared in the innermost compound statement is the condition
that is used.

The name of an SQL condition can be the same as the name of another SQL condition that is declared
in the same routine or advanced trigger. This can occur when the two SQL conditions are declared
in different compound-statements. The compound-statement that contains the declaration of an SQL
condition name determines the scope of that condition name. A condition name must be unique within
the compound statement in which it is declared, excluding any declarations in compound statements
that are nested within that compound statement. A condition name can only be referenced within the
compound statement in which it is declared, including any compound statements that are nested within
that compound statement. When there is a reference to a condition name, the condition that is declared
in the innermost compound statement is the condition that is used. See “compound-statement” on page
2221 for additional information.

Chapter 8. SQL procedural language (SQL PL) 2209

References to SQL cursor names
A cursor name can only be referenced within the compound statement in which it is declared, including
any compound statements that are nested within that compound statement.

The name of an SQL cursor can be the same as the name of another SQL cursor that is declared
in the same routine or advanced trigger. This can occur when the two SQL cursors are declared in
different compound statements. The compound statement that contains the declaration of an SQL
cursor determines the scope of that cursor name. A cursor name must be unique within the compound
statement in which it is declared, excluding any declarations in compound statements that are nested
within that compound statement. A cursor name can only be referenced within the compound statement
in which it is declared, including any compound statements that are nested within that compound
statement. When there is a reference to a cursor name, the cursor that is declared in the innermost
compound statement is the cursor that is used. See “compound-statement” on page 2221 for additional
information.

References to SQL labels
Labels can be specified on most SQL procedure statements in an SQL function, SQL procedure, or
advanced trigger. If a label is specified on an SQL procedure statement, it must be unique from other
labels within the same scope. A label must not be the same as any other label within the same compound
statement, must not be the same as a label specified on the compound statement itself, and if the
compound statement is nested within another compound statement, the label must not be the same as
the label specified on any higher level compound statement. The label must not be the same as the name
of the SQL function or SQL procedure.

Specifying a label for an SQL procedure statement defines that label and determines the scope of that
label. A label name can only be referenced within the compound statement in which it is defined,
including a reference from any statement that is directly or indirectly nested within that compound
statement. The FOR statement is considered the same as a compound statement with respect to defining
and referencing labels. A label can be specified as the target of a GOTO, LEAVE, or ITERATE statement,
subject to the rules for the statement that references the label as a target.

References to SQL statement names
The name of an SQL statement can be the same as the name of another SQL statement declared in the
same routine or advanced trigger.

This can occur when the two SQL statements are declared in different compound statements. The
compound statement that contains the declaration of an SQL statement name determines the scope
of that statement name. A statement name must be unique within the compound statement in which it
is declared, excluding any declarations in compound statements that are nested within that compound
statement. A statement name can only be referenced within the compound statement in which it is
declared, including any compound statements that are nested within that compound statement. When
there is a reference to a statement name, the statement that is declared in the innermost compound
statement is the statement that is used.

Summary of name scoping in nested compound statements
Nested compound statements can be used within an SQL routine or advanced trigger to define the scope
of SQL variable declarations, cursors, condition names, and condition handlers.

In addition, labels have a defined scope in the context of nested compound statements. However, the
rules for name spaces and how non-unique names can be referenced, differs depending on the type of
name. The following table summarizes these differences:

2210 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 241. Scope and qualification of names within nested compound statements

Type of
name Name can be qualified Name must be unique within

Name can be referenced
within

SQL variable Yes. The name can be
qualified with the label of the
compound statement in which
the variable is declared

the compound statement
in which it is declared,
excluding any declarations in
compound statements that are
nested within that compound
statement

The compound statement in
which it is declared, including
any compound statements
that are nested within that
compound statement.

When multiple SQL variables
are defined with the same
name, a label can be used
to explicitly refer to a specific
variable that is not the most
local in scope

condition
name

No the compound statement
in which it is declared,
excluding any declarations in
compound statements that are
nested within that compound
statement

The compound statement in
which it is declared, including
any compound statements
that are nested within that
compound statement.

Condition names can be
used in the declaration of
a condition handler, or in
a SIGNAL or RESIGNAL
statement.

If multiple conditions are
defined with the same name,
there is no way to explicitly
refer to the condition that is
not the most local in scope.

cursor name No the routine The compound statement in
which it is declared, including
any compound statements
that are nested within that
compound statement.

If the cursor is defined as a
result set cursor, the invoking
application can access the
result set.

label No the compound statement
that defined the label,
including any definitions in
compound statements that are
nested within that compound
statement

The compound statement in
which it is defined, including
any compound statements
that are nested within that
compound statement.

Use a label to qualify the name
of an SQL variable or as the
target of a GOTO, LEAVE, or
ITERATE statement, subject to
the rules for these statements.

Chapter 8. SQL procedural language (SQL PL) 2211

SQL-procedure-statement (SQL PL)
An SQL control statement can allow multiple SQL statements to be specified within the SQL control
statement. These statements are defined as SQL procedure statements.

Syntax
SQL-control-statement

ALLOCATE CURSOR statement

ALTER DATABASE statement (1, 2)

ALTER FUNCTION statement (external scalar, external table, sourced, SQL scalar, or SQL table) (2, 3)

ALTER INDEX statement (1, 2)

ALTER MASK statement (1, 2)

ALTER PERMISSION statement (1, 2)

ALTER PROCEDURE statement (external, SQL - external, or SQL - native) (2)

ALTER SEQUENCE statement (1, 2)

ALTER STOGROUP statement (1, 2)

ALTER TABLE statement (1, 2)

ALTER TABLESPACE statement (1, 2)

ALTER TRIGGER statement (1, 2)

ALTER TRUSTED CONTEXT statement (1, 2)

ALTER VIEW statement (1, 2)

ASSOCIATE LOCATORS statement

CALL statement

CLOSE statement

COMMENT statement (1, 3)

COMMIT statement (6)

CONNECT statement (7)

CREATE ALIAS statement (1, 2)

CREATE DATABASE statement (1, 2)

CREATE FUNCTION statement (external scalar, external table, or sourced) (1, 2)

CREATE GLOBAL TEMPORARY TABLE statement (1, 2)

CREATE INDEX statement (1,3)

CREATE PROCEDURE statement (external) (1, 2)

CREATE ROLE statement (1, 2)

CREATE SEQUENCE statement (1, 2)

CREATE STOGROUP statement (1, 2)

CREATE SYNONYM statement (1, 2)

CREATE TABLE statement (9)

CREATE TABLESPACE statement (1, 2)

CREATE TRUSTED CONTEXT statement (1, 2)

CREATE TYPE (array) statement (1, 2)

CREATE TYPE (distinct) statement (1, 2)

CREATE VARIABLE statement (1, 2)

CREATE VIEW statement (1, 3)

2212 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Syntax (continued)
DECLARE CURSOR statement

DECLARE GLOBAL TEMPORARY TABLE statement (1, 2)

DELETE statement (3)

DROP statement (4)

EXCHANGE statement (1, 2)

EXECUTE statement

EXECUTE IMMEDIATE statement

FETCH statement (5)

GET DIAGNOSTICS statement

GRANT statement (1, 2)

INSERT statement (3)

LABEL statement (1,3)

LOCK TABLE statement (1,3)

MERGE statement (3)

OPEN statement

PREPARE statement

REFRESH TABLE statement (3)

RELEASE statement (7)

RELEASE SAVEPOINT statement

RENAME statement

REVOKE statement

ROLLBACK statement (with TO SAVEPOINT clause) (1, 2)

ROLLBACK statement (without TO SAVEPOINT clause) (6)

SAVEPOINT statement (1, 3)

SELECT INTO statement

SET assignment-statement statement

SET CONNECTION statement (7)

SET special-register statement (8)

TRUNCATE statement (3)

UPDATE statement (3)

VALUES INTO statement

Notes:

The following notes are used both in the preceding syntax diagram and sometimes also in the following
table.

1. The statement is not allowed in an SQL-routine-body for an SQL function.
2. The statement is not allowed in an SQL-trigger-body for a trigger, and a procedure containing the

statement must not be invoked directly, or indirectly, from the body of a BEFORE trigger.
3. The statement is not allowed in an SQL-trigger-body for a BEFORE trigger, and a procedure containing

the statement must not be invoked directly, or indirectly, from the body of a BEFORE trigger.
4. The only DROP statements that are allowed are DROP TABLE, DROP VIEW, and DROP INDEX.
5. A FETCH statement must not specify a fetch-orientation clause, multiple-row-fetch clause, the WITH

CONTINUE or the CURRENT CONTINUE clauses.
6. The COMMIT and ROLLBACK (without the TO SAVEPOINT clause) statements must only be specified

within the body of an SQL procedure.
7. The CONNECT, RELEASE connection, and SET CONNECTION statements must only be specified within

the body of an SQL procedure.
8. SET special-register statements are allowed in an SQL-trigger-body for a trigger, except for SET

CURRENT PACKAGE PATH and SET CURRENT PACKAGESET.
9. A CREATE TABLE statement must not include a column defined as a LOB or XML column.

The following table summarizes which SQL statements can be used in SQL-procedure-body, SQL-function-
body, or in a SQL-trigger-body or procedure referenced in a BEFORE trigger. (That is, it corresponds to
notes “1” on page 2213, “2” on page 2213, and “3” on page 2213 in the syntax diagram.)

Statement Allowed in SQL
procedure body?

Allowed in SQL
function body?

Allowed in SQL
trigger body or
procedure invoked
by a BEFORE
trigger?

SQL-control-statement Yes Yes Yes

Chapter 8. SQL procedural language (SQL PL) 2213

Statement Allowed in SQL
procedure body?

Allowed in SQL
function body?

Allowed in SQL
trigger body or
procedure invoked
by a BEFORE
trigger?

ALLOCATE CURSOR Yes Yes Yes

ALTER DATABASE Yes No No

ALTER FUNCTION (external scalar,
external table, sourced, SQL scalar, or
SQL table)

Yes“3” on page 2213 Yes“3” on page 2213, No

ALTER MASK Yes No No

ALTER PERMISSION Yes No No

ALTER PROCEDURE (external, SQL -
external, or SQL - native)

Yes Yes No

ALTER SEQUENCE Yes No No

ALTER STOGROUP Yes No No

ALTER TABLE Yes No No

ALTER TABLESPACE Yes No No

ALTER TRIGGER Yes No No

ALTER TRUSTED CONTEXT Yes No No

ALTER VIEW Yes No No

ASSOCIATE LOCATORS Yes Yes Yes

CALL Yes Yes Yes

CLOSE Yes Yes Yes

COMMENT Yes No Yes “3” on page 2213

COMMIT No No Yes

CONNECT Yes Yes No

CREATE ALIAS Yes No No

CREATE DATABASE Yes No No

CREATE FUNCTION Yes No No

CREATE GLOBAL TEMPORARY TABLE Yes No No

CREATE INDEX Yes No No

CREATE PROCEDURE (external) Yes No No

CREATE ROLE Yes No No

CREATE SEQUENCE Yes No No

CREATE STOGROUP Yes No No

CREATE SYNONYM Yes No No

CREATE TABLE Yes “9” on page 2213 Yes “9” on page 2213 Yes “3” on page 2213,
“9” on page 2213

2214 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Statement Allowed in SQL
procedure body?

Allowed in SQL
function body?

Allowed in SQL
trigger body or
procedure invoked
by a BEFORE
trigger?

CREATE TABLESPACE Yes No No

CREATE TRUSTED CONTEXT Yes No No

CREATE TYPE (array) Yes No No

CREATE TYPE (distinct) Yes No No

CREATE VARIABLE Yes No No

CREATE VIEW Yes No Yes “3” on page 2213

DECLARE CURSOR Yes Yes Yes

DELETE Yes No Yes “3” on page 2213

DROP Yes No Yes

EXCHANGE Yes No No

EXECUTE Yes Yes Yes

EXECUTE IMMEDIATE Yes Yes Yes

FETCH Yes “4” on page 2213 Yes “4” on page 2213 Yes “4” on page 2213

GET DIAGNOSTICS Yes Yes Yes

GRANT Yes No No

INSERT Yes Yes Yes “3” on page 2213

LABEL Yes No Yes “3” on page 2213

LOCK TABLE Yes No Yes “3” on page 2213

MERGE Yes Yes Yes “3” on page 2213

OPEN Yes Yes Yes

PREPARE Yes Yes Yes

REFRESH TABLE Yes Yes Yes “3” on page 2213

RELEASE connection Yes No No

RELEASE SAVEPOINT Yes No No

RENAME Yes No No

REVOKE Yes No No

ROLLBACK (with TO SAVEPOINT clause) Yes No No

ROLLBACK (without TO SAVEPOINT
clause)

Yes Yes No

SAVEPOINT Yes No No

SELECT INTO Yes Yes Yes

SET assignment-statement Yes Yes Yes “8” on page 2213

SET CONNECTION Yes No No

Chapter 8. SQL procedural language (SQL PL) 2215

Statement Allowed in SQL
procedure body?

Allowed in SQL
function body?

Allowed in SQL
trigger body or
procedure invoked
by a BEFORE
trigger?

SET special-register Yes Yes “8” on page 2213 Yes

TRUNCATE Yes Yes Yes “3” on page 2213

UPDATE Yes Yes Yes “3” on page 2213

VALUES INTO Yes Yes Yes

Description
SQL-control-statement

Specifies an SQL statement that provides the capability to control logic flow, declare and set variables,
and handle warnings and exceptions, as defined in this section. Control statements are supported in
SQL routines.

SQL-statement
Specifies an SQL statement. These statements are described in Chapter 7, “Statements,” on page
1079.

Notes
Comments

Comments can be included within the body of an SQL routine. In addition to the double-dash form of
comments (--), a comment can begin with /* and end with */. The following rules apply to this form of
comment:

• The beginning characters /* must be adjacent and on the same line.
• The ending characters */ must be adjacent and on the same line.
• Comments can be started wherever a space is valid.
• Comments can be continued to the next line.

Detecting and processing error and warning conditions

As an SQL statement is executed, Db2 stores information about the processing of the statement in a
diagnostics area (including the SQLSTATE and SQLCODE), unless otherwise noted in the description
of the SQL statement. A completion condition can indicate that the SQL statement completed
successfully, completed with a warning condition, or completed with a not found condition. An
exception condition indicates that the SQL statement was not successful.

A condition handler can be defined to execute when an exception condition, a warning condition, or a
not found condition occurs in a compound statement. The declaration of a condition handler includes
the code that is executed when the condition handler is activated. When a condition other than a
successful completion occurs in the processing of SQL-procedure-statement and a condition handler
that can handle the condition is within scope, one such condition handler will be activated to process
the condition. See “compound-statement” on page 2221 for information about defining condition
handlers. The code in the condition handler can check for a warning condition, a not found condition,
or an exception condition and can take the appropriate action. Use one of the following methods at
the beginning of the body of a condition handler to check the condition in the diagnostics area that
caused the handler to be activated.

• Issue a GET DIAGNOSTICS statement to request the information from the diagnostics area. See
“GET DIAGNOSTICS statement” on page 1949.

• Test the SQLSTATE and SQLCODE SQL variables.

2216 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If the condition is a warning and no handler exists for the condition, the previous two methods can be
used outside of the body of a condition handler, if they are used immediately following the statement
for which the condition is wanted. If the condition is an error and no handler exists for the condition,
the routine terminates with the error condition.

assignment-statement
The assignment statement assigns a value to variables or array elements. For example, the target value
can be an SQL parameter or an SQL variable.

Syntax

label:

SET assignment-clause

Description
label

Specifies the label for assignment-statement. The label name cannot be the same as the routine
name, advanced trigger name, or another label within the same scope. For additional information, see
“References to SQL labels” on page 2210.

See “SET assignment-statement statement” on page 2124 for details.

Notes
Assignment rules: Assignment statements in SQL routines and triggers must conform to the SQL
assignment rules. For example, the data type of the target and source must be compatible. See
“Assignment and comparison” on page 143 for assignment rules.

When a string is assigned to a fixed-length variable and the length of the string is less than the length
attribute of the target, the string is padded on the right with the necessary number of single-byte or
double-byte blanks. When a string is assigned to a variable and the string is longer than the length
attribute of the variable, the value is truncated and a warning is returned.

If truncation of the whole part of a number occurs on assignment to a numeric variable, the value is
truncated and a warning is returned.

Assignments involving SQL parameters for SQL procedures: An IN parameter can appear on the left
or right side in an assignment statement. When control returns to the caller, the original value of the
IN parameter is retained. An OUT parameter can also appear on the left or right side in an assignment
statement. If used without first being assigned a value, the value is undefined. When control returns to
the caller, the last value that is assigned to an OUT parameter is returned to the caller. For an INOUT
parameter, the first value of the parameter is determined by the caller, and the last value that is assigned
to the parameter is returned to the caller.

Multiple assignments: If more than one assignment is included in the same assignment statement, all
expressions are evaluated before the assignments are performed. Thus, references to an SQL variable or
SQL parameter in an expression always use the value of the SQL variable or SQL parameter prior to any
assignment in the assignment statement.

Considerations for SQLSTATE and SQLCODE SQL variables: Assignment to these variables is not
prohibited. However, it is not recommended as assignment does not affect the diagnostic area or result
in the activation of condition handlers. Furthermore, processing an assignment to these SQL variables
causes the specified values for the assignment to be overlayed with the SQL return codes returned from
executing the statement that does the assignment.

Chapter 8. SQL procedural language (SQL PL) 2217

CALL statement
The CALL statement invokes a stored procedure.

Syntax

label:

CALL procedure-name argument-list

argument-list:

(

,

SQL-variable-name

SQL-parameter-name

expression

NULL

)

Description
label

Specifies the label for the CALL statement. The label name cannot be the same as the routine
name, advanced trigger name, or another label within the same scope. For additional information, see
“References to SQL labels” on page 2210.

procedure-name
Identifies the stored procedure to call. The procedure name must identify a stored procedure that
exists at the current server.

argument-list
Identifies a list of values to be passed as parameters to the stored procedure. The nth value
corresponds to the nth parameter in the procedure. The number of parameters must be the same
as the number of parameters defined for the stored procedure. See “CALL statement” on page 1384
for more information.

Control is passed to the stored procedure according to the calling conventions for SQL routines. When
execution of the stored procedure is complete, the value of each parameter of the stored procedure is
assigned to the corresponding parameter of the CALL statement defined as OUT or INOUT.

SQL-variable-name
Specifies an SQL variable as an argument to the stored procedure. For an explanation of
references to SQL variables, see “References to SQL parameters and variables in SQL PL” on
page 2208.

SQL-parameter-name
Specifies an SQL parameter as an argument to the stored procedure. For an explanation of
references to SQL parameters, see “References to SQL parameters and variables in SQL PL” on
page 2208.

expression
The parameter is the result of the specified expression, which is evaluated before the stored
procedure is invoked. If expression is a single SQL-parameter-name or SQL-variable-name, the
corresponding parameter of the procedure can be defined as IN, INOUT, or OUT. Otherwise, the
corresponding parameter of the procedure must be defined as IN. If the result of the expression
can be the null value, either the description of the procedure must allow for null parameters or the
corresponding parameter of the stored procedure must be defined as OUT.

2218 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The following additional rules apply depending on how the corresponding parameter was defined
in the CREATE PROCEDURE statement for the procedure:

• IN expression can contain references to multiple SQL parameters or variables. In addition to
the rules stated in “Expressions” on page 245 for expression, expression cannot include a
column name, an aggregate function, or a user-defined function that is sourced on an aggregate
function.

• INOUT or OUT expression can only be a single SQL parameter or variable.

NULL
The parameter is a null value. The corresponding parameter of the procedure must be defined as
IN and the description of the procedure must allow for null parameters.

Notes
See “CALL statement” on page 1384 for more information on the SQL CALL statement.

Examples

Call stored procedure proc1 and pass SQL variables as parameters.

CALL proc1(v_empno, v_salary)

CASE statement
The CASE statement selects an execution path based on multiple conditions. A CASE statement operates
in the same way as a CASE expression.

Syntax

label:

CASE simple-when-clause

searched-when-clause else-clause

END CASE

simple-when-clause:

expression WHEN expression THEN SQL-procedure-statement ;

searched-when-clause:

WHEN search-condition THEN SQL-procedure-statement ;

else-clause:

ELSE SQL-procedure-statement ;

Chapter 8. SQL procedural language (SQL PL) 2219

Description
label

Specifies the label for the CASE statement. The label name cannot be the same as the routine
name, advanced trigger name, or another label within the same scope. For additional information, see
“References to SQL labels” on page 2210.

CASE
Begins a case-expression.

simple-when-clause
The value of the expression prior to the first WHEN keyword is tested for equality with the value of
the expression that follows each WHEN keyword. If the comparison is true, the statements in the
associated THEN clause are executed and processing of the CASE statement ends. If the result is
unknown or false, processing continues to the next comparison. If the result does not match any of
the comparisons, and an ELSE clause is present, the statements in the ELSE clause are executed.

searched-when-clause
The search-condition following the WHEN keyword is evaluated. If it evaluates to true, the statements
in the associated THEN clause are executed and processing of the CASE statement ends. If it
evaluates to false, or unknown, the next search-condition is evaluated. If no search-condition
evaluates to true and an ELSE clause is present, the statements in the ELSE clause are executed.

When searched-when-clause is used, search-condition cannot contain a fullselect.

SQL-procedure-statement
Specifies a statement to execute. See“SQL-procedure-statement (SQL PL)” on page 2212.

search-condition
Specifies a condition that is true, false, or unknown about a row or group of table data.

ELSE SQL-procedure-statement
If none of the conditions specified in the simple-when-clause or searched-when-clause are true, the
statements specified in SQL-procedure-statement are executed.

If none of the conditions specified in the WHEN clauses are true and an ELSE is not specified, an error
is issued when the statement executes, and the execution of the CASE statement is terminated.

END CASE
Ends a case-statement.

Examples

Example 1: Use a simple case statement WHEN clause to update column DEPTNAME in table DEPT,
depending on the value of SQL variable v_workdept.

CASE v_workdept
 WHEN 'A00'
 THEN UPDATE DEPT SET
 DEPTNAME = 'DATA ACCESS 1';
 WHEN 'B01'
 THEN UPDATE DEPT SET
 DEPTNAME = 'DATA ACCESS 2';
 ELSE UPDATE DEPT SET
 DEPTNAME = 'DATA ACCESS 3';
END CASE

Example 2: Use a searched case statement WHEN clause to update column DEPTNAME in table DEPT,
depending on the value of SQL variable v_workdept.

CASE
 WHEN v_workdept < 'B01'
 THEN UPDATE DEPT SET
 DEPTNAME = 'DATA ACCESS 1';
 WHEN v_workdept < 'C01'
 THEN UPDATE DEPT SET
 DEPTNAME = 'DATA ACCESS 2';
 ELSE UPDATE DEPT SET

2220 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 DEPTNAME = 'DATA ACCESS 3';
END CASE

compound-statement
A compound statement groups other statements together in an SQL routine or advanced trigger. A
compound statement allows the declaration of SQL variables, cursors, and condition handlers.

Syntax

label:

BEGIN

NOT ATOMIC

ATOMIC

SQL-variable-declaration

SQL-condition-declaration

return-codes-declaration

;

statement-declaration ;

DECLARE-CURSOR-statement ; handler-declaration ;

SQL-procedure-statement ;

END

label

SQL-variable-declaration:

DECLARE

,

SQL-variable-name data-type
DEFAULT NULL

CONSTANT NULL

DEFAULT

CONSTANT

constant

RESULT_SET_LOCATOR VARYING

SQL-condition-declaration:

Chapter 8. SQL procedural language (SQL PL) 2221

DECLARE SQL-condition-name CONDITION FOR

SQLSTATE
VALUE

string-constant

return-codes-declaration:

DECLARE

SQLSTATE CHAR(5)

CHARACTER(5)

DEFAULT '00000'

DEFAULT string-constant

SQLCODE INTEGER

INT

DEFAULT 0

DEFAULT integer-constant

statement-declaration:

DECLARE

,

statement-name STATEMENT
1

Notes:
1 The statement is not allowed in an SQL-routine-body for an SQL function.

handler-declaration:

DECLARE CONTINUE

EXIT

HANDLER FOR specific-condition-value

general-condition-value

SQL-procedure-statement

specific-condition-value:

,

SQLSTATE
VALUE

string-constant

condition-name

general-condition-value:

2222 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

,

SQLEXCEPTION

SQLWARNING

NOT FOUND

Description
label

Specifies the label for the compound-statement. If the beginning label is specified, it can be used to
qualify SQL variables declared in the compound statement and can also be specified as the target on
a LEAVE statement. If the ending label is specified, it must be the same as beginning label. The label
name cannot be the same as the routine name, trigger name, or another label within the same scope.

ATOMIC or NOT ATOMIC
Specifies whether an unhandled exception condition within a compound-statement causes that
compound statement to be rolled back. The default for the outermost compound statement in an
advanced trigger is ATOMIC; otherwise the default is NOT ATOMIC.
ATOMIC

ATOMIC indicates that an unhandled exception condition within the compound-statement causes
the compound-statement to be rolled back. ATOMIC must not be specified in a compound
statement in an SQL scalar function, in an SQL procedure, or in a compound statement that is
nested within another compound statement that is defined as ATOMIC.

NOT ATOMIC
NOT ATOMIC indicates that an unhandled exception condition within the compound-statement
does not cause the compound-statement to be rolled back. NOT ATOMIC must not be specified in
the outermost compound statement of an advanced trigger.

SQL-variable-declaration
Declares a variable that is local to the compound statement.
SQL-variable-name

Defines the name of a variable. Db2 converts all SBCS SQL variable names that are not delimited
to uppercase. SQL-variable-name must be unique within the compound statement in which is
it declared, excluding any declarations in compound statements that are nested within that
compound statement. SQL-variable-name must not be the same as a parameter name. See
“References to SQL parameters and variables in SQL PL” on page 2208 for information about
how SQL variable names are resolved when there are columns with the same name as an SQL
variable involved in a statement, or when multiple SQL variables exist with the same name in the
routine body.

SQL-variable-name can only be referenced within the compound statement in which it is declared,
including any compound statement that is nested within that compound statement. If the
compound statement where the variable is declared has a label, references to the variable name
can be qualified with that label. For example, an SQL variable V that is declared in a compound
statement that is labeled C can be referenced as C.V.

data-type
Specifies the data type and length of the variable. SQL variables follow the same rules for default
lengths and maximum lengths as SQL routine parameters. See “CREATE FUNCTION statement
(compiled SQL scalar function)” on page 1428 for descriptions of SQL data types and lengths.

DEFAULT or CONSTANT
Specifies a value for the SQL variable when the compound statement in which it is declared is
entered. If neither DEFAULT nor CONSTANT is specified, the default for the SQL variable is the
null value. Only DEFAULT NULL can be explicitly specified if array-type-name is specified. Only
DEFAULT NULL or CONSTANT NULL can be specified for an SQL variable with the XML data type.

Chapter 8. SQL procedural language (SQL PL) 2223

DEFAULT
Defines the default for the SQL variable. The specified constant must represent a value that
could be assigned to the variable in accordance with the rules of assignment as described in
“Assignment and comparison” on page 143.

CONSTANT
Specifies that the SQL variable has a fixed value that cannot be changed. An SQL variable that
is defined using CONSTANT cannot be used as the target of any assignment operation. The
specified constant must represent a value that could be assigned to the variable in accordance
with the rules of assignment as described in “Assignment and comparison” on page 143.

Variables that are named SQLCODE and SQLSTATE cannot be defined using CONSTANT.

NULL
Specifies NULL as the default for the SQL variable.

constant
Specifies a constant as the default for the SQL variable.

RESULT_SET_LOCATOR VARYING
Specifies the data type for a result set locator variable.

SQL-condition-declaration
Declares a condition name and corresponding SQLSTATE value.
SQL-condition-name

Specifies the name of the condition. The condition name must be unique within the compound
statement in which it is declared, excluding any declarations that are in compound statements
that are nested within that compound statement. A condition name can only be referenced within
the compound statement in which it is declared, including any compound statements that are
nested within that compound statement.

FOR SQLSTATE string-constant
Specifies the SQLSTATE that is associated with the condition. The string must be specified as five
characters enclosed in single quotes, and the SQLSTATE class (the first two characters) must not
be '00'.

return-codes-declaration
Declares special variables named SQLSTATE and SQLCODE. These variables are automatically set to
the SQLSTATE and SQLCODE values for the first condition in the diagnostics area after executing an
SQL statement other than GET DIAGNOSTICS or an empty compound statement.

The SQLSTATE and SQLCODE SQL variables are only intended to be used as a means of obtaining
the SQL return codes that resulted from processing the previous SQL statement other than GET
DIAGNOSTICS. If there is any intention to use the SQLSTATE and SQLCODE values, save the values
immediately to other SQL variables to avoid having the values replaced by the SQL return codes
returned after executing the next SQL statement. If a handler is defined that handles an SQLSTATE,
you can use an assignment statement to save that SQLSTATE (or the associated SQLCODE) value in
another SQL variable, if the assignment is the first statement in the handler.

Assignment to these variables is not prohibited; however, it is not recommended. Assignment to these
variables is ignored by condition handlers, and processing an assignment to these special variables
causes the specified values for the assignment to be overlayed with the SQL return codes returned
from executing the statement that does the assignment. The SQLSTATE and SQLCODE SQL variables
cannot be set to NULL.

statement-declaration
Declares a list of one or more names that are local to the compound statement. A statement name
cannot be the same as another statement name within the same compound statement.

DECLARE-CURSOR-statement
Declares a cursor in the procedure body. Each cursor must have a unique name within the routine. The
cursor can only be referenced from within the compound statement in which it is declared, including
any compound statements that are nested within that compound statement. Use an OPEN statement

2224 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

to open the cursor, a FETCH statement to read a row using the cursor, and a CLOSE statement to close
the cursor. If the cursor is intended for use as a result set cursor:

• Specify WITH RETURN when the cursor is declared
• Create the procedure using the DYNAMIC RESULT SETS clause with a non-zero value
• Do not specify a CLOSE statement for the cursor in the compound statement

For additional information about declaring a cursor, see “DECLARE CURSOR statement” on page
1819.

handler-declaration
Specifies a condition handler, an SQL-procedure-statement to execute when an exception or
completion condition occurs in the compound-statement. The SQL-procedure-statement executes
when a condition handler receives control.

A condition handler declaration cannot reference the same condition value or SQLSTATE value more
than one time. It cannot reference an SQLSTATE value and a condition name that represent the same
SQLSTATE value.

When two or more condition handlers are declared in a compound statement, no two condition
handler declarations can specify the same:

• general condition category
• specific condition, either as an SQLSTATE value or as a condition name that represents the same

value

A condition handler is active for the set of SQL-procedure-statements that follow the condition handler
declarations within the compound statement in which the condition handler is declared, including any
nested compound statements.

CONTINUE
Specifies that after the condition handler is activated and completes successfully, control is
returned to the SQL statement that follows the statement that raised the condition. However, if the
condition is an error condition and it was encountered while evaluating a search condition, as in
a CASE, FOR, IF, REPEAT or WHILE statement, control returns to the statement that follows the
corresponding END CASE, END FOR, END IF, END REPEAT, or END WHILE.

EXIT
Specifies that after the condition handler is activated and completes successfully, control is
returned to the end of the compound statement that declared the condition handler.

The conditions that can cause the handler to gain control are:

SQLSTATE string-constant
Specifies that the handler is invoked when the specific SQLSTATE occurs. The first two characters
of the SQLSTATE value must not be '00'.

SQL-condition-name
Specifies that the handler is invoked when the specific SQLSTATE that is associated with
the condition name occurs. The SQL-condition-name must be declared within the compound
statement that contains the handler declarations, or within a compound statement in which that
compound statement is nested.

SQLEXCEPTION
Specifies that the handler is invoked when an SQLEXCEPTION occurs. An SQLEXCEPTION is an
SQLSTATE in which the class code is a value other than '00', '01', or '02'. For more information on
SQLSTATE values, see SQLSTATE values and common error codes (Db2 Codes).

SQLWARNING
Specifies that the handler is invoked when an SQLWARNING occurs. An SQLWARNING is an
SQLSTATE value with a class code of '01'.

NOT FOUND
Specifies that the handler is invoked when a NOT FOUND condition occurs. NOT FOUND
corresponds to an SQLSTATE value with a class code of '02'.

Chapter 8. SQL procedural language (SQL PL) 2225

https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/db2z_sqlstatevalues.html

Notes
Unlike host variables, SQL variables are not preceded by colons when they are used in SQL statements.

Nesting compound statements: Compound statements can be nested. Nested compound statements can
be used to scope variable definitions, condition names, condition handlers, and cursors to a subset of the
statements in a routine. This can simplify the processing that is done for each SQL routine statement.
Nested compound statements enable the use of a compound statement within the declaration of a
condition handler.

The scope of a cursor: The scope of a cursor name is the compound statement in which it is declared,
including any compound statements that are nested within that compound statement. A cursor name
can only be referenced within the compound statement in which it is declared, including any compound
statements that are nested within that compound statement.

Considerations for statement-name: The scope of a statement-name that is declared in a compound
statement is the compound statement and any nested compound statements (unless the same
statement-name is declared in a nested compound statement). If a statement-name is used in a DECLARE
CURSOR statement or a PREPARE statement and has not been declared in the compound statement
where it is used or any outer compound statements in which it is nested, the statement-name is assumed
to be declared globally for the routine.

Condition handlers: Condition handlers in SQL routines and advanced triggers are similar to WHENEVER
statements that are used in external SQL application programs. A condition handler can be defined to
automatically get control when an exception, warning, or not found condition occurs. The body of a
condition handler contains code that is executed when the condition handler is activated. A condition
handler can be activated as the result of an exception, a warning, or a not found condition that is returned
by Db2 for the processing of an SQL statement. Or the condition that activates the handler can be the
result of a SIGNAL or RESIGNAL statement that is issued within the SQL routine or trigger body.

A condition handler is declared within a compound statement, and it is active for the set of SQL-
procedure-statements that follow all of the condition handler declarations within the compound statement
in which the condition handler is declared. For example, the scope of a condition handler declaration H
is the list of SQL-procedure-statements that follow the condition handler declarations that are contained
within the compound statement in which H appears. This means that the scope of H does not include the
statements that are contained in the body of the condition handler H, implying that a condition handler
cannot handle conditions that arise inside its own body. Similarly, for any two condition handlers H1 and
H2 that are declared in the same compound statement, H1 will not handle conditions that arise in the
body of H2, and H2 will not handle conditions that arise in the body of H1.

The declaration of a condition handler specifies the condition that activates it, the type of condition
handler (CONTINUE or EXIT), and the handler action. The type of condition handler determines to where
control is returned after the handler action successfully completes.

Condition handler activation: When a condition other than a successful completion occurs in the
processing of SQL-procedure-statement, if a condition handler that could handle the condition is within
scope, one such condition handler will be activated to process the condition.

In a routine with nested compound statements, condition handlers that could handle a specific condition
might exist at several levels of the nested compound statements. The condition handler that is activated
is a condition handler that is declared innermost to the scope in which the condition was encountered.
If more than one condition handler at the nesting level could handle the condition, the condition handler
that is activated is the most appropriate handler that is declared in that compound statement.

The most appropriate handler is the condition handler that most closely matches the SQLSTATE or the
exception or completion condition. For a given compound statement, when both a specific handler for a
condition and a general handler are declared that address the same condition, the specific handler takes
precedence over the general handler.

For example, if the innermost compound statement declares a specific handler for SQLSTATE '22001',
as well as a general handler for SQLEXCEPTION, the specific handler for SQLSTATE '22001' is the
most appropriate handler when SQLSTATE '22001' is encountered. In this case, the specific handler is
activated.

2226 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

When a condition handler is activated, the condition handler action is executed. If the handler action
completes successfully or with an unhandled warning, the diagnostics area is cleared, and the type of
the condition handler (CONTINUE or EXIT handler) determines to where control is returned. Additionally,
the SQLSTATE and SQLCODE SQL variables are cleared when a handler completes successfully or with an
unhandled warning.

If the handler action does not complete successfully and an appropriate handler exists for the condition
that is encountered in the handler action, that condition handler is activated. Otherwise, the condition
that is encountered within the condition handler is unhandled.

Unhandled conditions: If a condition is encountered and an appropriate handler does not exist for that
condition, the condition is unhandled.

• If the unhandled condition is an exception, the SQL routine or advanced trigger that contains the failing
statement is terminated with an unhandled exception condition.

• If the unhandled condition is a warning or is a not found condition, processing continues with the
next statement. Note that the processing of the next SQL statement will cause information about the
unhandled condition in the diagnostics area to be overwritten, and evidence of the unhandled condition
will no longer exist.

If an SQL routine or advanced trigger completes with an unhandled warning or not found condition, the
condition is returned to the invoking statement. If a basic trigger completes with an unhandled warning
or not found condition, the condition is not returned to the invoking statement.

Considerations for using SIGNAL and RESIGNAL statements with nested compound statements: If an
SQL-procedure-statement that is specified in the condition handler is either a SIGNAL or RESIGNAL
statement with an exception SQLSTATE, the compound statement terminates with the specified
exception. This happens even when this condition handler or another condition handler in the same
compound statement specifies CONTINUE, since these condition handlers are not in the scope of this
exception. If a compound statement is nested in another compound statement, condition handlers in the
higher level compound statement can handle the exception because those condition handlers are within
the scope of the exception.

SQLSTATE and SQLCODE variables in SQL routines and advanced triggers: To help debug your SQL
routines and advanced triggers, you might find it useful to check the SQLSTATE and SQLCODE value after
executing a statement. An SQLCODE or SQLSTATE variable can be declared and subsequently referenced
in an SQL routine or advanced trigger. You could insert the value of the SQLCODE and SQLSTATE into
a table at various points in the SQL routine or advanced trigger, or return the SQLCODE and SQLSTATE
values in a diagnostics string as an OUT parameter for an SQL procedure. To use the SQLCODE and
SQLSTATE values, you must declare the following SQL variables in the SQL routine or advanced trigger
body:

When you reference the SQLCODE or SQLSTATE variables in an SQL routine or advanced trigger, Db2 sets
the value of SQLCODE to 0 and SQLSTATE to '00000' for the subsequent statement. You can also use
CONTINUE condition handlers to assign the value of the SQLSTATE and SQLCODE variables to variables in
your SQL routine or advanced trigger body. You can then use these SQL variables to control your routine
or trigger logic, or pass the value back as an output parameter. In the following example, the SQL routine
returns control to the statement following each SQL statement with the SQLCODE set in a SQL variable
called RETCODE:

DECLARE SQLCODE INTEGER DEFAULT 0;
DECLARE retcode INTEGER DEFAULT 0;
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION SET retcode = SQLCODE;
DECLARE CONTINUE HANDLER FOR SQLWARNING SET retcode = SQLCODE;
DECLARE CONTINUE HANDLER FOR NOT FOUND SET retcode = SQLCODE;

The compound statement itself does not affect the SQLSTATE and SQLCODE SQL variables. However,
SQL statements contained within the compound statement can affect the SQLSTATE and SQLCODE SQL
variables. At the end of the compound statement, the SQLSTATE and SQLCODE SQL variables reflect the
result of the last SQL statement executed within the compound statement that caused a change to the
SQLSTATE and SQLCODE SQL variables. If the SQLSTATE and SQLCODE SQL variables were not changed

Chapter 8. SQL procedural language (SQL PL) 2227

within the compound statement, they contain the same values as when the compound statement was
entered.

Null values in SQL parameters and SQL variables: If the value of an SQL parameter or SQL variable is null
and it is used in an SQL statement that does not allow an indicator variable, an error is returned.

Effect on open cursors: At the end of the compound statement, all open cursors that are declared in that
compound statement, except cursors that are used to return result sets, are closed.

Atomic processing of a compound statement: Atomic processing is not supported for a compound
statement. If atomic behavior is needed for a block of code in a compound statement, set a savepoint
before the nested compound statement is entered. This will allow changes to be undone with a
ROLLBACK TO SAVEPOINT statement.

Examples

Example 1: Create a procedure body with a compound statement that performs the following actions:

1. Declares SQL variables.
2. Declares a cursor to return the salary of employees in a department determined by an IN parameter.
3. Declares an EXIT handler for the condition NOT FOUND (end of file). The SQL procedure statement of

the handler assigns the value 6666 to the OUT parameter medianSalary.
4. Selects the number of employees in the given department into the SQL variable v_numRecords.
5. Fetches rows from the cursor in a WHILE loop until the salary records for 50% + 1 of the employees in

the department have been retrieved.
6. Returns the median salary.

CREATE PROCEDURE DEPT_MEDIAN
 (IN deptNumber SMALLINT,
 OUT medianSalary DOUBLE)
 LANGUAGE SQL
 BEGIN
 DECLARE v_numRecords INTEGER DEFAULT 1;
 DECLARE v_counter INTEGER DEFAULT 0;
 DECLARE c1 CURSOR FOR
 SELECT salary FROM staff
 WHERE DEPT = deptNumber
 ORDER BY salary;
 DECLARE EXIT HANDLER FOR NOT FOUND
 SET medianSalary = 6666;

 /* initialize OUT parameter */
 SET medianSalary = 0;
 SELECT COUNT(*) INTO v_numRecords FROM staff
 WHERE DEPT = deptNumber;
 OPEN c1;
 WHILE v_counter < (v_numRecords / 2 + 1) DO
 FETCH c1 INTO medianSalary;
 SET v_counter = v_counter + 1;
 END WHILE;
 CLOSE c1;
 END

Example 2: Define an exit handler for any error, warning, or case of end of data. When this procedure is
invoked successfully, the value 45000 is returned for the output parameter:

CREATE PROCEDURE JMBLIB.PROCL(OUT MEDIANSALARY INT)
 LANGUAGE SQL
 BEGIN
 DECLARE CHAR1 CHAR;
 DECLARE C1 CURSOR FOR SELECT *
 FROM SYSIBM.SYSDUMMY1;
 DECLARE EXIT HANDLER FOR NOT FOUND,
 SQLEXCEPTION,
 SQLWARNING
 RETURN;
 OPEN C1;
 FETCH C1 INTO CHAR1;
 SET MEDIANSALARY = 45000;
 FETCH C1 INTO CHAR1;

2228 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 SET MEDIANSALARY = 50000;
 END

FOR statement
The FOR statement executes a statement for each row of a table. An implicit compound statement is
generated to implement the FOR statement.

Syntax

label:

FOR

for-loop-name AS

cursor-name CURSOR
WITHOUT HOLD

WITH HOLD

FOR

select-statement

DO SQL-procedure-statement ; END FOR

label

Description
label

Specifies the label for the FOR statement. If the ending label is specified, it must be the same as the
beginning label. The label name cannot be the same as the routine name, advanced trigger name, or
another label within the same scope. For more information, see “References to SQL labels” on page
2210.

for-loop-name
Specifies the label for the implicit compound statement that is generated to implement the FOR
statement. for-loop-name follows the rules for the label of a compound statement except that it
cannot be used with an ITERATE, GOTO, or LEAVE statement within the FOR statement. for-loop-name
must not be the same as any label within the same scope.

for-loop-name can be used to qualify generated SQL variables that correspond to the columns that are
returned by select-statement.

cursor-name
Names a cursor that is generated to select rows from the result table of select-statement. If cursor-
name is not specified, a unique cursor name is generated.

cursor-name cannot be referenced outside of the FOR statement and cannot be specified on an OPEN,
FETCH, or CLOSE statement.

WITH HOLD or WITHOUT HOLD
Specifies whether the cursor should be prevented from being closed as a consequence of a commit
operation.
WITHOUT HOLD

Specifies that the cursor is not prevented from being closed as a consequence of a commit
operation. WITHOUT HOLD is the default.

WITH HOLD
Specifies that the cursor should not be closed as a consequence of a commit operation. A cursor
that is declared using the WITH HOLD clause is implicitly closed at commit time only if the

Chapter 8. SQL procedural language (SQL PL) 2229

connection that is associated with the cursor is ended during the commit operation. For more
information, see “DECLARE CURSOR statement” on page 1819.

select-statement
Specifies the select statement of the cursor. Each expression in the SELECT list must have a name. If
an expression is not a simple column name, the AS clause must be used to name the expression. If
the AS clause is specified, that name is used for the variable and must be unique.

select-statement must not include a values-clause.

The SELECT list must not include an untyped array value.

SQL-procedure-statement
Specifies the SQL statements to be executed for each row of the table. The SQL statements must not
include an OPEN, FETCH, or CLOSE statement that specifies the cursor name of the FOR statement.

Notes
FOR statement rules: The FOR statement executes one or multiple statements for each row in the result
table of the cursor. The cursor is defined by specifying a SELECT list that describes the columns and rows
selected. The statements within the FOR statement are executed for each row selected.

The SELECT list must consist of unique column names, and the objects referenced in the select-statement
must exist at the current server when the routine or trigger is created. If the FOR statement is contained
in a routine or trigger that is defined with the WITH EXPLAIN attribute, the PLAN_TABLE must exist when
the routine or trigger is created.

The cursor specified in a FOR statement cannot be referenced outside the FOR statement and cannot be
specified on an OPEN, FETCH, or CLOSE statement.

Handler warning: Handlers can be used to handle errors that might occur on the open of the cursor or
fetch of a row using the cursor in the FOR statement. Handlers defined to handle these open or fetch
conditions should not be CONTINUE handlers as they might cause the FOR statement to loop indefinitely.

Examples

In the following example, the FOR statement is used to specify a cursor that selects three columns from
the employee table. For every row selected, SQL variable fullname is set to the last name followed by
a comma, the first name, a blank, and the middle initial. Each value for fullname is inserted into table
TNAMES.

BEGIN
 DECLARE fullname CHAR(40);
 FOR v1 AS
 c1 CURSOR FOR
 SELECT firstname, midinit, lastname FROM employee
 DO
 SET fullname =
 lastname CONCAT ', '
 CONCAT firstname
 CONCAT ' '
 CONCAT midinit;
 INSERT INTO TNAMES VALUES (fullname);
 END FOR;
END;

GET DIAGNOSTICS statement
The GET DIAGNOSTICS statement obtains information about the previous SQL statement that was
executed.

See “GET DIAGNOSTICS statement” on page 1949.

When you need to specify a variable in a GET DIAGNOSTICS statement that is used within an SQL routine,
you would use either SQL-variable-name or SQL-parameter-name. In an embedded GET DIAGNOSTICS
statement, you would use a host-variable. You can replace the instances of host-variable in the

2230 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

description of “GET DIAGNOSTICS statement” on page 1949 with SQL-variable-name or SQL-parameter-
name.

Effects of the statement: The GET DIAGNOSTICS statement does not change the contents of the
diagnostics area except for DB2_GET_DIAGNOSTICS_DIAGNOSTICS.

Considerations for the SQLSTATE and SQLCODE SQL variables: The GET DIAGNOSTICS statement does
not change the value of the SQLSTATE and SQLCODE SQL variables.

The stacked diagnostics area: The stacked diagnostics area is only available within a handler in a native
SQL procedure and non-inline SQL functions.

GOTO statement

Syntax

label:

GOTO target-label

Description
label

Specifies the label for the GOTO statement. The label name cannot be the same as the routine name
or advanced trigger name in which the label is used or another label in the same scope.

target-label
Specifies a label of the statement where processing is to continue. target-label must be defined as a
label for an SQL procedure statement. The target label must be accessible to the GOTO statement as
defined in “References to SQL labels” on page 2210, subject to the following restrictions:

• If the GOTO statement is in a condition handler, target-label must be defined in that condition
handler.

• If the GOTO statement is not defined in a condition handler, target-label must not be defined in a
condition handler.

Notes
Using a GOTO statement: It is recommended that the GOTO statement be used sparingly. This statement
interferes with the normal sequence of processing SQL statements, thus making a routine more difficult to
read and maintain. Before using a GOTO statement, determine whether another statement, such as IF or
LEAVE, can be used in place, to eliminate the need for a GOTO statement.

Effect on open cursors: When a GOTO statement transfers control out of a compound statement, all
open cursors that are declared in the compound statement that contains the GOTO statement are closed,
except cursors that are used to return result sets.

Examples

Example 1: In the following procedure, the GOTO statement branches outside of the current compound
statement to a higher level:

CREATE PROCEDURE TESTGOTO5 ()
P1: BEGIN
 DECLARE I ,A INTEGER;
 SET I = 1;
 LAB1: SET A = 1;
 BEGIN
 LAB2: SET A = 2;
 BEGIN
 SET I = I+1;
 IF I<3 THEN GOTO LAB1;

Chapter 8. SQL procedural language (SQL PL) 2231

 END IF;
 END;
 END;
END P1

Example 2: In the following example, cursors are declared at multiple levels. The GOTO statement that
specified TargLabel as the target label, results in the closing of cursors C1, C2, and C3. This is because
cursors C1, C2, and C3 are all declared directly or indirectly in the compound statement with the label
L1. The GOTO statement causes control to transfer out of the compound statement with label L1, so the
cursors that are defined within that compound statement (at any level) are closed.

L0: BEGIN
 DECLARE CURSOR C0 ...
 ...
 TARGLABEL: ...
 ...
 L1: BEGIN
 DECLARE CURSOR C1 ...
 ...
 L2: BEGIN
 DECLARE CURSOR C2 ...
 ...
 GOTO TARGLABEL;
 ...
 L3: BEGIN
 DECALUE CURSOR C3 ...
 ...
 END L3;
 END L2;
 END L1;
END L0

IF statement
The IF statement executes different sets of SQL statements based on the result of search conditions.

Syntax

label:

IF search-condition THEN SQL-procedure-statement ;

ELSEIF search-condition THEN SQL-procedure-statement ;

ELSE SQL-procedure-statement ;

END IF

Description
label

Specifies the label for the IF statement. The label name cannot be the same as the routine name,
advanced trigger name, or another label name within the same scope. For additional information, see
“References to SQL labels” on page 2210.

2232 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

search-condition
Specifies the search-condition for which an SQL statement should be executed. If the condition is
unknown or false, processing continues to the next search condition, until either a condition is true or
processing reaches the ELSE clause.

SQL-procedure-statement
Specifies an SQL statement to be executed if the preceding search-condition is true. See “SQL-
procedure-statement (SQL PL)” on page 2212.

Examples

Assign a value to the SQL variable new_salary based on the value of SQL variable rating.

IF rating = 1
 THEN SET new_salary =
 new_salary + (new_salary * .10);
 ELSEIF rating = 2
 THEN SET new_salary =
 new_salary + (new_salary * .05);
 ELSE SET new_salary =
 new_salary + (new_salary * .02);
END IF;

ITERATE statement
The ITERATE statement causes the flow of control to return to the beginning of a labeled loop.

Syntax

label:

ITERATE target-label

Description
label

Specifies the label for the ITERATE statement. The label name cannot be the same as the routine
name, advanced trigger name, or another label within the same scope. For additional information, see
“References to SQL labels” on page 2210.

target-label
Specifies the label of the FOR, LOOP, REPEAT, or WHILE statement to which the flow of control is
passed. target-label must be defined as a label for a FOR, LOOP, REPEAT, or WHILE statement. The
ITERATE statement must be in that FOR, LOOP, REPEAT, or WHILE statement, or in the block of code
that is directly or indirectly nested within that statement, subject to the following restrictions:

• If the ITERATE statement is in a condition handler, target-label must be defined in that condition
handler.

• If the ITERATE statement is not in a condition handler, target-label must not be defined in a
condition handler.

Examples

Example 1: This example uses a cursor to return information for a new department. If the not_found
condition handler is invoked, the flow of control passes out of the loop. If the value of v_dept is 'D11',
an ITERATE statement causes the flow of control to be passed back to the top of the LOOP statement.
Otherwise, a new row is inserted into the table.

CREATE PROCEDURE ITERATOR ()
 LANGUAGE SQL
 MODIFIES SQL DATA
 BEGIN

Chapter 8. SQL procedural language (SQL PL) 2233

 DECLARE v_dept CHAR(3);
 DECLARE v_deptname VARCHAR(29);
 DECLARE v_admdept CHAR(3);
 DECLARE at_end INTEGER DEFAULT 0;
 DECLARE not_found CONDITION FOR SQLSTATE '02000';
 DECLARE c1 CURSOR FOR
 SELECT deptno,deptname,admrdept
 FROM department
 ORDER BY deptno;
 DECLARE CONTINUE HANDLER FOR not_found
 SET at_end = 1;
 OPEN c1;
 ins_loop:
 LOOP
 FETCH c1 INTO v_dept, v_deptname, v_admdept;
 IF at_end = 1 THEN
 LEAVE ins_loop;
 ELSEIF v_dept = 'D11' THEN
 ITERATE ins_loop;
 END IF;
 INSERT INTO department (deptno,deptname,admrdept)
 VALUES('NEW', v_deptname, v_admdept);
 END LOOP;
 CLOSE c1;
 END

Example 2: An ITERATE statement can be issued from a nested block to cause that flow of control to
return to the beginning of a loop at a higher level. In the following example, the ITERATE statement within
the LAB2 compound statement causes the flow of control to return to the beginning of the LAB1 LOOP
statement:

LAB1: LOOP
 SET A = 0;
 LAB2: BEGIN
 ...
 LAB3: BEGIN
 ...
 ITERATE LAB1; -- Multilevel ITERATE
 ...
 END LAB3;
 ...
 ITERATE LAB1; -- Multilevel ITERATE
 ...
 END LAB2;
END LOOP;S

LEAVE statement
The LEAVE statement transfers program control out of a FOR, LOOP, REPEAT, WHILE, or compound
statement.

Syntax

label:

LEAVE target-label

Description
label

Specifies the label for the LEAVE statement. The label name cannot be the same as the routine name,
advanced trigger name, or the same as another label that is within the same scope. For additional
information, see “References to SQL labels” on page 2210.

target-label
Specifies the label of the compound, FOR, LOOP, REPEAT, or WHILE statement to exit. target-label
must be defined as a label for a compound, FOR, LOOP, REPEAT, or WHILE statement, or in a block of
code that is directly or indirectly nested within that statement, subject to the following rules:

2234 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• If the LEAVE statement is in a condition handler, target-label must be defined in that condition
handler.

• If the LEAVE statement is not in a condition handler, target-label must not be defined in a condition
handler.

Notes
Effect on open cursors: When a LEAVE statement transfers control out of a compound statement, all open
cursors in the compound statement, except cursors that are used to return result sets, are closed.

Examples

Example 1: The example contains a loop that fetches data for cursor c1. If the value of SQL variable
at_end is not zero, the LEAVE statement transfers control out of the loop.

CREATE PROCEDURE LEAVE_LOOP (OUT COUNTER INTEGER)
 LANGUAGE SQL
 BEGIN
 DECLARE v_counter INTEGER;
 DECLARE v_firstnme VARCHAR(12);
 DECLARE v_midinit CHAR(1);
 DECLARE v_lastname VARCHAR(15);
 DECLARE at_end SMALLINT DEFAULT 0;
 DECLARE not_found CONDITION FOR SQLSTATE '02000';
 DECLARE c1 CURSOR FOR
 SELECT firstnme, midinit, lastname
 FROM employee;
 DECLARE CONTINUE HANDLER FOR not_found
 SET at_end = 1;
 SET v_counter = 0;
 OPEN c1;
 fetch_loop:
 LOOP
 FETCH c1 INTO v_firstnme, v_midinit, v_lastname;
 IF at_end <> 0 THEN
 LEAVE fetch_loop;
 END IF;
 SET v_counter = v_counter + 1;
 END LOOP fetch_loop;
 SET counter = v_counter;
 CLOSE c1;
 END

Example 2: A LEAVE statement can be issued from a nested block to leave a statement at a higher level.
In the following example, the LEAVE statement within the LAB2 compound statement causes the LAB1
LOOP statement to terminate:

LAB1: LOOP
 ...
 LAB2: BEGIN
 SET A = 0;
 ...
 LAB3: BEGIN
 ...
 LEAVE LAB1; -- Multilevel LEAVE
 ...
 END LAB3;
 ...
 LEAVE LAB1; -- Multilevel LEAVE
 ...
 END LAB2;
END LOOP;S

Chapter 8. SQL procedural language (SQL PL) 2235

LOOP statement
The LOOP statement executes a statement or group of statements multiple times.

Syntax

label:

LOOP SQL-procedure-statement ; END LOOP

label

Description
label

Specifies the label for the LOOP statement. If the ending label is specified, a matching beginning label
must be specified. A label name cannot be the same as the routine name, advanced trigger name, or
another label within the same scope. For additional information, see “References to SQL labels” on
page 2210.

SQL-procedure-statement
Specifies an SQL statement to be executed in the loop. The statement must be one of the statements
listed under “SQL-procedure-statement (SQL PL)” on page 2212.

Notes
Considerations for the diagnostics area: At the beginning of the first iteration of the LOOP statement, and
with every subsequent iteration, the diagnostics area is cleared.

Considerations for the SQLSTATE and SQLCODE SQL variables: Prior to executing the first SQL-
procedure-statement within that LOOP statement, the SQLSTATE and SQLCODE values reflect the last
values that were set prior to the LOOP statement. If the loop is terminated with a GOTO or a LEAVE
statement, the SQLSTATE and SQLCODE values reflect successful completion of that statement. When the
LOOP statement iterates, the SQLSTATE and SQLCODE values reflect the result of the last SQL statement
that is executed within the LOOP statement.

Examples

This procedure uses a LOOP statement to fetch values from the employee table. Each time the loop
iterates, the OUT parameter counter is incremented and the value of v_midinit is checked to ensure that
the value is not a single space (' '). If v_midinit is a single space, the LEAVE statement passes the flow of
control outside of the loop.

CREATE PROCEDURE LOOP_UNTIL_SPACE(OUT counter INTEGER)
 LANGUAGE SQL
 BEGIN
 DECLARE v_counter INTEGER DEFAULT 0;
 DECLARE v_firstnme VARCHAR(12);
 DECLARE v_midinit CHAR(1);
 DECLARE v_lastname VARCHAR(15);
 DECLARE c1 CURSOR FOR
 SELECT firstnme, midinit, lastname
 FROM employee;
 DECLARE EXIT HANDLER FOR NOT FOUND
 SET counter = -1;
 OPEN c1;
 fetch_loop:
 LOOP
 FETCH c1 INTO v_firstnme, v_midinit, v_lastname;
 IF v_midinit = ' ' THEN
 LEAVE fetch_loop;
 END IF;
 SET v_counter = v_counter + 1;
 END LOOP fetch_loop;
 SET counter = v_counter;

2236 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 CLOSE c1;
 END

REPEAT statement
The REPEAT statement executes a statement or group of statements until a search condition is true.

Syntax

label:

REPEAT SQL-procedure-statement ; UNTIL search-condition

END REPEAT

label

Description
label

Specifies the label for the REPEAT statement. If an ending label is specified, a matching beginning
label must be specified. A label name cannot be the same as the routine name, advanced trigger
name, or another label within the same scope. For additional information, see “References to SQL
labels” on page 2210.

SQL-procedure-statement
Specifies an SQL statement to be executed within the REPEAT loop. The statement must be one of the
statements listed under “SQL-procedure-statement (SQL PL)” on page 2212.

search-condition
Specifies a condition that is evaluated after each execution of the REPEAT loop. If the condition is
true, the REPEAT loop will exit. If the condition is unknown or false, the looping continues.

Notes
Considerations for the diagnostics area: At the beginning of the first iteration of the REPEAT statement,
and with every subsequent iteration, the diagnostics area is cleared.

Considerations for the SQLSTATE and SQLCODE SQL variables: At the beginning of the first iteration of
the REPEAT statement, the SQLSTATE and SQLCODE values reflect the values that were set prior to the
REPEAT statement. At the beginning of iterations 2 through n of the REPEAT statement, the SQLSTATE
and SQLCODE SQL values reflect the result of evaluating the search condition in the UNTIL clause of
that REPEAT. If the loop is terminated with a GOTO, ITERATE, or LEAVE statement, the SQLSTATE and
SQLCODE values reflect the successful completion of that statement. Otherwise, after the END REPEAT of
the REPEAT statement completes, the SQLSTATE and SQLCODE reflect the result of evaluating the search
condition in the UNTIL clause of that REPEAT statement.

Examples

Use a REPEAT statement to fetch rows from a table.

fetch_loop:
REPEAT
 FETCH c1 INTO
 v_firstnme, v_midinit, v_lastname;
UNTIL
 SQLCODE <> 0
END REPEAT fetch_loop

Chapter 8. SQL procedural language (SQL PL) 2237

RESIGNAL statement
The RESIGNAL statement is used within a condition handler to resignal the condition that activated the
handler, or to raise an alternate condition so that it can be processed at a higher level. It causes an
exception, warning, or not found condition to be returned along with optional message text.

Syntax

label:

RESIGNAL

SQLSTATE
VALUE

sqlstate-string-constant

SQL-variable-name

SQL-parameter-name

SQL-condition-name

signal-information

signal-information:

SET MESSAGE_TEXT = diagnostic-string-expression

Description
label

Specifies the label for the RESIGNAL statement. A label name cannot be the same as the routine
name, advanced trigger name, or another label within the same scope. For additional information, see
“References to SQL labels” on page 2210.

SQLSTATE VALUE
Specifies the SQLSTATE that will be returned. Any valid SQLSTATE value can be used. It must be a
character string constant with exactly five characters that follow the rules for SQLSTATE values:

• Each character must be from the set of digits ('0' through '9') or non-accented upper case letter ('A'
through 'Z').

• The SQLSTATE class (the first two characters) cannot be '00' because it represents successful
completion.

If the SQLSTATE does not conform to these rules, an error occurs.

sqlstate-string-constant
A character string constant with an actual length of five bytes that is a valid SQLSTATE value.

SQL-variable-name or SQL-parameter-name
Specifies an SQL variable or SQL parameter that is defined for the routine.
SQL-variable-name

Specifies an SQL variable that is declared within the compound-statement that contains the
RESIGNAL statement or within a compound statement in which that compound statement is
nested. SQL-variable-name must be defined as CHAR or VARCHAR data type with an actual
length of five bytes, must not be null, and must contain a valid SQLSTATE value.

SQL_parameter-name
Specifies an SQL parameter that is defined for the routine that contains the SQLSTATE value.
The SQL parameter must be defined as CHAR or VARCHAR data type with an actual length of
five bytes, must not be null, and must contain a valid SQLSTATE value.

2238 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SQL-condition-name
Specifies the name of the condition that will be returned. SQL-condition-name must be declared
within the compound-statement that contains the RESIGNAL statement, or within a compound
statement in which that compound statement is nested.

SET MESSAGE_TEXT
Specifies a string that describes the error or warning. The string is returned in the SQLERRMC field of
the SQLCA or with the GET DIAGNOSTICS statement.
diagnostic-string-expression

An expression with a data type of CHAR or VARCHAR that returns a character string of up to 1000
bytes that describes the error or warning condition. For information on how to obtain the complete
message text, see “GET DIAGNOSTICS statement” on page 1949.

Notes
While any valid SQLSTATE value can be used in the RESIGNAL statement, programmers should define
new SQLSTATEs based on ranges reserved for applications. This practice prevents the unintentional use of
an SQLSTATE value that might be defined by the database manager in a future release.

If the SQLSTATE or condition indicates that an exception is signaled (SQLSTATE class other than '01' or
'02'):

• If a condition handler exists in the same compound statement as the RESIGNAL statement, and the
compound statement contains a condition handler for SQLEXCEPTION or the specified SQLSTATE or
condition, the exception is handled and control is transferred to that condition handler.

• If the compound statement is nested and an outer level compound statement has a condition handler
for SQLEXCEPTION or the specified SQLSTATE or condition, the exception is handled and control is
transferred to that condition handler.

• Otherwise, the exception is not handled and control is immediately returned to the end of the
compound statement.

If an SQLSTATE or a condition indicates that a warning or a not found condition is signaled:

• If a condition handler exists in the same compound statement as the RESIGNAL statement, and the
compound statement contains a condition handler for SQLWARNING, NOT FOUND, or the specified
SQLSTATE or condition, the warning or not found condition is handled and control is transferred to that
condition handler.

• If the compound statement is nested and an outer level compound statement contains a condition
handler for SQLWARNING, NOT FOUND, or the specified SQLSTATE or condition, the warning or not
found condition is handled and control is returned to that condition handler.

• Otherwise, the warning is not handled and processing continues with the next statement.

Considerations for the diagnostics area: The RESIGNAL statement might modify the contents
of the current diagnostics area. If an SQLSTATE or condition-name is specified as part of the
RESIGNAL statement, the RESIGNAL statement starts with a clear diagnostics area and sets the
RETURNED_SQLSTATE to reflect the specified SQLSTATE or condition-name. If message text is specified,
the MESSAGE_TEXT item of the condition area is assigned the specified value. DB2_RETURNED_SQLCODE
is set to +438 or -438 corresponding to the specified SQLSTATE or condition-name.

Processing a RESIGNAL statement: If the RESIGNAL statement is specified without an SQLSTATE clause
or a condition-name, the SQL routine resignals the identical condition that invoked the handler and the
SQLCODE is not changed.

When a RESIGNAL statement is issued and an SQLSTATE or condition-name is specified, the SQLCODE is
based on he SQLSTATE value as follows:

• If the specified SQLSTATE class is either '01' or ‘02', a warning or not found is signaled and the
SQLCODE is set to +438.

• Otherwise, an exception is returned and the SQLCODE is set to -438.

Chapter 8. SQL procedural language (SQL PL) 2239

Examples

The following example detects a division by zero error. The IF statement uses a SIGNAL statement to
invoke the overflow condition handler. The condition handler uses a RESIGNAL statement to return a
different SQLSTATE to the client application.

CREATE PROCEDURE divide (IN numerator INTEGER,
 IN denominator INTEGER,
 OUT divide_result INTEGER)
 LANGUAGE SQL
 CONTAINS SQL
 BEGIN
 DECLARE overflow CONDITION for SQLSTATE '22003';
 DECLARE CONTINUE HANDLER FOR overflow
 RESIGNAL SQLSTATE '22375';
 IF denominator = 0 THEN
 SIGNAL overflow;
 ELSE
 SET divide_result = numerator / denominator;
 END IF;
 END

RETURN statement
The RETURN statement is used to return from the routine.

• For an SQL scalar function, the scalar result of the function is returned. The body of an SQL scalar
function must contain at least one RETURN statement and a RETURN statement must be executed
when the function is invoked.

• For an SQL table function, the result table of the function is returned. A RETURN statement must be
specified in the body of an SQL table function.

• For an SQL procedure, the RETURNS statement optionally returns an integer status value.

Syntax

label:

RETURN

expression

NULL

fullselect

Description
label

Specifies the label for the RETURN statement. A label name cannot be the same as the routine name
or another label within the same scope. For additional information, see “References to SQL labels” on
page 2210.

expression
Specifies a value that is returned from the routine.

• If the routine is a scalar function, the data type of the result must be assignable to the data type that
is defined for the function result, using the storage assignment rules as described in “Assignment
and comparison” on page 143. The RETURN statement must not contain a period specification.

The body of any SQL function must not contain a reference to an aggregate function, or a reference
to a user-defined function that is sourced on an aggregate function, or an OLAP specification.

In the body of an inlined SQL function, the RETURN statement must not contain a scalar fullselect.
If the expression does not conform to this rule, Db2 attempts to define a compiled function.
To determine what type of SQL scalar function is created, refer to the INLINE column of the
SYSIBM.SYSROUTINES catalog table. For more information about creating the two types of SQL

2240 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

scalar functions, see “CREATE FUNCTION statement (inlined SQL scalar function)” on page 1489
and “CREATE FUNCTION statement (compiled SQL scalar function)” on page 1428.

• If the routine is a table function, a scalar expression (other than a scalar fullselect) cannot be
specified. The data type of the result column of the fullselect must be assignable to the data
type that is defined for the function result, using the storage assignment rules as described in
“Assignment and comparison” on page 143. The outer fullselect in the RETURN statement of an SQL
table function must not contain an offset-clause or fetch-clause, and the RETURN statement must
not contain a period specification.

• If the routine is a procedure, the data type of expression must be INTEGER.

NULL
The null value is returned from the SQL routine.

• If the routine is a scalar function, the null value is returned.
• If the routine is a table function, NULL must not be specified.
• If the routine is a procedure, NULL must not be specified.

fullselect
Specifies the row or rows that are returned from the routine.

• If the routine is a scalar function, the function is a compiled function and the fullselect must return
one column and, at most, one row. The data type of the result column must be assignable to the
data type that is defined for the function result, using the storage assignment rules as described in
“Assignment and comparison” on page 143.

• If the routine is a table function, the fullselect can return zero or more rows with one or more
columns. The number of columns in the fullselect must match the number of columns in the
function result. In addition, the data types of the result table columns of the fullselect must be
assignable to the data types of the columns that are defined for the function result, using the
storage assignment rules as described in “Assignment and comparison” on page 143.

• If the routine is a procedure, fullselect must not be specified.

Notes
Considerations for SQL functions: A RETURN statement in an SQL function must specify expression,
NULL, or fullselect. For an inlined SQL scalar function, only a single expression can be specified in
the RETURN statement, and the expression must not include a scalar fullselect. Only a single RETURN
statement can be specified in the routine body of an SQL table function. The execution of an SQL function
must end with a RETURN statement.

A data change table reference is not allowed in a RETURN statement in an SQL function.

Considerations for SQL procedures:

• When a RETURN statement is used within an SQL procedure: If a RETURN statement with a specified
return value was used to return from a procedure, the SQLCODE, SQLSTATE, and message length in the
SQLCA are initialized to zeros and the message text is set to blanks. An error is not returned to the caller.

• When a RETURN statement is not used within an SQL procedure or when no value is specified: If a
RETURN statement was not used to return from a procedure or if a value is not specified on the RETURN
statement, one of the following values is set:

– If the procedure returns with an SQLCODE that is greater or equal to zero, the specified target for
DB2_RETURN_STATUS in a GET DIAGNOSTICS statement will be set to a value of zero.

– If the procedure returns with an SQLCODE that is less than zero, the specified target for
DB2_RETURN_STATUS in a GET DIAGNOSTICS statement will be set to a value of '-1'.

• When the value is returned from an SQL procedure: When a value is returned from a procedure, the
caller may access the value using one of the following methods:

– The GET DIAGNOSTICS statement to retrieve the RETURN_STATUS when the SQL procedure was
called from another SQL procedure.

Chapter 8. SQL procedural language (SQL PL) 2241

– The parameter bound for the return value parameter marker in the escape clause CALL syntax (?
=CALL...) in a CLI application.

– Directly from the SQLCA returned from processing the CALL of an SQL procedure by retrieving
the value of sqlerrd[0]. When the SQLCODE is less than zero, the sqlerrd[0] value is not set. The
application should assume a return status value of '-1'.

Restrictions:

• The RETURN statement must not be specified in a trigger.
• An SQL table function must contain a single RETURN statement.

Examples

Example 1: Use a RETURN statement to return from an SQL procedure with a status value of zero if
successful or '-200' if not successful.

BEGIN
 . . .
 GOTO FAIL;
 . . .
SUCCESS: RETURN 0;
 FAIL: RETURN -200;
END

Example 2: Define a scalar function that returns the tangent of a value using the existing sine and cosine
functions:

 CREATE FUNCTION TAN (X DOUBLE)
 RETURNS DOUBLE
 LANGUAGE SQL CONTAINS SQL NO EXTERNAL ACTION
 DETERMINISTIC
 RETURN SIN(x)/COS(x)

SIGNAL statement
The SIGNAL statement is used to return an exception or warning condition. It causes an error or warning
to be returned with the specified SQLSTATE, along with optional message text. The SIGNAL statement
places the specified condition information in the cleared diagnostics area.

Syntax

label:

SIGNAL

SQLSTATE
VALUE

sqlstate-string-constant

SQL-variable-name

SQL-parameter-name

SQL-condition-name

signal-information

2242 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

signal-information:

SET MESSAGE_TEXT = diagnostic-string-expression

(diagnostic-string-expression)
1

Notes:
1 (diagnostic-string-expression) must only be specified within a trigger body.

Description
label

Specifies the label for the SIGNAL statement. A label name cannot be the same as the routine
name, advanced trigger name, or another label within the same scope. For additional information, see
“References to SQL labels” on page 2210.

SQLSTATE VALUE
Specifies the SQLSTATE that will be returned. Any valid SQLSTATE value can be used. It must be a
character string constant with exactly five characters that follow the rules for SQLSTATEs:

• Each character must be from the set of digits ('0' through '9') or non-accented upper case letter ('A'
through 'Z').

• The SQLSTATE class (the first two characters) cannot be '00' because it represents successful
completion.

In the context of a MERGE statement, the following rules also apply:

• The SQLSTATE class (first two characters) cannot be '01' or '02', because these are not error
classes.

• If the SQLSTATE class starts with the numbers '0' through '6' or the letters 'A' through 'H', the
subclass (the last three characters) must start with a letter in the range of 'I' through 'Z'.

• If the SQLSTATE class starts with the numbers '7', '8', '9', or the letters 'I' through 'Z', the subclass
can be any of '0' through '9' or 'A' through 'Z'.

If the SQLSTATE does not conform to these rules, an error occurs.

sqlstate-string-constant
A character string constant with an actual length of five bytes that is a valid SQLSTATE value.

SQL-variable-name or SQL-parameter-name
Specifies an SQL variable or SQL parameter that contains a valid SQLSTATE value.
SQL-variable-name

Specifies an SQL variable that is declared within the compound-statement that contains the
SIGNAL statement, or within a compound statement in which that compound statement is
nested. SQL-variable-name must be defined as a CHAR or VARCHAR data type with an actual
length of five bytes, must not be null, and must contain a valid SQLSTATE value.

SQL-parameter-name
Specifies an SQL parameter that is defined for the routine and contains the SQLSTATE value.
The SQL parameter must be defined as a CHAR or VARCHAR data type with an actual length of
five bytes, must not be null, and must contain a valid SQLSTATE value.

SQL-condition-name
Specifies the name of the condition that will be returned. The SQL-condition-name must be declared
within the compound statement that contains the SIGNAL statement, or within a compound
statement in which that compound statement is nested.

SET MESSAGE_TEXT
Specifies a string that describes the error or warning. The string is returned in the SQLERRMC field of
the SQLCA or with the GET DIAGNOSTICS statement.

Chapter 8. SQL procedural language (SQL PL) 2243

diagnostic-string-expression
An expression with a data type of CHAR or VARCHAR that returns a character string of up to 1000
bytes that describes the error or warning condition. For information on how to obtain the complete
message text, see “GET DIAGNOSTICS statement” on page 1949.

(diagnostic-string-expression)
An expression with a data type of CHAR or VARCHAR that returns a character string of up to 1000
bytes that describes the error or warning condition. For information on how to obtain the complete
message text, see “GET DIAGNOSTICS statement” on page 1949.

This syntax variation is only provided within the scope of a CREATE TRIGGER statement for
compatibility with previous versions of Db2. To conform with the ANS and ISO standards, this form
should not be used.

Notes
While any valid SQLSTATE value can be used in the SIGNAL statement, programmers should define new
SQLSTATEs based on ranges reserved for applications. This practice prevents the unintentional use of an
SQLSTATE value that might be defined by the database manager in a future release.

If the SQLSTATE or condition indicates that an exception is signaled:

• If a condition handler exists in the same compound statement as the SIGNAL statement, and the
compound statement contains a condition handler for SQLEXCEPTION or the specified SQLSTATE or
condition, the exception is handled and control is transferred to that condition handler.

• If the compound statement is nested and the outer level compound statement has a condition handler
for SQLEXCEPTION or the specified SQLSTATE or condition, the exception is handled and control is
transferred to that condition handler.

• Otherwise, the exception is not handled and control is immediately returned to the end of the
compound statement.

If the SQLSTATE or condition indicates that a warning or not found condition is signaled:

• If a condition handler exists in the same compound statement as the SIGNAL statement, and the
compound statement contains a condition handler for SQLWARNING, NOT FOUND, or the specified
SQLSTATE or condition, the warning or not found condition is handled and control is transferred to that
condition handler.

• If the compound statement is nested and an outer level compound statement contains a condition
handler for SQLWARNING, NOT FOUND, or the specified SQLSTATE or condition, the warning or not
found condition is handled and control is transferred to that condition handler.

• Otherwise, the warning or not found condition is not handled and processing continues with the next
statement.

Considerations for the diagnostics area: The SIGNAL statement starts with a clear diagnostics area
and sets the RETURNED_SQLSTATE to reflect the specified SQLSTATE or condition-name. If message
text is specified, the MESSAGE_TEXT item of the condition area is assigned the specified value.
DB2_RETURNED_SQLCODE is set to +438 or -438 corresponding to the specified SQLSTATE or condition-
name.

Examples

• The following example shows an SQL procedure for an order system that signals an application error
when a customer number is not known to the application. The ORDERS table includes a foreign key to
the CUSTOMER table, requiring that the CUSTNO exist before an order can be inserted.

CREATE PROCEDURE SUBMIT_ORDER
 (IN ONUM INTEGER, IN CNUM INTEGER,
 IN PNUM INTEGER, IN QNUM INTEGER)
 LANGUAGE SQL
 SPECIFIC SUBMIT_ORDER
 MODIFIES SQL DATA
BEGIN

2244 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 DECLARE EXIT HANDLER FOR SQLSTATE VALUE '23503'
 SIGNAL SQLSTATE '75002'
 SET MESSAGE_TEXT = 'Customer number is not known';
 INSERT INTO ORDERS (ORDERNO, CUSTNO, PARTNO, QUANTITY)
 VALUES (ONUM, CNUM, PNUM, QNUM);
END

• The following example shows a trigger for an order system that allows orders to be recorded in an
ORDERS table (ORDERNO, CUSTNO, PARTNO, QUANTITY) only if there is sufficient stock in the PARTS
tables. When there is insufficient stock for an order, SQLSTATE '75001' is returned along with an
appropriate error description.

 CREATE TRIGGER CK_AVAIL
 NO CASCADE BEFORE INSERT ON ORDERS
 REFERENCING NEW AS NEW_ORDER
 FOR EACH ROW MODE DB2SQL
 WHEN (NEW_ORDER.QUANTITY > (SELECT ON_HAND FROM PARTS
 WHERE NEW_ORDER.PARTNO = PARTS.PARTNO))
 BEGIN ATOMIC
 SIGNAL SQLSTATE '75001' ('Insufficient stock for order');
 END

WHILE statement
The WHILE statement repeats the execution of a statement or group of statements while a specified
condition is true.

Syntax

label:

WHILE search-condition DO SQL-procedure-statement ;

END WHILE

label

Description
label

Specifies the label for the WHILE statement. If the ending label is specified, it must be the same as
the beginning label. A label name cannot be the same as the routine name, advanced trigger name,
or another label within the same scope. For additional information, see “References to SQL labels” on
page 2210.

search-condition
Specifies a condition that is evaluated before each execution of the loop. If the condition is true, the
SQL procedure statements in the loop are executed.

SQL-procedure-statement
Specifies a statement to be run within the WHILE loop. The statement must be one of the statements
listed under “SQL-procedure-statement (SQL PL)” on page 2212.

Notes
Considerations for the diagnostics area: At the beginning of the first iteration of the WHILE statement,
and with every subsequent iteration, the diagnostics area is cleared.

Considerations for the SQLSTATE and SQLCODE SQL variables: With each iteration of the WHILE
statement, when the first SQL-procedure-statement is executed, the SQLSTATE and SQLCODE SQL
variables reflect the result of evaluating the search condition of that WHILE statement. If the loop is

Chapter 8. SQL procedural language (SQL PL) 2245

terminated with a GOTO, ITERATE, or LEAVE statement, the SQLSTATE and SQLCODE values reflect
the successful completion of that statement. Otherwise, after the END WHILE of the WHILE statement
completes, the SQLSTATE and SQLCODE reflect the result of evaluating that search condition of that
WHILE statement.

Examples

Use a WHILE statement to fetch rows from a table while SQL variable at_end, which indicates whether the
end of the table has been reached, is 0.

WHILE at_end = 0 DO
 FETCH c1 INTO
 v_firstnme, v_midinit,
 v_lastname, v_edlevel, v_salary;
 IF SQLCODE=100 THEN SET at_end=1;
 END IF;
END WHILE;

2246 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Appendix A. Limits in Db2 for z/OS
Db2 for z/OS has system limits, object and SQL limits, length limits for identifiers and strings, and limits
for certain data type values.

System storage limits might preclude the limits specified in this section. The limit for items not that are
not specified below is limited by system storage.

The following table shows the length limits for identifiers.

Table 242. Identifier length limits. The term byte(s) in this table means the number of bytes for the UTF-8
representation unless noted otherwise.

Item Limit

External-java-routine-name 1305 bytes

Name of an alias “1” on page 2248, auxiliary table,
collection, clone table, constraint, correlation, cursor
(except for DECLARE CURSOR WITH RETURN or the
EXEC SQL utility), distinct type (both parts of two-
part name), function (both parts of two-part name),
host identifier, index, JARs, parameter, procedure,
role, schema, sequence, specific, statement, storage
group, savepoint, SQL condition, SQL label, SQL
parameter, SQL variable, synonym, table, trigger, view,
XML attribute name, XML element name

128 bytes

Name of an authorization ID or name of a security
label.

8 bytes

Routine version identifier 64 EBCDIC bytes, and the UTF-8 representation of the
name must not exceed 122 bytes.

Name of a column 30 bytes “1” on page 2248

Name of cursor that is created with DECLARE CURSOR
WITH RETURN

30 bytes

Name of cursor that is created with the EXEC SQL
utility

8 bytes

Name of a location 16 bytes

Name of a database, table space, or buffer pool 8 bytes

Name of a plan or program 8 bytes

Name of a package 8 bytes (Only 8 EBCDIC characters are used for
packages that are created with the BIND PACKAGE
command. 128 bytes can be used for packages that
are created as a result of the CREATE FUNCTION (SQL
scalar) statement, the CREATE PROCEDURE (SQL -
native) statement, the CREATE TRIGGER statement, or
a BIND command that specifies a zFS file as DBRM
library.)

Name of a profile that is created with CREATE
TRUSTED CONTEXT or ALTER TRUSTED CONTEXT

127 bytes

Name of an ICF catalog. 8 bytes

© Copyright IBM Corp. 1982, 2024 2247

Table 242. Identifier length limits. The term byte(s) in this table means the number of bytes for the UTF-8
representation unless noted otherwise. (continued)

Item Limit

Notes:

1. If the column name length or the distinct type schema or name length is greater than 30 Unicode bytes,
truncation occurs in the SQLNAME field of the SQLDA when those objects are described in an application.

Table 243 on page 2248 shows the minimum and maximum limits for numeric values.

Table 243. Numeric limits

Item Limit

Smallest SMALLINT value -32768

Largest SMALLINT value 32767

Smallest INTEGER value -2147483648

Largest INTEGER value 2147483647

Smallest BIGINT value -9223372036854775808

Largest BIGINT value 9223372036854775807

Smallest REAL value About -7.2x1075

Largest REAL value About 7.2x1075

Smallest positive REAL value About 5.4x10-79

Largest negative REAL value About -5.4x10-79

Smallest FLOAT value About -7.2x1075

Largest FLOAT value About 7.2x1075

Smallest positive FLOAT value About 5.4x10-79

Largest negative FLOAT value About -5.4x10-79

Smallest DECIMAL value 1–1031

Largest DECIMAL value 1031 - 1

Largest decimal precision 31

Smallest DECFLOAT(16) value1 -9.999999999999999x10384

Largest DECFLOAT(16) value1 9.999999999999999x10384

Smallest positive DECFLOAT(16) value1 1.000000000000000x10-383

Largest negative DECFLOAT(16) value1 -1.000000000000000x10-383

Smallest DECFLOAT(34) value1 -9.999999999999999999999999999999999x106144

.

Largest DECFLOAT(34) value1 9.999999999999999999999999999999999x106144.

Smallest positive DECFLOAT(34) value1 1.000000000000000000000000000000000x10-6143

Largest negative DECFLOAT(34) value1 -1.000000000000000000000000000000000x10-614
3

Coefficient length for DECFLOAT values DECFLOAT(16) is 16 digits; DECFLOAT(34) is 34 digits

2248 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 243. Numeric limits (continued)

Item Limit

Maximum Exponent (Emax) for DECFLOAT values DECFLOAT(16) is 384; DECFLOAT(34) is 6144

Minimum Exponent (Emin) for DECFLOAT values DECFLOAT(16) is -383; DECFLOAT(34) is -6143

Bias for DECFLOAT values DECFLOAT(16) is 398; DECFLOAT(34) is 6176

Note:

1. These are the limits for normal numbers in DECFLOAT. DECFLOAT also contains special values such as
NaN and Infinity that are also valid. DECFLOAT also supports subnormal numbers that are outside of the
documented range.

The following table shows the length limits for strings.

Table 244. String length limits

Item Limit

Maximum length of CHAR 255 bytes

Maximum length of GRAPHIC 127 double-byte characters

Maximum length of BINARY 255 bytes

Maximum length“1” on page 2250 of VARCHAR • 4046 bytes for a column in a table in a table space
with 4 KB pages

• 8128 bytes for a column in a table in a table space
with 8 KB pages

• 16320 bytes for a column in a table in a table space
with 16 KB pages

• 32704 bytes for a column in a table in a table space
with 32 KB pages

Otherwise, 32704 bytes

Maximum length of VARCHAR that can be indexed by
an XML index

1000 bytes after conversion to UTF-8

Maximum length“1” on page 2250 of VARGRAPHIC • 2023 double-byte characters for a column in a table
in a table space with 4 KB pages

• 4064 double-byte characters for a column in a table
in a table space with 8 KB pages

• 8160 double-byte characters for a column in a table
in a table space with 16 KB pages

• 16352 double-byte characters for a column in a
table in a table space with 32 KB pages

Otherwise, 16352 double-byte characters

Appendix A. Limits in Db2 for z/OS 2249

Table 244. String length limits (continued)

Item Limit

Maximum length“1” on page 2250 of VARBINARY • 4046 bytes for a column in a table in a table space
with 4 KB pages

• 8128 bytes for a column in a table in a table space
with 8 KB pages

• 16320 bytes for a column in a table in a table space
with 16 KB pages

• 32704 bytes for a column in a table in a table space
with 32 KB pages

Otherwise, 32704 bytes

Maximum length of CLOB 2147483647 bytes (2 GB - 1 byte)

Maximum length of DBCLOB 1073741823 double-byte characters

Maximum length of BLOB 2147483647 bytes (2 GB - 1 byte)

Maximum length of a character constant 32704 UTF-8 bytes

Maximum length of a hexadecimal character constant 32704 hexadecimal digits

Maximum length of a graphic string constant 16352 double-byte characters (32704 bytes when
expressed in UTF-8)

Maximum length of a hexadecimal graphic string
constant

32704 hexadecimal digits

Maximum length of a text string used for a scalar
expression

4000 UTF-8 bytes

Maximum length of a concatenated character string 2147483647 bytes (2 GB - 1 byte)

Maximum length of a concatenated graphic string 1073741824 double-byte characters

Maximum length of a concatenated binary string 2147483647 bytes (2 GB - 1 byte)

Maximum length of XML pattern text 4000 bytes after conversion to UTF-8

Maximum length of an XML element or attribute name
in an XML document

1000 bytes

Maximum length of a namespace uri 1000 bytes

Maximum length of a namespace prefix 998 bytes

Largest depth of an internal XML tree 128 levels

Note:

1. The maximum length can be achieved only if the column is the only column in the table. Otherwise, the
maximum length depends on the amount of space remaining on a page.

The following table shows the minimum and maximum limits for datetime values.

Table 245. Datetime limits

Item Limit

Smallest DATE value (shown in ISO format) 0001-01-01

Largest DATE value (shown in ISO format) 9999-12-31

2250 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 245. Datetime limits (continued)

Item Limit

Smallest TIME value (shown in ISO format) 00.00.00

Largest TIME value (shown in ISO format) 24.00.00

Smallest TIMESTAMP WITHOUT TIME ZONE value 0001-01-01-00.00.00.000000000000

Largest TIMESTAMP WITHOUT TIME ZONE value 9999-12-31-24.00.00.000000000000 “1” on page 2251

Smallest TIMESTAMP WITH TIME ZONE value 0001-01-01-00.00.00.000000000000 +00:00

Largest TIMESTAMP WITH TIME ZONE value 9999-12-31-24.00.00.000000000000 +00:00 “1” on
page 2251

TIMESTAMP precision range 0 to 12

TIME ZONE hour range -24 to 24

TIME ZONE minute range 0 to 59

Note:

1. The maximum value is stated as a UTC value. When a timestamp without a time zone is compared to
a timestamp with time zone, a necessary adjustment is made using the implicit time zone. During that
adjustment, the timestamp without time zone could be converted to a value that is greater than the
maximum value for a timestamp with time zone value (this could occur on operations such as comparison
and assignment). This situation can be avoided by using '9999-12-30-00.00.00.000000000000' as the
maximum value for timestamp without time zone and '9999-12-30-00.00.00.000000000000 +00:00' as
the maximum value for timestamp with time zone columns.

The following table shows the Db2 limits on SQL statements.

Table 246. Db2 limits on SQL statements

Item Limit

Maximum number of columns that are in a table or
view (the value depends on the complexity of the
CREATE VIEW statement) or columns returned by a
table function.

750 or fewer (including hidden columns)
749 if the table is a dependent

Maximum number of columns that can be referenced
in the target of MERGE statement.

749

Maximum number of expressions that can be
referenced in the source of a MERGE statement.

750

Approximate maximum number of base tables in
a SELECT, UPDATE, INSERT, MERGE, or DELETE
statement or view

1024

Maximum number of tables in a FROM clause 225 or fewer, depending on the complexity of the
statement

Maximum number of rows inserted with a single
MERGE statement or FOR n ROWS form of INSERT
statement

32767

Maximum row and record sizes for a table See the maximum record size table under CREATE
TABLE.

Maximum number of volume IDs in a storage group 133

Appendix A. Limits in Db2 for z/OS 2251

Table 246. Db2 limits on SQL statements (continued)

Item Limit

Maximum number of partitions in a partitioned table
space or partitioned index

4096 for most table space types, depending on the
DSSIZE value and buffer pool page size.

64 for table spaces not defined with a DSSIZE greater
than 2GB (or the LARGE clause“1” on page 2254).

Maximum sum of the lengths of limit key values of a
partition boundary

765 UTF-8 bytes

Maximum size of a partition (table space or index) For partition-by-range table spaces with relative
numbering:

1 TB

For table spaces that are defined with a DSSIZE
greater than 4 GB:

256 GB, depending on the page size (for 1 to 64
partitions for 4 KB pages, for 1 to 128 partitions for
8 KB pages, for 1–256 partitions for 16 KB pages,
and 1–512 partitions for 32 KB pages)

For table spaces that are defined with a DSSIZE of 4
GB (or the LARGE clause“1” on page 2254):

4 GB, for 1–4096 partitions

For table spaces with a DSSIZE not greater than 2 GB
(and not defined with the LARGE clause“1” on page 2254):

4 GB, for 1–16 partitions
2 GB, for 17–32 partitions
1 GB, for 33–64 partitions

Maximum size of a non-partitioned index for a
partitioned table space

For 5-byte EA table spaces:

16 TB for 4 KB pages
32 TB for 8 KB pages
64 TB for 16 KB pages
128 TB for 32 KB pages

For table spaces that are defined with the LARGE
clause“1” on page 2254:

16 TB

Maximum length of an index key • Partitioning index: 255-n
• Nonpartitioning index that is padded: 2000-n
• Nonpartitioning index that is not padded: 2000 - n -

2m - 3d

n
Number of columns in the key that allow nulls

m
Number of varying-length columns in the key

d
Number of DECFLOAT columns in the key

2252 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 246. Db2 limits on SQL statements (continued)

Item Limit

Maximum number of bytes used in the partitioning of a
partitioned index

255 (This maximum limit is subject to additional
limitations, depending on the number of partitions in
the table space. The number of partitions * (106 + limit
key size) must be less than 65394.)

Maximum number of columns in an index key 64

Maximum number of expressions in an index key 64

Maximum number of subqueries in a statement 224

Maximum total length of host and indicator variables
pointed to in an SQLDA

32767 bytes

2147483647 bytes (2 GB - 1 byte) for a LOB, subject
to the limitations that are imposed by the application
environment and host language

Maximum size of application SQLDA for any statement
that references host variables or parameter markers

99016 bytes

Maximum length of host variable used for insert or
update operation

32704 bytes for a non-LOB

2147483647 bytes (2 GB - 1 byte) for a LOB, subject
to the limitations that are imposed by the application
environment and host language

Maximum number of host variables or parameter
markers in a statement

16000 for a distributed application that originated
from a client other than z/OS. Otherwise:

• 2205 for an application without any LOB or distinct
type host variables or parameter markers

• 750 for an application with one or more LOB or
distinct type host variables or parameter markers

Maximum length of an SQL statement 2097152 bytes

Maximum number of elements in a select list 750 or fewer, depending on whether the select list is
for the result table of static scrollable cursor“2” on page
2254

Maximum number of elements in an IN list 32767

Maximum number of predicates in a WHERE or
HAVING clause

Limited by storage

Maximum number of elements in a CUBE grouping 16

Maximum total length of columns of a query operation
requiring sort and evaluating aggregate functions
(MULTIPLE DISTINCT and GROUP BY)

65529 bytes

Maximum length of a sort key 32707 bytes

Maximum length of a check constraint 3800 bytes

Maximum number of bytes that can be passed in a
single parameter of an SQL CALL statement

32765 bytes for a non-LOB

2147483647 bytes (2 GB - 1 byte) for a LOB,
subject to the limitations imposed by the application
environment and host language

Appendix A. Limits in Db2 for z/OS 2253

Table 246. Db2 limits on SQL statements (continued)

Item Limit

Maximum number of stored procedures, triggers, and
user-defined functions that an SQL statement can
implicitly or explicitly reference

64 nesting levels

Maximum number of parameters in a procedure or
function

The SQL statement that contains the parameter
list cannot exceed the maximum length of an SQL
statement.

Maximum length of the SQL path 2048 bytes

Maximum length of a WLM environment name in
a CREATE PROCEDURE, CREATE FUNCTION, ALTER
PROCEDURE, or ALTER FUNCTION statement.

32 bytes

Maximum number of XPath level in the XMLPATTERN
clause of the CREATE INDEX statement.

50 nesting levels

Note:

1. CREATE TABLESPACE statements support the LARGE clause for compatibility with earlier releases of Db2
for z/OS. However, the DSSIZE clause is the preferred method for specifying maximum partition size of 4 GB
or larger. Do not specify LARGE if a DSSIZE clause is specified. For more information, see "Non-large table
spaces (deprecated)" in Table space types and characteristics in Db2 for z/OS (Db2 Administration Guide).

2. If the scrollable cursor is read-only, the maximum number is 749 less the number of columns in the ORDER
BY that are not in the select list. If the scrollable cursor is not read-only, the maximum number is 747.

The following table shows the Db2 system limits.

Table 247. Db2 system limits

Item Limit

Maximum number of concurrent Db2 or application
agents

Limited by the EDM pool size, buffer pool size, and
the amount of storage that is used by each Db2 or
application agent

Maximum number of concurrently active audit policies 32

Maximum size of a non-LOB table or table space 128 terabytes (TB)

Maximum size of a simple or segmented table space 64 GB

Maximum size of a physical log record 36,000 bytes

Maximum size of a log space 6-byte format: 248 bytes
10-byte format: 280 bytes

Maximum size of an active log data set 768 GB minus 1 byte

Maximum size of an archive log data set 768 GB minus 1 byte

Maximum number of active log copies 2

Maximum number of archive log copies 2

Maximum number of active log data sets (each copy) 93

Maximum number of archive log volumes (each copy) 10000

Maximum number of databases accessible to an
application or user

Limited by system storage and EDM pool size

2254 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_typesofdb2tablespaces.html

Table 247. Db2 system limits (continued)

Item Limit

Maximum number of databases 65217

Maximum number of implicitly created databases Maximum value of the sequence
SYSIBM.DSNSEQ_IMPLICITDB, with a default of
10000

Maximum number of internal objects for each
database 1

32767

Maximum number of indexes on declared global
temporary tables

10000

Maximum size of an EDM pool The installation parameter maximum depends on
available space

Maximum number of rows per page 255 for all table spaces except catalog and directory
tables spaces, which have a maximum of 127

Maximum simple or segmented data set size 2 GB

Maximum partitioned data set size See item "maximum size of a partition" in Table 246 on
page 2251

Maximum LOB data set size 256 GB

Maximum number of data sets for a LOB table space 254

Maximum storage per thread for LOB data 2 GB

Maximum number of table spaces that can be defined
in a work file database

500

Maximum number of tables and triggers that can be
defined in a work file database

11767

Maximum number of active profiles in
DSN_PROFILE_TABLE profile table

4096

Note:

1. The number of internal object descriptors (OBDs) for external objects are as follows:

• Table space: 2
• Table: 1
• Index: 2
• Check constraint: 1
• Referential integrity relationship: 2
• Auxiliary relationship for each LOB column: 1
• XML relationship for each XML column: 1
• Trigger: 1
• View that has an INSTEAD OF trigger: 1

Appendix A. Limits in Db2 for z/OS 2255

2256 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Appendix B. Reserved schema names and reserved
words in Db2 for z/OS

Restrictions exist on the use of certain words that are used by Db2 for z/OS. In some cases, these
names are reserved and cannot be used by application programs. In other cases, certain names are not
recommended for use by application programs though not prevented from being used by the database
manager.

Reserved schema names in Db2 for z/OS
In general, for certain objects, schema names that begin with the prefix SYS are reserved. The schema
name for these objects cannot begin with SYS except for certain exceptions.

The schema name for the objects listed in the following table must follow the restrictions listed in the
table.

Recommendations:

• Do not to use SESSION as a schema name.
• Do not use SYSPUBLIC as a schema name for a table or view.

Table 248. Objects with schema name restrictions and exceptions.

Object Schema name restriction Schema name exceptions

Distinct types Cannot begin with SYS The schema name can be:

• SYSADM
• SYSTOOLS1

User-defined functions Cannot begin with SYS The schema name can be:

• SYSADM
• SYSTOOLS1

• SYSFUN2

Stored procedures Cannot begin with SYS The schema name can be:

• SYSADM
• SYSFUN2

• SYSIBM
• SYSIBMADM
• SYSPROC
• SYSTOOLS1

Sequences Cannot begin with SYS The schema name can be:

• SYSADM

Triggers Cannot begin with SYS The schema name can be:

• SYSADM
• SYSTOOLS1

© Copyright IBM Corp. 1982, 2024 2257

Table 248. Objects with schema name restrictions and exceptions. (continued)

Object Schema name restriction Schema name exceptions

Column masks Cannot begin with SYS The schema name can be:

• SYSADM

Row permissions Cannot begin with SYS The schema name can be:

• SYSADM

Notes:

1. If the user who executes the CREATE statement has the SYSADM or SYSCTRL privilege.
2. For external user-defined scalar functions or external user-defined table functions if the user who

executes the CREATE statement has the SYSADM or SYSCTRL privilege.

Related reference
Reserved words in Db2 for z/OS

Reserved words in Db2 for z/OS
Keywords can be used as ordinary identifiers, except in a context where they could also be interpreted as
SQL syntax. When a keyword can be interpreted as SQL syntax the keyword is considered a reserved word
in that context, which means that it cannot be used as an ordinary identifier. However, a keyword can be
used as an identifier in a context where it is a reserved word, by specifying it as a delimited identifier. For
example:

• ALL cannot be a column name in a SELECT statement, unless it is delimited. However, if the quotation
mark (") is the escape character that begins and ends delimited identifiers, “ALL” can be used as a
column name in a SELECT statement.

• COUNT cannot be used as a column name in a SELECT statement, unless it is also specified as
delimited.

New reserved words for Db2 12 are identified by note “1” on page 2267 in the following table. Some topics
in this information might also indicate words that cannot be used in the specific context that is being
described.

IBM SQL has additional reserved words that Db2 for z/OS does not enforce. Therefore, you should not
use these additional reserved words as ordinary identifiers in names that have a continuing use. For a list

of the reserved words, see SQL Reference for Cross-Platform Development - Version 6 for a list of the
words.

GUPI

2258 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/pdf/cpsqlrv6.pdf

Table 249. Reserved words in Db2 for z/OS

First letter Reserved words

A ADD
AFTER
ALL
ALLOCATE
ALLOW
ALTER
AND
ANY
AS
ARRAY
ARRAY_EXISTS
ASENSITIVE
ASSOCIATE
ASUTIME
AT
AUDIT
AUX
AUXILIARY

B BEFORE
BEGIN
BETWEEN
BUFFERPOOL
BY

Appendix B. Reserved schema names and reserved words in Db2 for z/OS 2259

Table 249. Reserved words in Db2 for z/OS (continued)

First letter Reserved words

C CALL
CAPTURE
CASCADED
CASE
CAST
CCSID
CHAR
CHARACTER
CHECK
CLONE
CLOSE
CLUSTER
COLLECTION
COLLID
COLUMN
COMMENT
COMMIT
CONCAT
CONDITION
CONNECT
CONNECTION
CONSTRAINT
CONTAINS
CONTENT
CONTINUE
CREATE
CUBE
CURRENT
CURRENT_DATE
CURRENT_LC_CTYPE
CURRENT_PATH
CURRENT_SCHEMA
FL 504 CURRENT_SERVER“1” on page 2267

CURRENT_TIME
CURRENT_TIMESTAMP
FL 504 CURRENT_TIMEZONE“1” on page 2267

CURRVAL
CURSOR

2260 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m504.html

Table 249. Reserved words in Db2 for z/OS (continued)

First letter Reserved words

D DATA
DATABASE
DAY
DAYS
DBINFO
DECLARE
DEFAULT
DELETE
DESCRIPTOR
DETERMINISTIC
DISABLE
DISALLOW
DISTINCT
DO
DOCUMENT
DOUBLE
DROP
DSSIZE
DYNAMIC

E EDITPROC
ELSE
ELSEIF
ENCODING
ENCRYPTION
END
ENDING
END-EXEC“2” on page 2267

ERASE
ESCAPE
EXCEPT
EXCEPTION
EXECUTE
EXISTS
EXIT
EXPLAIN
EXTERNAL

F FENCED
FETCH
FIELDPROC
FINAL
FIRST
FOR
FREE
FROM
FULL
FUNCTION

Appendix B. Reserved schema names and reserved words in Db2 for z/OS 2261

Table 249. Reserved words in Db2 for z/OS (continued)

First letter Reserved words

G GENERATED
GET
GLOBAL
GO
GOTO
GRANT
GROUP

H HANDLER
HAVING
HOLD
HOUR
HOURS

I IF
IMMEDIATE
IN
INCLUSIVE
INDEX
INHERIT
INNER
INOUT
INSENSITIVE
INSERT
INTERSECT
INTO
IS
ISOBID
ITERATE

J JAR
JOIN

K KEEP
KEY

2262 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 249. Reserved words in Db2 for z/OS (continued)

First letter Reserved words

L LABEL
LANGUAGE
LAST
LC_CTYPE
LEAVE
LEFT
LIKE
LIMIT“1” on page 2267

LOCAL
LOCALE
LOCATOR
LOCATORS
LOCK
LOCKMAX
LOCKSIZE
LONG
LOOP

M MAINTAINED
MATERIALIZED
MICROSECOND
MICROSECONDS
MINUTES
MODIFIES
MONTH
MONTHS

N NEXT
NEXTVAL
NO
NONE
NOT
NULL
NULLS
NUMPARTS

Appendix B. Reserved schema names and reserved words in Db2 for z/OS 2263

Table 249. Reserved words in Db2 for z/OS (continued)

First letter Reserved words

O OBID
OF
OFFSET“1” on page 2267

OLD
ON
OPEN
OPTIMIZATION
OPTIMIZE
OR
ORDER
ORGANIZATION
OUT
OUTER

P PACKAGE
PADDED
PARAMETER
PART
PARTITION
PARTITIONED
PARTITIONING
PATH
PIECESIZE
PERIOD
PLAN
PRECISION
PREPARE
PREVVAL
PRIOR
PRIQTY
PRIVILEGES
PROCEDURE
PROGRAM
PSID
PUBLIC

Q QUERY
QUERYNO

2264 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 249. Reserved words in Db2 for z/OS (continued)

First letter Reserved words

R READS
REFERENCES
REFRESH
RELEASE
RENAME
RESIGNAL
REPEAT
RESTRICT
RESULT
RESULT_SET_LOCATOR
RETURN
RETURNS
REVOKE
RIGHT
ROLE
ROLLBACK
ROLLUP
ROUND_CEILING
ROUND_DOWN
ROUND_FLOOR
ROUND_HALF_DOWN
ROUND_HALF_EVEN
ROUND_HALF_UP
ROUND_UP
ROW
ROWSET
RUN

Appendix B. Reserved schema names and reserved words in Db2 for z/OS 2265

Table 249. Reserved words in Db2 for z/OS (continued)

First letter Reserved words

S SAVEPOINT
SCHEMA
SCRATCHPAD
SECOND
SECONDS
SECQTY
SECURITY
SEQUENCE
SELECT
SENSITIVE
SESSION_USER
SET
SIGNAL
SIMPLE
SOME
SOURCE
SPECIFIC
STANDARD
STATIC
STATEMENT
STAY
STOGROUP
STORES
STYLE
SUMMARY
SYNONYM
SYSDATE
SYSTEM
SYSTIMESTAMP

T TABLE
TABLESPACE
THEN
TO
TRIGGER
TRUNCATE
TYPE

U UNDO
UNION
UNIQUE
UNTIL
UPDATE
USER
USING

2266 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 249. Reserved words in Db2 for z/OS (continued)

First letter Reserved words

V VALIDPROC
VALUE
VALUES
VARIABLE
VARIANT
VCAT
VERSIONING
VIEW
VOLATILE
VOLUMES

W WHEN
WHENEVER
WHERE
WHILE
WITH
WLM

X XMLCAST
XMLEXISTS
XMLNAMESPACES

Y YEAR
YEARS

Z ZONE

Notes:

1. New reserved word for Db2 12.
2. COBOL only

GUPI

Related reference
Reserved schema names in Db2 for z/OS
In general, for certain objects, schema names that begin with the prefix SYS are reserved. The schema
name for these objects cannot begin with SYS except for certain exceptions.

Appendix B. Reserved schema names and reserved words in Db2 for z/OS 2267

2268 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Appendix C. Actions allowed on SQL statements
Specific Db2 statements can be executed, prepared interactively or dynamically, or processed by the
requester, the server, or the precompiler or coprocessor.

The following table shows whether a specific Db2 statement can be executed, prepared interactively or
dynamically, or processed by the requester, the server, or the precompiler or coprocessor. The letter Y
means yes.

Table 250. Actions allowed on SQL statements in Db2 for z/OS

SQL statement Executable

Interactively
or

dynamically
prepared

Processed by

Requesting
system Server

Precompiler
or

coprocessor

ALLOCATE CURSOR1 Y Y Y

ALTER2 Y Y Y

ASSOCIATE LOCATORS1 Y Y Y

BEGIN DECLARE SECTION Y

CALL1 Y Y

CLOSE Y Y

COMMENT Y Y Y

COMMIT8 Y Y Y

CONNECT Y Y

CREATE2 Y Y Y

DECLARE CURSOR Y

DECLARE GLOBAL
TEMPORARY TABLE

Y Y Y

DECLARE STATEMENT Y

DECLARE TABLE Y

DECLARE VARIABLE Y

DELETE Y Y Y

DESCRIBE prepared statement
or table

Y Y

DESCRIBE CURSOR Y Y

DESCRIBE INPUT Y Y

DESCRIBE PROCEDURE Y Y

DROP2 Y Y Y

END DECLARE SECTION Y

EXECUTE Y Y

EXECUTE IMMEDIATE Y Y

© Copyright IBM Corp. 1982, 2024 2269

Table 250. Actions allowed on SQL statements in Db2 for z/OS (continued)

SQL statement Executable

Interactively
or

dynamically
prepared

Processed by

Requesting
system Server

Precompiler
or

coprocessor

EXPLAIN Y Y Y

FETCH Y Y

FREE LOCATOR1 Y Y Y

GET DIAGNOSTICS Y Y

GRANT2 Y Y Y

HOLD LOCATOR1 Y Y Y

INCLUDE Y

INSERT Y Y Y

LABEL Y Y Y

LOCK TABLE Y Y Y

MERGE Y Y Y

OPEN Y Y

PREPARE Y Y4

REFRESH TABLE Y Y Y

RELEASE connection Y Y

RELEASE SAVEPOINT Y Y Y

RENAME2 Y Y Y

REVOKE2 Y Y Y

ROLLBACK8 Y Y Y

SAVEPOINT Y Y Y

SELECT INTO Y Y

SET CONNECTION Y Y

SET CURRENT APPLICATION
ENCODING SCHEME

Y Y

SET CURRENT DEBUG MODE Y Y Y

SET CURRENT DECFLOAT
ROUNDING MODE

Y Y Y

SET CURRENT DEGREE Y Y Y

SET CURRENT
GET_ACCEL_ARCHIVE

Y Y Y

SET CURRENT LC_CTYPE Y Y Y

SET CURRENT MAINTAINED
TABLE TYPES FOR
OPTIMIZATION

Y Y Y

2270 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 250. Actions allowed on SQL statements in Db2 for z/OS (continued)

SQL statement Executable

Interactively
or

dynamically
prepared

Processed by

Requesting
system Server

Precompiler
or

coprocessor

SET CURRENT OPTIMIZATION
HINT

Y Y Y

SET CURRENT PACKAGE PATH Y Y

SET CURRENT PACKAGESET Y Y

SET CURRENT PRECISION Y Y Y

SET CURRENT QUERY
ACCELERATION

Y Y Y

SET CURRENT REFRESH AGE Y Y Y

SET CURRENT ROUTINE
VERSION

Y Y Y

SET CURRENT RULES Y Y Y

SET CURRENT SQLID5 Y Y Y

SET host-variable = CURRENT
APPLICATION ENCODING
SCHEME

Y Y

SET host-variable = CURRENT
DATE

Y Y

SET host-variable = CURRENT
DEGREE

Y Y

SET host-variable = CURRENT
MEMBER

Y Y

SET host-variable = CURRENT
PACKAGESET

Y Y

SET host-variable = CURRENT
PATH

Y Y

SET host-variable = CURRENT
QUERY OPTIMIZATION LEVEL

Y Y

SET host-variable = CURRENT
SERVER

Y Y

SET host-variable = CURRENT
SQLID

Y Y

SET host-variable = CURRENT
TIME

Y Y

SET host-variable = CURRENT
TIMESTAMP

Y Y

SET host-variable = CURRENT
TIMEZONE

Y Y

SET PATH Y Y Y

Appendix C. Actions allowed on SQL statements 2271

Table 250. Actions allowed on SQL statements in Db2 for z/OS (continued)

SQL statement Executable

Interactively
or

dynamically
prepared

Processed by

Requesting
system Server

Precompiler
or

coprocessor

SET SCHEMA Y Y Y

SET transition-variable =
CURRENT DATE

Y Y

SET transition-variable =
CURRENT DEGREE

Y Y

SET transition-variable =
CURRENT PATH

Y Y

SET transition-variable
= CURRENT QUERY
OPTIMIZATION LEVEL

Y Y

SET transition-variable =
CURRENT SQLID

Y Y

SET transition-variable =
CURRENT TIME

Y Y

SET transition-variable =
CURRENT TIMESTAMP

Y Y

SET transition-variable =
CURRENT TIMEZONE

Y Y

SIGNAL6 Y Y

TRUNCATE Y Y Y

UPDATE Y Y Y

VALUES6 Y Y

VALUES INTO7 Y Y

WHENEVER Y

2272 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 250. Actions allowed on SQL statements in Db2 for z/OS (continued)

SQL statement Executable

Interactively
or

dynamically
prepared

Processed by

Requesting
system Server

Precompiler
or

coprocessor

Note:

1. The statement can be dynamically prepared. It cannot be issued dynamically.
2. The statement can be dynamically prepared only if DYNAMICRULES run behavior is implicitly or explicitly

specified.
3. The statement can be dynamically prepared, but only from an ODBC or CLI driver that supports dynamic

CALL statements.
4. The requesting system processes the PREPARE statement when the statement being prepared is ALLOCATE

CURSOR or ASSOCIATE LOCATORS.
5. The value to which special register CURRENT SQLID is set is used as the SQL authorization ID for dynamic

SQL statements only when DYNAMICRULES run behavior is in effect. The CURRENT SQLID value is ignored
for the other DYNAMICRULES behaviors.

6. This statement can be used only in the triggered action of a trigger.
7. Local special registers can be referenced in a VALUES INTO statement if it results in the assignment of a

single host-variable, not if it results in setting more than one value.
8. Some processing also occurs at the requester.

Related reference
Statements
This section contains syntax diagrams, semantic descriptions, rules, and examples of the use of the SQL
statements.
SQL statement data access classification for routines
Certain SQL statements can be executed in a stored procedure or in a user-defined function. Whether the
statements can be executed depends on the level of SQL data access with which the routine is defined.

Appendix C. Actions allowed on SQL statements 2273

2274 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Appendix D. SQL statement data access classification
for routines

Certain SQL statements can be executed in a stored procedure or in a user-defined function. Whether the
statements can be executed depends on the level of SQL data access with which the routine is defined.

The following table indicates whether an SQL statement (specified in the first column) is allowed to
execute in a routine with the specified SQL data access classification. The letter Y means yes.

In general, if an executable SQL statement is encountered in a routine defined as NO SQL, SQLSTATE
38001 is returned. If the routine is defined to allow some level of SQL access, SQL statements that are
not supported in any context return SQLSTATE 38003. SQL statements not allowed for routines defined
as CONTAINS SQL return SQLSTATE 38004, and SQL statements not allowed for READS SQL DATA return
SQLSTATE 38002.

Table 251. SQL data access classification for routines

SQL statement

Level of SQL data access

NO SQL CONTAINS SQL
READS SQL

DATA
MODIFIES
SQL DATA

ALLOCATE CURSOR Y Y

ALTER Y

ASSOCIATE LOCATORS Y Y

BEGIN DECLARE SECTION Y“1” on page
2277

Y Y Y

CALL Y“2” on page 2277 Y“2” on page 2277 Y“2” on page 2277

CLOSE Y Y

COMMENT Y

COMMIT Y Y Y

CONNECT Y Y Y

CREATE Y

DECLARE CURSOR Y“1” on page
2277

Y Y Y

DECLARE GLOBAL TEMPORARY
TABLE

 Y

DECLARE STATEMENT Y“1” on page
2277

Y Y Y

DECLARE TABLE Y“1” on page
2277

Y Y Y

DECLARE VARIABLE Y“1” on page
2277

Y Y Y

DELETE Y

DESCRIBE Y Y

DESCRIBE CURSOR Y Y

© Copyright IBM Corp. 1982, 2024 2275

Table 251. SQL data access classification for routines (continued)

SQL statement

Level of SQL data access

NO SQL CONTAINS SQL
READS SQL

DATA
MODIFIES
SQL DATA

DESCRIBE INPUT Y Y

DESCRIBE OUTPUT Y Y

DESCRIBE PROCEDURE Y Y

DESCRIBE TABLE Y Y

DROP Y

END DECLARE SECTION Y“1” on page
2277

Y Y Y

EXCHANGE Y

EXECUTE Y“3” on page 2277 Y“3” on page 2277 Y

EXECUTE IMMEDIATE Y“3” on page 2277 Y“3” on page 2277 Y

EXPLAIN Y

FETCH Y Y

FREE LOCATOR Y Y Y

GET DIAGNOSTICS Y Y Y

GRANT Y

HOLD LOCATOR Y Y Y

INCLUDE Y“1” on page
2277

Y Y Y

INSERT Y

LABEL Y

LOCK TABLE Y Y Y

MERGE Y

OPEN Y Y

PREPARE Y Y Y

REFRESH TABLE Y

RELEASE connection Y Y Y

RELEASE SAVEPOINT Y

RENAME Y

REVOKE Y

ROLLBACK Y Y Y

ROLLBACK TO SAVEPOINT Y

SAVEPOINT Y

SELECT INTO Y Y

2276 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 251. SQL data access classification for routines (continued)

SQL statement

Level of SQL data access

NO SQL CONTAINS SQL
READS SQL

DATA
MODIFIES
SQL DATA

SET CONNECTION Y Y Y

SET assignment-statement Y“4” on page 2277 Y Y

SET special register Y Y Y

SIGNAL Y Y Y

TRUNCATE Y

UPDATE Y

VALUES Y Y

VALUES INTO Y“4” on page 2277 Y Y

WHENEVER Y“1” on page
2277

Y Y Y

Notes:

1. Although the SQL option implies that no SQL statements can be specified, non-executable
statements are not restricted.

2. The stored procedure that is called must have the same or more restrictive level of SQL data access
than the current level in effect. For example, a routine defined as MODIFIES SQL DATA can call a
stored procedure defined as MODIFIES SQL DATA, READS SQL DATA, CONTAINS SQL, or NO SQL. A
routine defined as CONTAINS SQL can call a procedure defined as CONTAINS SQL or NO SQL.

3. The statement specified for the EXECUTE statement must be a statement that is allowed for the
particular level of SQL data access in effect. For example, if the level in effect is READS SQL DATA, the
statement must not be an INSERT, UPDATE, MERGE, or DELETE statement.

4. The statement is supported only if it does not contain a subquery or query-expression.

Related reference
Statements
This section contains syntax diagrams, semantic descriptions, rules, and examples of the use of the SQL
statements.
Actions allowed on SQL statements
Specific Db2 statements can be executed, prepared interactively or dynamically, or processed by the
requester, the server, or the precompiler or coprocessor.

Appendix D. SQL statement data access classification for routines 2277

2278 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Appendix E. SQL control statements for external SQL
procedures

SQL control statements for external SQL procedures can be used only with SQL procedures that are
created with the FENCED or EXTERNAL clause. SQL control statements provide the capability to control
the logic flow, declare and set variables, and handle warnings and exceptions. Some SQL control
statements include other nested SQL statements.

Deprecated function: External SQL procedures are deprecated and not as fully supported as native SQL
procedures. For best results, create native SQL procedures instead. For more information, see Creating
native SQL procedures (Db2 Application programming and SQL) and Migrating an external SQL procedure
to a native SQL procedure (Db2 Application programming and SQL).

SQL-control-statement:
assignment-statement

CALL statement

CASE statement

compound-statement

GET DIAGNOSTICS statement

GOTO statement

IF statement

ITERATE statement

LEAVE statement

LOOP statement

REPEAT statement

RESIGNAL statement

RETURN statement

SIGNAL statement

WHILE statement

Control statements are supported in SQL procedures. External SQL procedures are created by specifying
either FENCED or EXTERNAL, LANGUAGE SQL, and an SQL routine body on the “CREATE PROCEDURE
statement (SQL - external procedure) (deprecated)” on page 1597 statement. The SQL routine body must
be a single SQL statement which may be an SQL control statement.

The remainder of this section contains a description of the control statements that are supported
for external SQL procedures, and includes syntax diagrams, semantic descriptions, usage notes, and
examples of the use of the statements that constitute the SQL routine body. In addition, you can find
information about referencing SQL parameters and variables in “References to SQL parameters and SQL
variables in external SQL procedures” on page 2280.

The two common elements that are used in describing specific SQL control statements are:

• SQL control statements as described above
• “SQL-procedure-statement (external)” on page 2280

© Copyright IBM Corp. 1982, 2024 2279

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createnativesqlprocedure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createnativesqlprocedure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_migrateexternalsptonativesp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_migrateexternalsptonativesp.html

References to SQL parameters and SQL variables in external SQL
procedures

SQL parameters, SQL variables, and transition variables can be referenced anywhere in the statement
where an expression or a host variable can be specified. SQL parameters and SQL variables can be
referenced anywhere in the compound statement in which they are declared and can be qualified with
the label name that is specified at the beginning of the compound statement. Host variables cannot
be specified in SQL routines. Use SQL variables, SQL parameters, and global variables instead of host
variables in SQL routines. Use SQL variables, transition variables, and global variables in triggers.

All SQL parameters and SQL variables are considered nullable. The name of an SQL parameter or SQL
variable in an SQL routine can be the same as the name of a column in a table or view that the SQL routine
references. Names that are the same should be explicitly qualified. Qualifying a name clearly indicates
whether the name refers to a column, SQL variable, or SQL parameter.

If the name is not qualified, the following rules describe whether the name refers to the column, the SQL
variable, or the SQL parameter:

• The name is checked first as an SQL variable name and then as an SQL parameter name.
• If an SQL variable or SQL parameter by that name is not found, the name is assumed to be a column

name.

The name of an SQL variable or SQL parameter in an SQL routine can be the name of an identifier that
is used in certain SQL statements. If the name is not qualified, the following rules describe whether the
name refers to the identifier, the SQL variable, or the SQL parameter:

• In the SET PATH and SET SCHEMA statements, the name is checked as an SQL variable name or an SQL
parameter name. If an SQL variable or SQL parameter by that name is not found, the name is assumed
to be an identifier.

• In the ASSOCIATE LOCATORS, CONNECT statement, the SET CONNECTION statement, and the
RELEASE (connection) statement the name is used as an identifier.

Related concepts
Variables
A variable in an SQL statement specifies a value that can be changed when the SQL statement is
executed. There are several types of variables used in SQL statements.

SQL-procedure-statement (external)
An SQL control statement may allow multiple SQL statements to be specified within the SQL control
statement. These statements are defined as SQL procedure statements.

Syntax

SQL-label:

SQL-control-statement

SQL-statement

Description
SQL-label

Specifies a label for the statement. SQL-label must not be a delimited identifier that includes
lowercase letters or special characters. The label must be unique within the procedure.

SQL-control-statement
Specifies an SQL statement that provides the capability to control logic flow, declare and set variables,
and handle warnings and exceptions, as defined in this section. Control statements are supported in
SQL procedures.

2280 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SQL-statement
Specifies an SQL statement. These statements are described in Chapter 7, “Statements,” on page
1079.

Notes
Comments: Comments can be included within the body of an SQL procedure. In addition to the double-
dash form of comments (--), a comment can begin with /* and end with */. The following rules apply to
this form of comment:

• The beginning characters /* must be adjacent and on the same line.
• The ending characters */ must be adjacent and on the same line.
• Comments can be started wherever a space is valid.
• Comments can be continued to the next line.

Handling errors and warnings: Conditions can be detected within an SQL procedure by using the
following methods:

• Test the special SQL variables SQLSTATE and SQLCODE.
• Issue a GET DIAGNOSTICS statement to request the condition information. See “GET DIAGNOSTICS

statement” on page 1949.
• Define condition handlers to detect and process conditions. See “compound-statement” on page 2286

for information about defining condition handlers.

assignment-statement (SQL control statements for external
routines)

The assignment statement assigns a value to an SQL parameter or to an SQL variable.

Syntax

SET SQL-parameter-name

SQL-variable-name

= CURRENT SERVER

CURRENT PACKAGESET

CURRENT PACKAGE PATH

expression

NULL

Description
SQL-parameter-name

Identifies the parameter that is the assignment target. The parameter must be specified in parameter-
declaration in the CREATE PROCEDURE statement and must be defined as OUT or INOUT.

SQL-variable-name
Identifies the SQL variable that is the assignment target. SQL variables can be declared in a
compound-statement and must be declared before it is used. For information on declaring SQL
variables, see “compound-statement” on page 2286.

expression or NULL
Specifies the expression or value that is the assignment source. The expression can be any expression
of the type described in “Expressions” on page 245 except it cannot contain a reference to local
special registers (CURRENT SERVER, CURRENT PACKAGESET, or CURRENT PACKAGE PATH).

Appendix E. SQL control statements for external SQL procedures 2281

Notes
Assignment rules: Assignment statements in SQL procedures must conform to the SQL assignment
rules. For example, the data type of the target and source must be compatible. See “Assignment and
comparison” on page 143 for assignment rules.

When a string is assigned to a fixed-length variable and the length of the string is less than the length
attribute of the target, the string is padded on the right with the necessary number of single-byte or
double-byte blanks. When a string is assigned to a variable and the string is longer than the length
attribute of the variable, the value is truncated and a warning is returned.

The ENCODING bind option is not used during processing of assignments to string variables. For example,
assume that the system does not use mixed or DBCS, and the system EBCDIC SBCS CCSID is 37.
Character conversion will not occur on assignment even if CCSID 500 is specified for the ENCODING bind
parameter for the package for the procedure.

If truncation of the whole part of a number occurs on assignment to a numeric variable, the value is
truncated and a warning is returned.

Assignments involving SQL parameters:

• An IN parameter can appear on the left side of an assignment statement. When control returns to the
caller, the original value of an IN parameter is passed to the caller.

• An OUT parameter can appear on the left or right side of an assignment statement. When control
returns to the caller, the last value that is assigned to an OUT parameter is returned to the caller.

• An INOUT parameter can appear on the left or right side of an assignment statement. The first value
of the parameter is determined by the caller, and the last value that is assigned to the parameter is
returned to the caller.

• A LOB parameter can not be used as an output value in an SQL statement in an SQL procedure when
connected to a remote site. To circumvent the restriction, use a LOB SQL variable instead of a LOB
parameter.

Considerations for SQLSTATE and SQLCODE SQL variables: Assignment to these variables is not
prohibited. However, it is not recommended as assignment does not affect the diagnostic area or result
in the activation of condition handlers. Furthermore, processing an assignment to these SQL variables
causes the specified values for the assignment to be overlayed with the SQL return codes returned from
executing the statement that does the assignment.

Examples

Increase the SQL variable p_salary by 10 percent.

SET p_salary = p_salary + (p_salary * .10)

Set SQL variable p_salary to the null value.

SET p_salary = NULL

Set SQL variable midinit to the first character of SQL variable midname.

SET midinit = SUBSTR(midname,1,1)

CALL statement
The CALL statement invokes a stored procedure.

Syntax

CALL procedure-name argument-list

2282 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

argument-list:

(

,

SQL-variable-name

SQL-parameter-name

expression

NULL

)

Description
procedure-name

Identifies the stored procedure to call. The procedure name must identify a stored procedure that
exists at the current server.

argument-list
Identifies a list of values to be passed as parameters to the stored procedure. The number of
parameters must be the same as the number of parameters defined for the stored procedure. See
“CALL statement” on page 1384 for more information.

Control is passed to the stored procedure according to the calling conventions for SQL procedures.
When execution of the stored procedure is complete, the value of each parameter of the stored
procedure is assigned to the corresponding parameter of the CALL statement defined as OUT or
INOUT.

SQL-variable-name
Specifies an SQL variable as an argument to the stored procedure. For an explanation of
references to SQL variables, see “References to SQL parameters and SQL variables in external
SQL procedures” on page 2280.

SQL-parameter-name
Specifies an SQL parameter as an argument to the stored procedure. For an explanation of
references to SQL parameters, see “References to SQL parameters and SQL variables in external
SQL procedures” on page 2280.

expression
The parameter is the result of the specified expression, which is evaluated before the stored
procedure is invoked. If expression is a single SQL-parameter-name or SQL-variable-name, the
corresponding parameter of the procedure can be defined as IN, INOUT, or OUT. Otherwise, the
corresponding parameter of the procedure must be defined as IN. If the result of the expression
can be the null value, either the description of the procedure must allow for null parameters or the
corresponding parameter of the stored procedure must be defined as OUT.

The following additional rules apply depending on how the corresponding parameter was defined
in the CREATE PROCEDURE statement for the procedure:

• IN expression can contain references to multiple SQL parameters or variables. In addition to
the rules stated in “Expressions” on page 245 for expression, expression cannot include a
column name, an aggregate function, or a user-defined function that is sourced on an aggregate
function.

• INOUT or OUT expression can only be a single SQL parameter or variable.

NULL
The parameter is a null value. The corresponding parameter of the procedure must be defined as
IN and the description of the procedure must allow for null parameters.

Appendix E. SQL control statements for external SQL procedures 2283

Notes
See “CALL statement” on page 1384 for more information on the SQL CALL statement.

Examples

Call stored procedure proc1 and pass SQL variables as parameters.

CALL proc1(v_empno, v_salary)

CASE statement
The CASE statement selects an execution path based on the evaluation of one or more conditions. A CASE
statement operates in the same way as a CASE expression.

Syntax

CASE simple-when-clause

searched-when-clause

ELSE SQL-procedure-statement ;

END CASE

simple-when-clause:

expression WHEN expression THEN SQL-procedure-statement ;

searched-when-clause:

WHEN search-condition THEN SQL-procedure-statement ;

Description
CASE

Begins a case-expression.
simple-when-clause

Specifies the expression prior to the first WHEN keyword that is tested for equality with the value
of each expression that follows the WHEN keyword, and the result to be executed when those
expressions are equal. If the comparison is true, the THEN statement is executed. If the result is
unknown or false, processing continues to the next expression or the ELSE statement.

The data type of the expression prior to the first WHEN keyword must be comparable to the data types
of each expression that follows the WHEN keywords.

searched-when-clause
Specifies the search-condition that is applied to each row or group of table data presented for
evaluation, and the result when that condition is true. search-condition cannot contain a fullselect. If

2284 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

the search condition is true, the THEN statement is executed. If the condition is unknown or false,
processing continues to the next search condition or the ELSE statement.

SQL-procedure-statement
Specifies a statement that follows the THEN and ELSE keyword. The statement specifies the result
of a searched-when-clause or a simple-when-clause that is true, or the result if no case is true. The
statement must be one of the statements listed under “SQL-procedure-statement (external)” on page
2280.

search-condition
Specifies a condition that is true, false, or unknown about a row or group of table data.

ELSE SQL-procedure-statement
If none of the conditions specified in the simple-when-clause or searched-when-clause are true, the
statements in the else-clause are executed.

If none of the conditions specified in the WHEN clause are true and an ELSE clause is not specified, an
error is returned at run time, and the execution of the CASE statement is terminated.

END CASE
Ends a case-statement.

Notes
If none of the conditions specified in the WHEN clause are true and an ELSE clause is not specified, an
error is returned at run time, and the execution of the CASE statement is terminated.

CASE statements that use a simple case statement WHEN clause can be nested up to three levels. CASE
statements that use a searched statement WHEN clause have no limit to the number of nesting levels.

Considerations for the SQLSTATE and SQLCODE SQL variables: When the first SQL-procedure-statement
in the CASE statement is executed, the SQLSTATE and SQLCODE SQL variables reflect the result of
evaluating the expression or search conditions of that CASE statement. If a CASE statement does not
include an ELSE clause and none of the search conditions evaluate to true, an error is returned.

Examples

Example 1: Use a simple case statement WHEN clause to update column DEPTNAME in table DEPT,
depending on the value of SQL variable v_workdept.

CASE v_workdept
 WHEN 'A00'
 THEN UPDATE DEPT SET
 DEPTNAME = 'DATA ACCESS 1';
 WHEN 'B01'
 THEN UPDATE DEPT SET
 DEPTNAME = 'DATA ACCESS 2';
 ELSE UPDATE DEPT SET
 DEPTNAME = 'DATA ACCESS 3';
END CASE

Example 2: Use a searched case statement WHEN clause to update column DEPTNAME in table DEPT,
depending on the value of SQL variable v_workdept.

CASE
 WHEN v_workdept < 'B01'
 THEN UPDATE DEPT SET
 DEPTNAME = 'DATA ACCESS 1';
 WHEN v_workdept < 'C01'
 THEN UPDATE DEPT SET
 DEPTNAME = 'DATA ACCESS 2';
 ELSE UPDATE DEPT SET
 DEPTNAME = 'DATA ACCESS 3';
END CASE

Appendix E. SQL control statements for external SQL procedures 2285

compound-statement
A compound statement contains a group of statements and declarations for SQL variables, cursors, and
condition handlers.

Syntax

label:
1

BEGIN
NOT ATOMIC

SQL-variable-declaration

SQL-condition-declaration

return-codes-declaration

;

DECLARE-CURSOR-statement ; handler-declaration ;

SQL-procedure-statement ; END

label

Notes:
1 Only one label: can be specified for each SQL-procedure-statement. If an ending label is specified for this
beginning label, the labels must be the same.

SQL-variable-declaration:

DECLARE

,

SQL-variable-name data-type
DEFAULT NULL

DEFAULT constant

RESULT_SET_LOCATOR VARYING

SQL-condition-declaration:

DECLARE SQL-condition-name CONDITION FOR

SQLSTATE
VALUE

string-constant

return-codes-declaration:

2286 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

DECLARE

SQLSTATE CHAR(5)

CHARACTER(5)

DEFAULT '00000'

DEFAULT string-constant

SQLCODE INTEGER

INT

DEFAULT 0

DEFAULT integer-constant

handler-declaration:

DECLARE CONTINUE

EXIT

HANDLER FOR specific-condition-value

general-condition-value

SQL-procedure-statement

specific-condition-value:

,

SQLSTATE
VALUE

string-constant

SQL-condition-name

general-condition-value:

SQLEXCEPTION

SQLWARNING

NOT FOUND

Description
label

Defines the label for the code block. If the beginning label is specified, it can be used to qualify SQL
variables declared in the compound statement and can also be specified on a LEAVE statement. If the
ending label is specified, it must be the same as the beginning label.

NOT ATOMIC
NOT ATOMIC indicates that an error within the compound statement does not cause the compound
statement to be rolled back.

SQL-variable-declaration
Declares a variable that is local to the compound statement.
SQL-variable-name

A qualified or unqualified name that designates a variable in an SQL procedure body. The
unqualified form of SQL-variable-name is an SQL identifier and must not be a delimited identifier
that contains lowercase letters or special characters. The qualified form is an SQL procedure
statement label followed by a period (.) and an SQL identifier.

Appendix E. SQL control statements for external SQL procedures 2287

Db2 folds all SBCS SQL variable names to uppercase. SQL variable names should not be the same
as column names. If an SQL statement contains an SQL variable or parameter and a column
reference with the same name, Db2 interprets the name as an SQL variable or parameter name.
To refer to the column, qualify the column name with the table name. Further, to avoid ambiguous
variable references and to ensure compatibility with other Db2 platforms, qualify the SQL variable
or parameter name with the label of the SQL procedure statement.

data-type
Specifies the data type and length of the variable. SQL variables follow the same rules for
default lengths and maximum lengths as SQL procedure parameters. See “CREATE PROCEDURE
statement (SQL - external procedure) (deprecated)” on page 1597 for a description of SQL data
types and lengths.

DEFAULT constant or NULL
Defines the default for the SQL variable. The variable is initialized when the SQL procedure is
called. If a default value is not specified, the variable is initialized to NULL.

RESULT_SET_LOCATOR VARYING
Specifies the data type for a result set locator variable.

SQL-condition-declaration
Declares a condition name and corresponding SQLSTATE value.
SQL-condition-name

Specifies the name of the condition. The condition name is an SQL identifier and must not be
a delimited identifier that includes lowercase letters or special characters. SQL-condition-name
must be unique within the procedure body and can be referenced only within the compound
statement in which it is declared.

FOR SQLSTATE string-constant
Specifies the SQLSTATE that is associated with the condition. The string must be specified as five
characters enclosed in single quotes, and cannot be '00000'.

return-codes-declaration
Declares special variables called SQLSTATE and SQLCODE that are set automatically to the value
returned after processing an SQL statement. Both the SQLSTATE and SQLCODE variables can be
declared only in the outermost compound statement of the SQL procedure. Assignment to these
variables is not prohibited; however, assignment is ignored by exception handlers, and processing the
next SQL statement replaces the assigned value.

DECLARE-CURSOR-statement
Declares a cursor. Each cursor in the procedure body must have a unique name. An OPEN statement
must be specified to open the cursor, and a FETCH statement can be specified to read rows.
The cursor can be referenced only from within the compound statement. For more information on
declaring a cursor, see “DECLARE CURSOR statement” on page 1819.

handler-declaration
Specifies a set of statements to execute when an exception or completion condition occurs in the
compound statement. SQL-procedure-statement is the set of statements that execute when the
handler receives control. See “SQL-procedure-statement (external)” on page 2280 for information
on SQL-procedure-statement.

A handler is active only within the compound statement in which it is declared.

The actions that a handler can perform are:

CONTINUE
Specifies that after the condition handler is activated and completes successfully, control is
returned to the SQL statement that follows the statement that raised the condition. However, if
the condition is an error condition and it was encountered while evaluating a search condition,
as in a CASE, IF, REPEAT or WHILE statement, control returns to the statement that follows the
corresponding END CASE, END IF, END REPEAT, or END WHILE.

2288 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

EXIT
After the handler is invoked successfully, control is returned to the end of the compound
statement.

The conditions that can cause the handler to gain control are:

SQLSTATE string-constant
Specifies an SQLSTATE for which the handler is invoked. The SQLSTATE cannot be '00000'.

SQL-condition-name
Specifies a condition name for which the handler is invoked. The condition name must be
previously defined in a condition declaration.

SQLEXCEPTION
Specifies that the handler is invoked when an SQLEXCEPTION occurs. An SQLEXCEPTION is an
SQLSTATE in which the class code is a value other than '00', '01', or '02'. For more information on
SQLSTATE values, see SQLSTATE values and common error codes (Db2 Codes).

SQLWARNING
Specifies that the handler is invoked when an SQLWARNING occurs. An SQLWARNING is an
SQLSTATE value with a class code of '01'.

NOT FOUND
Specifies that the handler is invoked when a NOT FOUND condition occurs. NOT FOUND
corresponds to an SQLSTATE value with a class code of '02'.

Notes
The order of statements in a compound statement must be:

1. SQL variable, condition declarations, and return codes declarations
2. Cursor declarations
3. Handler declarations
4. SQL procedure statements

Compound statements cannot be nested.

Unlike host variables, SQL variables are not preceded by colons when they are used in SQL statements.

The following rules apply to handlers:

• A handler declaration that contains SQLEXCEPTION, SQLWARNING, or NOT FOUND cannot contain
additional SQLSTATE or condition names.

• Handler declarations within the same compound statement cannot contain duplicate conditions.
• A handler declaration cannot contain the same condition code or SQLSTATE value more than once, and

cannot contain an SQLSTATE value and a condition name that represent the same SQLSTATE value.
• A handler is activated when it is the most appropriate handler for an exception or completion condition.
• If there is no handler for an SQL error, the error is passed to the caller in the SQLCA.
• A handler cannot be activated by an assignment statement that assigns a value to SQLSTATE.

The following rules and recommendations apply to the SQLCODE and SQLSTATE SQL variables:

• A null value cannot be assigned to SQLSTATE or SQLCODE.
• The SQLSTATE and SQLCODE variable values should be saved immediately to temporary variables if

there is any intention to use the values. If a handler exists for SQLSTATE, this assignment must be done
as the first statement to be processed in the handler to avoid having the value replaced by the next SQL
procedure statement. If the condition raised by the SQL statement is handled, the value is changed by
the first SQL statement contained in the handler.

Considerations for the SQLSTATE and SQLCODE SQL variables: The compound statement itself does
not affect the SQLSTATE and SQLCODE SQL variables. However, SQL statements contained within the
compound statement can affect the SQLSTATE and SQLCODE SQL variables. At the end of the compound

Appendix E. SQL control statements for external SQL procedures 2289

https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/db2z_sqlstatevalues.html

statement, the SQLSTATE and SQLCODE SQL variables reflect the result of the last SQL statement
executed within the compound statement that caused a change to the SQLSTATE and SQLCODE
SQL variables. If the SQLSTATE and SQLCODE SQL variables were not changed within the compound
statement, they contain the same values as when the compound statement was entered.

Examples

Create a procedure body with a compound statement that performs the following actions:

• Declares SQL variables, a condition for SQLSTATE '02000', a handler for the condition, and a cursor
• Opens the cursor, fetches a row, and closes the cursor

CREATE PROCEDURE PROC1(OUT NOROWS INT) LANGUAGE SQL
BEGIN
 DECLARE v_firstnme VARCHAR(12);
 DECLARE v_midinit CHAR(1);
 DECLARE v_lastname VARCHAR(15);
 DECLARE v_edlevel SMALLINT;
 DECLARE v_salary DECIMAL(9,2);
 DECLARE at_end INT DEFAULT 0;
 DECLARE not_found
 CONDITION FOR '02000';
 DECLARE c1 CURSOR FOR
 SELECT FIRSTNME, MIDINIT, LASTNAME,
 EDLEVEL, SALARY
 FROM EMP;
 DECLARE CONTINUE HANDLER FOR not_found SET NOROWS=1;
 OPEN c1;
 FETCH c1 INTO v_firstnme, v_midinit,
 v_lastname, v_edlevel, v_salary;
END

GET DIAGNOSTICS statement
The GET DIAGNOSTICS statement obtains information about the previous SQL statement that was
executed.

See “GET DIAGNOSTICS statement” on page 1949.

When you need to specify a variable in a GET DIAGNOSTICS statement that is used within an SQL
procedure, you would use either SQL-variable-name or SQL-parameter-name. In an embedded GET
DIAGNOSTICS statement, you would use a host-variable. You can replace the instances of host-variable
in the description of “GET DIAGNOSTICS statement” on page 1949 with SQL-variable-name or SQL-
parameter-name.

GOTO statement
The GOTO statement is used to branch to a user-defined label within an SQL procedure.

Syntax

GOTO label

Description
label

Specifies a labeled statement at which processing is to continue.

The labeled statement and the GOTO statement must be in the same scope. The following rules apply
to the scope:

• If the GOTO statement is defined in a compound statement, label must be defined inside the same
compound statement.

2290 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• If the GOTO statement is defined in a handler, label must be defined in the same handler and follow
the other scope rules.

• If the GOTO statement is defined outside of a handler, label must not be defined within a handler.

If label is not defined within a scope that the GOTO statement can reach, an error is returned.

A label name cannot be the same as the name of the SQL procedure in which the label is used.

Notes
Use the GOTO statement sparingly. Because the GOTO statement interferes with the normal sequence
of processing, it makes an SQL procedure more difficult to read and maintain. Before using a GOTO
statement, determine whether some other statement, such as an IF statement or LEAVE statement, can
be used instead.

Examples

Use a GOTO statement to transfer control to the end of a compound statement if the value of an SQL
variable is less than 600.

BEGIN
 DECLARE new_salary DECIMAL(9,2);
 DECLARE service DECIMAL(8,2);
 SELECT SALARY, CURRENT_DATE - HIREDATE
 INTO new_salary, service
 FROM EMP
WHERE EMPNO = v_empno;
IF service < 600
 THEN GOTO EXIT;
END IF;
IF rating = 1
 THEN SET new_salary =
 new_salary + (new_salary * .10);
ELSEIF rating = 2
 THEN SET new_salary =
 new_salary + (new_salary * .05);
END IF;
UPDATE EMP
SET SALARY = new_salary
WHERE EMPNO = v_empno;
EXIT: SET return_parm = service;
END

Appendix E. SQL control statements for external SQL procedures 2291

IF statement
The IF statement selects an execution path based on the evaluation of a condition.

Syntax

IF search-condition THEN SQL-procedure-statement ;

ELSEIF search-condition THEN SQL-procedure-statement ;

ELSE SQL-procedure-statement ;

END IF

Description
search-condition

Specifies the condition for which an SQL statement should be invoked. If the condition is unknown or
false, processing continues to the next search condition until either a condition is true or processing
reaches the ELSE clause.

SQL-procedure-statement
Specifies the statement to be invoked if the preceding search-condition is true. If no search-condition
evaluates to true, then the SQL-procedure-statement following the ELSE keyword is invoked. The
statement must be one of the statements listed under “SQL-procedure-statement (external)” on page
2280.

Notes
Considerations for the SQLSTATE and SQLCODE SQL variables: When the first SQL-procedure-statement
in the IF statement is executed, the SQLSTATE and SQLCODE SQL variables reflect the result of evaluating
the search conditions of that IF statement. If an IF statement does not include an ELSE clause and none
of the search conditions evaluate to true, then when the statement that follows that IF statement is
executed, the SQLSTATE and SQLCODE SQL variables reflect the result of evaluating the search conditions
of that IF statement.

Examples

Assign a value to the SQL variable new_salary based on the value of SQL variable rating.

IF rating = 1
 THEN SET new_salary =
 new_salary + (new_salary * .10);
 ELSEIF rating = 2
 THEN SET new_salary =
 new_salary + (new_salary * .05);
 ELSE SET new_salary =
 new_salary + (new_salary * .02);
END IF

2292 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

ITERATE statement
The ITERATE statement causes the flow of control to return to the beginning of a labeled loop.

Syntax

ITERATE label

Description
label

Specifies the label of the LOOP, REPEAT, or WHILE statement to which the flow of control is passed.

Examples

This example uses a cursor to return information for a new department. If the not_found condition
handler is invoked, the flow of control passes out of the loop. If the value of v_dept is 'D11', an ITERATE
statement causes the flow of control to be passed back to the top of the LOOP statement. Otherwise, a
new row is inserted into the table.

CREATE PROCEDURE ITERATOR ()
 LANGUAGE SQL
 MODIFIES SQL DATA
 BEGIN
 DECLARE v_dept CHAR(3);
 DECLARE v_deptname VARCHAR(29);
 DECLARE v_admdept CHAR(3);
 DECLARE at_end INTEGER DEFAULT 0;
 DECLARE not_found CONDITION FOR SQLSTATE '02000';
 DECLARE c1 CURSOR FOR
 SELECT deptno,deptname,admrdept
 FROM department
 ORDER BY deptno;
 DECLARE CONTINUE HANDLER FOR not_found
 SET at_end = 1;
 OPEN c1;
 ins_loop:
 LOOP
 FETCH c1 INTO v_dept, v_deptname, v_admdept;
 IF at_end = 1 THEN
 LEAVE ins_loop;
 ELSEIF v_dept = 'D11' THEN
 ITERATE ins_loop;
 END IF;
 INSERT INTO department (deptno,deptname,admrdept)
 VALUES('NEW', v_deptname, v_admdept);
 END LOOP;
 CLOSE c1;
 END

LEAVE statement
The LEAVE statement transfers program control out of a loop or a compound statement.

Syntax

LEAVE label

Description
label

Specifies the label of the compound statement or loop to exit.

Appendix E. SQL control statements for external SQL procedures 2293

A label name cannot be the same as the name of the SQL procedure in which the label is used.

Notes
When a LEAVE statement transfers control out of a compound statement, all open cursors in the
compound statement, except cursors that are used to return result sets, are closed.

Examples

Use a LEAVE statement to transfer control out of a LOOP statement when a negative SQLCODE occurs.

ftch_loop: LOOP
 FETCH c1 INTO
 v_firstnme, v_midinit,
 v_lastname, v_edlevel, v_salary;
 IF SQLCODE=100 THEN LEAVE ftch_loop;
 END IF;
END LOOP

LOOP statement
The LOOP statement executes a statement or group of statements multiple times.

Syntax

label:
1

LOOP SQL-procedure-statement ; END LOOP

label

Notes:
1 Only one label: can be specified for each SQL-procedure-statement.

Description
label

Specifies the label for the LOOP statement. If the ending label is specified, the beginning label must
be specified, and the two must match.

A label name cannot be the same as the name of the SQL procedure in which the label is used.

SQL-procedure-statement
Specifies the statements to be executed in the loop. The statement must be one of the statements
listed under “SQL-procedure-statement (external)” on page 2280.

Examples

This procedure uses a LOOP statement to fetch values from the employee table. Each time the loop
iterates, the OUT parameter counter is incremented and the value of v_midinit is checked to ensure that
the value is not a single space (' '). If v_midinit is a single space, the LEAVE statement passes the flow of
control outside of the loop.

CREATE PROCEDURE LOOP_UNTIL_SPACE(OUT counter INTEGER)
 LANGUAGE SQL
 BEGIN
 DECLARE v_counter INTEGER DEFAULT 0;
 DECLARE v_firstnme VARCHAR(12);
 DECLARE v_midinit CHAR(1);
 DECLARE v_lastname VARCHAR(15);
 DECLARE c1 CURSOR FOR
 SELECT firstnme, midinit, lastname
 FROM employee;

2294 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 DECLARE EXIT HANDLER FOR NOT FOUND
 SET counter = -1;
 OPEN c1;
 fetch_loop:
 LOOP
 FETCH c1 INTO v_firstnme, v_midinit, v_lastname;
 IF v_midinit = ' ' THEN
 LEAVE fetch_loop;
 END IF;
 SET v_counter = v_counter + 1;
 END LOOP fetch_loop;
 SET counter = v_counter;
 CLOSE c1;
 END

REPEAT statement
The REPEAT statement executes a statement or group of statements until a search condition is true.

Syntax

label:
1

REPEAT SQL-procedure-statement ; UNTIL search-condition

END REPEAT

label

Notes:
1 Only one label: can be specified for each SQL-procedure-statement.

Description
label

Specifies the label for the REPEAT statement. If the ending label is specified, the beginning label must
be specified, and the two must match.

A label name cannot be the same as the name of the SQL procedure in which the label is used.

SQL-procedure-statement
Specifies the statements to be executed. The statement must be one of the statements listed under
“SQL-procedure-statement (external)” on page 2280.

search-condition
Specifies a condition that is evaluated after each execution of the REPEAT statement. If the condition
is true, the REPEAT loop will exit. If the condition is unknown or false, the REPEAT loop continues.

Examples

Use a REPEAT statement to fetch rows from a table.

fetch_loop:
REPEAT
 FETCH c1 INTO
 v_firstnme, v_midinit, v_lastname;
UNTIL
 SQLCODE <> 0
END REPEAT fetch_loop

Appendix E. SQL control statements for external SQL procedures 2295

RESIGNAL statement
The RESIGNAL statement is used within a condition handler to re-raise the current condition, or to raise
an alternate condition so that it can be processed at a higher level. It causes an exception, warning, or not
found condition to be returned along with optional message text.

Issuing the RESIGNAL statement without an operand causes the current condition to be passed upwards.

Syntax

RESIGNAL

SQLSTATE
VALUE

sqlstate-string-constant

SQL-variable-name

SQL-parameter-name

SQL-condition-name

signal-information

signal-information:

SET MESSAGE_TEXT = diagnostic-string-expression

Description
SQLSTATE VALUE

Specifies the SQLSTATE that will be returned. Any valid SQLSTATE value can be used. It must be a
character string constant with exactly five characters that follow the rules for SQLSTATE values:

• Each character must be from the set of digits ('0' through '9') or non-accented upper case letter ('A'
through 'Z').

• The SQLSTATE class (the first two characters) cannot be '00' because it represents successful
completion.

If the SQLSTATE does not conform to these rules, an error occurs.

sqlstate-string-constant
A character string constant with a length of five bytes that is a valid SQLSTATE value.

SQL-variable-name or SQL-parameter-name
Specifies an SQL variable or SQL parameter that is defined for the procedure.
SQL-variable-name

Specifies an SQL variable that is declared within the compound-statement that contains the
RESIGNAL statement. SQL-variable-name must be defined as CHAR or VARCHAR data type
with a length of five bytes, must not be null, and must contain a valid SQLSTATE value.

SQL_parameter-name
Specifies an SQL parameter that is defined for the procedure that contains the SQLSTATE
value. The SQL parameter must be defined as a CHAR or VARCHAR value and have a length of
five bytes and must not be null. The SQL parameter must contain a valid SQLSTATE value.

SQL-condition-name
Specifies the name of the condition that will be returned. condition-name must be declared within the
compound-statement.

2296 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SET MESSAGE_TEXT
Specifies a string that describes the error or warning. The string is returned in the SQLERRMC field of
the SQLCA or with the GET DIAGNOSTICS statement.
diagnostic-string-expression

An expression with a data type of CHAR or VARCHAR that returns a character string of up to 1000
bytes that describes the error or warning condition. For information on how to obtain the complete
message text, see “GET DIAGNOSTICS statement” on page 1949.

Notes
While any valid SQLSTATE value can be used in the RESIGNAL statement, programmers should define
new SQLSTATE values based on ranges reserved for applications. This practice prevents the unintentional
use of an SQLSTATE value that might be defined by the database manager in a future release.

If the RESIGNAL statement is issued without an SQLSTATE clause or a condition-name, the RESIGNAL
statement must be in a handler and the identical condition that activated the handler is returned. The
SQLSTATE, SQLCODE, and the SQLCA associated with the condition are unchanged.

If an SQLSTATE clause or a condition-name was specified, the SQLCODE returned is based on the
SQLSTATE value as follows:

• If the specified SQLSTATE class is either '01' or '02', a warning or not-found message is returned, and
the SQLCODE is set to +438.

• Otherwise, an exception is returned and the SQLCODE is set to -438.

The other fields of the SQLCA are set as follows:

• SQLERRDx fields are set to zero.
• SQLWARNx fields are set to blank.
• SQLERRMC is set to the first 70 bytes of MESSAGE_TEXT.
• SQLERRML is set to the length of SQLERRMC.
• SQLERRP is set to ROUTINE.

When the SQLSTATE or condition indicates that an exception is returned (an SQLSTATE class other than
'01' or '02'), the exception is not handled, and control is immediately returned to the end of the compound
statement.

When the SQLSTATE or condition indicates that a warning (SQLSTATE class '02') is returned, the warning
is not handled, and processing continues with the next statement.

When the SQLSTATE or condition indicates that a not-found condition (SQLSTATE class '02') is returned,
the not-found condition is not handled, and processing continues with the next statement.

Examples

The following example detects a division by zero error. The IF statement uses a SIGNAL statement to
invoke the overflow condition handler. The condition handler uses a RESIGNAL statement to return a
different SQLSTATE to the client application.

CREATE PROCEDURE divide (IN numerator INTEGER,
 IN denominator INTEGER,
 OUT divide_result INTEGER)
 LANGUAGE SQL
 CONTAINS SQL
BEGIN
 DECLARE overflow CONDITION for SQLSTATE '22003' ;
 DECLARE CONTINUE HANDLER FOR overflow
 RESIGNAL SQLSTATE '22375';
 IF denominator = 0 THEN
 SIGNAL overflow;
ELSE
 SET divide_result = numerator / denominator;
END IF;
END

Appendix E. SQL control statements for external SQL procedures 2297

RETURN statement
The RETURN statement is used to return from the routine. For SQL functions, it returns the result of the
function. For an SQL procedure, it optionally returns an integer status value.

Syntax

RETURN

expression

NULL

Description
expression

Specifies a value that is returned from the routine.

• If the routine is a function, expression must be specified and the value of expression must conform
to the SQL assignment rules as described in “Assignment and comparison” on page 143. If the value
is being assigned to a string variable, storage assignment rules apply.

• If the routine is a procedure, the data type of expression must be INTEGER. If expression evaluates
to the null value, a value of 0 is returned.

The expression cannot include a column name or a host variable. See “Expressions” on page 245 for
information on expressions. The expression cannot contain a scalar fullselect.

NULL
The null value is returned from the SQL function. NULL is not allowed in SQL procedures.

Notes
When a RETURN statement is not used within an SQL procedure or when no value is specified: If a
RETURN statement was not used to return from a procedure or if a value is not specified on the RETURN
statement, one of the following values is set:

• If the procedure returns with an SQLCODE that is greater or equal to zero, the return status is set to a
value of '0'.

• If the procedure returns with an SQLCODE that is less than zero, the return status is set to a value of '-1'.

When a RETURN statement is used within an SQL procedure: If a RETURN statement with a specified
return value was used to return from a procedure, the SQLCODE, SQLSTATE, and message length in the
SQLCA are initialized to zeros and the message text is set to blanks. An error is not returned to the caller.

When the value is returned: When a value is returned from a procedure, the caller may access the value
using one of the following methods:

• The GET DIAGNOSTICS statement to retrieve the RETURN_STATUS when the SQL procedure was called
from another SQL procedure.

• The parameter bound for the return value parameter marker in the escape clause CALL syntax (?
=CALL...) in a CLI application.

• Directly from the SQLCA returned from processing the CALL of an SQL procedure by retrieving the value
of sqlerrd[0]. When the SQLCODE is less than zero, the sqlerrd[0] value is not set. The application
should assume a return status value of '-1'.

2298 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Examples

Use a RETURN statement to return from an SQL procedure with a status value of zero if successful or
'-200' if not successful.

BEGIN
 . . .
 GOTO FAIL;
 . . .
SUCCESS: RETURN 0;
 FAIL: RETURN -200;
END

SIGNAL statement
The SIGNAL statement is used to return an error or warning condition. It causes an error or warning to be
returned with the specified SQLSTATE, along with optional message text.

Syntax

SIGNAL SQLSTATE
VALUE

sqlstate-string-constant

SQL-variable-name

SQL-parameter-name

1

SQL-condition-name
2

signal-information
3

Notes:
1 The SQLSTATE variation must be used within a trigger body.
2 SQL-condition-name must not be specified within a trigger body.
3 signal-information must be specified within a trigger body

signal-information:

SET MESSAGE_TEXT = diagnostic-string-expression

(diagnostic-string-expression)
1

Notes:
1 (diagnostic-string-expression) must only be specified within a trigger body.

Description
SQLSTATE VALUE

Specifies the SQLSTATE that will be returned. Any valid SQLSTATE value can be used. It must be a
character string constant with exactly five characters that follow the rules for SQLSTATEs:

• Each character must be from the set of digits ('0' through '9') or non-accented upper case letter ('A'
through 'Z').

• The SQLSTATE class (the first two characters) cannot be '00' because it represents successful
completion.

If the SQLSTATE does not conform to these rules, an error occurs.

Appendix E. SQL control statements for external SQL procedures 2299

sqlstate-string-constant
A character string constant with a length of five bytes that is a valid SQLSTATE value.

SQL-variable-name or SQL-parameter-name
Specifies an SQL variable or SQL parameter that contains a valid SQLSTATE value.
SQL-variable-name

Specifies an SQL variable that is declared within the compound-statement. SQL-variable-name
must be defined as a CHAR or VARCHAR data type, have a length of five bytes, must not be
null, and must contain a valid SQLSTATE value.

SQL-parameter-name
Specifies an SQL parameter that is defined for the procedure and contains the SQLSTATE
value. The SQL parameter must be defined as a CHAR or VARCHAR value, have a length of five
bytes, must not be null, and must contain a valid SQLSTATE value.

SQL-condition-name
Specifies the name of the condition that will be returned. condition-name must be declared within the
compound-statement.

SET MESSAGE_TEXT
Specifies a string that describes the error or warning. The string is returned in the SQLERRMC field of
the SQLCA or with the GET DIAGNOSTICS statement.
diagnostic-string-expression

An expression with a data type of CHAR or VARCHAR that returns a character string of up to 1000
bytes that describes the error or warning condition. For information on how to obtain the complete
message text, see “GET DIAGNOSTICS statement” on page 1949.

(diagnostic-string-expression)
An expression with a data type of CHAR or VARCHAR that returns a character string of up to 1000
bytes that describes the error or warning condition. For information on how to obtain the complete
message text, see “GET DIAGNOSTICS statement” on page 1949.

This syntax variation is only provided within the scope of a CREATE TRIGGER statement for
compatibility with previous versions of Db2. To conform with the ANS and ISO standards, this form
should not be used.

Notes
While any valid SQLSTATE value can be used in the SIGNAL statement, programmers should define new
SQLSTATEs based on ranges reserved for applications. This practice prevents the unintentional use of an
SQLSTATE value that might be defined by the database manager in a future release.

If a SIGNAL statement is issued, the SQLCODE that is returned is based on the SQLSTATE as follows:

• If the specified SQLSTATE class is either '01' or '02', a warning or not-found message is returned, and
the SQLCODE is set to +438.

• Otherwise, an exception is returned and the SQLCODE is set to -438.

The other fields of the SQLCA are set as follows:

• SQLERRDx fields are set to zero.
• SQLWARNx fields are set to blank.
• SQLERRMC is set to the first 70 bytes of MESSAGE_TEXT.
• SQLERRML is set to the length of SQLERRMC.
• SQLERRP is set to ROUTINE.

When the SQLSTATE or condition indicates that an exception (an SQLSTATE class other than '01' or '02') is
returned, one of the following actions occurs:

• If a handler exists for the specified SQLSTATE, condition, or SQLEXCEPTION, the exception is handled,
and control is transferred to that handler.

2300 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• Otherwise, the exception is not handled, and control is immediately returned to the end of the
compound statement.

When the SQLSTATE or condition indicates that a warning (SQLSTATE class '01') is returned, one of the
following actions occurs:

• If an active handler exists for the specified SQLSTATE, condition, or SQLWARNING, the warning is
handled, and control is transferred to that handler.

• Otherwise, the warning is not handled, and processing continues with the next statement.

When the SQLSTATE or condition indicates that a not-found condition (SQLSTATE class '02') is returned,
one of the following actions occurs:

• If an active handler exists for the specified SQLSTATE, condition, or not-found condition, the not-found
condition is handled, and control is transferred to that handler.

• Otherwise, the not-found condition is not handled, and processing continues with the next statement.

When the SIGNAL statement is issued in a handler, no active handler exists.

Using a SIGNAL statement in the body of a trigger: Within the triggered action of a CREATE TRIGGER
statement, the message text can be specified using only these variations:

SIGNAL SQLSTATE sqlstate-string-constant
 SET MESSAGE_TEXT = diagnostic-string-expression
SIGNAL SQLSTATE sqlstate-string-constant
 (diagnostic-string-expression)

Examples

Example 1: The following example shows an SQL procedure for an order system that signals an
application error when a customer number is not known to the application. The ORDERS table includes a
foreign key to the CUSTOMER table, requiring that the CUSTNO exist before an order can be inserted.

CREATE PROCEDURE SUBMIT_ORDER
 (IN ONUM INTEGER, IN CNUM INTEGER,
 IN PNUM INTEGER, IN QNUM INTEGER)
 LANGUAGE SQL
 SPECIFIC SUBMIT_ORDER
 MODIFIES SQL DATA
BEGIN
 DECLARE EXIT HANDLER FOR SQLSTATE VALUE '23503'
 SIGNAL SQLSTATE '75002'
 SET MESSAGE_TEXT = 'Customer number is not known';
 INSERT INTO ORDERS (ORDERNO, CUSTNO, PARTNO, QUANTITY)
 VALUES (ONUM, CNUM, PNUM, QNUM);
END

Example 2: The following example shows a trigger for an order system that allows orders to be recorded
in an ORDERS table (ORDERNO, CUSTNO, PARTNO, QUANTITY) only if there is sufficient stock in the
PARTS tables. When there is insufficient stock for an order, SQLSTATE '75001' is returned along with an
appropriate error description.

 CREATE TRIGGER CK_AVAIL
 NO CASCADE BEFORE INSERT ON ORDERS
 REFERENCING NEW AS NEW_ORDER
 FOR EACH ROW MODE DB2SQL
 WHEN (NEW_ORDER.QUANTITY > (SELECT ON_HAND FROM PARTS
 WHERE NEW_ORDER.PARTNO = PARTS.PARTNO))
 BEGIN ATOMIC
 SIGNAL SQLSTATE '75001' ('Insufficient stock for order');
 END

Appendix E. SQL control statements for external SQL procedures 2301

WHILE statement
The WHILE statement repeats the execution of a statement or group of statements while a specified
condition is true.

Syntax

label:
1

WHILE search-condition DO SQL-procedure-statement ;

END WHILE

label

Notes:
1 Only one label: can be specified for each SQL-procedure-statement. If an ending label is specified for this
beginning label, the labels must be the same.

Description
label

Specifies the label for the WHILE statement. If the ending label is specified, it must be the same as
the beginning label.

A label name cannot be the same as the name of the SQL procedure in which the label is used.

search-condition
Specifies a condition that is evaluated before each execution of the loop. If the condition is true, the
SQL procedure statement in the loop is executed.

SQL-procedure-statement
Specifies the statements to be executed in the loop. The statement must be one of the statements
listed under “SQL-procedure-statement (external)” on page 2280.

Examples

Use a WHILE statement to fetch rows from a table while SQL variable at_end, which indicates whether the
end of the table has been reached, is 0.

WHILE at_end = 0 DO
 FETCH c1 INTO
 v_firstnme, v_midinit,
 v_lastname, v_edlevel, v_salary;
 IF SQLCODE=100 THEN SET at_end=1;
 END IF;
END WHILE

2302 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Appendix F. SQL communication area (SQLCA)
An SQLCA is a structure or collection of variables that is updated after each SQL statement executes. An
application program that contains executable SQL statements must provide exactly one SQLCA, with a
few exceptions.

The following exceptions exist:

• A program that is precompiled with the STDSQL(YES) option must not provide an SQLCA
• In some cases a Fortran program must provide more than one SQLCA.

In all host languages except REXX, the SQL INCLUDE statement can be used to provide the declaration of
the SQLCA.

In COBOL and assembler:
The name of the storage area must be SQLCA.

In PL/I, and C:
The name of the structure must be SQLCA. Every executable SQL statement must be within the scope
of its declaration.

Unless noted otherwise, C is used to represent C/370 and C/C++ programming languages.

In Fortran:
The name of the COMMON area for the INTEGER variables of the SQLCA must be SQLCA1; the name
of the COMMON area for the CHARACTER variables must be SQLCA2. An SQLCA definition is required
for every subprogram that contains SQL statements. One is also needed for the main program if it
contains SQL statements.

In Java:
The DB2Sqlca class, which is an encapsulation of the SQLCA, should be used.

In REXX:
Db2 generates the SQLCA automatically. A REXX procedure cannot use the INCLUDE statement. The
REXX SQLCA has a somewhat different format from SQLCAs for the other languages.

Related reference
DB2Sqlca class (Db2 Application Programming for Java)
The REXX SQLCA
The REXX SQLCA consists of a set of variables, rather than a structure. Db2 makes the SQLCA available to
your application automatically.

Description of SQLCA fields
For the most part, COBOL, C, PL/I, and assembler use the same names for the SQLCA fields, and Fortran
uses different names. However, there is one instance where C, PL/I, and assembler names differ from
COBOL.

The names in the following table are those provided by the SQL INCLUDE statement.

© Copyright IBM Corp. 1982, 2024 2303

https://www.ibm.com/docs/en/SSEPEK_12.0.0/java/src/tpc/imjcc_r0021836.html

Table 252. Fields of SQLCA

assembler,
COBOL, or
PL/I Name

C
Name

Fortran
Name

Data
type

Purpose

SQLCAID sqlcaid Not used. CHAR(8) An "eye catcher" for storage dumps,
containing the text 'SQLCA'. The sixth byte is
'L' if line number information is returned from
parsing a dynamic statement or a native SQL
procedure. The sixth byte is not set when
processing an external SQL procedure.

SQLCABC sqlcabc Not used. INTEGER Contains the length of the SQLCA: 136.

SQLCODE (See
note 1)

SQLCODE SQLCOD INTEGER Contains the SQL return code. (See note 2)
Code

Means
0

Successful execution (though there might
have been warning messages).

positive
Successful execution, but with a warning
condition or other information.

negative
Error condition.

SQLERRML
(See note 3)

sqlerrml
(See note 3)

SQLTXL SMALLINT Length indicator for SQLERRMC, in the range
0 through 70. 0 means that the value of
SQLERRMC is not pertinent.

SQLERRMC
(See note 3)

sqlerrmc
(See note 3)

SQLTXT VARCHAR(70) Contains one or more tokens, separated by
X'FF', that are substituted for variables in the
descriptions of error conditions. It may contain
truncated tokens. A message length of 70
bytes indicates a possible truncation.

SQLERRP sqlerrp SQLERP CHAR(8) Provides a product signature and, in the case
of an error, diagnostic information such as the
name of the module that detected the error. In
all cases, the first three characters are 'DSN'
for Db2 for z/OS.

SQLERRD(1) sqlerrd[0] SQLERR(1) INTEGER For a sensitive static cursor, contains the
number of rows in a result table when the
cursor position is after the last row (that is,
when SQLCODE is equal to +100).

On successful return from an SQL procedure,
contains the return status value from the SQL
procedure.

SQLERRD(1) can also contain an internal error
code.

2304 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 252. Fields of SQLCA (continued)

assembler,
COBOL, or
PL/I Name

C
Name

Fortran
Name

Data
type

Purpose

SQLERRD(2) sqlerrd[1] SQLERR(2) INTEGER For a sensitive static cursor, contains the
number of rows in a result table when the
cursor position is after the last row (that is,
when SQLCODE is equal to +100).

SQLERRD(2) can also contain an internal error
code.

SQLERRD(3) sqlerrd[2] SQLERR(3) INTEGER Contains the number of rows that qualified
to be deleted, inserted, or updated after
a DELETE, INSERT, UPDATE, or MERGE
statement. The number excludes rows
affected by triggers, referential integrity
constraints, or inserted rows that are the
result of processing a FOR PORTION OF clause
for a BUSINESS_TIME period. For the OPEN
of a cursor for a SELECT with a data change
statement or for a SELECT INTO, SQLERRD(3)
contains the number of rows affected by the
embedded data change statement. The value
is 0 if the SQL statement fails, indicating that
all changes made in executing the statement
canceled.

For a DELETE statement the value will be -1
if the operation is a mass delete from a table
in a segmented table space and the DELETE
statement did not include selection criteria.
If the delete was against a view, neither the
DELETE statement nor the definition of the
view included selection criteria.

For a TRUNCATE statement, the value will be
-1.

For a PREPARE statement, contains the
estimated number of rows selected. If
the number of rows is greater than
2,147,483,647, a value of 2,147,483,647 is
returned.

For a REFRESH TABLE statement, SQLERRD(3)
contains the number of rows inserted into the
materialized query table.

For a rowset-oriented FETCH, contains the
number of rows fetched.

Appendix F. SQL communication area (SQLCA) 2305

Table 252. Fields of SQLCA (continued)

assembler,
COBOL, or
PL/I Name

C
Name

Fortran
Name

Data
type

Purpose

SQLERRD(3)
(continued)

For SQLCODES -911 and -913, SQLERRD(3)
contains the reason code for the timeout or
deadlock.

When an error is encountered in parsing
a dynamic statement, or when parsing,
binding, or executing a native SQL procedure,
SQLERRD(3) will contain the line number
where the error was encountered. The sixth
byte of SQLCAID must be 'L' for this to
be a valid line number. This value will be
meaningful only if the statement source
contains new line control characters. This
information is not returned for an external SQL
procedure.

SQLERRD(4) sqlerrd[3] SQLERR(4) INTEGER Generally, contains timerons, a short floating-
point value that indicates a rough relative
estimate of resources required (See note
4). It does not reflect an estimate of the
time required. When preparing a dynamically
defined SQL statement, you can use this
field as an indicator of the relative cost of
the prepared SQL statement. For a particular
statement, this number can vary with changes
to the statistics in the catalog. It is also
subject to change between releases of Db2 for
z/OS.

SQLERRD(5) sqlerrd[4] SQLERR(5) INTEGER Contains the position or column of a syntax
error for a PREPARE or EXECUTE IMMEDIATE
statement.

SQLERRD(6) sqlerrd[5] SQLERR(6) INTEGER Contains an internal error code.

SQLWARN0 SQLWARN0 SQLWRN(0) CHAR(1) Contains a blank if no other indicator is set to
a warning condition (that is, no other indicator
contains a W or Z). Contains a W if at least one
other indicator contains a W or Z.

SQLWARN1 SQLWARN1 SQLWRN(1) CHAR(1) Contains a W if the value of a string column
was truncated when assigned to a host
variable. Contains an N for non-scrollable
cursors and S for scrollable cursors after
the OPEN CURSOR or ALLOCATE CURSOR
statement.

SQLWARN2 SQLWARN2 SQLWRN(2) CHAR(1) Contains a W if null values were eliminated
from the argument of an aggregate function;
not necessarily set to W for the MIN function
because its results are not dependent on the
elimination of null values.

2306 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 252. Fields of SQLCA (continued)

assembler,
COBOL, or
PL/I Name

C
Name

Fortran
Name

Data
type

Purpose

SQLWARN3 SQLWARN3 SQLWRN(3) CHAR(1) Contains a W if the number of result columns
is larger than the number of host variables.
Contains a Z if fewer locators were provided in
the ASSOCIATE LOCATORS statement than the
stored procedure returned.

SQLWARN4 SQLWARN4 SQLWRN(4) CHAR(1) Contains a W if a prepared UPDATE or DELETE
statement does not include a WHERE clause.
For a scrollable cursor, contains a D for
sensitive dynamic cursors, I for insensitive
cursors, and S for sensitive static cursors
after the OPEN CURSOR or ALLOCATE CURSOR
statement; blank if cursor is not scrollable.

SQLWARN5 SQLWARN5 SQLWRN(5) CHAR(1) Contains a W if the SQL statement was
not executed because it is not a valid
SQL statement in Db2 for z/OS. Contains a
character value of 1 (read only), 2 (read and
delete), or 4 (read, delete, and update) to
reflect capability of the cursor after the OPEN
CURSOR or ALLOCATE CURSOR statement.

SQLWARN6 SQLWARN6 SQLWRN(6) CHAR(1) Contains a W if the addition of a month or
year duration to a DATE or TIMESTAMP value
results in an invalid day (for example, June
31). Indicates that the value of the day was
changed to the last day of the month to make
the result valid.

SQLWARN7 SQLWARN7 SQLWRN(7) CHAR(1) Contains a W if one or more nonzero digits
were eliminated from the fractional part of
a number used as the operand of a decimal
multiply or divide operation.

SQLWARN8 SQLWARN8 SQLWRX(1) CHAR(1) Contains a W if a character that could not
be converted was replaced with a substitute
character. Contains a Y if there was an
unsuccessful attempt to establish a trusted
connection.

SQLWARN9 SQLWARN9 SQLWRX(2) CHAR(1) Contains a W if arithmetic exceptions
were ignored during COUNT or COUNT_BIG
processing. Contains a Z if the stored
procedure returned multiple result sets.

SQLWARNA SQLWARNA SQLWRX(3) CHAR(1) Contains a W if at least one character field of
the SQLCA or the SQLDA names or labels is
invalid due to a character conversion error.

SQLSTATE sqlstate SQLSTT CHAR(5) Contains a return code for the outcome of the
most recent execution of an SQL statement
(See note 5).

Appendix F. SQL communication area (SQLCA) 2307

Table 252. Fields of SQLCA (continued)

assembler,
COBOL, or
PL/I Name

C
Name

Fortran
Name

Data
type

Purpose

Notes:

1. With the precompiler option STDSQL(YES) in effect, SQLCODE is replaced by SQLCADE in SQLCA.
2. For the specific meanings of SQL return codes, see SQL codes (Db2 Codes).
3. In COBOL, SQLERRM includes SQLERRML and SQLERRMC. In PL/I and C, the varying-length string

SQLERRM is equivalent to SQLERRML prefixed to SQLERRMC. In assembler, the storage area SQLERRM is
equivalent to SQLERRML and SQLERRMC. See the examples for the various host languages in “The included
SQLCA” on page 2308.

4. The use of timerons may require special handling because they are floating-point values in an INTEGER
array. In PL/I, for example, you could first copy the value into a BIN FIXED(31) based variable that coincides
with a BIN FLOAT(24) variable.

5. For a description of SQLSTATE values, see SQLSTATE values and common error codes (Db2 Codes).

The included SQLCA
The description of the SQLCA that is given by INCLUDE SQLCA is shown for each of the host languages.

assembler:

SQLCA DS 0F
SQLCAID DS CL8 ID
SQLCABC DS F BYTE COUNT
SQLCODE DS F RETURN CODE
SQLERRM DS H,CL70 ERR MSG PARMS
SQLERRP DS CL8 IMPL-DEPENDENT
SQLERRD DS 6F
SQLWARN DS 0C WARNING FLAGS
SQLWARN0 DS C'W' IF ANY
SQLWARN1 DS C'W' = WARNING
SQLWARN2 DS C'W' = WARNING
SQLWARN3 DS C'W' = WARNING
SQLWARN4 DS C'W' = WARNING
SQLWARN5 DS C'W' = WARNING
SQLWARN6 DS C'W' = WARNING
SQLWARN7 DS C'W' = WARNING
SQLEXT DS 0CL8
SQLWARN8 DS C
SQLWARN9 DS C
SQLWARNA DS C
SQLSTATE DS CL5

C:

#ifndef SQLCODE
struct sqlca
{
 unsigned char sqlcaid[8];
 long sqlcabc;
 long sqlcode;
 short sqlerrml;
 unsigned char sqlerrmc[70];
 unsigned char sqlerrp[8];
 long sqlerrd[6];
 unsigned char sqlwarn[11];
 unsigned char sqlstate[5];
};
#define SQLCODE sqlca.sqlcode
#define SQLWARN0 sqlca.sqlwarn[0]
#define SQLWARN1 sqlca.sqlwarn[1]
#define SQLWARN2 sqlca.sqlwarn[2]

2308 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/db2z_sqlcodes.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/db2z_sqlstatevalues.html

#define SQLWARN3 sqlca.sqlwarn[3]
#define SQLWARN4 sqlca.sqlwarn[4]
#define SQLWARN5 sqlca.sqlwarn[5]
#define SQLWARN6 sqlca.sqlwarn[6]
#define SQLWARN7 sqlca.sqlwarn[7]
#define SQLWARN8 sqlca.sqlwarn[8]
#define SQLWARN9 sqlca.sqlwarn[9]
#define SQLWARNA sqlca.sqlwarn[10]
#define SQLSTATE sqlca.sqlstate
#endif
struct sqlca sqlca;

COBOL:

01 SQLCA.
 05 SQLCAID PIC X(8).
 05 SQLCABC PIC S9(9) COMP-5.
 05 SQLCODE PIC S9(9) COMP-5.
 05 SQLERRM.
 49 SQLERRML PIC S9(4) COMP-5.
 49 SQLERRMC PIC X(70).
 05 SQLERRP PIC X(8).
 05 SQLERRD OCCURS 6 TIMES
 PIC S9(9) COMP-5.
 05 SQLWARN.
 10 SQLWARN0 PIC X.
 10 SQLWARN1 PIC X.
 10 SQLWARN2 PIC X.
 10 SQLWARN3 PIC X.
 10 SQLWARN4 PIC X.
 10 SQLWARN5 PIC X.
 10 SQLWARN6 PIC X.
 10 SQLWARN7 PIC X.
 05 SQLEXT.
 10 SQLWARN8 PIC X.
 10 SQLWARN9 PIC X.
 10 SQLWARNA PIC X.
 10 SQLSTATE PIC X(5).

Fortran:

*
* THE SQL COMMUNICATIONS AREA
*
 INTEGER SQLCOD,
 C SQLERR(6),
 C SQLTXL*2
 COMMON /SQLCA1/SQLCOD, SQLERR,SQLTXL
 CHARACTER SQLERP*8,
 C SQLWRN(0:7)*1,
 C SQLTXT*70,
 C SQLEXT*8,
 C SQLWRX(1:3)*1,
 C SQLSTT*5
 COMMON /SQLCA2/SQLERP,SQLWRN,SQLTXT,SQLWRX,
 C SQLSTT
 EQUIVALENCE (SQLWRX,SQLEXT)
*

PL/I:

DECLARE
 1 SQLCA,
 2 SQLCAID CHAR(8),
 2 SQLCABC FIXED(31) BINARY,
 2 SQLCODE FIXED(31) BINARY,
 2 SQLERRM CHAR(70) VAR,
 2 SQLERRP CHAR(8),
 2 SQLERRD(6) FIXED(31) BINARY,
 2 SQLWARN,
 3 SQLWARN0 CHAR(1),
 3 SQLWARN1 CHAR(1),
 3 SQLWARN2 CHAR(1),
 3 SQLWARN3 CHAR(1),
 3 SQLWARN4 CHAR(1),

Appendix F. SQL communication area (SQLCA) 2309

 3 SQLWARN5 CHAR(1),
 3 SQLWARN6 CHAR(1),
 3 SQLWARN7 CHAR(1),
 2 SQLEXT,
 3 SQLWARN8 CHAR(1),
 3 SQLWARN9 CHAR(1),
 3 SQLWARNA CHAR(1),
 3 SQLSTATE CHAR(5);

The REXX SQLCA
The REXX SQLCA consists of a set of variables, rather than a structure. Db2 makes the SQLCA available to
your application automatically.

The following table lists the variables in a REXX SQLCA.

Table 253. Variables in a REXX SQLCA

Variable Contents

SQLCODE Contains the SQL return code.

SQLERRMC Contains one or more tokens, separated by X'FF', that are substituted for variables
in the descriptions of error conditions. It might contain truncated tokens. A
message length of 70 bytes indicates a possible truncation.

SQLERRP Provides a product signature and, in the case of an error, diagnostic information
such as the name of the module that detected the error. For Db2 for z/OS, the
product signature is 'DSN'.

SQLERRD.1 For a sensitive static cursor, contains the number of rows in a result table when the
cursor position is after the last row (that is, when SQLCODE is equal to +100).

SQLERRD(1) can also contain an internal error code.

SQLERRD.2 For a sensitive static cursor, contains the number of rows in a result table when the
cursor position is after the last row (that is, when SQLCODE is equal to +100).

SQLERRD(2) can also contain an internal error code.

SQLERRD.3 Contains the number of rows that qualified for the operation after an SQL data
change statement (but not rows deleted as a result of CASCADE delete). For the
OPEN of a cursor for a SELECT with an SQL data change statement or for a SELECT
INTO, SQLERRD(3) contains the number of rows affected by the embedded data
change statement. Set to 0 if the SQL statement fails, indicating that all changes
made in executing the statement were canceled. Set to -1 for a mass delete from
a table in a segmented table space, for a truncate operation, or a delete from a
view when neither the DELETE statement nor the definition of the view included
selection criteria.

For rowset-oriented FETCH statements, contains the number of rows returned in
the rowset.

For SQLCODES -911 and -913, SQLERRD(3) contains the reason code for the
timeout or deadlock.

After successful execution of the REFRESH TABLE statement, SQLERRD(3)
contains the number of rows inserted into the materialized query table.

When an error is encountered in parsing a dynamic statement, or when parsing,
binding, or executing a native SQL procedure, SQLERRD(3) will contain the line
number where the error was encountered. The sixth byte of SQLCAID must be
'L' for this to be a valid line number. This value will be meaningful only if the
statement source contains new line control characters. This information is not
returned for an external SQL procedure.

2310 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 253. Variables in a REXX SQLCA (continued)

Variable Contents

SQLERRD.4 Generally, contains timerons, a short floating-point value that indicates a rough
relative estimate of resources required. This value does not reflect an estimate
of the time required to execute the SQL statement. After you prepare an SQL
statement, you can use this field as an indicator of the relative cost of the prepared
SQL statement. For a particular statement, this number can vary with changes to
the statistics in the catalog. This value is subject to change between releases of
Db2 for z/OS.

SQLERRD.5 Contains the position or column of a syntax error for a PREPARE or EXECUTE
IMMEDIATE statement.

SQLERRD.6 Contains an internal error code.

SQLWARN.0 Contains a blank if no other indicator is set to a warning condition (that is, no other
indicator contains a W or Z). Contains a W if at least one other indicator contains a
W or Z.

SQLWARN.1 Contains a W if the value of a string column was truncated when assigned to a host
variable. Contains an N for non-scrollable cursors and S for scrollable cursors after
the OPEN CURSOR or ALLOCATE CURSOR statement.

SQLWARN.2 Contains a W if null values were eliminated from the argument of an aggregate
function; not necessarily set to W for the MIN function because its results are not
dependent on the elimination of null values.

SQLWARN.3 Contains a W if the number of result columns is larger than the number of
host variables. Contains Z if the ASSOCIATE LOCATORS statement contains fewer
locators than the stored procedure returned.

SQLWARN.4 Contains a W if a prepared UPDATE or DELETE statement does not include a
WHERE clause. For a scrollable cursor, contains a D for sensitive dynamic cursors, I
for insensitive cursors, and S for sensitive static cursors after the OPEN CURSOR or
ALLOCATE CURSOR statement; otherwise, blank if cursor is not scrollable.

SQLWARN.5 Contains a W if the SQL statement was not executed because it is not a valid SQL
statement in Db2 for z/OS. Contains a character value of 1 (read only), 2 (read and
delete), or 4 (read, delete, and update) to reflect capability of the cursor after the
OPEN CURSOR or ALLOCATE CURSOR statement.

SQLWARN.6 Contains a W if the addition of a month or year duration to a DATE or TIMESTAMP
value results in an invalid day (for example, June 31). Indicates that the value of
the day was changed to the last day of the month to make the result valid.

SQLWARN.7 Contains a W if one or more nonzero digits were eliminated from the fractional
part of a number that was used as the operand of a decimal multiply or divide
operation.

SQLWARN.8 Contains a W if a character that could not be converted was replaced with a
substitute character.

SQLWARN.9 Contains a W if arithmetic exceptions were ignored during COUNT or COUNT_BIG
processing. Contains a Z if the stored procedure returned multiple result sets.

SQLWARN.10 Contains a W if at least one character field of the SQLCA is invalid due to a
character conversion error.

SQLSTATE Contains a return code for the outcome of the most recent execution of an SQL
statement.

Appendix F. SQL communication area (SQLCA) 2311

2312 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Appendix G. SQL descriptor area (SQLDA)
An SQLDA is a collection of variables that is required for execution of the SQL DESCRIBE statement, and
can be optionally used by the PREPARE, OPEN, FETCH, EXECUTE, and CALL statements. An SQLDA can be
used in a DESCRIBE or PREPARE INTO statement, modified with the addresses of host variables, and then
reused in a FETCH statement.

The meaning of the information in an SQLDA depends on the context in which it is used. For DESCRIBE
and PREPARE INTO, Db2 sets the fields in the SQLDA to provide information to the application program.
For OPEN, EXECUTE, FETCH, and CALL, the application program sets the fields in the SQLDA to provide
Db2 with information:
DESCRIBE statement-name or PREPARE INTO

With the exception of SQLN, Db2 sets fields of the SQLDA to provide information to an application
program about a prepared statement. Each SQLVAR occurrence describes a column of the result table.

DESCRIBE TABLE
With the exception of SQLN, Db2 sets fields of the SQLDA to provide information to an application
program about the columns of a table or view. Each SQLVAR occurrence describes a column of the
specified table or view.

DESCRIBE CURSOR
With the exception of SQLN, Db2 sets fields of the SQLDA to provide information to an application
program about the result set that is associated with the specified cursor. Each SQLVAR occurrence
describes a column of the result set.

DESCRIBE INPUT
With the exception of SQLN, Db2 sets fields of the SQLDA to provide information to an application
program about the input parameter markers of a prepared statement. Each SQLVAR occurrence
describes an input parameter marker.

DESCRIBE PROCEDURE
With the exception of SQLN, Db2 sets fields of the SQLDA to provide information to an application
program about the result sets returned by the specified stored procedure. Each SQLVAR occurrence
describes a returned result set.

OPEN, EXECUTE, FETCH, and CALL
The application program sets fields of the SQLDA to provide information about host variables or
output buffers in the application program to Db2. Each SQLVAR occurrence describes a host variable
or output buffer.

• For OPEN and EXECUTE, each SQLVAR occurrence describes an input value that is substituted for a
parameter marker in the associated SQL statement that was previously prepared.

• For FETCH, each SQLVAR occurrence describes a host variable or buffer in the application program
that is to be used to contain an output value from a row of the result.

• For CALL, each SQLVAR occurrence describes a host variable that corresponds to a parameter in the
parameter list for the stored procedure.

For information on the way to use the SQLDA, see Defining SQL descriptor areas (SQLDA) (Db2 Application
programming and SQL).

Description of SQLDA fields
An SQLDA consists of four variables, a header, and an arbitrary number of occurrences of a sequence of
variables collectively named SQLVAR.

In DESCRIBE and PREPARE INTO, each occurrence of the SQLVAR describes the column of a table. In
FETCH, OPEN, EXECUTE, and CALL, each occurrence describes a host variable.

The order of the SQLVAR entries matches the order of the columns in the table or the order of the
parameter markers in the SQL statement.

© Copyright IBM Corp. 1982, 2024 2313

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_definesqldescriptorarea.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_definesqldescriptorarea.html

The SQLDA Header
The fields in the SQLDA header have different usage depending on whether the SQLDA is being used in a
DESCRIBE or PREPARE INTO statement or the SQLDA is being used in a FETCH, INSERT, OPEN, EXECUTE,
or CALL statement.

The following table describes the fields in the SQLDA header.

Table 254. Fields of the SQLDA header

C name
assembler,
COBOL or
PL/I name

Data
type

Usage in DESCRIBE1

and PREPARE INTO
Usage in FETCH,INSERT, OPEN,
EXECUTE, and CALL

sqldaid
SQLDAID

CHAR(8) An "eye catcher" for storage
dumps, containing the text
'SQLDA '.

The 7th byte of the field is a flag
that can be used to determine
if more than one SQLVAR entry
is needed for each column. For
details, see “Determining how
many SQLVAR occurrences are
needed” on page 2316.

For DESCRIBE CURSOR, the field
is set to 'SQLRS'. If the cursor is
declared WITH HOLD in a stored
procedure, the high-order bit of the
8th byte is set to 1.

For DESCRIBE PROCEDURE, it is
set to 'SQLPR'.

A plus sign (+) in the 6th byte
indicates that SQLNAME contains
an overriding CCSID.

A '2' in the 7th byte indicates the
two SQLVAR entries were allocated
for each column or parameter.

A '3' in the 7th byte indicates
that three SQLVAR entries were
allocated for each column or
parameter. Although three entries
are never needed on input to
Db2, an SQLDA with three entries
might be used when the SQLDA
was initialized by a DESCRIBE or
PREPARE INTO with a USING BOTH
clause.

Otherwise, SQLDAID is not used.

sqldabc
SQLDABC

INTEGER Length of the SQLDA, equal to
SQLNx * 44+16.

Length of the SQLDA, greater than
or equal to SQLNx * 44+16.

sqln
SQLN

SMALLINT Unchanged by Db2. The field must
be set to a value greater than or
equal to zero before the statement
is executed. The field indicates
the total number of occurrences
of SQLVAR. At the very least, the
number should be:

• For DESCRIBE INPUT, the
number of parameter markers to
be described.

• For other DESCRIBEs or
PREPARE INTO: the number of
columns of the result, or a
multiple of the columns of the
result when there are multiple
sets of SQLVAR entries because
column labels are returned in
addition to column names.

Total number of occurrences of
SQLVAR provided in the SQLDA.
SQLN must be set to a value greater
than or equal to zero.

2314 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 254. Fields of the SQLDA header (continued)

C name
assembler,
COBOL or
PL/I name

Data
type

Usage in DESCRIBE1

and PREPARE INTO
Usage in FETCH,INSERT, OPEN,
EXECUTE, and CALL

sqld
SQLD

SMALLINT The number of columns described
by occurrences of SQLVAR.
Double that number if USING
BOTH appears in the DESCRIBE
or PREPARE INTO statement.
Contains a 0 if the statement string
is not a query.

For DESCRIBE PROCEDURE, the
number of result sets returned by
the stored procedure. Contains a 0
if no result sets are returned.

The number of host variables
described by occurrences of
SQLVAR.

Note:

1. The third column of this table represents several forms of the DESCRIBE statement:

• For DESCRIBE output and PREPARE INTO, the column pertains to columns of the result table.
• For DESCRIBE CURSOR, the column pertains to a result set associated with a cursor.
• For DESCRIBE INPUT, the column pertains to parameter markers.
• For DESCRIBE PROCEDURE, the column pertains to the result sets returned by the stored procedure.

SQLVAR entries
For each column or host variable described by the SQLDA, there are both base SQLVAR entries and
extended SQLVAR entries.

Base SQLVAR entry
The base SQLVAR entry is always present. The fields of this entry contain the base information about
the column or host variable such as data type code, length attribute (except for LOBs), column name
(or label), host variable address, and indicator variable address.

Extended SQLVAR entry
The extended SQLVAR entry is needed (for each column) if the result includes any LOB or distinct
type38 columns. For distinct types, the extended SQLVAR contains the distinct type name. For LOBs,
the extended SQLVAR contains the length attribute of the host variable and a pointer to the buffer
that contains the actual length. If locators are used to represent LOBs, an extended SQLVAR is not
necessary.

The extended SQLVAR entry is also needed for each column when the USING BOTH clause was
specified, which indicates that both columns names and labels are returned. The DESCRIBE output
and PREPARE statements can include the USING BOTH clause.

The fields in the extended SQLVAR that return LOB and distinct type information do not overlap, and
the fields that return LOB and label information do not overlap. Depending on the combination of
labels, LOBs and distinct types, more than one extended SQLVAR entry per column may be required to
return the information. See “Determining how many SQLVAR occurrences are needed” on page 2316.

The following table shows how to map the base and extended SQLVAR entries. For an SQLDA that
contains both base and extended SQLVAR entries, the base SQLVAR entries are in the first block, followed
by a block of extended SQLVAR entries, which if necessary, are followed by a second block of extended

38 DESCRIBE INPUT does not return information about distinct types.

Appendix G. SQL descriptor area (SQLDA) 2315

SQLVAR entries. In each block, the number of occurrences of the SQLVAR entry is equal to the value in
SQLD39 even though many of the extended SQLVAR entries might be unused.

Table 255. Contents of SQLVAR arrays

LOBs
Distinct
types1

7th byte
of
SQLDAID SQLD

Minimum
for SQLN2

Set of SQLVAR entries

First set
(Base)

Second set
(Extended)

Third set
(Extended)

USING BOTH clause not specified:

No No Space n n Column names,
labels

Not Used Not Used

Yes3 Yes3 2 n 2n Column names,
labels

LOBs,
distinct types,
or both

Not used

USING BOTH clause was specified:

No No Space 2n 2n Column names Labels Not used

Yes No 2 n 2n Column names LOBs and labels Not used

No Yes 3 n 3n Column names Distinct types Labels

Yes Yes 3 n 3n Column names LOBs and
distinct types

Labels

Notes:

1. DESCRIBE INPUT does not return information about distinct types.
2. The number of columns or host variables that the SQLDA describes.
3. Either LOBs, distinct types, or both are present.
4. Here, the 7th byte is set to a space and SQLD is set to two times the number of columns in the result. For

all other values of the 7th byte for USING BOTH, SQLD is set to the number of columns in the result, and the
7th byte can be used to determine how many SQLVAR entries are needed for each column of the result.

Determining how many SQLVAR occurrences are needed
The number of SQLVAR occurrences needed depends on the statement that the SQLDA was provided for
and the data types of the columns or parameters being described.

If the USING BOTH clause was not specified for the statement and neither LOBs nor distinct types are
present in the result, only one SQLVAR entry (a base entry) is needed for each column. The 7th byte of
SQLDAID is set to a space. The SQLD is set to the number of columns in the result and represents the
number of SQLVAR occurrences needed. If an insufficient number of SQLVAR occurrences were provided,
Db2 returns a +236 warning in SQLCODE if the standards option was set. Otherwise, SQLCODE is zero.

If USING BOTH is specified and neither LOBs nor distinct types are present in the result, an extended
SQLVAR entry per column is needed for the labels in addition to the base SQLVAR entry. The 7th byte of
the SQLDAID is set to space. SQLD is set to the twice the number of columns in the result and represents
the combined number of base and extended SQLVAR occurrences needed.

39 When an extended SQLVAR entry is present for each column for labels (and there are no LOB or distinct
type columns in the result),

2316 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

If LOBs, distinct types, or both are present in the results, one extended SQLVAR entry is needed per
column in addition to the base SQLVAR entry with one exception. The exception is that when the USING
BOTH clause is specified and distinct types are present in the results, two extended SQLVAR entries per
column are needed. When a sufficient number of SQLVAR entries are provided in the SQLDA for both the
base and extended SQLVARs, information for the LOBs and distinct types is returned. The 7th byte of
SQLDAID is set to the number of SQLVAR entries that were used for each column:
2

Two SQLVAR entries per column (a base and an extended)
3

Three SQLVAR entries per column (a base and two extended)

SQLD is set to the number of columns in the result. Therefore, the value of the 7th byte of SQLDAID
multiplied by the value of SQLD is the total number SQLVAR entries that were provided.

Otherwise, when an insufficient number of SQLVAR entries have been provided when LOBs or distinct
types are present, Db2 indicates that by returning one of the following warnings in SQLCODE. Db2 also
sets the 7th byte of SQLDAID to indicate how many SQLVAR entries are needed for each column of the
result.
+237

There are insufficient SQLVAR entries to describe the data, and the data includes distinct types. In this
case, there were enough base SQLVAR entries to describe the data, so the base SQLVAR entries are
set. However, sufficient extended SQLVAR entries were not provided so the distinct type names are
not returned.

+238
There are insufficient SQLVAR entries to describe the data, and the data includes LOBs. In this case no
information is returned in the SQLVAR entries.

+239
There are insufficient SQLVAR entries to describe the data, and the data includes distinct types. There
weren't even enough base SQLVAR entries. In this case no information is returned in the SQLVAR
entries.

Field descriptions of an occurrence of a base SQLVAR
The fields of a base SQLVAR have different uses depending on the SQL statement.

The following table describes the contents of the fields of a base SQLVAR.

Table 256. Fields in an occurrence of a base SQLVAR

C name
assembler
COBOL, or
PL/I name

 Data
type

Usage in DESCRIBE1

and PREPARE INTO
Usage in FETCH, OPEN,
EXECUTE, and CALL

sqltype
SQLTYPE

SMALLINT Indicates the data type of the
column or parameter and whether
it can contain null values. For a
description of the type codes, see
Table 258 on page 2323.

For a distinct type, the data type on
which the distinct type was based
is placed in this field. The base
SQLVAR provides no indication that
this is part of the description of a
distinct type.

Indicates the data type of the
host variable and whether an
indicator variable is provided. Host
variables for datetime values must
be character string variables. For
FETCH, a datetime type code
means a fixed-length character
string. For a description of the type
codes, see “SQLTYPE and SQLLEN”
on page 2322.

Appendix G. SQL descriptor area (SQLDA) 2317

Table 256. Fields in an occurrence of a base SQLVAR (continued)

C name
assembler
COBOL, or
PL/I name

 Data
type

Usage in DESCRIBE1

and PREPARE INTO
Usage in FETCH, OPEN,
EXECUTE, and CALL

sqllen
SQLLEN

SMALLINT The length attribute of the
column or parameter. For datetime
data, the length of the string
representation of the value. See
“SQLTYPE and SQLLEN” on page
2322 for a description of allowable
values.

For LOBs, the value is 0 regardless
of the length attribute of the
LOB. For XML, the value is
0. Field SQLLONGLEN in the
extended SQLVAR contains the
length attribute.

The length attribute of the
host variable. See “SQLTYPE and
SQLLEN” on page 2322 for a
description of allowable values.

For LOBs, the value is 0 regardless
of the length attribute of the
LOB. Field SQLLONGLEN in the
extended SQLVAR contains the
length attribute.

For XML AS BLOB, CLOB, or
DBCLOB, sqllen is 0 as for LOB
types.

sqldata
SQLDATA

Pointer For string columns or parameters,
SQLDATA contains X'0000zzzz',
where zzzz is the associated CCSID.
For character strings, SQLDATA can
alternatively contain X'FFFF', which
indicates bit data. Not used for
other types of data.

For datetime columns, SQLDATA
can contain the CCSID of the string
representation of the datetime
value.

For DESCRIBE PROCEDURE, the
result set locator value associated
with the result set.

Contains the address of the host
variable.

sqlind
SQLIND

Pointer Reserved

For DESCRIBE PROCEDURE, it is
set to -1.

Contains the address of an
associated indicator variable, if
SQLTYPE is odd. Otherwise, the
field is not used.

2318 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 256. Fields in an occurrence of a base SQLVAR (continued)

C name
assembler
COBOL, or
PL/I name

 Data
type

Usage in DESCRIBE1

and PREPARE INTO
Usage in FETCH, OPEN,
EXECUTE, and CALL

sqlname
SQLNAME

VARCHAR(30) Contains the unqualified name or
label of the column, or a string of
length zero if the name or label
does not exist. If the name is
longer than 30 bytes, it is truncated
at a byte boundary. For more
information about column names,
see Names of result columns.

For DESCRIBE PROCEDURE,
SQLNAME contains the cursor
name used by the stored procedure
to return the result set. The values
for SQLNAME appear in the order
the cursors were opened by the
stored procedure.

For DESCRIBE INPUT, SQLNAME is
not used.

Can contain CCSID and/or
host-variable-array dimension
information. Db2 interprets the
third and fourth byte of the data
portion of SQLNAME as the CCSID
of the host variable if all of the
following are true and the third and
fourth byte are not X'0000':

• The sixth byte of SQLDAID is '+'
(x'4E').

• SQLTYPE indicates the host
variable is a string variable.

• The length of SQLNAME is 8.
• The first two bytes of the data

portion of SQLNAME are X'0000'.

If the third and fourth byte of
the data portion of SQLNAME are
X'0000', Db2 uses the appropriate
default CCSID.

For FETCH, OPEN, INSERT, and
EXECUTE, if the length of SQLNAME
is 8, and the first two bytes of
the data portion of SQLNAME are
X'0000', Db2 interprets the fifth
through eighth bytes of the data
portion of the SQLNAME field as
follows:

Appendix G. SQL descriptor area (SQLDA) 2319

Table 256. Fields in an occurrence of a base SQLVAR (continued)

C name
assembler
COBOL, or
PL/I name

 Data
type

Usage in DESCRIBE1

and PREPARE INTO
Usage in FETCH, OPEN,
EXECUTE, and CALL

(cont.)
sqlname
SQLNAME

• Fifth and sixth bytes: A flag field
that indicates the type of host
variable that is being described
by the current SQLDA entry. The
values of this field are as follows:

– X'0000' - host variable
– X'0100' - XML host variable

(XML AS BLOB, XML AS CLOB,
XML AS DBCLOB)

– X'0001' - host-variable array
– X'0101' - XML host-variable

array
– X'0002' - special host variable

that represents the value for
'n' in a multiple-row INSERT
statement

• Seventh and eighth bytes: If
the sixth byte is X'01', a binary
small integer (halfword) that
represents the dimension of
the host-variable-array, and the
corresponding indicator-array if
one is specified.

Notes:

1. The third column of this table represents several forms of the DESCRIBE statement.

• For DESCRIBE output and PREPARE INTO, the column pertains to columns of the result table.
• For DESCRIBE CURSOR, the column pertains to a result set associated with a cursor.
• For DESCRIBE INPUT, the column pertains to parameter markers.
• For DESCRIBE PROCEDURE, the column pertains to the result sets returned by the stored procedure.

Field descriptions of an occurrence of an extended SQLVAR
The fields of an extended SQLVAR have different uses depending on the SQL statement.

The following table describes the contents of the fields of an extended SQLVAR entry.

2320 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 257. Fields in an occurrence of an extended SQLVAR

C name
assembler,
COBOL, or
PL/I name

Data
type

Usage in DESCRIBE1

and PREPARE INTO
Usage in FETCH, OPEN,
EXECUTE, and CALL

len.sqllonglen
SQLLONGL
SQLLONGLEN

INTEGER The length attribute of a LOB
(BLOB, CLOB, or DBCLOB) column

The length attribute of a LOB
(BLOB, CLOB, or DBCLOB) host
variable. Db2 ignores the SQLLEN
field in the base SQLVAR for these
data types. The length attribute
indicates the number of bytes for
a BLOB or CLOB, and the number of
characters for a DBCLOB.

* INTEGER Reserved Reserved.

sqldatalen
SQLDATAL
SQLDATALEN

Pointer Not used Used only for LOB (BLOB, CLOB,
and DBCLOB) host variables.

If the value of the field is null,
the actual length of the LOB is
stored in the 4 bytes immediately
before the start of the data, and
SQLDATA points to the first byte of
the field length. The actual length
indicates the number of bytes for a
BLOB or CLOB, and the number of
characters for a DBCLOB.

If the value of the field is not null,
the field contains a pointer to a
4-byte long buffer that contains
the actual length in bytes (even for
DBCLOBs) of the data in the buffer
pointed to from the SQLDATA field
in the matching base SQLVAR.

Regardless of whether this field is
used, field SQLLONGLEN must be
set.

Appendix G. SQL descriptor area (SQLDA) 2321

Table 257. Fields in an occurrence of an extended SQLVAR (continued)

C name
assembler,
COBOL, or
PL/I name

Data
type

Usage in DESCRIBE1

and PREPARE INTO
Usage in FETCH, OPEN,
EXECUTE, and CALL

sqldatatype_nam
e
SQLTNAME
SQLDATATYPE-
NAME

VARCHAR(30) A SQLTNAME field of the extended
SQLVAR is set to one of the
following:

• For a distinct type column, the
database manager sets this field
to the fully qualified distinct
type name. If the qualified name
is longer than 30 bytes, it is
truncated.

• For a label, the database
manager sets this field to label.

In the case that both a distinct
type name and a label need to
be returned in extended SQLVAR
entries (USING BOTH has been
specified), the distinct type name
is returned in the first extended
SQLVAR entry and the label in the
second extended SQLVAR entry.

Not used.

Note:

1. The third column of this table represents several forms of the DESCRIBE statement.

• For DESCRIBE output and PREPARE INTO, the column pertains to columns of the result table.
• For DESCRIBE CURSOR, the column pertains to a result set associated with a cursor.
• For DESCRIBE INPUT, the column pertains to parameter markers.
• For DESCRIBE PROCEDURE, the column pertains to the result sets returned by the stored procedure.

SQLTYPE and SQLLEN
The contents of the SQLTYPE and SQLLEN fields of the SQLDA depends on the SQL statement that is
returning the value.

The following table shows the values that can appear in the SQLTYPE and SQLLEN fields of the SQLDA.
In DESCRIBE and PREPARE INTO, an even value of SQLTYPE means the column does not allow nulls,
and an odd value means the column does allow nulls. In DESCRIBE INPUT statements, only odd values
are returned for SQLTYPE. In FETCH, OPEN, EXECUTE, and CALL, an even value of SQLTYPE means no
indicator variable is provided, and an odd value means that SQLIND contains the address of an indicator
variable.

2322 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 258. SQLTYPE and SQLLEN values for DESCRIBE, PREPARE INTO, FETCH, OPEN, EXECUTE, and CALL

SQLTYPE

For DESCRIBE and PREPARE INTO For FETCH, OPEN, EXECUTE, and CALL

Column or
parameter data type SQLLEN

Host variable data
type SQLLEN

384/385 Date 10 1 Fixed-length character
string representation of
a date

Length attribute of
the host variable

388/389 Time 8 2 Fixed-length character
string representation of
a time

Length attribute of
the host variable

392/393 Timestamp without
time zone

19 for TIMESTAMP(0)
otherwise 20+p for
TIMESTAMP(p) 5

fixed-length Character
string representation of
a timestamp

Length attribute of
the host variable

400/401 N/A N/A NUL-terminated graphic
string

Length attribute of
the host variable

404/405 BLOB 0 3 BLOB or XML AS BLOB Not used. 3

408/409 CLOB 0 3 CLOB or XML AS CLOB Not used. 3

412/413 DBCLOB 0 3 DBCLOB or XML AS
DBCLOB

Not used. 3

448/449 Varying-length
character string

Length attribute of
the column

Varying-length
character string

Length attribute of
the host variable

452/453 Fixed-length
character string

Length attribute of
the column

Fixed-length character
string

Length attribute of
the host variable

456/457 Long varying-length
character string

SQLTYPE values
448/449 are returned
instead of 456/457
for statements that
are bound in Version
9 or later.

Length attribute of
the column

Long varying-length
character string

Length attribute of
the host variable

460/461 N/A N/A NUL-terminated
character string

Length attribute of
the host variable

464/465 Varying-length
graphic string

Length attribute of
the column

Varying-length graphic
string

Length attribute of
the host variable

468/469 Fixed-length graphic
string

Length attribute of
the column

Fixed-length graphic
string

Length attribute of
the host variable

472/473 Long graphic string

SQLTYPE values
464/465 are returned
instead of 472/473
for statements that
are bound in Version
9 or later.

Length attribute of
the column

Long graphic string Length attribute of
the host variable

Appendix G. SQL descriptor area (SQLDA) 2323

Table 258. SQLTYPE and SQLLEN values for DESCRIBE, PREPARE INTO, FETCH, OPEN, EXECUTE, and CALL
(continued)

SQLTYPE

For DESCRIBE and PREPARE INTO For FETCH, OPEN, EXECUTE, and CALL

Column or
parameter data type SQLLEN

Host variable data
type SQLLEN

480/481 Floating point 4 for single precision,
8 for double precision

Floating point 4 for single precision,
8 for double precision

484/485 Packed decimal Precision in byte 1;
scale in byte 2

Packed decimal Precision in byte 1;
scale in byte 2

492/493 Big integer4 8 Big integer 8

496/497 Large integer 4 Large integer 4

500/501 Small integer 2 Small integer 2

504/505 N/A N/A DISPLAY SIGN
 LEADING SEPARATE,
NATIONAL SIGN
 LEADING SEPARATE

Precision in byte 1;
scale in byte 2

904/905 ROWID 40 ROWID 40

908/909 Varying-length binary
string

Length attribute of
the column

Varying-length binary
string

Length attribute of
the host variable

912/913 Fixed-length binary
string

Length attribute of
the column

Fixed-length binary
string

Length attribute of
the host variable

916/917 BLOB_FILE 267

920/921 CLOB_FILE 267

924/925 DBCLOB_FILE 267

960/961 BLOB locator 4 BLOB_LOCATOR 4

964/965 CLOB locator 4 CLOB_LOCATOR 4

968/969 DBCLOB locator 4 DBCLOB_LOCATOR 4

972 Not applicable Not applicable Result set locator 4

988/989 XML 0 Invalid. Instead, use
one of the following:
XML AS BLOB, XML AS
CLOB, XML AS DBCLOB

Not used

996/997 DECFLOAT(16)
DECFLOAT(34)

8
16

DECFLOAT(16)
DECFLOAT(34)

8
16

2448/2449 Timestamp with time
zone

147 for
TIMESTAMP(0) WITH
TIME ZONE
otherwise 148+p for
TIMESTAMP(p) WITH
TIME ZONE 5

Varying-length
character string
representation of a
timestamp with time
zone

Length attribute of
the host variable

2324 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 258. SQLTYPE and SQLLEN values for DESCRIBE, PREPARE INTO, FETCH, OPEN, EXECUTE, and CALL
(continued)

SQLTYPE

For DESCRIBE and PREPARE INTO For FETCH, OPEN, EXECUTE, and CALL

Column or
parameter data type SQLLEN

Host variable data
type SQLLEN

Note:

1. SQLLEN might be different if a date installation exit is specified.
2. SQLLEN might be different if a time installation exit is specified.
3. Field SQLLONGLEN in the extended SQLVAR contains the length attribute of the column. In REXX, the

SQLVAR length attribute field name is SQLLONGL and SQLLEN is not used.
4. BIGINT is supported by other Db2 platforms.
5. p is the timestamp precision.

SQLDATA
Depending on the data type of the string column that the SQLVAR is describing, the SQLDATA field can
contain different CCSID values.

The following table identifies the CCSID values that appear in the SQLDATA field when the SQLVAR
element describes a string column.

Table 259. CCSID values for SQLDATA

Data type Subtype Bytes 1 and 2 Bytes 3 and 4

Character SBCS data X'0000' CCSID

Character Mixed data X'0000' CCSID

Character BIT data X'0000' X'FFFF'

Graphic N/A X'0000' CCSID

Any other data type N/A N/A N/A

Unrecognized and unsupported SQLTYPES
The values that appear in the SQLTYPE field of the SQLDA are dependent on the level of data type support
available at the sender as well as at the receiver of the data. This support is particularly important as new
data types are added to the product.

New data types might not be supported by the sender or receiver of the data and might not be recognized
by the sender or receiver of the data. Depending on the situation, the new data type might be returned, a
compatible data type that is agreed to by both the sender and the receiver of the data might be returned,
or an error might occur.

When the sender and receiver agree to use a compatible data type, the following table indicates the
mapping that takes place. This mapping takes place when at least one of the sender or receiver does not
support the data type provided. The unsupported data type can be provided by either the application or
the database manager.

Table 260. Compatible data types for unsupported data types

Data type Compatible data type

ROWID VARCHAR(40) FOR BIT DATA

No indication is given in the SQLDA that the data type is substituted.

Appendix G. SQL descriptor area (SQLDA) 2325

The included SQLDA
Only assembler, C, C++, COBOL, and PL/I C are supported for the SQLDA that is given by INCLUDE SQLDA.

assembler:

SQLTRIPL EQU C'3'
SQLDOUBL EQU C'2'
SQLSINGL EQU C' '
*
 SQLSECT SAVE
*
SQLDA DSECT
SQLDAID DS CL8 ID
SQLDABC DS F BYTE COUNT
SQLN DS H COUNT SQLVAR/SQLVAR2 ENTRIES
SQLD DS H COUNT VARS (TWICE IF USING BOTH)
*
SQLVAR DS 0F BEGIN VARS
SQLVARN DSECT , NTH VARIABLE
SQLTYPE DS H DATA TYPE CODE
SQLLEN DS 0H LENGTH
SQLPRCSN DS X DEC PRECISION
SQLSCALE DS X DEC SCALE
SQLDATA DS A ADDR OF VAR
SQLIND DS A ADDR OF IND
SQLNAME DS H,CL30 DESCRIBE NAME
SQLVSIZ EQU *-SQLDATA
SQLSIZV EQU *-SQLVARN
*
SQLDA DSECT
SQLVAR2 DS 0F BEGIN EXTENDED FIELDS OF VARS
SQLVAR2N DSECT , EXTENDED FIELDS OF NTH VARIABLE
SQLLONGL DS F LENGTH
SQLRSVDL DS F RESERVED
SQLDATAL DS A ADDR OF LENGTH IN BYTES
SQLTNAME DS H,CL30 DESCRIBE NAME
*
 SQLSECT RESTORE

In the above declaration, SQLSECT SAVE is a macro invocation that remembers the current CSECT name.
SQLSECT RESTORE is a macro invocation that continues that CSECT.

C and C++:

#ifndef SQLDASIZE /* Permit duplicate Includes */
 /**/
 struct sqlvar
 { short sqltype;
 short sqllen;
 char *sqldata;
 short *sqlind;
 struct sqlname
 { short length;
 char data[30];
 } sqlname;
 };
 /**/
 struct sqlvar2
 { struct
 { long sqllonglen;
 unsigned long reserved;
 } len;
 char *sqldatalen;
 struct sqldistinct_type
 { short length;
 char data[30];
 } sqldatatype_name;
 };
 /**/
 struct sqlda
 { char sqldaid[8];
 long sqldabc;
 short sqln;
 short sqld;
 struct sqlvar sqlvar[1];

2326 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 };
 /**/
/***/
/* Macros for using the sqlvar2 fields. */
/***/
 /**/
/***/
/* '2' in the 7th byte of sqldaid indicates a doubled number of */
/* sqlvar entries. */
/* '3' in the 7th byte of sqldaid indicates a tripled number of */
/* sqlvar entries. */
/***/
#define SQLDOUBLED '2'
#define SQLTRIPLED '3'
#define SQLSINGLED ' '
 /**/

/***/
/* GETSQLDOUBLED(daptr) returns 1 if the SQLDA pointed to by */
/* daptr has been doubled, or 0 if it has not been doubled. */
/***/
#define GETSQLDOUBLED(daptr) \
 (((daptr)->sqldaid[6] == (char) SQLDOUBLED) ? \
 (1) : \
 (0))
 /**/
/***/
/* GETSQLTRIPLED(daptr) returns 1 if the SQLDA pointed to by */
/* daptr has been tripled, or 0 if it has not been tripled. */
/***/
#define GETSQLTRIPLED(daptr) \
 (((daptr)->sqldaid[6] == (char) SQLTRIPLED) ? \
 (1) : \
 (0))
 /**/
/***/
/* SETSQLDOUBLED(daptr, SQLDOUBLED) sets the 7th byte of sqldaid */
/* to '2'. */
/* SETSQLDOUBLED(daptr, SQLSINGLED) sets the 7th byte of sqldaid */
/* to be a ' '. */
/***/
#define SETSQLDOUBLED(daptr, newvalue) \
 (((daptr)->sqldaid[6] = (newvalue)))
 /**/
/***/
/* SETSQLTRIPLED(daptr) sets the 7th byte of sqldaid */
/* to '3'. */
/***/
#define SETSQLTRIPLED(daptr) \
 (((daptr)->sqldaid[6] = (SQLTRIPLED)))
 /**/
/***/
/* GETSQLDALONGLEN(daptr,n) returns the data length of the nth */
/* entry in the sqlda pointed to by daptr. Use this only if the */
/* sqlda was doubled or tripled and the nth SQLVAR entry has a */
/* LOB datatype. */
/***/
#define GETSQLDALONGLEN(daptr,n) (\
 (long) (((struct sqlvar2 *) &((daptr);->sqlvar[(n) + \
 ((daptr)->sqld)])) \
 ->len.sqllonglen))
 /**/

/***/
/* SETSQLDALONGLEN(daptr,n,len) sets the sqllonglen field of the */
/* sqlda pointed to by daptr to len for the nth entry. Use this only */
/* if the sqlda was doubled or tripled and the nth SQLVAR entry has */
/* a LOB datatype. */
/***/
#define SETSQLDALONGLEN(daptr,n,length) { \
 struct sqlvar2 *var2ptr; \
 var2ptr = (struct sqlvar2 *) \
 &((daptr);->sqlvar[(n) + ((daptr)->sqld)]); \
 var2ptr->len.sqllonglen = (long) (length); \
 }
 /**/
/***/
/* GETSQLDALENPTR(daptr,n) returns a pointer to the data length for */
/* the nth entry in the sqlda pointed to by daptr. Unlike the inline */
/* value (union sql8bytelen len), which is 8 bytes, the sqldatalen */

Appendix G. SQL descriptor area (SQLDA) 2327

/* pointer field returns a pointer to a long (4 byte) integer. */
/* If the SQLDATALEN pointer is zero, a NULL pointer is be returned. */
/* */
/* NOTE: Use this only if the sqlda has been doubled or tripled. */
/***/
#define GETSQLDALENPTR(daptr,n) (\
 (((struct sqlvar2 *) &(daptr);->sqlvar[(n) + (daptr)->sqld]) \
 ->sqldatalen == NULL) ? \
 ((long *) NULL) : \
 ((long *) ((struct sqlvar2 *) \
 &(daptr);->sqlvar[(n) + (daptr)->sqld]) \
 ->sqldatalen))
 /**/
/***/
/* SETSQLDALENPTR(daptr,n,ptr) sets a pointer to the data length for */
/* the nth entry in the sqlda pointed to by daptr. */
/* Use this only if the sqlda has been doubled or tripled. */
/***/
#define SETSQLDALENPTR(daptr,n,ptr) { \
 struct sqlvar2 *var2ptr; \
 var2ptr = (struct sqlvar2 *) \
 &((daptr);->sqlvar[(n) + ((daptr)->sqld)]); \
 var2ptr->sqldatalen = (char *) ptr; \
 }
 /**/
#define SQLDASIZE(n) \
 (sizeof(struct sqlda) + ((n)-1) * sizeof(struct sqlvar))
#endif /* SQLDASIZE */

COBOL (IBM COBOL only):

01 SQLDA.
 05 SQLDAID PIC X(8).
 05 SQLDABC PIC S9(9) BINARY.
 05 SQLN PIC S9(4) BINARY.
 05 SQLD PIC S9(4) BINARY.
 05 SQLVAR OCCURS 0 TO 750 TIMES DEPENDING ON SQLN.
 10 SQLVAR1.
 15 SQLTYPE PIC S9(4) BINARY.
 15 SQLLEN PIC S9(4) BINARY.
 15 FILLER REDEFINES SQLLEN.
 20 SQLPRECISION PIC X.
 20 SQLSCALE PIC X.
 15 SQLDATA POINTER.
 15 SQLIND POINTER.
 15 SQLNAME.
 49 SQLNAMEL PIC S9(4) BINARY.
 49 SQLNAMEC PIC X(30).
 10 SQLVAR2 REDEFINES SQLVAR1.
 15 SQLVAR2-RESERVED-1 PIC S9(9) BINARY.
 15 SQLLONGLEN REDEFINES SQLVAR2-RESERVED-1
 PIC S9(9) BINARY.
 15 SQLVAR2-RESERVED-2 PIC S9(9) BINARY.
 15 SQLDATALEN POINTER.
 15 SQLDATATYPE-NAME.
 20 SQLDATATYPE-NAMEL PIC S9(4) BINARY.
 20 SQLDATATYPE-NAMEC PIC X(30).

PL/I:

DECLARE
 1 SQLDA BASED(SQLDAPTR),
 2 SQLDAID CHAR(8),
 2 SQLDABC FIXED(31) BINARY,
 2 SQLN FIXED(15) BINARY,
 2 SQLD FIXED(15) BINARY,
 2 SQLVAR(SQLSIZE REFER(SQLN)),
 3 SQLTYPE FIXED(15) BINARY,
 3 SQLLEN FIXED(15) BINARY,
 3 SQLDATA POINTER,
 3 SQLIND POINTER,
 3 SQLNAME CHAR(30) VAR;
 /* */
DECLARE
 1 SQLDA2 BASED(SQLDAPTR),
 2 SQLDAID2 CHAR(8),
 2 SQLDABC2 FIXED(31) BINARY,

2328 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

 2 SQLN2 FIXED(15) BINARY,
 2 SQLD2 FIXED(15) BINARY,
 2 SQLVAR2(SQLSIZE REFER(SQLN2)),
 3 SQLBIGLEN,
 4 SQLLONGL FIXED(31) BINARY,
 4 SQLRSVDL FIXED(31) BINARY,
 3 SQLDATAL POINTER,
 3 SQLTNAME CHAR(30) VAR;
 /* */
DECLARE SQLSIZE FIXED(15) BINARY;
DECLARE SQLDAPTR POINTER;
DECLARE SQLTRIPLED CHAR(1) INITIAL('3');
DECLARE SQLDOUBLED CHAR(1) INITIAL('2');
DECLARE SQLSINGLED CHAR(1) INITIAL(' ');

Identifying an SQLDA in C or C++
A descriptor-name can be specified in the CALL, DESCRIBE, EXECUTE, FETCH, and OPEN statements.
When the host application is written in C or C++, descriptor-name can be a pointer variable with pointer
notation.

For example, descriptor-name could be declared as

 sqlda *outsqlda;

Afterwords, it could be used in a statement like the following:

 EXEC SQL DESCRIBE STMT1 INTO DESCRIPTOR :*outsqlda;

The REXX SQLDA
A REXX SQLDA consists of a set of REXX variables with a common stem. The stem must be a REXX
variable name that contains no periods and is the same as the value of descriptor-name that you specify
when you use the SQLDA in an SQL statement. Db2 does not support the INCLUDE SQLDA statement in
REXX.

The following table shows the variable names in a REXX SQLDA. The values in the second column of
the table are values that Db2 inserts into the SQLDA when the statement executes. Except where noted
otherwise, the values in the third column of the table are values that the application must put in the
SQLDA before the statement executes.

Table 261. Fields of a REXX SQLDA

Variable name
Usage in DESCRIBE
and PREPARE INTO

Usage in FETCH, OPEN,
EXECUTE, and CALL

stem.SQLD The number of columns that are
described in the SQLDA. Double
that number if USING BOTH
appears in the DESCRIBE or
PREPARE INTO statement. Contains
a 0 if the statement string is not a
query.

For DESCRIBE PROCEDURE, the
number of result sets returned by
the stored procedure. Contains a 0
if no result sets are returned.

The number of host variables that
are used by the SQL statement.

Each SQLDA contains stem.SQLD of the following variables. Therefore, 1<=n<=stem.SQLD. There is one
occurrence of each variable for each column of the result table or host variable that is described by the SQLDA.

Appendix G. SQL descriptor area (SQLDA) 2329

Table 261. Fields of a REXX SQLDA (continued)

Variable name
Usage in DESCRIBE
and PREPARE INTO

Usage in FETCH, OPEN,
EXECUTE, and CALL

stem.n.SQLTYPE Indicates the data type of the
column or parameter and whether
it can contain null values. For a
description of the type codes, see
“SQLTYPE and SQLLEN” on page
2322.

For a distinct type, the data type on
which the distinct type was based
is placed in this field. The base
SQLVAR provides no indication that
this is part of the description of a
distinct type.

Indicates the data type of the
host variable and whether an
indicator variable is provided. Host
variables for datetime values must
be character string variables. For
FETCH, a datetime type code
means a fixed-length character
string. For a description of the type
codes, see “SQLTYPE and SQLLEN”
on page 2322.

The data type of the host variable
cannot be BLOB locator, CLOB
locator, or DBCLOB locator.

stem.n.SQLLONGL For a LOB column, the length of the
string representation of the value or
parameter.

For a host variable that has a LOB
data type, the length attribute of
the host variable. For a description
of supported values, see “SQLTYPE
and SQLLEN” on page 2322.

stem.n.SQLLEN For a column other than a
DECIMAL, NUMERIC, or LOB
column, the length attribute of the
column or parameter. For datetime
data, the length of the string
representation of the value. See
“SQLTYPE and SQLLEN” on page
2322 for a description of allowable
values.

For a host variable that does
not have a decimal or LOB data
type, the length attribute of the
host variable. See “SQLTYPE and
SQLLEN” on page 2322 for a
description of allowable values.

stem.n.SQLLEN.SQLPRECISION For a DECIMAL or NUMERIC
column, the precision of the column
or parameter.

For a host variable with a decimal
data type, the precision of the host
variable.

stem.n.SQLLEN.SQLSCALE For a DECIMAL or NUMERIC
column, the scale of the column or
parameter.

For a host variable with a decimal
data type, the scale of the host
variable.

stem.n.SQLCCSID For a string column or parameter,
the CCSID of the column or
parameter.

For a string host variable, the CCSID
of the host variable.

stem.n.SQLUSECCSID Not used. Set to a new CCSID. If set, REXX
will change the CCSID of the
SQLDATA.

stem.n.SQLLOCATOR For DESCRIBE PROCEDURE, the
value of a result set locator.

Not used.

2330 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 261. Fields of a REXX SQLDA (continued)

Variable name
Usage in DESCRIBE
and PREPARE INTO

Usage in FETCH, OPEN,
EXECUTE, and CALL

stem.n.SQLDATA Not used. Before EXECUTE or OPEN, contains
the value of an input host variable.
The application must supply this
value.

After FETCH, contains the values of
an output host variable.

stem.n.SQLIND Not used. Before EXECUTE or OPEN, contains
a negative number to indicate
that the input host variable
in stem.n.SQLDATA is null. The
application must supply this value.

After FETCH, contains a negative
number if the value of the output
host variable in stem.n.SQLDATA is
null.

stem.n.SQLNAME The name of the nth column in
the result table. For DESCRIBE
PROCEDURE, contains the cursor
name that is used by the stored
procedure to return the result set.
The values for SQLNAME appear
in the order that the cursors were
opened by the stored procedure.

Not used.

stem.n.SQLTNAME The fully qualified distinct type
name of the nth column in the
result table. If the qualified name is
longer than 30 bytes, it is truncated.

Not used.

Appendix G. SQL descriptor area (SQLDA) 2331

2332 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Appendix H. Db2 catalog tables
Db2 for z/OS maintains a set of tables (in database DSNDB06) called the Db2 catalog.

About these topics
These topics describe that catalog by describing the columns of each catalog table.

The catalog tables describe such things as table spaces, tables, columns, indexes, privileges, application
plans, and packages. Authorized users can query the catalog; however, it is primarily intended for use
by Db2 and is therefore subject to change. All catalog tables are qualified by SYSIBM. Do not use this
qualifier for user-defined tables.

The catalog tables are updated by Db2 during normal operations in response to certain SQL statements,
commands, and utilities.

Db2 12 catalog levels
The catalog level of a data sharing group or subsystem indicates that a particular CATMAINT utility
UPDATE LEVEL job was run on the Db2 catalog, and the data sharing group or Db2 subsystem is ready for
the activation of certain function levels.

Db2 12 function levels use the following Db2 catalog levels:

• V12R1M509
• V12R1M507
• V12R1M505
• V12R1M503
• V12R1M502
• V12R1M500

Tip: When you update the Db2 catalog level, you can specify either the target function level or the catalog
level. If you specify the function level, Db2 determines the appropriate target catalog level, and the
CATMAINT utility completes any required catalog level updates in sequential order. For more information,
see CATMAINT (Db2 Utilities).

For a summary of the changes, see Catalog changes in Db2 12 (Db2 for z/OS What's New?).

Trailing blanks in converted catalog columns
Db2 subsystems that were migrated from earlier releases might have trailing blanks in catalog table
columns that were converted from fixed to varying length data types. You might need to make
adjustments in applications that use these columns in comparisons. For more information, see Trailing
blanks in Db2 catalog columns (Db2 Administration Guide).

Release indicators in the Db2 catalog
Some objects depend on functions in particular releases of Db2. If you are running on a release of Db2
and fall back to a previous release, an object that depends on the more recent release becomes frozen.
The object is marked with a release dependency indicator and is unavailable until remigration.

The release dependency indicator, which is listed in the IBMREQD, RELCREATED, and RELBOUND
columns of the catalog tables, shows the release of Db2 upon which the objects depend.

Important: The IBMREQD column is not a reliable indicator for indicating release dependencies. Where
possible, the RELCREATED and RELBOUND columns should be used instead.

© Copyright IBM Corp. 1982, 2024 2333

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_catmaint.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_catalogchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_catalogtrailingblanks.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_catalogtrailingblanks.html

Db2 release dependency indicators in the IBMREQD, RELCREATED, and RELBOUND columns might use
the following values:

Values Meanings for IBMREQD, RELCREATED, and RELBOUND columns

R Db2 13

Q Db2 12

P Db2 11

O DB2 10

M DB2 9

L DB2 version 8

K DB2 version 7

J DB2 version 6

I DB2 version 6

H DB2 version 5

G DB2 version 4

F DB2 version 3R1

E DB2 version 2R3

D DB2 version 2R2

C DB2 version 2R1

B DB2 version 1R3

Y Rows with IBMREQD='Y' were provided with the Db2 for z/OS
product code

N Rows with IBMREQD='N' have no release dependency and were not
provided with the Db2 for z/OS product code

Programming interface information
Not all catalog table columns are part of the general-use programming interface. Whether a column is
part of this interface is indicated in a column labeled "Use" in the table that describes the column. The
meanings of the Use column values are shown in the following table.

Use column value Meaning

G Column is part of the general-use programming interface

S Column is part of the product-sensitive interface

I Column is for internal use only

N Column is not used

For columns with N or I in the Use column, the name of the column and its description might not appear in
the explanation of the column.

For more information about programming interface information, see Programming interface information
(Introduction to Db2 for z/OS).

2334 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/notices/src/cmn/db2z_cmn_cdpi.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/notices/src/cmn/db2z_cmn_cdpi.html

Table 262. Db2 catalog tables. The qualifier for all catalog table names is SYSIBM.

Table Table space Indexes
(Type“2” on page
2347)

Description

IPLIST SYSDDF DSNDUX01 (U) Contains a row for each IP address
that corresponds to a remote DRDA
server

IPNAMES SYSDDF DSNFPX01 (UC) Contains a row for each remote DRDA
server that Db2 can access using
TCP/IP

LOCATIONS SYSDDF DSNFCX01 (UC) Contains a row for every accessible
remote server

LULIST SYSDDF DSNFLX01
DSNFLX02

Contains a row for each real LU name
that is associated with the dummy LU
name for a data sharing group

LUMODES SYSDDF DSNFMX01 (UC) Contains a row for the conversation
limit for each combination of
LU name and VTAM logon mode
description

LUNAMES SYSDDF DSNFNX01 (UC) Contains a row for each remote SNA
client or server

MODESELECT SYSDDF DSNFDX01 (UC) Contains a row for each VTAM
logon mode and combination of
authorization ID, plan name, and LU
name

SYSAUDITPOLICIES SYSTSADT DSNAPX03 (UC) Each row represents an audit policy.

SYSAUDITPOLICIES_H SYSTSADH — Not used

SYSAUTOALERTS SYSTSATS DSNALX01 (UC)
DSNALX02 (N)
DSNALX03 (N)
DSNALX04 (N)
DSNALX05 (N)
DSNALX06 (N)

Contains a row for each
recommendation from the autonomic
procedures

SYSAUTOALERTS_OUT SYSTSATX DSNALX07 (A) Contains the LOB data for
the OUTPUT column of
SYSIBM.SYSAUTOALERTS

SYSAUTORUNS_HIST SYSTSPRH DSNPHX01 (UC)
DSNPHX02 (N)
DSNPHX03 (N)

Contains a row for each execution of
an autonomic procedure.

SYSAUTORUNS_HISTOU SYSTSPHX DSNPHX04 (A) Contains the LOB data for
the OUTPUT column of
SYSIBM.SYSAUTORUNS_HIST

SYSAUTOTIMEWINDOWS SYSTSATW DSNTWX01 (UC) Contains a row for each time period
during which autonomic procedures
can be run

Appendix H. Db2 catalog tables 2335

Table 262. Db2 catalog tables. The qualifier for all catalog table names is SYSIBM. (continued)

Table Table space Indexes
(Type“2” on page
2347)

Description

SYSAUXRELS SYSTSAUX DSNOXX01 (NC)
DSNOXX02 (N)

Contains one row for each auxiliary
table for a LOB column

SYSCHECKDEP SYSTSCKD DSNSDX01 (UC) Contains one row for each reference
to a column in a table check
constraint

SYSCHECKS2 SYSTSCHX DSNCHX01 (UC) Contains one row for each table
check constraint

SYSCHECKS SYSTSCKS DSNSCX01 (UC) Contains one row for each table
check constraint

SYSCOLAUTH SYSTSFAU DSNACX01 (N)
DSNACX02 (N)
DSNACX03 (N)
DSNACX04 (N)

Records the UPDATE privileges that
are held by users on individual
columns of a table or view

SYSCOLAUTH_H SYSTSFAH — Not used

SYSCOLDIST SYSSTATS DSNTNX01 (NC) Contains cardinality, frequency, and
histogram statistics for a single
column or a column group.

SYSCOLDIST_HIST SYSHIST DSNHFX01 (N) Contains accumulated rows from
SYSCOLDIST

SYSCOLDISTSTATS SYSSTATS DSNTPX01 (NC) Contains cardinality, frequency, and
histogram statistics for a single
column or a column group. Each
partition can have 0 or more rows.

SYSCOLSTATS SYSSTATS DSNTCX01 (NC) Contains partition statistics for
selected columns. Each column
contains a row for each partition in
the table

SYSCOLUMNS SYSTSCOL DSNDCX01 (U)
DSNDCX02 (N)
DSNDCX05 (N)
DSNDCX06 (N)

Contains one row for every column of
each table and view

SYSCOLUMNS_HIST SYSHIST DSNHEX01 (N) Contains accumulated rows from
SYSCOLUMNS

SYSCONSTDEP SYSTSCON DSNCCX01 (N)
DSNCCX02 (N)

Records dependencies on check
constraints or user-defined defaults
for a column

SYSCONTEXTAUTHIDS SYSCONTX DSNCDX01 (UC)
DSNCDX02 (N)

Contains the authorization ID under
which a trusted context can be used.

SYSCONTEXTAUTHID_H SYSTSCXH — Not used

2336 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 262. Db2 catalog tables. The qualifier for all catalog table names is SYSIBM. (continued)

Table Table space Indexes
(Type“2” on page
2347)

Description

SYSCONTEXT SYSCONTX DSNCTX01 (UC)
DSNCTX02 (U)
DSNCTX03 (U)
DSNCTX04 (N)

Contains one row for each trusted
context.

SYSCONTEXT_H SYSTSCNH — Not used

SYSCONTROLS SYSTSCTL DSNCLX01 (U)
DSNCLX02 (U)
DSNCLX03 (N)
DSNCLX04 (N)
DSNCLX05 (N)

Contains one row for each row
permission and column mask.

SYSCONTROLS_DESC SYSTSCTD DSNTRX02 (A) Contains the LOB data for
the DESCRIPTOR column of
SYSIBM.SYSCONTROLS

SYSCONTROLS_DESC_H SYSTSCHD DSNTRX04 (A) Contains the LOB data for
the DESCRIPTOR column of
SYSIBM.SYSCONTROLS_H

SYSCONTROLS_RTXT SYSTSCTR DSNTRX01 (A) Contains the LOB data for
the RULETEXT column of
SYSIBM.SYSCONTROLS.

SYSCONTROLS_RTXT_H SYSTSCHR DSNTRX03 (A) Contains the LOB data for
the RULETEXT column of
SYSIBM.SYSCONTROLS_H

SYSCOPY SYSTSCPY DSNUCH01 (N)
DSNUCX01 (N)

Contains information that is needed
for recovery

SYSCTXTTRUSTATTRS SYSCONTX DSNCAX01 (UC) Contains the attributes for a given
trusted context

SYSCTXTTRUSTATTR_H SYSTSTAH Not used

SYSDATABASE SYSTSDBA DSNDDH01 (U)
DSNDDX02 (N)

Contains one row for each database,
except for database DSNDB01

SYSDATATYPES SYSTSDAT DSNODX01 (U)
DSNODX02 (U)

Contains one row for each distinct
data type

SYSDBAUTH SYSTSDBU DSNADH01 (N)
DSNADX01 (N)
DSNADH02 (N)

Records the privileges held by users
over databases

SYSDBAUTH_H SYSTSDBH — Not used

SYSDBRM SYSTSDBR DSNDBX01 (N)
DSNDBX02 (U)

Contains one row for each DBRM of
each application plan

Appendix H. Db2 catalog tables 2337

Table 262. Db2 catalog tables. The qualifier for all catalog table names is SYSIBM. (continued)

Table Table space Indexes
(Type“2” on page
2347)

Description

SYSDEPENDENCIES SYSTSDEP DSNONX01 (U)
DSNONX02 (N)

Records the dependencies between
objects

SYSDUMMY1 SYSEBCDC — Contains one row. This table is used
by SQL statements that do not use
any tables but must specify a table
name.

SYSDUMMYA SYSTSASC — Contains one row and is used
for SQL statements in which a
table reference is required, but
the contents of the table are not
important. SYSTSASC is an ASCII
table space.

SYSDUMMYE SYSEBCDC — Contains one row and is used
for SQL statements in which a
table reference is required, but
the contents of the table are not
important. SYSEBCDIC is an EBCDIC
table space.

SYSDUMMYU SYSTSUNI — Contains one row and is used
for SQL statements in which a
table reference is required, but
the contents of the table are not
important. SYSTSUNI is a UNICODE
table space.

SYSDYNQRY SYSTSDQY DSNDQX01 (U)
DSNDQX02 (UC)
DSNDQX11 (U)

Contains one row for each stabilized
dynamic query.

SYSDYNQRYDEP SYSTSDQD DSNDQX03 (N)
DSNDQX04 (N)
DSNDQX05 (N)
DSNDQX12 (N)

Records the dependencies of
stabilized dynamic queries.

SYSDYNQRY_EXPL SYSTSDQE DSNDQX08 (A) Internal use for stabilized dynamic
queries.

SYSDYNQRY_OPL SYSTSDQO DSNDQX10 (A) Internal use for stabilized dynamic
queries.

SYSDYNQRY_SHTEL SYSTSDQH DSNDQX09 (A) Internal use for stabilized dynamic
queries.

SYSDYNQRY_SPAL SYSTSDQS DSNDQX07 (A) Internal use for stabilized dynamic
queries.

SYSDYNQRY_TXTL SYSTSDQT DSNDQX06 (A) Internal use for stabilized dynamic
queries.

2338 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 262. Db2 catalog tables. The qualifier for all catalog table names is SYSIBM. (continued)

Table Table space Indexes
(Type“2” on page
2347)

Description

SYSENVIRONMENT SYSTSENV DSNOEX01 (U) Records the environment variables
when an object is created

SYSFIELDS SYSTSFLD DSNDFX01 (N) Contains one row for every column
that has a field procedure

SYSFOREIGNKEYS SYSTSFOR DSNDRH01 (N) Contains one row for every column of
every foreign key

SYSINDEXCLEANUP SYSTSIXC DSNICX01 (N) Contains time window data to control
index cleanup processing.

SYSINDEXCONTROL SYSTSICO Contains rows that specify time
windows to control the use of
memory allocated for an index.

SYSINDEXES SYSTSIXS DSNDXX01 (U)
DSNDXX02 (U)
DSNDXX03 (U)
DSNDXX04 (N)
DSNDXX07

Contains one row for every index

SYSINDEXES_RTSECT SYSTSIXR DSNDXX06 (A) Contains the LOB data for
the RTSECTION column of
SYSIBM.SYSINDEXES.

SYSINDEXES_TREE SYSTSIXT DSNDXX05 (A) Contains the LOB data for
the PARSETREE column of
SYSIBM.SYSINDEXES.

SYSINDEXES_HIST SYSHIST DSNHHX01 (NC)
DSNHHX02 (N)

Contains accumulated rows from
SYSINDEXES

SYSINDEXPART SYSTSIPT DSNDRX01 (U)
DSNDRX02 (N)
DSNDRX03 (N)

Contains one row for each
nonpartitioned index and one row for
each partition of a partitioning index
or DPSI

SYSINDEXPART_HIST SYSHIST DSNHGX01 (N) Contains accumulated rows from
SYSINDEXPART

SYSINDEXSPACESTATS SYSTSISS DSNRTX02 (U)
DSNRTX03 (N)

Contains Real-time Statistics for
index spaces.

SYSIXSPACESTATS_H SYSTSISH A history table for
temporal versioning of the
“SYSINDEXSPACESTATS catalog
table” on page 2482 table. For
more information, see “Temporal
versioning for Db2 statistics-related
catalog tables” on page 2742.

SYSINDEXSTATS SYSSTATS DSNTXX01 (UC) Contains one row for each partition
of a partitioning index or data-
partitioned secondary index (DPSI)

Appendix H. Db2 catalog tables 2339

Table 262. Db2 catalog tables. The qualifier for all catalog table names is SYSIBM. (continued)

Table Table space Indexes
(Type“2” on page
2347)

Description

SYSINDEXSTATS_HIST SYSHIST DSNHIX01 (NC) Contains accumulated rows from
SYSINDEXSTATS

SYSJARCLASS_SOURCE SYSJAUXB DSNJSX01 (A) Contains the source code for a Java
stored procedure

SYSJARCONTENTS SYSJAVA DSNJCX01 (NC) Records the classes for each JAR file
for a Java stored procedure

SYSJARDATA SYSJAUXA DSNJDX01 (A) Contains the contents of the JAR file
for each Java stored procedure

SYSJAROBJECTS SYSJAVA DSNJOX01 (UC) Records the contents of each JAR file
for a Java stored procedure

SYSJAVAOPTS SYSJAVA DSNJVX01 (UC) Records the build options for a Java
stored procedure

SYSJAVAPATHS SYSJAVA DSNJPX01 (U)
DSNJPX02 (N)

Contains the complete JAR class
resolution path, and records the
dependencies that one JAR has on
the JARs in its Java path.

SYSKEYS SYSTSKEY DSNDKX01 (U)
DSNDKX02 (N)
DSNDKX03 (U)

Contains one row for each column of
an index key

SYSKEYCOLUSE SYSTSKYC DSNCUX01 (N) Contains a row for every column in
a unique constraint (primary key or
unique key)

SYSKEYTARGETS SYSTARG DSNRKX01 (UC)
DSNRKX02 (N)

Contains one row for each key-target
participating in an extended index
definition

SYSKEYTARGETS_HIST SYSHIST DSNHKX01 (N) Contains accumulated rows from
SYSKEYTARGETS

SYSKEYTARGETSTATS SYSSTATS DSNTKX01 (U) Contains partition statistics for
selected key-targets

SYSKEYTGTDIST SYSSTATS DSNTDX01 (N) Contains one or more rows for the
first key-target of an extended index
key

SYSKEYTGTDIST_HIST SYSHIST DSNTDX02 (N) Contains accumulated rows from
SYSKEYTGTDIST

SYSKEYTGTDISTSTATS SYSSTATS DSNTSX01 (N) Contains zero or more rows per
partition for the first key-target of
a data-partitioned secondary index
(DPSI)

SYSLEVELUPDATES SYSTSLVH DSNLVX01 (N)
DSNLVX02 (N)

Contains information about the
function levels, catalog levels, and
code levels of the Db2 subsystem or
data sharing group.

2340 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 262. Db2 catalog tables. The qualifier for all catalog table names is SYSIBM. (continued)

Table Table space Indexes
(Type“2” on page
2347)

Description

SYSLOBSTATS SYSSTATS DSNLNX01 (UC) Contains one row for each LOB table
space

SYSLOBSTATS_HIST SYSHIST DSNHJX01 (NC) Contains accumulated rows from
SYSLOBSTATS

SYSOBDS “1” on page 2347 SYSALTER DSNDOB01 (N)
DSNDOB02 (N)

Contains one row for each table
space or index that can be
recovered to an image copy that was
made before the first version was
generated.

Important: Do not manipulate data
in the SYSIBM.SYSOBDS catalog
table, except at the direction of IBM
Support.

SYSOBD_AUX “1” on page 2347 SYSTSOBX DSNOB03 (A) Contains the LOB data for
the OBD_IMAGE column of
SYSIBM.SYSOBDS.

SYSOBJROLEDEP SYSROLES DSNRDX01 (UC)
DSNRDX02 (N)

Contains one row for each dependent
role

SYSPACKAGE SYSTSPKG DSNKKX01 (U)
DSNKKX02 (U)

Contains one row for each package

SYSPACKAUTH SYSTSPKA DSNKAX01 (N)
DSNKAX02 (N)
DSNKAX03 (N)

Contains the privileges that are held
by users over packages

SYSPACKAUTH_H SYSTSPKH — Not used

SYSPACKCOPY SYSTSPKC DSNPCX01 (UC)

SYSPACKDEP SYSTSPKD DSNKDX01 (N)
DSNKDX02 (N)
DSNKDX03 (N)

Records the dependencies of
packages on local tables, views,
synonyms, table spaces, indexes,
aliases, and triggers

SYSPACKLIST SYSTSPKL DSNKLX01 (N)
DSNKLX02 (U)

Contains one row for every package
list entry for a plan

SYSPACKSTMT SYSTSPKS DSNKSX01 (UC) Contains one row for every SQL
statement that belongs to a package

SYSPACKSTMT_STMB SYSTSPVR DSNKSX02 (A) Contains the LOB data for
the STMTBLOB column of
SYSIBM.SYSPACKSTMT.

SYSPACKSTMT_STMT SYSTSPKX DSNPKX01 (A) Contains the LOB data for
the STATEMENT column of
SYSIBM.SYSPACKSTMT.

Appendix H. Db2 catalog tables 2341

Table 262. Db2 catalog tables. The qualifier for all catalog table names is SYSIBM. (continued)

Table Table space Indexes
(Type“2” on page
2347)

Description

SYSPARMS SYSTSPRM DSNOPX01 (U)
DSNOPX02 (N)
DSNOPX03 (N)
DSNOPX04 (N)

Contains a row for each parameter of
a routine or a row for each column of
a table that is passed as a parameter
to a routine

SYSPENDINGDDL SYSTSPEN DSNPDX01 (N)
DSNPDX02 (N)

Contains information about which
objects have pending definition
changes. The entries exist only
during the window between when
the pending option is run and when
the utility materializes these pending
options.

SYSPENDINGDDLTEXT SYSTSPDT DSNPDX03 (A) Contains the LOB data for
the STATEMENT_TEXT column of
SYSIBM.SYSPENDINGDDL.

SYSPENDINGOBJECTS SYSTSPDO DSNPOX01 (N)
DSNPOX02 (N)
DSNPOX03 (N)

Contains name and OBID information
about the pending-CREATE objects,
whose data sets are created but
object definitions have not been
materialized to the real catalog.

SYSPKSYSTEM SYSTSPKY DSNKYX01 (N) Contain one row of system
information for each package

SYSPLAN SYSTSPLN DSNPPH01 (U) Contains one row for each
application plan

SYSPLANAUTH SYSTSPLA DSNAPH01 (N)
DSNAPX01 (N)
DSNAPX02 (N)

Records the privileges that are held
by users over application plans

SYSPLANAUTH_H SYSTSPLH — Not used

SYSPLANDEP SYSTSPLD DSNGGX01 (N)
DSNGGX05 (N)

Records the dependencies of plans
on tables, views, aliases, synonyms,
table spaces, and indexes

SYSPLSYSTEM SYSTSPLY DSNKPX01 (N) Contains one row of system
information for each plan

SYSQUERY SYSTSQRY DSNQYX01 (N)
DSNQYX02 (U)
DSNQYX03 (N)
DSNQYX04 (N)

Contains a set of queries

SYSQUERY_AUX SYSTSQRA DSNQSX01 (A) Contains the LOB data for
the STMTTEXT column of
SYSIBM.SYSQUERY

SYSQUERYOPTS SYSTSQRO DSNQPX01 (N) Contains optimization parameters for
the queries in SYSIBM.SYSQUERY.

2342 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 262. Db2 catalog tables. The qualifier for all catalog table names is SYSIBM. (continued)

Table Table space Indexes
(Type“2” on page
2347)

Description

SYSQUERYPLAN SYSTSQRP DSNQNX01 (N) Contains the plan hint information for
the queries in the SYSIBM.SYSQUERY
table

SYSQUERYPREDICATE SYSTSQRE DSNQEX01 (UC)
DSNQEX02 (N)

Contains rows that describe the
predicates within a query. Rows are
added to this table by using the BIND
QUERY command. Rows are removed
from this table by using the FREE
QUERY command.

SYSQUERYSEL SYSTSQRS — Contains rows that describe the
selectivity of predicates. Rows are
added to this table by using the BIND
QUERY command. Rows are removed
from this table by using the FREE
QUERY command.

SYSRELS SYSTSREL DSNDLX01 (N)
DSNDLX02 (N)
DSNDLX03 (N)
DSNDLX04 (U)

Contains one row for every
relationship

SYSRESAUTH SYSGPAUT DSNAGH01 (N)
DSNAGX01 (N)

Records the privileges that are held
by users over buffer pools, storage
groups, table spaces, and collections

SYSRESAUTH_H SYSTSAUH — Not used

SYSROLES SYSROLES DSNRLX01 (UC) Contains one row for each role

SYSROUTINES SYSTSROU DSNOFX01 (U)
DSNOFX02 (U)
DSNOFX03 (N)
DSNOFX04 (U)
DSNOFX05 (N)
DSNOFX06 (N)
DSNOFX07 (U)
DSNOFX08 (N)

Contains a row for every routine

SYSROUTINESTEXT SYSPLUXA DSNPLX01 (A) Contains LOB data for the column
SYSIBM.SYSROUTINES.TEXT

SYSROUTINES_TREE SYSPLUXB DSNPLX02 (A) Contains the LOB data for
the PARSETREE column of
SYSIBM.SYSROUTINES.

SYSROUTINEAUTH SYSTSRAU DSNOAX01 (N)
DSNOAX02 (U)
DSNOAX03 (N)

Records the privileges that users
hold on routines

SYSROUTINEAUTH_H SYSTSRAH — Not used

Appendix H. Db2 catalog tables 2343

Table 262. Db2 catalog tables. The qualifier for all catalog table names is SYSIBM. (continued)

Table Table space Indexes
(Type“2” on page
2347)

Description

SYSROUTINES_OPTS SYSGRTNS DSNROX01 (UC) Contains one row to record the build
options for each generated routine

SYSROUTINES_SRC SYSGRTNS DSNRSX01 (N)
DSNRSX02 (U)

Contains one or more rows for the
source code for each generated
routine

SYSSCHEMAAUTH SYSTSSCM DSNSKX01 (N)
DSNSKX02 (N)

Contains one or more rows for each
grantee of a privilege on a schema

SYSSCHEMAAUTH_H SYSTSSCH — Not used

SYSSEQUENCEAUTH SYSSEQ2 DSNWCX01 (N)
DSNWCX02 (N)
DSNWCX03 (N)

Records the privileges that users
hold on sequences

SYSSEQUENCEAUTH_H SYSTSSAH — Not used

SYSSEQUENCES SYSSEQ DSNSQX01 (U)
DSNSQX02 (UD)
DSNSQX03 (N)

Contains one row for each identity
column or user-defined sequence.

SYSSEQUENCESDEP SYSSEQ2 DSNSRX01 (N)
DSNSRX02 (N)

Records the dependencies of identity
columns on the corresponding
entries in SYSIBM.SYSSEQUENCES

SYSSESSION SYSTSSES DSNSNX02 (N) Contains session tokens that are
generated by the server and
associated session data.

SYSSESSION_EX SYSTSSNX DSNSNX04 (U)
DSNSNX05 (U)

Contains the global variable data of
LOB or array type that corresponds
to the locator stored in the
GLOBAL_VARIABLES column of
SYSSESSION table.

SYSSESSION_GV SYSTSSNL DSNSNX01 (U) Contains the LOB data for the
GLOBAL_VARIABLES column of
SYSIBM.SYSSESSION table.

SYSSESSION_DATA SYSTSSXL DSNSNX03 (U) Contains LOB data for the DATA
column of the SYSSESSION_EX table.

SYSSESSION_STATUS SYSTSSTA DSNSNX06 (U) Contains the session token
and timestamp value when the
corresponding session data was last
referenced.

SYSSTATFEEDBACK SYSTSSFB DSNSFX01 (UC) Contains one row for every missing or
conflicting statistic that is identified
during query optimization.

SYSSTMT SYSTSSTM DSNPSX01 (N)
DSNPSX02 (N)

Contains one or more rows for each
SQL statement of each DBRM

2344 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 262. Db2 catalog tables. The qualifier for all catalog table names is SYSIBM. (continued)

Table Table space Indexes
(Type“2” on page
2347)

Description

SYSSTOGROUP SYSTSSTG DSNSSH01 (U) Contains one row for each storage
group

SYSSTRINGS SYSTSSRG DSNSSX01 (U) Contains information necessary to
perform string translations

SYSSYNONYMS SYSTSSYN DSNDYX01 (U)
DSNDYX02 (N)

Contains one row for each synonym
of a table or view

SYSTABAUTH SYSTSTAU DSNATX01 (N)
DSNATX02 (N)
DSNATX03 (N)
DSNATX04 (N)
DSNATX05 (U)

Records the privileges that are held
by users on tables, views, and
triggers

SYSTABAUTH_H SYSTSTBH — Not used

SYSTABCONST SYSTSTBC DSNCNX01 (U)
DSNCNX02 (N)

Contains one row for each unique
constraint that was created in Db2
for z/OS DB2 version 7 or later

SYSTABLES SYSTSTAB DSNDTX01 (U)
DSNDTX02 (N)
DSNDTX03 (N)
DSNDTX05

Contains one row for each table,
view, and alias

SYSTABLES_HIST SYSHIST DSNHDX01 (N) Contains accumulated rows from
SYSTABLES

SYSTABLES_PROFILES SYSTSTPF DSNPRX01 (UC) Contains a row for each profile
that is associated with a table in
SYSIBM.SYSTABLES

SYSTABLES_PROFILE_TEXT SYSTSPTX DSNPRX02 (UC) Contains the LOB data for
the PROFILE_TEXT column of
SYSIBM.SYSTABLES_PROFILES

SYSTABLEPART SYSTSTPT DSNDPX01 (U)
DSNDPX02 (N)
DSNDPX03 (N)
DSNDPX04 (N)
DSNDPX05 (N)

Contains one row for each
nonpartitioned table space and one
row for each partition of a partitioned
table space

SYSTABLEPART_HIST SYSHIST DSNHCX01 (N) Contains accumulated rows from
SYSTABLEPART

SYSTABLESPACE SYSTSTSP DSNDSX01 (U) Contains one row for each table
space

SYSTABLESPACESTATS SYSTSTSS DSNRTX01 (U) Contains Real Time Statistics for
table spaces.

Appendix H. Db2 catalog tables 2345

Table 262. Db2 catalog tables. The qualifier for all catalog table names is SYSIBM. (continued)

Table Table space Indexes
(Type“2” on page
2347)

Description

SYSTABSPACESTATS_H SYSTSTSH A history table for
temporal versioning of the
“SYSTABLESPACESTATS catalog
table” on page 2699 table. For
more information, see “Temporal
versioning for Db2 statistics-related
catalog tables” on page 2742.

SYSTABSTATS SYSSTATS DSNTTX01 (U)
DSNTTX02 (N)

Contains one row for each partition of
a partitioned table space and no rows
for nonpartitioned table spaces

SYSTABSTATS_HIST SYSHIST DSNHBX01 (NC) Contains accumulated rows from
SYSTABSTATS

SYSTRIGGERS SYSTSTRG DSNOTX01 (UC)
DSNOTX02 (N)
DSNOTX03 (N)

Contains one row for each trigger

SYSTRIGGERS_STMT SYSTSTRT DSNOTX04 (A) Contains the LOB data for
the STATEMENT column of
SYSIBM.SYSTRIGGERS

SYSUSERAUTH SYSUSER DSNAUH01 (N)
DSNAUX02 (N)

Records the system privileges that
are held by users

SYSUSERAUTH_H SYSTSUAH — Not used

SYSVARIABLEAUTH SYSTSVAU DSNVAX01 (N)
DSNVAX02 (N)
DSNVAX03 (N)

Contains one row for each
authorization ID that has privileges
for each global variable.

SYSVARIABLES SYSTSVAR DSNOVX01 (U) Contains one row for each global
variable that has been created.

SYSVARIABLES_DESC SYSTSVAD DSNOVX03 (A) Contains the LOB data for
the DESCRIPTOR column of
SYSIBM.SYSVARIABLES.

SYSVARIABLES_TEXT SYSTSVAT DSNOVX02 (A) Contains the LOB data for
the DEFAULTTEXT column of
SYSIBM.SYSVARIABLES.

SYSVIEWS SYSTSVEW DSNVVX01 (U) Contains one or more rows for each
view

SYSVIEWS_STMT SYSTSVWT DSNVWX01 (A) Contains the LOB data for
the STATEMENT column of
SYSIBM.SYSVIEWS

SYSVIEWS_TREE SYSTSVTR DSNVWX02 (A) Contains the LOB data for
the PARSETREE column of
SYSIBM.SYSVIEWS

2346 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 262. Db2 catalog tables. The qualifier for all catalog table names is SYSIBM. (continued)

Table Table space Indexes
(Type“2” on page
2347)

Description

SYSVIEWDEP SYSTSVWD DSNGGX02 (N)
DSNGGX03 (N)
DSNGGX04 (N)
DSNGGX06

Records the dependencies of views
on tables and other views

SYSVIEWDEP_H SYSTSVDH — Not used.

SYSVOLUMES SYSTSVOL DSNSSH02 (N) Contains one row for each volume of
each storage group

SYSXMLRELS SYSXML DSNXRX01 (N)
DSNXRX02 (N)

Contains one row for each XML table
that is created for an XML column

SYSXMLSTRINGS SYSXML DSNXSX01 (UC)
DSNXSX02 (U)

Each row holds a single string and
its unique ID. They are used to
condense XML data. The string can
be an element name, attribute name,
name space prefix, or a name space
URI.

SYSXMLTYPMOD SYSTSXTM DSNTMX01 (U) Contains rows about the XML type
modifiers of XML columns. Rows in
this table can be inserted, updated,
and deleted.

SYSXMLTYPMSCHEMA SYSTSXTS DSNMSX01 (U)
DSNMSX02 (N)

Contain rows about XML schemas
for the XML type modifiers that
are stored in SYSXMLTYPMOD. Each
row contains one XML schema
specification for one XML type
modifier. Rows in this table can be
inserted, updated, and deleted.

USERNAMES SYSDDF DSNFEX01 (U) Contains a row for each authorization
ID to be translated or checked as it is
sent to or from this Db2

Notes:

1. Descriptions of the SYSIBM.SYSOBDS and SYSIBM.SYSOBD_AUX catalog tables are available only to
users who work in enterprises with a Db2 12 license. For more information see "Internal catalog table
formats" in Advanced diagnostic information for Db2 12 for z/OS.

2. The following index types are indicated:
A

Auxiliary
N

Nonunique
U

Unique
UC

Unique clustering

Appendix H. Db2 catalog tables 2347

http://www-01.ibm.com/support/docview.wss?uid=swg27048885

UD
Unique descending

Related concepts
Reorganizing the catalog
The REORG TABLESPACE utility can be run on all the table spaces in the catalog database (DSNDB06) to
reclaim unused or wasted space, which can affect performance.
Related reference
SQL statements allowed on the catalog
Certain SQL statements can be used to change the value of certain options for existing catalog indexes,
sequences, and table spaces, or to add indexes to any of the catalog tables.

IPLIST catalog table
The IPLIST table allows multiple IP addresses to be specified for a given LOCATION. The schema is
SYSIBM.

Insert rows into this table when you want to define a remote Db2 data sharing group. The same value for
the IPADDR column cannot appear in both the IPNAMES table and the IPLIST table. Rows in this table can
be inserted, updated, and deleted.

Table 263. SYSIBM.IPLIST table column descriptions

Column name Data type Description Use

LINKNAME VARCHAR(24)
NOT NULL

This column is associated with the value specified in
the LINKNAME column in the SYSIBM.LOCATIONS table
and the SYSIBM.IPNAMES table. The values of the other
columns in the SYSIBM.IPNAMES table apply to the
server identified by the LINKNAME column in this row.

G

IPADDR VARCHAR(254)
NOT NULL

This column contains an IPv4 or IPv6 address, or fully
qualified domain name of a remote TCP/IP host of the
server. If WLM Domain Name Server workload balancing
is used, this column must contain the member specific
domain name. If Dynamic VIPA workload balancing is
used, this column must contain the member specific
Dynamic VIPA address. The IPADDR column must be
specified as follows:

• An IPv4 address must be left justified and is
represented as a dotted decimal address. For
example, '123.456.78.912' would be interpreted as an
IPv4 address.

• An IPv6 address must be left justified
and is represented as a colon hexadecimal
address. An example of an IPv6 address
is '2001:0DB8:0000:0000:0008:0800:200C:417A',
which can also be expressed in compressed form as
'2001:DB8::8:800:200C:417A'.

• A domain name is converted to an IP address by
the domain name server where a resulting IPv4 or
IPv6 address is determined. An example fully qualified
domain name is 'stlmvs1.svl.example.com'.

G

2348 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 263. SYSIBM.IPLIST table column descriptions (continued)

Column name Data type Description Use

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

IPNAMES catalog table
The IPNAMES catalog table defines the remote DRDA servers Db2 can access using TCP/IP. The schema
is SYSIBM.

Rows in this table can be inserted, updated, and deleted.

Table 264. SYSIBM.IPNAMES table column descriptions

Column name Data type Description Use

LINKNAME VARCHAR(24)
NOT NULL

The value specified in this column must match the value
specified in the LINKNAME column of the associated
row in SYSIBM.LOCATIONS.

G

SECURITY_OUT CHAR(1)
NOT NULL
WITH DEFAULT 'A'

This column defines the DRDA security option used for
outbound connections when local Db2 SQL applications
connect to any remote server associated with this
TCP/IP host. For more information about the meanings
of these options, see SYSIBM.IPNAMES columns
(Managing Security).
A

Already verified
D

User ID with security-sensitive data encryption
E

Userid, password, and security-sensitive data
encryption

P
Password

R
RACF PassTicket

Security-sensitive data is any input or output data.
Examples are rows that are retrieved from a remote
server, rows that are sent to the remote server, and SQL
statement text.

G

Appendix H. Db2 catalog tables 2349

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_sysibmipnames4outbound.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_sysibmipnames4outbound.html

Table 264. SYSIBM.IPNAMES table column descriptions (continued)

Column name Data type Description Use

USERNAMES CHAR(1)
NOT NULL WITH
DEFAULT

This column controls outbound authorization ID
translation. Outbound translation is performed when an
authorization ID is sent by Db2 to a remote server.
O

An outbound ID is subject to translation. Rows in the
SYSIBM.USERNAMES table are used to perform ID
translation.

No translation or "come from" checking is performed
on inbound IDs.

S
Row in the SYSIBM.USERNAMES table is used to
obtain the system AUTHID used to establish a
trusted connection.

blank
No translation occurs.

The supported values depend on the
IPNAMES,SECURITY_OUT and LOCATIONS.TRUSTED
column values. For more information, see "Supported
combinations for SECURITY_OUT and USERNAMES
column values" in SYSIBM.IPNAMES columns (Managing
Security).

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators..

The value in this field is not a reliable indicator of
release dependencies.

G

IPADDR VARCHAR(254)
NOT NULL WITH
DEFAULT

This column contains an IPv4 or IPv6 address, or fully
qualified domain name of a remote TCP/IP host. The
IPADDR column must be specified as follows:

• An IPv4 address must be left justified and is
represented as a dotted decimal address. For
example, '123.456.78.91' would be interpreted as an
IPv4 address.

• An IPv6 address must be left justified
and is represented as a colon hexadecimal
address. An example of an IPv6 address
is '2001:0DB8:0000:0000:0008:0800:200C:417A',
which can also be expressed in compressed form as
'2001:DB8::8:800:200C:417A'.

• A domain name is converted to an IP address by
the domain name server where a resulting IPv4 or
IPv6 address is determined. An example fully qualified
domain name is 'stlmvs1.svl.example.com'.

G

Related concepts
SYSIBM.IPNAMES (Db2 Data Sharing Planning and Administration)

2350 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_sysibmipnames4outbound.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_sysibmipnames4outbound.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/dshare/src/tpc/db2z_sysibmipnamesds.html

Related tasks
Establishing remote trusted connections by Db2 for z/OS requesters (Managing Security)
Related reference
SYSIBM.IPNAMES columns (Managing Security)

LOCATIONS catalog table
The LOCATIONS catalog table contains a row for every accessible remote server. The schema is SYSIBM.
The row associates a LOCATION name with the TCP/IP or SNA network attributes for the remote server.
Requesters are not defined in this table.

Rows in this table can be inserted, updated, and deleted.

Table 265. SYSIBM.LOCATIONS table column descriptions

Column name Data type Description Use

LOCATION VARCHAR(128)
NOT NULL

A unique location name for the accessible server. This is
the name by which the remote server is known to local
Db2 SQL applications.

G

LINKNAME VARCHAR(24)
NOT NULL

Identifies the VTAM or TCP/IP attributes associated with
this location. For any LINKNAME specified, one or both
of the following statements must be true:

• A row exists in SYSIBM.LUNAMES whose
LUNAME matches the value specified in the
SYSIBM.LOCATIONS LINKNAME column. This row
specifies the VTAM communication attributes for the
remote location.

• A row exists in SYSIBM.IPNAMES whose
LINKNAME matches the value specified in the
SYSIBM.LOCATIONS LINKNAME column. This row
specifies the TCP/IP communication attributes for the
remote location.

For accelerators that are defined with an alias
(logical name), specify a LINKNAME value of
DSNACCELERATORALIAS.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

Appendix H. Db2 catalog tables 2351

https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_createremotetrustedreq.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_sysibmipnames4outbound.html

Table 265. SYSIBM.LOCATIONS table column descriptions (continued)

Column name Data type Description Use

PORT VARCHAR(96)
NOT NULL WITH
DEFAULT

TCP/IP is used for outbound DRDA connections when
the following statement is true:

• A row exists in SYSIBM.IPNAMES, where the
LINKNAME column matches the value specified in the
SYSIBM.LOCATIONS LINKNAME column.

If the above mentioned row is found, the value of the
PORT column is interpreted as follows:

• If PORT is blank, the default DRDA port (446) is used.
• If PORT is nonblank, the value specified for PORT can

take one of two forms:

– If the value in PORT is left justified with 1-5 numeric
characters, the value is assumed to be the TCP/IP
port number of the remote database server.

– Any other value is assumed to be a TCP/IP service
name, which can be converted to a TCP/IP port
number using the TCP/IP getservbyname socket
call. TCP/IP service names are not case sensitive.

G

TPN VARCHAR(192)
NOT NULL WITH
DEFAULT

Used only when the local Db2 begins an SNA
conversation with another server. When used, TPN
indicates the SNA LU 6.2 transaction program name
(TPN) that will allocate the conversation. A length of
zero for the column indicates the default TPN. For
DRDA conversations, this is the DRDA default, which is
X'07F6C4C2'. For Db2 private protocol conversations,
this column is not used.

When the server is Db2 Server for VSE & VM, TPN should
contain the resource ID of that machine.

G

DBALIAS VARCHAR(128)
NOT NULL

Database alias. The name associated with the server.
This name is used to access a remote database server.
If DBALIAS is blank, the location name is used to
access the remote database server. This column does
not change the name of any database objects sent to the
remote site that contains the location qualifier.

This column applies only to DRDA connections.

For information about accelerators that are defined with
an alias, see Using an alias for an accelerator (Db2
Performance).

G

TRUSTED CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Indicates whether the connection to the remote server
can be trusted. This is restricted to TCP/IP only. This
column is ignored for connections using SNA.
Y

Location is trusted. Access to the remote location
requires trusted context defined at the remote
location.

N
Location is not trusted.

G

2352 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_acceleratoralias.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/idaa/src/tpc/db2z_acceleratoralias.html

Table 265. SYSIBM.LOCATIONS table column descriptions (continued)

Column name Data type Description Use

SECURE CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Indicates the use of the Secure Socket Layer (SSL)
protocol for outbound DRDA connections when local
Db2 applications connects to the remote database
server using TCP/IP.
Y

Indicates a secure connection using SSL is required
for the outbound DRDA connection.

N
Indicates a secure connection is not required for the
outbound DRDA connection.

G

LULIST catalog table
The LULIST catalog table allows multiple LU names to be specified for a given LOCATION. The schema is
SYSIBM.

Insert rows into this table when you want to define a remote Db2 data sharing group. The same value for
LUNAME column cannot appear in both the SYSIBM.LUNAMES table and the SYSIBM.LULIST table. Rows
in this table can be inserted, updated, and deleted.

Table 266. SYSIBM.LULIST table column descriptions

Column name Data type Description Use

LINKNAME VARCHAR(24)
NOT NULL

The value of the LINKNAME column in the
SYSIBM.LOCATIONS table with which this row is
associated. This is also the value of the LUNAME column
in the SYSIBM.LUNAMES table. The values of the other
columns in the SYSIBM.LUNAMES row apply to the
LU identified by the LUNAME column in this row of
SYSIBM.LULIST.

G

LUNAME VARCHAR(24)
NOT NULL

The VTAM logical unit name (LUNAME) of the remote
database system. This LUNAME must not exist in the
LUNAME column of SYSIBM.LUNAMES.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

LUMODES catalog table
Each row of the LUMODES table provides VTAM with conversation limits for a specific combination
of LUNAME and MODENAME. The schema is SYSIBM. The table is accessed only during the initial
conversation limit negotiation between Db2 and a remote LU. This negotiation is called change-number-
of-sessions (CNOS) processing.

Rows in this table can be inserted, updated, and deleted.

Appendix H. Db2 catalog tables 2353

Table 267. SYSIBM.LUMODES table column descriptions

Column name Data type Description Use

LUNAME VARCHAR(24)
NOT NULL

LU name of the server involved in the CNOS processing. G

MODENAME VARCHAR(24)
NOT NULL

Name of a logon mode description in the VTAM logon
mode table.

G

CONVLIMIT SMALLINT
NOT NULL

Maximum number of active conversations between the
local Db2 and the other system for this mode. Used to
override the number in the DSESLIM parameter of the
VTAM APPL definition statement for this mode.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

LUNAMES catalog table
The LUNAMES table must contain a row for each remote SNA client or server that communicates with
Db2. The schema is SYSIBM.

Rows in this table can be inserted, updated, and deleted.

Table 268. SYSIBM.LUNAMES table column descriptions

Column name Data type Description Use

LUNAME VARCHAR(24)
NOT NULL

Name of the LU for one or more accessible systems. A
blank string indicates the row applies to clients whose
LU name is not specifically defined in this table.

All other column values for a given row in this table
are for clients and servers associated with the row's LU
name.

G

SYSMODENAME VARCHAR(24)
NOT NULL
WITH DEFAULT

Mode used to establish inter-system conversations.
A blank indicates the default mode IBMDB2LM (Db2
private protocol access and for collecting sysplex
balancing information from remote data sharing groups).

If private protocols are used to access a remote Db2 LU
or if the remote LU is a member of a Db2 data sharing
group, use a separate mode other than the default
mode.

G

2354 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 268. SYSIBM.LUNAMES table column descriptions (continued)

Column name Data type Description Use

SECURITY_IN CHAR(1)
NOT NULL WITH
DEFAULT 'A'

This column defines the security options that are
accepted by this Db2 when an SNA client connects to
Db2:
V

The option is "verify". An incoming connection
request must include one of the following: a userid
and password, a userid and RACF PassTicket, or a
Kerberos security ticket.

A
The option is "already verified". A request does not
need a password, although a password is checked if
it is sent.

With this option, an incoming connection request
is accepted if it includes any of the following: a
userid, a userid and password, a userid and RACF
PassTicket, or a Kerberos security ticket.

If the USERNAMES column contains 'I' or 'B', RACF
is not invoked to validate incoming connection
requests that contain only a userid unless one of the
following situations is true:

• The RACF access control authorization exit
(DSNX@XAC) is enabled

• The IBM supplied RACF SECLABEL resource class
is active.

G

Appendix H. Db2 catalog tables 2355

Table 268. SYSIBM.LUNAMES table column descriptions (continued)

Column name Data type Description Use

SECURITY_OUT CHAR(1)
NOT NULL WITH
DEFAULT 'A'

This column defines the security option that is used
when local Db2 SQL applications connect to any remote
server associated with this LUNAME:
A

The option is "already verified". Outbound
connection requests contain an authorization ID and
no password.

The authorization ID used for an outbound request is
either the Db2 user's authorization ID or a translated
ID, depending upon the value of the USERNAMES
column.

R
The option is "RACF PassTicket". Outbound
connection requests contain a userid and a RACF
PassTicket. The server's LU name is used as the
RACF PassTicket application name.

The authorization ID used for an outbound request is
either the Db2 user's authorization ID or a translated
ID, depending upon the value of the USERNAMES
column.

P
The option is "password". Outbound connection
requests contain an authorization ID and a
password. The password is obtained from the
SYSIBM.USERNAMES table or RACF, depending
upon the value specified in the ENCRYPTPSWDS
column.

The USERNAMES column must specify 'B' or 'O'.

G

ENCRYPTPSWDS CHAR(1)
NOT NULL WITH
DEFAULT 'N'

This column only applies to Db2 for z/OS partners. It is
provided to support connectivity to prior releases of Db2
that are unable to support RACF PassTickets.

For connections between Version 5 and later,
use the SECURITY_OUT='R' option instead of the
ENCRYPTPSWDS='Y' option.
N

No, passwords are not in internal RACF encrypted
format. This is the default.

Y
Yes for outbound requests, the encrypted password
is extracted from RACF and sent to the server.
For inbound requests, the password is treated as
encrypted.

G

2356 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 268. SYSIBM.LUNAMES table column descriptions (continued)

Column name Data type Description Use

MODESELECT CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Whether to use the SYBIBM.MODESELECT table:
N

Use default modes: IBMDB2LM (for Db2 private
protocol) and IBMRDB (for DRDA).

Y
Searches SYSIBM.MODESELECT for appropriate
mode name.

G

USERNAMES CHAR(1)
NOT NULL WITH
DEFAULT

This column controls inbound and outbound
authorization ID translation, and "come from" checking.

Inbound translation and "come from" checking are
performed when an authorization ID is received from a
remote client.

Outbound translation is performed when an
authorization ID is sent by Db2 to a remote server.

When 'I', 'O', or 'B' is specified in this column, rows in
the SYSIBM.USERNAMES table are used to perform ID
translation.
I

An inbound ID is subject to translation and "come
from" checking.

No translation is performed on outbound IDs.

O
No translation or "come from" checking is performed
on inbound IDs.

An outbound ID is subject to translation.

B
An inbound ID is subject to translation and "come
from" checking.

An outbound ID is subject to translation.

blank
No translation occurs.

G

GENERIC CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Indicates whether Db2 should use its real LU name or
generic LU name to identify itself to the partner LU,
which is identified by this row.
N

The real VTAM LU name of this Db2 subsystem
Y

The VTAM generic LU name of this Db2 subsystem

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

Appendix H. Db2 catalog tables 2357

MODESELECT catalog table
The MODESELECT catalog table associates a mode name with any conversation created to support
an outgoing SQL request. The schema is SYSIBM. Each row represents one or more combinations of
LUNAME, authorization ID, and application plan name.

Rows in this table can be inserted, updated, and deleted.

Table 269. SYSIBM.MODESELECT table column descriptions

Column name Data type Description Use

AUTHID VARCHAR(128)
NOT NULL
WITH DEFAULT

Authorization ID of the SQL request. Blank (the default)
indicates that the MODENAME specified for the row is to
apply to all authorization IDs.

G

PLANNAME VARCHAR(24)
NOT NULL
WITH DEFAULT

Plan name associated with the SQL request. Blank (the
default) indicates that the MODENAME specified for the
row is to apply to all plan names.

G

LUNAME VARCHAR(24)
NOT NULL

LU name associated with the SQL request. G

MODENAME VARCHAR(24)
NOT NULL

Name of the logon mode in the VTAM logon mode table
to be used in support of the outgoing SQL request.
If blank, IBMDB2LM is used for Db2 private protocol
connections and IBMRDB is used for DRDA connections.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

SYSAUDITPOLICIES catalog table
The SYSAUDITPOLICIES table contains one row for each audit policy. The schema is SYSIBM.

A user with SECADM authority has the privilege to select from, insert, update, or delete from this catalog
table. A user with SQLADM, system DBADM, DATAACCESS, ACCESSCTRL, SYSCTRL or SYSADM authority
has the privilege to select from this catalog table.

If a view is created on this catalog table, the DATAACCESS authority can perform insert, update, and
delete on the view to indirectly insert, update, and delete on the catalog table.

Table 270. SYSIBM.SYSAUDITPOLICIES table column descriptions

Column name Data type Description Use

AUDITPOLICYNAME VARCHAR(128)
NOT NULL

Name of the audit policy. The name must be an
identifier of 1 to 128 characters and must begin with
a letter. Any other values result in an error being
returned when audit policy is started.

G

OBJECTSCHEMA VARCHAR(128)
NOT NULL
WITH DEFAULT

Schema of the audited object. The object schema only
applies to categories, OBJMAINT and EXECUTE.

G

2358 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 270. SYSIBM.SYSAUDITPOLICIES table column descriptions (continued)

Column name Data type Description Use

OBJECTNAME VARCHAR(128)
NOT NULL
WITH DEFAULT

Name of the object. The object name only applies
to categories, OBJMAINT and EXECUTE. Object name
can be specified using an SQL LIKE predicate. If
the object name is specified using an SQL LIKE
predicate, it has to be specified as a delimited
identifier. The escape character to be used for
the SQL LIKE predicate is obtained from RGFESCP
subsystem parameter. If not specified, the default
escape character is '+'.

G

OBJECTTYPE CHAR(1)
NOT NULL
WITH DEFAULT

Type of the object.
C

Clone table
P

Implicit table created for XML columns
T

Table
blank

All of the above object types
All other values

Error when audit policy is started

The object type only applies to categories, OBJMAINT
and EXECUTE

G

CREATEDTS TIMESTAMP
NOT NULL
WITH DEFAULT

The time when the row was inserted. G

ALTEREDTS TIMESTAMP
NOT NULL
WITH DEFAULT

The time when the row was last updated. G

CHECKING CHAR(1)
NOT NULL
WITH DEFAULT

Indicates if authorization and authentication failures
are audited:
A

Audit all failures (Authorization and authentication
failures)

blank
Audit none

All other values
Error when audit policy is started

G

Appendix H. Db2 catalog tables 2359

Table 270. SYSIBM.SYSAUDITPOLICIES table column descriptions (continued)

Column name Data type Description Use

VALIDATE CHAR(1)
NOT NULL
WITH DEFAULT

Indicates if auditing is enabled for when a trusted
connection is established or used by a different user:
A

Audit all
blank

Audit none
All other values

Error when audit policy is started

G

OBJMAINT CHAR(1)
NOT NULL
WITH DEFAULT

Indicates if auditing is enabled for when the table that
is identified by OBJECTSCHEMA, OBJECTNAME, and
OBJECTTYPE columns is altered or dropped:
A

Audit when the specified table is altered or
dropped

blank
Audit none

All other values
Error when audit policy is started

G

EXECUTE CHAR(1)
NOT NULL
WITH DEFAULT

Indicates the type of auditing that is performed.
Auditing is done for every unique operation on a table
by an SQL statement with a unique statement ID.
The table on which the SQL statement operates is
identified by the OBJECTSCHEMA, OBJECTNAME, and
OBJECTTYPE columns.
A

Audit when an operation of any kind is performed
on the table during a utility or application process.

C
Audit when an insert, update, or delete operation
is performed on the table during a utility or
application process.

blank
No auditing is done.

All other values
An error occurs when the audit policy is started.

G

CONTEXT CHAR(1)
NOT NULL
WITH DEFAULT

Indicates if auditing is enabled for the start of a utility,
a change to a utility object or phase, and the end of
utility:
A

Audit all utilities
blank

Audit none
All other values

Error when audit policy is started

G

2360 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 270. SYSIBM.SYSAUDITPOLICIES table column descriptions (continued)

Column name Data type Description Use

SECMAINT CHAR(1)
NOT NULL
WITH DEFAULT

Indicates if auditing is enabled for when a grant or
revoke is made or a trusted context is created or
altered:
A

Audit all
blank

Audit none
All other values

Error when audit policy is started

G

SYSADMIN VARCHAR(128)
NOT NULL
WITH DEFAULT

Indicates if auditing is enabled for when an operation
is performed using an administrative authority to
perform system administration tasks:
blank

Audit none
*

Audit all the authorities
I

Installation SYSADM
L

SYSCTRL
O

SYSOPR
R

Installation SYSOPR
S

SYSADM
All other values

Error when audit policy is started
The value of SYSADMIN can be a concatenated
string of all supported values. For example, 'LOS'
would indicate auditing of any operation that
is performed using the administrative authorities:
SYSCTRL, SYSOPR, and SYSADM. Multiple occurrences
of a value are ignored.

G

Appendix H. Db2 catalog tables 2361

Table 270. SYSIBM.SYSAUDITPOLICIES table column descriptions (continued)

Column name Data type Description Use

DBADMIN VARCHAR(128)
NOT NULL
WITH DEFAULT

Indicates if auditing is enabled for when an operation
is performed using an administrative authority to
perform database administration tasks:
blank

Audit none
*

Audit all the authorities
B

System DBADM
C

DBCTRL
D

DBADM
E

SECADM
G

ACCESSCTRL
K

SQLADM
M

DBMAINT
P

PACKADM
T

DATAACCESS
All other values

Error when audit policy is started
The value of DBADMIN can be a concatenated string
of all supported values. For example, 'BMP' would
indicate auditing of any operation that is performed
using the administrative authorities: System DBADM,
DBMAINT, and PACKADM. Multiple occurrences of a
value are ignored.

G

DBNAME VARCHAR(24)
NOT NULL
WITH DEFAULT

Database name. The database name can be used to
specify the database for auditing DBADM, DBCTRL,
and DBMAINT authorities. If the database name
is not specified, then all the databases, including
implicit databases are audited. If the database name
is specified, it only applies to DBADM, DBCTRL, and
DBMAINT authorities in category, DBADMIN.

G

COLLID VARCHAR(128)
NOT NULL
WITH DEFAULT

Name of the package collection. The package
collection can be used to specify the collection
name for auditing PACKADM authority. If specified,
all packages in that collection are audited. If the
collection name is not specified, packages in all
collections are audited. If the package collection is
specified, it only applies to PACKADM authority in
category, DBADMIN.

G

2362 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 270. SYSIBM.SYSAUDITPOLICIES table column descriptions (continued)

Column name Data type Description Use

DB2START CHAR(1)
NOT NULL
WITH DEFAULT

Indicates if audit policies are to be started
automatically during Db2 start up. Up to 8 audit
policies can be specified.
Y

Audit policy will be started automatically during
Db2 startup.

S
Audit policy will be started automatically during
Db2 startup. The audit policy can be stopped only
by a user with SECADM authority.

T
FL 509 Audit policy will be started automatically
during Db2 startup. The audit policy can be
modified or stopped only by a user with the
required permit to the audit policy profile in an
external security product, such as RACF.

N
Audit policy will not be started automatically
during Db2 startup.

All other values
Error when audit policy is started

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values, see
Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

SYS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW BEGIN

Reserved for future IBM use.The row-begin column
of the SYSTEM_TIME period, for system-period data
versioning.

G

SYS_END TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW END

Reserved for future IBM use.The row-end column
of the SYSTEM_TIME period, for system-period data
versioning.

G

TRANS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS TRANSACTION
START ID

Reserved for future IBM use. G

Appendix H. Db2 catalog tables 2363

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html

SYSAUTOALERTS catalog table
The SYSAUTOALERTS table contains one row for each recommendation from autonomic procedures. The
schema is SYSIBM.

Table 271. SYSIBM.SYSAUTOALERTS table column descriptions

Column name Data type Description Use

ALERT_ID BIGINT
NOT NULL
GENERATED ALWAYS
AS IDENTITY

The ID of the alert described in this row. G

HISTORY_ENTRY_ID BIGINT
NOT NULL

The ID of the entry in the
ADMIN_UTLPROCEDURES_HIST procedure that
produced this alert.

G

ACTION VARCHAR(32)
NOT NULL

The type of action requested by this alert. G

TARGET_QUALIFIER VARCHAR(128)
NOT NULL

The qualifier name of the Db2 object (the database
name) to which this alert applies.

G

TARGET_OBJECT VARCHAR(128)
NOT NULL

The name of the Db2 object (the table space name) to
which this alert applies.

G

TARGET_PARTITION SMALLINT
NOT NULL

The partition number of the Db2 object to which this
alert applies. Zero, if this alert applies to all partitions or
if the object is not partitioned.

G

OPTIONS VARCHAR(4000) The options that should be specified when the
corresponding action is run:
USE PROFILE

Use the options specified in the profile
TABLE

Options only apply for this table
COLUMNS

Options only apply for these columns
SAMPLE

The table space is too big and sampling is allowed

G

CREATEDTS TIMESTAMP
NOT NULL
WITH DEFAULT

The timestamp when the alert was issued. G

DURATION INTEGER An estimate of the time, in seconds, that would be
needed to run the corresponding action.

If this column contains NULL, the execution plan might
overwrite the time window.

G

2364 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 271. SYSIBM.SYSAUTOALERTS table column descriptions (continued)

Column name Data type Description Use

STATUS VARCHAR(32) The status of the actual planned task. Valid values are:
OPEN

The alert is not yet resolved
INPROGRESS

The alert execution is in progress
COMPLETED

The alert execution is complete

G

STARTTS TIMESTAMP The timestamp for when the alert execution started. This
column contains NULL if the task execution has not yet
started.

G

ENDTS TIMESTAMP The timestamp for when the alert execution ended. This
column contains NULL if the task execution has not yet
ended.

G

RETURN_CODE INTEGER The return code that is written directly by the autonomic
stored procedure that resolved the alert. This column
contains NULL if the alert is not yet resolved, if the
autonomic stored procedure failed, or if the autonomic
stored procedure does not write any return code. A
RETURN_CODE of 0 is expected in case of a successful
execution.

G

ERROR_MESSAGE VARCHAR(1331) An error message that indicates why the alert was not
resolved successfully. This column contains NULL if the
alert is not yet resolved, or if the autonomic stored
procedure that executes the alert does not write any
error message. No ERROR_MESSAGE text is expected in
case of a successful execution.

G

OUTPUT CLOB(2M) The output that is written directly by the autonomic
stored procedure that executes the planned task. This
column contains NULL if the task is not yet executed,
if the execution failed, or if the autonomic stored
procedure does not write any output.

G

ROWID ROWID
NOT NULL
GENERATED ALWAYS

The ROWID value for the CLOB column of this table. G

SYSAUTOALERTS_OUT catalog table
The SYSAUTOALERTS_OUT catalog table is an auxiliary table for the OUTPUT column of the
SYSAUTOALERTS catalog table. The schema is SYSIBM.

Table 272. SYSIBM.SYSAUTOALERTS_OUT table column descriptions

Column name Data type Description Use

OUTPUT CLOB(2M) The output of the autonomic stored procedure. G

Appendix H. Db2 catalog tables 2365

SYSAUTORUNS_HIST catalog table
The SYSAUTORUNS_HIST table contains one row for each time an autonomic procedures has been run.
The schema is SYSIBM.

Table 273. SYSIBM.SYSAUTORUNS_HIST table column descriptions

Column name Data type Description Use

HISTORY_ENTRY_ID BIGINT
NOT NULL
GENERATED ALWAYS
AS IDENTITY

The ID of the entry in the history table. G

PROC_NAME VARCHAR(128)
 NOT NULL

The name of the autonomic stored procedure that
produced this entry.

G

STARTTS TIMESTAMP The timestamp when the autonomic stored procedure
started.

G

ENDTS TIMESTAMP The timestamp when the autonomic stored procedure
ended.

G

OUTPUT CLOB(2M) The output of the autonomic stored procedure. G

ERROR_MESSAGE VARCHAR(1331) An error message that indicates why the
autonomic stored procedure was not successful. No
ERROR_MESSAGE text is expected in case of a
successful execution.

G

RETURN_CODE INTEGER The return code written directly by the autonomic stored
procedure. This column contains NULL if the autonomic
stored procedure execution failed, or if the autonomic
stored procedure does not write any return code. A
RETURN_CODE of 0 is expected in case of a successful
execution.

G

ROWID ROWID
NOT NULL
GENERATED ALWAYS

The ROWID value for the OUTPUT column of this table. G

SYSAUTORUNS_HISTOU catalog table
The SYSAUTORUNS_HISTOU catalog table is an auxiliary table for the OUTPUT column of the
SYSIBM.SYSAUTORUNS_HIST table. The schema is SYSIBM.

Table 274. SYSIBM.SYSAUTORUNS_HISTOU table column descriptions

Column name Data type Description Use

OUTPUT CLOB(2M) The output of the autonomic stored procedure. G

2366 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SYSAUTOTIMEWINDOWS catalog table
The SYSAUTOTIMEWINDOWS table contains one row for each time period during which autonomic
procedures can be run. The schema is SYSIBM.

Table 275. SYSIBM.SYSAUTOTIMEWINDOWS table column descriptions

Column name Data type Description Use

WINDOW_ID BIGINT
NOT NULL
GENERATED ALWAYS
AS IDENTITY

The ID of the time window described in this row. G

DB2_SSID CHAR(4) The Db2 member name on which the planned tasks have
to be run.

If this column contains NULL, the tasks in this time
window can be run on any Db2 member.

G

MONTH_WEEK CHAR(1)
NOT NULL

Indicates how the value of the DAY column is
interpreted:
M

The value of the DAY column is interpreted as a day
of the month

W
The value of the DAY column is interpreted as a day
of the week

G

MONTH INTEGER Month in which the time window applies. The value will
be from 1 (January) to 12 (December).

If this column contains NULL, the time window applies to
all months. If MONTH_WEEK is 'W', this column must be
NULL.

G

DAY INTEGER Day of the month or day of the week for which the
time window applies. If this column contains NULL, the
time window applies to every day of the month or to
every day of the week (depending on the value of the
MONTH_WEEK column).

G

FROM_TIME TIME The time of day at which the time window begins.

If this column contains NULL, no limitation on the time
exists. This column will contain NULL if the TO_TIME
column contains NULL.

G

TO_TIME TIME The time of day at which the time window ends.

If this column contains NULL, no limitation on the time
exists. This column will contain NULL if the FROM_TIME
column contains NULL.

G

ACTION VARCHAR(256) The comma-separated list of actions that are allowed
during this time window.

If this column contains NULL, all actions are allowed.

G

Appendix H. Db2 catalog tables 2367

Table 275. SYSIBM.SYSAUTOTIMEWINDOWS table column descriptions (continued)

Column name Data type Description Use

MAX_TASKS INTEGER The number of concurrent actions that are allowed
during this time window.

If this column contains NULL, any number of actions are
allowed concurrently.

G

SYSAUXRELS catalog table
The SYSAUXRELS table contains one row for each auxiliary table created for a LOB column. A base table
space that is partitioned must have one auxiliary table for each partition of each LOB column. The schema
is SYSIBM.

Table 276. SYSIBM.SYSAUXRELS table column descriptions

Column name Data type Description Use

TBOWNER VARCHAR(128)
NOT NULL

The schema of the base table. G

TBNAME VARCHAR(128)
NOT NULL

Name of the base table. G

COLNAME VARCHAR(128)
NOT NULL

Name of the LOB column in the base table. G

PARTITION SMALLINT
NOT NULL

Partition number if the base table space is partitioned.
Otherwise, the value is 0.

G

AUXTBOWNER VARCHAR(128)
NOT NULL

The schema of the auxiliary table. G

AUXTBNAME VARCHAR(128)
NOT NULL

Name of the auxiliary table. G

AUXRELOBID INTEGER
NOT NULL

Internal identifier of the relationship between the base
table and the auxiliary table.

S

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object.
Blank if created prior to Version 9. See Release
dependency indicators for all other values.

G

2368 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SYSCHECKDEP catalog table
The SYSCHECKDEP table contains one row for each reference to a column in a check constraint. The
schema is SYSIBM.

Table 277. SYSIBM.SYSCHECKDEP table column descriptions

Column name Data type Description Use

TBOWNER VARCHAR(128)
NOT NULL

The schema of the table on which the check constraint
is defined.

G

TBNAME VARCHAR(128)
NOT NULL

Name of the table on which the check constraint is
defined.

G

CHECKNAME VARCHAR(128)
NOT NULL

Name of the check constraint. G

COLNAME VARCHAR(128)
NOT NULL

Name of the column that the check constraint refers to. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

SYSCHECKS catalog table
The SYSIBM.SYSCHECKS table contains one row for each check constraint. The schema is SYSIBM.

Table 278. SYSIBM.SYSCHECKS table column descriptions

Column name Data type Description Use

TBOWNER VARCHAR(128)
NOT NULL

The schema of the table on which the check constraint
is defined.

G

CREATOR VARCHAR(128)
NOT NULL

Authorization ID of the creator of the check constraint. G

DBID SMALLINT
NOT NULL

Internal identifier of the database for the check
constraint.

S

OBID SMALLINT
NOT NULL

Internal identifier of the check constraint. S

TIMESTAMP TIMESTAMP
NOT NULL

Time when the check constraint was created. G

RBA CHAR(10)
NOT NULL
FOR BIT DATA

The log RBA when the check constraint was created. G

Appendix H. Db2 catalog tables 2369

Table 278. SYSIBM.SYSCHECKS table column descriptions (continued)

Column name Data type Description Use

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

G

TBNAME VARCHAR(128)
NOT NULL

Name of the table on which the check constraint is
defined.

G

CHECKNAME VARCHAR(128)
NOT NULL

Check constraint name. G

CHECKCONDITION VARCHAR(7400)
NOT NULL

Text of the check constraint. G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object.
Blank if created prior to Version 9. See Release
dependency indicators for all other values.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

ENVID INTEGER
NOT NULL
WITH DEFAULT

Internal environment identifier. G

PERIOD CHAR(1)
NOT NULL
WITH DEFAULT

The type of period associated with the check constraint:
B

BUSINESS_TIME check constraint
blank

Not applicable

G

SYSCHECKS2 catalog table
The SYSCHECKS2 table contains one row for each check constraint for catalog tables created in or after
Version 7. The schema is SYSIBM. Check constraints for catalog tables created before Version 7 are not
included in this table.

Table 279. SYSIBM.SYSCHECKS2 table column descriptions

Column name Data type Description Use

TBOWNER VARCHAR(128)
NOT NULL

The schema of the table on which the check constraint
is defined.

G

TBNAME VARCHAR(128)
NOT NULL

Name of the table on which the check constraint is
defined.

G

CHECKNAME VARCHAR(128)
NOT NULL

Check constraint name. G

2370 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 279. SYSIBM.SYSCHECKS2 table column descriptions (continued)

Column name Data type Description Use

PATHSCHEMAS VARCHAR(2048)
NOT NULL

SQL path at the time the check constraint was created.
The path is used to resolve unqualified cast function
names that are used in the constraint definition.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object.
Blank if created prior to Version 9. See Release
dependency indicators for all other values.

G

SYSCOLAUTH catalog table
The SYSCOLAUTH table records the UPDATE or REFERENCES privileges that are held by users on
individual columns of a table or view. The schema is SYSIBM.

Column name Data type Description Use

GRANTOR VARCHAR(128)
NOT NULL

Authorization ID or role of the user who granted the
privileges. Could also be PUBLIC.

G

GRANTEE VARCHAR(128)
NOT NULL

Authorization ID or role of the user who holds the
privilege or the name of an application plan or package
that uses the privilege. PUBLIC for a grant to PUBLIC.

G

GRANTEETYPE CHAR(1)
NOT NULL

Type of grantee:
blank

An authorization ID
L

Role
P

An application plan or a package. The grantee is a
package if COLLID is not blank.

G

CREATOR VARCHAR(128)
NOT NULL

The schema of the table or view on which the update
privilege is held.

G

TNAME VARCHAR(128)
NOT NULL

Name of the table or view. G

— CHAR(12)
NOT NULL

Internal use only. I

DATEGRANTED CHAR(6)
NOT NULL

Not used. N

Appendix H. Db2 catalog tables 2371

Column name Data type Description Use

TIMEGRANTED CHAR(8)
NOT NULL

Not used. N

COLNAME VARCHAR(128)
NOT NULL

Name of the column to which the UPDATE privilege
applies.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values, see
Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

LOCATION VARCHAR(128)
NOT NULL WITH
DEFAULT

Not used. N

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

If GRANTEE is a package, its collection name.
Otherwise, the value is blank.

G

CONTOKEN CHAR(8)
NOT NULL
WITH DEFAULT
FOR BIT DATA

If GRANTEE is a package, the consistency token
of the DBRM from which the package was derived.
Otherwise, the value is blank.

S

PRIVILEGE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates which privilege this row describes:
R

Row pertains to the REFERENCES privilege.
blank

Row pertains to the UPDATE privilege.

G

GRANTEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the GRANT statement was executed. G

GRANTORTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantor:
L

Role
blank

Authorization ID that is not a role

G

SYS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW BEGIN

Reserved for future IBM use.The row-begin column
of the SYSTEM_TIME period, for system-period data
versioning.

G

SYS_END TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW END

Reserved for future IBM use.The row-end column
of the SYSTEM_TIME period, for system-period data
versioning.

G

2372 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

TRANS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS TRANSACTION
START ID

Reserved for future IBM use. G

SYSCOLDIST catalog table
The SYSCOLDIST catalog table contains one or more rows for the cardinality, frequency, and histogram
statistics for a single column or a column group. The schema is SYSIBM.

Rows in this table can be inserted, updated, and deleted.

Important: Use care when issuing SQL statements or using tools to update statistics values in catalog
tables. If such updates introduce invalid data, unpredictable results can occur, including abends for
RUNSTATS and other utilities. If such problems occur, you can run the RUNSTATS utility and collect
statistics at the table space level to resolve the problems, in most cases.

Column name Data type Description Use

FREQUENCY SMALLINT
NOT NULL

Not used. N

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The default
value is '0001-01-01-00.00.00.000000'. The default
value indicates that statistics were not collected. This
column can be updated.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

TBOWNER VARCHAR(128)
NOT NULL

The schema of the table that contains the column. G

TBNAME VARCHAR(128)
NOT NULL

Name of the table that contains the column. G

NAME VARCHAR(128)
NOT NULL

Name of the column. If NUMCOLUMNS is greater than 1,
this name identifies the first column name of the set of
columns associated with the statistics.

G

COLVALUE VARCHAR(2000)
NOT NULL
FOR BIT DATA

Contains the data of a frequently occurring value.
Statistics are not collected for an index on a ROWID
column. If the value has a non-character data type, the
data might not be printable.

S

Appendix H. Db2 catalog tables 2373

Column name Data type Description Use

TYPE CHAR(1)
NOT NULL WITH
DEFAULT 'F'

The type of statistics gathered:
C

Cardinality
F

Frequent value
H

Histogram Statistics
N

Non-padded frequent value

G

CARDF FLOAT
NOT NULL WITH
DEFAULT -1

For TYPE='C', the number of distinct values for the
column group. For TYPE='H', the number of distinct
values for the column group in a quantile indicated by
QUANTILENO.

S

COLGROUPCOLNO VARCHAR(254)
NOT NULL WITH
DEFAULT
FOR BIT DATA

Identifies the set of columns associated with the
statistics. If the statistics are only associated with
a single column, the field contains a zero length.
Otherwise, the field is an array of SMALLINT column
numbers with a dimension equal to the value in
NUMCOLUMNS. This is an updatable column.

S

NUMCOLUMNS SMALLINT
NOT NULL WITH
DEFAULT 1

Identifies the number of columns associated with the
statistics.

G

FREQUENCYF FLOAT
NOT NULL WITH
DEFAULT -1

Gives the percentage of rows in the table with the value
specified in COLVALUE when the number is multiplied by
100. For example, a value of '1' indicates 100%. A value
of '.153' indicates 15.3%.

When TYPE='H', this is the percentage of rows in table
which falls at the quantile indicated by QUANTILENO
whose range is limited by [LOWVALUE, HIGHVALUE].

Statistics are not collected for an index on a ROWID
column.

G

QUANTILENO SMALLINT
NOT NULL WITH
DEFAULT -1

Ordinary sequence number of a quantile in the whole
consecutive value range, from low to high. This column
is not updatable.

G

LOWVALUE VARCHAR(2000)
NOT NULL WITH
DEFAULT FOR
BIT DATA

For TYPE='H', this is the lower bound for the quantile
indicated by QUANTILENO. Not used if TYPE is not 'H'.
This column is not updatable.

G

HIGHVALUE VARCHAR(2000)
NOT NULL WITH
DEFAULT FOR
BIT DATA

For TYPE='H', this is the higher bound for the quantile
indicated by QUANTILENO. Not used if TYPE is not 'H'.
This column is not updatable.

G

2374 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SYSCOLDISTSTATS catalog table
The SYSCOLDISTSTATS catalog table contains zero or more rows per partition for the cardinality,
frequency, and histogram statistics for a single column or a column group. The schema is SYSIBM.

No row is inserted if the index is a non-partitioned index. Rows in this table can be inserted, updated, and
deleted.

Important: Use care when issuing SQL statements or using tools to update statistics values in catalog
tables. If such updates introduce invalid data, unpredictable results can occur, including abends for
RUNSTATS and other utilities. If such problems occur, you can run the RUNSTATS utility and collect
statistics at the table space level to resolve the problems, in most cases.

Table 280. SYSIBM.SYSCOLDISTSTATS table column descriptions

Column name Data type Description Use

FREQUENCY SMALLINT
NOT NULL

Not used. N

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The default
value is '0001-01-01-00.00.00.000000'. The default
value indicates that statistics were not collected. This
column can be updated.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

PARTITION SMALLINT
NOT NULL

Partition number for the table space that contains the
table in which the column is defined.

G

TBOWNER VARCHAR(128)
NOT NULL

The schema of the table that contains the column. G

TBNAME VARCHAR(128)
NOT NULL

Name of the table that contains the column. G

NAME VARCHAR(128)
NOT NULL

Name of the column. If NUMCOLUMNS is greater than 1,
this name identifies the first column name of the set of
columns associated with the statistics.

G

COLVALUE VARCHAR(2000)
NOT NULL
FOR BIT DATA

Contains the data of a frequently occurring value.
Statistics are not collected for an index on a ROWID
column. If the value has a non-character data type, the
data might not be printable.

S

Appendix H. Db2 catalog tables 2375

Table 280. SYSIBM.SYSCOLDISTSTATS table column descriptions (continued)

Column name Data type Description Use

TYPE CHAR(1)
NOT NULL WITH
DEFAULT 'F'

The type of statistics gathered:
C

Cardinality
F

Frequent value
H

Histogram statistics
N

Non-padded frequent value

G

CARDF FLOAT
NOT NULL WITH
DEFAULT -1

If TYPE is C, the value is the number of distinct values
for the column group. If TYPE is N or TYPE is F, the
value is the number of rows or keys in the partition
for which the FREQUENCYF value applies. If TYPE is H,
the number of distinct values for the column group in a
quantile indicated by QUANTILENO.

S

COLGROUPCOLNO VARCHAR(254)
NOT NULL WITH
DEFAULT
FOR BIT DATA

Identifies the set of columns associated with the
statistics. If the statistics are only associated with
a single column, the field contains a zero length.
Otherwise, the field is an array of SMALLINT column
numbers with a dimension equal to the value in
NUMCOLUMNS. This is an updatable column.

S

NUMCOLUMNS SMALLINT
NOT NULL WITH
DEFAULT 1

Identifies the number of columns associated with the
statistics.

G

FREQUENCYF FLOAT
NOT NULL WITH
DEFAULT -1

Gives the percentage of rows in the table with the value
specified in COLVALUE when the number is multiplied by
100. For example, a value of '1' indicates 100%. A value
of '.153' indicates 15.3%.

When TYPE='H', this is the percentage of rows in table
which falls in the quantile indicated by QUANTILENO
whose range is limited by [LOWVALUE, HIGHVALUE].

Statistics are not collected for an index on a ROWID
column.

G

— VARCHAR(1000)
NOT NULL WITH
DEFAULT
FOR BIT DATA

Internal use only. I

QUANTILENO SMALLINT
NOT NULL WITH
DEFAULT -1

Ordinary sequence number of a quantile in the whole
consecutive value range, from low to high. This column
is not updatable.

G

2376 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 280. SYSIBM.SYSCOLDISTSTATS table column descriptions (continued)

Column name Data type Description Use

LOWVALUE VARCHAR(2000)
NOT NULL WITH
DEFAULT FOR
BIT DATA

For TYPE='H', this is the lower bound for the quantile
indicated by QUANTILENO. Not used if TYPE is not 'H'.
This column is not updatable.

G

HIGHVALUE VARCHAR(2000)
NOT NULL WITH
DEFAULT FOR
BIT DATA

For TYPE='H', this is the higher bound for the quantile
indicated by QUANTILENO. Not used if TYPE is not 'H'.
This column is not updatable.

G

SYSCOLDIST_HIST catalog table
The SYSCOLDIST_HIST catalog table contains rows from the SYSCOLDIST catalog table. The schema is
SYSIBM.

Rows are added or changed in this table when RUNSTATS collects history statistics. Rows in this table can
also be inserted, updated, and deleted.

Table 281. SYSIBM.SYSCOLDIST_HIST table column descriptions

Column name Data type Description Use

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The default
value is '0001-01-01-00.00.00.000000'. The default
value indicates that statistics were not collected. This
column can be updated.

G

TBOWNER VARCHAR(128)
NOT NULL

The schema of the table that contains the column. G

TBNAME VARCHAR(128)
NOT NULL

Name of the table that contains the column. G

NAME VARCHAR(128)
NOT NULL

Name of the column. If NUMCOLUMNS is greater than 1,
this name identifies the first column name of the set of
columns associated with the statistics.

G

COLVALUE VARCHAR(2000)
NOT NULL
FOR BIT DATA

Contains the data of a frequently occurring value.
Statistics are not collected for an index on a ROWID
column. If the value has a non-character data type, the
data might not be printable.

S

Appendix H. Db2 catalog tables 2377

Table 281. SYSIBM.SYSCOLDIST_HIST table column descriptions (continued)

Column name Data type Description Use

TYPE CHAR(1)
NOT NULL WITH
DEFAULT 'F'

The type of statistics gathered:
C

Cardinality
F

Frequent value
H

Histogram Statistics
N

Non-padded frequent value

G

CARDF FLOAT(8)
NOT NULL WITH
DEFAULT -1

When TYPE='C', this is the number of distinct values for
the column group. When TYPE='H', this is he number
of distinct values for the column group in a quantile
indicated by QUANTILENO. The value is -1 if statistics
have not been gathered.

S

COLGROUPCOLNO VARCHAR(254)
NOT NULL
FOR BIT DATA

Identifies the set of columns associated with the
statistics. If the statistics are only associated with
a single column, the field contains a zero length.
Otherwise, the field is an array of SMALLINT column
numbers with a dimension equal to the value in
NUMCOLUMNS.

S

NUMCOLUMNS SMALLINT
NOT NULL WITH
DEFAULT 1

Identifies the number of columns associated with the
statistics.

G

FREQUENCYF FLOAT(8)
NOT NULL
DEFAULT -1

Gives the percentage of rows in the table with the value
specified in COLVALUE when the number is multiplied by
100. For example, a value of '1' indicates 100%. A value
of '.153' indicates 15.3%.

When TYPE='H', this is the percentage of rows in table
which falls in the quantile indicated by QUANTILENO
whose range is limited by [LOWVALUE, HIGHVALUE].

Statistics are not collected for an index on a ROWID
column. The value is -1 if statistics have not been
gathered.

G

IBMREQD CHAR(1)
NOT NULL
DEFAULT 'N'

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

QUANTILENO SMALLINT
NOT NULL WITH
DEFAULT -1

Ordinary sequence number of a quantile in the whole
consecutive value range, from low to high. This column
is not updatable.

G

2378 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 281. SYSIBM.SYSCOLDIST_HIST table column descriptions (continued)

Column name Data type Description Use

LOWVALUE VARCHAR(2000)
NOT NULL WITH
DEFAULT FOR
BIT DATA

For TYPE='H', this is the lower bound for the quantile
indicated by QUANTILENO. Not used if TYPE is not 'H'.
This column is not updatable.

G

HIGHVALUE VARCHAR(2000)
NOT NULL WITH
DEFAULT FOR
BIT DATA

For TYPE='H', this is the higher bound for the quantile
indicated by QUANTILENO. Not used if TYPE is not 'H'.
This column is not updatable.

G

SYSCOLSTATS catalog table
The SYSCOLSTATS table contains partition statistics for selected columns. The schema is SYSIBM. For
each column, a row exists for each partition in the table.

Rows are inserted when RUNSTATS collects either indexed column statistics or non-indexed column
statistics for a partitioned table space. No row is inserted if the table space is nonpartitioned. Rows in this
table can be inserted, updated, and deleted.

Important: Use care when issuing SQL statements or using tools to update statistics values in catalog
tables. If such updates introduce invalid data, unpredictable results can occur, including abends for
RUNSTATS and other utilities. If such problems occur, you can run the RUNSTATS utility and collect
statistics at the table space level to resolve the problems, in most cases.

Table 282. SYSIBM.SYSCOLSTATS table column descriptions

Column name Data type Description Use

HIGHKEY VARCHAR(2000)
NOT NULL
FOR BIT DATA

Highest value of the column within the partition. Blank
if statistics have not been gathered or the column is an
indicator column, a node ID column, or a column of an
XML table. If the column has a non-character data type,
the data might not be printable. If the partition is empty,
the value is a string of length 0.

S

HIGH2KEY VARCHAR(2000)
NOT NULL
FOR BIT DATA

Second highest value of the column within the partition.
Blank if statistics have not been gathered or the column
is an indicator column, a node ID column, or a column
of an XML table. If the column has a non-character data
type, the data might not be printable. If the partition is
empty, the value is a string of length 0.

S

LOWKEY VARCHAR(2000)
NOT NULL
FOR BIT DATA

Lowest value of the column within the partition. Blank
if statistics have not been gathered or the column is an
indicator column, a node ID column, or a column of an
XML table. If the column has a non-character data type,
the data might not be printable. If the partition is empty,
the value is a string of length 0.

S

LOW2KEY VARCHAR(2000)
NOT NULL
FOR BIT DATA

Second lowest value of the column within the partition.
Blank if statistics have not been gathered or the column
is an indicator column, a node ID column, or a column
of an XML table. If the column has a non-character data
type, the data might not be printable. If the partition is
empty, the value is a string of length 0.

S

Appendix H. Db2 catalog tables 2379

Table 282. SYSIBM.SYSCOLSTATS table column descriptions (continued)

Column name Data type Description Use

 COLCARD INTEGER
NOT NULL

Number of distinct column values in the partition. S

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The default
value is '0001-01-01-00.00.00.000000'. The default
value indicates that statistics were not collected. This
column can be updated.

The value '0001-01-02-00.00.00.000000' indicates
that an ALTER TABLE statement was executed to change
the length of a VARCHAR column and RUNSTATS should
be run to update the statistics before they are used.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

PARTITION SMALLINT
NOT NULL

Partition number for the table space that contains the
table in which the column is defined.

G

TBOWNER VARCHAR(128)
NOT NULL

Schema or qualifier of the table that contains the
column.

G

TBNAME VARCHAR(128)
NOT NULL

Name of the table that contains the column. G

NAME VARCHAR(128)
NOT NULL

Name of the column. G

— VARCHAR(1000)
NOT NULL
FOR BIT DATA

Internal use only. I

STATS_FORMAT CHAR(1)
NOT NULL WITH
DEFAULT

The type of statistics gathered:
blank

Statistics have not been collected or varchar column
statistical values are padded.

N
Varchar column statistical values are not padded.

This is an updatable column.

G

2380 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SYSCOLUMNS catalog table
The SYSCOLUMNS table contains one row for every column of each table and view. The schema is
SYSIBM.

Table 283. SYSIBM.SYSCOLUMNS table column descriptions

Column name Data type Description Use

NAME VARCHAR(128)
NOT NULL

Name of the column. G

TBNAME VARCHAR(128)
NOT NULL

Name of the table or view which contains the column. G

TBCREATOR VARCHAR(128)
NOT NULL

The schema of the table or view that contains the
column.

G

COLNO SMALLINT
NOT NULL

Numeric place of the column in the table or view; for
example 4 (out of 10).

G

Appendix H. Db2 catalog tables 2381

Table 283. SYSIBM.SYSCOLUMNS table column descriptions (continued)

Column name Data type Description Use

COLTYPE CHAR(8)
NOT NULL

The type of the column specified in the definition of the
column:
INTEGER

Large integer
SMALLINT

Small integer
FLOAT

Floating-point
CHAR

Fixed-length character string
VARCHAR

Varying-length character string
LONGVAR

Varying-length character string (for columns that
were added before Version 9)

DECIMAL
Decimal

GRAPHIC
Fixed-length graphic string

VARG
Varying-length graphic string

LONGVARG
Varying-length graphic string (for columns that were
added before Version 9)

DATE
Date

TIME
Time

TIMESTMP
Timestamp

TIMESTZ
Timestamp with time zone

BLOB
Binary large object

CLOB
Character large object

DBCLOB
Double-byte character large object

ROWID
Row ID data type

G

2382 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 283. SYSIBM.SYSCOLUMNS table column descriptions (continued)

Column name Data type Description Use

COLTYPE (continued) DISTINCT
Distinct type

XML
XML data type

BIGINT
Big integer

BINARY
Fixed-length binary string

VARBIN
Varying-length binary string, or a Db2 11 VARCHAR
or VARGRAPHIC Unicode column in an EBCDIC table

DECFLOAT
Decimal floating point

Appendix H. Db2 catalog tables 2383

Table 283. SYSIBM.SYSCOLUMNS table column descriptions (continued)

Column name Data type Description Use

LENGTH SMALLINT
NOT NULL

Length attribute of the column or, in the case of a
decimal column, its precision. The number does not
include the internal prefixes that are used to record the
actual length and null state, where applicable.
INTEGER

4
SMALLINT

2
BIGINT

8
FLOAT

4 or 8
CHAR

Length of string
VARCHAR

Maximum length of string
LONGVAR

Maximum length of string (for columns that were
added before Version 9)

DECIMAL
Precision of number

DECFLOAT
8 or 16

GRAPHIC
Number of DBCS characters

VARGRAPHIC
Maximum number of DBCS characters. For a Db2 11
VARGRAPHIC Unicode column in an EBCDIC table,
this value is the maximum number of bytes.

LONGVARG
Maximum number of DBCS characters (for columns
that were added before Version 9)

BINARY
Length of string

VARBINARY
Maximum length of string

DATE
4

TIME
3

TIMESTAMP WITHOUT TIME ZONE
The integral part of ((p+1)/2) + 7 where p is the
precision of the timestamp

TIMESTAMP WITH TIME ZONE
The integral part of ((p+1)/2) + 9 where p is the
precision of the timestamp

G

2384 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 283. SYSIBM.SYSCOLUMNS table column descriptions (continued)

Column name Data type Description Use

LENGTH (continued) SMALLINT
NOT NULL

LOB
4 - For a table, a field of length of 4 is stored in the
base table. The maximum length of the LOB column
is found in LENGTH2.

INLINE LOB
Greater than 4 - For a table, a field of length 4 plus
the inline length (in byte) is stored in the base table.
The maximum length of the LOB column is found in
LENGTH2.

BLOB
4 - For a table, a field of length of 4 is stored in the
base table. The maximum length of the LOB column
is found in LENGTH2.

CLOB
4 - For a table, a field of length of 4 is stored in
the base table. The maximum length of the CLOB
column is found in LENGTH2.

DBCLOB
4 - For a table, a field of length of 4 is stored in
the base table. The maximum length of the DBCLOB
column is found in LENGTH2.

ROWID
17 - The maximum length of the stored portion of
the identifier.

XML

6 - If column cannot contain multiple versions of an
XML document.

14 - If column can contain multiple versions of an
XML document.

For more information, see How Db2 uses XML
versions (Db2 Programming for XML).

DISTINCT
The length of the source data type.

G

SCALE SMALLINT
NOT NULL

If the column type is DECIMAL, this value represents the
scale. If the column type is timestamp or timestamp
with time zone, this value represents the number of
fractional second digits. Otherwise the value is 0.

If the column is a timestamp type, the LENGTH is 10 and
the SCALE is 0, the number of fractional second digits is
6.

G

Appendix H. Db2 catalog tables 2385

https://www.ibm.com/docs/en/SSEPEK_12.0.0/xml/src/tpc/db2z_xmlversions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/xml/src/tpc/db2z_xmlversions.html

Table 283. SYSIBM.SYSCOLUMNS table column descriptions (continued)

Column name Data type Description Use

NULLS CHAR(1)
NOT NULL

Whether the column can contain null values:
N

No
Y

Yes

The value can be N for a view column that is derived
from an expression that is not a simple column name
or constant, or from a function. Nevertheless, such a
column allows nulls when an outer select list refers to it.

G

 COLCARD INTEGER
NOT NULL

Not used N

HIGH2KEY VARCHAR(2000)
NOT NULL
FOR BIT DATA

Second highest value of the column. Blank if statistics
have not been gathered, or the column is an indicator
column or a column of an auxiliary table. If the column
has a non-character data type, the data might not be
printable. If the table is empty, the value is a string of
length 0. This is an updatable column.

S

LOW2KEY VARCHAR(2000)
NOT NULL
FOR BIT DATA

Second lowest value of the column. Blank if statistics
have not been gathered, or the column is an indicator
column or a column of an auxiliary table. If the column
has a non-character data type, the data might not be
printable. If the table is empty, the value is a string of
length 0. This is an updatable column.

S

UPDATES CHAR(1)
NOT NULL

Whether the column can be updated:
N

No
Y

Yes

The value is N if the column is:

• Derived from a function or expression
• A column with a row ID data type (or a distinct type

based on a row ID type)
• A read-only view

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

REMARKS VARCHAR(762)
NOT NULL

A character string provided by the user with the
COMMENT statement.

G

2386 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 283. SYSIBM.SYSCOLUMNS table column descriptions (continued)

Column name Data type Description Use

DEFAULT CHAR(1)
NOT NULL

The contents of this column are meaningful only if
the TYPE column for the associated SYSTABLES row
indicates that this is for a table (T) or a created
temporary table (G).

Default indicator:
A

The column is defined as a ROWID with the
GENERATED ALWAYS attribute.

B
The column is defined as a built-in data type with a
default value that depends on the data type of the
column.

D
The column is defined as a ROWID with the
GENERATED BY DEFAULT attribute.

E
The column is defined with the FOR EACH ROW ON
UPDATE and GENERATED ALWAYS attributes.

F
The column is defined with the FOR EACH ROW ON
UPDATE and GENERATED BY DEFAULT attributes.

I
The column is defined with the AS IDENTITY and
GENERATED ALWAYS attributes.

J
The column is defined with the AS IDENTITY and
GENERATED BY DEFAULT attributes.

K
The column is defined for the implicit DOCID column
for a base table that contains XML data.

L
The column is defined with the AS SECURITY LABEL
attribute.

N
The column has no default value.

Q
The column is defined with the AS ROW BEGIN
attribute.

R
The column is defined with the AS ROW END
attribute.

G

Appendix H. Db2 catalog tables 2387

Table 283. SYSIBM.SYSCOLUMNS table column descriptions (continued)

Column name Data type Description Use

DEFAULT (continued) CHAR(1)
NOT NULL

Default indicator:
S

The column has a default value that is the value of
the SQL authorization ID of the process at the time a
default value is used.

U
The column has a default value that is the value of
the SESSION_USER special register at the time a
default value is used.

X
The column is defined with the AS TRANSACTION
START ID attribute.

Y
If the NULLS column is Y, the column has a default
value of null.

If the NULLS column is N, the default value depends
on the data type of the column.
Data type

Default Value
Numeric

0
Fixed-length character string

Blanks
Fixed-length graphic string

Blanks
Fixed-length binary string

Hexadecimal blanks
Varying-length string

A string length of 0
Date

The current date
Time

The current time
Timestamp

The current timestamp
Timestamp with time zone

The current timestamp with time zone

1
The column has a default value that is the string
constant found in the DEFAULTVALUE column of this
table row.

The column has a graphic data type and has a
default value that is the graphic string found in the
DEFAULTVALUE column of this table row.

G

2388 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 283. SYSIBM.SYSCOLUMNS table column descriptions (continued)

Column name Data type Description Use

DEFAULT (continued) CHAR(1)
NOT NULL

Default indicator:
2

The column has a default value that is the floating-
point constant found in the DEFAULTVALUE column
of this table row.

3
The column has a default value that is the decimal
constant found in the DEFAULTVALUE column of this
table row.

4
The column has a default value that is the integer
constant found in the DEFAULTVALUE column of this
table row.

5
The column has a default value that is
the hexadecimal character string found in the
DEFAULTVALUE column of this table row.

6
The column has a default value that is the UX string
found in the DEFAULTVALUE column of this table
row.

7
The column has a graphic data type and has a
default value that is the character string constant
found in the DEFAULTVALUE column of this table
row.

8
The column has a character data type and has a
default value that is the graphic string constant
found in the DEFAULTVALUE column of this table
row.

9
The column has a default value that is the DECFLOAT
constant found in the DEFAULTVALUE column of this
table row.

a
The column is defined with an expression that
specifies a special register. The default value is the
value of the special register.

b
The column is defined with an expression that
specifies a built-in session variable. The default
value is the value of the built-in session variable.

d
The column is defined with the DATA CHANGE
OPERATION clause. The default value is an I, U, or
D character indicating which data change operation
the row represents.

G

Appendix H. Db2 catalog tables 2389

Table 283. SYSIBM.SYSCOLUMNS table column descriptions (continued)

Column name Data type Description Use

KEYSEQ SMALLINT
NOT NULL

The numeric position of the column within the primary
key of the table. The value is 0 if it is not part of a
primary key.

G

FOREIGNKEY CHAR(1)
NOT NULL

Applies to character or CLOB columns, where it
indicates the subtype of the data:
B

BIT data
M

MIXED data
S

SBCS data
blank

Indicates one of the following subtypes:

• MIXED data if the encoding scheme is Unicode,
or if the encoding scheme is not Unicode and
the value of MIXED DATA on installation panel
DSNTIPS is YES

• SBCS data if the encoding scheme is not Unicode
and the value of MIXED DATA on the installation
panel DSNTIPS is NO.

For views defined prior to Version 7, subtype
information is not available and the default (MIXED or
SBCS) is used.

G

FLDPROC CHAR(1)
NOT NULL

Whether the column has a field procedure:
N

No
Y

Yes
blank

The column is for a view defined prior to Version 7.
Views defined after Version 7 contain Y or N.

G

LABEL VARCHAR(90)
NOT NULL

The column label provided by the user with a LABEL
statement; otherwise, the value is an empty string.

G

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The default
value is '0001-01-01-00.00.00.000000'. The default
value indicates that statistics were not collected. This
column can be updated.

The value '0001-01-02-00.00.00.000000' indicates
that an ALTER TABLE statement was executed to change
the length of a VARCHAR column and RUNSTATS should
be run to update the statistics before they are used.

G

2390 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 283. SYSIBM.SYSCOLUMNS table column descriptions (continued)

Column name Data type Description Use

DEFAULTVALUE VARCHAR(1536)
NOT NULL WITH
DEFAULT

This field is meaningful only if the column being
described is for a table (the TYPE column of the
associated SYSTABLES row is T for table or G for created
temporary table).

When the DEFAULT column is 1, 2, 3, 4, 5, 6, 7, 8, or 9,
this field contains the default value of the column.

If the default value is a string constant or a hexadecimal
constant (DEFAULT is 1, 5, 6, 7, or 8 respectively), the
value is stored without delimiters.

If the default value is a numeric constant (DEFAULT is
2, 3, 4, or 9), the value is stored as specified by the
user, including sign and decimal point representation, or
special constant values, as appropriate for the constant.

When the DEFAULT column is S or U and the default
value was specified when a new column was defined
with the ALTER TABLE statement, this field contains
the value of the CURRENT SQLID or SESSION_USER
special register at the time the ALTER TABLE statement
was executed. This default value applies only to rows
that existed before the ALTER TABLE statement was
executed.

When the DEFAULT column is L and the column
was added as a new column with the ALTER TABLE
statement, this field contains the security label of
the user at the time the ALTER TABLE statement
was executed. This default value applies only to rows
that existed before the ALTER TABLE statement was
executed.

When the DEFAULT column contains a, this field
contains the name of the special register.

When the DEFAULT column contains b, this field
contains the qualified name of the session variable.

When the DEFAULT column contains d, this field
contains DATA CHANGE OPERATION.

G

COLCARDF FLOAT
NOT NULL WITH
DEFAULT

Estimated number of distinct values in the column. For
an indicator column, this is the number of LOBs that are
not null and have a length greater than zero. The value
is -1 if statistics have not been gathered. The value is
-2 if the column is a LOB column. This is an updatable
column.

S

COLSTATUS CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the status of the definition of a column:
I

The definition is incomplete because a LOB table
space, auxiliary table, or index on an auxiliary table
has not been created for the column.

blank
The definition is complete.

G

Appendix H. Db2 catalog tables 2391

Table 283. SYSIBM.SYSCOLUMNS table column descriptions (continued)

Column name Data type Description Use

LENGTH2 INTEGER
NOT NULL WITH
DEFAULT

Maximum length of the data retrieved from the column.
Possible values are:
0

Column is not a LOB or ROWID column
40

For a ROWID column, the length of the returned
value

1 to 2,147,483,647 bytes
For a LOB column, the maximum length

G

DATATYPEID INTEGER
NOT NULL WITH
DEFAULT

For a built-in data type, the internal ID of the built-in
type. For a distinct type, the internal ID of the distinct
type.

The DATATYPEID value corresponds to one of the
SQLTYPE values in “SQLTYPE and SQLLEN” on page
2322. However, the DATATYPEID value is not a reliable
indicator of the nullability of the column. A column with
an even DATATYPEID value might allow nulls, and a
column with an odd DATATYPEID value might not allow
nulls. To determine the nullability of the column, use the
NULLS column value.

If the column was created prior to DB2 version 6, the
value is 0.

S

SOURCETYPEID INTEGER
NOT NULL WITH
DEFAULT

For a built-in data type, 0. For a distinct type, the
internal ID of the built-in data type upon which the
distinct type is based.

If the column was created prior to DB2 version 6, the
value is 0.

S

TYPESCHEMA VARCHAR(128)
NOT NULL WITH
DEFAULT 'SYSIBM'

If COLTYPE is 'DISTINCT', the schema of the distinct
type. Otherwise, the value is 'SYSIBM'.

G

TYPENAME VARCHAR(128)
NOT NULL WITH
DEFAULT

If COLTYPE is 'DISTINCT', the name of the distinct type.
Otherwise, the value is the same as the value of the
COLTYPE column. TYPENAME is set only for columns
created in DB2 version 6 or later. The value for columns
created earlier is not filled in.

G

CREATEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Timestamp when the column was created. The value
is '0001-01-01.00.00.00.000000' if the column was
created prior to migration to DB2 version 6 or if the
column is in a catalog table.

G

2392 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 283. SYSIBM.SYSCOLUMNS table column descriptions (continued)

Column name Data type Description Use

STATS_FORMAT CHAR(1)
NOT NULL WITH
DEFAULT

The type of statistics gathered:
blank

Statistics have not been collected or varchar column
statistical values are padded.

N
Varchar column statistical values are not padded.

This is an updatable column.

G

PARTKEY_COLSEQ SMALLINT
NOT NULL WITH
DEFAULT

The numeric position of the column within the
partitioning key of the table. The value is 0 if it is not
part of the partitioning key.

This column is applicable only if the table uses table-
controlled partitioning.

G

PARTKEY_ORDERING CHAR(1)
NOT NULL WITH
DEFAULT

Order of the column in the partitioning key:
A

Ascending
D

Descending
blank

Column is not used as part of a partitioning key

This column is applicable only if the table uses table-
controlled partitioning.

G

ALTEREDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Timestamp when alter occurred. G

CCSID INTEGER
NOT NULL WITH
DEFAULT

CCSID of the column. 0 if the object was created prior to
Version 8, or is not a character of graphic string column.

CCSID is not 0 if COLTYPE is VARBINARY because the
object is a Db2 11 Unicode column in an EBCDIC table.

G

HIDDEN CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Indicates whether the column is implicitly hidden:
P

Partially hidden. The column is implicitly hidden
from SELECT *.

R
Partially hidden. The column is a ROWID column
that was explicitly defined with the IMPLICITLY
HIDDEN attribute.

N
Not hidden. The column is visible to all SQL
statements.

G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object. See
Release dependency indicators for the values.

G

Appendix H. Db2 catalog tables 2393

Table 283. SYSIBM.SYSCOLUMNS table column descriptions (continued)

Column name Data type Description Use

CONTROL_ID INTEGER
NOT NULL
WITH DEFAULT

Internal identifier of the column access control mask
defined for this column. 0 if no column access control
mask is defined for the column.

S

XML_TYPEMOD_ID INTEGER
NOT NULL
WITH DEFAULT

The ID of the XML type modifier. It is set to 0 if the
column is not an XML column or has no XML type
modifier.

G

PERIOD CHAR(1)
NOT NULL
WITH DEFAULT

Indicates whether the column is the start or the end
of the period for a SYSTEM_TIME or BUSINESS_TIME
period:
B

Column is the start of period BUSINESS_TIME.
C

Column is the end of period BUSINESS_TIME with an
exclusive end point.

I
Column is the end of period BUSINESS_TIME with an
inclusive end point.

S
Column is the start of period SYSTEM_TIME.

T
Column is the end of period SYSTEM_TIME.

blank
Column is not used as either the start or the end of a
period.

G

GENERATED_ ATTR CHAR(1)
NOT NULL
WITH DEFAULT

Indicates the columns generated attribute:
A

Column is defined as GENERATED_ALWAYS.
D

Column is defined as GENERATED BY DEFAULT.
blank

Not applicable or the value of the DEFAULT column
is A, D, E, F, I, or J or defined from a prior release of
Db2.

G

HASHKEY_COLSEQ SMALLINT
NOT NULL
WITH DEFAULT

The column's numeric position within the table's hash
key. The value is 0 if the column is not part of the hash
key. This column is applicable only if the table that use
hash organization.

G

2394 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 283. SYSIBM.SYSCOLUMNS table column descriptions (continued)

Column name Data type Description Use

ENCODING_SCHEME CHAR(1)
NOT NULL
WITH DEFAULT 'E'

Encoding scheme of the column:
blank

The column has a data type that does not have an
encoding scheme, or the column was created prior
to Db2 12.

A
ASCII

E
EBCDIC

U
Unicode

G

SYSCOLUMNS_HIST catalog table
The SYSCOLUMNS_HIST catalog table contains rows from SYSCOLUMNS. The schema is SYSIBM.

Rows are added or changed in this table when RUNSTATS collects history statistics. Rows in this table can
also be inserted, updated, and deleted.

Table 284. SYSIBM.SYSCOLUMNS_HIST table column descriptions

Column name Data type Description Use

NAME VARCHAR(128)
NOT NULL

Name of the column. G

TBNAME VARCHAR(128)
NOT NULL

Name of the table or view that contains the column. G

TBCREATOR VARCHAR(128)
NOT NULL

Schema or qualifier of the table or view that contains the
column.

G

COLNO SMALLINT
NOT NULL

Numeric place of the column in the table or view. For
example 4 (out of 10).

G

Appendix H. Db2 catalog tables 2395

Table 284. SYSIBM.SYSCOLUMNS_HIST table column descriptions (continued)

Column name Data type Description Use

COLTYPE CHAR(8)
NOT NULL

The type of the column specified in the definition of the
column:
INTEGER

Large integer
SMALLINT

Small integer
FLOAT

Floating-point
CHAR

Fixed-length character string
VARCHAR

Varying-length character string
LONGVAR

Varying-length character string (for columns that
were added before Version 9)

DECIMAL
Decimal

GRAPHIC
Fixed-length graphic string

VARG
Varying-length graphic string

LONGVARG
Varying-length graphic string (for columns that were
added before Version 9)

DATE
Date

TIME
Time

TIMESTAMP
Timestamp

TIMESTZ
Timestamp with time zone

BLOB
Binary large object

CLOB
Character large object

DBCLOB
Double-byte character large object

ROWID
Row ID data type

G

2396 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 284. SYSIBM.SYSCOLUMNS_HIST table column descriptions (continued)

Column name Data type Description Use

COLTYPE (continued) DISTINCT
Distinct type

XML
XML data type

BIGINT
Big integer

BINARY
Fixed-length binary string

VARBIN
Varying-length binary string

DECFLOAT
Decimal floating point

Appendix H. Db2 catalog tables 2397

Table 284. SYSIBM.SYSCOLUMNS_HIST table column descriptions (continued)

Column name Data type Description Use

LENGTH SMALLINT
NOT NULL

Length attribute of the column or, in the case of a
decimal column, its precision. The number does not
include the internal prefixes that are used to record the
actual length and null state, where applicable.
INTEGER

4
SMALLINT

2
FLOAT

4 or 8
CHAR

Length of string
VARCHAR

Maximum length of string
LONGVAR

Maximum length of string (for columns that were
added before Version 9)

DECIMAL
Precision of number

GRAPHIC
Number of DBCS characters

VARGRAPHIC
Maximum number of DBCS characters

LONGVARG
Maximum number of DBCS characters (for columns
that were added before Version 9)

DATE
4

TIME
3

TIMESTAMP WITHOUT TIME ZONE
The integral part of ((p+1)/2) + 7 where p is the
precision of the timestamp

TIMESTAMP WITH TIME ZONE
The integral part of ((p+1)/2) + 9 where p is the
precision of the timestamp

BLOB
4 - The length of the field that is stored in the base
table. The maximum length of the LOB column is
found in LENGTH2.

CLOB
4 - The length of the field that is stored in the base
table. The maximum length of the CLOB

G

2398 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 284. SYSIBM.SYSCOLUMNS_HIST table column descriptions (continued)

Column name Data type Description Use

LENGTH (continued) DBCLOB
4 - The length of the field that is stored in the base
table. The maximum length of the DBCLOB column is
found in LENGTH2.

ROWID
17 - The maximum length of the stored portion of
the identifier.

DISTINCT
The length of the source data type.

XML
6

BIGINT
8

BINARY
The length of the string

VARBINARY
The maximum length of string

DECFLOAT
8 or 16

LENGTH2 INTEGER
NOT NULL

Maximum length of the data retrieved from the column.
Possible values are:
0

Column is not a LOB or ROWID column
40

For a ROWID column, the length of the returned
value

1–2,147,483,647 bytes
For a LOB column, the maximum length

G

NULLS CHAR(1)
NOT NULL

Whether the column can contain null values:
N

No
Y

Yes

G

HIGH2KEY VARCHAR(2000)
NOT NULL
FOR BIT DATA

Second highest value of the column. Blank if statistics
have not been gathered, or the column is an indicator
column or a column of an auxiliary table. If the column
has a non-character data type, the data might not be
printable.

S

LOW2KEY VARCHAR(2000)
NOT NULL
FOR BIT DATA

Second lowest value of the column. Blank if statistics
have not been gathered, or the column is an indicator
column or a column of an auxiliary table. If the column
has a non-character data type, the data might not be
printable.

S

Appendix H. Db2 catalog tables 2399

Table 284. SYSIBM.SYSCOLUMNS_HIST table column descriptions (continued)

Column name Data type Description Use

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The default
value is '0001-01-01-00.00.00.000000'. The default
value indicates that statistics were not collected. This
column can be updated.

The value '0001-01-02-00.00.00.000000' indicates
that an ALTER TABLE statement was executed to change
the length of a VARCHAR column and RUNSTATS should
be run to update the statistics before they are used.

G

COLCARDF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Estimated number of distinct values in the column. For
an indicator column, this is the number of LOBs that are
not null and have a length greater than zero. The value is
-1 if statistics have not been gathered. The value is -2 if
the column is a LOB column.

S

IBMREQD CHAR(1)
NOT NULL
DEFAULT 'N'

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

STATS_FORMAT CHAR(1)
NOT NULL WITH
DEFAULT

The type of statistics gathered:
blank

Statistics have not been collected or varchar column
statistical values are padded.

N
Varchar column statistical values are not padded.

This is an updatable column.

G

SYSCONSTDEP catalog table
The SYSCONSTDEP table records dependencies on check constraints or user-defined defaults for a
column. The schema is SYSIBM.

Table 285. SYSIBM.SYSCONSTDEP table column descriptions

Column name Data type Description Use

BNAME VARCHAR(128)
NOT NULL

Name of the object on which the dependency exists. G

BSCHEMA VARCHAR(128)
NOT NULL

Schema of the object on which the dependency exists. G

BTYPE CHAR(1)
NOT NULL

Type of object on which the dependency exists:
F

Function instance

G

2400 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 285. SYSIBM.SYSCONSTDEP table column descriptions (continued)

Column name Data type Description Use

DTBNAME VARCHAR(128)
NOT NULL

Name of the table to which the dependency applies. G

DTBCREATOR VARCHAR(128)
NOT NULL

The schema of the table to which the dependency
applies.

G

DCONSTNAME VARCHAR(128)
NOT NULL

If DTYPE = 'C', the unqualified name of the check
constraint. If DTYPE = 'D', a column name.

G

DTYPE CHAR(1)
NOT NULL

Type of object:
C

Check constraint
D

User-defined default constant

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

DTBOWNER VARCHAR(128)
NOT NULL WITH
DEFAULT

Authorization ID of the owner of the table or a zero
length string for tables that were created in a Db2
release prior to Version 9.

G

OWNERTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner:
blank

Authorization ID
R

Role

G

SYSCONTEXT catalog table
The SYSCONTEXT table contains one row for each trusted context. The schema is SYSIBM.

Table 286. SYSIBM.SYSCONTEXT table column descriptions

Column name Data type Description Use

NAME VARCHAR(128)
NOT NULL

Name of the trusted context. G

CONTEXTID INTEGER
NOT NULL
GENERATED
ALWAYS AS
 IDENTITY

Internal context ID. G

Appendix H. Db2 catalog tables 2401

Table 286. SYSIBM.SYSCONTEXT table column descriptions (continued)

Column name Data type Description Use

DEFINER VARCHAR(128)
NOT NULL

Authorization ID or role that defined the trusted
context.

G

DEFINERTYPE CHAR(1)
NOT NULL

The type of the definer:
L

Role
blank

Authorization ID

G

SYSTEMAUTHID VARCHAR(128)
NOT NULL

The Db2 primary authorization ID that is used
to establish the connection. For remote requests,
SYSTEMAUTHID is derived from the system user
ID that is provided by an external entity, such as a
middleware server.

For local requests, SYSTEMAUTHID depends on
one of the following sources of the address space:
BATCH

USER parameter on JOB statement
RRSAF

USER parameter on JOB statement or RACF
user

TSO
TSO logon ID

G

DEFAULTROLE VARCHAR(128)
NOT NULL

Name of the trusted context default role. G

OBJECTOWNERTYPE CHAR(1)
NOT NULL

Whether the ROLE AS OBJECT OWNER AND
QUALIFIER clause is specified in the definition of
this trusted context:
L

ROLE AS OBJECT OWNER AND QUALIFIER
is specified. A role owns any object created
in the trusted context. The role is used as
the default for the CURRENT SCHEMA special
register. The role is included in the SQL PATH.

blank
ROLE AS OBJECT OWNER is not specified. An
authorization ID owns any object created in
the trusted context.

G

CREATEDTS TIMESTAMP
NOT NULL

The time when the trusted context is created. G

ALTEREDTS TIMESTAMP
NOT NULL

The time when the trusted context is last altered. G

2402 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 286. SYSIBM.SYSCONTEXT table column descriptions (continued)

Column name Data type Description Use

ENABLED CHAR(1)
NOT NULL

The status of the trusted context:
Y

Enabled
N

Disabled

G

ALLOWPUBLIC CHAR(1)
NOT NULL

Whether the connection is allowed to be reused
for PUBLIC:
Y

Connection reuse is allowed
N

Connection reuse is not allowed

G

AUTHENTICATEPUBLIC CHAR(1)
NOT NULL

Whether authentication is required for PUBLIC
when ALLOWPUBLIC is Y:
Y

Authentication token is required for PUBLIC.
For local requests, the token is the password.
For remote requests, the token can be a
password, a RACF passticket, or a KERBEROS
token

N
Authentication is not required

G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the
object. See Release dependency indicators for the
values.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values,
see Release dependency indicators.

The value in this field is not a reliable indicator
of release dependencies. RELCREATED should be
used instead.

G

REMARKS VARCHAR(762)
NOT NULL

A character string that is provided using the
COMMENT statement.

G

DEFAULTSECURITYLABEL VARCHAR(24)
NOT NULL

Name of the context default RACF security label. G

SYS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW BEGIN

Reserved for future IBM use.The row-begin
column of the SYSTEM_TIME period, for system-
period data versioning.

G

SYS_END TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW END

Reserved for future IBM use.The row-end column
of the SYSTEM_TIME period, for system-period
data versioning.

G

Appendix H. Db2 catalog tables 2403

Table 286. SYSIBM.SYSCONTEXT table column descriptions (continued)

Column name Data type Description Use

TRANS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS TRANSACTION
START ID

Reserved for future IBM use. G

SYSCONTEXTAUTHIDS catalog table
The SYSCONTEXTAUTHIDS table contains one row for each authorization ID with which the trusted
context can be used. The schema is SYSIBM.

Table 287. SYSIBM.SYSCONTEXTAUTHIDS table column descriptions

Column name Data type Description Use

CONTEXTID INTEGER
NOT NULL

The internal trusted context ID. G

AUTHID VARCHAR(128)
NOT NULL

The primary authorization ID that can reuse a
connection. When RACF is used, this is a RACF profile
name that contains the primary authorization IDs that
are permitted to use the connection in the identified
trusted context. A RACF profile name in this column
has an ampersand (&) sign as the first character, to
distinguish it from an authorization ID.

G

AUTHENTICATE CHAR(1)
NOT NULL

Whether authentication is required for the
authorization ID in the AUTHID column:
Y

Authentication token is required for the
authorization ID. For local requests, the token is
the password. For remote requests, the token can
be a password, a RACF passticket, or a Kerberos
token

N
Authentication is not required

G

ROLE VARCHAR(128)
NOT NULL

The role for the authorization ID in the AUTHID
column. The role supersedes the default role that is
defined for the trusted context.

G

CREATEDTS TIMESTAMP
NOT NULL

The time when the authorization ID is added to the
trusted context.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values, see
Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

2404 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 287. SYSIBM.SYSCONTEXTAUTHIDS table column descriptions (continued)

Column name Data type Description Use

SECURITYLABEL VARCHAR(24)
NOT NULL

RACF security label for AUTHID. The security label
supersedes the default security label, if any, that is
defined for the context.

G

SYS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW BEGIN

Reserved for future IBM use.The row-begin column
of the SYSTEM_TIME period, for system-period data
versioning.

G

SYS_END TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW END

Reserved for future IBM use.The row-end column
of the SYSTEM_TIME period, for system-period data
versioning.

G

TRANS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS TRANSACTION
START ID

Reserved for future IBM use. G

SYSCONTROLS catalog table
The SYSCONTROLS table contains one row for each row permission and column mask. The schema is
SYSIBM.

Table 288. SYSIBM.SYSCONTROLS table column descriptions

Column name Data type Description Use

SCHEMA VARCHAR(128)
NOT NULL

Schema of the row permission or column mask. G

NAME VARCHAR(128)
NOT NULL

Name of the row permission or column mask. G

OWNER VARCHAR(128)
NOT NULL

Owner of the row permission or column mask. G

OWNERTYPE CHAR(1)
NOT NULL

Indicates the type of the owner:
blank

An authorization ID
L

Role

G

TBSCHEMA VARCHAR(128)
NOT NULL

Schema of the table for which the row permission or
column mask is defined.

G

TBNAME VARCHAR(128)
NOT NULL

Name of the table for which the row permission or
column mask is defined.

G

Appendix H. Db2 catalog tables 2405

Table 288. SYSIBM.SYSCONTROLS table column descriptions (continued)

Column name Data type Description Use

TBCORRELATION VARCHAR(128)
NOT NULL
WITH DEFAILT

If specified, the correlation name of the table for
which the row permission or column mask is defined.
Otherwise, the value is an empty string.

G

COLNAME VARCHAR(128)
NOT NULL

Column name for which the column mask is defined.
Blank if this is a row permission.

G

COLNO SMALLINT
NOT NULL

Column number for which the column mask is defined.
0 if this is a row permission.

G

CONTROL_ID INTEGER
NOT NULL
GENERATED
ALWAYS
AS IDENTITY

Internal access control ID. S

CONTROL_TYPE CHAR(1)
NUT NULL

Indicates the type of the access control object:
R

Row permission
M

Column mask

G

ENFORCED CHAR(1)
NUT NULL

Indicates the type of the access enforced by the row
permission. Column mask always has a value of 'A'.
A

All access

G

IMPLICIT CHAR(1)
NUT NULL

Indicates whether the row permission was implicitly
created:
N

The row permission was explicitly created or this is
a column mask

Y
The row permission was implicitly created

G

ENABLE CHAR(1)
NUT NULL

Indicates whether the row permission or the column
mask is enabled for access control:
N

Not enabled
Y

Enabled

G

STATUS CHAR(1)
NUT NULL

Indicates the status of the row permission or column
mask definition:
blank

The definition of the row permission or column
mask is complete.

R
An error occurred when an attempt was made to
regenerate the row permission or column mask.

G

2406 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 288. SYSIBM.SYSCONTROLS table column descriptions (continued)

Column name Data type Description Use

CREATEDTS TIMESTAMP
NOT NULL

The timestamp when the row permission or column
mask was created.

G

RELCREATED CHAR(1)
NUT NULL

The release of Db2 in which the row permission or
column mask was created. See Release dependency
indicators for values.

G

ALTEREDTS TIMESTAMP
NOT NULL

The timestamp when the row permission or column
mask was last changed.

G

REMARKS VARCHAR(762)
NOT NULL

A character string provided by using the COMMENT ON
statement.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values, see
Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

ENVID INTEGER
NOT NULL

Internal identifier of the environment. G

ROWID ROWID Row identifier to support LOB columns in the table. G

RULETEXT CLOB(2MB)
NOT NULL

The source text of the search condition or expression
portion of the CREATE PERMISSION or CREATE MASK
statement.

Note: The lowercase letters in ordinary tokens are
folded to uppercase in the text. However, lowercase
letters in ordinary tokens are folded to uppercase in a
C or Java program only if the appropriate precompiler
option is specified.

G

DESCRIPTOR BLOB(2MB)
NOT NULL

Internal description of the row permission or column
mask

S

SYS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW BEGIN

Reserved for future IBM use.The row-begin column
of the SYSTEM_TIME period, for system-period data
versioning.

G

SYS_END TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW END

Reserved for future IBM use.The row-end column
of the SYSTEM_TIME period, for system-period data
versioning.

G

Appendix H. Db2 catalog tables 2407

Table 288. SYSIBM.SYSCONTROLS table column descriptions (continued)

Column name Data type Description Use

TRANS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS TRANSACTION
START ID

Reserved for future IBM use. G

REGENERATETS TIMESTAMP(12) NOT
NULL

The time when the object was regenerated. The value
is valid only for objects that can be regenerated. If no
regeneration has occurred, this column contains the
same value as the CREATEDTS column.

G

SYSCOPY catalog table
The SYSCOPY table contains information needed for recovery. The schema is SYSIBM.

Column name Data type Description Use

DBNAME CHAR(8)
NOT NULL

Name of the database. G

TSNAME CHAR(8)
NOT NULL

Name of the target table space or index space. G

DSNUM INTEGER
NOT NULL

Data set number within the table space. For partitioned
table spaces, this value corresponds to the partition
number for a single partition copy, or 0 for a copy of
an entire partitioned table space or index space.

G

2408 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

ICTYPE CHAR(1)
NOT NULL

Type of operation:
A

ALTER
B

REBUILD INDEX
C

CREATE
D

CHECK DATA LOG(NO) (no log records for the range
are available for RECOVER utility)

E
RECOVER (to current point)

F
COPY FULL YES

I
COPY FULL NO

J
REORG TABLESPACE or LOAD REPLACE
compression dictionary write to log

L
SQL (type of operation)

M
MODIFY RECOVERY utility

P
RECOVER TOCOPY, RECOVER TOLOGPOINT, or
RECOVER TORBA (to a point in time)

Q
QUIESCE

R
LOAD REPLACE LOG(YES)

S
LOAD REPLACE LOG(NO)

T
TERM UTILITY command

V
REPAIR CATALOG utility

W
REORG LOG(NO)

X
REORG LOG(YES)

Y
LOAD LOG(NO)

Z
LOAD LOG(YES)

G

ICDATE CHAR(6)
NOT NULL

Date of the last image copy N

Appendix H. Db2 catalog tables 2409

Column name Data type Description Use

START_RBA CHAR(10)
NOT NULL
FOR BIT DATA

An 80-bit positive integer that contains the RBA/LRSN
of a point in the Db2 recovery log. (The LRSN is the RBA
in a data-sharing environment.)

• For ICTYPE I or F, the starting point for all updates
since the image copy was taken

• For ICTYPE J, the RBA/LRSN of the compression
dictionary

• For ICTYPE M, the RBA of the highest deleted
SYSCOPY or SYSLGRNX record

• For ICTYPE P, the point after the log-apply phase of
point-in-time recovery

• For ICTYPE Q, the point after all data sets have been
successfully quiesced

• For ICTYPE R or S, the end of the log before the start
of the LOAD utility and before any data is changed

• For ICTYPE T, the end of the log when the utility is
terminated

• For other values of ICTYPE, the end of the log before
the start of the RELOAD phase of the LOAD or REORG
utility.

G

FILESEQNO INTEGER
NOT NULL

Tape file sequence number of the copy. G

DEVTYPE CHAR(8)
NOT NULL

Device type the copy is on. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

2410 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

DSNAME CHAR(44)
NOT NULL

For ICTYPE='P' (RECOVER TOCOPY only), 'I', or 'F',
DSNAME contains the data set name. Otherwise,
DSNAME contains the name of the database and
table space or index space in the form, database-
name.space-name, or DSNAME is blank for any row
migrated from a release prior to Version 4. For
redirected recoveries, DSNAME contains the source
table space or index space name, in the form, database-
name.space-name.

FL 508 A SYSCOPY record with ICTYPE='W' and
STYPE='M' for the target table space indicates that a
REORG moved a table into the target table space. In
this case, the DSNAME column contains the name of the
source table space, database-name.tablespace-name.
The DBNAME column contains the name of the target
database, database-name, and the TSNAME column
contains the name of the target table space, tablespace-
name.

G

ICTIME CHAR(6)
NOT NULL

Time of the last image copy. N

SHRLEVEL CHAR(1)
NOT NULL

SHRLEVEL parameter value on COPY (for ICTYPE F or I
only):
C

CHANGE
R

REFERENCE
blank

Does not describe an image copy or was migrated
from Version 1 Release 1 of Db2.

G

Appendix H. Db2 catalog tables 2411

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m508.html

Column name Data type Description Use

DSVOLSER VARCHAR(1784)
NOT NULL

If the operation is not an image copy operation that
creates a FlashCopy image copy with consistency
(an image copy operation with the FLASHCOPY
CONSISTENT option), this value is:

• A comma-separated list of 6-byte volume serial
numbers of the data set, if the data set is not
cataloged.

• Blank if the data set is cataloged.

If the operation is a FlashCopy image copy with
consistency that had uncommitted units of work backed
out or a sequential image copy that was created from
such a FlashCopy image copy by COPY or COPYTOCOPY,
this value is a comma-separated list of values in one of
the following forms:
memberID-ckptrba

This format is used for SYSCOPY records that were
inserted before SYSCOPY was converted to the Db2
11 enabling-new-function mode format. ckptrba is
the 12-byte hexadecimal checkpoint RBA for the
member.

memberID+ckptrba

This format is used for SYSCOPY records that were
inserted after SYSCOPY was converted to the Db2
11 new-function mode format or later.

ckptrba is the 20-byte hexadecimal checkpoint RBA
for the member.

memberID is a 3-digit ID for a member of a data sharing
group. For a non-data sharing environment, memberID
is 000.

G

TIMESTAMP TIMESTAMP
NOT NULL WITH
DEFAULT

The date and time when the row was inserted. For the
COPYTOCOPY utility, this value is the date and time
when the row was inserted for the primary local site
or primary recovery site copy. For an EXCHANGE DATA
statement, this is the time that the statement is run.

G

2412 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

ICBACKUP CHAR(2)
NOT NULL WITH
DEFAULT

Specifies the type of image copy contained in the data
set:
blank

LOCALSITE primary copy (first data set named with
COPYDDN)

FC
FlashCopy copy

LB
LOCALSITE backup copy (second data set named
with COPYDDN)

RP
RECOVERYSITE primary copy (first data set named
with RECOVERYDDN)

RB
RECOVERYSITE backup copy (second data set
named with RECOVERYDDN)

G

ICUNIT CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the media that the image copy data set is
stored on:
D

DASD
T

Tape
blank

Medium is neither tape nor DASD, the image copy is
from a Db2 release prior to Version 2 Release 3, or
ICTYPE is not 'I' or 'F'.

G

Appendix H. Db2 catalog tables 2413

Column name Data type Description Use

STYPE CHAR(1)
NOT NULL WITH
DEFAULT

When ICTYPE=A, the values are:
A

A partition was added or inserted to a table.
B

The MEMBER CLUSTER value was changed.
C

A column was added to a table and an index in
different commit scopes, index compression was
activated or deactivated, or a column was dropped
from a table.
A column was added to a table and an index in
different commit scopes, or a column was dropped
from a table.

D
Either the DSSIZE attribute of the table space was
altered or the default value of a column of a table
was altered.

E
The data set numbers of a base table and its
associated clone table are exchanged.

F
The page size attribute of the table space or index
was altered.

G
An index was regenerated

H
The table was altered to hash organization, the
size of the hash space was changed, or the hash
organization was dropped. The value of the TTYPE
column indicates the action taken.

I
The inline length attribute of the LOB column was
altered by REORG.

L
The logging attribute of the table space was altered
to LOGGED.

M
The MAXPARTITIONS attribute of the table space
was altered.

N
An index was altered to not padded

O
The logging attribute of the table space was altered
to NOT LOGGED.

P
An index was altered to padded

R
A table was altered to rotate partitions.

G

2414 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

STYPE (continued) When ICTYPE=A, the values are (continued):
S

The SEGSIZE attribute of the table space was
altered.

T
FL 508 A table space attribute was altered.

U
An ALTER TABLE ALTER COLUMN DROP DEFAULT
statement was executed on a column that was
previously added with an ALTER TABLE ADD
COLUMN statement.

V
A column in a table was altered for a numeric data
type change and the column is in an index.

X
A REORG dropped one or more empty partitions
from the related table space.

Y
An index was altered to COPY YES

Z
A column that is in the key of an index that was
versioned prior to DB2 version 8 was altered.

When ICTYPE=C, the values are:
L

The logging attribute of the table space was
LOGGED.

O
The logging attribute of the table space was NOT
LOGGED.

When ICTYPE=E, the values are:
B

RECOVER utility with the BACKOUT keyword.
blank

RECOVER utility without the BACKOUT keyword.

When ICTYPE=F, the values are:
C

DFSMS concurrent copy ("I" instance of the table
space)

J
DFSMS concurrent copy ("J" instance of the table
space)

N
A FlashCopy copy is not consistent.

Q
Sequential copy is consistent

Appendix H. Db2 catalog tables 2415

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m508.html

Column name Data type Description Use

STYPE (continued) When ICTYPE=F, the values are (continued):
R

LOAD REPLACE(YES)
S

LOAD REPLACE(NO)
T

FlashCopy copy is consistent.
U

Sequential copy is not consistent
V

ALTER INDEX NOT PADDED
W

REORG LOG(NO)
X

REORG LOG(YES)
Y

LOAD RESUME YES LOG(NO)
Z

LOAD RESUME YES LOG(YES)
blank

Db2 image copy

When ICTYPE=L, the value is:
M

Mass DELETE, TRUNCATE TABLE, DROP TABLE, or
ALTER TABLE ROTATE PARTITION. The LOWDSNUM
column contains the table OBID of the affected
table.

The MERGECOPY utility, when used to merge an
embedded copy with subsequent incremental copies,
also produces a record that contains ICTYPE=F and the
STYPE of the original image copy (R, S, W, or X).

When ICTYPE = M and the MODIFY RECOVERY utility
was executed to delete SYSCOPY and/or SYSLGRNX
records, the value is R.

When ICTYPE=O, the values are:
B

A table space or partition that was in reordered row
format was recovered to a point in time when it was
in basic row format.

R
A table space or partition was converted to
reordered row format as a result of REORG or LOAD
REPLACE.

2416 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

STYPE (continued) When ICTYPE=P, the values are:
B

RECOVER with the BACKOUT YES option.
C

RECOVER without using LOGONLY with consistency.
F

Indicates RECOVER using FROM , where the table
space was recovered using recovery resources from
a different source table space.

J
RECOVER using LOGONLY without consistency and
using the ENFORCE NO option.

K
RECOVER without using LOGONLY or the BACKOUT
YES and the ENFORCE NO options.

L
RECOVER using LOGONLY without consistency.

M
RECOVER using LOGONLY with consistency.

blank
RECOVER without using LOGONLY without
consistency.

When ICTYPE=Q and option WRITE(YES) is in effect
when the quiesce point is taken, the value is W.

When ICTYPE=R or S, the values are:
A

Resetting REORG pending status
T

First materializing the default value for a row change
timestamp column

When ICTYPE=T, this field indicates which COPY utility
was terminated by the TERM UTILITY command or the
START DATABASE command with the ACCESS(FORCE)
option. The values are:
F

COPY FULL YES

When ICTYPE=T, the values are (continued):
I

COPY FULL NO

Appendix H. Db2 catalog tables 2417

Column name Data type Description Use

STYPE (continued) When ICTYPE=W, the values are:
M

FL 508 REORG on the source table space
materialized an ALTER TABLESPACE MOVE TABLE
statement

When ICTYPE=W or X, the values are:
A

Resetting REORG pending status or REBALANCE
T

First materializing the default value for a row change
timestamp column

For other values of ICTYPE, the value is blank.

PIT_RBA CHAR(10)
NOT NULL WITH
DEFAULT
FOR BIT DATA

The meaning of the value depends on the value of the
ICTYPE column:
ICTYPE='P'

The LRSN for the point in the Db2 log. (The LRSN
is the RBA in a non-data-sharing environment) The
value indicates the stop location of a point-in-time
recovery.

If a record contains ICTYPE='P' and
PIT_RBA=X'000000000000', the copy pending
status is active and a full image copy is required.
If such a record is encountered during fallback
processing of RECOVER, the recover job fails, and
a point-in-time recovery is required. PIT_RBA can be
zero if the point-in-time recovery is completed by
the fall-back processing of RECOVER, or if ICTYPE=P
from a prior release of Db2.

ICTYPE='F' or 'I' and SHRLEVEL='C'
The current RBA or LRSN that corresponds to the
point in the Db2 log when the SHRLEVEL CHANGE
copy completes.

ICTYPE='F', SHRLEVEL='R' or 'C', and ICBACKUP='FC'
The RBA or LRSN that corresponds to the point in
the Db2 log when the FlashCopy completes.

CTYPE='F' and SHRLEVEL 'R' or 'C', STYPE= 'T', 'N',
'Q', or 'U'

The RBA or LRSN that corresponds to the point in
the Db2 log when the FlashCopy completes.

ICTYPE=J
The RBA where the compression dictionary is
written to the log. In data sharing environments, it is
the RBA of the member writing to the log.

ICTYPE='M'
The RBA/LRSN for the end of the log when the utility
completes.

For other all other ICTYPE values, this field contains
X'00000000000000000000'.

G

2418 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m508.html

Column name Data type Description Use

GROUP_MEMBER CHAR(8)
NOT NULL WITH
DEFAULT

The Db2 data sharing member name of the Db2
subsystem that performed the operation. This column
is blank if the Db2 subsystem was not in a Db2 data
sharing environment at the time the operation was
performed.

G

OTYPE CHAR(1)
NOT NULL WITH
DEFAULT 'T'

Type of object that the recovery information is for:
I

Index space
T

Table space

G

LOWDSNUM INTEGER
NOT NULL WITH
DEFAULT

Partition number of the lowest partition in the range
for SYSCOPY records created for REORG and LOAD
REPLACE for resetting a REORG pending status. Version
number of an index for SYSCOPY records created for
a COPY (ICTYPE=F) of an index space (OTYPE=I). (An
index is versioned when a VARCHAR column in the index
key is lengthened.)

• When ICTYPE = F or I, DSNUM = 0 and OTYPE is not
equal to I, LOWDSNUM = 1.

• When ICTYPE=A and STYPE=X, this value is the
lowest partition number that was dropped by REORG.

G

HIGHDSNUM INTEGER
NOT NULL WITH
DEFAULT

Partition number of the highest partition in the range.
This column is valid only for SYSCOPY records created
for REORG and LOAD REPLACE for resetting REORG
pending status.

• When ICTYPE = F or I, DSNUM = 0 and OTYPE is not
equal to I, this value is the number of the highest
partition that is copied.

• When ICTYPE=A and STYPE=X, this value is the
highest partition number that was dropped by REORG.

G

COPYPAGESF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of pages written to the copy data set. For inline
copies, this number might include pages appearing
more than once in the copy data set.

G

NPAGESF FLOAT(8)
NOT NULL WITH
DEFAULT -1

The number of pages in the table space or index at the
time of COPY. This number might include pre-formatted
pages that are not actually copied.

When ICTYPE=A, SYTPE=H, and TTYPE=S or D, this
column contains the previous HASHDATAPAGES value.
When ICTYPE=A, SYTPE=H, and TTYPE=A this column
contains zero.

G

CPAGESF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Total number of changed pages since last copy. G

Appendix H. Db2 catalog tables 2419

Column name Data type Description Use

JOBNAME CHAR(8)
NOT NULL WITH
DEFAULT

Job name of the utility. For changes that cause pending
definition changes to object, this column might not be
accurate.

G

AUTHID CHAR(8)
NOT NULL WITH
DEFAULT

Authorization ID of the utility.For changes that cause
pending definition changes to object, this column might
not be accurate.

G

OLDEST_VERSION SMALLINT
NOT NULL WITH
DEFAULT

When ICTYPE= B, F, I, R, S, W, or X:

• For a single-table table space, this value is the version
number of the oldest format of data for an object.

• For a multiple-table table space:

– A value of zero indicates that there is a least one
table in the table space that has data rows in
version 0 format.

– When ICTYPE=B, F, I, W, or X, a value greater than
0 is the oldest version for tables that are not at
version 0. Any tables that are at version 0 have
system pages for a version 0 format.

– When ICTYPE=R or S:

- A value greater than 0 is the oldest version for
tables that are not at version 0. Any tables that
are at version 0 have system pages for a version 0
format.

- A value of -1 means that the oldest version
number cannot be determined.

For other values of ICTYPE, the value is -1.

The default value of this column is 0.

G

LOGICAL_PART INTEGER
NOT NULL WITH
DEFAULT

Logical partition number. G

LOGGED CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the logging attribute of the table space at the
time the SYSCOPY record is written:

• Y — indicates that the logging attribute of the table
space is LOGGED

• N — indicates that the logging attribute of the table
spaces is NOT LOGGED

• blank — indicates that the row was inserted prior to
DB2 9 or is not specified. For non-LOB table spaces
or an index space, blank indicates that the logging
attribute is LOGGED.

G

2420 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

TTYPE CHAR(8)
NOT NULL WITH
DEFAULT

The value of TTYPE column indicates different
information depending on the values of the ICTYPE,
STYPE, and in some cases, OTYPE column.

When ICTYPE=A and STYPE=B:
Y

The previous member cluster attribute of the table
space is being used.

N
The previous member cluster attribute of the table
space is not being used.

When ICTYPE=A and STYPE=C:
blank

A column was added to a table.
D

A column was dropped from a table.
CMP=N

Index compression was activated with the ALTER
INDEX COMPRESS YES statement.

CMP=Y
Index compression was deactivated with the ALTER
INDEX COMPRESS NO statement.

When ICTYPE=A and STYPE=D:
x

The previous DSSIZE attribute value for the table
space in units of G, M, or K.

blank
The default value of a column of a table was altered.

When ICTYPE=A and STYPE=F:
x

The previous page size attribute value for the table
space in units of K.

When ICTYPE=A and STYPE=H:
A

Hash organization was added. The record is written
when the hash space is materialized at REORG.

D
Hash organization was dropped. The record is
written immediately when the ALTER statement is
issued.

S
The size of the hash space was changed. The
value of the NAPGESF column contains the previous
HASHDATAPAGES value. The record is written when
the hash space is materialized at REORG.

G

Appendix H. Db2 catalog tables 2421

Column name Data type Description Use

TTYPE (continued) When ICTYPE=A and STYPE=I:
D

REORG decremented the inline length of the LOB
column

I
REORG incremented the inline length of the LOB
column

When ICTYPE=A and STYPE=M:
I

The table space was converted from a single-table
simple table space to a partition-by-growth table
space.

n
The previous value of the MAXPARTITIONS attribute
for the table space.

S
The table space was converted from single-table
segmented table space to a partition-by-growth
table space.

When ICTYPE=A and STYPE=P:
ABSOLUTE

The table space was converted from absolute to
relative page numbering.

When ICTYPE=A and STYPE=S:
n

The previous value of the SEGSIZE attribute for the
table space.

P
The table space was converted from a partitioned
(non-UTS) table space to a partition-by-range table
space.

FL 508 When ICTYPE=A and STYPE=T:
M

One or more tables were moved by the ALTER
TABLESPACE MOVE TABLE statement

When ICTYPE=E:
blank

The full recovery reset the object
N

The full recovery did not reset the object

2422 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m508.html

Column name Data type Description Use

TTYPE (continued) When ICTYPE=F and OTYPE=I:
S

indicates that the directory pages for the index
image copy are at the front of each partition and are
indicated with a 'V' or '8'.

When ICTYPE=F and STYPE=N, Q, T, or U, this column
indicates the utility that made the FlashCopy:
A

LOAD RESUME LOG NO
B

REBUILD
C

COPY
D

LOAD RESUME LOG YES
E

LOAD SHRLEVEL CHANGE
L

LOAD
P

REPAIR
R

LOAD REPLACE LOG YES
S

LOAD REPLACE LOG NO
T

COPYTOCOPY
W

REORG TABLESPACE LOG NO
X

REORG TABLESPACE LOG YES

When ICTYPE=F and STYPE=R, S, Y, or Z:
V

This inline sequential image copy created by LOAD
contains pages updated during the INDEXVAL
and ENFORCE phases. Rows that were loaded
with unique index violations, referential constraint
violations, or index evaluation errors were removed
from pages in the image copy.

Appendix H. Db2 catalog tables 2423

Column name Data type Description Use

TTYPE (continued) When ICTYPE=I:
N

Indicates that no system pages are in this
incremental image copy.

blank
Indicates that system pages are in this incremental
image copy.

I
Indicates that the incremental copy was created
for a table space or partition with the TRACKMOD
YES attribute using the RBA or LRSN in each page
instead of the modified page indicator bits in the
space map pages.

When ICTYPE=P, R, S, W, X, this column provides
additional diagnostic information:

B
Indicates that the RBA or LRSN format changed to
basic 6-byte format.

BRF
Indicates that the row format is the basic row
format.

BRF I
Indicates that the row format is the basic row
format, and the FORMAT INTERNAL option was
specified.

E
Indicates that the RBA or LRSN format changed to
extended 10-byte format.

F
Indicates that the REORG utility was run with the
FASTSWITCH YES option.

RRF I
Indicates that the row format is the reordered row
format, and the FORMAT INTERNAL option was
specified.

S
Indicates that the REORG utility was run with the
FASTSWITCH NO option.

When ICTYPE=M and STYPE=R:
blank

MODIFY RECOVERY deleted rows from
SYSIBM.SYSLGRNX.

N
MODIFY RECOVERY did not delete rows from
SYSIBM.SYSLGRNX.

2424 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

TTYPE (continued) When ICTYPE=T:
B

Indicates that a broken page was detected during
copy.

When ICTYPE=W or X and STYPE=H:
n

the previous value of HASHDATAPAGES

When ICTYPE=Y or Z:

blank
Indicates that the FORMAT INTERNAL option was
not specified during LOAD.

I
Indicates that the FORMAT INTERNAL option was
specified during LOAD.

When ICTYPE=A-A, A-R, B, C, P, R, S, W, or X,
indicates that the page format was changed by the
ALTER ADD PARTITION, ALTER ROTATE PARTITION, or
CREATE statement, or by the LOAD REPLACE, REBUILD,
REORG, or RECOVER utilities:

B
Indicates that the page format was created or
converted to basic page format with 6-byte RBA or
LRSN values

E
Indicates that the page format was created or
converted to extended page format with 10-byte
RBA or LRSN values.

When ICTYPE=A and STYPE=A or R:
B

Indicates that the page format was converted to
basic page format with 6-byte RBA or LRSN values.

E
Indicates that the page format was converted to
extended page format with 10-byte RBA or LRSN
values.

INSTANCE SMALLINT
NOT NULL WITH
DEFAULT 1

When STYPE = E and ICTYPE = A, INSTANCE indicates
the data set instance number of a base object after
an EXCHANGE statement completes. The value of the
INSTANCE column for the last data exchange will
match the value of the INSTANCE column for the
SYSIBM.SYSTABLESPACE table.

For an image copy, INSTANCE indicates the instance
number of the current base objects (table and index).

G

RELCREATED CHAR(1)
NOT NULL WITH
DEFAULT

The Db2 release that created the object. Blank if
created prior to DB2 9. For other values, see "Release
dependency indicators" in Appendix H, “Db2 catalog
tables,” on page 2333.

G

Appendix H. Db2 catalog tables 2425

Column name Data type Description Use

MODECREATED CHAR(2)
NOT NULL WITH
DEFAULT

The latest mode to which the Db2 subsystem had been
migrated when the SYSCOPY record was written:
C

Conversion mode or CM*
E

Enabling-new-function mode or ENFM*
N

New-function mode
blank

Prior to Db2 11

G

SYSCTXTTRUSTATTRS catalog table
The SYSCTXTTRUSTATTRS table contains one row for each list of attributes for a given trusted context.
The schema is SYSIBM.

Table 289. SYSIBM.SYSCTXTTRUSTATTRS table column descriptions

Column name Data type Description Use

CONTEXTID INTEGER
NOT NULL

The internal trusted context ID. G

NAME VARCHAR(128)
NOT NULL

Name of the trust attribute. Possible values including
the following attributes:

• An IPv4 address is represented as a dotted decimal
IP address. An example of an IPv4 address is
'9.112.46.111'.

• An IPv6 address is represented as a colon
hexadecimal address. An example of an IPv6 address
is '2001:0DB8:0000:0000:0008:0800:200C:417A',
which can also be expressed in a compressed form
as '2001:DB8::8:800:200C:417A'.

• A domain name which is converted to an IP address
by the domain name server where a resulting IPv4 or
IPv6 address is determined.

• A job or started task name for local applications. If
the job name ends with *, any job name that matches
the characters prior to * in the specified job name are
considered for establishing the trusted connection.

• A network access security zone name in the RACF
SERVAUTH class.

G

VALUE VARCHAR(254)
NOT NULL

The value of the trust attribute. G

CREATEDTS TIMESTAMP
NOT NULL

The time when the attribute is created. G

2426 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 289. SYSIBM.SYSCTXTTRUSTATTRS table column descriptions (continued)

Column name Data type Description Use

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

SYS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW BEGIN

Reserved for future IBM use.The row-begin column
of the SYSTEM_TIME period, for system-period data
versioning.

G

SYS_END TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW END

Reserved for future IBM use.The row-end column
of the SYSTEM_TIME period, for system-period data
versioning.

G

TRANS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS TRANSACTION
START ID

Reserved for future IBM use. G

SYSDATABASE catalog table
The SYSDATABASE table contains one row for each database. The schema is SYSIBM.

Column name Data type Description Use

NAME VARCHAR(24)
NOT NULL

Database name. G

CREATOR VARCHAR(128)
NOT NULL

Authorization ID of the owner of the database. G

STGROUP VARCHAR(128)
NOT NULL

Name of the default storage group of the database;
blank for a system database.

G

BPOOL CHAR(8)
NOT NULL

Name of the default buffer pool of the table space; blank
for a system table space.

G

DBID SMALLINT
NOT NULL

Internal identifier of the database. If there were 32511
databases or more when this database was created, the
DBID is a negative number.

S

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

Appendix H. Db2 catalog tables 2427

Column name Data type Description Use

CREATEDBY VARCHAR(128)
NOT NULL WITH
DEFAULT

Primary authorization ID of the user who created the
database.

G

 ROSHARE CHAR(1)
NOT NULL WITH
DEFAULT

Not used. N

TIMESTAMP TIMESTAMP
NOT NULL WITH
DEFAULT

Not used. N

TYPE CHAR(1)
NOT NULL WITH
DEFAULT

Type of database:
blank

Not a work file database or a TEMP database.
T

A TEMP file database.
W

A work file database. The database is DSNDB07, or
it was created with the WORKFILE clause and used
as a work file database by a member of a Db2 data
sharing group.

G

GROUP_MEMBER VARCHAR(24)
NOT NULL WITH
DEFAULT

The Db2 data sharing member name of the Db2
subsystem that uses this work file database. This
column is blank if the work file database was not
created in a Db2 data sharing environment, or if the
database is not a work file database as indicated by the
TYPE column.

G

CREATEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the CREATE statement was executed for
the database. For DSNDB04 and DSNDB06, the value
is '1985-04-01.00.00.00.000000'.

G

ALTEREDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the most recent ALTER DATABASE statement
was applied. If no ALTER DATABASE statement has been
applied, ALTEREDTS has the value of CREATEDTS.

G

ENCODING_SCHEME CHAR(1)
NOT NULL WITH
DEFAULT 'E'

Default encoding scheme for the database:
E

EBCDIC
A

ASCII
U

Unicode
blank

For DSNDB04, a work file database, and a TEMP
database.

G

2428 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

SBCS_CCSID INTEGER
NOT NULL WITH
DEFAULT

Default SBCS CCSID for the database. For a TEMP
database, a work file database, or a database created
in a Db2 release prior to Version 5, the value is 0.

G

DBCS_CCSID INTEGER
NOT NULL WITH
DEFAULT

Default DBCS CCSID for the database. If mixed data is
not used and the CCSID for the database is defined as
EBCDIC or ASCII, the default value is 0.

For a TEMP database, a work file database, or a
database created in a Db2 release prior to Version 5,
the value is 0.

G

MIXED_CCSID INTEGER
NOT NULL WITH
DEFAULT

Default mixed CCSID for the database. If mixed data is
not used and the CCSID for the database is defined as
EBCDIC or ASCII, the default value is 0.

For a TEMP database, a work file database, or a
database created in a Db2 release prior to Version 5,
the value is 0.

G

INDEXBP CHAR(8)
NOT NULL WITH
DEFAULT 'BP0'

Name of the default buffer pool for indexes. G

IMPLICIT CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Indicates whether the database was implicitly created:
Y

The database was implicitly created
N

The database was explicitly created

G

CREATORTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of creator:
blank

Authorization ID
L

Role

G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object. See
Release dependency indicators for the values.

G

SYSDATATYPES catalog table
The SYSDATATYPES table contains one row for each user-defined type defined to the system. The schema
is SYSIBM.

Table 290. SYSIBM.SYSDATATYPES table column descriptions

Column name Data type Description Use

SCHEMA VARCHAR(128)
NOT NULL

Schema of the data type. G

OWNER VARCHAR(128)
NOT NULL

Owner of the data type. G

Appendix H. Db2 catalog tables 2429

Table 290. SYSIBM.SYSDATATYPES table column descriptions (continued)

Column name Data type Description Use

NAME VARCHAR(128)
NOT NULL

Name of the data type. G

CREATEDBY VARCHAR(128)
NOT NULL

Primary authorization ID of the user who created
the data type.

G

SOURCESCHEMA VARCHAR(128)
NOT NULL

Schema of the source data type. G

SOURCETYPE VARCHAR(128)
NOT NULL

Name of the source type. G

METATYPE CHAR(1)
NOT NULL

The class of data type:
A

User-defined ordinary array type
L

User-defined associative array type
T

Distinct type

G

DATATYPEID INTEGER
NOT NULL

Internal identifier of the data type. S

SOURCETYPEID INTEGER
NOT NULL

Internal ID of the built-in data type on which the
distinct type or array elements are based.

S

LENGTH INTEGER
NOT NULL

Maximum length or precision for a data type that is
based on the IBM-defined DECIMAL data type. The
data type can be a distinct type or an array type.

G

SCALE SMALLINT
NOT NULL

One of the following values:

• For a data type that is based on the IBM-
defined DECIMAL data type, the scale. The data
type can be a distinct type or an array type.
Number of fractional second digits for a data type
that is based on the IBM-defined timestamp or
timestamp with time zone type.

• For a data type that is based on the IBM-defined
TIMESTAMP or TIMESTAMP WITH TIME ZONE
type, the number of fractional-second digits.

• For any other data type, the value is 0.

If the value is a timestamp, the LENGTH is 10 and
the SCALE is 0, the number of fractional second
digits is 6.

G

2430 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 290. SYSIBM.SYSDATATYPES table column descriptions (continued)

Column name Data type Description Use

SUBTYPE CHAR(1)
NOT NULL

Subtype of the data type, if the source type is one of
the character types. The data type can be a distinct
type or an array type. Possible values are:

B
The subtype is FOR BIT DATA.

S
The subtype is FOR SBCS DATA.

M
The subtype is FOR MIXED DATA.

blank
The source type is not a character type.

G

CREATEDTS TIMESTAMP
NOT NULL

Time when the data type was created. G

ENCODING_SCHEME CHAR(1)
NOT NULL

Encoding scheme of the data type:
A

ASCII
E

EBCDIC
U

Unicode

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values, see
Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

REMARKS VARCHAR(762)
NOT NULL

A character string provided by the user with the
COMMENT statement.

G

OWNERTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner:
blank

Authorization ID
L

Role

G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object.
See Release dependency indicators for the values.

G

Appendix H. Db2 catalog tables 2431

Table 290. SYSIBM.SYSDATATYPES table column descriptions (continued)

Column name Data type Description Use

INLINE_LENGTH INTEGER
NOT NULL
WITH DEFAULT -1

The inline length attribute of the type if it is based
on a LOB source type:
-1

This type does not specify INLINE LENGTH
greater than or equal to 0

The inline length attribute (in byte) of the type if
it is based on a LOB source type

G

ARRAYLENGTH BIGINT
NOT NULL
WITH DEFAULT

Maximum cardinality, if the data type is an ordinary
array type. For all other data types, the value is 0.

G

ARRAYINDEXTYPEID INTEGER
NOT NULL
WITH DEFAULT

Data type of the index, if the data types is an
associative array type. For all other data types, the
value is 0.

G

ARRAYINDEXTYPELEN BIGINT
NOT NULL
WITH DEFAULT

Maximum length of the array index, if the data types
is an associative array type. For all other data types,
the value is 0.

G

ARRAYINDEXSUBTYPE CHAR(1)
NOT NULL
WITH DEFAULT

Subtype of the array index:
B

The subtype is FOR BIT DATA.
S

The subtype is FOR SBCS DATA.
M

The subtype is FOR MIXED DATA.
blank

The array index is not a character type.

G

SYSDBAUTH catalog table
The SYSDBAUTH table records the privileges that are held by users over databases. The schema is
SYSIBM.

Table 291. SYSIBM.SYSDBAUTH table column descriptions

Column name Data type Description Use

GRANTOR VARCHAR(128)
NOT NULL

Authorization ID or role of the user who granted the
privileges. Could also be PUBLIC.

G

GRANTEE VARCHAR(128)
NOT NULL

Application ID of the user who holds the privilege.
Could also be PUBLIC for a grant to PUBLIC.

G

NAME VARCHAR(24)
NOT NULL

Database name. G

2432 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 291. SYSIBM.SYSDBAUTH table column descriptions (continued)

Column name Data type Description Use

— CHAR(12)
NOT NULL

Internal use only. I

DATEGRANTED CHAR(6)
NOT NULL

Not used. N

TIMEGRANTED CHAR(8)
NOT NULL

Not used. N

GRANTEETYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantee:
blank

Authorization ID
L

Role

G

AUTHHOWGOT CHAR(1)
NOT NULL

Authorization level of the user from whom the
privileges were received. This authorization level is
not necessarily the highest authorization level of the
grantor.
blank

Not applicable
C

DBCTRL
D

DBADM
E

SECADM
G

ACCESSCTRL
L

SYSCTRL
M

DBMAINT
S

SYSADM

G

CREATETABAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can create tables within the
database:
blank

Privilege is not held
G

Privilege held with the GRANT option
Y

Privilege is held without the GRANT option

G

Appendix H. Db2 catalog tables 2433

Table 291. SYSIBM.SYSDBAUTH table column descriptions (continued)

Column name Data type Description Use

CREATETSAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can create table spaces within
the database:
blank

Privilege is not held
G

Privilege held with the GRANT option
Y

Privilege is held without the GRANT option

G

DBADMAUTH CHAR(1)
NOT NULL

Whether the GRANTEE has DBADM authority over the
database:
blank

Privilege is not held
G

Privilege held with the GRANT option
Y

Privilege is held without the GRANT option

G

DBCTRLAUTH CHAR(1)
NOT NULL

Whether the GRANTEE has DBCTRL authority over the
database:
blank

Privilege is not held
G

Privilege held with the GRANT option
Y

Privilege is held without the GRANT option

G

DBMAINTAUTH CHAR(1)
NOT NULL

Whether the GRANTEE has DBMAINT authority over
the database:
blank

Privilege is not held
G

Privilege held with the GRANT option
Y

Privilege is held without the GRANT option

G

DISPLAYDBAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can issue the DISPLAY
command for the database:
blank

Privilege is not held
G

Privilege held with the GRANT option
Y

Privilege is held without the GRANT option

G

2434 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 291. SYSIBM.SYSDBAUTH table column descriptions (continued)

Column name Data type Description Use

DROPAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can issue the ALTER DATABASE
and DROP DATABASE statement:
blank

Privilege is not held
G

Privilege held with the GRANT option
Y

Privilege is held without the GRANT option

G

IMAGCOPYAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the COPY,
MERGECOPY, MODIFY, and QUIESCE utilities on the
database:
blank

Privilege is not held
G

Privilege held with the GRANT option
Y

Privilege is held without the GRANT option

G

LOADAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the LOAD utility to load
tables in the database:
blank

Privilege is not held
G

Privilege held with the GRANT option
Y

Privilege is held without the GRANT option

G

REORGAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the REORG utility to
reorganize table spaces and indexes in the database:
blank

Privilege is not held
G

Privilege held with the GRANT option
Y

Privilege is held without the GRANT option

G

RECOVERDBAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the RECOVER and
REPORT utilities on table spaces in the database:
blank

Privilege is not held
G

Privilege held with the GRANT option
Y

Privilege is held without the GRANT option

G

Appendix H. Db2 catalog tables 2435

Table 291. SYSIBM.SYSDBAUTH table column descriptions (continued)

Column name Data type Description Use

REPAIRAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the DIAGNOSE and
REPAIR utilities on table spaces and indexes in the
database:
blank

Privilege is not held
G

Privilege held with the GRANT option
Y

Privilege is held without the GRANT option

G

STARTDBAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the START command
against the database:
blank

Privilege is not held
G

Privilege held with the GRANT option
Y

Privilege is held without the GRANT option

G

STATSAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the CHECK and
RUNSTATS utilities against the database:
blank

Privilege is not held
G

Privilege held with the GRANT option
Y

Privilege is held without the GRANT option

G

STOPAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can issue the STOP command
against the database:
blank

Privilege is not held
G

Privilege held with the GRANT option
Y

Privilege is held without the GRANT option

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values, see
Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

GRANTEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the GRANT statement was executed. G

2436 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 291. SYSIBM.SYSDBAUTH table column descriptions (continued)

Column name Data type Description Use

GRANTORTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantor:
blank

Authorization ID
L

Role

G

SYS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW BEGIN

Reserved for future IBM use.The row-begin column
of the SYSTEM_TIME period, for system-period data
versioning.

G

SYS_END TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW END

Reserved for future IBM use.The row-end column
of the SYSTEM_TIME period, for system-period data
versioning.

G

TRANS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS TRANSACTION
START ID

Reserved for future IBM use. G

SYSDBRM catalog table
The SYSDBRM table contains one row for each DBRM of each application plan. The schema is SYSIBM.

Column name Data type Description Use

NAME VARCHAR(24)
NOT NULL

Name of the DBRM. G

TIMESTAMP CHAR(8)
NOT NULL
FOR BIT DATA

Consistency token. S

PDSNAME VARCHAR(132)
NOT NULL

Name of the partitioned data set of which the DBRM is a
member.

G

PLNAME VARCHAR(24)
NOT NULL

Name of the application plan of which this DBRM is a
part.

G

PLCREATOR VARCHAR(128)
NOT NULL

Authorization ID of the owner of the application plan. G

PRECOMPTIME CHAR(8)
NOT NULL

Not used. N

PRECOMPDATE CHAR(6)
NOT NULL

Not used. N

Appendix H. Db2 catalog tables 2437

Column name Data type Description Use

QUOTE CHAR(1)
NOT NULL

SQL string delimiter for the SQL statements in the
DBRM:
N

Apostrophe
Y

Quotation mark

G

COMMA CHAR(1)
NOT NULL

Decimal point representation for SQL statements in the
DBRM:
N

Period
Y

Comma

G

HOSTLANG CHAR(1)
NOT NULL

The host language used:
B

Assembler language
C

OS/VS COBOL
D

C
F

Fortran
P

PL/I
2

VS COBOL II or IBM COBOL Release 1 (formerly
called COBOL/370)

3
IBM COBOL (Release 2 or subsequent releases)

4
C++

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

CHARSET CHAR(1)
NOT NULL WITH
DEFAULT

Indicates whether the system CCSID for SBCS data was
290 (Katakana) when the program was precompiled:
A

No
K

Yes

G

2438 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

MIXED CHAR(1)
NOT NULL WITH
DEFAULT

Indicates if mixed data was in effect when the
application program was precompiled (for more on
when mixed data is in effect, see “Character strings” on
page 102):
N

No
Y

Yes

G

DEC31 CHAR(1)
NOT NULL WITH
DEFAULT

Indicates whether DEC31 was in effect when the
program was precompiled:
blank

No
Y

Yes

For more information, see “Arithmetic operators in
expressions” on page 250.

G

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

Version identifier for the DBRM. G

PRECOMPTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the DBRM was precompiled. G

PLCREATORTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of creator:
blank

Authorization ID
L

Role

G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object. See
Release dependency indicators for the values.

G

SYSDEPENDENCIES catalog table
The SYSDEPENDENCIES table records the dependencies between objects. The schema is SYSIBM.

Table 292. SYSIBM.SYSDEPENDENCIES table column descriptions

Column name Data type Description Use

BNAME VARCHAR(128)
NOT NULL

Name of the object on which another object is
dependent.

If BTYPE is F, the name is the specific name of the
function.

If BTYPE is W or Z, the name is the name of the table for
which the period is defined.

G

Appendix H. Db2 catalog tables 2439

Table 292. SYSIBM.SYSDEPENDENCIES table column descriptions (continued)

Column name Data type Description Use

BSCHEMA VARCHAR(128)
NOT NULL

Schema or qualifier of the object on which another
object is dependent.

G

BCOLNAME VARCHAR(128)
NOT NULL
WITH DEFAULT

Column name of the object on which another object is
dependent.

G

BCOLNO SMALLINT
NOT NULL
WITH DEFAULT

Column number of the object on which another object is
dependent.

G

2440 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 292. SYSIBM.SYSDEPENDENCIES table column descriptions (continued)

Column name Data type Description Use

BTYPE CHAR(1)
NOT NULL

The type of object that is identified by BNAME,
BSCHEMA, and BCOLNAME:
C

Column
E

INSTEAD OF trigger
F

Function
G

Global temporary table
H

Global variable
I

Index
M

Materialized query table
O

Procedure
P

Partitioned table space
Q

Sequence
R

Table space
S

Synonym
T

Table
U

User-defined type, which is a distinct type or an
array type.

V
View

W
SYSTEM_TIME period

Z
BUSINESS_TIME period

0 (zero)
Alias

G

BOWNER VARCHAR(128)
NOT NULL
WITH DEFAULT

Authorization ID of the owner of the object on which
another object is dependent.

G

Appendix H. Db2 catalog tables 2441

Table 292. SYSIBM.SYSDEPENDENCIES table column descriptions (continued)

Column name Data type Description Use

BOWNERTYPE CHAR(1)
NOT NULL

Type of creator of the object on which another object is
dependent:
L

Role
blank

Authorization ID that is not a role

G

DNAME VARCHAR(128)
NOT NULL

Name of the object that has dependencies on another
object.

G

DSCHEMA VARCHAR(128)
NOT NULL

Schema or qualifier of the object that has dependencies
on another object.

G

DCOLNAME VARCHAR(128)
NOT NULL

Column name of the object that has dependencies on
another object.

G

DCOLNO SMALLINT
NOT NULL
WITH DEFAULT

Column number of the object that has dependencies on
another object.

G

DTYPE CHAR(1)
NOT NULL

The type of the object that is identified by DSCHEMA,
DNAME, DCOLNAME, and DVERSION:

B
Trigger package for basic trigger

C
Generated column

F
Function

I
Index

M
Materialized query table

O
Procedure

V
View

X
Row permission

Y
Column mask

1
Trigger package for an advanced trigger

G

DOWNER VARCHAR(128)
NOT NULL

Authorization ID of the owner of the object that has
dependencies on another object.

G

2442 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 292. SYSIBM.SYSDEPENDENCIES table column descriptions (continued)

Column name Data type Description Use

DOWNERTYPE CHAR(1)
NOT NULL

Type of creator of the object that has dependencies on
another object:
L

Role
blank

Authorization ID if not a role

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

BAUTH SMALLINT
NOT NULL
WITH DEFAULT

The privilege that is held on the object on which another
object is dependent.

G

DVERSION VARCHAR(122)
NOT NULL
WITH DEFAULT

The version identifier of the object that is identified by
DSCHEMA and DNAME if the object has a version.

This column contains a zero length string for the objects
that are created prior to Version 10 and for the rows that
correspond to objects without versions.

G

SYSDUMMY1 catalog table
The SYSDUMMY1catalog table contains one row. It is used for SQL statements in which a table reference
is required, but the contents of the table are not important. The schema is SYSIBM.

Unlike the other catalog tables, which reside in Unicode table spaces, SYSIBM.SYSDUMMY1 resides in
table space SYSEBCDC, which is an EBCDIC table space.

Table 293. SYSIBM.SYSDUMMY1 table column descriptions

Column name Data type Description Use

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

SYSDUMMYA catalog table
The SYSDUMMYA table contains one row. It is used for SQL statements in which a table reference is
required, but the contents of the table are not important. The schema is SYSIBM.

SYSIBM.SYSDUMMYA resides in table space SYSTSASC, which is a ASCII table space.

Appendix H. Db2 catalog tables 2443

Table 294. SYSIBM.SYSDUMMYA table column descriptions

Column name Data type Description Use

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

SYSDUMMYE catalog table
The SYSDUMMYE table contains one row. It is used for SQL statements in which a table reference is
required, but the contents of the table are not important. The schema is SYSIBM.

SYSIBM.SYSDUMMYE resides in table space SYSEBCDC, which is a EBCDIC table space.

Table 295. SYSIBM.SYSDUMMYE table column descriptions

Column name Data type Description Use

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

SYSDUMMYU catalog table
The SYSDUMMYU table contains one row. It is used for SQL statements in which a table reference is
required, but the contents of the table are not important. The schema is SYSIBM.

SYSIBM.SYSDUMMYU resides in table space SYSTSUNI, which is a Unicode table space.

Table 296. SYSIBM.SYSDUMMYU table column descriptions

Column name Data type Description Use

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

SYSDYNQRY catalog table
The SYSDYNQRY table contains information for the stabilization of access paths for dynamic SQL
statements. The schema is SYSIBM.

Column name Data type Description Use

SDQ_STMT_ID BIGINT NOT
NULL
GENERATED BY
DEFAULT AS
IDENTITY

The identifier of the stabilized dynamic query.

2444 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

STBLGRP VARCHAR(128)
NOT NULL

The name of the stabilization group.

COPYID SMALLINT NOT
NULL WITH
DEFAULT

The copy type of the stabilized runtime
structures for the query in this row:
0

The current copy.
4

An invalid copy.

CURSQLID VARCHAR (128)
NOT NULL

The current SQLID for the stabilized dynamic
query.

CURSCHEMA VARCHAR (128)
NOT NULL

Current schema for stabilized dynamic query.

CURAPPLCOMPAT VARCHAR (10)
NOT NULL

Current application compatibility for stabilized
dynamic query.

QUERY_HASH CHAR(16) NOT
NULL FOR BIT
DATA

The hash key generated by the SQL statement
text of the stabilized dynamic query.

QUERY_HASH_VERSION INTEGER NOT
NULL

The version of the query hash.

VALID CHAR(1) NOT
NULL

Whether the stabilized dynamic query is valid.
'A'

An ALTER statement changed the
description of the table or base table of
a view referred to by the query. For a
CREATE INDEX statement involving data
sharing, VALID is also marked as 'A'. The
changes do not invalidate the query.

'H'
An ALTER TABLE statement changed the
description of the table or base table of a
view referred to by the query. For objects
that were created in Db2 releases prior
to Version 5, the change invalidates the
query.

'N'
The stabilized access path is not valid.

'Y'
The stabilized access path for the dynamic
query is valid.

LASTUSED DATE WITH
DEFAULT

The date on which the query that uses the
stabilized runtime structures was last run.

RELBOUND CHAR(1) NOT
NULL

The Db2 release in which the query
was stabilized. See Release dependency
indicators.

GROUP_MEMBER VARCHAR(24)
NOT NULL

The data sharing member name that updates
the row.

Appendix H. Db2 catalog tables 2445

Column name Data type Description Use

UPDATEDTS TIMESTAMP
NOT NULL

Timestamp when statement was stabilized.

ROWID ROWID NOT
NULL
GENERATED
ALWAYS

Internal use only.

STMTTEXT CLOB (2M) NOT
NULL

The text of the SQL statement and any
attribute string.

DATA1 BLOB(2G)
INLINE LENGTH
(32329)

Internal use only.

DATA2 BLOB(2G) NOT
NULL

Internal use only.

DATA3 BLOB(2G) NOT
NULL

Internal use only.

DATA4 BLOB(2G) NOT
NULL

Internal use only.

DATA5 VARCHAR(128)
NOT NULL

Internal use only.

DATA6 CHAR(8) NOT
NULL FOR BIT
DATA

Internal use only.

FUNCTION_LVL VARCHAR(10) The function level of the query. G

Related concepts
Dynamic SQL plan stability (Db2 Performance)
Related tasks
Stabilizing access paths for dynamic SQL statements (Db2 Performance)

SYSDYNQRYDEP catalog table
The SYSDYNQRYDEP table contains information about dependencies for dynamic query packages. The
schema is SYSIBM.

Access paths for SQL statements might depend on objects that Db2 does not actually use when it
processes the selected access paths. Such dependencies are recorded in the SYSDYNQRYDEP catalog
table, but they are not be shown in EXPLAIN output.

Column name Data type Description Use

SDQ_STMT_ID BIGINT NOT NULL The identifier of the stabilized dynamic SQL
statement.

G

2446 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_dynamicsqlstability.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_stabilizedynamicsql.html

Column name Data type Description Use

COPYID SMALLINT NOT
NULL

The copy type of the stabilized runtime
structures for the query in this row:
0

The current copy.
1

The previous copy.
2

The original copy.

G

BQUALIFIER VARCHAR(128)
NOT NULL

The value of the column depends on the type of
object:

• If BNAME identifies a table space (BTYPE is '
R'), the value is the name of its database.

• If BNAME identifies a table on which a period
is defined (BTYPE is 'W' or 'Z'), the value is the
qualifier of that table.

• If BNAME identifies user-defined function,
a cast function, a stored procedure, or a
sequence (BTYPE is 'F', 'O', or 'Q'), the value
is the schema name.

• If BNAME identifies a role, the value is blank.
• Otherwise, the value is the schema of BNAME.

G

BNAME VARCHAR(128)
NOT NULL

The name of the object that the query depends
on.

G

Appendix H. Db2 catalog tables 2447

Column name Data type Description Use

BTYPE CHAR(1) NOT
NULL

Type of object identified by BNAME and
BQUALIFIER:
'E'

INSTEAD OF trigger
'F'

User-defined function or cast function
'G'

Global temporary table.
'I'

Index.
'M'

Materialized query table
'O'

Stored procedure
'P'

Partitioned table space if it is defined as
LARGE or with the DSSIZE parameter

'Q'
Sequence object

'R'
Table space

'S'
Synonym

'T'
Table

'U'
Distinct type

'V'
View

'W'
SYSTEM_TIME period

'Z'
BUSINESS_TIME period

'0' (zero)
Alias

G

CLASS CHAR(1) NOT
NULL

'A'
Authorization dependency

'D'
Data Definition Language dependency

G

2448 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

BAUTH SMALLINT NOT
NULL WITH
DEFAULT

The privilege that is held on the object on which
the query depends. The privilege applies only
when CLASS is 'A'.
50

SELECTAUTH
51

INSERTAUTH
52

DELETEAUTH
53

UDPATEAUTH
64

EXECUTEAUTH
263

USAGEAUTH
291

READAUTH
292

WRITEAUTH
0

The column is not used. CLASS is 'D'.

G

AUTHID_TYPE CHAR(1) NOT
NULL WITH
DEFAULT

The type of authorization indicated by AUTHID.
'' (blank)

The value of CLASS is 'D', or the value of
CLASS is 'A' and AUTHID contains the name
of an authorization ID.

'L'
AUTHID contains the name of a role.

G

AUTHID VARCHAR(128)
NOT NULL WITH
DEFAULT

The owner of the privilege on the object on
which the query is dependent, or a zero-length
string if the value of CLASS is 'D'.

G

DBNAME VARCHAR(128)
NOT NULL WITH
DEFAULT

If the value of SDBADMAUTH is 'Y', DBNAME
contains the name of the database on which the
user or role indicated by AUTHID holds DBADM
authority. Otherwise the value is blank.

G

Appendix H. Db2 catalog tables 2449

Column name Data type Description Use

BADMINAUTH CHAR(1) NOT
NULL

The authority that allowed access to the object
on which the query is dependent. The admin
authority only applies when CLASS is 'A'.
'B'

SDBADMAUTH
'D'

DBADMAUTH
'G'

ACCESSCTRLAUTH
'K'

SQLADMAUTH
'L'

SYSCTRLAUTH
'S'

SYSADMAUTH
'T'

DATAACCESSAUTH
''

Authority not held

G

PUBLICAUTH CHAR(1) NOT
NULL WITH
DEFAULT

'Y'
This privilege is held by PUBLIC by the user
or role indicated in AUTHID.

' ' (blank)
This privilege is not held by PUBLIC, or the
value of CLASS is 'D'.

G

ALLOBJAUTH CHAR(1) NOT
NULL WITH
DEFAULT

'Y'
The privilege is held on all objects within
the schema by the user or role indicated in
AUTHID.

' ' (blank)
This privilege is not held on all objects within
the schema, or the value of CLASS is 'D'.

G

QUERYHASH BINARY(16) WITH
DEFAULT

The hash key of the statement text if the value of
CLASS is 'D', otherwise hexadecimal zeros.

G

— CLOB(2M) NOT
NULL WITH
DEFAULT

Internal use only. I

— CHAR(8) NOT
NULL FOR BIT
DATA

Internal use only. I

Related concepts
Dynamic SQL plan stability (Db2 Performance)
Related tasks
Stabilizing access paths for dynamic SQL statements (Db2 Performance)
Related reference
SYSPACKDEP catalog table

2450 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_dynamicsqlstability.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_stabilizedynamicsql.html

The SYSPACKDEP table records the dependencies of packages on local tables, views, synonyms, table
spaces, indexes, aliases, functions, and stored procedures. The schema is SYSIBM.

SYSDYNQRY_EXPL catalog table
The SYSDYNQRY_EXPL catalog table contains internal use information for stabilized dynamic queries. The
schema is SYSIBM.

Table 297. SYSIBM.SYSDYNQRY_EXPL table column descriptions

Column name Data type Description Use

DATA2 BLOB(2G) NOT NULL
WITH

Internal use only. I

SYSDYNQRY_OPL catalog table
The SYSDYNQRY_OPL catalog table contains internal use information for stabilized dynamic queries. The
schema is SYSIBM.

Table 298. SYSIBM.SYSDYNQRY_EPXL table column descriptions

Column name Data type Description Use

DATA4 BLOB(2G) NOT NULL
WITH

Internal use only. I

SYSDYNQRY_SHTEL catalog table
The SYSDYNQRY_SHTEL table contains internal use information for stabilized dynamic queries. The
schema is SYSIBM.

Table 299. SYSIBM.SYSDYNQRY_EPXL table column descriptions

Column name Data type Description Use

DATA3 BLOB(2G) NOT NULL Internal use only. I

SYSDYNQRY_SPAL catalog table
The SYSDYNQRY_SPAL catalog table contains internal use information for stabilized dynamic queries. The
schema is SYSIBM.

Table 300. SYSIBM.SYSDYNQRY_SPA table column descriptions

Column name Data type Description Use

DATA1 BLOB(2G) NOT NULL
WITH

Internal use only. I

SYSDYNQRY_TXTL catalog table
The SYSDYNQRY_TEXTL catalog table contains internal use information for stabilized dynamic queries.
The schema is SYSIBM.

Table 301. SYSIBM.SYSDYNQRY_TEXTL table column descriptions

Column name Data type Description Use

STMTTEXT CLOB(2M) NOT NULL Text of the SQL statement I

Appendix H. Db2 catalog tables 2451

SYSENVIRONMENT catalog table
The SYSENVIRONMENT table records the environment variables when an object is created. The schema is
SYSIBM.

Table 302. SYSIBM.SYSENVIRONMENT table column descriptions

Column name Data type Description Use

ENVID INTEGER
NOT NULL

Internal identifier of the environment. G

CURRENT_SCHEMA VARCHAR(128)
NOT NULL

The current schema. G

RELCREATED CHAR(1)
NOT NULL

The release when the environment information is
created. SeeRelease dependency indicators for values.

G

PATHSCHEMAS VARCHAR(2048)
NOT NULL

The schema path. G

APPLICATION_
ENCODING_CCSID

INTEGER
NOT NULL

The CCSID of the application environment. G

ORIGINAL_
ENCODING_CCSID

INTEGER
NOT NULL

The original CCSID of the statement text string. G

DECIMAL_POINT CHAR(1)
NOT NULL

The decimal point indicator:
C

Comma
P

Period

G

MIN_DIVIDE_SCALE CHAR(1)
NOT NULL

The minimum divide scale:
N

The usual rules apply for decimal division in SQL
Y

Retain at lease three digits to the right of the
decimal point after any decimal division.

G

STRING_DELIMITER CHAR(1)
NOT NULL

The string delimiter that is used in COBOL string
constants:
A

Apostrophe (')
Q

Quote (")

G

SQL_STRING_
DELIMITER

CHAR(1)
NOT NULL

The SQL string delimiter that is used in string constants:
A

Apostrophe (')
Q

Quote (")

G

2452 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 302. SYSIBM.SYSENVIRONMENT table column descriptions (continued)

Column name Data type Description Use

MIXED_DATA CHAR(1)
NOT NULL

Uses mixed DBCS data:
N

No mixed data
Y

Mixed data

G

DECIMAL_
ARITHMETIC

CHAR(1)
NOT NULL

The rules that are to be used for CURRENT PRECISION
and when both operands in a decimal operation have a
precision of 15 or less:
1

DEC15 specifies that the rules do not allow a
precision greater than 15 digits

2
DEC31 specifies that the rules allow a precision of
up to 31 digits

G

DATE_FORMAT CHAR(1)
NOT NULL

The date format:
I

ISO - yyyy-mm-dd
J

JIS - yyyy-mm-dd
U

USA - mm/dd/yyyy
E

EUR - dd.mm.yyyy
L

Locally defined by an installation exit routine

G

TIME_FORMAT CHAR(1)
NOT NULL

The time format:
I

ISO - hh.mm.ss
J

JIS - hh.mm.ss
U

USA - hh:mm AM or hh:mm PM
E

EUR - hh.mm.ss
L

Locally defined by an installation exit routine

G

FLOAT_FORMAT CHAR(1)
NOT NULL

The floating point format:
I

IEEE floating point format
S

System/390 floating point format

G

Appendix H. Db2 catalog tables 2453

Table 302. SYSIBM.SYSENVIRONMENT table column descriptions (continued)

Column name Data type Description Use

HOST_LANGUAGE CHAR(8)
NOT NULL

The host language:

• ASM
• C
• CPP
• IBMCOB
• JAVA
• PLI
• FORTRAN

G

CHARSET CHAR(1)
NOT NULL

The character set:
A

Alphanumeric

G

FOLD CHAR(1)
NOT NULL

FOLD is only applicable when HOST_LANGUAGE is C or
CPP. Otherwise FOLD is blank.
N

Lower case letters in SBCS ordinary identifiers are
not folded to uppercase

Y
Lower case letters in SBCS ordinary identifiers are
folded to uppercase

blank
Not applicable

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

ROUNDING CHAR(1)
NOT NULL
WITH DEFAULT

The rounding mode that is used when arithmetic and
casting operations are performed on DECFLOAT data:
C

ROUND_CEILING
D

ROUND_DOWN
F

ROUND_FLOOR
G

ROUND_HALF_DOWN
E

ROUND_HALF_EVEN
H

ROUND_HALF_UP
U

ROUND_UP

G

2454 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 302. SYSIBM.SYSENVIRONMENT table column descriptions (continued)

Column name Data type Description Use

CREATEDTS TIMESTAMP(12) NOT
NULL

The time when the row was inserted. G

APPLCOMPAT VARCHAR(10) NOT
NULL WITH DEFAULT

The application compatibility level that is associated
with this environment.
VvvRrMmmm

Compatibility with the behavior of the identified Db2
function level. For example, V12R1M510 specifies
compatibility with the highest available Db2 12
function level. The equivalent function level or
higher must be activated.

For the new capabilities that become available in
each application compatibility level, see:

• SQL changes in Db2 13 application compatibility
levels

• SQL changes in Db2 12 application compatibility
levels

Tip: Extra program preparation steps might be
required to increase the application compatibility
level for applications that use data server clients
or drivers to access Db2 for z/OS. For more
information, see Setting application compatibility
levels for data server clients and drivers (Db2
Application programming and SQL).

V12R1
Compatibility with the behavior of Db2 12 function
level 500. This value has the same result as
specifying V12R1M500.

V11R1
Compatibility with the behavior of Db2 11 new-
function mode. After migration to Db2 12, this
value has the same result as specifying V12R1M100.
For more information, see V11R1 application
compatibility level (Db2 Application programming
and SQL)

V10R1
Compatibility with the behavior of DB2 10 new-
function mode. For more information, see V10R1
application compatibility level (Db2 Application
programming and SQL).

G

Appendix H. Db2 catalog tables 2455

https://www.ibm.com/docs/en/SSEPEK_13.0.0/wnew/src/tpc/db2z_13_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/wnew/src/tpc/db2z_13_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html

SYSFIELDS catalog table
The SYSFIELDS table contains one row for every column that has a field procedure. The schema is
SYSIBM.

Table 303. SYSIBM.SYSFIELDS table column descriptions

Column name Data type Description Use

TBCREATOR VARCHAR(128)
 NOT NULL

Schema or qualifier of the table that contains the
column.

G

TBNAME VARCHAR(128)
NOT NULL

Name of the table that contains the column. G

COLNO SMALLINT
NOT NULL

Numeric place of this column in the table. G

NAME VARCHAR(128)
NOT NULL

Name of the column. G

FLDTYPE VARCHAR(24)
NOT NULL

Data type of the encoded values in the field (This
column might contain statistical values from a prior
release.):
INTEGER

Large integer
SMALLINT

Small integer
FLOAT

Floating-point
CHAR

Fixed-length character string
VARCHAR

Varying-length character string
DECIMAL

Decimal
GRAPHIC

Fixed-length graphic string
VARG

Varying-length graphic string

G

2456 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 303. SYSIBM.SYSFIELDS table column descriptions (continued)

Column name Data type Description Use

LENGTH SMALLINT
NOT NULL

The length attribute of the field; or, for a decimal
field, its precision.(This column might contain statistical
values from a prior release.) The number does not
include the internal prefixes that can be used to record
actual length and null state.
INTEGER

4
SMALLINT

2
FLOAT

8
CHAR

Length of string
VARCHAR

Maximum length of string
DECIMAL

Precision of number
GRAPHIC

Number of DBCS characters
VARG

Maximum number of DBCS characters

G

SCALE SMALLINT
NOT NULL

Scale if FLDTYPE is DECIMAL; otherwise, the value is 0. G

FLDPROC VARCHAR(24)
NOT NULL

For a row describing a field procedure, the name of the
procedure. (This column might contain statistical values
from a prior release.)

G

WORKAREA SMALLINT
NOT NULL

For a row describing a field procedure, the size, in bytes,
of the work area required for the encoding and decoding
of the procedure. (This column might contain statistical
values from a prior release.)

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

EXITPARML SMALLINT
NOT NULL

For a row describing a field procedure, the length of
the field procedure parameter value block. (This column
might contain statistical values from a prior release.)

G

PARMLIST VARCHAR(735)
NOT NULL

For a row describing a field procedure, the parameter list
following FIELDPROC in the statement that created the
column, with insignificant blanks removed. (This column
might contain statistical values from a prior release.)

G

Appendix H. Db2 catalog tables 2457

Table 303. SYSIBM.SYSFIELDS table column descriptions (continued)

Column name Data type Description Use

EXITPARM VARCHAR(1530)
NOT NULL
FOR BIT DATA

For a row describing a field procedure, the parameter
value block of the field procedure (the control block
passed to the field procedure when it is invoked). (This
column might contain statistical values from a prior
release.)

G

SYSFOREIGNKEYS catalog table
The SYSFOREIGNKEYS table contains one row for every column of every foreign key. The schema is
SYSIBM.

Table 304. SYSIBM.SYSFOREIGNKEYS table column descriptions

Column name Data type Description Use

CREATOR VARCHAR(128)
NOT NULL

Schema or qualifier of the table that contains the
column.

G

TBNAME VARCHAR(128)
NOT NULL

Name of the table that contains the column. G

RELNAME VARCHAR(128)
NOT NULL

Constraint name for the constraint for which the column
is part of the foreign key.

G

COLNAME VARCHAR(128)
NOT NULL

Name of the column. G

COLNO SMALLINT
NOT NULL

Numeric place of the column in its table. G

COLSEQ SMALLINT
NOT NULL

Numeric place of the column in the foreign key. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

SYSINDEXCLEANUP catalog table
The rows in the SYSIBM.SYSINDEXCLEANUP table specify time windows to control index cleanup
processing. Each row specifies a time window to enable or disable the cleanup of pseudo-deleted index
entries for specific database objects. The schema is SYSIBM.

Table 305. SYSIBM.SYSINDEXCLEANUP table column descriptions

Column name Data type Description Use

DBNAME VARCHAR(24) The name of the database that contains the index space. G

INDEXSPACE VARCHAR(24) The name of the index space. G

2458 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 305. SYSIBM.SYSINDEXCLEANUP table column descriptions (continued)

Column name Data type Description Use

ENABLE_DISABLE CHAR(1) NOT NULL Specifies whether the row enables or disables cleanup
for the specified index space.
'E'

Enabled
'D'

Disabled

G

MONTH_WEEK CHAR(1) NOT NULL Indicates the meaning of the value of the DAY column:
'M'

The value indicates the day of the month.
'W'

The value indicates a day of the week.

G

MONTH SMALLINT The month in which the time window applies. For
example a 1 value indicates January and a 12 value
indicates December. If this column contains NULL, the
time window applies to all months. If the value of the
MONTH_WEEK column is 'W', this value must be NULL.

G

DAY SMALLINT The day of the month or the day of the week for which
the time window applies, as specified by the value of the
MONTH_WEEK column.

For example, if MONTH_WEEK='W', a 1 value indicates
Monday and 7 indicates Sunday.

If the value of this column is NULL, the time window
applies to every day of the month or every day of the
week.

G

START_TIME TIME The local time at the beginning of the time window
specified by the row. When this column contains a null
value, the row applies at all times on the specified days.
This column must contain NULL if the END_TIME column
contains NULL.

G

END_TIME TIME The local time at the end of the time window specified
by the row. When this column contains a null value,
the row applies at all times on the specified days. This
column must contain NULL if the START_TIME column
contains NULL.

G

Related tasks
Controlling index cleanup processing (Db2 Performance)
Related reference
INDEX CLEANUP THREADS field (INDEX_CLEANUP_THREADS subsystem parameter) (Db2 Installation
and Migration)

Appendix H. Db2 catalog tables 2459

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_controlindexcleanup.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_indexcleanupthreads.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_indexcleanupthreads.html

SYSINDEXCONTROL catalog table
The SYSINDEXCONTROL table contains rows that specify time windows to control the use of memory
allocated for an index. Each row specifies a time window for enabling or disabling the use of memory for a
specific index object. The schema is SYSIBM.

Tip: Fast index traversal is intended to be automatically controlled by Db2. Use the
SYSIBM.SYSINDEXCONTROL catalog table only to define exceptions, when the automatic processing is
unacceptable. Index performance optimization might be impeded if the number of rows in this catalog
table becomes too large.

Table 306. SYSIBM.SYSINDEXCONTROL table column descriptions

Column name Data type Description Use

SSID CHAR(4) The name of a Db2 subsystem. In data sharing, if this
column is NULL, this row applies to all members of the
data sharing group.

G

PARTITION SMALLINT Partition number. If this column is NULL, then the action
is applicable to all partitions of the specified index.

G

IXNAME VARCHAR(128)
NOT NULL

The name of the index. G

IXCREATOR VARCHAR(128)
NOT NULL

The schema of the index. G

TYPE CHAR(1)
NOT NULL
WITH DEFAULT 'F'

The purpose for which memory is being used:
F

A structure for fast index traversal (FTB)

G

ACTION CHAR(1)
NOT NULL
WITH DEFAULT 'A'

The action that is being performed:
A

The index is candidate for FTB creation when the
INDEX_MEMORY_CONTROL subsystem parameter
setting is (SELECTED,n)

D
Disable FTB creation

F
Force FTB creation

G

MONTH_WEEK CHAR(1) The meaning of the value in the DAY column.
M

A day of the month
W

A day of the week

G

MONTH SMALLINT Month during which the time window applies. Valid
values are 1 (January) to 12 (December), or NULL.

If this column contains NULL, the time window applies
to all months.

If MONTH_WEEK is 'W', this column value must be
NULL.

G

2460 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 306. SYSIBM.SYSINDEXCONTROL table column descriptions (continued)

Column name Data type Description Use

DAY SMALLINT Day of the month or day of the week for which the time
window applies.

• If MONTH_WEEK='M', valid values are 1 (first day of
the month) to the number of the last day of the month,
or NULL.

• If MONTH_WEEK='W', valid values are 1 (Monday) to 7
(Sunday), or NULL.

If this column contains NULL, the time window applies
to every day of the month, or to every day of the week,
depending on the value of the MONTH_WEEK column.

G

FROM_TIME TIME The time of day at which the time window begins.

If this column contains NULL, no limitation on the
time exists. This column contains NULL if the TO_TIME
column contains NULL.

G

TO_TIME TIME The time of day at which the time window ends.

If this column contains NULL, no limitation on the time
exists. This column contains NULL if the FROM_TIME
column contains NULL.

G

Related concepts
Fast index traversal (Db2 Performance)
Related tasks
Enabling or disabling fast index traversal at the index level (Db2 Performance)
Related reference
INDEX MEMORY CONTROL field (INDEX_MEMORY_CONTROL subsystem parameter) (Db2 Installation and
Migration)

SYSINDEXES catalog table
The SYSINDEXES table contains one row for every index. The schema is SYSIBM.

Table 307. SYSIBM.SYSINDEXES table column descriptions

Column name Data type Description Use

NAME VARCHAR(128)
NOT NULL

Name of the index. G

CREATOR VARCHAR(128)
NOT NULL

The schema of the index. G

TBNAME VARCHAR(128)
NOT NULL

Name of the table on which the index is defined. G

TBCREATOR VARCHAR(128)
NOT NULL

The schema of the table. G

Appendix H. Db2 catalog tables 2461

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_fastindextraversal.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_fastindextraversalbyindex.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_indexmemorycontrol.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_indexmemorycontrol.html

Table 307. SYSIBM.SYSINDEXES table column descriptions (continued)

Column name Data type Description Use

UNIQUERULE CHAR(1)
NOT NULL

Whether the index is unique:
C

Yes, and it is used to enforce the uniqueness of a
UNIQUE constraint or hash key columns.

D
No (duplicates are allowed)

U
Yes

P
Yes, and it is a primary index (As in prior releases of
Db2, a value of P is used for primary keys that are
used to enforce a referential constraint.)

N
Yes, and it is defined with UNIQUE WHERE NOT
NULL

R
Yes, and it is an index used to enforce the
uniqueness of a non-primary parent key

G
Yes, and it is an index used to enforce the
uniqueness of values in a column defined as ROWID
GENERATED BY DEFAULT

X
Yes, and it is an index used to enforce the
uniqueness of values in a column that is used to
identify or find XML values associated with a specific
row.

G

COLCOUNT SMALLINT
NOT NULL

The number of columns in the key. G

CLUSTERING CHAR(1)
NOT NULL

Whether CLUSTER was specified for the index:
N

No
Y

Yes

G

2462 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 307. SYSIBM.SYSINDEXES table column descriptions (continued)

Column name Data type Description Use

CLUSTERED CHAR(1)
NOT NULL

Whether the table is actually clustered by the index:
N

A significant number of rows are not in clustering
order, or statistics have not been gathered.

Y
Most of the rows are in clustering order.

blank
Not applicable.

This is an updatable column that can also be changed by
the RUNSTATS utility.

For a sparse index, the statistic is based on the actual
contents of the index.

G

DBID SMALLINT
NOT NULL

Internal identifier of the database. S

OBID SMALLINT
NOT NULL

Internal identifier of the index fan set descriptor. S

ISOBID SMALLINT
NOT NULL

Internal identifier of the index page set descriptor. S

DBNAME VARCHAR(24)
NOT NULL

Name of the database that contains the index. G

INDEXSPACE VARCHAR(24)
NOT NULL

Name of the index space. G

FIRSTKEYCARD INTEGER
NOT NULL

Not used N

FULLKEYCARD INTEGER
NOT NULL

Not used N

NLEAF INTEGER
NOT NULL

Number of active leaf pages in the index. The value is -1
if statistics have not been gathered. This is an updatable
column.

S

NLEVELS SMALLINT
NOT NULL

Number of levels in the index tree. If the index is
partitioned, it is the maximum of the number of levels
in the index tree for all the partitions. The value is -1 if
statistics have not been gathered. This is an updatable
column.

S

BPOOL CHAR(8)
NOT NULL

Name of the buffer pool used for the index. G

Appendix H. Db2 catalog tables 2463

Table 307. SYSIBM.SYSINDEXES table column descriptions (continued)

Column name Data type Description Use

PGSIZE SMALLINT
NOT NULL

Contains the value 4, 8, 16, or 32 which indicates the
size, in KB, of the leaf pages in the index.

If the index was created prior to DB2 9, the value will be
4096 for a 4 KB page size.

G

ERASERULE CHAR(1)
NOT NULL

Whether the data sets are erased when dropped. The
value is meaningless if the index is partitioned:
N

No
Y

Yes

G

DSETPASS VARCHAR(24)
NOT NULL

Not used N

CLOSERULE CHAR(1)
NOT NULL

Whether the data sets are candidates for closure when
the limit on the number of open data sets is reached:
N

No
Y

Yes

G

SPACE INTEGER
NOT NULL

Number of kilobytes of DASD storage allocated to the
index, as determined by the last execution of the
STOSPACE utility. The value is 0 if the index is not
related to a storage group, or if STOSPACE has not been
run. If the index space is partitioned, the value is the
total kilobytes of DASD storage allocated to all partitions
that are defined in a storage group.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

CLUSTERRATIO SMALLINT
NOT NULL WITH
DEFAULT

Percentage of rows that are in clustering order. For
a partitioning index, it is the weighted average of all
index partitions in terms of the number of rows in the
partition. The value is 0 if statistics have not been
gathered. The value is -2 if the index is for an auxiliary
table. This is an updatable column.

For a sparse index, the statistic is based on the actual
contents of the index.

S

CREATEDBY VARCHAR(128)
NOT NULL WITH
DEFAULT

Primary authorization ID of the user who created the
index.

G

2464 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 307. SYSIBM.SYSINDEXES table column descriptions (continued)

Column name Data type Description Use

IOFACTOR SMALLINT
NOT NULL

Internal use only. I

PREFETCHFACTOR SMALLINT
NOT NULL

Not used N

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The default
value is '0001-01-01-00.00.00.000000'. The default
value indicates that statistics were not collected. This
column can be updated.

G

INDEXTYPE CHAR(1)
NOT NULL WITH
DEFAULT

The index type:
2

Type 2 index or a hash overflow index on non-
partitioned tables.

blank
Type 1 index

D
Data-partitioned secondary index

P
An index that is both partitioned and is a partitioning
index (index that is on a table that uses table-
controlled partitioning).

G

FIRSTKEYCARDF FLOAT
NOT NULL WITH
DEFAULT -1

Number of distinct values of the first key column.
This number is an estimate if updated while collecting
statistics on a single partition. The value is -1 if statistics
have not been gathered. This is an updatable column.

For a sparse index, the statistic is based on the actual
contents of the index.

S

FULLKEYCARDF FLOAT
NOT NULL WITH
DEFAULT -1

Number of distinct values of the key. The value is -1 if
statistics have not been gathered. This is an updatable
column.

For a sparse index, the statistic is based on the actual
contents of the index.

S

CREATEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the CREATE statement was executed for the
index. If the index was created in a Db2 release prior to
Version 5, the value is '0001-01-01.00.00.00.000000'.

G

ALTEREDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the most recent ALTER INDEX statement
was executed for the index. If no ALTER INDEX
statement has been applied, ALTEREDTS has the
value of CREATEDTS. If the index was created in
a Db2 release prior to Version 5, the value is
'0001-01-01.00.00.00.000000'.

G

Appendix H. Db2 catalog tables 2465

Table 307. SYSIBM.SYSINDEXES table column descriptions (continued)

Column name Data type Description Use

PIECESIZE INTEGER
NOT NULL
WITH DEFAULT

Maximum size of a data set in kilobytes for non-
partitioned indexes.

A value of zero (0) indicates that the index is a
partitioned index or that the index was created in a Db2
release prior to Version 5.

G

COPY CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Whether COPY YES was specified for the index,
which indicates if the index can be copied and if
SYSIBM.SYSLGRNX recording is enabled for the index.
N

No
Y

Yes

G

COPYLRSN CHAR(10)
NOT NULL WITH
DEFAULT
X'000000000000
 00000000'
FOR BIT DATA

The value can be either an RBA or LRSN. (LRSN is
only for data sharing.) If the index is currently defined
as COPY YES, the value is the RBA or LRSN when
the index was created with COPY YES or altered to
COPY YES, not the current RBA or LRSN. If the index
is currently defined as COPY NO, the value is set to
X'00000000000000000000' if the index was created
with COPY NO; otherwise, if the index was altered to
COPY NO, the value in COPYLRSN is not changed when
the index is altered to COPY NO.

G

CLUSTERRATIOF FLOAT
NOT NULL WITH
DEFAULT

When multiplied by 100, the value of the column is
the percentage of rows that are in clustering order.
For example, a value of '.9125' indicates 91.25%. For
a partitioning index, it is the weighted average of all
index partitions in terms of the number of rows in the
partition. The value is 0 if statistics have not been
gathered. The value is -2 if the index is for an auxiliary
table, a node ID index or an XML index. This is an
updatable column.

For a sparse index, the statistic is based on the actual
contents of the index.

G

SPACEF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Kilobytes of DASD storage. The value is -1 if statistics
have not been gathered. This is an updatable column.

G

REMARKS VARCHAR(762)
NOT NULL WITH
DEFAULT

A character field string provided by the user with the
COMMENT statement.

G

2466 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 307. SYSIBM.SYSINDEXES table column descriptions (continued)

Column name Data type Description Use

PADDED CHAR(1)
NOT NULL WITH
DEFAULT

Indicates whether keys within the index are padded for
varying-length column data:
Y

The index contains varying-length character or
graphic data and is PADDED (the varying-length
columns are padded to their maximum length).

N
The index contains varying-length character or
graphic data and is NOT PADDED (the varying-length
columns are not padded to their maximum length).
Index-only access to all column data is possible.

blank
The index does not contain varying-length character
or graphic data, or the index was created or altered
prior to DB2 version 8.

G

VERSION SMALLINT
NOT NULL WITH
DEFAULT

The version of the data row format for this index. A value
of zero indicates that a version-creating alter has never
occurred against this index.

G

OLDEST_VERSION SMALLINT
NOT NULL WITH
DEFAULT

The version number describing the oldest format of data
in the index space and any image copies of the index.

G

CURRENT_VERSION SMALLINT
NOT NULL WITH
DEFAULT

The version number describing the newest format of
data in the index space. A zero indicates that the index
space has never had been versioned. After the version
number reaches the maximum value, the number will
wrap back to one.

G

RELCREATED CHAR(1)
NOT NULL WITH
DEFAULT

Release of Db2 that was used to create the object,
blank for indexes created before Version 8. For all other
values, see Release dependency indicators.

G

AVGKEYLEN INTEGER
NOT NULL WITH
DEFAULT -1

Average length of keys within the index. The value is -1 if
statistics have not been gathered.

For a sparse index, the statistic is based on the actual
contents of the index.

G

KEYTARGET_COUNT SMALLINT
NOT NULL WITH
DEFAULT

The number of key-targets for an extended index. The
value is 0 for a simple index.

G

UNIQUE_COUNT SMALLINT
NOT NULL WITH
DEFAULT

The number of columns or key-targets that make
up the unique constraint of an index, when other
non-constraint enforcing columns or key-targets exist.
Otherwise the value is 0.

G

Appendix H. Db2 catalog tables 2467

Table 307. SYSIBM.SYSINDEXES table column descriptions (continued)

Column name Data type Description Use

IX_EXTENSION_TYP
E

CHAR(1)
NOT NULL WITH
DEFAULT

Identifies the type of extended index:
N

Node ID index
S

Index on a scalar expression
T

Spatial index
V

XML index
blank

Simple index

G

COMPRESS CHAR(1)
NOT NULL WITH
DEFAULT ' N'

Indicates whether index compression is active:
N

Index compression is not active
Y

Index compression is active

G

OWNER VARCHAR(128)
NOT NULL WITH
DEFAULT

Authorization ID of the owner of the index.

The value is an empty string for indexes created in a Db2
release prior to DB2 9.

G

OWNERTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner:
blank

Authorization ID
L

Role

G

DATAREPEATFACTOR
F

FLOAT
NOT NULL WITH
DEFAULT -1

The anticipated number of data pages that will be
touched following an index key order. This number is -1
if statistics have not been collected. This is an updatable
column.

For a sparse index, the statistic is based on the actual
contents of the index.

G

ENVID INTEGER
NOT NULL WITH
DEFAULT

Internal environment identifier. G

ROWID ROWID
NOT NULL
GENERATED
ALWAYS

ROWID column, created for the lob columns in this
table.

G

2468 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 307. SYSIBM.SYSINDEXES table column descriptions (continued)

Column name Data type Description Use

HASH CHAR(1)
NOT NULL
WITH DEFAULT N

Whether the index is the hash overflow index for a hash
table.
N

No. N is the default.
Y

Yes

G

SPARSE CHAR(1)
NOT NULL
WITH DEFAULT N

Whether the index is sparse or not.
N

No. N is the default. Every data row has an index
entry.

Y
Yes. This index might not have an entry for each data
row in the table.

X
Excluded. This index will not have an index entry
when every data row for a key column contains the
NULL value.

G

PARSETREE BLOB(1G)
NOT NULL
WITH DEFAULT

Internal use only. I

RTSECTION BLOB(1G)
NOT NULL
WITH DEFAULT

Internal use only. I

DSSIZE INTEGER
WITH DEFAULT
NULL

The maximum size in KB of a partitioned index data
set for a table space with relative page numbers. 0 for
nonpartitioned indexes or partitioned indexes for table
spaces with absolute page numbers.

NULL for indexes that were created before Db2 12.

G

PAGENUM CHAR(1)
NOT NULL
WITH DEFAULT
'A'

Format of page numbers for the index, indicating
absolute or relative page numbering.
A

Indicates absolute addressing. The page number is
an absolute number from the first page of the index.
If the index is partitioned, the partition number is
embedded in the page number.

R
Indicates relative addressing for partitioned indexes.
The page number is relative to the start of the
partition.

NULL for objects that were created before Db2 12

G

PARTKEYCOLNUM SMALLINT
NOT NULL
WITH DEFAULT

Reserved for future IBM use. I

Appendix H. Db2 catalog tables 2469

Table 307. SYSIBM.SYSINDEXES table column descriptions (continued)

Column name Data type Description Use

STATUS CHAR(1)
NOT NULL
WITH DEFAULT

Reserved for future IBM use. I

INDEXSTATUS VARCHAR(30)
NOT NULL
WITH DEFAULT

Reserved for future IBM use. I

PARTITIONS SMALLINT Reserved for future IBM use. I

PQTY INTEGER
WITH DEFAULT NULL

For user-managed data sets, the value is the primary
space allocation in units of 4 KB storage blocks or -1.

PQTY is based on a value of PRIQTY in the appropriate
CREATE or ALTER TABLESPACE statement. Unlike PQTY,
however, PRIQTY accepts space in 1 KB units.

A value of -1 indicates that one of the following cases is
true:

• PRIQTY was not specified for a CREATE TABLESPACE
statement or for any subsequent ALTER TABLESPACE
statements.

• -1 was the most recently specified value for PRIQTY,
either on the CREATE TABLESPACE statement or a
subsequent ALTER TABLESPACE statement.

This column contains the null value when the value is
unknown for objects created prior to Db2 12.

STORTYPE CHAR(1)
WITH DEFAULT NULL

Type of storage allocation:
E

Explicit (storage group not used)
I

Implicit (storage group used)

This column is not used for rows representing catalog
indexes. Catalog data sets are managed by Db2

This column contains the null value when the value is
unknown for objects created prior to Db2 12.

STORNAME VARCHAR(128)
WITH DEFAULT NULL

Name of storage group used for space allocation. Blank
if storage group not used.

This column is not used for rows representing catalog
indexes. Catalog data sets are managed by Db2

This column contains the null value when the value is
unknown for objects created prior to Db2 12.

2470 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 307. SYSIBM.SYSINDEXES table column descriptions (continued)

Column name Data type Description Use

VCATNAME VARCHAR(24)
WITH DEFAULT NULL

Name of integrated catalog facility catalog used for
space allocation.

This column is not used for rows representing catalog
indexes. Catalog data sets are managed by Db2

This column contains the null value when the value is
unknown for objects created prior to Db2 12.

FREEPAGE SMALLINT
WITH DEFAULT NULL

Number of pages loaded before a page is left as free
space.

This column contains the null value when the value is
unknown for objects created prior to Db2 12.

PCTFREE SMALLINT
WITH DEFAULT NULL

Percentage of each page left as free space.

This column contains the null value when the value is
unknown for objects created prior to Db2 12.

GBPCACHE CHAR(1)
WITH DEFAULT NULL

Group buffer pool cache option specified for this index
or index partition.
Blank

Only changed pages are cached in the group buffer
pool.

A
Changed and unchanged pages are cached in the
group buffer pool.

N
No data is cached in the group buffer pool.

This column contains the null value when the value is
unknown for objects created prior to Db2 12.

SECQTYI INTEGER
WITH DEFAULT NULL

Secondary space allocation in units of 4 KB storage.
For user-managed data sets, the value is the secondary
space allocation in units of 4 KB blocks.

This column contains the null value when the value is
unknown for objects created prior to Db2 12.

ENFORCED_CONS CHAR(1) NOT NULL
WITH DEFAULT

Whether the index is an enforcing non-unique
constraint.
Blank

The index does not enforce a non-unique constraint.
F

The index enforces a foreign key for a temporal
referential constraint.

Appendix H. Db2 catalog tables 2471

Table 307. SYSIBM.SYSINDEXES table column descriptions (continued)

Column name Data type Description Use

IMPLICIT CHAR(1) NOT NULL
WITH DEFAULT

Whether the index was implicitly created. Possible
values are:
Blank

n/a
N

The index was explicitly created.
Y

The index was implicitly created.

REGENERATETS TIMESTAMP(12) NOT
NULL

The time when the object was regenerated. The value
is valid only for objects that can be regenerated. If
no regeneration has occurred, this column contains the
same value as the CREATEDTS column.

G

FL 502 KEYLABEL VARCHAR(192) NOT
NULL WITH DEFAULT

The key label that is specified at the table level.
Otherwise, the value is an empty string.

SYSINDEXES_HIST catalog table
The SYSINDEXES_HIST catalog table contains rows from SYSINDEXES. The schema is SYSIBM.

Rows are added or changed in this table when RUNSTATS collects history statistics. Rows in this table can
also be inserted, updated, and deleted.

Table 308. SYSIBM.SYSINDEXES_HIST table column descriptions

Column name Data type Description Use

NAME VARCHAR(128)
NOT NULL

Name of the index. G

CREATOR VARCHAR(128)
NOT NULL

The schema of the index. G

TBNAME VARCHAR(128)
NOT NULL

Name of the table on which the index is defined. G

TBCREATOR VARCHAR(128)
NOT NULL

The schema of the table. G

CLUSTERING CHAR(1)
NOT NULL

Whether CLUSTER was specified when the index
was created:
N

No
Y

Yes

G

NLEAF INTEGER
NOT NULL WITH
DEFAULT -1

Number of active leaf pages in the index. The value
is -1 if statistics have not been gathered.

S

2472 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html

Table 308. SYSIBM.SYSINDEXES_HIST table column descriptions (continued)

Column name Data type Description Use

NLEVELS SMALLINT
NOT NULL WITH
DEFAULT -1

Number of levels in the index tree. If the index is
partitioned, it is the maximum of the number of
levels in the index tree for all the partitions. The
value is -1 if statistics have not been gathered.

S

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The
default value is '0001-01-01-00.00.00.000000'.
The default value indicates that statistics were not
collected. This column can be updated.

G

FIRSTKEYCARDF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of distinct values of the first key column.
This number is an estimate if updated while
collecting statistics on a single partition. The value
is -1 if statistics have not been gathered.

S

FULLKEYCARDF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of distinct values of the key. The value is
-1 if statistics have not been gathered.

S

CLUSTERRATIOF FLOAT(8)
NOT NULL

Percentage of rows that are in clustering order. For
a partitioning index, it is the weighted average of
all index partitions in terms of the number of rows
in the partition. The value is 0 if statistics have not
been gathered. The value is -2 if the index is for an
auxiliary table.

For a sparse index, the statistic is based on the
actual contents of the index.

G

SPACEF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of kilobytes of DASD storage allocated
to the index space partition. The value is -1 if
statistics have not been gathered.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row was provided
with the Db2 product code. For all other values,
see Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

AVGKEYLEN INTEGER
NOT NULL WITH
DEFAULT -1

Average length of keys within the index. The value
is -1 if statistics have not been gathered.

For a sparse index, the statistic is based on the
actual contents of the index.

G

DATAREPEATFACTORF FLOAT
NOT NULL WITH
DEFAULT -1

The anticipated number of data pages that will be
touched following an index key order. This number
is -1 if statistics have not been collected. This is an
updatable column.

For a sparse index, the statistic is based on the
actual contents of the index.

G

Appendix H. Db2 catalog tables 2473

SYSINDEXES_RTSECT catalog table
The SYSINDEXES_RTSECT catalog table is an auxiliary table for the RTSECTION column of the
SYSIBM.SYSINDEXES table and is required to hold LOB data. The schema is SYSIBM.

Table 309. SYSIBM.SYSINDEXES_RTSECT table column descriptions

Column name Data type Description Use

— BLOB(1G)
NOT NULL
WITH DEFAULT

Internal use only. I

SYSINDEXES_TREE catalog table
The SYSINDEXES_TREE catalog table is an auxiliary table for the PARSETREE column of the SYSINDEXES
table and is required to hold LOB data. The schema is SYSIBM.

Table 310. SYSIBM.SYSINDEXES_TREE table column descriptions

Column name Data type Description Use

— BLOB(1G)
NOT NULL
WITH DEFAULT

Internal use only. I

SYSINDEXPART catalog table
The SYSINDEXPART table contains one row for each nonpartitioned secondary index (NPSI) and one row
for each partition of a partitioning index or a data-partitioned secondary index. The schema is SYSIBM.

Column name Data type Description Use

PARTITION SMALLINT
NOT NULL

Partition number; Zero if index is not partitioned. G

IXNAME VARCHAR(128)
NOT NULL

Name of the index. G

IXCREATOR VARCHAR(128)
NOT NULL

The schema of the index. G

2474 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

PQTY INTEGER
NOT NULL

For user-managed data sets, the value is the primary
space allocation in units of 4KB storage blocks or -1.

PQTY is based on a value of PRIQTY in the appropriate
CREATE or ALTER INDEX statement. Unlike PQTY,
however, PRIQTY asks for space in 1KB units.

A value of -1 indicates that either of the following
cases is true:

• PRIQTY was not specified for a CREATE INDEX
statement or for any subsequent ALTER INDEX
statements.

• -1 was the most recently specified value for
PRIQTY, either on the CREATE INDEX statement or
a subsequent ALTER INDEX statement.

G

SQTY SMALLINT
NOT NULL

For user-managed data sets, the value is the
secondary space allocation in units of 4KB storage
blocks or -1.

SQTY is based on a value of SECQTY in the appropriate
CREATE or ALTER INDEX statement. Unlike SQTY,
however, SECQTY asks for space in 1KB units.

A value of -1 indicates that either of the following
cases is true:

• SECQTY was not specified for a CREATE INDEX
statement or for any subsequent ALTER INDEX
statements.

• -1 was the most recently specified value for
SECQTY, either on the CREATE INDEX statement or a
subsequent ALTER INDEX statement.

If the value does not fit into the column, the value of
the column is 32767. See the description of column
SECQTYI.

G

STORTYPE CHAR(1)
NOT NULL

Type of storage allocation:
E

Explicit, and STORNAME names an integrated
catalog facility catalog

I
Implicit, and STORNAME names a storage group

This column is not used for rows representing catalog
indexes. Catalog data sets are managed by Db2

G

STORNAME VARCHAR(128)
NOT NULL

Name of storage group or integrated catalog facility
catalog used for space allocation.

This column is not used for rows representing catalog
indexes. Catalog data sets are managed by Db2

G

Appendix H. Db2 catalog tables 2475

Column name Data type Description Use

VCATNAME VARCHAR(24)
NOT NULL

Name of integrated catalog facility catalog used for
space allocation.

This column is not used for rows representing catalog
indexes. Catalog data sets are managed by Db2

G

 CARD INTEGER
NOT NULL

Not used N

 FAROFFPOS INTEGER
NOT NULL

Not used N

LEAFDIST INTEGER
NOT NULL

100 times the average number of leaf pages between
successive active leaf pages of the index. The value is
-1 if statistics have not been gathered. The value is -2
if the index is an auxiliary index, a node ID index, or an
XML index.

S

 NEAROFFPOS INTEGER
NOT NULL

Not used S

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values, see
Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

LIMITKEY VARCHAR(512)
NOT NULL
FOR BIT DATA

The high value of the limit key of the partition in an
internal format. An empty string if the index is not
partitioned or for a data-partitioned secondary index
(DPSI).

If any column of the key has a field procedure, the
internal format is the encoded form of the value.

S

FREEPAGE SMALLINT
NOT NULL

Number of pages that are loaded before a page is left
as free space.

G

PCTFREE SMALLINT
NOT NULL

Percentage of each leaf or nonleaf page that is left as
free space.

G

2476 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

SPACE INTEGER
NOT NULL WITH
DEFAULT

Number of kilobytes of DASD storage allocated to
the index space partition, as determined by the last
execution of the STOSPACE utility.
0

The STOSPACE or RUNSTATS utility has not been
run or the data set for the index has been created
during the first insert operation or when the LOAD
utility was run.

-1
The index was defined with the DEFINE NO clause,
which defers the physical creation of the data sets
until data is first inserted into the index, and data
has yet to be inserted into the index.

-2
The value exceeds the maximum size for an integer
value. See the SPACEF column value.

A non-negative value
Indicates that the data sets for the index space are
defined with the underlying data sets allocated.

The STOSPACE utility updates this value if the index
is related to a storage group. The RUNSTATS utility
updates this value if run with RUNSTATS INDEX and
UPDATE(ALL) or UPDATE(SPACE).

G

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the last
utility invocation updated the statistics. The default
value is '0001-01-01-00.00.00.000000'. The default
value indicates that statistics were not collected. This
column can be updated.

G

 INDEXTYPE CHAR(1)
NOT NULL

Not used. N

GBPCACHE CHAR(1)
NOT NULL WITH
DEFAULT

Group buffer pool cache option specified for this index
or index partition.
blank

Only changed pages are cached in the group buffer
pool.

A
Changed and unchanged pages are cached in the
group buffer pool.

N
No data is cached in the group buffer pool.

G

Appendix H. Db2 catalog tables 2477

Column name Data type Description Use

FAROFFPOSF FLOAT
NOT NULL WITH
DEFAULT -1

Number of referred to rows far from optimal position
because of an insert into a full page. The value is -1 if
statistics have not been gathered. The value is -2 if the
index is an auxiliary index, a node ID index, or an XML
index. The column is not applicable for an index on an
auxiliary table.

For a sparse index, the statistic is based on the actual
contents of the index.

S

NEAROFFPOSF FLOAT
NOT NULL WITH
DEFAULT -1

Number of referred to rows near, but not at optimal
position, because of an insert into a full page. The
value is -2 if the index is an auxiliary index, a node ID
index, or an XML index. Not applicable for an index on
an auxiliary table.

For a sparse index, the statistic is based on the actual
contents of the index.

S

CARDF FLOAT
NOT NULL WITH
DEFAULT -1

Number of RIDs in the index that refer to data rows
or LOBs. The value is -1 if statistics have not been
gathered.

For a sparse index, the statistic is based on the actual
contents of the index.

S

SECQTYI INTEGER
NOT NULL WITH
DEFAULT

Secondary space allocation in units of 4KB storage. For
user-managed data sets, the value is the secondary
space allocation in units of 4KB blocks.

G

IPREFIX CHAR(1)
NOT NULL WITH
DEFAULT 'I'

The first character of the instance qualifier for this
index's data set name. 'I' or 'J' are the only valid
characters for this field. The default is 'I'.

G

ALTEREDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the most recent ALTER INDEX statement
was executed for the index. If no ALTER
INDEX statement has been applied, the value is
'0001-01-01.00.00.00.000000'.

G

SPACEF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Kilobytes of DASD storage. The value is -1 if statistics
have not been gathered. This is an updatable column.

G

DSNUM INTEGER
NOT NULL WITH
DEFAULT -1

Number of data sets. The value is -1 if statistics have
not been gathered. This is an updatable column.

G

EXTENTS INTEGER
NOT NULL WITH
DEFAULT -1

Number of data set extents. The value is -1 if statistics
have not been gathered. This is an updatable column.
This value is only for the last DSNUM for the object.

G

2478 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

PSEUDO_DEL_
ENTRIES

INTEGER
NOT NULL WITH
DEFAULT -1

Number of pseudo deleted entries (entries that are
logically deleted but still physically present in the
index). For a non-unique index, value is the number
of RIDs that are pseudo deleted. For a unique index,
the value is the number of keys and RIDs that are
pseudo deleted. The value is -1 if statistics have not
been gathered. This is an updatable column.

G

LEAFNEAR INTEGER
NOT NULL WITH
DEFAULT -1

Number of leaf pages physically near previous leaf
page for successive active leaf pages. The value is -1 if
statistics have not been gathered. This is an updatable
column.

S

LEAFFAR INTEGER
NOT NULL WITH
DEFAULT -1

Number of leaf pages located physically far away from
previous leaf pages for successive (active leaf) pages
accessed in an index scan. The value is -1 if statistics
have not been gathered. This is an updatable column.

S

OLDEST_VERSION SMALLINT
NOT NULL WITH
DEFAULT

The version number describing the oldest format of
data in the index part and any image copies of the
index part.

G

CREATEDTS TIMESTAMP
NOT NULL WITH
DEFAULT -1

Time when the partition was created. G

AVGKEYLEN INTEGER
NOT NULL WITH
DEFAULT -1

Average length of keys within the index. The value is -1
if statistics have not been gathered.

For a sparse index, the statistic is based on the actual
contents of the index.

G

RBA_FORMAT CHAR(1)
NOT NULL WITH
DEFAULT

The RBA and LRSN format for the page sets of the
index partition:
B

The page sets are still in the basic 6-byte format.
E

The page sets are converted to the extended 10-
byte format.

U
The format is undefined because DEFINE NO was
specified when the index was created.

blank
The page sets are still in the basic 6-byte
format, the index was created before Db2 11 new-
function mode (NFM), and no utility that sets the
RBA_FORMAT value has run for the index partition
in Db2 11 NFM or higher.

G

DSSIZE INTEGER
WITH DEFAULT
NULL

The maximum size in KB of a partitioned index data
set for a table space with relative page numbers. 0 for
nonpartitioned indexes or partitioned indexes for table
spaces with absolute page numbers.

NULL for indexes that were created before Db2 12.

G

Appendix H. Db2 catalog tables 2479

Column name Data type Description Use

PAGENUM CHAR(1)
NOT NULL
WITH DEFAULT
'A'

Format of pages for the index, indicating absolute or
relative page numbering.
A

Indicates absolute addressing so that PAGENUM
contains the embedded partition number.

R
Indicates relative addressing so that PAGENUM
contains only the relative page number.

NULL for objects that were created before Db2 12.

G

LIMITKEY_EXTERNAL VARCHAR(765)
NOT NULL

Reserved for future IBM use. I

SYSINDEXPART_HIST catalog table
The SYSINDEXPART_HIST catalog table contains rows from SYSINDEXPART. The schema is SYSIBM.

Rows are added or changed in this table when RUNSTATS collects history statistics. Rows in this table can
also be inserted, updated, and deleted.

Table 311. SYSIBM.SYSINDEXPART_HIST table column descriptions

Column name Data type Description Use

PARTITION SMALLINT
NOT NULL

Partition number. Zero if index is not partitioned. G

IXNAME VARCHAR(128)
NOT NULL

Name of the index. G

IXCREATOR VARCHAR(128)
NOT NULL

The schema of the index. G

PQTY INTEGER NOT NULL For user-managed data sets, the value is the primary
space allocation in units of 4KB storage blocks or -1.

For user-specified values of PRIQTY other than -1, the
value is set to the primary space allocation only if
RUNSTATS INDEX with UPDATE(ALL) or UPDATE(SPACE)
is executed; otherwise, the value is zero. PQTY is based
on a value of PRIQTY in the appropriate CREATE or
ALTER INDEX statement. Unlike PQTY, however, PRIQTY
asks for space in 1KB units.

A value of -1 indicates that either of the following cases
is true:

• PRIQTY was not specified for a CREATE INDEX
statement or for any subsequent ALTER INDEX
statements.

• -1 was the most recently specified value for
PRIQTY, either on the CREATE INDEX statement or a
subsequent ALTER INDEX statement.

If a storage group is not used, the value is 0.

G

2480 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 311. SYSIBM.SYSINDEXPART_HIST table column descriptions (continued)

Column name Data type Description Use

SECQTYI INTEGER
NOT NULL

For user-managed data sets, the value is the secondary
space allocation in units of 4KB storage blocks or -1.

For user-specified values of SECQTY other than -1, the
value is set to the secondary space allocation only if
RUNSTATS INDEX with UPDATE(ALL) or UPDATE(SPACE)
is executed; otherwise, the value is zero. SQTY is based
on a value of SECQTY in the appropriate CREATE or
ALTER INDEX statement. Unlike SQTY, however, SECQTY
asks for space in 1KB units.

A value of -1 indicates that either of the following cases
is true:

• SECQTY was not specified for a CREATE INDEX
statement or for any subsequent ALTER INDEX
statements.

• -1 was the most recently specified value for
SECQTY, either on the CREATE INDEX statement or a
subsequent ALTER INDEX statement.

If a storage group is not used, the value is 0.

G

LEAFDIST INTEGER
NOT NULL WITH
DEFAULT -1

100 times the average number of leaf pages between
successive active leaf pages of the index. The value is -1
if statistics have not been gathered.

S

SPACEF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of kilobytes of DASD storage allocated to the
index space partition. The value is -1 if statistics have
not been gathered.

G

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The default
value is '0001-01-01-00.00.00.000000'. The default
value indicates that statistics were not collected. This
column can be updated.

G

FAROFFPOSF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of referred to rows far from optimal position
because of an insert into a full page. The value is -1
if statistics have not been gathered. The column is not
applicable for an index on an auxiliary table.

For a sparse index, the statistic is based on the actual
contents of the index.

S

NEAROFFPOSF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of referred to rows near, but not at optimal
position, because of an insert into a full page. Not
applicable for an index on an auxiliary table. The value is
-1 if statistics have not been gathered.

For a sparse index, the statistic is based on the actual
contents of the index.

S

Appendix H. Db2 catalog tables 2481

Table 311. SYSIBM.SYSINDEXPART_HIST table column descriptions (continued)

Column name Data type Description Use

CARDF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of RIDs in the index that refer to data rows
or LOBs. The value is -1 if statistics have not been
gathered.

For a sparse index, the statistic is based on the actual
contents of the index.

S

EXTENTS INTEGER
NOT NULL WITH
DEFAULT -1

Number of data set extents. The value is -1 if statistics
have not been gathered. This value is only for the last
DSNUM for the object.

G

PSEUDO_DEL_
ENTRIES

INTEGER
NOT NULL WITH
DEFAULT -1

Number of pseudo deleted entries. The value is -1 if
statistics have not been gathered.

G

DSNUM INTEGER
NOT NULL WITH
DEFAULT -1

Data set number within the table space. For partitioned
index spaces, this value corresponds to the partition
number for a single partition copy, or 0 for a copy of
an entire partitioned index space. The value is -1 if
statistics have not been gathered.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

LEAFNEAR INTEGER
NOT NULL WITH
DEFAULT -1

Number of leaf pages physically near previous leaf page
for successive active leaf pages. The value is -1 if
statistics have not been gathered. This is an updatable
column.

S

LEAFFAR INTEGER
NOT NULL WITH
DEFAULT -1

Number of leaf pages located physically far away from
previous leaf pages for successive (active leaf) pages
accessed in an index scan. The value is -1 if statistics
have not been gathered. This is an updatable column.

S

AVGKEYLEN INTEGER
NOT NULL WITH
DEFAULT -1

Average length of keys within the index. The value is -1 if
statistics have not been gathered.

For a sparse index, the statistic is based on the actual
contents of the index.

G

SYSINDEXSPACESTATS catalog table
The SYSINDEXSPACESTATS table contains real time statistics for index spaces. The schema is SYSIBM.

Rows in this table can be inserted, updated, and deleted. However, the following columns cannot be
updated: SYS_START, SYS_END, and TRANS_START.

In data sharing environments, the values in SYSIBM.SYSINDEXSPACESTATS can be negative for short
periods of time for certain situations.

SYSIBM.SYSINDEXSPACESTATS has an associated history table, SYSIBM.SYSIXSPACESTATS_H, which
provides temporal versioning of the catalog table. Both tables contain the same columns, with the same
data types. The temporal relationship must be enabled before the history table can be used. Rows in

2482 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

the history table can be inserted, updated, and deleted with proper authorization. For information about
enabling the temporal relationship, see “Temporal versioning for Db2 catalog tables” on page 2742.

Column name Data type Description Use

UPDATESTATSTIME TIMESTAMP
NOT NULL
WITH DEFAULT

The timestamp that the row in the
SYSINDEXSPACESTATS table is inserted or last
updated.

G

NLEVELS SMALLINT The number of levels in the index tree.

A null value indicates that the number of levels is
unknown.

G

NPAGES INTEGER The number of pages in the index tree that contain
only pseudo-deleted index entries. This is an
updatable column.

G

NLEAF INTEGER The number of leaf pages in the index. This is an
updatable column.

G

NACTIVE INTEGER The number of active pages in the index space or
partition. This value is equivalent to the number of
pre-formatted pages.

A null value indicates that the number of active
pages is unknown.

G

SPACE INTEGER The amount of space, in KB, that is allocated
to the index space or partition. For multi-piece,
linear page sets, this value is the amount of space
in all data sets. A null value indicates the amount
of space is unknown.

G

EXTENTS SMALLINT The number of extents in the index space or
partition. For multi-piece index spaces, this value
is the number of extents for the last data sets.
For a data set that is stripped across multiple
volumes, the value is the number of logical
extents. A null value indicates the number of
extents is unknown.

G

LOADRLASTTIME TIMESTAMP The timestamp that the LOAD REPLACE utility was
last run on the index space or partition.

A null value indicates that the LOAD REPLACE
utility has never been run on the index space or
partition or that the timestamp is unknown.

G

REBUILDLASTTIME TIMESTAMP The timestamp that the REBUILD INDEX utility
was last run on the index space or partition.

A null value indicates that the timestamp that the
REBUILD INDEX was last run is unknown.

G

REORGLASTTIME TIMESTAMP The timestamp when the REORG INDEX utility
was last run on the index space or partition, or
if the REORG INDEX utility has not been run,
the time when the index space or partition was
created. A null value indicates that the timestamp
is unknown.

G

Appendix H. Db2 catalog tables 2483

Column name Data type Description Use

REORGINSERTS INTEGER The number of index entries that have been
inserted into the index space or partition since the
last time the REORG, REBUILD INDEX, or LOAD
REPLACE utilities were run, or since the object
was created.

A null value indicates that the number of inserted
index entries is unknown.

G

REORGDELETES INTEGER The number of index entries that have been
deleted from the index space or partition since the
last time the REORG, REBUILD INDEX, or LOAD
REPLACE utilities were run, or since the object
was created.

A null value indicates that the number of deleted
index entries is unknown.

G

REORGAPPENDINSERT INTEGER The number of index entries that have a key value
that is greater than the maximum key value in
the index or partition that have been inserted into
the index space or partition since the last time
the REORG, REBUILD INDEX, or LOAD REPLACE
utilities were run, or since the object was created.

A null value indicates that the number of inserted
index entries is unknown.

G

REORGPSEUDODELETES INTEGER The number of pseudo-deleted index entries
stored in the index space or partition. A pseudo-
delete is a RID entry that has been marked as
deleted.

A null value indicates that the number of pseudo-
deleted index entries is unknown.

G

REORGMASSDELETE INTEGER The number of mass deletes from a segmented or
LOB table space, or the number of dropped tables
from a segmented table space since the last time
the REORG or LOAD REPLACE utilities were run, or
since the object was created.

A null value indicates that the number of mass
deletes is unknown.

G

2484 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

REORGLEAFNEAR INTEGER The net number of leaf pages located physically
near (within 2–16 pages) previous pages for
successive active leaf pages since the object was
created.

A null value means that the value is unknown. A
negative value is possible in some cases.

Two index leaf pages are considered near if
the distance is within 2–16 pages. (The optimal
distance is 1 page.)

Conditions that can increase the value of this
counter

• A leaf page is added during a page split and
the distance between the predecessor page
and new page, or between the new page and
the successor page, is near.

• An index page is deleted and the
distance between the new predecessor and
successor pages is near

Conditions that can decrease the value of this
counter

• A leaf page is deleted the distance between
the predecessor page and the deleted page,
or between the successor page and the
deleted page, was near.

• An index page is added during a page
split and the distance between the original
predecessor and successor pages was near.

G

Appendix H. Db2 catalog tables 2485

Column name Data type Description Use

REORGLEAFFAR INTEGER The net number of leaf pages located physically
far away (more than 16 pages away) from
previous leaf pages for successive active leaf
pages since the object was created.

A null value means that the value is unknown.

Two index leaf pages are considered far apart if
the distance is greater than 16 pages.

Conditions that can increase the value of this
counter

• A leaf page is added during a page split and
the distance between the predecessor page
and new page, or between the new page and
successor page, is far.

• An index page is deleted the distance
between the new predecessor and
successor pages is far.

Conditions that can decrease the value of this
counter

• A leaf page is deleted and the distance
between the predecessor page and the
deleted page, or between the successor
page and the deleted page, was far.

• An index page is added during a page split
and the distance between the predecessor
and successor pages was far.

G

REORGNUMLEVELS INTEGER The number of levels in the index tree that were
added or removed since the last REORG, REBUILD
INDEX, or LOAD REPLACE, or the object was
created.

A null value means that the number of added or
deleted levels is unknown.

G

STATSLASTTIME TIMESTAMP The timestamp of the last time that the RUNSTATS
utility is run on the index space or partition, or
the time when the index space or partition was
created.

G

STATSINSERTS INTEGER The number of index entries that have been
inserted into the index space or partition since
the last time that the RUNSTATS utility was run, or
since the object was created.

A null value indicates that the number of inserted
index entries is unknown.

G

STATSDELETES INTEGER The number of index entries that have been
deleted since the last RUNSTATS on the index
space or partition, or since the object was created.

A null value means that the number of deleted
index entries is unknown.

G

2486 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

STATSMASSDELETE INTEGER The number of times that the index or index
space partition was mass deleted since the last
RUNSTATS, or the object was created.

A null value indicates that the number of mass
deletes is unknown.

G

COPYLASTTIME TIMESTAMP The timestamp of the last full image copy on the
index space or partition.

A null value means that COPY has never been
run on the index space or partition, or that the
timestamp of the last full image copy is unknown.

G

COPYUPDATEDPAGES INTEGER If the COPY utility was run with a SHRLEVEL value
other than CHANGE, this value is the number of
distinct pages that have been updated since the
last time that the COPY utility was run.

If the COPY utility was run with SHRLEVEL
CHANGE, this value is the total number of distinct
pages that were updated during the time that the
last COPY utility was run, and since the last time
that the COPY utility was run.

A null value indicates that the number of updated
pages is unknown.

G

COPYCHANGES INTEGER If the COPY utility was run with a SHRLEVEL value
other than CHANGE, this value is the number of
insert, update, and delete operations since the
last time that the COPY utility was run.

If the COPY utility was run with SHRLEVEL
CHANGE, this value is the total number of insert,
update, and delete operations, or the number of
rows loaded, during the time that the last COPY
utility was run, and since the last time that the
COPY utility was run.

A null value indicates that the number of insert,
update, and delete operations is unknown.

G

COPYUPDATELRSN CHAR(10)
FOR BIT DATA

The LRSN or RBA of the first update that occurs
after the last time the COPY utility was run.

A null value indicates that the LRSN or RBA is
unknown.

G

Appendix H. Db2 catalog tables 2487

Column name Data type Description Use

COPYUPDATETIME TIMESTAMP If the COPY utility was run with a SHRLEVEL value
other than CHANGE, this value is the timestamp of
the first update that occurred after the last time
that the COPY utility was run.

If the COPY utility was run with SHRLEVEL
CHANGE, this value is the timestamp of the first
update that occurred during the time that the last
COPY utility was run, or since the last time that
the COPY utility was run.

A null value indicates that the timestamp is
unknown.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values,
see Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

DBID SMALLINT
NOT NULL

The internal identifier of the database. G

ISOBID SMALLINT
NOT NULL

The internal identifier of the index space page set
descriptor.

I

PSID SMALLINT
NOT NULL

The internal identifier of the table space page set
descriptor for the table space that is associated
with the index.

G

PARTITION SMALLINT
NOT NULL

The data set number within the index space. For
partitioned index spaces, this value corresponds
to the partition number for a single partition. For
non-partitioned index spaces, this value is 0.

G

INSTANCE SMALLINT
NOT NULL
WITH DEFAULT 1

Indicates if the object is associated with data set
1 or 2. This is an updatable column.

G

TOTALENTRIES BIGINT The number of entries, including duplicate entries,
in the index space or partition.

A null value indicates that the number of entries is
unknown.

G

DBNAME VARCHAR(24)
NOT NULL

The name of the database. G

NAME VARCHAR(128)
NOT NULL

The name of the index. G

CREATOR VARCHAR(128)
NOT NULL

The schema of the index. G

2488 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

INDEXSPACE VARCHAR(24)
NOT NULL

The name of the index space. G

LASTUSED DATE The date when the index was last used in an
access path for a SELECT, FETCH, searched
UPDATE, or searched DELETE statement, or was
used to enforce referential integrity constraints.
If this field value indicates that an index has
not been used for an extended period of time,
consider dropping the index.

For a data-partitioned secondary index, this
column is only updated for one partition, even
though more than one partition is accessed.

The default value is NULL.

G

REORGINDEXACCESS BIGINT The number of times since the object was created,
or since the last REORG, REBUILD INDEX, or LOAD
REPLACE, that the index was used in one of the
following situations:

• In an access path for a SELECT, FETCH,
searched UPDATE, or searched DELETE
statement

• For enforcement of referential integrity
constraints

For hash overflow indexes, this value is the
number of times that Db2 used the hash overflow
index.

Use this value with other recommendations
to determine when to run REORG
INDEX. For example, when the ratio
of SYSTABLESPACESTATS.TOTALROWS to
SYSINDEXSPACESTATS.TOTALENTRIES indicates
that REORG INDEX needs to be run, but this
value is very low, REORG INDEX might not yet be
necessary.

A null value indicates that the number of times the
index was used is unknown.

G

DRIVETYPE CHAR(3)
NOT NULL
WITH DEFAULT

The drive type on which the index or index
partition data set is defined.
HDD

Hard Disk Drive
SSD

Solid State Drive
For multi-volume data sets, the drive type is set
to SSD if any volume is SSD. For multi-piece linear
page sets, the drive type of the first data set is
used.

G

— BIGINT Reserved for future IBM use. R

Appendix H. Db2 catalog tables 2489

Column name Data type Description Use

GETPAGES BIGINT The number of getpage requests for the index
space since the object was created, or since the
last REORG, LOAD RELACE, or REBUILD INDEX
was run.

The value wraps if it exceeds the largest possible
BIGINT value, which is 9223372036854775807.

G

SYS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW BEGIN

The row-begin column of the SYSTEM_TIME
period, for system-period data versioning.

G

SYS_END TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW END

The row-end column of the SYSTEM_TIME period,
for system-period data versioning.

G

TRANS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS TRANSACTION
START ID

The transaction-start-ID column, for system-
period data versioning.

G

Related concepts
How Db2 maintains in-memory statistics in data sharing (Db2 Data Sharing Planning and Administration)
Related tasks
Setting up your system for real-time statistics (Db2 Performance)

SYSINDEXSTATS catalog table
The SYSINDEXSTATS table contains one row for each partition of a partitioning index or a data-partitioned
secondary index. The schema is SYSIBM.

Rows in this table can be inserted, updated, and deleted.

Important: Use care when issuing SQL statements or using tools to update statistics values in catalog
tables. If such updates introduce invalid data, unpredictable results can occur, including abends for
RUNSTATS and other utilities. If such problems occur, you can run the RUNSTATS utility and collect
statistics at the table space level to resolve the problems, in most cases.

Column name Data type Description Use

FIRSTKEYCARD INTEGER
NOT NULL

For the index partition, number of distinct values
of the first key column.

For a sparse index, the statistic is based on the
actual contents of the index.

S

FULLKEYCARD INTEGER
NOT NULL

For the index partition, number of distinct values
of the key.

For a sparse index, the statistic is based on the
actual contents of the index.

S

2490 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/dshare/src/tpc/db2z_howdb2maintainsstats.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_setup4realtimestatistics.html

Column name Data type Description Use

NLEAF INTEGER
NOT NULL

Number of active leaf pages in the index partition. S

NLEVELS SMALLINT
NOT NULL

Number of levels in the index tree. S

IOFACTOR SMALLINT
NOT NULL

Not used. N

PREFETCHFACTOR SMALLINT
NOT NULL

Not used. N

CLUSTERRATIO SMALLINT
NOT NULL

For the index partition, the percentage of rows that
are in clustering order. The value is 0 if statistics
have not been gathered.

For a sparse index, the statistic is based on the
actual contents of the index.

N

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The
default value is '0001-01-01-00.00.00.000000'.
The default value indicates that statistics were not
collected. This column can be updated.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values,
see Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

PARTITION SMALLINT
NOT NULL

Partition number of the index. G

OWNER VARCHAR(128)
NOT NULL

The schema of the index. G

NAME VARCHAR(128)
NOT NULL

Name of the index. G

KEYCOUNT INTEGER
NOT NULL

Total number of RIDs in the index partition.
The value is -1 if statistics have not been
gathered.Total number of rows in the partition.

For a sparse index, the statistic is based on the
actual contents of the index.

S

FIRSTKEYCARDF FLOAT
NOT NULL WITH
DEFAULT -1

For the index partition, number of distinct values
of the first key column.

For a sparse index, the statistic is based on the
actual contents of the index.

S

Appendix H. Db2 catalog tables 2491

Column name Data type Description Use

FULLKEYCARDF FLOAT
NOT NULL WITH
DEFAULT -1

For the index partition, number of distinct values
of the key.

For a sparse index, the statistic is based on the
actual contents of the index.

S

KEYCOUNTF FLOAT
WITH
DEFAULT -1

Total number of RIDs in the index partition.
The value is -1 if statistics have not been
gathered.Total number of rows in the partition.

For a sparse index, the statistic is based on the
actual contents of the index.

S

CLUSTERRATIOF FLOAT
NOT NULL WITH
DEFAULT

For the index partition, the value, when multiplied
by 100, is the percentage of rows that are in
clustering order. For example, a value of '.9125'
indicates 91.25%. The value is 0 if statistics have
not been gathered.

For a sparse index, the statistic is based on the
actual contents of the index.

G

— VARCHAR(1000)
NOT NULL WITH
DEFAULT
FOR BIT DATA

Internal use only. I

DATAREPEATFACTORF FLOAT
NOT NULL WITH
DEFAULT -1

The anticipated number of data pages that will be
touched following an index key order. This number
is -1 if statistics have not been collected. This is an
updatable column.

For a sparse index, the statistic is based on the
actual contents of the index.

G

SYSINDEXSTATS_HIST catalog table
The SYSINDEXSTATS_HIST catalog table contains rows from the SYSINDEXSTATS table. The schema is
SYSIBM.

Rows are added or changed in this table when RUNSTATS collects history statistics. Rows in this table can
also be inserted, updated, and deleted.

Table 312. SYSIBM.SYSINDEXSTATS_HIST table column descriptions

Column name Data type Description Use

NLEAF INTEGER
NOT NULL WITH
DEFAULT -1

Number of active leaf pages in the index partition.
The value is -1 if statistics have not been gathered.

S

NLEVELS SMALLINT
NOT NULL WITH
DEFAULT -1

Number of levels in the index tree. The value is -1
if statistics have not been gathered.

S

2492 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 312. SYSIBM.SYSINDEXSTATS_HIST table column descriptions (continued)

Column name Data type Description Use

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The
default value is '0001-01-01-00.00.00.000000'.
The default value indicates that statistics were not
collected. This column can be updated.

G

PARTITION SMALLINT
NOT NULL

Partition number of the index. G

OWNER VARCHAR(128)
NOT NULL

The schema of the index. G

NAME VARCHAR(128)
NOT NULL

Name of the index. G

FIRSTKEYCARDF FLOAT(8)
NOT NULL WITH
DEFAULT -1

For the index partition, number of distinct values
of the first key column. The value is -1 if statistics
have not been gathered.

S

FULLKEYCARDF FLOAT(8)
NOT NULL WITH
DEFAULT -1

For the index partition, number of distinct values
of the key. The value is -1 if statistics have not
been gathered.

S

KEYCOUNTF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Total number of RIDs in the index partition.
The value is -1 if statistics have not been
gathered.Total number of rows in the partition. The
value is -1 if statistics have not been gathered.

For a sparse index, the statistic is based on the
actual contents of the index.

S

CLUSTERRATIOF FLOAT(8)
NOT NULL

For the index partition, the value, when multiplied
by 100, is the percentage of rows that are in
clustering order. For example, a value of '0.9125'
indicates 91.25%. The value is 0 if statistics have
not been gathered.

For a sparse index, the statistic is based on the
actual contents of the index.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row was provided
with the Db2 product code. For all other values,
see Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

Appendix H. Db2 catalog tables 2493

Table 312. SYSIBM.SYSINDEXSTATS_HIST table column descriptions (continued)

Column name Data type Description Use

DATAREPEATFACTORF FLOAT
NOT NULL WITH
DEFAULT -1

The anticipated number of data pages that will be
touched following an index key order. This number
is -1 if statistics have not been collected. This is an
updatable column.

For a sparse index, the statistic is based on the
actual contents of the index.

G

SYSJARCLASS_SOURCE catalog table
The SYSJARCLASS_SOURCE catalog table is an auxiliary table for SYSIBM.SYSJARCONTENTS. The
schema is SYSIBM.

Table 313. SYSIBM.SYSJARCONTENTS table column descriptions

Column name Data type Description Use

CLASS_SOURCE CLOB(10M)
NOT NULL

The contents of the class in the JAR file. G

SYSJARCONTENTS catalog table
The SYSJARCONTENTS table contains Java class source for an installed JAR file. The schema is SYSIBM.

Table 314. SYSIBM.SYSJARCONTENTS table column descriptions

Column name Data type Description Use

JARSCHEMA VARCHAR(128)
NOT NULL

The schema of the JAR file. G

JAR_ID VARCHAR(128)
NOT NULL

The name of the JAR file. G

CLASS VARCHAR(384)
NOT NULL

The class name contained in the JAR file. G

CLASS_SOURCE_ROWID ROWID
NOT NULL
GENERATED
ALWAYS

ID used to support CLOB data type. G

CLASS_SOURCE CLOB(10M)
NOT NULL

The contents of the class in the JAR file. G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row was provided
with the Db2 product code. For all other values,
see Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

2494 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SYSJARDATA catalog table
The SYSJARDATA table is an auxiliary table for SYSIBM.SYSJAROBJECTS. The schema is SYSIBM.

Table 315. SYSIBM.SYSJARDATA table column descriptions

Column name Data type Description Use

JAR_DATA BLOB(100M)
NOT NULL

The contents of the JAR file. G

SYSJAROBJECTS catalog table
The SYSJAROBJECTS table contains binary large object representing the installed JAR file. The schema is
SYSIBM.

Table 316. SYSIBM.SYSJAROBJECTS table column descriptions

Column name Data type Description Use

JARSCHEMA VARCHAR(128)
NOT NULL

The schema of the JAR file. G

JAR_ID VARCHAR(128)
NOT NULL

The name of the JAR file. G

OWNER VARCHAR(128)
NOT NULL

Authorization ID of the owner of the JAR object. G

JAR_DATA_ROWID ROWID
NOT NULL
GENERATED
ALWAYS

ID used to support BLOB data type. G

JAR_DATA BLOB(100M)
NOT NULL

The contents of the JAR file. This is an updatable
column.

G

PATH VARCHAR(2048)
NOT NULL

The class resolution path of the JAR file. This is an
updatable column.

G

CREATEDTS TIMESTAMP
NOT NULL

Time when the JAR object was created. G

ALTEREDTS TIMESTAMP
NOT NULL

Time when the JAR object was altered. G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

Appendix H. Db2 catalog tables 2495

Table 316. SYSIBM.SYSJAROBJECTS table column descriptions (continued)

Column name Data type Description Use

OWNERTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner:
blank

Authorization ID
L

Role

G

SYSJAVAOPTS catalog table
The SYSJAVAOPTS table contains build options used during INSTALL_JAR. The schema is SYSIBM.

Table 317. SYSIBM.SYSJAVAOPTS table column descriptions

Column name Data type Description Use

JARSCHEMA VARCHAR(128)
NOT NULL

The schema of the JAR file. G

JAR_ID VARCHAR(128)
NOT NULL

The name of the JAR file. G

BUILDSCHEMA VARCHAR(128)
NOT NULL

Schema name for BUILDNAME. G

BUILDNAME VARCHAR(128)
NOT NULL

Procedure used to create the routine. G

BUILDOWNER VARCHAR(128)
NOT NULL

Authorization ID used to create the routine. G

DBRMLIB VARCHAR(256)
NOT NULL

PDS name where DBRM is located. G

HPJCOMPILE_OPTS VARCHAR(512)
NOT NULL

HPJ compile options used to install the routine. G

BIND_OPTS VARCHAR(2048)
NOT NULL

Bind options used to install the routine. G

POBJECT_LIB VARCHAR(256)
NOT NULL

PDSE name where program object is located. G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

2496 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SYSJAVAPATHS catalog table
The SYSJAVAPATHS table contains the complete class resolution path of a JAR file, and records the
dependencies that one JAR file has on the JAR files in its Java path. The schema is SYSIBM.

Table 318. SYSIBM.SYSJAVAPATHS table column descriptions

Column name Data type Description Use

JARSCHEMA VARCHAR(128)
NOT NULL

The schema of the JAR file. G

JAR_ID VARCHAR(128)
NOT NULL

The name of the JAR file. G

OWNER VARCHAR(128)
NOT NULL

Authorization ID of the owner of the JAR object. G

ORDINAL SMALLINT
NOT NULL

The ordinal number of the path element within the JAR
file's Java path.

G

PE_CLASS_PATTERN VARCHAR(2048)
NOT NULL

The pattern for the names of the classes that are to be
searched for in this path element's JAR file.

G

PE_JARSCHEMA VARCHAR(128)
NOT NULL

The schema of this path element's JAR file. G

PE_JAR_ID VARCHAR(128)
NOT NULL

The name of this path element's JAR file. G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

SYSKEYCOLUSE catalog table
The SYSKEYCOLUSE table contains a row for every column in a unique constraint (primary key or unique
key) from the SYSIBM.SYSTABCONST table. The schema is SYSIBM.

Table 319. SYSIBM.SYSKEYCOLUSE table column descriptions

Column name Data type Description Use

CONSTNAME VARCHAR(128)
NOT NULL

Name of the constraint. G

TBCREATOR VARCHAR(128)
NOT NULL

Schema or qualifier of the table on which the constraint
is defined.

G

TBNAME VARCHAR(128)
NOT NULL

Name of the table on which the constraint is defined. G

Appendix H. Db2 catalog tables 2497

Table 319. SYSIBM.SYSKEYCOLUSE table column descriptions (continued)

Column name Data type Description Use

COLNAME VARCHAR(128)
NOT NULL

Name of the column G

COLSEQ SMALLINT
NOT NULL

Numeric position of the column in the key (the first
position in the key is 1).

G

COLNO SMALLINT
NOT NULL

Numeric position of the column in the table on which the
constraint is defined.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

PERIOD CHAR(1)
NOT NULL WITH
DEFAULT

Indicates whether the column is the start or end column
for the BUSINESS_TIME period:
B

The column is the start of the period
BUSINESS_TIME.

C
Column is the end of period BUSINESS_TIME with an
exclusive end point.

I
Column is the end of period BUSINESS_TIME with an
inclusive end point.

blank
Column is not used as either the start or the end of a
BUSINESS_TIME period.

G

SYSKEYS catalog table
The SYSKEYS table contains one row for each column of an index key. The schema is SYSIBM.

Table 320. SYSIBM.SYSKEYS table column descriptions

Column name Data type Description Use

IXNAME VARCHAR(128)
NOT NULL

Name of the index. G

IXCREATOR VARCHAR(128)
NOT NULL

Schema or qualifier of the index. G

COLNAME VARCHAR(128)
NOT NULL

Name of the column of the key. G

COLNO SMALLINT
NOT NULL

Numeric position of the column in the table. For
example, 4 (out of 10).

G

2498 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 320. SYSIBM.SYSKEYS table column descriptions (continued)

Column name Data type Description Use

COLSEQ SMALLINT
NOT NULL

Numeric position of the column in the key for an index
on columns. For example, 4 (out of 4). The value is
meaningless for an expression-based index.

G

ORDERING CHAR(1)
NOT NULL

Order of the column in the key:
blank

Index is an expression-based index or the column is
specified for the index using the INCLUDE clause

A
Ascending order

D
Descending order

R
Random order

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

PERIOD CHAR(1)
NOT NULL
WITH DEFAULT

Indicates whether the column is the start or end column
for the BUSINESS_TIME period:
B

The column is the start of the period
BUSINESS_TIME.

C
Column is the end of period BUSINESS_TIME with an
exclusive end point.

I
Column is the end of period BUSINESS_TIME with an
inclusive end point.

blank
Column is not used as either the start or the end of
a BUSINESS_TIME period, or the index is not used as
an enforcing index.

G

CREATEDTS TIMESTAMP(12)
NOT NULL
WITH DEFAULT

Time when the CREATE statement was executed for the
index.

G

Related concepts
Index keys (Db2 Administration Guide)

Appendix H. Db2 catalog tables 2499

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_indexkeys.html

SYSKEYTARGETS catalog table
The SYSKEYTARGETS table contains one row for each key-target that is participating in an extended index
definition. The schema is SYSIBM.

Table 321. SYSIBM.SYSKEYTARGETS table column descriptions

Column name Data type Description Use

IXNAME VARCHAR(128)
NOT NULL

Name of the index. G

IXSCHEMA VARCHAR(128)
NOT NULL

Qualifier of the index. G

KEYSEQ SMALLINT
NOT NULL

Numeric position of the key-target in the index. G

COLNO SMALLINT
NOT NULL

Numeric position of the column in the table if the
expression is a single column. Otherwise the value is 0.
For XML indexes, this field is also 0.

G

ORDERING CHAR(1)
NOT NULL

Order of the key:
A

Ascending

G

TYPESCHEMA VARCHAR(128)
NOT NULL

Schema of the data type. G

TYPENAME VARCHAR(128)
NOT NULL

Name of the data type. G

DATATYPEID INTEGER
NOT NULL

The internal ID of the data type.

The DATATYPEID value corresponds to one of the
SQLTYPE values in “SQLTYPE and SQLLEN” on page
2322. However, the DATATYPEID value is not a reliable
indicator of the nullability of the column. A column with
an even DATATYPEID value might allow nulls, and a
column with an odd DATATYPEID value might not allow
nulls. To determine the nullability of the column, use the
NULLS column value.

G

SOURCETYPEID INTEGER
NOT NULL

For a built-in data type, this column contains 0. For a
distinct type, this column contains the internal ID of the
built-in type on which the distinct type is based.

G

2500 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 321. SYSIBM.SYSKEYTARGETS table column descriptions (continued)

Column name Data type Description Use

LENGTH SMALLINT
NOT NULL

The length attribute of the key-target or its precision
for a decimal key-target. The number does not include
the internal prefixes that are used to record the actual
length and null states, when applicable.
data type

value of the LENGTH column
INTEGER

4
SMALLINT

2
FLOAT

4 or 8
CHAR

The length of the string
VARCHAR

The maximum length of the string
DECIMAL

The precision of the number
GRAPHIC

The number of DBCS characters
VARGRAPHIC

The maximum number of DBCS characters
DATE

4
TIME

3
TIMESTAMP WITHOUT TIME ZONE

The integral part of ((p+1)/2) + 7 where p is the
precision of the timestamp

TIMESTAMP WITH TIME ZONE
The integral part of ((p+1)/2) + 9 where p is the
precision of the timestamp

BIGINT
8

BINARY
The length of the string

VARBINARY
The maximum length of the string

DECFLOAT
8 or 16

G

Appendix H. Db2 catalog tables 2501

Table 321. SYSIBM.SYSKEYTARGETS table column descriptions (continued)

Column name Data type Description Use

LENGTH2 INTEGER
NOT NULL

The maximum length of the data that is retrieved
from the column. Possible values include the following
values:
0

Not a ROWID column
40

For a ROWID column, the length of the value that is
returned

G

SCALE SMALLINT
NOT NULL

The scale of decimal data or number of fractional
second digits of timestamp or timestamp with time zone
data. Otherwise the value is 0.

If the column is a timestamp type, the LENGTH is 10 and
the SCALE is 0, the number of fractional second digits is
6.

G

NULLS CHAR(1)
NOT NULL

Whether the key can contain null values:
N

No
Y

Yes. Y also indicates that the index is an XML index.

G

CCSID INTEGER
NOT NULL

The CCSID of the key. CCSID contains 0 if the key is a
non-character type key.

G

SUBTYPE CHAR(1)
NOT NULL

SUBTYPE applies to character keys only and indicated
the subtype of the data:
B

BIT data
M

MIXED data
S

SBCS data
blank

non-character data

G

— VARCHAR(512)
NOT NULL
FOR BIT DATA

Internal use only. I

CREATEDTS TIMESTAMP
NOT NULL

The timestamp for when the key-target is created. G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 in which the key-target is created.
SeeRelease dependency indicators for values.

G

2502 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 321. SYSIBM.SYSKEYTARGETS table column descriptions (continued)

Column name Data type Description Use

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

DERIVED_FROM VARCHAR(4000)
NOT NULL

For an index on a scalar expression, DERIVED_FROM
contains the text of the scalar expression that is used
to generated the key-target value. For an XML index,
this is the XML pattern that is used to generate the
key-target value. Otherwise DERIVED_FROM contains an
empty string.

G

STATSTIME TIMESTAMP
NOT NULL
WITH DEFAULT

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The default
value is '0001-01-01-00.00.00.000000'. The default
value indicates that statistics were not collected. This
column can be updated.

G

CARDF FLOAT
NOT NULL
WITH DEFAULT -1

The estimated number of distinct values for the key-
target. The value is -2 if the index is a node ID index.
For an XML value index, the statistic is collected for the
second key target (the DOCID column). For all other key
targets of the XML value index, a value of -2 is set.

S

HIGH2KEY VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

The second highest key-value. HIGH2KEY is an
updatable column.

S

LOW2KEY VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

The second lowest key-value. LOW2KEY is an updatable
column.

S

STATS_FORMAT CHAR(1)
NOT NULL
WITH DEFAULT

The type of statistics that are gathered:
N

VARCHAR column statistical values are not padded
blank

Statistics have not been collects or VARCHAR
column statistical values are padded

STATS_FORMAT is an updatable column.

G

SYSKEYTARGETSTATS catalog table
The SYSKEYTARGETSTATS table contains partition statistics for selected key-targets. For each key-target,
a row exists for each partition in the table.

Rows are inserted when RUNSTATS collects indexed key statistics or non-indexed key statistics for a
partitioned table space. No row is inserted if the table space is nonpartitioned. Rows in this table can be
inserted, updated, and deleted.

Appendix H. Db2 catalog tables 2503

Important: Use care when issuing SQL statements or using tools to update statistics values in catalog
tables. If such updates introduce invalid data, unpredictable results can occur, including abends for
RUNSTATS and other utilities. If such problems occur, you can run the RUNSTATS utility and collect
statistics at the table space level to resolve the problems, in most cases.

Table 322. SYSIBM.SYSKEYTARGETSTATS table column descriptions

Column name Data type Description Use

IXSCHEMA VARCHAR(128)
NOT NULL

The qualifier of the index. G

IXNAME VARCHAR(128)
NOT NULL

The name of the index. G

KEYSEQ SMALLINT
NOT NULL

Numeric position of the key-target in the index. G

HIGHKEY VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

The highest key value. S

HIGH2KEY VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

The second highest key-value. S

LOWKEY VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

The lowest key value. S

LOW2KEY VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

The second lowest key-value. S

PARTITION SMALLINT
NOT NULL

The partition number of the table space. G

— VARCHAR(1000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

Internal use only. I

STATSTIME TIMESTAMP
NOT NULL
WITH DEFAULT

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The default
value is '0001-01-01-00.00.00.000000'. The default
value indicates that statistics were not collected. This
column can be updated.

G

2504 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 322. SYSIBM.SYSKEYTARGETSTATS table column descriptions (continued)

Column name Data type Description Use

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

STATS_FORMAT CHAR(1)
NOT NULL
WITH DEFAULT

The type of statistics that are gathered:
N

VARCHAR column statistical values are not padded
blank

Statistics have not been collects or VARCHAR
column statistical values are padded

G

CARDF FLOAT
NOT NULL
WITH DEFAULT -1

Number of distinct values for the key target. S

SYSKEYTARGETS_HIST catalog table
The SYSKEYTARGETS_HIST table contains rows from the SYSKEYTARGETS table. The schema is SYSIBM.

Whenever rows are added or changed in SYSKEYTARGETS, the rows are also written to this table. Rows in
this table can be inserted, updated, and deleted.

Table 323. SYSIBM.SYSKEYTARGETS_HIST table column descriptions

Column name Data type Description Use

IXNAME VARCHAR(128)
NOT NULL

Name of the index. G

IXSCHEMA VARCHAR(128)
NOT NULL

Qualifier of the index. G

KEYSEQ SMALLINT
NOT NULL

Numeric position of the key-target in the index. G

TYPESCHEMA VARCHAR(128)
NOT NULL

Schema of the data type. G

TYPENAME VARCHAR(128)
NOT NULL

Name of the data type. G

Appendix H. Db2 catalog tables 2505

Table 323. SYSIBM.SYSKEYTARGETS_HIST table column descriptions (continued)

Column name Data type Description Use

DATATYPEID INTEGER
NOT NULL

The internal ID of the data type.

The DATATYPEID value corresponds to one of the
SQLTYPE values in “SQLTYPE and SQLLEN” on page
2322. However, the DATATYPEID value is not a reliable
indicator of the nullability of the column. A column with
an even DATATYPEID value might allow nulls, and a
column with an odd DATATYPEID value might not allow
nulls. To determine the nullability of the column, use the
NULLS column value.

G

SOURCETYPEID INTEGER
NOT NULL

For a built-in data type, this field contains 0. For a
distinct type, this field contains the internal ID of the
built-in type on which the distinct type is based.

G

2506 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 323. SYSIBM.SYSKEYTARGETS_HIST table column descriptions (continued)

Column name Data type Description Use

LENGTH SMALLINT
NOT NULL

The length attribute of the key-target or its precision
for a decimal key-target. The number does not include
the internal prefixes that are used to record the actual
length and null states, when applicable.
data type

value of the LENGTH column
INTEGER

4
SMALLINT

2
FLOAT

4 or 8
CHAR

The length of the string
VARCHAR

The maximum length of the string
DECIMAL

The precision of the number
GRAPHIC

The number of DBCS characters
VARGRAPHIC

The maximum number of DBCS characters
DATE

4
TIME

3
TIMESTAMP WITHOUT TIME ZONE

The integral part of ((p+1)/2) + 7 where p is the
precision of the timestamp

TIMESTAMP WITH TIME ZONE
The integral part of ((p+1)/2) + 9 where p is the
precision of the timestamp

BIGINT
8

BINARY
The length of the string

VARBINARY
The maximum length of the string

DECFLOAT
8 or 16

G

Appendix H. Db2 catalog tables 2507

Table 323. SYSIBM.SYSKEYTARGETS_HIST table column descriptions (continued)

Column name Data type Description Use

LENGTH2 INTEGER
NOT NULL

The maximum length of the data that is retrieved
from the column. Possible values include the following
values:
0

Not a ROWID column
40

For a ROWID column, the length of the value that is
returned

G

SCALE SMALLINT
NOT NULL

The scale of decimal data or number of fractional
second digits of timestamp or timestamp with time zone
data. Otherwise the value is 0.

If the column is a timestamp type, the LENGTH is 10 and
the SCALE is 0, the number of fractional second digits is
6.

G

NULLS CHAR(1)
NOT NULL

Whether the key can contain null values:
N

No
Y

Yes

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

STATSTIME TIMESTAMP
NOT NULL
WITH DEFAULT

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The default
value is '0001-01-01-00.00.00.000000'. The default
value indicates that statistics were not collected. This
column can be updated.

G

CARDF FLOAT
NOT NULL
WITH DEFAULT -1

The estimated number of distinct values for the key-
target. The value is -2 if the index is a node ID index.
For an XML value index, the statistic is collected for the
second key target (the DOCID column). For all other key
targets of the XML value index, a value of -2 is set.

G

HIGH2KEY VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

The second highest key-value. G

LOW2KEY VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

The second lowest key-value. G

2508 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 323. SYSIBM.SYSKEYTARGETS_HIST table column descriptions (continued)

Column name Data type Description Use

STATS_FORMAT CHAR(1)
NOT NULL
WITH DEFAULT

The type of statistics that are gathered:
N

VARCHAR column statistical values are not padded
blank

Statistics have not been collects or VARCHAR
column statistical values are padded

G

SYSKEYTGTDIST catalog table
The SYSKEYTGTDIST table contains one or more rows for the first key-target of an extended index key.
The schema is SYSIBM.

Rows in this table can be inserted, updated, and deleted.

Important: Use care when issuing SQL statements or using tools to update statistics values in catalog
tables. If such updates introduce invalid data, unpredictable results can occur, including abends for
RUNSTATS and other utilities. If such problems occur, you can run the RUNSTATS utility and collect
statistics at the table space level to resolve the problems, in most cases.

Table 324. SYSIBM.SYSKEYTGTDIST table column descriptions

Column name Data type Description Use

STATSTIME TIMESTAMP
NOT NULL
WITH DEFAULT

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The default
value is '0001-01-01-00.00.00.000000'. The default
value indicates that statistics were not collected. This
column can be updated.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

IXSCHEMA VARCHAR(128)
NOT NULL

The qualifier of the index. G

IXNAME VARCHAR(128)
NOT NULL

The name of the index. G

KEYSEQ SMALLINT
NOT NULL

The numeric position of the key-target in the index. G

KEYVALUE VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

KEYVALUE contains the data of a frequently occurring
value. If the value has a non-character data type, the
data might not be printable.

S

Appendix H. Db2 catalog tables 2509

Table 324. SYSIBM.SYSKEYTGTDIST table column descriptions (continued)

Column name Data type Description Use

TYPE CHAR(1)
NOT NULL
WITH DEFAULT 'F'

The type of statistics that are gathered:
C

Cardinality
F

Frequent value
N

Non-padded frequent value
H

Histogram statistics

G

CARDF FLOAT
NOT NULL
WITH DEFAULT -1

When TYPE='C', CARDF contains the number of distinct
values for the key group.

When TYPE='H', CARDF contains the number of distinct
values for the key group in a quantile indicated by
QUANTILENO.

S

KEYGROUPKEYNO VARCHAR(254)
NOT NULL
WITH DEFAULT
FOR BIT DATA

KEYGROUPKEYNO contains a value that identifies the
set of keys that are associated with the statistics.

KEYGROUPKEYNO contains 0 if the statistics are only
associated with a single key.

If the statistics are associated with more than a single
key, KEYGROUPKEYNO contains an array of SMALLINT
key numbers with a dimension that is equal to the value
in NUMKEYS.

S

NUMKEYS SMALLINT
NOT NULL
WITH DEFAULT -1

The number of keys that are associated with the
statistics. The value is always 1 when the object is an
XML index.

G

FREQUENCYF FLOAT
NOT NULL
WITH DEFAULT -1

When TYPE='F' or 'N', FREQUENCYF contains a value
that indicates the percentage of entries in the index
that have the value that is contained in the KEYVALUE
column.

When TYPE='H', FREQUENCYF contains a value that
indicates the percentage of entries in the index that
have a value that is in the range of the quantile that is
indicated in the QUALTILENO column.

To determine the percentage from the value of
FREQUENCYF, multiply the value by 100. For example,
a value of '1' indicates 100 percent. A value of '.153'
indicates '15.3' percent.

G

QUANTILENO SMALLINT
NOT NULL
WITH DEFAULT -1

QUANTILENO contains an ordinary sequence number of
a quantile in the whole consecutive value range, from
low to high.

G

2510 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 324. SYSIBM.SYSKEYTGTDIST table column descriptions (continued)

Column name Data type Description Use

LOWVALUE VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

When TYPE='H', LOWVALUE contains the lower bound
for the quantile that is in QUANTILENO. LOWVALUE is
not used if TYPE does not equal 'H'.

G

HIGHVALUE VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

When TYPE='H', HIGHVALUE contains the upper bound
for the quantile that is in QUANTILENO. HIGHVALUE is
not used if TYPE does not equal 'H'.

G

SYSKEYTGTDISTSTATS catalog table
The SYSKEYTGTDISTSTATS table contains zero or more rows per partition for the first key-target of a
data-partitioned secondary index.

Rows are inserted when RUNSTATS scans a data-partitioned secondary index. No row is inserted if the
index is a secondary index. Rows in this table can be inserted, updated, and deleted.

Important: Use care when issuing SQL statements or using tools to update statistics values in catalog
tables. If such updates introduce invalid data, unpredictable results can occur, including abends for
RUNSTATS and other utilities. If such problems occur, you can run the RUNSTATS utility and collect
statistics at the table space level to resolve the problems, in most cases.

Table 325. SYSIBM.SYSKEYTGTDISTSTATS table column descriptions

Column name Data type Description Use

STATSTIME TIMESTAMP
NOT NULL
WITH DEFAULT

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The default
value is '0001-01-01-00.00.00.000000'. The default
value indicates that statistics were not collected. This
column can be updated.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

PARTITION SMALLINT
NOT NULL

The partition number of the table space that contains
the index in which the key is defined.

G

IXSCHEMA VARCHAR(128)
NOT NULL

The qualifier of the index. G

IXNAME VARCHAR(128)
NOT NULL

The name of the index. G

KEYSEQ SMALLINT
NOT NULL

Numeric position of the key-target in the index. G

Appendix H. Db2 catalog tables 2511

Table 325. SYSIBM.SYSKEYTGTDISTSTATS table column descriptions (continued)

Column name Data type Description Use

KEYVALUE VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

KEYVALUE contains the data of a frequently occurring
value. If the value has a non-character data type, the
data might not be printable.

S

TYPE CHAR(1)
NOT NULL
WITH DEFAULT 'F'

The type of statistics that are gathered:
C

Cardinality
F

Frequent value
N

Non-padded frequent value
H

Histogram statistics

G

CARDF FLOAT
NOT NULL
WITH DEFAULT -1

When TYPE='C', CARDF contains the number of distinct
values for the key group.

When TYPE='H', CARDF contains the number of distinct
values for the key group in the quantile that is in
QUANTILENO.

S

KEYGROUPKEYNO VARCHAR(254)
NOT NULL
WITH DEFAULT

Identifies the set of keys that are associated with the
statistics. If the statistics are only associated with a
single key, KEYGROUPKEYNO contains a zero length
value. Otherwise, KEYGROUPKEYNO contains an array
of SMALLINT key numbers that have a dimension that is
equal to the value in NUMKEYS.

S

NUMKEYS SMALLINT
NOT NULL
WITH DEFAULT

Identifies the number of keys that are associated with
the statistics.

G

FREQUENCYF FLOAT
NOT NULL
WITH DEFAULT -1

When TYPE='F' or 'N', FREQUENCYF contains the
percentage of entries in the index that have the value
that is specified in KEYVALUE when the number of
entries is multiplied by 100. For example, a value of '1'
indicates 100 percent. A value of '.153' indicates 15.3
percent.

When TYPE='H', FREQUENCYF contains the percentage
of entries in the index that have a value that is in the
range of the quantile that is indicated in QUALTILENO.

G

QUANTILENO SMALLINT
NOT NULL
WITH DEFAULT -1

QUANTILENO contains an ordinary sequence number of
a quantile in the whole consecutive value range, from
low to high.

G

LOWVALUE VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

When TYPE='H', LOWVALUE is the lower bound for the
quantile that is indicated in QUANTILENO. LOWVALUE is
not used if TYPE does not equal 'H'.

G

2512 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 325. SYSIBM.SYSKEYTGTDISTSTATS table column descriptions (continued)

Column name Data type Description Use

HIGHVALUE VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

When TYPE='H', HIGHVALUE is the upper bound for the
quantile that is indicated in QUANTILENO. HIGHVALUE
is not used if TYPE does not equal 'H'.

G

— VARCHAR(1000) Internal use only. I

SYSKEYTGTDIST_HIST catalog table
The SYSKEYTGTDIST_HIST table contains rows from the SYSKEYTGTDIST table. Whenever rows are
added or changed in SYSKEYTGTDIST, the rows are also written to this table.

Rows in this table can be inserted, updated, and deleted.

Table 326. SYSIBM.SYSKEYTGTDIST_HIST table column descriptions

Column name Data type Description Use

STATSTIME TIMESTAMP
NOT NULL
WITH DEFAULT

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The default
value is '0001-01-01-00.00.00.000000'. The default
value indicates that statistics were not collected. This
column can be updated.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

IXSCHEMA VARCHAR(128)
NOT NULL

The qualifier of the index. G

IXNAME VARCHAR(128)
NOT NULL

The name of the index. G

KEYSEQ SMALLINT
NOT NULL

The numeric position of the key-target in the index. G

KEYVALUE VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

KEYVALUE contains the data of a frequently occurring
value. If the value has a non-character data type, the
data might not be printable.

G

Appendix H. Db2 catalog tables 2513

Table 326. SYSIBM.SYSKEYTGTDIST_HIST table column descriptions (continued)

Column name Data type Description Use

TYPE CHAR(1)
NOT NULL
WITH DEFAULT 'F'

The type of statistics that are gathered:
C

Cardinality
F

Frequent value
N

Non-padded frequent value
H

Histogram statistics

G

CARDF FLOAT
NOT NULL
WITH DEFAULT -1

When TYPE='C', CARDF contains the number of distinct
values for the key group.

When TYPE='H', CARDF contains the number of distinct
values for the key group in a quantile indicated by
QUANTILENO.

G

KEYGROUPKEYNO VARCHAR(254)
NOT NULL
WITH DEFAULT
FOR BIT DATA

KEYGROUPKEYNO contains a value that identifies the
set of keys that are associated with the statistics.

KEYGROUPKEYNO contains 0 if the statistics are only
associated with a single key.

If the statistics are associated with more than a single
key, KEYGROUPKEYNO contains an array of SMALLINT
key numbers with a dimension that is equal to the value
in NUMKEYS.

G

NUMKEYS SMALLINT
NOT NULL
WITH DEFAULT -1

The number of keys that are associated with the
statistics.

G

FREQUENCYF FLOAT
NOT NULL
WITH DEFAULT -1

When TYPE='F' or 'N', FREQUENCYF contains the
percentage of entries in the index that have the value
that is specified in KEYVALUE when the number of
entries is multiplied by 100. For example, a value of '1'
indicates 100 percent. A value of '.153' indicates 15.3
percent.

When TYPE='H', FREQUENCYF contains the percentage
of entries in the index that have a value that is in the
range of the quantile that is indicated in QUALTILENO.

G

QUANTILENO SMALLINT
NOT NULL
WITH DEFAULT -1

QUANTILENO contains an ordinary sequence number of
a quantile in the whole consecutive value range, from
low to high.

G

LOWVALUE VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

When TYPE='H', LOWVALUE contains the lower bound
for the quantile that is in QUANTILENO. LOWVALUE is
not used if TYPE does not equal 'H'.

G

2514 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 326. SYSIBM.SYSKEYTGTDIST_HIST table column descriptions (continued)

Column name Data type Description Use

HIGHVALUE VARCHAR(2000)
NOT NULL
WITH DEFAULT
FOR BIT DATA

When TYPE='H', HIGHVALUE contains the upper bound
for the quantile that is in QUANTILENO. HIGHVALUE is
not used if TYPE does not equal 'H'.

G

SYSLEVELUPDATES catalog table
The SYSLEVELUPDATES table contains information about the catalog level and function level of the Db2
subsystem or data sharing group. The schema is SYSIBM.

Column name Data type Description Use

FUNCTION_LVL VARCHAR(10) Function level in effect when this record was inserted. G

PREV_FUNCTION_LVL VARCHAR(10) Previous function level. G

HIGH_FUNCTION_LVL VARCHAR(10) Highest activated function level. G

CATALOG_LVL VARCHAR(10) The catalog level. G

OPERATION_TYPE CHAR(1) Type of operation:
'C'

Catalog level change.
'F'

Function level change.
'M'

Code level change.

G

EFFECTIVE_TIME TIMESTAMP(12) Time when the operation completed. G

EFFECTIVE_LRSN RBA (or LRSN for data sharing) depicting the time that
an operation completed.

G

OPERATION_TEXT VARCHAR(256) The text of the operation. G

GROUP_MEMBER VARCHAR(24) Name of the group member on which the operation was
run.

G

Related concepts
Function levels and related levels in Db2 12 (Db2 for z/OS What's New?)
Related tasks
Activating Db2 12 function levels (Db2 for z/OS What's New?)
Related information
DSNG014I (Db2 Messages)

Appendix H. Db2 catalog tables 2515

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_functionlevels.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_activatefunctionlevel.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/msgs/src/tpc/dsng014i.html

SYSLOBSTATS catalog table
The SYSLOBSTATS table contains one row for each LOB table space. The schema is SYSIBM.

Table 327. SYSIBM.SYSLOBSTATS table column descriptions

Column name Data type Description Use

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The default
value is '0001-01-01-00.00.00.000000'. The default
value indicates that statistics were not collected. This
column can be updated.

G

AVGSIZE INTEGER
NOT NULL

Average size of a LOB, measured in bytes, in the LOB
table space.

S

FREESPACE INTEGER
NOT NULL

Number of kilobytes of available space in the LOB table
space.

S

ORGRATIO DECIMAL(5,2)
NOT NULL

The percentage of organization in the LOB table space. A
value of '100' indicates perfect organization of the LOB
table space. A value of '1' indicates that the LOB table
space is disorganized.

A value of '0' indicates that the LOB table space is totally
disorganized.

S

DBNAME VARCHAR(24)
NOT NULL

Name of the database that contains the LOB table space
named in NAME.

G

NAME VARCHAR(24)
NOT NULL

Name of the LOB table space. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

SYSLOBSTATS_HIST catalog table
The SYSLOBSTATS_HIST table contains rows from SYSIBM.SYSLOBSTATS. The schema is SYSIBM.

Rows are added or changed in this table when RUNSTATS collects history statistics. Rows in this table can
also be inserted, updated, and deleted.

2516 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 328. SYSIBM.SYSLOBSTATS_HIST table column descriptions

Column name Data type Description Use

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The default
value is '0001-01-01-00.00.00.000000'. The default
value indicates that statistics were not collected. This
column can be updated.

G

FREESPACE INTEGER
NOT NULL

Number of pages of free space in the LOB table space. S

ORGRATIO DECIMAL(5,2)
NOT NULL

The percentage of organization in the LOB table space. A
value of '100' indicates perfect organization of the LOB
table space. A value of '1' indicates that the LOB table
space is disorganized.

A value of '0' indicates that the LOB table space is totally
disorganized.

S

DBNAME VARCHAR(24)
NOT NULL

Name of the database that contains the LOB table space
named in NAME.

G

NAME VARCHAR(24)
NOT NULL

Name of the LOB table space. G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

SYSOBJROLEDEP catalog table
The SYSOBJROLEDEP table lists the dependent objects for each role. The schema is SYSIBM.

Table 329. SYSIBM.SYSOBJROLEDEP table column descriptions

Column name Data type Description Use

DEFINER VARCHAR(128)
NOT NULL

The authorization ID or role that created the object. G

DEFINERTYPE CHAR(1)
NOT NULL

The type of definer:
L

Role
blank

Authorization ID

G

ROLENAME VARCHAR(128)
NOT NULL

Name of the role on which there is a dependency. G

Appendix H. Db2 catalog tables 2517

Table 329. SYSIBM.SYSOBJROLEDEP table column descriptions (continued)

Column name Data type Description Use

DSCHEMA VARCHAR(128)
NOT NULL

Name of the schema of the dependent object. G

DNAME VARCHAR(762)
NOT NULL

Name of the dependent object. G

DTYPE CHAR(1)
NOT NULL

The type of the dependent object in DNAME:
B

Trigger
D

Database
E

Distinct type
F

User-defined function
H

Global variable
I

Index
J

JAR file
L

Role
M

Materialized query table
N

Trusted context
O

Stored procedure
Q

Sequence
R

Table space
S

Storage group
T

Table
V

View
X

Row permission
Y

Column mask
0 (zero)

Alias

G

2518 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 329. SYSIBM.SYSOBJROLEDEP table column descriptions (continued)

Column name Data type Description Use

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

SYSPACKAGE catalog table
The SYSPACKAGE table contains a row for every package. The schema is SYSIBM.

Column name Data type Description Use

LOCATION VARCHAR(128)
NOT NULL

Always contains blanks S

COLLID VARCHAR(128)
NOT NULL

Name of the package collection. For a trigger
package, it is the schema name of the trigger.

G

NAME VARCHAR(128)
NOT NULL

Name of the package. G

CONTOKEN CHAR(8)
NOT NULL
FOR BIT DATA

Consistency token for the package. For a package
derived from a Db2 DBRM, it is one of the following
values:

• The "level" as specified by the LEVEL option when
the package's program was precompiled

• The timestamp indicating when the package's
program was precompiled, in an internal format.

S

OWNER VARCHAR(128)
NOT NULL

Authorization ID of the package owner. For a trigger
package, the value is the authorization ID of the
owner of the trigger, which is set to the current
authorization ID (the plan or package owner for
static CREATE TRIGGER statement; the CURRENT
SQLID for a dynamic CREATE TRIGGER statement).

G

CREATOR VARCHAR(128)
NOT NULL

Authorization ID of the creator of the package.
The creator is the authorization ID under which
the package was bound or rebound. For a trigger
package, the value is determined differently. For
dynamic SQL, it is the primary authorization ID
of the user who issued the CREATE TRIGGER
statement. For static SQL, it is the authorization ID
of the plan or package owner.

G

40 Packages are divided into sections. The base section of the package must be in the EDM pool during the
entire time the package is executing. Other sections of the package, corresponding roughly to sets of
related SQL statements, are brought into the pool as needed.

41 The value is not updated instantly. There might be a delay of several days before the value is updated.

Appendix H. Db2 catalog tables 2519

Column name Data type Description Use

TIMESTAMP TIMESTAMP
NOT NULL

Timestamp indicating when the package was
created.

G

BINDTIME TIMESTAMP
NOT NULL

Timestamp indicating when the package was last
bound.

G

QUALIFIER VARCHAR(128)
NOT NULL

Implicit qualifier for the unqualified table, view,
index, and alias names in the static SQL statements
of the package.

G

PKSIZE INTEGER
NOT NULL

Size of the base section40 of the package, in bytes. G

AVGSIZE INTEGER
NOT NULL

Average size, in bytes, of those sections40 of the
plan that contain SQL statements processed at bind
time.

G

SYSENTRIES SMALLINT
NOT NULL

Number of enabled or disabled entries for this
package in SYSIBM.SYSPKSYSTEM. A value of 0 if
all types of connections are enabled.

G

VALID CHAR(1)
NOT NULL

Whether the package is valid:
A

An ALTER statement changed the description of
the table or base table of a view referred to by
the package. The changes do not invalidate the
package. However, a rebind might be required
for the package to pick up the changes from the
ALTER statement.

H
An ALTER TABLE statement changed the
description of the table or base table of a view
referred to by the package. For releases of Db2
prior to Version 5, the change invalidates the
package.

N
No

Y
Yes

G

OPERATIVE CHAR(1)
NOT NULL

Whether the package can be allocated:
N

A package with package-level dependency
cannot be allocated. An explicit BIND or
REBIND is required before the package can be
allocated.

Y
Yes

G

2520 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

VALIDATE CHAR(1)
NOT NULL

Whether validity checking can be deferred until run
time:
B

All checking must be performed at bind time.
R

Validation is done at run time for tables, views,
and privileges that do not exist at bind time.

G

ISOLATION CHAR(1)
NOT NULL

Isolation level when the package was last bound or
rebound
R

RR (repeatable read)
S

CS (cursor stability)
T

RS (read stability)
U

UR (uncommitted read)
blank

Not specified, and therefore at the level
specified for the plan executing the package

G

RELEASE CHAR(1)
NOT NULL

The value used for RELEASE when the package was
last bound or rebound:
C

Value used was COMMIT.
D

Value used was DEALLOCATE.
I

The local package is inheriting the value from
the plan

blank
Not specified, and therefore the value specified
for the plan executing the package.

G

EXPLAIN CHAR(1)
NOT NULL

EXPLAIN option specified for the package; that is,
whether information on the package's statements
was added to the owner of the PLAN_TABLE table:
N

No
Y

Yes

G

QUOTE CHAR(1)
NOT NULL

SQL string delimiter for SQL statements in the
package:
N

Apostrophe
Y

Quotation mark

G

Appendix H. Db2 catalog tables 2521

Column name Data type Description Use

COMMA CHAR(1)
NOT NULL

Decimal point representation for SQL statements in
package:
N

Period
Y

Comma

G

HOSTLANG CHAR(1)
NOT NULL

Host language, or a value set by the program
preparation process:
B

Assembler language
C

OS/VS COBOL
D

C
F

Fortran
J

Java
P

PL/I
R

REST
2

VS COBOL II or IBM COBOL Release 1 (formerly
called COBOL/370)

3
IBM COBOL (Release 2 or subsequent releases)

4
C++

blank
For remotely bound packages, trigger packages
(TYPE='T' or '1'), SQL procedure packages
(TYPE='N'), or non-inline SQL scalar function
packages (TYPE='F').

G

CHARSET CHAR(1)
NOT NULL

Indicates whether the system CCSID for SBCS
data was 290 (Katakana) when the program was
precompiled:
K

Yes
A

No

G

2522 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

MIXED CHAR(1)
NOT NULL

Indicates if mixed data was in effect when the
package's program was precompiled (for more
on when mixed data is in effect, see “Character
strings” on page 102):
N

No
Y

Yes

G

DEC31 CHAR(1)
NOT NULL

Indicates whether DEC31 was in effect when the
package's program was precompiled (for more on
when DEC31 is in effect, see “Arithmetic with two
decimal operands” on page 251):
N

No
Y

Yes

G

DEFERPREP CHAR(1)
NOT NULL

Indicates the CURRENTDATA option when the
package was bound or rebound:
A

Data currency is required for all cursors. Inhibit
blocking for all cursors.

B
Data currency is not required for ambiguous
cursors.

C
Data currency is required for ambiguous
cursors.

blank
The package was created before the
CURRENTDATA option was available.

G

SQLERROR CHAR(1)
NOT NULL

Indicates the SQLERROR option on the most recent
subcommand that bound or rebound the package:
C

CONTINUE
N

NOPACKAGE

G

Appendix H. Db2 catalog tables 2523

Column name Data type Description Use

REMOTE CHAR(1)
NOT NULL

Source of the package:
C

Package was created by BIND COPY.
D

Package was created by BIND COPY with the
OPTIONS(COMMAND) option.

K
The package was copied from a package that
was originally bound on behalf of a remote
requester.

L
The package was copied with the
OPTIONS(COMMAND) option from a package
that was originally bound on behalf of a remote
requester.

N
Package was locally bound from a DBRM.

Y
Package was bound on behalf of a remote
requester.

G

PCTIMESTAMP TIMESTAMP
NOT NULL

Date and time the application program was
precompiled, or '0001-01-01-00.00.00.000000' if
the LEVEL precompiler option was used, or if the
package came from a non-Db2 location.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values, see
Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELBOUND should be used
instead.

G

VERSION VARCHAR(122)
NOT NULL

Version identifier for the package.

The value is an empty string for:

• A package for a basic trigger (TYPE='T').
• A package for an application that was

precompiled without SQL processing option
VERSION, or was precompiled with an empty
string for the VERSION value. (TYPE=blank).

G

2524 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

PDSNAME VARCHAR(132)
NOT NULL

For a locally bound package, the name of the
PDS (library) in which the package's DBRM is a
member. For a locally copied package, the value
in SYSPACKAGE.PDSNAME for the source package.
Otherwise, the product signature of the bind
requester followed by one of the following:

• For Db2 for z/OS remote requesters, the
requester's location name, or IP address, or LU
name enclosed in angle brackets (for example,
"<LUSQLDS>").

• For non-Db2 for z/OS remote requesters, the
requester's IP address or LU name enclosed in
angle brackets.

G

DEGREE CHAR(3)
NOT NULL WITH
DEFAULT

The DEGREE option used when the package was
last bound:
ANY

DEGREE(ANY)
1 or blank

DEGREE(1). Blank if the package was migrated.

G

GROUP_MEMBER VARCHAR(24)
NOT NULL WITH
DEFAULT

The Db2 data sharing member name of the Db2
subsystem that performed the most recent bind.
This column is blank if the Db2 subsystem was not
in a Db2 data sharing environment when the bind
was performed.

G

Appendix H. Db2 catalog tables 2525

Column name Data type Description Use

DYNAMICRULES CHAR(1)
NOT NULL WITH
DEFAULT

The DYNAMICRULES option used when the package
was last bound:
B

BIND. Dynamic SQL statements are executed
with DYNAMICRULES bind behavior.

D
DEFINEBIND. When the package is run under
an active stored procedure or user-defined
function, dynamic SQL statements in the
package are executed with DYNAMICRULES
define behavior.

When the package is not run under an active
stored procedure or user-defined function,
dynamic SQL statements in the package are
executed with DYNAMICRULES bind behavior.

E
DEFINERUN. When the package is run under
an active stored procedure or user-defined
function, dynamic SQL statements in the
package are executed with DYNAMICRULES
define behavior.

When the package is not run under an active
stored procedure or user-defined function,
dynamic SQL statements in the package are
executed with DYNAMICRULES run behavior.

H
INVOKEBIND. When the package is run under
an active stored procedure or user-defined
function, dynamic SQL statements in the
package are executed with DYNAMICRULES
invoke behavior.

When the package is not run under an active
stored procedure or user-defined function,
dynamic SQL statements in the package are
executed with DYNAMICRULES bind behavior.

G

2526 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

DYNAMICRULES
(continued)

I
INVOKERUN. When the package is run under
an active stored procedure or user-defined
function, dynamic SQL statements in the
package are executed with DYNAMICRULES
invoke behavior.

When the package is not run under an active
stored procedure or user-defined function,
dynamic SQL statements in the package are
executed with DYNAMICRULES run behavior.

R
RUN. Dynamic SQL statements are executed
with DYNAMICRULES run behavior.

blank
DYNAMICRULES is not specified for the
package. The package uses the DYNAMICRULES
value of the plan to which the package is
appended at execution time.

For a description of the DYNAMICRULES behaviors,
see “Authorization IDs and dynamic SQL” on page
94.

REOPTVAR CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Whether the access path is determined again at
execution time using input variable values:
A

Bind option REOPT(AUTO) indicates that the
access path is determined multiple times at
execution time depending on the parameter
value.

N
Bind option REOPT(NONE) indicates that the
access path is determined at bind time.

Y
Bind option REOPT(ALWAYS) indicates that the
access path is determined at execution time for
SQL statements with variable values.

1
Bind option REOPT(ONCE) indicates that the
access path is determined only once at
execution time, using the first set of input
variable values, regardless of how many times
the same statement is executed.

G

Appendix H. Db2 catalog tables 2527

Column name Data type Description Use

DEFERPREPARE CHAR(1)
NOT NULL WITH
DEFAULT

Whether PREPARE processing is deferred until
OPEN is executed:
N

Bind option NODEFER(PREPARE) indicates that
PREPARE processing is not deferred until OPEN
is executed.

Y
Bind option DEFER(PREPARE) indicates that
PREPARE processing is deferred until OPEN is
executed.

I
The local package is inheriting the value from
the plan

blank
Blank for a trigger package. Otherwise, the bind
option was not specified for the package and is
inherited from the plan.

G

KEEPDYNAMIC CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Whether prepared dynamic statements are to be
purged at each commit point:
N

The bind option is KEEPDYNAMIC(NO).
Prepared dynamic SQL statements are
destroyed at each commit point or rollback
operation.

Y
The bind option is KEEPDYNAMIC(YES).
Prepared dynamic SQL statements are kept past
each commit point or rollback operation.

G

PATHSCHEMAS VARCHAR(2048)
NOT NULL WITH
DEFAULT

SQL path specified on the BIND or REBIND
command that bound the package. The path is
used to resolve unqualified data type, function, and
stored procedure names used in certain contexts. If
the PATH bind option was not specified, the value
in the column is a zero length string; however, Db2
uses the default SQL path.

G

2528 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

TYPE CHAR(1)
NOT NULL WITH
DEFAULT

Type of package. Identifies how the package is
created:
F

A CREATE FUNCTION or ALTER FUNCTION
statement, or a BIND PACKAGE DEPLOY
command created the package, and this
package is a compiled SQL scalar function
package.

N
A CREATE PROCEDURE or ALTER PROCEDURE
statement, or BIND PACKAGE DEPLOY
command created the package, and this
package is a native SQL routine package.

T
A CREATE TRIGGER or ALTER TRIGGER
statement for a basic trigger created the
package.

blank
BIND PACKAGE command created the package.

1
A CREATE TRIGGER or ALTER TRIGGER
statement for an advanced trigger created the
package.

G

DBPROTOCOL CHAR(1)
NOT NULL WITH
DEFAULT 'D'

Whether remote access for SQL is implemented
with DRDA access or DRDA access with the
capability for package-based continuous block
fetch:
D

DRDA
C

DRDA access with package-based continuous
block fetch enabled.

G

FUNCTIONTS TIMESTAMP
NOT NULL WITH
DEFAULT

Timestamp when the function was resolved. This
value is set by the BIND and REBIND commands,
but not by automatic rebinds (autobind).

G

OPTHINT VARCHAR(128)
NOT NULL WITH
DEFAULT

Value of the OPTHINT bind option. Identifies rows
in owner.PLAN_TABLE that are to be used as input
to Db2. Refer to the ACCESSPATH column in the
“SYSPACKSTMT catalog table” on page 2558 for
information about which statements are using the
specified hints.

G

Appendix H. Db2 catalog tables 2529

Column name Data type Description Use

ENCODING_CCSID INTEGER
NOT NULL WITH
DEFAULT

The CCSID corresponding to the encoding scheme
or CCSID as specified for the bind option
ENCODING. The Encoding Scheme specified on the
bind command:
ccsid

The specified or derived CCSID.
0

The default CCSID as specified on panel
DSNTIPF at installation time. Used when the
package was bound prior to Version 7.

G

IMMEDWRITE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates when writes of updated group buffer pool
dependent pages are to be done. This option is only
applicable for data sharing environments.
I

The local package is inheriting the value from
the plan

N
Bind option IMMEDWRITE(NO) indicates normal
write activity is done.

Y
Bind option IMMEDWRITE(YES) indicates that
immediate writes are done for updated group
buffer pool dependent pages.

1
Bind option IMMEDWRITE(PH1) indicates that
updated group buffer pool dependent pages are
written at or before phase 1 commit.

blank
A migrated package.

G

RELBOUND CHAR(1)
NOT NULL WITH
DEFAULT

The release when the package was bound or
rebound.
blank

Bound prior to Version 7
For all other values, see Release dependency
indicators

G

CATENCODE CHAR(1) Not used. N

REMARKS VARCHAR(550)
NOT NULL WITH
DEFAULT

A character string provided by the user with the
COMMENT statement.

G

OWNERTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner
blank

Authorization ID
L

Role

G

2530 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

ROUNDING CHAR(1)
NOT NULL WITH
DEFAULT

The ROUNDING option used when the package was
last bound:
C

ROUND_CEILING
D

ROUND_DOWN
F

ROUND_FLOOR
G

ROUND_HALF_DOWN
E

ROUND_HALF_EVEN
H

ROUND_HALF_UP
U

ROUND_UP
blank

The package created in a Db2 release prior to
Version 9.

G

DISTRIBUTE CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Determines if Db2 should gather location names
from SQL statements, and create remote packages
for the user (This only has effect during local bind):
A

Db2 will collect remote location names
from SQL statements during local bind, and
automatically create remote packages at those
sites. The site names are gathered from
object names in static SQL statements and
literals on CONNECT statements. The sites at
which the package is remotely bound can be
determined by the location (BTYPE='X') records
in SYSIBM.SYSPACKDEP for this package.

L
Db2 will automatically create remote packages
at the sites specified in the list of location-
names. The sites at which the package
is remotely bound can be determined
by the location (BTYPE='X') records in
SYSIBM.SYSPACKDEP for this package.

G

LASTUSED DATE
NOT NULL
WITH DEFAULT

The last date that the package was used. The
LASTUSED value is set to '0001-01-01' when the
package is created, and the value is updated
whenever the package is used.41 The following
commands preserve the existing value:

• BIND REPLACE of the same package version
• REBIND

G

Appendix H. Db2 catalog tables 2531

Column name Data type Description Use

CONCUR_ACC_RES CHAR(1)
NOT NULL

Indicates the CONCURRENTACCESSRESOLUTION
option when the package was bound or rebound:
blank

Not specified
U

USECURRENTLYCOMMITTED
W

WAITFOROUTCOME

G

EXTENDEDINDICATOR CHAR(1)
NOT NULL
WITH DEFAULT

The value of the EXTENDEDINDICATOR bind option:
blank

Not specified
N

EXTENDEDINDICATOR NO
Y

EXTENDEDINDICATOR YES

G

COPYID INTEGER
NOT NULL

The current copy of the package. G

PLANMGMT CHAR(1)
NOT NULL
WITH DEFAULT

The value of the PLANMGMT bind option:
E

PLANMGMT EXTENDED
B

PLANMGMT BASIC
blank

PLANMGMT OFF

G

PLANMGMTSCOPE CHAR(1)
NOT NULL
WITH DEFAULT

The value of the PLANMGMTSCOPE bind option:
S

PLANMGMTSCOPE STATIC

G

APREUSE CHAR(1)
NOT NULL
WITH DEFAULT

The value of the APREUSE bind option at the
conclusion of a successful bind operation.
N

NO or NONE: Access paths were not reused.
W

WARN: Db2 attempted to reuse access paths.
If an access path could not be reused, Db2
generated a new access path.

E
ERROR: Access paths were successfully reused.
No error condition prevented Db2 from reusing
access paths.

G

2532 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

APRETAINDUP CHAR(1)
NOT NULL
WITH DEFAULT

The value of the APRETAINDUP bind option:
Y

APRETAINDUP YES specified. All copies were
retained.

0
APRETAINDUP NO specified; however, the
previous or original package copy is still
retained due to access path differences.

1
APRETAINDUP NO specified, and the previous
package copy is not retained as the access
paths are identical to the current copy.

2
APRETAINDUP NO specified, and the previous
and original package copies are not retained as
the access paths are identical to the current
copy.

G

SYSTIMESENSITIVE CHAR(1)
NOT NULL
WITH DEFAULT 'N'

The value of the SYSTIMESENSITIVE bind option:
Y

References to system-period temporal tables
are affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

N
References to system-period temporal tables
are not affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

G

RECORDTEMPORALHIST CHAR(1)
NOT NULL
WITH DEFAULT 'Y'

Not used. N

BUSTIMESENSITIVE CHAR(1)
NOT NULL
WITH DEFAULT 'N'

The value of the BUSTIMESENSITIVE bind option:
Y

References to application-period temporal
tables are affected by the value of the CURRENT
TEMPORAL BUSINESS_TIME special register.

N
References to application-period temporal
tables are not affected by the value of the
CURRENT TEMPORAL BUSINESS_TIME special
register.

G

Appendix H. Db2 catalog tables 2533

Column name Data type Description Use

APPLCOMPAT VARCHAR(10)
NOT NULL
WITH DEFAULT

The application compatibility level of the package,
or blank if the package was bound before Db2 11,
or not determined.
VvvRrMmmm

Compatibility with the behavior of the
identified Db2 function level. For example,
V12R1M510 specifies compatibility with the
highest available Db2 12 function level. The
equivalent function level or higher must be
activated.

For the new capabilities that become available
in each application compatibility level, see:

• SQL changes in Db2 13 application
compatibility levels

• SQL changes in Db2 12 application
compatibility levels

Tip: Extra program preparation steps might
be required to increase the application
compatibility level for applications that use data
server clients or drivers to access Db2 for z/OS.
For more information, see Setting application
compatibility levels for data server clients
and drivers (Db2 Application programming and
SQL).

V12R1
Compatibility with the behavior of Db2 12
function level 500. This value has the same
result as specifying V12R1M500.

V11R1
Compatibility with the behavior of Db2 11 new-
function mode. After migration to Db2 12,
this value has the same result as specifying
V12R1M100. For more information, see V11R1
application compatibility level (Db2 Application
programming and SQL)

V10R1
Compatibility with the behavior of DB2 10
new-function mode. For more information, see
V10R1 application compatibility level (Db2
Application programming and SQL).

G

2534 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_13.0.0/wnew/src/tpc/db2z_13_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_13.0.0/wnew/src/tpc/db2z_13_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_sqlstatementchanges.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatclients.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv11r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applcompatv10r1.html

Column name Data type Description Use

ARCHIVESENSITIVE CHAR(1)
NOT NULL
WITH DEFAULT 'N'

The value of the ARCHIVESENSITIVE bind option.
Y

References to archive-enabled tables
are affected by the value of the
SYSIBMADM.GET_ARCHIVE built-in global
variable. Y is the default value.

N
References to archive-enabled tables are
not affected by the value of the
SYSIBMADM.GET_ARCHIVE built-in global
variable.

G

EXTSEQNO INTEGER
NOT NULL
WITH DEFAULT 0

Internal use only. I

DESCSTAT CHAR(1)
NOT NULL
WITH DEFAULT

The value of the DESCSTAT bind option.
Y

The Db2 database manager generates a
DESCRIBE SQLDA at bind time so that
DESCRIBE requests for static SQL can be
satisfied during execution.

N
The Db2 database manager does not generate
a DESCRIBE SQLDA at bind time for static SQL
statements.

blank
The package was bound before Db2 11, or not
determined.

G

ORIGIN CHAR(1) NOT NULL
WITH DEFAULT

The origin of the EXPLAIN records:
A

Automatic bind
B

BIND command
G

Implicit automatic regeneration of the SQL
routine or trigger for changed options, or an
explicit ALTER REGENERATE of the SQL routine
or trigger for the package

I
Implicit automatic regeneration of the SQL
routine or trigger for the package because
of fallback, coexistence, or deployment to a
different release where the routines or triggers
are incompatible.

R
REBIND command

blank
The row existed before Db2 12. This is the
default value.

G

Appendix H. Db2 catalog tables 2535

Column name Data type Description Use

APREUSE_NO_FL VARCHAR(10) NOT
NULL WITH DEFAULT

The function level when the package was bound
with APREUSE(NO), or blank if the package was
bound before Db2 12, or not determined. This is
the default value.

G

APREUSE_NO_TS TIMESTAMP NOT
NULL WITH DEFAULT

The bind time when the package was bound with
APREUSE(NO):
0001-01-01-00.00.00.000000

The package was bound before Db2 12. This is
the default value.

G

CONC_STMT CHAR(1) NOT NULL
WITH DEFAULT 'N'

Whether statement concentration is enabled:
N

No. This is the default value.
Y

Yes

G

FUNCTION_LVL VARCHAR(10) NOT
NULL WITH DEFAULT

The function level of the package, or blank if
the package was bound before Db2 12, or not
determined.

G

SYSPACKAUTH catalog table
The SYSPACKAUTH table records the privileges that are held by users over packages. The schema is
SYSIBM.

Column name Data type Description Use

GRANTOR VARCHAR(128)
NOT NULL

Authorization ID of the user who granted the privilege.
Could also be PUBLIC.

G

GRANTEE VARCHAR(128)
NOT NULL

Authorization ID of the user who holds the privileges,
the name of a plan that uses the privileges or PUBLIC
for a grant to PUBLIC.

G

LOCATION VARCHAR(128)
NOT NULL

Always contains blanks S

COLLID VARCHAR(128)
NOT NULL

Collection name for the package or packages on which
the privilege was granted.

G

NAME VARCHAR(128)
NOT NULL

Name of the package on which the privileges are held.
An asterisk (*) if the privileges are held on all packages
in a collection.

G

CONTOKEN CHAR(8)
NOT NULL
FOR BIT DATA

Consistency token for the package, as stored in the
SYSPACKAGE catalog table.

The value can also be blank.

Db2 does not use this value to determine authorization
for package operations such as bind, copy, or
execution.

S

2536 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

TIMESTAMP TIMESTAMP
NOT NULL

Timestamp indicating when the privilege was granted. G

GRANTEETYPE CHAR(1)
NOT NULL

Type of grantee:
blank

An authorization ID
L

Role
P

An application plan

G

AUTHHOWGOT CHAR(1)
NOT NULL

Authorization level of the user from whom the
privileges were received. This authorization level is
not necessarily the highest authorization level of the
grantor.
blank

Not applicable
A

PACKADM (on collection *)
C

DBCTRL
D

DBADM
E

SECADM
G

ACCESSCTRL
L

SYSCTRL
M

DBMAINT
P

PACKADM (on a specific collection)
S

SYSADM
T

DATAACCESS

G

BINDAUTH CHAR(1)
NOT NULL

Whether GRANTEE can use the BIND and REBIND
subcommands on the package:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

Appendix H. Db2 catalog tables 2537

Column name Data type Description Use

COPYAUTH CHAR(1)
NOT NULL

Whether GRANTEE can COPY the package:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

EXECUTEAUTH CHAR(1)
NOT NULL

Whether GRANTEE can execute the package:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values, see
Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

GRANTORTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantor:
blank

Authorization ID
L

Role

G

SYS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW BEGIN

Reserved for future IBM use.The row-begin column
of the SYSTEM_TIME period, for system-period data
versioning.

G

SYS_END TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW END

Reserved for future IBM use.The row-end column
of the SYSTEM_TIME period, for system-period data
versioning.

G

TRANS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS TRANSACTION
START ID

Reserved for future IBM use. G

SYSPACKCOPY catalog table
The SYSPACKCOPY table contains one row for the previous version of each package and one row for the
original version of each package. The schema is SYSIBM.

2538 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 330. SYSIBM.SYSPACKCOPY table column descriptions

Column name Data type Description Use

LOCATION VARCHAR(128)
NOT NULL

Always contains blanks S

COLLID VARCHAR(128)
NOT NULL

Name of the package collection. For a trigger
package, it is the schema name of the trigger.

G

NAME VARCHAR(128)
NOT NULL

Name of the package. G

CONTOKEN CHAR(8)
NOT NULL WITH
DEFAULT
FOR BIT DATA

Consistency token for the package. For a package
derived from a Db2 DBRM, this is either:

• The "level" as specified by the LEVEL option
when the package's program was precompiled

• The timestamp indicating when the package's
program was precompiled, in an internal format.

S

OWNER VARCHAR(128)
NOT NULL

Authorization ID of the package owner. For a
trigger package, the value is the authorization
ID of the owner of the trigger, which is set to
the current authorization ID (the plan or package
owner for static CREATE TRIGGER statement; the
CURRENT SQLID for a dynamic CREATE TRIGGER
statement).

G

CREATOR VARCHAR(128)
NOT NULL

Authorization ID of the creator of the package.
The creator is the authorization ID under which
the package was bound or rebound. For a trigger
package, the value is determined differently. For
dynamic SQL, it is the primary authorization ID
of the user who issued the CREATE TRIGGER
statement. For static SQL, it is the authorization
ID of the plan or package owner.

G

TIMESTAMP TIMESTAMP
NOT NULL

Timestamp indicating when the package was
created.For the previous or original copy, this is
the timestamp that indicates when the package
was created. For the phased-out copy, this is
the timestamp indicating when the copy became
phased-out.

G

BINDTIME TIMESTAMP
NOT NULL

Timestamp indicating when the package was last
bound.

G

QUALIFIER VARCHAR(128)
NOT NULL

Implicit qualifier for the unqualified table, view,
index, and alias names in the static SQL
statements of the package.

G

42 Packages are divided into sections. The base section of the package must be in the EDM pool during the
entire time the package is executing. Other sections of the package, corresponding roughly to sets of
related SQL statements, are brought into the pool as needed.

Appendix H. Db2 catalog tables 2539

Table 330. SYSIBM.SYSPACKCOPY table column descriptions (continued)

Column name Data type Description Use

PKSIZE INTEGER
NOT NULL

Size of the base section42 of the package, in bytes. G

AVGSIZE INTEGER
NOT NULL

Average size, in bytes, of those sections42 of the
plan that contain SQL statements processed at
bind time.

G

SYSENTRIES SMALLINT
NOT NULL

Number of enabled or disabled entries for this
package in SYSIBM.SYSPKSYSTEM. A value of 0 if
all types of connections are enabled.

G

VALID CHAR(1)
NOT NULL

Whether the package is valid:
A

An ALTER statement changed the description
of the table or base table of a view referred
to by the package. For a CREATE INDEX
statement involving data sharing, VALID is also
marked as "A". The changes do not invalidate
the package.

H
An ALTER TABLE statement changed the
description of the table or base table of a view
referred to by the package. For releases of Db2
prior to Version 5, the change invalidates the
package.

N
No

Y
Yes

G

OPERATIVE CHAR(1)
NOT NULL

Whether the package can be allocated:
N

No; an explicit BIND or REBIND is required
before the package can be allocated.

Y
Yes

G

VALIDATE CHAR(1)
NOT NULL

Whether validity checking can be deferred until run
time:
B

All checking must be performed at bind time.
R

Validation is done at run time for tables, views,
and privileges that do not exist at bind time.

G

2540 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 330. SYSIBM.SYSPACKCOPY table column descriptions (continued)

Column name Data type Description Use

ISOLATION CHAR(1)
NOT NULL

Isolation level when the package was last bound
or rebound
R

RR (repeatable read)
S

CS (cursor stability)
T

RS (read stability)
U

UR (uncommitted read)
blank

Not specified, and therefore at the level
specified for the plan executing the package

G

RELEASE CHAR(1)
NOT NULL

The value used for RELEASE when the package
was last bound or rebound:
C

Value used was COMMIT.
D

Value used was DEALLOCATE.
blank

Not specified, and therefore the value
specified for the plan executing the package.

G

EXPLAIN CHAR(1)
NOT NULL

EXPLAIN option specified for the package; that is,
whether information on the package's statements
was added to the owner of the PLAN_TABLE table:
N

No
Y

Yes

G

QUOTE CHAR(1)
NOT NULL

SQL string delimiter for SQL statements in the
package:
N

Apostrophe
Y

Quotation mark

G

COMMA CHAR(1)
NOT NULL

Decimal point representation for SQL statements
in package:
N

Period
Y

Comma

G

Appendix H. Db2 catalog tables 2541

Table 330. SYSIBM.SYSPACKCOPY table column descriptions (continued)

Column name Data type Description Use

HOSTLANG CHAR(1)
NOT NULL

Host language, or a value set by the program
preparation process:
B

Assembler language
C

OS/VS COBOL
D

C
F

Fortran
J

Java
P

PL/I
R

REST
2

VS COBOL II or IBM COBOL Release 1
(formerly called COBOL/370)

3
IBM COBOL (Release 2 or subsequent
releases)

4
C++

blank
For remotely bound packages, trigger
packages (TYPE='T'), SQL procedure packages
(TYPE='N'), or non-inline SQL scalar function
packages (TYPE='F').

G

CHARSET CHAR(1)
NOT NULL

Indicates whether the system CCSID for SBCS
data was 290 (Katakana) when the program was
precompiled:
K

Yes
A

No

G

MIXED CHAR(1)
NOT NULL

Indicates if mixed data was in effect when the
package's program was precompiled (for more
on when mixed data is in effect, see “Character
strings” on page 102):
N

No
Y

Yes

G

2542 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 330. SYSIBM.SYSPACKCOPY table column descriptions (continued)

Column name Data type Description Use

DEC31 CHAR(1)
NOT NULL

Indicates whether DEC31 was in effect when the
package's program was precompiled (for more on
when DEC31 is in effect, see “Arithmetic with two
decimal operands” on page 251):
N

No
Y

Yes

G

DEFERPREP CHAR(1)
NOT NULL

Indicates the CURRENTDATA option when the
package was bound or rebound:
A

Data currency is required for all cursors. Inhibit
blocking for all cursors.

B
Data currency is not required for ambiguous
cursors.

C
Data currency is required for ambiguous
cursors.

blank
The package was created before the
CURRENTDATA option was available.

G

SQLERROR CHAR(1)
NOT NULL

Indicates the SQLERROR option on the most
recent subcommand that bound or rebound the
package:
C

CONTINUE
N

NOPACKAGE

G

Appendix H. Db2 catalog tables 2543

Table 330. SYSIBM.SYSPACKCOPY table column descriptions (continued)

Column name Data type Description Use

REMOTE CHAR(1)
NOT NULL

Source of the package:
C

Package was created by BIND COPY.
D

Package was created by BIND COPY with the
OPTIONS(COMMAND) option.

K
The package was copied from a package that
was originally bound on behalf of a remote
requester.

L
The package was copied with the
OPTIONS(COMMAND) option from a package
that was originally bound on behalf of a remote
requester.

N
Package was locally bound from a DBRM.

Y
Package was bound on behalf of a remote
requester.

G

PCTIMESTAMP TIMESTAMP
NOT NULL

Date and time the application program was
precompiled, or '0001-01-01-00.00.00.000000' if
the LEVEL precompiler option was used, or if the
package came from a non-Db2 location.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values,
see Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELBOUND should be used
instead.

G

VERSION VARCHAR(122)
NOT NULL

Version identifier for the package. The value is
blank for a trigger package (TYPE='T').

G

PDSNAME VARCHAR(132)
NOT NULL

For a locally bound package, the name of the
PDS (library) in which the package's DBRM is a
member. For a locally copied package, the value
in SYSPACKAGE.PDSNAME for the source package.
Otherwise, the product signature of the bind
requester followed by one of the following:

• For Db2 for z/OS remote requesters, the
requester's location name, or IP address, or LU
name enclosed in angle brackets (for example,
"<LUSQLDS>").

• For non-Db2 for z/OS remote requesters, the
requester's IP address or LU name enclosed in
angle brackets.

G

2544 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 330. SYSIBM.SYSPACKCOPY table column descriptions (continued)

Column name Data type Description Use

DEGREE CHAR(3)
NOT NULL WITH
DEFAULT

The DEGREE option used when the package was
last bound:
ANY

DEGREE(ANY)
1 or blank

DEGREE(1). Blank if the package was
migrated.

G

GROUP_MEMBER VARCHAR(24)
NOT NULL WITH
DEFAULT

The Db2 data sharing member name of the Db2
subsystem that performed the most recent bind.
This column is blank if the Db2 subsystem was not
in a Db2 data sharing environment when the bind
was performed.

G

DYNAMICRULES CHAR(1)
NOT NULL WITH
DEFAULT

The DYNAMICRULES option used when the
package was last bound:
B

BIND. Dynamic SQL statements are executed
with DYNAMICRULES bind behavior.

D
DEFINEBIND. When the package is run under
an active stored procedure or user-defined
function, dynamic SQL statements in the
package are executed with DYNAMICRULES
define behavior.

When the package is not run under an active
stored procedure or user-defined function,
dynamic SQL statements in the package are
executed with DYNAMICRULES bind behavior.

E
DEFINERUN. When the package is run under
an active stored procedure or user-defined
function, dynamic SQL statements in the
package are executed with DYNAMICRULES
define behavior.

When the package is not run under an active
stored procedure or user-defined function,
dynamic SQL statements in the package are
executed with DYNAMICRULES run behavior.

H
INVOKEBIND. When the package is run under
an active stored procedure or user-defined
function, dynamic SQL statements in the
package are executed with DYNAMICRULES
invoke behavior.

When the package is not run under an active
stored procedure or user-defined function,
dynamic SQL statements in the package are
executed with DYNAMICRULES bind behavior.

G

Appendix H. Db2 catalog tables 2545

Table 330. SYSIBM.SYSPACKCOPY table column descriptions (continued)

Column name Data type Description Use

DYNAMICRULES (cont.) I
INVOKERUN. When the package is run under
an active stored procedure or user-defined
function, dynamic SQL statements in the
package are executed with DYNAMICRULES
invoke behavior.

When the package is not run under an active
stored procedure or user-defined function,
dynamic SQL statements in the package are
executed with DYNAMICRULES run behavior.

R
RUN. Dynamic SQL statements are executed
with DYNAMICRULES run behavior.

blank
DYNAMICRULES is not specified for
the package. The package uses the
DYNAMICRULES value of the plan to which the
package is appended at execution time.

For a description of the DYNAMICRULES
behaviors, see “Authorization IDs and dynamic
SQL” on page 94.

REOPTVAR CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Whether the access path is determined again at
execution time using input variable values:
A

Bind option REOPT(AUTO) indicates that the
access path is determined multiple times at
execution time depending on the parameter
value.

N
Bind option REOPT(NONE) indicates that the
access path is determined at bind time.

Y
Bind option REOPT(ALWAYS) indicates that the
access path is determined at execution time
for SQL statements with variable values.

1
Bind option REOPT(ONCE) indicates that the
access path is determined only once at
execution time, using the first set of input
variable values, regardless of how many times
the same statement is executed.

G

2546 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 330. SYSIBM.SYSPACKCOPY table column descriptions (continued)

Column name Data type Description Use

DEFERPREPARE CHAR(1)
NOT NULL WITH
DEFAULT

Whether PREPARE processing is deferred until
OPEN is executed:
N

Bind option NODEFER(PREPARE) indicates that
PREPARE processing is not deferred until
OPEN is executed.

Y
Bind option DEFER(PREPARE) indicates that
PREPARE processing is deferred until OPEN is
executed.

blank
Bind option not specified for the package. It is
inherited from the plan.

G

KEEPDYNAMIC CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Whether prepared dynamic statements are to be
purged at each commit point:
N

The bind option is KEEPDYNAMIC(NO).
Prepared dynamic SQL statements are
destroyed at each commit point.

Y
The bind option is KEEPDYNAMIC(YES).
Prepared dynamic SQL statements are kept
past each commit point.

G

PATHSCHEMAS VARCHAR(2048)
NOT NULL WITH
DEFAULT

SQL path specified on the BIND or REBIND
command that bound the package. The path is
used to resolve unqualified data type, function,
and stored procedure names used in certain
contexts. If the PATH bind option was not
specified, the value in the column is a zero length
string; however, Db2 uses the default SQL path.

G

Appendix H. Db2 catalog tables 2547

Table 330. SYSIBM.SYSPACKCOPY table column descriptions (continued)

Column name Data type Description Use

TYPE CHAR(1)
NOT NULL WITH
DEFAULT

Type of package. Identifies how the package is
created:
F

CREATE FUNCTION or ALTER FUNCTION
statement, or a BIND PACKAGE DEPLOY
command created the package, and this
package is a non-inline SQL scalar function
package.

N
CREATE PROCEDURE or ALTER PROCEDURE
statement, or BIND PACKAGE DEPLOY
command created the package, and this
package is a native SQL routine package.

R
CREATE TRIGGER or ALTER TRIGGER
statement created the package, and the
package is a trigger package that has been
created or regenerated in Db2 11 new-function
mode or later.

T
CREATE TRIGGER statement prior to Db2 11
new-function mode has created the package,
and the package is a trigger package.
CREATE TRIGGER statement created the
package, and the package is a trigger package.

blank
BIND PACKAGE command created the
package.

G

DBPROTOCOL CHAR(1)
NOT NULL WITH
DEFAULT 'P'

Whether remote access for SQL is implemented
with DRDA access or DRDA access with the
capability for package-based continuous block
fetch:
D

DRDA
C

DRDA access with the capability for package-
based continuous block fetch.

G

FUNCTIONTS TIMESTAMP
NOT NULL WITH
DEFAULT

Timestamp when the function was resolved. This
value is set by the BIND and REBIND commands,
but not by automatic rebinds (autobind).

G

OPTHINT VARCHAR(128)
NOT NULL WITH
DEFAULT

Value of the OPTHINT bind option. Identifies rows
in owner.PLAN_TABLE that are to be used as input
to Db2. Refer to the ACCESSPATH column in the
“SYSPACKSTMT catalog table” on page 2558 for
information about which statements are using the
specified hints.

G

2548 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 330. SYSIBM.SYSPACKCOPY table column descriptions (continued)

Column name Data type Description Use

ENCODING_CCSID INTEGER
NOT NULL WITH
DEFAULT

The CCSID corresponding to the encoding scheme
or CCSID as specified for the bind option
ENCODING. The Encoding Scheme specified on
the bind command:
ccsid

The specified or derived CCSID.
0

The default CCSID as specified on panel
DSNTIPF at installation time. Used when the
package was bound prior to Version 7.

G

IMMEDWRITE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates when writes of updated group buffer
pool dependent pages are to be done. This option
is only applicable for data sharing environments.
N

Bind option IMMEDWRITE(NO) indicates
normal write activity is done.

Y
Bind option IMMEDWRITE(YES) indicates that
immediate writes are done for updated group
buffer pool dependent pages.

1
Bind option IMMEDWRITE(PH1) indicates that
updated group buffer pool dependent pages
are written at or before phase 1 commit.

blank
A migrated package.

G

RELBOUND CHAR(1)
NOT NULL WITH
DEFAULT

The release when the package was bound or
rebound.
blank

Bound prior to Version 7
For all other values, see Release dependency
indicators

G

CATENCODE CHAR(1) Not used. N

REMARKS VARCHAR(550)
NOT NULL WITH
DEFAULT

A character string provided by the user with the
COMMENT statement.

G

OWNERTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner
blank

Authorization ID
L

Role

G

Appendix H. Db2 catalog tables 2549

Table 330. SYSIBM.SYSPACKCOPY table column descriptions (continued)

Column name Data type Description Use

ROUNDING CHAR(1)
NOT NULL WITH
DEFAULT

The ROUNDING option used when the package
was last bound:
C

ROUND_CEILING
D

ROUND_DOWN
F

ROUND_FLOOR
G

ROUND_HALF_DOWN
E

ROUND_HALF_EVEN
H

ROUND_HALF_UP
U

ROUND_UP
blank

The package created in a Db2 release prior to
Version 9.

G

DISTRIBUTE CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Determines if Db2 should gather location names
from SQL statements, and create remote packages
for the user (This only has effect during local bind):
A

Db2 will collect remote location names
from SQL statements during local bind, and
automatically create remote packages at those
sites. The site names are gathered from
object names in static SQL statements and
literals on CONNECT statements. The sites
at which the package is remotely bound can
be determined by the location (BTYPE='X')
records in SYSIBM.SYSPACKDEP for this
package.

L
Db2 will automatically create remote packages
at the sites specified in the list of location-
names. The sites at which the package
is remotely bound can be determined
by the location (BTYPE='X') records in
SYSIBM.SYSPACKDEP for this package.

G

LASTUSED DATE
NOT NULL WITH
DEFAULT

The last date that the corresponding objects are
used.

G

2550 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 330. SYSIBM.SYSPACKCOPY table column descriptions (continued)

Column name Data type Description Use

CONCUR_ACC_RES CHAR(1)
NOT NULL'

Indicates the CONCURRENTACCESSRESOLUTION
option when the package was bound or rebound:
blank

Not specified
U

USECURRENTLYCOMMITTED
W

WAITFOROUTCOME

G

EXTENDEDINDICATOR CHAR(1)
NOT NULL
WITH DEFAULT

The value of the EXTENDEDINDICATOR bind
option:
N

EXTENDEDINDICATOR NO
Y

EXTENDEDINDICATOR YES

G

COPYID INTEGER
NOT NULL

The version of the copy of the package that this
row explains:
0 or 4 through 16

The phased-out copy of the package
1

The previous copy of the package
2

The original copy of the package

G

PLANMGMT CHAR(1)
NOT NULL
WITH DEFAULT

The value of the PLANMGMT bind option:
E

PLANMGMT EXTENDED
B

PLANMGMT BASIC
blank

PLANMGMT OFF

G

PLANMGMTSCOPE CHAR(1)
NOT NULL
WITH DEFAULT

The value of the PLANMGMTSCOPE bind option:
S

PLANMGMTSCOPE STATIC

G

APREUSE CHAR(1)
NOT NULL WITH
DEFAULT

The value of the APREUSE bind option:
N

NO or NONE: Access paths are not reused.
E

ERROR: Db2 tries to reuse access paths.
Processing ends when an access path cannot
be reused.

I

Appendix H. Db2 catalog tables 2551

Table 330. SYSIBM.SYSPACKCOPY table column descriptions (continued)

Column name Data type Description Use

APRETAINDUP CHAR(1)
NOT NULL WITH
DEFAULT

The value of the APRETAINDUP bind option:
Y

APRETAINDUP YES specified. All copies were
retained.

0
APRETAINDUP NO specified; however, the
previous or original package copy is still
retained due to access path differences.

1
APRETAINDUP NO specified, and the previous
package copy is not retained as the access
paths are identical to the current copy.

2
APRETAINDUP NO specified, and the previous
and original package copies are not retained as
the access paths are identical to the current
copy.

G

SYSTIMESENSITIVE CHAR(1)
NOT NULL
WITH DEFAULT 'N'

The value of the SYSTIMESENSITIVE bind option:
Y

References to system-period temporal tables
are affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

N
References to system-period temporal tables
are not affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

G

RECORDTEMPORALHIST CHAR(1)
NOT NULL
WITH DEFAULT 'Y'

Not used. N

BUSTIMESENSITIVE CHAR(1)
NOT NULL
WITH DEFAULT 'N'

The value of the BUSTIMESENSITIVE bind option:
Y

References to application-period temporal
tables are affected by the value of the
CURRENT TEMPORAL BUSINESS_TIME special
register.

N
References to application-period temporal
tables are not affected by the value of the
CURRENT TEMPORAL BUSINESS_TIME special
register.

G

2552 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 330. SYSIBM.SYSPACKCOPY table column descriptions (continued)

Column name Data type Description Use

APPLCOMPAT VARCHAR(10)
NOT NULL
WITH DEFAULT 'Y'

The value of the APPLCOMPAT bind option:
V10R1

SQL statements in the package have V10R1
compatibility behavior.

V11R1
SQL statements in the package have V11R1
compatibility behavior.

G

ARCHIVESENSITIVE CHAR(1)
NOT NULL
WITH DEFAULT 'N'

The value of the ARCHIVESENSITIVE bind option.
Y

References to archive-enabled tables
are affected by the value of the
SYSIBMADM.GET_ARCHIVE built-in global
variable. Y is the default value.

N
References to archive-enabled tables are
not affected by the value of the
SYSIBMADM.GET_ARCHIVE built-in global
variable.

G

EXTSEQNO INTEGER
NOT NULL
WITH DEFAULT 0

Internal use only. I

DESCSTAT CHAR(1)
NOT NULL
WITH DEFAULT

The value of the DESCSTAT bind option.
Y

The Db2 database manager generates a
DESCRIBE SQLDA at bind time so that
DESCRIBE requests for static SQL can be
satisfied during execution.

N
The Db2 database manager does not generate
a DESCRIBE SQLDA at bind time for static SQL
statements.

G

Appendix H. Db2 catalog tables 2553

Table 330. SYSIBM.SYSPACKCOPY table column descriptions (continued)

Column name Data type Description Use

ORIGIN CHAR(1) NOT NULL
WITH DEFAULT

The origin of the EXPLAIN records:
A

Automatic bind
B

BIND command
G

Explicit ALTER REGENERATE of the SQL
procedure for the package

I
Implicit automatic regeneration of the SQL
procedure for the package

R
REBIND command

blank
The row existed before Db2 12. This is the
default value.

G

APREUSE_NO_FL VARCHAR(10) NOT
NULL WITH DEFAULT

The function level when the package was bound
with APREUSE(NO), or blank if the package was
bound before Db2 12, or not determined. This is
the default value.

G

APREUSE_NO_TS TIMESTAMP NOT
NULL WITH DEFAULT

The bind time when the package was bound with
APREUSE(NO):
0001-01-01-00.00.00.000000

The package was bound before Db2 12. This is
the default value.

G

CONC_STMT CHAR(1) NOT NULL
WITH DEFAULT 'N'

Whether statement concentration is enabled:
N

No. This is the default value.
Y

Yes

G

FUNCTION_LVL VARCHAR(10) The function level of the package. G

SYSPACKDEP catalog table
The SYSPACKDEP table records the dependencies of packages on local tables, views, synonyms, table
spaces, indexes, aliases, functions, and stored procedures. The schema is SYSIBM.

Access paths for SQL statements might depend on objects that Db2 does not actually use when it
processes the selected access paths. Such dependencies are recorded in the SYSPACKDEP catalog table,
but they are not shown in EXPLAIN output.

Table 331. SYSIBM.SYSPACKDEP table column descriptions

Column name Data type Description Use

BNAME VARCHAR(128)
NOT NULL

The name of an object that a package depends on.

If BTYPE is W or Z, the value is the name of the table on
which the period is defined.

G

2554 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 331. SYSIBM.SYSPACKDEP table column descriptions (continued)

Column name Data type Description Use

BQUALIFIER VARCHAR(128)
NOT NULL

The value of the column depends on the type of object:

• If BNAME identifies a table space (BTYPE is R), the
value is the name of its database.

• If BNAME identifies a table on which a period is
defined (BTYPE is W or Z), the value is the qualifier
of that table.

• If BNAME identifies user-defined function, a cast
function, a stored procedure, or a sequence (BTYPE
is F, O, or Q), the value is the schema name.

• If BNAME identifies a role, the value is blank.
• Otherwise, the value is the schema of BNAME.

G

Appendix H. Db2 catalog tables 2555

Table 331. SYSIBM.SYSPACKDEP table column descriptions (continued)

Column name Data type Description Use

BTYPE CHAR(1)
NOT NULL

Type of object identified by BNAME and BQUALIFIER:
A

Alias
E

INSTEAD OF trigger
F

User-defined function or cast function
H

Global variable
G

Global temporary table
I

Index
M

Materialized query table
O

Stored procedure
P

Partitioned table space if it is defined as LARGE or
with the DSSIZE parm

Q
Sequence object

R
Table space

S
Synonym

T
Table

U
User-defined type, which is a distinct type or an
array type.

V
View

W
SYSTEM_TIME period

Z
BUSINESS_TIME period

0 (zero)
Sequence alias

G

DLOCATION VARCHAR(128)
NOT NULL

Always contains blanks S

DCOLLID VARCHAR(128)
NOT NULL

Name of the package collection. G

2556 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 331. SYSIBM.SYSPACKDEP table column descriptions (continued)

Column name Data type Description Use

DNAME VARCHAR(128)
NOT NULL

Name of the package. G

DCONTOKEN CHAR(8)
NOT NULL
FOR BIT DATA

Consistency token for the package. This is either:

• The "level" as specified by the LEVEL option when the
package's program was precompiled

• The timestamp indicating when the package's
program was precompiled, in an internal format.

S

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

DOWNER VARCHAR(128)
NOT NULL WITH
DEFAULT

Owner of the package: G

DTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Type of package:
F

Compiled SQL scalar function
N

Native SQL routine package
O

Original copy of a package
P

Previous copy of a package
R

Reserved for IBM use
T

Trigger package for a basic trigger
blank

Not a trigger package or a native SQL routine
package

1
Trigger package for an advanced trigger

G

DOWNERTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner of the package:
blank

Authorization ID
L

Role

G

COPYID INTEGER
NULLABLE

The copy ID of the package. G

Appendix H. Db2 catalog tables 2557

Related reference
SYSDYNQRYDEP catalog table
The SYSDYNQRYDEP table contains information about dependencies for dynamic query packages. The
schema is SYSIBM.

SYSPACKLIST catalog table
The SYSPACKLIST table contains one or more rows for every local application plan bound with a package
list. Each row represents a unique entry in the plan's package list. The schema is SYSIBM.

Table 332. SYSIBM.SYSPACKLIST table column descriptions

Column name Data type Description Use

PLANNAME VARCHAR(24)
NOT NULL

Name of the application plan. G

SEQNO SMALLINT
NOT NULL

Sequence number of the entry in the package list. G

LOCATION VARCHAR(128)
NOT NULL

Location of the package. Blank if this is local. An asterisk
(*) indicates location to be determined at run time.

G

COLLID VARCHAR(128)
NOT NULL

Collection name for the package. An asterisk (*)
indicates that the collection name is determined at run
time.

G

NAME VARCHAR(128)
NOT NULL

Name of the package. An asterisk (*) indicates an entire
collection.

G

TIMESTAMP TIMESTAMP
NOT NULL

Timestamp indicating when the row was created. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

SYSPACKSTMT catalog table
The SYSPACKSTMT table contains one or more rows for each SQL statement in a package that is bound
locally, and one or more rows for a subset of the SQL statements in a package that is bound remotely. The
schema is SYSIBM.

Table 333. table column descriptions

Column name Data type Description Use

LOCATION VARCHAR(128)
NOT NULL

Always contains blanks S

COLLID VARCHAR(128)
NOT NULL

Name of the package collection. G

2558 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 333. table column descriptions (continued)

Column name Data type Description Use

NAME VARCHAR(128)
NOT NULL

Name of the package. G

CONTOKEN CHAR(8)
NOT NULL
FOR BIT DATA

Consistency token for the package. This is either:

• The "level" as specified by the LEVEL option when the
package's program was precompiled

• The timestamp indicating when the package's program
was precompiled, in an internal format

S

SEQNO INTEGER
NOT NULL

Sequence number of the statement.

Rows that contain zero in the SEQNO, STMTNO, and
SECTNO column values are for IBM internal use only.

G

STMTNO SMALLINT
NOT NULL

The statement number of the statement in the source
program. If the STMTNO value is zero, the statement
number is greater 32767 and the STMTNOI column
contains the statement number.

A negative value indicates a statement number greater
than 32767 in a DRBM created in DB2 version 2.2 or
earlier. To convert a negative value to a meaningful
statement number, add 65536 to the negative STMTNO
value. For example, -26472 is equivalent to +39064
(-26472 + 65536).

Rows that contain zero in the SEQNO, STMTNO, and
SECTNO column values are for IBM internal use only.

G

SECTNO SMALLINT
NOT NULL

The section number of the statement.

For generated packages for SQL routines, such as
procedures and user-defined functions, and advanced
triggers, a value of 1 indicates the control statement
for the routine or advanced trigger. For basic trigger
packages, a value of 1 indicates the WHEN clause for
activating the trigger.

Rows that contain zero in the SEQNO, STMTNO, and
SECTNO column values are for IBM internal use only.

G

BINDERROR CHAR(1)
NOT NULL

Whether an SQL error was detected at bind time:
N

No
Y

Yes

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

Appendix H. Db2 catalog tables 2559

Table 333. table column descriptions (continued)

Column name Data type Description Use

VERSION VARCHAR(122)
NOT NULL

Version identifier for the package. G

— VARCHAR(3500)
NOT NULL WITH
DEFAULT
FOR BIT DATA

Internal use only. I

ISOLATION CHAR(1)
NOT NULL WITH
DEFAULT

Isolation level for the SQL statement:
R

RR (repeatable read)
T

RS (read stability)
S

CS (cursor stability)
U

UR (uncommitted read)
L

RS isolation, with a lock-clause
X

RR isolation, with a lock-clause
blank

The WITH clause was not specified on
this statement. The isolation level is
recorded in SYSPACKAGE.ISOLATION and in
SYSPLAN.ISOLATION.

G

2560 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 333. table column descriptions (continued)

Column name Data type Description Use

STATUS CHAR(1)
NOT NULL WITH
DEFAULT

Status of binding the statement:
A

Distributed - statement uses Db2 private protocol
access. The statement will be parsed and executed
at the server using defaults for input variables during
access path selection.

B
Distributed - statement uses Db2 private protocol
access. The statement will be parsed and executed
at the server using values for input variables during
access path selection.

C
Compiled - statement was bound successfully using
defaults for input variables during access path
selection.

D
Distributed - statement references a remote object
using a three-part name. Db2 will implicitly use DRDA
access either because the DBPROTOCOL bind option
was not specified (defaults to DRDA), or the bind
option DBPROTOCOL(DRDA) was explicitly specified.
This option allows the use of three-part names with
DRDA access but it requires that the package be
bound at the target remote site.

E
Explain - statement is an SQL EXPLAIN statement.
The explain is done at bind time using defaults for
input variables during access path selection.

F
Parsed - statement did not bind successfully and
VALIDATE(RUN) was used. The statement will be
rebound at execution time using values for input
variables during access path selection.

G
Compiled - statement bound successfully, but REOPT
is specified. The statement will be rebound at
execution time using values for input variables during
access path selection.

H
Parsed - statement is either a data definition
statement or a statement that did not bind
successfully and VALIDATE(RUN) was used. The
statement will be rebound at execution time using
defaults for input variables during access path
selection. Data manipulation statements use defaults
for input variables during access path selection.

I
Indefinite - statement is dynamic. The statement will
be bound at execution time using defaults for input
variables during access path selection.

S

Appendix H. Db2 catalog tables 2561

Table 333. table column descriptions (continued)

Column name Data type Description Use

STATUS (cont.) J
Indefinite - statement is dynamic. The statement will
be bound at execution time using values for input
variables during access path selection.

K
Control - CALL statement.

L
Bad - the statement has some allowable error.
The bind continues but the statement cannot be
executed.

M
Parsed - statement references a table that is qualified
with SESSION and was not bound because the table
reference could be for a declared temporary table
that will not be defined until the package or plan is
run. The SQL statement will be rebound at execution
time using values for input variables during access
path selection.

O
Compiled for acceleration. The static query was
bound successfully for acceleration and will be routed
to an accelerator when executed.

blank
The statement is non-executable, or was bound in a
Db2 release prior to Version 5.

ACCESSPATH CHAR(1)
NOT NULL WITH
DEFAULT

For static statements, indicates if the access path for the
statement is based on user-specified optimization hints:
H

Optimization hints were used.
A

The access path was reused because of the APREUSE
bind option.

blank
One of the following situations:

• The access path was determined without the use of
hints, and a previous access path was not reused.

• No access path is associated with the statement.
• The statement is a dynamic SQL statement

G

STMTNOI INTEGER
NOT NULL WITH
DEFAULT

The statement number of the statement in the source
program.

A negative value indicates a statement number greater
than 32767 in a DRBM created in DB2 version 2.2 or
earlier. To convert a negative value to a meaningful
statement number, add 65536 to the negative STMTNO
value. For example, -26472 is equivalent to +39064
(-26472 + 65536).

G

2562 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 333. table column descriptions (continued)

Column name Data type Description Use

SECTNOI INTEGER
NOT NULL WITH
DEFAULT

The section number of the statement.

For generated packages for SQL routines, such as
procedures and user-defined functions, and advanced
triggers, a value of 1 indicates the control statement
for the routine or advanced trigger. For basic trigger
packages, a value of 1 indicates the WHEN clause for
activating the trigger.

G

EXPLAINABLE CHAR(1)
NOT NULL WITH
DEFAULT

Contains one of the following values:
Y

Indicates that the SQL statement can be used with
the EXPLAIN function and might have rows describing
its access path in the owner.PLAN_TABLE.

N
Indicates that the SQL statement does not have
any rows describing its access path in the
owner.PLAN_TABLE.

blank
Indicates that the SQL statement was bound prior to
Version 7.

G

QUERYNO INTEGER
NOT NULL WITH
DEFAULT –1

The query number of the SQL statement in the source
program. SQL statements bound prior to Version 7 have
a default value of –1. Statements bound in Version
7 or later use the value specified on the QUERYNO
clause on SELECT, UPDATE, INSERT, DELETE, EXPLAIN,
DECLARE CURSOR, or REFRESH TABLE statements. If the
QUERYNO clause is not specified, the query number is set
to the statement number.

G

ROWID ROWID
NULL GENERATED
ALWAYS

ROWID column, created for the lob columns in this table. G

STMT_ID BIGINT
NOT NULL

A unique statement identifier. G

STATEMENT CLOB(2M)
NOT NULL
WITH DEFAULT

The complete text for the SQL statement that the row
represents.

G

— BLOB(2M)
NOT NULL
WITH DEFAULT

Internal use only. I

Appendix H. Db2 catalog tables 2563

Table 333. table column descriptions (continued)

Column name Data type Description Use

EXPANSION_REASO
N

CHAR(2)
NOT NULL

For dynamic statements, this column is blank. For static
statements, one of the following values to indicate the
reason that an implicit query transformation occurred
when the package was bound:
A

The statement was bound with implicit
query transformation as a result of the
SYSIBMADM.GET_ARCHIVE built-in global variable.

B
The statement was bound with implicit query
transformation as a result of the CURRENT
TEMPORAL BUSINESS_TIME special register.

S
The statement was bound with implicit query
transformation as a result of the CURRENT
TEMPORAL SYSTEM_TIME special register.

SB
The statement was bound with implicit query
transformation as a result of the CURRENT
TEMPORAL SYSTEM_TIME special register and
the CURRENT TEMPORAL BUSINESS_TIME special
register.

blank
One of the following occurred:

• The statement did not bind successfully and the
VALIDATE(RUN) bind option was used.

• The statement was bound without implicit query
transformation.

G

QUERYID BIGINT NOT NULL
WITH DEFAULT -1

The unique identifier for locating records in the
SYSIBM.SYSQUERY catalog table. The default value is -1
indicates that no QUERYID value was found for the SQL
statement when the package was bound.

G

QUERY_HASH CHAR(16) NOT NULL
WITH DEFAULT FOR
BIT DATA

The hash key for locating records in the
SYSIBM.SYSQUERY catalog table. This value is not unique
for each statement. Other columns for the collection ID,
package name, section number, and query number can be
used with the hash key for uniqueness.

The '00'x default value indicates that no hash key was
generated for the SQL statement when the package was
bound.

G

QUERY_HASH_
VERSION

INTEGER NOT NULL
WITH DEFAULT -1

The hash version for locating records in the
SYSIBM.SYSQUERY catalog table. The -1 default value
indicates that no hash version was generated for the SQL
statement when the package was bound.

G

COPYID INTEGER
NULLABLE

The copy ID of the package. G

2564 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SYSPACKSTMT_STMB catalog table
The SYSPACKSTMT_STMB table is an auxiliary table for the STMTBLOB column of the SYSPACKSTMT table
and is required to hold LOB data. The schema is SYSIBM.

Table 334. SYSIBM.SYSPACKSTMT_STMB table column descriptions

Column name Data type Description Use

— BLOB(2M)
NOT NULL
WITH DEFAULT

Internal use only. I

SYSPACKSTMT_STMT catalog table
The SYSPACKSTMT_STMT table is an auxiliary table for the STATEMENT column of the SYSPACKSTMT
table and contains the LOB data. The schema is SYSIBM.

Table 335. SYSIBM.SYSPACKSTMT_STMT table column descriptions

Column name Data type Description Use

STATEMENT CLOB(2M)
NOT NULL
WITH DEFAULT

The complete text for the SQL statement that the row
represents.

G

SYSPARMS catalog table
The SYSPARMS table contains a row for each parameter of a routine or multiple rows for table parameters
(one for each column of the table). The schema is SYSIBM.

Table 336. SYSIBM.SYSPARMS table column descriptions

Column name Data type Description Use

SCHEMA VARCHAR(128)
NOT NULL

Schema of the routine. G

OWNER VARCHAR(128)
NOT NULL

Owner of the routine. G

NAME VARCHAR(128)
NOT NULL

Name of the routine. G

SPECIFICNAME VARCHAR(128)
NOT NULL

Specific name of the routine. G

ROUTINETYPE CHAR(1)
NOT NULL

Type of routine:
F

User-defined function or cast function
P

Stored procedure

G

Appendix H. Db2 catalog tables 2565

Table 336. SYSIBM.SYSPARMS table column descriptions (continued)

Column name Data type Description Use

CAST_FUNCTION CHAR(1)
NOT NULL

Whether the routine is a cast function:
N

Not a cast function
Y

A cast function

The only way to get a value of Y is if a user creates
a distinct type when Db2 implicitly generates cast
functions for the distinct type.

G

PARMNAME VARCHAR(128)
NOT NULL

Name of the parameter. For a table parameter, the
parameter name in the row corresponding to the first
column of the table is the parameter name specified
on CREATE; an empty string or blanks are stored for
the parameter name for the rows corresponding to the
remaining columns.

G

ROUTINEID INTEGER
NOT NULL

Internal identifier of the routine. S

2566 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 336. SYSIBM.SYSPARMS table column descriptions (continued)

Column name Data type Description Use

ROWTYPE CHAR(1)
NOT NULL

The following values indicate the type of parameter
described by this row:
P

Input parameter.
O

Output parameter; not applicable for functions
B

Both an input and an output parameter; not
applicable for functions

R
Result before casting; not applicable for stored
procedures

C
Result after casting; not applicable for stored
procedures

S
Input parameter of the underlying built-in source
function. For a sourced function and a given
ORDINAL value:

• The row with ROWTYPE = P describes the input
parameter of the user-defined function (identified
by ROUTINEID).

• The row with ROWTYPE = S describes the
corresponding input parameter of the built-
in function that is the underlying source
function (identified by the SOURCESCHEMA and
SOURCESPECIFIC values).

A value of 'X' indicates that the row is not used
to describe a particular parameter of the routine.
Instead, for a routine that was created prior to
Version 9, the row is used to record a CCSID for
the encoding scheme specified in a PARAMETER
CCSID clause, or a DATATYPEID for the representation
of the variable length character string parameters
of a LANGUAGE C routine, as specified in a
PARAMETER VARCHAR clause. For routines created
with Version 8 (new function mode) or later releases,
the CCSID is recorded in the PARAMETER_CCSID
column of SYSROUTINES. For routines created
with Version 9 or later releases, the DATATYPEID
information to support PARAMETER VARCHAR is
recorded in the PARAMETER_VARCHARFORM column of
SYSIBM.SYSROUTINES.

G

Appendix H. Db2 catalog tables 2567

Table 336. SYSIBM.SYSPARMS table column descriptions (continued)

Column name Data type Description Use

ORDINAL SMALLINT
NOT NULL

If ROWTYPE is B, O, P, or S, the value is the ordinal
number of the parameter within the routine signature.

If ROWTYPE is C or R, the value depends on the type of
function:

• For a scalar function, the value is 0.
• For a table function, the value is the ordinal number of

the column of the output table.

If ROWTYPE is X, the value is 0.

G

TYPESCHEMA VARCHAR(128)
NOT NULL

Schema of the data type of the parameter. G

TYPENAME VARCHAR(128)
NOT NULL

Name of the data type of the parameter. G

DATATYPEID INTEGER
NOT NULL

For a built-in data type, the internal ID of the built-in
type. For a distinct type, the internal ID of the distinct
type.

When ROWTYPE is X and ORDINAL is 0, a non-zero
DATATYPEID indicates that actual representation, for
a LANGUAGE C routine, of any varying length string
parameters that appear in the routine's parameter list
ot in the RETURNS clause.

S

SOURCETYPEID INTEGER
NOT NULL

For a built-in data type, 0. For a distinct type, the
internal ID of the built-in data type upon which the
distinct type is based.

S

LOCATOR CHAR(1)
NOT NULL

Indicates whether a locator to a value, instead of the
actual value, is to be passed or returned when the
routine is called:
N

The actual value is to be passed.
Y

A locator to a value is to be passed

G

TABLE CHAR(1)
NOT NULL

The data type of a column for a table parameter:
N

This is not a table parameter.
Y

This is a table parameter.

G

TABLE_COLNO SMALLINT
NOT NULL

For table parameters, the column number of the table.
Otherwise, the value is 0.

G

2568 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 336. SYSIBM.SYSPARMS table column descriptions (continued)

Column name Data type Description Use

LENGTH INTEGER
NOT NULL

Length attribute of the parameter or result; If the
parameter or result length is determined during function
resolution, the length attribute can also be 0. In the case
of a decimal parameter or result this is the precision.

If the parameter is an array, the value is 0.

G

SCALE SMALLINT
NOT NULL

Scale of the data type of the parameter or number
of fractional second digits of timestamp or timestamp
with time zone parameter. If it is TIMESTAMP parameter
where LENGTH is 10 and SCALE is 0, the number of
fractional second digits is 6.

G

SUBTYPE CHAR(1)
NOT NULL

If the data type is a distinct type, the subtype of the
distinct type, which is based on the subtype of its source
type:
B

The subtype is FOR BIT DATA.
S

The subtype is FOR SBCS DATA.
M

The subtype is FOR MIXED DATA.
blank

The source type is not a character type.

If the parameter is an array type, the value is blank.

G

CCSID INTEGER
NOT NULL

CCSID of the data type for a character, date, time,
timestamp or graphic data type. If the parameter is a
datetime array, the value is 0. (not null)

When ROWTYPE is X and ORDINAL is 0, the CCSID
column is the CCSID for all character and graphic string
parameters.

G

CAST_FUNCTION_ID INTEGER
NOT NULL

Internal function ID of the function used to cast the
argument, if this function is sourced on another function,
or result. Otherwise, the value is 0. Not applicable for
stored procedures.

S

ENCODING_SCHEME CHAR(1)
NOT NULL

Encoding scheme of the parameter:
A

ASCII
E

EBCDIC
U

Unicode
blank

The source type is not a character, graphic, or
datetime type.

If the parameter is an array type, the value is blank.

G

Appendix H. Db2 catalog tables 2569

Table 336. SYSIBM.SYSPARMS table column descriptions (continued)

Column name Data type Description Use

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the routine. The column is a
zero-length string if the value of ORIGIN is not 'I' or if
the rows were created prior to Version 9.

G

OWNERTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner:
blank

Authorization ID
L

Role

G

SYSPENDINGDDL catalog table
The SYSPENDINGDDL table contains information about which objects have pending definition changes.
The entries only exist during the window between when the pending option is executed and when the
utility applies these pending changes to the object. The schema is SYSIBM.

Table 337. SYSIBM.SYSPENDINGDDL table column descriptions

Column name Data type Description Use

DBNAME VARCHAR(24)
NOT NULL

Name of the database for the pending option. G

TSNAME VARCHAR(24)
NOT NULL

Name of the table space for the pending option. G

DBID SMALLINT
NOT NULL

Internal identifier of the database. S

PSID SMALLINT
NOT NULL

Internal identifier of the table space page set descriptor. S

OBJSCHEMA VARCHAR(128)
NOT NULL

The qualifier of the object that contains the pending
option.

G

OBJNAME VARCHAR(128)
NOT NULL

Name of the object that contains the pending option. G

OBJOBID SMALLINT
NOT NULL

Internal identifier of the object. S

2570 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 337. SYSIBM.SYSPENDINGDDL table column descriptions (continued)

Column name Data type Description Use

OBJTYPE CHAR(1)
NOT NULL

Type of object that is identified by OBJSCHEMA and
OBJNAME.
I

The object is an index
S

The object is a table space
T

The object is a table

G

STATEMENT_TYPE CHAR(1)
NOT NULL

The type of the statement for the pending option.
A

An ALTER statement
R

A RECOVER statement

G

OPTION_ENVID INTEGER
NOT NULL

Internal identifier of the environment for the pending
option.

G

OPTION_KEYWORD VARCHAR(128)
NOT NULL

If the row is inserted into this table during execution of
a data definition statement, this value is the name of
the pending option. If the row is inserted into this table
during recovery to a prior point in time, this value is the
name of the RECOVER option.

G

OPTION_VALUE VARCHAR(4000)
NOT NULL

If the row is inserted into this table during execution
of a data definition statement, this value is the value of
the pending option. If the row is inserted into this table
during recovery to a prior point in time, this value is the
value of the RECOVER option.

G

OPTION_SEQNO SMALLINT
NOT NULL

The sequence of the pending option within the
statement.

G

CREATEDTS TIMESTAMP(12)
NOT NULL

Timestamp when the pending option was created. G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object. See
Release dependency indicators for the values.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

ROWID ROWID ID to support LOB columns for source text G

STATEMENT_TEXT CLOB(2M)
NOT NULL

The source text of the original statement for the pending
option.

G

Appendix H. Db2 catalog tables 2571

Table 337. SYSIBM.SYSPENDINGDDL table column descriptions (continued)

Column name Data type Description Use

COLNAME VARCHAR(128)
NOT NULL
WITH DEFAULT

The name of the column with a pending definition
change.

G

PARTITION SMALLINT
NOT NULL

The physical partition number that was specified in the
alter statement. The value is 0 if no physical partition
number was specified.

G

PARTITION_
KEYWORD

VARCHAR(18)
NOT NULL
WITH DEFAULT

This column is populated if the PARTITION column has a
non-zero value.

The keyword that is associated with the PARTITION
clause of the ALTER TABLE statement.

For example, suppose that you issued the following
statement:

ALTER TABLE ALTER PARTITION

In that case, this column contains ALTER.

G

COLUMN_
KEYWORD

VARCHAR(18)
NOT NULL
WITH DEFAULT

This column contains the keyword that corresponds to
the column that is listed in COLNAME.

G

REORG_SCOPE_
LOWPART

SMALLINT Logical partition number of the lowest partition in
the range for REORG to materialize pending definition
changes. Adjacent logical partitions must be reorganized
together to materialize pending definition changes.

The value is 0 if the range is the entire partitioned table
space or index space, or if the record is generated by the
RECOVER utility.

This column contains the null value when the value is
unknown for pending definition changes executed prior
to Db2 12.

REORG_SCOPE_
HIGHPART

SMALLINT Logical partition number of the highest partition in
the range for REORG to materialize pending definition
changes. Adjacent logical partitions must be reorganized
together to materialize pending definition changes.

The value is 0 if the range is the entire partitioned table
space or index space, or if the record is generated by the
RECOVER utility.

This column contains the null value when the value is
unknown for pending definition changes executed prior
to Db2 12.

SYSPENDINGOBJECTS catalog table
The SYSPENDINGOBJECTS table contains the name of and OBID information about objects that are the
pending creation. The data sets for these objects are created but the object definition have not been
materialized to the catalog. The entries in this table only exist during the time between when the names

2572 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

of the new objects are generated and when the catalog definition of the new objects are materialized. The
schema is SYSIBM.

Table 338. SYSIBM.SYSPENDINGOBJECTS table column descriptions

Column name Data type Description Use

DBNAME VARCHAR(24)
NOT NULL

Name of the database. G

TSNAME VARCHAR(24)
NOT NULL

Name of the base table space. G

DBID SMALLINT
NOT NULL

Internal identifier of the database. S

PSID SMALLINT
NOT NULL

Internal identifier of the base table space page set
descriptor.

S

PARTITION SMALLINT
NOT NULL

Partition number with which the object is associated. G

COLNAME VARCHAR(128)
NOT NULL

Name of the column contained in the base table space
with which the object is associated.

G

OBJSCHEMA VARCHAR(128)
NOT NULL

The qualifier of the object. G

OBJNAME VARCHAR(128)
NOT NULL

Name of the object. G

OBJTYPE CHAR(1)
NOT NULL

Type of object identified by OBJSCHEMA and OBJNAME.
I

The object is an index
S

The object is a table space
T

The object is a table

G

INDEXSPACE VARCHAR(24)
NOT NULL

Name of the index space. An empty string if the object is
not an index.

G

OBJOBID SMALLINT
NOT NULL

Internal identifier of the object. S

OBJPSID SMALLINT
NOT NULL

Internal identifier of the object page set descriptor, or 0
if the object does not have a page set descriptor.

S

Appendix H. Db2 catalog tables 2573

SYSPKSYSTEM catalog table
The SYSPKSYSTEM table contains zero or more rows for each package. Each row for a given package
represents one or more connections to an environment where the package can be executed. The schema
is SYSIBM.

Table 339. SYSIBM.SYSPKSYSTEM table column descriptions

Column name Data type Description Use

LOCATION VARCHAR(128)
NOT NULL

Always contains blanks S

COLLID VARCHAR(128)
NOT NULL

Name of the package collection. G

NAME VARCHAR(128)
NOT NULL

Name of the package. G

CONTOKEN CHAR(8)
NOT NULL
FOR BIT DATA

Consistency token for the package. This is either:

• The "level" as specified by the LEVEL option when the
package's program was precompiled

• The timestamp indicating when the package's
program was precompiled, in an internal format.

S

SYSTEM VARCHAR(24)
NOT NULL

Environment. Values can be:
BATCH

TSO batch
CICS

Customer Information Control System
DB2CALL

Db2 call attachment facility
DLIBATCH

DLI batch support facility
IMSBMP

IMS BMP region
IMSMPP

IMS MPP and IFP region
REMOTE

remote server

G

ENABLE CHAR(1)
NOT NULL

Indicates whether the connections represented by the
row are enabled or disabled:
N

Disabled
Y

Enabled

G

2574 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 339. SYSIBM.SYSPKSYSTEM table column descriptions (continued)

Column name Data type Description Use

CNAME VARCHAR(60)
NOT NULL

Identifies the connection or connections to which the
row applies. Interpretation depends on the environment
specified by SYSTEM. Values can be:

• Blank if SYSTEM=BATCH or SYSTEM=DB2CALL
• The LU name for a database server if

SYSTEM=REMOTE
• Either the requester's location (if the product is Db2)

or the requester's LU name enclosed in angle brackets
if SYSTEM=REMOTE.

• The name of a single connection if SYSTEM has any
other value.

CNAME can also be blank when SYSTEM is not equal to
BATCH or DB2CALL. When this is so, the row applies to
all servers or connections for the indicated environment.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

SYSPLAN catalog table
The SYSPLAN table contains one row for each application plan. The schema is SYSIBM.

Column name Data type Description Use

NAME VARCHAR(24)
NOT NULL

Name of the application plan. G

CREATOR VARCHAR(128)
NOT NULL

Authorization ID of the owner of the application plan. G

BINDDATE CHAR(6)
NOT NULL

Not used. N

VALIDATE CHAR(1)
NOT NULL

Whether validity checking can be deferred until run
time:
B

All checking must be performed during BIND.
R

Validation is done at run time for tables, views, and
privileges that do not exist at bind time.

G

43 Plans are divided into sections. The base section of the plan must be in the EDM pool during the entire time
the application program is executing. Other sections of the plan, corresponding roughly to sets of related
SQL statements, are brought into the pool as needed.

Appendix H. Db2 catalog tables 2575

Column name Data type Description Use

ISOLATION CHAR(1)
NOT NULL

Isolation level for the plan:
R

RR (repeatable read)
T

RS (read stability)
S

CS (cursor stability)
U

UR (uncommitted read)

G

VALID CHAR(1)
NOT NULL

Whether the application plan is valid:
A

An ALTER TABLE statement changed the description
of the table or base table of a view that is referred
to by the application plan. For a CREATE INDEX
statement involving data sharing, VALID is also
marked as "A".

H
An ALTER TABLE statement changed the description
of the table or base table of a view that is referred to
by the application plan.

N
No

Y
Yes

G

OPERATIVE CHAR(1)
NOT NULL

Whether the application plan can be allocated:
N

No; an explicit BIND or REBIND is required before
the plan can be allocated

Y
Yes

G

BINDTIME CHAR(8)
NOT NULL

Not used. N

PLSIZE INTEGER
NOT NULL

Size of the base section 43 of the plan, in bytes. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator
of release dependencies. RELBOUND should be used
instead.

G

AVGSIZE INTEGER
NOT NULL

Average size, in bytes, of those sections43 of the plan
that contain SQL statements processed at bind time.

G

2576 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

ACQUIRE CHAR(1)
NOT NULL

When resources are acquired:
A

At allocation
U

At first use

G

RELEASE CHAR(1)
NOT NULL

When resources are released:
C

At commit
D

At deallocation

G

 EXREFERENCE CHAR(1)
NOT NULL

Not used. N

 EXSTRUCTURE CHAR(1)
NOT NULL

Not used. N

EXCOST CHAR(1)
 NOT NULL

Not used. N

EXPLAN CHAR(1)
NOT NULL

EXPLAIN option specified for the plan; that is, whether
information on the plan's statements was added to the
owner's PLAN_TABLE table:
N

No
Y

Yes

G

EXPREDICATE CHAR(1)
NOT NULL

Indicates the CURRENTDATA option when the plan was
bound or rebound:
B

Data currency is not required for ambiguous cursors.
Allow blocking for ambiguous cursors.

C
Data currency is required for ambiguous cursors.
Inhibit blocking for ambiguous cursors.

N
Blocking is inhibited for ambiguous cursors, but the
plan was created before the CURRENTDATA option
was available.

G

BOUNDBY VARCHAR(128)
NOT NULL WITH
DEFAULT

Primary authorization ID of the binder of the plan. G

QUALIFIER VARCHAR(128)
NOT NULL WITH
DEFAULT

Implicit qualifier for the unqualified table, view, index,
and alias names in the static SQL statements of the plan.

G

Appendix H. Db2 catalog tables 2577

Column name Data type Description Use

CACHESIZE SMALLINT
NOT NULL WITH
DEFAULT

Size, in bytes, of the cache to be acquired for the plan. A
value of zero indicates that no cache is used.

G

PLENTRIES SMALLINT
NOT NULL WITH
DEFAULT

Number of package list entries for the plan. The negative
of that number if there are rows for the plan in
SYSIBM.SYSPACKLIST but the plan was bound in a prior
release after fall back.

G

DEFERPREP CHAR(1)
NOT NULL WITH
DEFAULT

Whether the package was last bound with the
DEFER(PREPARE) option:
N

No
Y

Yes

G

CURRENTSERVER VARCHAR(128)
NOT NULL WITH
DEFAULT

Location name specified with the CURRENTSERVER
option when the plan was last bound. Blank if none was
specified, implying that the first server is the local Db2
subsystem.

G

SYSENTRIES SMALLINT
NOT NULL WITH
DEFAULT

Number of rows associated with the plan in
SYSIBM.SYSPLSYSTEM. The negative of that number
if such rows exist but the plan was bound in a prior
release after fall back. A negative value or zero means
that all connections are enabled.

G

DEGREE CHAR(3)
NOT NULL WITH
DEFAULT

The DEGREE option used when the plan was last bound:
ANY

DEGREE(ANY)
1 or blank

DEGREE(1). Blank if the plan was migrated.

G

SQLRULES CHAR(1)
NOT NULL WITH
DEFAULT

The SQLRULES option used when the plan was last
bound:
D or blank

SQLRULES(DB2)
S

SQLRULES(STD)
blank

A migrated plan

G

DISCONNECT CHAR(1)
NOT NULL WITH
DEFAULT

The DISCONNECT option used when the plan was last
bound:
E or blank

DISCONNECT(EXPLICIT)
A

DISCONNECT(AUTOMATIC)
C

DISCONNECT(CONDITIONAL)
blank

A migrated plan

G

2578 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

GROUP_MEMBER VARCHAR(24)
NOT NULL WITH
DEFAULT

The Db2 data sharing member name of the Db2
subsystem that performed the most recent bind. This
column is blank if the Db2 subsystem was not in a Db2
data sharing environment when the bind was performed.

G

DYNAMICRULES CHAR(1)
NOT NULL WITH
DEFAULT

The DYNAMICRULES option used when the plan was last
bound:
B

BIND. Dynamic SQL statements are executed with
DYNAMICRULES bind behavior.

blank
RUN. Dynamic SQL statements in the plan are
executed with DYNAMICRULES run behavior.

G

BOUNDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the plan was bound. G

REOPTVAR CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Whether the access path is determined again at
execution time using input variable values:
A

Bind option REOPT(AUTO) indicates that the access
path is determined multiple times at execution time
depending on the parameter value.

N
Bind option REOPT(NONE) indicates that the access
path is determined at bind time.

Y
Bind option REOPT(ALWAYS) indicates that the
access path is determined at execution time for SQL
statements with variable values.

1
Bind option REOPT(ONCE) indicates that the access
path is determined only once at execution time,
using the first set of input variable values, regardless
of how many times the same statement is executed.

G

KEEPDYNAMIC CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Whether prepared dynamic statements are to be purged
at each commit point:
N

The bind option is KEEPDYNAMIC(NO). Prepared
dynamic SQL statements are destroyed at commit
or rollback.

Y
The bind option is KEEPDYNAMIC(YES). Prepared
dynamic SQL statements are kept past commit or
rollback.

G

Appendix H. Db2 catalog tables 2579

Column name Data type Description Use

PATHSCHEMAS VARCHAR(2048)
NOT NULL WITH
DEFAULT

SQL path specified on the BIND or REBIND command
that bound the plan. The path is used to resolve
unqualified data type, function, and stored procedure
names used in certain contexts. If the PATH bind option
was not specified, the value in the column is a zero
length string; however, Db2 uses a default SQL path of:
SYSIBM, SYSFUN, SYSPROC, plan qualifier.

G

DBPROTOCOL CHAR(1)
NOT NULL WITH
DEFAULT 'P'

Whether remote access for SQL with three-part names
is implemented with DRDA or Db2 private protocol
access:
D

DRDA
P

Db2 private protocol

G

FUNCTIONTS TIMESTAMP
NOT NULL WITH
DEFAULT

Timestamp when the function was resolved. This value
is set by the BIND and REBIND commands, but not by
automatic rebinds (autobind).

G

OPTHINT VARCHAR(128)
NOT NULL WITH
DEFAULT

Value of the OPTHINT bind option. Identifies rows in the
owner.PLAN_TABLE to be used as input to Db2. Contains
blanks if no rows in the owner.PLAN_TABLE are to be
used as input.

G

ENCODING_CCSID INTEGER
NOT NULL WITH
DEFAULT

The CCSID corresponding to the encoding scheme or
CCSID as specified for the bind option ENCODING. The
Encoding Scheme specified on the bind command:
ccsid

The specified or derived CCSID.
0

The default CCSID as specified on panel DSNTIPF
at installation time. Used when the plan was bound
prior to Version 7

G

IMMEDWRITE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates when writes of updated group buffer pool
dependent pages are to be done. This option is only
applicable for data sharing environments.
N

Bind option IMMEDWRITE(NO) indicates normal
write activity is done.

Y
Bind option IMMEDWRITE(YES) indicates that
immediate writes are done for updated group buffer
pool dependent pages.

1
Bind option IMMEDWRITE(PH1) indicates that
updated group buffer pool dependent pages are
written at or before phase 1 commit.

blank
A migrated package.

G

2580 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

RELBOUND CHAR(1)
NOT NULL WITH
DEFAULT

The release when the package was bound or rebound.
blank

Bound prior to Version 7
For all other values, see Release dependency indicators

G

CATENCODE CHAR(1) Not used. N

REMARKS VARCHAR(762)
NOT NULL WITH
DEFAULT

A character string provided by the user with the
COMMENT statement.

G

CREATORTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of creator:
blank

Authorization ID
L

Role

G

ROUNDING CHAR(1)
NOT NULL WITH
DEFAULT

The ROUNDING option used when the plan was last
bound:
C

ROUND_CEILING
D

ROUND_DOWN
F

ROUND_FLOOR
G

ROUND_HALF_DOWN
E

ROUND_HALF_EVEN
H

ROUND_HALF_UP
U

ROUND_UP
blank

The plan was created in a Db2 release prior to
Version 9.

G

LASTUSED DATE
NOT NULL WITH
DEFAULT

Not used. N

CONCUR_ACC_RES CHAR(1)
NOT NULL

Indicates the CONCURRENTACCESSRESOLUTION option
when the package was bound or rebound:
blank

Not specified
U

USECURRENTLYCOMMITTED
W

WAITFOROUTCOME

G

Appendix H. Db2 catalog tables 2581

Column name Data type Description Use

PROGAUTH CHAR(1)
NOT NULL WITH
DEFAULT 'D'

Indicates whether Db2 checks if a program is authorized
to run a plan:
D

DISABLE
E

ENABLE

G

SYSPLANAUTH catalog table
The SYSPLANAUTH table records the privileges that are held by users over application plans. The schema
is SYSIBM.

Column name Data type Description Use

GRANTOR VARCHAR(128)
NOT NULL

Authorization ID of the user who granted the
privileges.

G

GRANTEE VARCHAR(128)
NOT NULL

Authorization ID of the user who holds the privileges.
Could also be PUBLIC for a grant to PUBLIC.

G

NAME VARCHAR(24)
NOT NULL

Name of the application plan on which the privileges
are held.

G

— CHAR(12)
NOT NULL

Internal use only. I

DATEGRANTED CHAR(6)
NOT NULL

Not used. N

TIMEGRANTED CHAR(8)
NOT NULL

Not used. N

GRANTEETYPE CHAR(1)
NOT NULL

Not used. N

2582 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

AUTHHOWGOT CHAR(1)
NOT NULL

Authorization level of the user from whom the
privileges were received. This authorization level is
not necessarily the highest authorization level of the
grantor.
blank

Not applicable
C

DBCTRL
D

DBADM
E

SECADM
G

ACCESSCTRL
L

SYSCTRL
M

DBMAINT
S

SYSADM

G

BINDAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the BIND, REBIND, or
FREE subcommands against the plan:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

EXECUTEAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can run application programs
that use the application plan:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values, see
Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

GRANTEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the GRANT statement was executed. G

Appendix H. Db2 catalog tables 2583

Column name Data type Description Use

GRANTEETYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantee:
blank

Authorization ID
L

Role

G

GRANTORTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantor:
blank

Authorization ID
L

Role

G

SYS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW BEGIN

Reserved for future IBM use.The row-begin column
of the SYSTEM_TIME period, for system-period data
versioning.

G

SYS_END TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW END

Reserved for future IBM use.The row-end column
of the SYSTEM_TIME period, for system-period data
versioning.

G

TRANS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS TRANSACTION
START ID

Reserved for future IBM use. G

SYSPLANDEP catalog table
The SYSPLANDEP table records the dependencies of plans on tables, views, aliases, synonyms, table
spaces, indexes, functions, and stored procedures. The schema is SYSIBM.

Table 340. SYSIBM.SYSPLANDEP table column descriptions

Column name Data type Description Use

BNAME VARCHAR(128)
NOT NULL

The name of an object the plan depends on. G

BCREATOR VARCHAR(128)
NOT NULL

If BNAME is a table space, its database. Otherwise, the
schema of BNAME. If BNAME is a role, the value is
blank.

G

2584 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 340. SYSIBM.SYSPLANDEP table column descriptions (continued)

Column name Data type Description Use

BTYPE CHAR(1)
NOT NULL

Type of object identified by BNAME:
A

Alias
E

INSTEAD OF trigger
F

User-defined function or cast function
H

Global variable
G

Global temporary table
I

Index
M

Materialized query table
O

Stored procedure
P

Partitioned table space if it is defined as LARGE or
with the DSSIZE parm

Q
Sequence object

R
Table space

S
Synonym

T
Table

V
View

G

DNAME VARCHAR(24)
NOT NULL

Name of the plan. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

Appendix H. Db2 catalog tables 2585

SYSPLSYSTEM catalog table
The SYSPLSYSTEM table contains zero or more rows for every plan. Each row for a given plan represents
one or more connections to an environment in which the plan could be used. The schema is SYSIBM.

Table 341. SYSIBM.SYSPLSYSTEM table column descriptions

Column name Data type Description Use

NAME VARCHAR(24)
NOT NULL

Name of the plan. G

SYSTEM VARCHAR(24)
NOT NULL

Environment. Values can be:
BATCH

TSO batch
DB2CALL

Db2 call attachment facility
CICS

Customer Information Control System
DLIBATCH

DLI batch support facility
IMSBMP

IMS BMP region
IMSMPP

IMS MPP or IFP region

G

ENABLE CHAR(1)
NOT NULL

Indicates whether the connections represented by the
row are enabled or disabled:
N

Disabled
Y

Enabled

G

CNAME VARCHAR(60)
NOT NULL

Identifies the connection or connections to which the
row applies. Interpretation depends on the environment
specified by SYSTEM. Values can be:

• Blank if SYSTEM=BATCH or SYSTEM=DB2CALL
• The name of a single connection if SYSTEM has any

other value

CNAME can also be blank when SYSTEM is not equal to
BATCH or DB2CALL. When this is so, the row applies to
all connections for the indicated environment.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

2586 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SYSQUERY catalog table
Each SYSIBM.SYSQUERY table row identifies a SQL statement. The information is used to influence
access path selection when matching statements are optimized. The schema is SYSIBM.

Column name Data type Description Use

QUERYID BIGINT
NOT NULL
GENERATED
BY DEFAULT
AS IDENTITY

Unique identifier for the query. G

QUERY_HASH CHAR(16)
NOT NULL
FOR BIT DATA

The hash key generated by statement text. G

SCHEMA VARCHAR(128)
NOT NULL

The default schema name for unqualified objects in the
query or blank.

If the query contains unqualified objects and access
path hints exist for the query, the access path hints are
applied only if the default schema matches the schema
in the access path hint.

G

QUERY_SEC_HASH CHAR(16)
NOT NULL
FOR BIT DATA

The hash key generated by the modified statement text. G

QUERY_HASH_
VERSION

INTEGER
NOT NULL

The version of the query hash. G

SOURCE SMALLINT
NOT NULL

The source of the row:
0

Statement-level optimization hints.

G

USERFILTER CHAR(8)
NOT NULL

Filter name that is used to group a set of queries or
blank.

G

— CHAR(128)
NOT NULL

Internal use only. I

PLAN_VALID CHAR(1)
NOT NULL

Whether plan hints are valid:
blank

No access path i specified for the statement, but
optimization parameters exist in SYSQUERYOPTS

Y
An access path is specified in SYSQUERYPLAN for
the statement. The access path is also valid if
the statement has already been executed and the
access path was used.

N
A an access path is specified in SYSQUERYPLAN, but
the access path is invalid and not used.

G

Appendix H. Db2 catalog tables 2587

Column name Data type Description Use

INVALID_REASON INTEGER
NOT NULL

When PLAN_VALID is N, this column contains the reason
that the access path is invalid. If PLAN_VALID is Y or
blank, this column contains -1. For descriptions of the
reason code values, see: +395 (Db2 Codes).

S

LOCATION VARCHAR(128)
NOT NULL

Not used. N

COLLECTION VARCHAR(128)
NOT NULL

Name of the collection of the originating query or blank. G

PACKAGE VARCHAR(128)
NOT NULL

Name of the package of the originating query or blank. G

VERSION VARCHAR(128)
NOT NULL

Version of the package or blank. G

AUTHID VARCHAR(128)
NOT NULL

Authorization ID this was in effect when the query was
captured or blank.

G

BINDTIME TIMESTAMP
NOT NULL

Timestamp when the package was bound or when BIND
QUERY was run

G

RELBOUND CHAR(1) NOT NULL The release of Db2 in which the package was bound, or
blank. See Release dependency indicators for values.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator
of release dependencies. RELBOUND should be used
instead.

G

STMTNO INTEGER
NOT NULL

The statement number in the package. -1 when not
applicable.

G

SECTNO INTEGER
NOT NULL

The section number in the package. -1 when not
applicable.

G

STMTTEXT CLOB(2M)
INLINE
LENGTH 2048

The text of the matching SQL statement. The value is
populated from the value of the QUERY_TEXT column
of the DSN_USERQUERY_TABLE table, with the following
items removed:

• Blanks including leading and trailing blanks, and
embedded blanks that are not within literal strings
between pairs of quotation mark symbols

• White space, including leading and trailing white
space, and white space that is not within a literal
string between a pair of quotation mark symbols

• SQL comments
• EXPLAIN clauses

G

2588 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/p395.html

Column name Data type Description Use

QUERYNO INTEGER
NOT NULL
WITH DEFAULT '-1'

The query number. G

CLIENT_USERID VARCHAR(255) User ID of the client. G

CLIENT_
WRKSTNNAME

VARCHAR(255) Name of the client workstation. G

CLIENT_APPLNAME VARCHAR(255) Name of the client application. G

SELECTVTY_
OVERRIDE

CHAR(1) NOT NULL Whether selectivity overrides are in effect for the query:
'Y'

Selectivtiy overrides are in effect
'N'

Selectivity overrides are not in effect.

G

ACCESSPATH_
HINT

CHAR(1) NOT NULL Whether access paths are specified for the matching
statements:
'Y'

An access paths is specified and in effect
'N'

An access path hints is specified and in effect
blank

An access path might be specified. When the value is
blank you must query the SYSIBM.SYSQUERYPLAN
catalog table to determine whether an access path is
specified

G

OPTION_OVERRIDE CHAR(1) NOT NULL Whether statement-level optimization parameters are in
effect for matching statements:
'Y'

Optimization parameters are in effect.
'N'

Optimization parameters are not in effect.
blank

Optimization parameters might be in effect.
When the value is blank you must query the
SYSIBM.SYSQUERYOPTS catalog table to determine
whether option overrides are in effect.

G

Appendix H. Db2 catalog tables 2589

Column name Data type Description Use

SELECTIVITY_VALID CHAR(1) NOT NULL Whether selectivity overrides are valid:
blank

No selectivity overrides exist for the statement.
'Y'

Selectivity overrides exist for the query. The
overrides are valid if the statement has already been
executed and the overrides were used.

'N'
Selectivity overrides exist but the overrides are
invalid and not used.

G

FUNCTION_LVL VARCHAR(10) The function level of the query. G

Related tasks
Influencing access path selection (Db2 Performance)
Related reference
Tables for influencing access path selection (Db2 Performance)

SYSQUERYOPTS catalog table
The SYSQUERYOPTS table contains optimization parameters for the queries that are in the SYSQUERY
table. The schema is SYSIBM.

Table 342. SYSIBM.SYSQUERYOPTS table column descriptions

Column name Data type Description Use

QUERYID BIGINT
NOT NULL
ON DELETE
CASCADE

Unique identifier for the query. This column corresponds
to the QUERYID column in the SYSIBM.SYSQUERY table.

G

COPYID SMALLINT
NOT NULL

The version of the plan hints for the query in this row.
0

Current version of the plan hints.
1

Previous version of the plan hints used by PLAN
STABILITY

2
Original version of the plan hints used by PLAN
STABILITY

G

2590 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_influenceaccesspaths.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_bindquerytables.html

Table 342. SYSIBM.SYSQUERYOPTS table column descriptions (continued)

Column name Data type Description Use

REOPT CHAR(1)
NOT NULL

The value of the REOPT bind option that is in effect for
the plan:
1

REOPT(ONCE)
A

REOPT(AUTO)
N

REOPT(NONE)
Y

REOPT(ALWAYS)
blank

REOPT is not specified

G

STARJOIN CHAR(1)
NOT NULL

Whether star join is enabled:
Y

Star join is enabled
N

Star join is disabled
blank

Star join is not specified

G

MAX_PAR_DEGREE INTEGER
NOT NULL

The maximum parallel degree. This column will contain
a value in the range 0–254. If the value of the column is
-1, the maximum parallel degree is not specified.

G

DEF_CURR_DEGREE CHAR(3)
NOT NULL

Whether query parallelism is enabled:
ONE

Query parallelism is disabled
ANY

Query parallelism is enabled
blank

Query parallelism is disabled

G

SJTABLES INTEGER
NOT NULL

The number of tables specified in a query to qualify for
star join processing. If this column contains -1, star join
processing is not specified.

G

— VARCHAR(128)
NOT NULL

Internal use only. I

GROUP_MEMBER VARCHAR(24)
NOT NULL

The group member name to which the parameters are
to be applied. This column contains blank if the group
member name is not specified.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

Appendix H. Db2 catalog tables 2591

Related tasks
Specifying optimization parameters at the statement level (Db2 Performance)
Related reference
Tables for influencing access path selection (Db2 Performance)
DSN_USERQUERY_TABLE (Db2 Performance)

SYSQUERYPLAN catalog table
The SYSQUERYPLAN table contains the plan hint information for the queries in the SYSIBM.SYSQUERY
table. It correlates to the SYSQUERY table by the QUERYID column. For a query, there can be up to 3
copies of plan hints stored in the SYSQUERYPLAN table, distinguished by the value of the COPYID column.
The schema is SYSIBM.

Table 343. SYSIBM.SYSQUERYPLAN table column descriptions

Column name Data type Description Use

QUERYID BIGINT
NOT NULL
ON DELETE
CASCADE

Unique identifier for the query. The value of QUERYID
corresponds to the value of the QUERYID column in the
SYSIBM.SYSQUERY column.

G

COPYID SMALLINT
NOT NULL

The version of the plan hints for the query in this row.
0

Current version of the plan hints.
1

Previous version of the plan hints used by PLAN
STABILITY

2
Original version of the plan hints used by PLAN
STABILITY

G

PLAN_VALID CHAR(1)
NOT NULL

Whether the plan hints are valid:
N

The plan hints are invalid
Y

The plan hints are valid

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

QBLOCKNO SMALLINT
NOT NULL

A number that identifies each query block within a
query. The value of the numbers are not in any particular
order, nor are they necessarily consecutive.

G

PLANNO SMALLINT
NOT NULL

The number of the step in which the query that is
indicated in QBLOCKNO was processed. This column
indicates the order in which the steps were executed.

G

2592 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_createzparmhint.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_bindquerytables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_dsnuserquerytable.html

Table 343. SYSIBM.SYSQUERYPLAN table column descriptions (continued)

Column name Data type Description Use

METHOD SMALLINT
NOT NULL

A number that indicates the join method that is used for
the step:
0

The table in this step is the first table that is
accessed, a continuation of a previous table that was
accessed, or a table that is not used.

1
A nested loop join is used. For each row of the
current composite table, matching rows of a new
table are found and joined.

2
A merge scan join is used. The current composite
table and the new table are scanned in the order of
the join columns, and matching rows are joined.

3
Sorts are needed by ORDER BY, GROUP BY, SELECT
DISTINCT, UNION, INTERSECT, EXCEPT, a quantified
predicate, or an IN predicate. This step does not
access a new table.

4
A hybrid join was used. The current composite table
is scanned in the order of the join-column rows of
the new table. The new table is accessed using list
prefetch.

G

CREATOR VARCHAR(128)
NOT NULL

The creator of the new table that is accessed in this
step, blank if METHOD is 3.

G

TNAME VARCHAR(128)
NOT NULL

The name of one of the following objects:

• Materialized query table
• Created or declared temporary table
• Materialized view
• materialized table expression

The value is blank if METHOD is 3. The column
can also contain the name of a table in the form
DSNWFQB(qblockno). DSNWFQB(qblockno) is used to
represent the intermediate result of a UNION ALL,
INTERSECT ALL, EXCEPT ALL, or an outer join that is
materialized. If a view is merged, the name of the view
does not appear. DSN_DIM_TBLX(qblockno) is used to
the represent the work file of a star join dimension table.

G

— SMALLINT
NOT NULL

Internal use only. I

Appendix H. Db2 catalog tables 2593

Table 343. SYSIBM.SYSQUERYPLAN table column descriptions (continued)

Column name Data type Description Use

ACCESSTYPE CHAR(2)
NOT NULL

The method of accessing the new table:
A

Accelerated query table access.
DI

By an intersection of multiple DOCID lists to return
the final DOCID list

DU
By a union of multiple DOCID lists to return the final
DOCID list

DX
By an XML index scan on the index that is named in
ACCESSNAME to return a DOCID list

E
By direct row access using a row change timestamp
column.

H
By hash overflow index (identified in
ACCESSCREATOR and ACCESSNAME)

I
By an index (identified in ACCESSCREATOR and
ACCESSNAME)

IN
By an index scan when the matching predicate
contains an IN predicate and the IN-list is accessed
through an in-memory table.

I1
By a one-fetch index scan

M
By a multiple index scan (followed by MX, MI, MU, or
MH)

MH
By the hash overflow index named in ACCESSNAME

MI
By an intersection of multiple indexes

MU
By a union of multiple indexes

MX
By an index scan on the index named in
ACCESSNAME. When the access method MX follows
the access method DX, DI, or DU, the table is
accessed by the DOCID index by using the DOCID
list that is returned by DX, DI, or DU.

G

2594 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 343. SYSIBM.SYSQUERYPLAN table column descriptions (continued)

Column name Data type Description Use

ACCESSTYPE
(continued)

N

• By an index scan when the matching predicate
contains the IN keyword

• By an index scan when Db2 rewrites a query using
the IN keyword

• By hash access with the IN keyword
• By hash access when Db2 rewrites a query using

the IN keyword

NR
Range list access.

P
By a dynamic pair-wise index scan

R
By a table space scan

RW
By a work file scan of the result of a materialized
user-defined table function

V
By buffers for an INSERT statement within a SELECT

blank
Not applicable to the current row

MATCHCOLS SMALLINT
NOT NULL

For ACCESSTYPE I, I1, N, NR, MX, or DX, the number of
index keys that are used in an index scan; otherwise, 0.

G

ACCESSCREATOR VARCHAR(128)
NOT NULL

For ACCESSTYPE I, I1, N, NR, MX, or DX, the creator of
the index; otherwise, blank.

G

ACCESSNAME VARCHAR(128)
NOT NULL

For ACCESSTYPE I, I1, H, MH, N, NR, MX, or
DX, the name of the index; for ACCESSTYPE P,
DSNPJW(mixopseqno) is the starting pair-wise join leg
in MIXOPSEQNO; otherwise, blank.

G

INDEXONLY CHAR(1)
NOT NULL

Indication of whether access to an index alone is enough
to perform the step, or Indication of whether data too
must be accessed.
Y

Yes
N

No

G

SORTN_UNIQ CHAR(1)
NOT NULL

Indication of whether the new table is sorted to remove
duplicate rows.
Y

Yes
N

No

G

Appendix H. Db2 catalog tables 2595

Table 343. SYSIBM.SYSQUERYPLAN table column descriptions (continued)

Column name Data type Description Use

SORTN_JOIN CHAR(1)
NOT NULL

Indication of whether the new table is sorted for join
method 2 or 4.
Y

Yes
N

No

G

SORTN_ORDERBY CHAR(1)
NOT NULL

Indication of whether the new table is sorted for ORDER
BY.
Y

Yes
N

No

G

SORTN_GROUPBY CHAR(1)
NOT NULL

Indication of whether the new table is sorted for GROUP
BY.
Y

Yes
N

No

G

SORTC_UNIQ CHAR(1)
NOT NULL

Indication of whether the composite table is sorted to
remove duplicate rows.
Y

Yes
N

No

G

SORTC_JOIN CHAR(1)
NOT NULL

Indication of whether the composite table is sorted for
join method 1, 2 or 4.
Y

Yes
N

No

G

SORTC_ORDERBY CHAR(1)
NOT NULL

Indication of whether the composite table is sorted for
an ORDER BY clause or a quantified predicate.
Y

Yes
N

No

G

SORTC_GROUPBY CHAR(1)
NOT NULL

Indication of whether the composite table is sorted for a
GROUP BY clause.
Y

Yes
N

No

G

2596 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 343. SYSIBM.SYSQUERYPLAN table column descriptions (continued)

Column name Data type Description Use

TSLOCKMOD CHAR(3)
NOT NULL

An indication of the mode of lock that is acquired on
either the new table, or its table space or table space
partitions. If the isolation can be determined at bind
time, the values are:
IS

Intent share lock
IX

Intent exclusive lock
S

Share lock
U

Update lock
X

Exclusive lock
SIX

Share with intent exclusive lock
N

UR isolation; no lock
If the isolation level cannot be determined at bind time,
the lock mode is determined by the isolation level at run
time is shown by the following values.
NS

For UR isolation, no lock; for CS, RS, or RR, an S lock.
NIS

For UR isolation, no lock; for CS, RS, or RR, an IS
lock.

NSS
For UR isolation, no lock; for CS or RS, an IS lock; for
RR, an S lock.

SS
For UR, CS, or RS isolation, an IS lock; for RR, an S
lock.

The data in this column is right justified. For example, IX
appears as a blank, followed by I, followed by X. If the
column contains a blank, then no lock is acquired.

If the access method in the ACCESSTYPE column is DX,
DI, or DU, no latches are acquired on the XML index
page and no lock is acquired on the new base table data
page or row, nor on the XML table and the corresponding
table spaces. The value of TSLOCKMODE is a blank in
this case.

G

Appendix H. Db2 catalog tables 2597

Table 343. SYSIBM.SYSQUERYPLAN table column descriptions (continued)

Column name Data type Description Use

PREFETCH CHAR(1)
NOT NULL

Indication of whether data pages are to be read in
advance by prefetch:
D

Optimizer expects dynamic prefetch
S

Pure sequential prefetch
L

Prefetch through a page list
blank

Unknown or no prefetch

G

COLUMN_FN_EVAL CHAR(1)
NOT NULL

When an SQL aggregate function is evaluated:
R

While the data is being read from the table or index
S

While performing a sort to satisfy a GROUP BY
clause

blank
After data retrieval and after any sorts

G

MIXOPSEQ SMALLINT
NOT NULL

The sequence number of a step in a multiple index
operation.
1, 2, ... n

For the steps of the multiple index procedure
(ACCESSTYPE is MX, MI, MU, DX, DI, or DU), or the
sequence number of range list access (ACCESSTYPE
is 'NR').

0
For any other rows.

G

ACCESS_DEGREE SMALLINT The number of parallel tasks or operations that are
activated by a query. This value is determined at bind
time; the actual number of parallel operations that are
used at execution time could be different. This column
contains 0 if a host variable is used. This column
contains the null value if the plan or package was
bound using a plan table with fewer than 43 columns.
Otherwise, it can contain null if the method that it refers
to does not apply.

G

ACCESS_PGROUP_ID SMALLINT The identifier of the parallel group for accessing the new
table. A parallel group is a set of consecutive operations,
executed in parallel, that have the same number of
parallel tasks. This value is determined at bind time;
it could change at execution time.This column contains
the null value if the plan or package was bound using
a plan table with fewer than 43 columns. Otherwise, it
can contain null if the method that it refers to does not
apply.

G

2598 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 343. SYSIBM.SYSQUERYPLAN table column descriptions (continued)

Column name Data type Description Use

JOIN_DEGREE SMALLINT The number of parallel operations or tasks that are
used in joining the composite table with the new table.
This value is determined at bind time and can be 0 if
a host variable is used. The actual number of parallel
operations or tasks used at execution time could be
different. This column contains the null value if the plan
or package was bound using a plan table with fewer than
43 columns. Otherwise, it can contain null if the method
that it refers to does not apply.

G

JOIN_PGROUP_ID SMALLINT The identifier of the parallel group for joining the
composite table with the new table. This value is
determined at bind time; it could change at execution
time. This column contains the null value if the plan or
package was bound using a plan table with fewer than
43 columns. Otherwise, it can contain null if the method
that it refers to does not apply.

G

SORTC_PGROUP_ID SMALLINT The parallel group identifier for the parallel sort of the
composite table. This column contains the null value if
the plan or package was bound using a plan table with
fewer than 43 columns. Otherwise, it can contain null if
the method that it refers to does not apply.

G

SORTN_PGROUP_ID SMALLINT The parallel group identifier for the parallel sort of the
new table. This column contains the null value if the
plan or package was bound using a plan table with fewer
than 43 columns. Otherwise, it can contain null if the
method that it refers to does not apply.

G

PARALLELISM_
MODE

CHAR(1) The kind of parallelism, if any, that is used at bind time:
I

Query I/O parallelism
C

Query CP parallelism
This column contains the null value if the plan or
package was bound using a plan table with fewer than
43 columns. Otherwise, it can contain null if the method
that it refers to does not apply.

G

MERGE_
JOIN_
COLS

SMALLINT The number of columns that are joined during a merge
scan join (Method=2). This column contains the null
value if the plan or package was bound using a plan
table with fewer than 43 columns. Otherwise, it can
contain null if the method that it refers to does not
apply.

G

CORRELATION_
NAME

VARCHAR(128) The correlation name of a table or view that is specified
in the statement. If no correlation name exists, then the
column is null. This column contains the null value if the
plan or package was bound using a plan table with fewer
than 43 columns. Otherwise, it can contain null if the
method that it refers to does not apply.

G

Appendix H. Db2 catalog tables 2599

Table 343. SYSIBM.SYSQUERYPLAN table column descriptions (continued)

Column name Data type Description Use

PAGE_RANGE CHAR(1)
NOT NULL
WITH DEFAULT

Indication of whether the table qualifies for page range
screening, so that plans scan only the partitions that are
needed.
Y

Yes
blank

No

G

JOIN_TYPE CHAR(1)
NOT NULL
WITH DEFAULT

The type of join:
F

FULL OUTER JOIN
L

LEFT OUTER JOIN
P

Pair-wise join
S

Star join
blank

INNER JOIN or no join

RIGHT OUTER JOIN converts to a LEFT OUTER JOIN
when you use it, so that JOIN_TYPE contains L.

G

2600 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 343. SYSIBM.SYSQUERYPLAN table column descriptions (continued)

Column name Data type Description Use

QBLOCK_TYPE CHAR(6)
NOT NULL
WITH DEFAULT

For each query block, an indication of the type of SQL
operation that is performed. For the outermost query,
this column identifies the statement type. Possible
values include:
SELECT

SELECT
INSERT

INSERT
UPDATE

UPDATE
MERGE

MERGE
DELETE

DELETE
SELUPD

SELECT with FOR UPDATE OF
DELCUR

DELETE WHERE CURRENT OF CURSOR
UPDCUR

UPDATE WHERE CURRENT OF CURSOR
CORSUB

Correlated subselect or fullselect
TRUNCA

TRUNCATE
NCOSUB

Noncorrelated subselect or fullselect
TABLEX

Table expression
TRIGGR

WHEN clause on CREATE TRIGGER
UNION

UNION
UNIONA

UNION ALL
INTERS

INTERSECT
INTERA

INTERSECT ALL
EXCEPT

EXCEPT
EXCEPTA

EXCEPT ALL

G

Appendix H. Db2 catalog tables 2601

Table 343. SYSIBM.SYSQUERYPLAN table column descriptions (continued)

Column name Data type Description Use

PRIMARY_
ACCESSTYPE

CHAR(1)
NOT NULL
WITH DEFAULT

Indicates Indication of whether direct row access is
attempted first:
D

Db2 tries to use direct row access with a rowid
column. If Db2 cannot use direct row access with a
rowid column at run time, it uses the access path
that is described in the ACCESSTYPE column of
PLAN_TABLE.

T
The base table or result file is materialized into
a work file, and the work file is accessed via
sparse index access. If a base table is involved,
then ACCESSTYPE indicates how the base table is
accessed.

blank
Db2 does not try to use direct row access by
using a rowid column or sparse index access for a
work file. The value of the ACCESSTYPE column of
PLAN_TABLE provides information on the method of
accessing the table.

G

PARENT_QBLOCKNO SMALLINT
NOT NULL

A number that indicates the QBLOCKNO of the parent
query block.

G

2602 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 343. SYSIBM.SYSQUERYPLAN table column descriptions (continued)

Column name Data type Description Use

TABLE_TYPE CHAR(1) The type of new table:
B

Buffers for SELECT from INSERT, SELECT from
UPDATE, SELECT from MERGE, or SELECT from
DELETE statement.

C
Common table expression

F
Table function

I
The new table is generated from an IN-LIST
predicate. If the IN-LIST predicate is selected as
the matching predicate, it will be accessed as an
in-memory table.

M
Materialized query table

Q
Temporary intermediate result table (not
materialized). For the name of a view or nested
table expression, a value of Q indicates that
the materialization was virtual and not actual.
Materialization can be virtual when the view or
nested table expression definition contains a UNION
ALL that is not distributed.

R
Recursive common table expression

S
Subquery (correlated or non-correlated)

T
Table

W
Work file

The value of the column is null if the query uses GROUP
BY, ORDER BY, or DISTINCT, which requires an implicit
sort.

G

TABLE_ENCODE CHAR(1) The encoding scheme of the table. The possible values
are:
A

ASCII
E

EBCDIC
U

Unicode
M

The table contains multiple CCSID sets

G

Appendix H. Db2 catalog tables 2603

Table 343. SYSIBM.SYSQUERYPLAN table column descriptions (continued)

Column name Data type Description Use

TABLE_SCCSID SMALLINT
NOT NULL
WITH DEFAULT

The SBCS CCSID value of the table. If column
TABLE_ENCODE is M, the value is 0.

G

TABLE_MCCSID SMALLINT
NOT NULL
WITH DEFAULT

The mixed CCSID value of the table. If the value of
the TABLE_ENCODE column is M, the value is 0. If
MIXED=NO in the DSNHDECP module, the value is -2.

G

TABLE_DCCSID SMALLINT
NOT NULL
WITH DEFAULT

The DBCS CCSID value of the table. If the value of
the TABLE_ENCODE column is M, the value is 0. If
MIXED=NO in the DSNHDECP module, the value is -2.

G

INTEGER
NOT NULL
WITH DEFAULT

The values in this column are for IBM use only. I

CTEREF SMALLINT
NOT NULL
WITH DEFAULT

If the referenced table is a common table expression,
the value is the top-level query block number.

G

PARENT_PLANNO SMALLINT
NOT NULL

Corresponds to the plan number in the parent query
block where a correlated subquery is invoked. Or, for
non-correlated subqueries, corresponds to the plan
number in the parent query block that represents the
work file for the subquery.

G

2604 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 343. SYSIBM.SYSQUERYPLAN table column descriptions (continued)

Column name Data type Description Use

EXPANSION_REASO
N

CHAR(2)
NOT NULL

This column applies to only static statements that
reference archive tables or temporal tables. For other
statements, this column is blank.

Indicates the effect of the CURRENT TEMPORAL
BUSINESS_TIME special register, the CURRENT
TEMPORAL SYSTEM_TIME special register, and the
SYSIBMADM.GET_ARCHIVE built-in global variable.
These items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind
options.

If one of these special registers or the global variable
is set to Y and the corresponding bind option is set to
YES, Db2 implicitly adds certain syntax to the statement.
This column indicates whether the query contains this
implicit query transformation and why.

This column can have one of the following values:

A
The query contains implicit query transformation as
a result of the SYSIBMADM.GET_ARCHIVE built-in
global variable.

B
The query contains implicit query transformation
as a result of the CURRENT TEMPORAL
BUSINESS_TIME special register.

S
The query contains implicit query transformation as
a result of the CURRENT TEMPORAL SYSTEM_TIME
special register.

SB
The query contains implicit query transformation as
a result of the CURRENT TEMPORAL SYSTEM_TIME
special register and the CURRENT TEMPORAL
BUSINESS_TIME special register.

blank
The query does not contain implicit query
transformation.

Related information

“GET_ARCHIVE” on page 330
“CURRENT TEMPORAL BUSINESS_TIME special
register” on page 208
“CURRENT TEMPORAL SYSTEM_TIME special
register” on page 210
BIND and REBIND options for packages, plans, and
services (Db2 Commands)

G

Related tasks
Specifying access paths at the statement level (Db2 Performance)

Appendix H. Db2 catalog tables 2605

https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_createpathhint.html

Related reference
Tables for influencing access path selection (Db2 Performance)
PLAN_TABLE (Db2 Performance)

SYSQUERYPREDICATE catalog table
The SYSQUERYPREDICATE table contains information about predicates for queries in the SYSQUERY table
that have been identified for extended optimization. It correlates to the SYSQUERY table by the QUERYID
column. The schema is SYSIBM.

Table 344. SYSIBM.SYSQUERYPREDICATE table column descriptions

Column name Data type Description Use

QUERYID BIGINT Identifier of the query. S

QUERYNO INTEGER NOT NULL A number that identifies the statement that is being
explained. The origin of the value depends on the context
of the row:
For rows produced by EXPLAIN statements

The number specified in the QUERYNO clause, which
is an optional part of the SELECT, INSERT, UPDATE,
MERGE, and DELETE statement syntax.

For rows not produced by EXPLAIN statements
Db2 assigns a number that is based on the line
number of the SQL statement in the source program.

When the values of QUERYNO are based on the statement
number in the source program, values that exceed 32767
are reported as 0. However, in certain rare cases, the
value is not guaranteed to be unique.

S

QBLOCKNO SMALLINT NOT NULL A number that identifies each query block within a query.
The value of the numbers are not in any particular order,
nor are they necessarily consecutive.

S

APPLNAME VARCHAR(24) NOT
NULL

The name of the application plan for the row. Applies
only to embedded EXPLAIN statements that are executed
from a plan or to statements that are explained when
binding a plan. A blank indicates that the column is not
applicable.

S

PROGNAME VARCHAR(128) NOT
NULL

The name of the program or package containing the
statement being explained. Applies only to embedded
EXPLAIN statements and to statements explained as the
result of binding a plan or package. A blank indicates that
the column is not applicable.

S

PREDNO INTEGER NOT NULL The predicate number, a number used to identify a
predicate within a query.

S

2606 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_bindquerytables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_plantable.html

Table 344. SYSIBM.SYSQUERYPREDICATE table column descriptions (continued)

Column name Data type Description Use

TYPE CHAR(8) NOT NULL A string used to indicate the type or the operation of the
predicate. The possible values are:

• 'AND'
• 'OR'
• 'EQUAL'
• 'RANGE'
• 'BETWEEN'
• 'IN'
• 'LIKE'
• 'NOT LIKE'
• 'EXISTS
• 'NOTEXIST'
• 'SUBQUERY'
• 'HAVING'
• 'OTHERS'

S

LEFT_HAND_SIDE VARCHAR(128) NOT
NULL

If the LHS of the predicate is a table column (LHS_TABNO
> 0), then this column indicates the column name. Other
possible values are:

• 'VALUE'
• 'COLEXP'
• 'NONCOLEXP'
• 'CORSUB'
• 'NONCORSUB'
• 'SUBQUERY'
• 'EXPRESSION'
• Blanks

S

LEFT_HAND_PNO INTEGER NOT NULL If the LHS of the predicate is a table column (LHS_TABNO
> 0), then this column indicates the column name. Other
possible values are:

• 'VALUE'
• 'COLEXP'
• 'NONCOLEXP'
• 'CORSUB'
• 'NONCORSUB'
• 'SUBQUERY'
• 'EXPRESSION'
• Blanks

S

LHS_TABNO SMALLINT NOT NULL If the LHS of the predicate is a table column, then this
column indicates a number which uniquely identifies the
corresponding table reference within a query.

S

Appendix H. Db2 catalog tables 2607

Table 344. SYSIBM.SYSQUERYPREDICATE table column descriptions (continued)

Column name Data type Description Use

LHS_QBNO SMALLINT NOT NULL If the LHS of the predicate is a table column, then this
column indicates a number which uniquely identifies the
corresponding table reference within a query.

S

RIGHT_HAND_SIDE VARCHAR(128) NOT
NULL

If the RHS of the predicate is a table column (RHS_TABNO
> 0), then this column indicates the column name. Other
possible values are:

• 'VALUE'
• 'COLEXP'
• 'NONCOLEXP'
• 'CORSUB'
• 'NONCORSUB'
• 'SUBQUERY'
• 'EXPRESSION'
• Blanks

S

RIGHT_HAND_PNO INTEGER NOT NULL If the predicate is a compound predicate (AND/OR),
then this column indicates the second child predicate.
However, this column is not reliable when the predicate
tree consolidation happens. Use PARENT_PNO instead to
reconstruct the predicate tree.

S

RHS_TABNO SMALLINT NOT NULL If the RHS of the predicate is a table column, then this
column indicates a number which uniquely identifies the
corresponding table reference within a query.

S

RHS_QBNO SMALLINT NOT NULL If the RHS of the predicate is a subquery, then this
column indicates a number which uniquely identifies the
corresponding query block within a query.

S

FILTER_FACTOR FLOAT NOT NULL The estimated filter factor. S

BOOLEAN_TERM CHAR(1) NOT NULL Whether this predicate can be used to determine the
truth value of the whole WHERE clause.

S

SEARCHARG CHAR(1) NOT NULL Whether this predicate can be processed by data
manager (DM). If it is not, then the relational data service
(RDS) needs to be used to take care of it, which is more
costly.

S

JOIN CHAR(1) NOT NULL Whether the predicate can be used as a simple join
predicate between two tables.

S

AFTER_JOIN CHAR(1) NOT NULL Indicates the predicate evaluation phase:
'A'

After join
'D'

During join
blank

Not applicable

S

2608 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 344. SYSIBM.SYSQUERYPREDICATE table column descriptions (continued)

Column name Data type Description Use

ADDED_PRED CHAR(1) NOT NULL Whether it is generated by transitive closure, which
means Db2 can generate additional predicates to provide
more information for access path selection, when the set
of predicates that belong to a query logically imply other
predicates.

S

REDUNDANT_PRED CHAR(1) NOT NULL Whether it is a redundant predicate, which means
evaluation of other predicates in the query already
determines the result that the predicate provides.

S

DIRECT_ACCESS CHAR(1) NOT NULL Whether the predicate is direct access, which means one
can navigate directly to the row through ROWID.

S

KEYFIELD CHAR(1) NOT NULL Whether the predicate includes the index key column of
the involved table for all applicable indexes considered by
Db2.

S

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:
All cached statements

When the statement entered the cache, in the form of
a full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

S

CATEGORY SMALLINT NOT
NULL,

IBM internal use only. S

CATEGORY_B SMALLINT NOT NULL IBM internal use only. S

TEXT VARCHAR(2000) NOT
NULL

The transformed predicate text; truncated if exceeds
2000 characters.

S

PRED_ENCODE CHAR(1) NOT NULL
WITH DEFAULT

IBM internal use only. S

PRED_CCSID SMALLINT NOT NULL
WITH DEFAULT

IBM internal use only. S

PRED_MCCSID SMALLINT NOT NULL
WITH DEFAULT

IBM internal use only. S

MARKER CHAR(1) NOT NULL
WITH DEFAULT

Whether this predicate includes host variables,
parameter markers, or special registers.

S

PARENT_PNO INTEGER NOT NULL The parent predicate number. If this predicate is a root
predicate within a query block, then this column is 0.

S

NEGATION CHAR(1) NOT NULL Whether this predicate is negated via NOT. S

LITERALS VARCHAR(128) NOT
NULL

This column indicates the literal value or literal values
separated by colon symbols.

S

Appendix H. Db2 catalog tables 2609

Table 344. SYSIBM.SYSQUERYPREDICATE table column descriptions (continued)

Column name Data type Description Use

CLAUSE CHAR(8) NOT NULL The clause where the predicate exists:
'HAVING '

The HAVING clause
'ON '

The ON clause
'WHERE '

The WHERE clause
SELECT

The SELECT clause

S

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the Db2 that executed EXPLAIN.
The column is blank if the Db2 subsystem was not in a
data sharing environment when EXPLAIN was executed.

S

ORIGIN CHAR(1) NOT NULL
WITH DEFAULT

Indicates the origin of the predicate.
Blank

Generated by Db2
C

Column mask
R

Row permission
U

Specified by the user

S

UNCERTAINTY FLOAT(4) NOT NULL
WITH DEFAULT

Describes the uncertainty factor of a predicate's
estimated filter factor. A bigger value indicates a higher
degree of uncertainty. Value zero indicates no uncertainty
or uncertainty not considered.

S

SECTNOI INTEGER NOT NULL
WITH DEFAULT

The section number of the statement. The value is taken
from the same column in SYSPACKSTMT or SYSSTMT
tables and can be used to join tables to reconstruct the
access path for the statement. This column is applicable
only for static statements.

S

COLLID VARCHAR(128) NOT
NULL WITH DEFAULT

The collection ID:
DSNDYNAMICSQLCACHE

The row originates from the dynamic statement cache
DSNEXPLAINMODEYES

The row originates from an application that specifies
YES for the value of the CURRENT EXPLAIN MODE
special register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN
MODE special register.

S

VERSION VARCHAR(122) NOT
NULL WITH DEFAULT

The version identifier for the package. Applies only
to an embedded EXPLAIN statement executed from a
package or to a statement that is explained when binding
a package. A blank indicates that the column is not
applicable.

S

2610 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Related tasks
Overriding predicate selectivities at the statement level (Db2 Performance)
Related reference
Tables for influencing access path selection (Db2 Performance)
DSN_PREDICAT_TABLE (Db2 Performance)

SYSQUERYSEL catalog table
The SYSQUERYSEL table contains information about the selectivity of predicates for queries in the
SYSQUERY table that have been identified for extended optimization. It correlates to the SYSQUERY table
by the QUERYID column. The schema is SYSIBM.

Table 345. SYSIBM.SYSQUERYSEL table column descriptions

Column name Data type Description Use

QUERYID BIGINT
NOT NULL

The identifier of the query. S

QUERYNO INTEGER
NOT NULL

A number that identifies the statement that is being
explained. The origin of the value depends on the
context of the row:
For rows produced by EXPLAIN statements

The number specified in the QUERYNO clause,
which is an optional part of the SELECT, INSERT,
UPDATE, MERGE, and DELETE statement syntax.

For rows not produced by EXPLAIN statements
Db2 assigns a number that is based on the
line number of the SQL statement in the source
program.

When the values of QUERYNO are based on the
statement number in the source program, values that
exceed 32767 are reported as 0. However, in certain
rare cases, the value is not guaranteed to be unique.

S

QBLOCKNO SMALLINT
NOT NULL

A number that identifies each query block within
a query. The value of the numbers are not in any
particular order, nor are they necessarily consecutive.

S

APPLNAME VARCHAR(24)
NOT NULL

The name of the application plan for the row. Applies
only to embedded EXPLAIN statements that are
executed from a plan or to statements that are
explained when binding a plan. A blank indicates that
the column is not applicable.

S

PROGNAME VARCHAR(128)
NOT NULL

The name of the program or package containing the
statement being explained. Applies only to embedded
EXPLAIN statements and to statements explained as
the result of binding a plan or package. A blank
indicates that the column is not applicable.

S

SECTNOI INTEGER
NOT NULL

The section number of the statement. The value is
taken from the same column in SYSPACKSTMT or
SYSSTMT tables and can be used to join tables to
reconstruct the access path for the statement. This
column is applicable only for static statements.

S

Appendix H. Db2 catalog tables 2611

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_createselecthint.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_bindquerytables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_dsnpredicattable.html

Table 345. SYSIBM.SYSQUERYSEL table column descriptions (continued)

Column name Data type Description Use

COLLID VARCHAR(128)
NOT NULL

The collection ID:
DSNDYNAMICSQLCACHE

The row originates from the dynamic statement
cache

DSNEXPLAINMODEYES
The row originates from an application that
specifies YES for the value of the CURRENT
EXPLAIN MODE special register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application that
specifies EXPLAIN for the value of the CURRENT
EXPLAIN MODE special register.

When the SQL statement is embedded in a non-inline
SQL function or native SQL procedure, this column is
not used and is blank.

S

VERSION VARCHAR(122)
NOT NULL

The version identifier for the package. Applies only
to an embedded EXPLAIN statement executed from
a package or to a statement that is explained when
binding a package. A blank indicates that the column is
not applicable.

When the SQL statement is embedded in a non-inline
SQL function or native SQL procedure, this column is
not used and is blank.

S

PREDNO INTEGER
NOT NULL

Identifies the predicate S

INSTANCE SMALLINT
NOT NULL

The selectivity instance, which is used to group related
selectivities.

S

SELECTIVITY FLOAT
NOT NULL

The selectivity of the predicate. S

WEIGHT FLOAT (4)
NOT NULL

The weight of the selectivity instance. For example, a
value of .25 means that 25% of the time when a query
is executed the predicate will have this selectivity.

S

ASSUMPTION VARCHAR(128)
NOT NULL

Indicates how the selectivity was estimated, or will be
used: One of the following values:
'NORMAL'

Estimated using the normal selectivity
assumptions.

'OVERRIDE'
To be used as input to the Optimizer and override
it's selectivity estimation.

S

2612 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 345. SYSIBM.SYSQUERYSEL table column descriptions (continued)

Column name Data type Description Use

INSERT_TIME TIMESTAMP
NOT NULL
GENERATED ALWAYS
AS ROW CHANGE
TIMESTAMP

The time when the row was inserted. S

EXPLAIN_TIME TIMESTAMP The time when the EXPLAIN information was
captured:
All cached statements

When the statement entered the cache, in the form
of a full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a
full precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a
value equivalent to a CHAR(16) representation of
the time appended by 4 zeros.

S

REMARKS VARCHAR(762) Internal use only. S

Related tasks
Overriding predicate selectivities at the statement level (Db2 Performance)
Related reference
Tables for influencing access path selection (Db2 Performance)
DSN_PREDICATE_SELECTIVITY table (Db2 Performance)

SYSQUERY_AUX catalog table
The SYSQUERY_AUX table is an auxiliary table for the STMTTEXT column of the SYSQUERY table. The
schema is SYSIBM.

Table 346. SYSIBM.SYSQUERY_AUX table column descriptions

Column name Data type Description Use

STMTTEXT CLOB(2M) The full text of the query. G

SYSRELS catalog table
The SYSRELS table contains one row for every referential constraint. The schema is SYSIBM.

Table 347. SYSIBM.SYSRELS table column descriptions

Column name Data type Description Use

CREATOR VARCHAR(128)
NOT NULL

The schema of the dependent table of the
referential constraint.

G

TBNAME VARCHAR(128)
NOT NULL

Name of the dependent table of the referential
constraint.

G

Appendix H. Db2 catalog tables 2613

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_createselecthint.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_bindquerytables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_dsnpredicateselectivity.html

Table 347. SYSIBM.SYSRELS table column descriptions (continued)

Column name Data type Description Use

RELNAME VARCHAR(128)
NOT NULL

Constraint name. G

REFTBNAME VARCHAR(128)
NOT NULL

Name of the parent table of the referential
constraint.

G

REFTBCREATOR VARCHAR(128)
NOT NULL

The schema of the parent table. G

COLCOUNT SMALLINT
NOT NULL

Number of columns in the foreign key. G

DELETERULE CHAR(1)
NOT NULL

Type of delete rule for the referential constraint:
A

NO ACTION
C

CASCADE
N

SET NULL
R

RESTRICT

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values,
see Release dependency indicators.

The value in this field is not a reliable indicator
of release dependencies. RELCREATED should be
used instead.

G

RELOBID1 SMALLINT
NOT NULL WITH
DEFAULT

Internal identifier of the constraint with respect to
the database that contains the parent table.

S

RELOBID2 SMALLINT
NOT NULL WITH
DEFAULT

Internal identifier of the constraint with respect to
the database that contains the dependent table.

S

TIMESTAMP TIMESTAMP
NOT NULL WITH
DEFAULT

Date and time the constraint was defined.
If the constraint is between catalog tables
prior to Version 2 Release 3, the value is
'1985-04-01-00.00.00.000000.'.

G

IXOWNER VARCHAR(128)
NOT NULL WITH
DEFAULT

Schema for a unique non-primary index used to
enforce the parent key of a referential constraint.

Blank or empty string for a primary key used to
enforce the parent key of a referential constraint
which is a primary key.

G

2614 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 347. SYSIBM.SYSRELS table column descriptions (continued)

Column name Data type Description Use

IXNAME VARCHAR(128)
NOT NULL WITH
DEFAULT

Name of a unique non-primary index used to
enforce the parent key of a referential constraint.

Empty string for a primary index used to enforce
the parent key of a referential constraint which is a
primary key.

G

ENFORCED CHAR(1)
NOT NULL WITH
DEFAULT 'Y"

Enforced by the system or not:
Y

Enforced by the system
N

Not enforced by the system (trusted)

G

CHECKEXISTINGDATA CHAR(1)
NOT NULL WITH
DEFAULT

Option for checking existing data:
I

Immediately check existing data. If ENFORCED
= 'Y' and this is not a temporal referential
constraint, this column will have a value of 'I'.

N
Never check existing data. If ENFORCED = 'N',
this column will have a value of 'N'.

T
Immediately check existing data for a temporal
referential constraint.

G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the
object. See Release dependency indicators for the
values.

G

SYSRESAUTH catalog table
The SYSRESAUTH table records CREATE IN and PACKADM ON privileges for collections; USAGE privileges
for distinct types; USE privileges for buffer pools, storage groups, and table spaces; and REVOVKE
privileges for Java archive (JAR) files. The schema is SYSIBM.

Column name Data type Description Use

GRANTOR VARCHAR(128)
NOT NULL

Authorization ID of the user who granted the privilege. G

GRANTEE VARCHAR(128)
NOT NULL

Authorization ID of the user who holds the privilege.
Could also be PUBLIC for a grant to PUBLIC.

G

QUALIFIER VARCHAR(128)
NOT NULL

Qualifier of the table space (the database name)
if the privilege is for a table space (OBTYPE='R').
The schema name of the user-defined data type if
the privilege is for a distinct type (OBTYPE='D'). The
schema name of the JAR file if the privilege is for
a JAR file (OBTYPE='J'). The value is PACKADM if
the privilege is for a collection (OBTYPE='C') and the
authority held is PACKADM. Otherwise, the value is
blank.

G

Appendix H. Db2 catalog tables 2615

Column name Data type Description Use

NAME VARCHAR(128)
NOT NULL

Name of the buffer pool, collection, Db2 storage group,
distinct type, or table space. Could also be ALL when
USE OF ALL BUFFERPOOLS is granted.

G

— CHAR(1)
NOT NULL

Internal use only. I

AUTHHOWGOT CHAR(1)
NOT NULL

Authorization level of the user from whom the
privileges were received. This authorization level is
not necessarily the highest authorization level of the
grantor.
blank

Not applicable
A

PACKADM (on collection *)
C

DBCTRL
D

DBADM
E

SECADM
G

ACCESSCTRL
L

SYSCTRL
M

DBMAINT
P

PACKADM (on a specific collection)
S

SYSADM
T

DATAACCESS

G

OBTYPE CHAR(1)
NOT NULL

Type of object:
B

Buffer pool
C

Collection
D

Distinct type
R

Table space
S

Storage group
J

JAR file (Java archive file)

G

2616 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

— CHAR(12)
NOT NULL

Internal use only. I

DATEGRANTED CHAR(6)
NOT NULL

Not used. N

TIMEGRANTED CHAR(8)
NOT NULL

Not used. N

USEAUTH CHAR(1)
NOT NULL

Whether the privilege is held with the GRANT option:
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

The authority held is PACKADM when the OBTYPE
is C (a collection) and QUALIFIER is PACKADM. The
authority held is CREATE IN when the OBTYPE is C and
QUALIFIER is blank.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values, see
Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

GRANTEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the GRANT statement was executed. G

GRANTEETYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantee:
blank

Authorization ID
L

Role
R

Internal use only

G

GRANTORTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantor:
blank

Authorization ID
L

Role

G

SYS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW BEGIN

Reserved for future IBM use.The row-begin column
of the SYSTEM_TIME period, for system-period data
versioning.

G

Appendix H. Db2 catalog tables 2617

Column name Data type Description Use

SYS_END TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW END

Reserved for future IBM use.The row-end column
of the SYSTEM_TIME period, for system-period data
versioning.

G

TRANS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS TRANSACTION
START ID

Reserved for future IBM use. G

SYSROLES catalog table
The SYSROLES table contains one row for each role. The schema is SYSIBM.

Table 348. SYSIBM.SYSROLES table column descriptions

Column name Data type Description Use

NAME VARCHAR(128)
NOT NULL

The name of the role. G

DEFINER VARCHAR(128)
NOT NULL

The authorization ID or role that defined this role listed
in the NAME column.

G

DEFINERTYPE CHAR(1)
NOT NULL

The type of definer:
L

Role
blank

Authorization ID

G

CREATEDTS TIMESTAMP
NOT NULL

The time when the role is created. G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the role. See
Release dependency indicators for the values.

G

REMARKS VARCHAR(762)
NOT NULL

A character string that is provided using the COMMENT
statement.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

2618 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SYSROUTINEAUTH catalog table
The SYSROUTINEAUTH table records the privileges that are held by users on routines. (A routine can be a
user-defined function, cast function, or stored procedure.) The schema is SYSIBM.

Table 349. SYSIBM.SYSROUTINEAUTH table column descriptions

Column name Data type Description Use

GRANTOR VARCHAR(128)
NOT NULL

Authorization ID of the user who granted the privilege. G

GRANTEE VARCHAR(128)
NOT NULL

Authorization ID of the user who holds the privilege or
the name of a plan or package that uses the privilege.
Can also be PUBLIC for a grant to PUBLIC.

G

SCHEMA VARCHAR(128)
NOT NULL

Schema of the routine G

SPECIFICNAME VARCHAR(128)
NOT NULL

Specific name of the routine. An asterisk (*) if the
privilege is held on all routines in the schema.

G

GRANTEDTS TIMESTAMP
NOT NULL

Time when the GRANT statement was executed. G

ROUTINETYPE CHAR(1)
NOT NULL

Type of routine:
F

User-defined function or cast function
P

Stored procedure

G

GRANTEETYPE CHAR(1)
NOT NULL

Type of grantee:
blank

An authorization ID
L

Role
P

An application plan or package. The grantee is a
package if COLLID is not blank.

R
Internal use only

G

Appendix H. Db2 catalog tables 2619

Table 349. SYSIBM.SYSROUTINEAUTH table column descriptions (continued)

Column name Data type Description Use

AUTHHOWGOT CHAR(1)
NOT NULL

Authorization level of the user from whom the
privileges were received. This authorization level is
not necessarily the highest authorization level of the
grantor.

This field is also used to indicate that the privilege was
held on all schemas by the grantor.
blank

Not applicable
1

Grantor had privilege on schema.* at time of grant
E

SECADM
G

ACCESSCTRL
L

SYSCTRL
S

SYSADM
T

DATAACCESS

G

EXECUTEAUTH CHAR(1)
NOT NULL

Whether GRANTEE can execute the routine:
Y

Privilege is held without GRANT option.
G

Privilege is held with GRANT option.

G

COLLID VARCHAR(128)
NOT NULL

If the GRANTEE is a package, its collection name.
Otherwise, the value is blank.

G

CONTOKEN CHAR(8)
NOT NULL
FOR BIT DATA

If the GRANTEE is a package, the consistency token
of the DBRM from which the package was derived.
Otherwise, the value is blank.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values, see
Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

GRANTORTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantor:
blank

Authorization ID
L

Role

G

2620 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 349. SYSIBM.SYSROUTINEAUTH table column descriptions (continued)

Column name Data type Description Use

SYS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW BEGIN

Reserved for future IBM use.The row-begin column
of the SYSTEM_TIME period, for system-period data
versioning.

G

SYS_END TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW END

Reserved for future IBM use.The row-end column
of the SYSTEM_TIME period, for system-period data
versioning.

G

TRANS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS TRANSACTION
START ID

Reserved for future IBM use. G

SYSROUTINES catalog table
The SYSROUTINES table contains a row for every routine. (A routine can be a user-defined function, cast
function, or stored procedure.) The schema is SYSIBM.

Table 350. SYSIBM.SYSROUTINES table column descriptions

Column name Data type Description Use

SCHEMA VARCHAR(128)
NOT NULL

Schema of the routine. G

OWNER VARCHAR(128)
NOT NULL

Owner of the routine. G

NAME VARCHAR(128)
NOT NULL

Name of the routine. G

ROUTINETYPE CHAR(1)
NOT NULL

Type of routine:
F

User-defined function or cast function
P

Stored procedure

G

CREATEDBY VARCHAR(128)
NOT NULL

Primary authorization ID of the user who created the
routine.

G

SPECIFICNAME VARCHAR(128)
NOT NULL

Specific name of the routine. G

ROUTINEID INTEGER
NOT NULL

Internal identifier of the routine. S

Appendix H. Db2 catalog tables 2621

Table 350. SYSIBM.SYSROUTINES table column descriptions (continued)

Column name Data type Description Use

RETURN_TYPE INTEGER
NOT NULL

Internal identifier of the result data type of the
function. The column contains a -2 if the function is
a table function.

S

ORIGIN CHAR(1)
NOT NULL

Origin of the routine:
E

External routine or external SQL procedure
N

Native SQL procedure
Q

SQL function
S

System-generated function
U

Sourced on user-defined function or built-in
function

G

FUNCTION_TYPE CHAR(1)
NOT NULL

Type of function:
C

Aggregate function
S

Scalar function
T

Table function
blank

For a stored procedure (ROUTINETYPE = 'P')

G

PARM_COUNT SMALLINT
NOT NULL

Number of parameters for the routine. G

LANGUAGE VARCHAR(24)
NOT NULL

Implementation language of the routine:

• ASSEMBLE
• C
• COBOL
• COMPJAVA
• JAVA
• PLI
• REXX
• SQL

The value is blank if ROUTINETYPE = 'F' and ORIGIN is
not 'E' or not 'Q'.

G

COLLID VARCHAR(128)
NOT NULL

Name of the package collection to be used when
the routine is executed. A blank value indicates
the package collection is the same as the package
collection of the program that invoked the routine.

G

2622 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 350. SYSIBM.SYSROUTINES table column descriptions (continued)

Column name Data type Description Use

SOURCESCHEMA VARCHAR(128)
NOT NULL

If ORIGIN is 'U' and ROUTINETYPE is 'F', the schema
of the source user-defined function ('SYSIBM' for a
source built-in function). Otherwise, the value is blank.

G

SOURCESPECIFIC VARCHAR(128)
NOT NULL

If ORIGIN is 'U' and ROUTINETYPE is 'F', the specific
name of the source user-defined function or source
built-in function name. Otherwise, the value is blank.

G

DETERMINISTIC CHAR(1)
NOT NULL

The deterministic option of an external function or a
stored procedure:
N

Indeterminate (results might differ with a given set
of input values).

Y
Deterministic (results are consistent).

blank
ROUTINETYPE='F' and ORIGIN is not 'E' or not
'Q' (the routine is a function, but not an external
function or an SQL function).

G

EXTERNAL_ACTION CHAR(1)
NOT NULL

The external action option of an external function or
SQL function:
N

Function has no side effects.
E

Function has external side effects so that the
number of invocations is important.

blank
ORIGIN is not 'E' or 'Q' for the function
(ROUTINETYPE='F'), or it is a stored procedure
(ROUTINETYPE='P').

G

NULL_CALL CHAR(1)
NOT NULL

The CALLED ON NOT NULL INPUT option of an external
function or stored procedure:
N

The routine is not called if any parameter has a
NULL value.

Y
The routine is called if any parameter has a NULL
value.

blank
ROUTINETYPE='F' and ORIGIN is not 'E' (the
routine is a function, but not an external function).

G

Appendix H. Db2 catalog tables 2623

Table 350. SYSIBM.SYSROUTINES table column descriptions (continued)

Column name Data type Description Use

CAST_FUNCTION CHAR(1)
NOT NULL

Whether the routine is a cast function:
N

The routine is not a cast function.
Y

The routine is a cast function.
blank

ORIGIN is not 'E' for the function
(ROUTINETYPE='F'), or it is a stored procedure
(ROUTINETYPE='P').

A cast function is generated by Db2 for a CREATE TYPE
statement.

G

SCRATCHPAD CHAR(1)
NOT NULL

The SCRATCHPAD option of an external function:
N

This function does not have a SCRATCHPAD.
Y

This function has a SCRATCHPAD.
blank

ORIGIN is not 'E' for the function
(ROUTINETYPE='F'), or it is a stored procedure
(ROUTINETYPE='P').

G

SCRATCHPAD_LENGTH INTEGER
NOT NULL

Length of the scratchpad if the ORIGIN is 'E' for the
function (ROUTINETYPE='F') and NO SCRATCHPAD is
not specified. Otherwise, the value is 0.

G

FINAL_CALL CHAR(1)
NOT NULL

The FINAL CALL option of an external function:
N

A final call will not be made to the function.
Y

A final call will be made to the function.
blank

ORIGIN is not 'E' for the function
(ROUTINETYPE='F'), or it is a stored procedure
(ROUTINETYPE='P').

G

PARALLEL CHAR(1)
NOT NULL

The PARALLEL option of an external function:
A

This function can be invoked by parallel tasks.
D

This function cannot be invoked by parallel tasks.
blank

ORIGIN is not 'E' for the function
(ROUTINETYPE='F'), or it is a stored procedure
(ROUTINETYPE='P').

G

2624 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 350. SYSIBM.SYSROUTINES table column descriptions (continued)

Column name Data type Description Use

PARAMETER_STYLE CHAR(1)
NOT NULL

The PARAMETER STYLE option of an external function
or stored procedure:
D

DB2SQL. All parameters are passed to the external
function or stored procedure according to the
DB2SQL standard convention.

G
GENERAL. All parameters are passed to the stored
procedure according to the GENERAL standard
convention.

N
GENERAL CALL WITH NULLS. All parameters are
passed to the stored procedure according to the
GENERAL WITH NULLS convention.

J
JAVA. All parameters are passed to the function or
procedure according to the conventions for JAVA
and SQLJ specifications.

blank
The column is blank if the ORIGIN is not 'E' or if
LANGUAGE is SQL.

G

FENCED CHAR(1)
NOT NULL

Y
Indicates that this routine runs separately from
the Db2 address space in a WLM managed Db2
address space. All user-defined routines that are
not marked with Y in this column run in the Db2
address space.

blank
ORIGIN is 'Q' or ORIGIN is 'N'.

G

SQL_DATA_ACCESS CHAR(1)
NOT NULL

The SQL statements that are allowed in an external
function, SQL function, or stored procedure:
C

CONTAINS SQL - Only SQL that does not read or
modify data is allowed.

M
MODIFIES SQL DATA - All SQL is allowed, including
SQL that reads or modifies data.

N
NO SQL - SQL is not allowed.

R
READS SQL DATA - Only SQL that reads data is
allowed.

blank
Not applicable.

G

Appendix H. Db2 catalog tables 2625

Table 350. SYSIBM.SYSROUTINES table column descriptions (continued)

Column name Data type Description Use

DBINFO CHAR(1)
NOT NULL

The DBINFO option of an external function or stored
procedure:
N

No, the DBINFO parameter will not be passed to
the external function or stored procedure.

Y
Yes, the DBINFO parameter will be passed to the
external function or stored procedure.

blank
ORIGIN is not 'E'.

G

STAYRESIDENT CHAR(1)
NOT NULL

The STAYRESIDENT option of the routine, which
determines whether the routine is to be deleted from
memory when the routine ends.
N

The load module is to be deleted from memory
after the routine terminates.

Y
The load module is to remain resident in memory
after the routine terminates.

blank
ORIGIN is not 'E'.

G

ASUTIME INTEGER
NOT NULL

Number of CPU service units permitted for any single
invocation of this routine. If ASUTIME is zero, the
number of CPU service units is unlimited. The value
is 0 if ROUTINETYPE = 'F' and ORIGIN is not 'E'.

If a routine consumes more CPU service units than the
ASUTIME value allows, Db2 cancels the routine.

G

WLM_ENVIRONMENT VARCHAR(96)
NOT NULL

Name of the WLM environment to be used to run this
routine.

When ORIGIN = 'N', this is the name of the WLM
ENVIRONMENT FOR DEBUG MODE that is to be used
when debugging a native SQL procedure.

The column is blank if ROUTINETYPE = 'F' and ORIGIN
is not 'E'. If the ROUTINETYPE = 'P', the value might
be blank. If this value is blank the stored procedure
cannot be run.

G

2626 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 350. SYSIBM.SYSROUTINES table column descriptions (continued)

Column name Data type Description Use

WLM_ENV_FOR_
NESTED

CHAR(1)
NOT NULL

For nested routine calls, indicates whether the address
space of the calling stored procedure or user-defined
function is used to run the nested stored procedure or
user-defined function:
N

The nested stored procedure or user-defined
function runs in an address space other than
the specified WLM environment if the calling
stored procedure or user-defined function is not
running in the specified WLM environment. 'WLM
ENVIRONMENT name' was specified.

Y
The nested stored procedure or user-defined
function runs in the environment used by the
calling stored procedure or user-defined function.
'WLM ENVIRONMENT(name,*)' was specified.

blank
WLM_ENVIRONMENT is blank. The column is
blank if ROUTINETYPE = 'F' and ORIGIN is not 'E'.

G

PROGRAM_TYPE CHAR(1)
NOT NULL

Indicates whether the routine runs as a Language
Environment main routine or a subroutine:
M

The routine runs as a main routine.
S

The routine runs as a subroutine.
blank

ORIGIN is not 'E'.

G

EXTERNAL_SECURITY CHAR(1)
NOT NULL

Specifies the authorization ID to be used if the routine
accesses resources protected by an external security
product:
D

Db2 - The authorization ID associated with the
WLM-established stored procedure address space.

U
SESSION_USER - The authorization ID of the SQL
user that invoked the routine.

C
DEFINER - The authorization ID of the owner of the
routine.

blank
ORIGIN is not 'E'.

G

Appendix H. Db2 catalog tables 2627

Table 350. SYSIBM.SYSROUTINES table column descriptions (continued)

Column name Data type Description Use

COMMIT_ON_RETURN CHAR(1)
NOT NULL

If ROUTINETYPE = 'P', whether the transaction is
always to be committed immediately on successful
return (non-negative SQLCODE) from this stored
procedure:
N

The unit of work is to continue.
Y

The unit of work is to be committed immediately.
A

The unit of work of the autonomous procedure
is committed immediately, but other work of the
calling application is not committed.

If ROUTINETYPE = 'F', the value is blank.

G

RESULT_SETS SMALLINT
NOT NULL

If ROUTINETYPE = 'P', the maximum number of ad hoc
result sets that this stored procedure can return.

If no ad hoc result sets exist or ROUTINETYPE = 'F',
the value is zero.

G

LOBCOLUMNS SMALLINT
NOT NULL

If ORIGIN = 'E' or 'Q', the number of LOB columns
found in the parameter list for this user-defined
function.

If no LOB columns are found in the parameter list or
ORIGIN is not 'E' or not 'Q', the value is 0.

S

CREATEDTS TIMESTAMP
NOT NULL

Time when the routine was created or re-created. G

ALTEREDTS TIMESTAMP
NOT NULL

Time when the last ALTER statement was executed for
this routine.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values, see
Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

PARM1 SMALLINT
NOT NULL

Internal use only. I

PARM2 SMALLINT
NOT NULL

Internal use only. I

PARM3 SMALLINT
NOT NULL

Internal use only. I

PARM4 SMALLINT
NOT NULL

Internal use only. I

2628 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 350. SYSIBM.SYSROUTINES table column descriptions (continued)

Column name Data type Description Use

PARM5 SMALLINT
NOT NULL

Internal use only. I

PARM6 SMALLINT
NOT NULL

Internal use only. I

PARM7 SMALLINT
NOT NULL

Internal use only. I

PARM8 SMALLINT
NOT NULL

Internal use only. I

PARM9 SMALLINT
NOT NULL

Internal use only. I

PARM10 SMALLINT
NOT NULL

Internal use only. I

PARM11 SMALLINT
NOT NULL

Internal use only. I

PARM12 SMALLINT
NOT NULL

Internal use only. I

PARM13 SMALLINT
NOT NULL

Internal use only. I

PARM14 SMALLINT
NOT NULL

Internal use only. I

PARM15 SMALLINT
NOT NULL

Internal use only. I

PARM16 SMALLINT
NOT NULL

Internal use only. I

PARM17 SMALLINT
NOT NULL

Internal use only. I

PARM18 SMALLINT
NOT NULL

Internal use only. I

PARM19 SMALLINT
NOT NULL

Internal use only. I

PARM20 SMALLINT
NOT NULL

Internal use only. I

Appendix H. Db2 catalog tables 2629

Table 350. SYSIBM.SYSROUTINES table column descriptions (continued)

Column name Data type Description Use

PARM21 SMALLINT
NOT NULL

Internal use only. I

PARM22 SMALLINT
NOT NULL

Internal use only. I

PARM23 SMALLINT
NOT NULL

Internal use only. I

PARM24 SMALLINT
NOT NULL

Internal use only. I

PARM25 SMALLINT
NOT NULL

Internal use only. I

PARM26 SMALLINT
NOT NULL

Internal use only. I

PARM27 SMALLINT
NOT NULL

Internal use only. I

PARM28 SMALLINT
NOT NULL

Internal use only. I

PARM29 SMALLINT
NOT NULL

Internal use only. I

PARM30 SMALLINT
NOT NULL

Internal use only. I

IOS_PER_INVOC FLOAT
NOT NULL WITH
DEFAULT -1

Estimated number of I/Os that required to execute the
routine. The value is -1 if the estimated number is not
known.

S

INSTS_PER_INVOC FLOAT
NOT NULL WITH
DEFAULT -1

Estimated number of machine instructions that
required to execute the routine. The value is -1 if the
estimated number is not known.

S

INITIAL_IOS FLOAT
NOT NULL WITH
DEFAULT -1

Estimated number of I/O's that are performed the first
time or the last time the routine is invoked. The value
is -1 if the estimated number is not known.

S

INITIAL_INSTS FLOAT
NOT NULL WITH
DEFAULT -1

Estimated number of machine instructions that are
performed the first time or the last time the routine
is invoked. The value is -1 if the estimated number is
not known.

S

2630 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 350. SYSIBM.SYSROUTINES table column descriptions (continued)

Column name Data type Description Use

CARDINALITY FLOAT
NOT NULL WITH
DEFAULT -1

The predicted cardinality of the routine, -1 to trigger
the use of the default value (10,000).

S

RESULT_COLS SMALLINT
NOT NULL
DEFAULT 1

For a table function, the number of columns in the
result table. Otherwise, the value is 1.

S

EXTERNAL_NAME VARCHAR(762)
NOT NULL

The path/module/function that Db2 should load
to execute the routine. The column is blank if
ROUTINETYPE = 'F' and ORIGIN is not 'E'.

G

— VARCHAR(150)
NOT NULL
FOR BIT DATA

Internal use only. I

RUNOPTS VARCHAR(762)
NOT NULL

The Language Environment run time options to be
used for this routine. An empty string indicates that
the installation default Language Environment run
time options are to be used. The column is blank if
ROUTINETYPE = 'F' and ORIGIN is not 'E'.

G

REMARKS VARCHAR(762)
NOT NULL

A character string provided by the user with the
COMMENT statement.

G

JAVA_SIGNATURE VARCHAR(3072)
NOT NULL WITH
DEFAULT

The signature of the JAR file.
blank

When PARAMETER STYLE is not JAVA. The column
is also blank if ROUTINETYPE = 'F' and ORIGIN is
not 'E'.

G

CLASS VARCHAR(384)
NOT NULL WITH
DEFAULT

The class name contained in the JAR file.
blank

When PARAMETER STYLE is not JAVA. The column
is also blank if ROUTINETYPE = 'F' and ORIGIN is
not 'E'.

G

JARSCHEMA VARCHAR(128)
NOT NULL WITH
DEFAULT

The schema of the JAR file.
blank

When PARAMETER STYLE is not JAVA. The column
is also blank if ROUTINETYPE = 'F' and ORIGIN is
not 'E'.

G

JAR_ID VARCHAR(128)
NOT NULL WITH
DEFAULT

The name of the JAR file.
blank

When PARAMETER STYLE is not JAVA. The column
is also blank if ROUTINETYPE = 'F' and ORIGIN is
not 'E'.

G

Appendix H. Db2 catalog tables 2631

Table 350. SYSIBM.SYSROUTINES table column descriptions (continued)

Column name Data type Description Use

SPECIAL_REGS CHAR(1)
NOT NULL WITH
DEFAULT 'I'

The SPECIAL REGISTER option for a routine.
I

INHERIT SPECIAL REGISTERS
D

DEFAULT SPECIAL REGISTERS
blank

ROUTINETYPE = 'F' and ORIGIN is not 'E' or not
'Q'.

G

NUM_DEP_MQTS SMALLINT
NOT NULL WITH
DEFAULT

Number of dependent materialized query tables. The
value is 0 if the row does not describe a user-defined
table function, or if no materialized query tables are
defined on the table function.

G

MAX_FAILURE SMALLINT
NOT NULL WITH
DEFAULT -1

Allowable failures for this routine (0-32767). If zero
is specified, the routine will never be stopped. If no
value is specified for this routine, the default will
be -1 to indicate that the Db2 installation parameter
(STORMXAB) will be used.

G

PARAMETER_CCSID INTEGER
NOT NULL WITH
DEFAULT

A CCSID that specifies how character, graphic, date,
time, and timestamp data types for system generated
parameters to the routine such as message tokens and
DBINFO should be passed. The value is dependent on
the encoding scheme specified implicitly or explicitly
for the PARAMETER CCSID clause defined at the
system for that encoding scheme. The following list
describes the CCSID for each encoding scheme:
ASCII

If mixed data is allowed, this CCSID is
for mixed ASCII data, SBCS data uses the
corresponding SBCS CCSID, and graphic data uses
the corresponding DBCS CCSID. Otherwise, this
CCSID is for SBCS ASCII data.

EBCDIC
If mixed data is allowed, this CCSID is for
mixed EBCDIC data, SBCS data uses the
corresponding SBCS CCSID, and graphic data uses
the corresponding DBCS CCSID. Otherwise, this is
the CCSID for SBCS EBCDIC data.

Unicode
This CCSID is for mixed data (1208).

A value of zero means that the CCSIDs used are
those CCSIDs for the encoding scheme of other
string or datetime parameters in the parameter list
or RETURNS clause CCSID clauses, or the value in
the DEF ENCODING SCHEME on installation panel
DSNTIPF.

G

2632 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 350. SYSIBM.SYSROUTINES table column descriptions (continued)

Column name Data type Description Use

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for a native SQL procedure
(indicated by the value 'N' in the column ORIGIN)
or a non-inline SQL scalar function (indicated by the
value 'Q' in the column ORIGIN and 'N' in the column
INLINE).

A zero length string for the rows that are created
prior to Version 9 and for the rows that correspond to
neither native SQL procedures or non-inline SQL scalar
functions.

G

CONTOKEN CHAR(8)
NOT NULL WITH
DEFAULT FOR
BIT DATA

The consistency token for the routine. The column is
set to X'20' if the value of ORIGIN is not 'N'

G

ACTIVE CHAR(1)
NOT NULL WITH
DEFAULT

Identifies the active version of the routine:
Y

This version is active.
N

This version is not active.
blank

The value of ORIGIN is not 'N' or the row was
created prior to Version 9.

G

DEBUG_MODE CHAR(1)
NOT NULL WITH
DEFAULT

Identifies whether or not this routine is enabled for
debugging:
1

This routine is enabled for debugging and can be
debugged in a client debug session using the Db2
Unified Debugger.

0
This routine is not enabled for debugging.

N
This routine can never be enabled for debugging.

blank
The LANGUAGE is not specified as JAVA, the value
of ORIGIN is not 'N', or the row was created prior
to Version 9.

G

TEXT_ENVID INTEGER
NOT NULL WITH
DEFAULT

Internal identifier of the environment. The column
value is 0 if the value of ORIGIN is not 'N' or 'Q', or
if the row was created prior to Version 9.

G

TEXT_ROWID ROWID
NOT NULL
GENERATED
ALWAYS

ID to support LOB columns for source text. G

Appendix H. Db2 catalog tables 2633

Table 350. SYSIBM.SYSROUTINES table column descriptions (continued)

Column name Data type Description Use

TEXT CLOB(2M)
NOT NULL WITH
DEFAULT

The text of the statement that created the SQL
routine, including the body of the routine. In some
cases, this column might instead contain the text of a
statement that altered the SQL routine. In many cases,
changes to routines or to objects on which routines are
dependent do not update this value.

The value is a zero-length string if the value of ORIGIN
is not 'N' or if the row was created prior to Version 9.

G

OWNERTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner:

blank
Authorization ID

L
Role

G

PARAMETER_
VARCHARFORM

INTEGER
NOT NULL WITH
DEFAULT

A non-zero value that indicates the actual
representation, to a LANGUAGE C routine, of any
varying length string parameter that appears in the
parameter list or RETURNS clause for that routine.

G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object.
Blank if created prior to Version 9. See Release
dependency indicators for all other values.

G

PACKAGEPATH VARCHAR(4096) The value of the PACKAGE PATH option of the CREATE
FUNCTION, CREATE PROCEDURE, ALTER FUNCTION,
or ALTER PROCEDURE statement that created or last
changed the routine. PACKAGE PATH identifies the
package path to use when the routine is executed. A
blank value indicates the package path is the same
as the package path of the program that invoked the
routine.

G

SECURE CHAR(1)
NOT NULL
WITH DEFAULT 'N'

Indicates if the routine is secured:
N

The routine is not secured
Y

The routine is secured

G

INLINE CHAR(1)
NOT NULL
WITH DEFAULT

Specifies if the SQL function is inline:
Y

The SQL function is inline when referenced. No
package is associated with this type of routine.

N
The SQL function has an associated package.

blank
Not an SQL function (the ORIGIN column has a
value other than 'Q')

G

2634 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 350. SYSIBM.SYSROUTINES table column descriptions (continued)

Column name Data type Description Use

— BLOB(1G)
NOT NULL
WITH DEFAULT

Internal use only. I

SYSTEM_DEFINED CHAR(1)
NOT NULL
WITH DEFAULT

Identifies whether this routine is system defined:
blank

This routine is not system defined
S

This routine is system defined

G

WRAPPED CHAR(1) 'Y'
The routine text is obfuscated. Obfuscating source
code of SQL procedures, SQL functions, and
triggers (Db2 Administration Guide).

blank
The routine text is not obfuscated.

G

REGENERATETS TIMESTAMP(12)
NOT NULL

The time when the object was regenerated. The value
is valid only for objects that can be regenerated. If no
regeneration has occurred, this column contains the
same value as the CREATEDTS column.

G

SYSROUTINESTEXT catalog table
The SYSROUTINESTEXT is an auxiliary table for the TEXT column of SYSIBM.SYSROUTINES and is
required to hold the LOB data. The schema is SYSIBM.

Table 351. SYSIBM.SYSROUTINESTEXT table column descriptions

Column name Data type Description Use

TEXT CLOB(2M)
NOT NULL WITH
DEFAULT

See the description of the TEXT column in
“SYSROUTINES catalog table” on page 2621.

G

SYSROUTINES_OPTS catalog table (deprecated)
The SYSROUTINES_OPTS table Contains a row for each generated routine, such as one created by Db2
for z/OS Procedure Processor DSNTPSMP, that records the build options for the routine. The schema is
SYSIBM.

Deprecated function: External SQL procedures are deprecated and not as fully supported as native SQL
procedures. For best results, create native SQL procedures instead. For more information, see Creating
native SQL procedures (Db2 Application programming and SQL) and Migrating an external SQL procedure
to a native SQL procedure (Db2 Application programming and SQL).

Rows in this table can be inserted, updated, and deleted.

Appendix H. Db2 catalog tables 2635

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_obfuscateroutinetrigger.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_obfuscateroutinetrigger.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_obfuscateroutinetrigger.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createnativesqlprocedure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createnativesqlprocedure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_migrateexternalsptonativesp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_migrateexternalsptonativesp.html

Table 352. SYSIBM.SYSROUTINES_OPTS table column descriptions

Column name Data type Description Use

SCHEMA VARCHAR(128)
NOT NULL

Schema of the routine. G

ROUTINENAME VARCHAR(128)
NOT NULL

Name of the routine. G

BUILDDATE DATE
NOT NULL WITH
DEFAULT

Date the routine was built. G

BUILDTIME TIME
NOT NULL WITH
DEFAULT

Time the routine was built. G

BUILDSTATUS CHAR(1)
NOT NULL WITH
DEFAULT 'C'

Whether this version of the routine's options is the
current version.

G

BUILDSCHEMA VARCHAR(128)
NOT NULL

Schema name for BUILDNAME. G

BUILDNAME VARCHAR(128)
NOT NULL

Procedure used to create the routine. G

BUILDOWNER VARCHAR(128)
NOT NULL

Authorization ID used to create the routine. G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row was provided
with the Db2 product code. For all other values, see
Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

PRECOMPILE_OPTS VARCHAR(765)
NOT NULL WITH
DEFAULT

SQL processing (precompiler or coprocessor) options
used to build the routine.

G

COMPILE_OPTS VARCHAR(765)
NOT NULL WITH
DEFAULT

Compiler options used to build the routine. G

PRELINK_OPTS VARCHAR(765)
NOT NULL WITH
DEFAULT

Prelink-edit options used to build the routine. G

LINK_OPTS VARCHAR(765)
NOT NULL WITH
DEFAULT

Link-edit options used to build the routine. G

2636 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 352. SYSIBM.SYSROUTINES_OPTS table column descriptions (continued)

Column name Data type Description Use

BIND_OPTS VARCHAR(3072)
NOT NULL WITH
DEFAULT

Bind options used to build the routine. G

SOURCEDSN VARCHAR(765)
NOT NULL WITH
DEFAULT

Name of the source data set. G

DEBUG_MODE CHAR(1) NOT NULL Debugging is on or off for this object.
0

Debugging is off. Default and value on migration
are both 0.

1
Debugging is on.

G

SYSROUTINES_TREE catalog table
The SYSROUTINES_TREE table is an auxiliary table for the PTREE column of the SYSROUTINES table. The
schema is SYSIBM.

Table 353. SYSIBM.SYSROUTINES_TREE table column descriptions

Column name Data type Description Use

PTREE BLOB(1G)
NOT NULL
WITH DEFAULT

Internal use only. I

SYSROUTINES_SRC catalog table (deprecated)
The SYSROUTINES_SRC table contains source for generated routines, such as those created by Db2 for
z/OS Procedure Processor DSNTPSMP. The schema is SYSIBM.

Deprecated function: External SQL procedures are deprecated and not as fully supported as native SQL
procedures. For best results, create native SQL procedures instead. For more information, see Creating
native SQL procedures (Db2 Application programming and SQL) and Migrating an external SQL procedure
to a native SQL procedure (Db2 Application programming and SQL).

Rows in this table can be inserted, updated, and deleted.

Table 354. SYSIBM.SYSROUTINES_SRC table column descriptions

Column name Data type Description Use

SCHEMA VARCHAR(128)
NOT NULL

Schema of the routine. G

ROUTINENAME VARCHAR(128)
NOT NULL

Name of the routine. G

Appendix H. Db2 catalog tables 2637

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createnativesqlprocedure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_createnativesqlprocedure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_migrateexternalsptonativesp.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_migrateexternalsptonativesp.html

Table 354. SYSIBM.SYSROUTINES_SRC table column descriptions (continued)

Column name Data type Description Use

BUILDDATE DATE
NOT NULL WITH
DEFAULT

Date the routine was built. G

BUILDTIME TIME
NOT NULL WITH
DEFAULT

Time the routine was built. G

BUILDSTATUS CHAR(1)
NOT NULL WITH
DEFAULT 'C'

Whether this version of the routine's source is the
current version.

G

SEQNO INTEGER
NOT NULL

Number of the source statement piece in
CREATESTMT.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row was provided
with the Db2 product code. For all other values, see
Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

CREATESTMT VARCHAR(7500)
NOT NULL

Routine source statement. G

SYSSCHEMAAUTH catalog table
The SYSSCHEMAAUTH table contains one or more rows for each user that is granted a privilege on a
particular schema in the database. The schema is SYSIBM.

Table 355. SYSIBM.SYSSCHEMAAUTH table column descriptions

Column name Data type Description Use

GRANTOR VARCHAR(128)
NOT NULL

Authorization ID of the user who granted the privileges
or SYSADM.

G

GRANTEE VARCHAR(128)
NOT NULL

Authorization ID of the user or group who holds the
privileges. Can also be PUBLIC for a grant to PUBLIC.

G

SCHEMANAME VARCHAR(128)
NOT NULL

Name of the schema or '*' for all schemas. G

2638 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 355. SYSIBM.SYSSCHEMAAUTH table column descriptions (continued)

Column name Data type Description Use

AUTHHOWGOT CHAR(1)
NOT NULL

Authorization level of the user from whom the
privileges were received. This authorization level is
not necessarily the highest authorization level of the
grantor.

This field is also used to indicate that the privilege was
held on all schemas by the grantor.
1

Grantor had privilege on all schemas at time of
grant

E
SECADM

G
ACCESSCTRL

L
SYSCTRL

S
SYSADM

G

CREATEINAUTH CHAR(1)
NOT NULL

Indicates whether grantee holds CREATEIN privilege
on the schema:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

ALTERINAUTH CHAR(1)
NOT NULL

Indicates whether grantee holds ALTERIN privilege on
the schema:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

DROPINAUTH CHAR(1)
NOT NULL

Indicates whether grantee holds DROPIN privilege on
the schema:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

GRANTEDTS TIMESTAMP
NOT NULL

Time when the GRANT statement was executed. G

Appendix H. Db2 catalog tables 2639

Table 355. SYSIBM.SYSSCHEMAAUTH table column descriptions (continued)

Column name Data type Description Use

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values, see
Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

GRANTEETYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantee:
blank

Authorization ID
L

Role

G

GRANTORTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantor:
blank

Authorization ID
L

Role

G

SYS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW BEGIN

Reserved for future IBM use.The row-begin column
of the SYSTEM_TIME period, for system-period data
versioning.

G

SYS_END TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW END

Reserved for future IBM use.The row-end column
of the SYSTEM_TIME period, for system-period data
versioning.

G

TRANS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS TRANSACTION
START ID

Reserved for future IBM use. G

SYSSEQUENCEAUTH catalog table
The SYSSEQUENCEAUTH table records the privileges that are held by users over sequences. The schema
is SYSIBM.

Table 356. SYSIBM.SYSSEQUENCEAUTH table column descriptions

Column name Data type Description Use

GRANTOR VARCHAR(128)
NOT NULL

Authorization ID of the user who granted the
privileges.

G

GRANTEE VARCHAR(128)
NOT NULL

Authorization ID of the user or group that holds
the privileges or the name of an application plan or
package that uses the privileges. PUBLIC for a grant to
PUBLIC.

G

2640 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 356. SYSIBM.SYSSEQUENCEAUTH table column descriptions (continued)

Column name Data type Description Use

SCHEMA VARCHAR(128)
NOT NULL

Schema of the sequence. G

NAME VARCHAR(128)
NOT NULL

Name of the sequence. G

GRANTEETYPE CHAR(1)
NOT NULL

Type of grantee:
blank

An authorization ID.
L

Role
P

An application plan or package. The grantee is a
package if COLLID is not blank.

R
Internal use only.

G

AUTHHOWGOT CHAR(1)
NOT NULL

Authorization level of the user from whom the
privileges were received. This authorization level is
not necessarily the highest authorization level of the
grantor:
blank

Not applicable
E

SECADM
G

ACCESSCTRL
L

SYSCTRL
S

SYSADM
T

DATAACCESS

G

ALTERAUTH CHAR(1)
NOT NULL

Indicates whether grantee holds ALTER privilege on
the sequence:
blank

Privilege is not held.
G

Privilege is held with the GRANT option.
Y

Privilege is held without the GRANT option.

G

Appendix H. Db2 catalog tables 2641

Table 356. SYSIBM.SYSSEQUENCEAUTH table column descriptions (continued)

Column name Data type Description Use

USEAUTH CHAR(1)
NOT NULL

Indicates whether grantee holds USAGE privilege on
the sequence:
blank

Privilege is not held.
G

Privilege is held with the GRANT option.
Y

Privilege is held without the GRANT option.

G

COLLID VARCHAR(128)
NOT NULL

If the GRANTEE is a package, its collection name.
Otherwise, a string of length zero.

G

CONTOKEN CHAR(8)
NOT NULL
FOR BIT DATA

If the GRANTEE is a package, the consistency token
of the DBRM from which the package was derived.
Otherwise, blank.

G

GRANTEDTS TIMESTAMP
NOT NULL

Time when the GRANT statement was executed. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values, see
Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

GRANTORTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantor:
blank

Authorization ID
L

Role

G

SYS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW BEGIN

Reserved for future IBM use.The row-begin column
of the SYSTEM_TIME period, for system-period data
versioning.

G

SYS_END TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW END

Reserved for future IBM use.The row-end column
of the SYSTEM_TIME period, for system-period data
versioning.

G

TRANS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS TRANSACTION
START ID

Reserved for future IBM use. G

2642 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SYSSEQUENCES catalog table
The SYSSEQUENCES table contains one row for each identity column or user-defined sequence. The
schema is SYSIBM.

Table 357. SYSIBM.SYSSEQUENCES table column descriptions

Column name Data type Description Use

SCHEMA VARCHAR(128)
NOT NULL

Schema of the alias or sequence. For an identity column,
the value of TBCREATOR from the SYSCOLUMNS entry
for the column.

G

OWNER VARCHAR(128)
NOT NULL

Owner of the alias or sequence. For an identity column,
the value of TBCREATOR from the SYSCOLUMNS entry
for the column.

G

NAME VARCHAR(128)
NOT NULL

Name of the alias, identity column, or sequence. The
name for an identity column is generated by Db2.

G

SEQTYPE CHAR(1)
NOT NULL

Type of sequence object:
A

Alias for a sequence
I

An identity column
S

A user-defined sequence
X

An implicitly created DOCID column for a base table
that contains XML data.

G

SEQUENCEID INTEGER
NOT NULL

Internal identifier of the alias, identity column, or
sequence.

G

CREATEDBY VARCHAR(128)
NOT NULL

Primary authorization ID of the user who created the
alias, identity column, or sequence.

G

INCREMENT DECIMAL(31,0)
NOT NULL

Increment value (positive or negative, within INTEGER
scope).

The value is 0 if the row describes an alias.

G

START DECIMAL(31,0)
NOT NULL

Start value.

The value is 0 if the row describes an alias.

G

MAXVALUE DECIMAL(31,0)
NOT NULL

Maximum value allowed for the identity column or
sequence.

The value is 0 if the row describes an alias.

G

MINVALUE DECIMAL(31,0)
NOT NULL

Minimum value allowed for the identity column or
sequence.

The value is 0 if the row describes an alias.

G

Appendix H. Db2 catalog tables 2643

Table 357. SYSIBM.SYSSEQUENCES table column descriptions (continued)

Column name Data type Description Use

CYCLE CHAR(1)
NOT NULL

Whether cycling will occur when a boundary is reached:
N

No
Y

Yes, cycling will occur
blank

The row describes an alias

G

CACHE INTEGER
NOT NULL

Number of sequence values to preallocate in memory
for faster access. A value of 0 indicates that values are
not to be preallocated.

The value is 0 if the row describes an alias.

G

ORDER CHAR(1)
NOT NULL

Whether the values must be generated in order:
Y

Yes
N

No
R

The values must be generated in pseudo-
random order for an XML document ID column
that was created when subsystem parameter
XML_RANDOMIZE_DOCID was set to YES.

blank
The row describes an alias

G

DATATYPEID INTEGER
NOT NULL

For a built-in data type, the internal ID of the built-in
type. For a distinct type, the internal ID of the distinct
type.

The value is 0 if the row describes an alias.

S

SOURCETYPEID INTEGER
NOT NULL

For a built-in data type, 0. For a distinct type, the
internal ID of the built-in data type upon which the
distinct type is based.

The value is 0 if the row describes an alias.

S

CREATEDTS TIMESTAMP
NOT NULL

Timestamp of the creation of the alias, identity column,
or sequence.

G

ALTEREDTS TIMESTAMP
NOT NULL

Timestamp when the last ALTER statement was
executed for this alias, identity column, or sequence.

G

2644 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 357. SYSIBM.SYSSEQUENCES table column descriptions (continued)

Column name Data type Description Use

MAXASSIGNEDVAL DECIMAL(31,0) Last possible assigned value. MAXASSIGNEDVAL is
updated each time that the next chunk of n
values is cached. n is the CACHE column value.
MAXASSIGNEDVAL is initialized to null when the object
is created or when it is altered to restart the sequence.
The value is also null when the object is an alias.

The LOAD utility updates MAXASSIGNEDVAL for identity
columns in the following ways:

• For sequence or identity column values that are
generated by the Db2 database manager, LOAD
updates MAXASSIGNEDVAL each time that the next
chunk of n values is cached. n is the CACHE column
value.

• For identity column values that are generated by
the user, LOAD updates MAXASSIGNEDVAL with the
MAXVALUE column value or MINVALUE column value.
MAXVALUE is used if the INCREMENT column value is
positive. MINVALUE is used if the INCREMENT column
value is negative.

• LOAD with REPLACE sets MAXASSIGNEDVAL to null
before loading any data.

• LOAD with FORMAT INTERNAL does not update
MAXASSIGNEDVAL if the data that is being loaded is in
basic row format.

The value is 0 if the row describes an alias.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

REMARKS VARCHAR(762)
NOT NULL

Character string provided by user with the COMMENT
statement. The value is blank for an identity column.

G

PRECISION SMALLINT
NOT NULL WITH
DEFAULT

The precision defined for a sequence with a decimal
or numeric type. The value is 5 for SMALLINT, 10
for INTEGER, 19 for BIGINT, or the actual precision
specified by the user for the decimal data type. The
value is 0 for rows created prior to Version 8.

The value is 0 if the row describes an alias.

G

RESTARTWITH DECIMAL(31,0)
NULLABLE WITH
DEFAULT

The sequence RESTART value for an ALTER SEQUENCE
statement.

The value is NULL for the following:

• There have been no ALTER statements with the
RESTART option.

• The row describes an alias

G

Appendix H. Db2 catalog tables 2645

Table 357. SYSIBM.SYSSEQUENCES table column descriptions (continued)

Column name Data type Description Use

OWNERTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner:
blank

Authorization ID
L

Role

G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object.
Blank if created prior to Version 9. See Release
dependency indicators for all other values.

G

SEQSCHEMA VARCHAR(128)
NOT NULL WITH
DEFAULT

For a sequence alias, identifies the schema of the
sequence for which the alias is defined. Otherwise, the
value is blank.

G

SEQNAME VARCHAR(128)
NOT NULL WITH
DEFAULT

For a sequence alias, identifies the name of the
sequence for which the alias is defined. Otherwise, the
value is blank.

G

SYSSEQUENCESDEP catalog table
The SYSSEQUENCESDEP table records the dependencies of identity columns and sequences. The schema
is SYSIBM.

Table 358. SYSIBM.SYSSEQUENCEDEP table column descriptions

Column name Data type Description Use

BSEQUENCEID INTEGER
NOT NULL

Internal identifier of the identity column or sequence. G

DCREATOR VARCHAR(128)
NOT NULL

The owner of the object that is dependent on this
identity column or sequence.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

DNAME VARCHAR(128)
NOT NULL

Name of the object that is dependent on this identity
column or sequence.

G

DCOLNAME VARCHAR(128)
NOT NULL

Name of the identity column. Blank for SQL function
rows.

G

2646 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 358. SYSIBM.SYSSEQUENCEDEP table column descriptions (continued)

Column name Data type Description Use

DTYPE CHAR(1)
NOT NULL
WITH DEFAULT
'I'

The type of object that is dependent on this sequence:
F

SQL function
I

Identity column
X

Implicit DOCID column that is created on a base
table with XML

blank
Represents an identity column created prior to
Version 8

G

BSCHEMA VARCHAR(128)
NOT NULL WITH
DEFAULT

The schema name of the sequence, will be a string of
length zero for an object created prior to Version 8.

G

BNAME VARCHAR(128)
NOT NULL WITH
DEFAULT

The sequence name (generated by Db2 for an identity
column), will be a string of length zero for an object
created prior to Version 8.

G

DSCHEMA VARCHAR(128)
NOT NULL WITH
DEFAULT

The qualifier of the object that is dependent on this
sequence, will be a string of length zero for an object
created prior to Version 8.

G

DOWNER VARCHAR(128)
NOT NULL WITH
DEFAULT

The owner of the object that is dependent on this
sequence. This will be a string of length zero for an
object that was created prior to Version 9.

G

DOWNERTYPE CHAR(1)
NOT NULL WITH
DEFAULT

The type of owner:
Blank

An authorization ID
L

A role

G

SYSSESSION catalog table
The SYSSESSION table stores the session token that generated by the server and associated session
data. The schema is SYSIBM.

Column name Data type Description Use

TOKEN CHAR(40) FOR BIT
DATA NOT NULL

Session token for the session.

CORRTKN VARCHAR(256) FOR
BIT DATA

Extended client correlation token in use.

GV_FLAGS CHAR(2) FOR BIT
DATA

Flags for internal classification of global variables (such
as whether it contains arrays or LOBs.)

Appendix H. Db2 catalog tables 2647

Column name Data type Description Use

TOTAL CHAR(4) FOR BIT
DATA NOT NULL

The number of entries in the SYSIBM.SYSSESSION_EX
table that correspond to the session token.

SPECIAL_REGISTERS VARCHAR(16000)
FOR BIT DATA NOT
NULL

Special register values (as chained SQLSTTs).

GLOBAL_VARIABLES BLOB(2G) global variable values(as GLBVRB). Arrays/lobs are
stores as locator values that reference a row in the
SYSIBM.SYSSESSION_EX table.

ROWID ROWID NOT NULL
GENERATED ALWAYS

Generated ROWID.

SYSSESSION_EX catalog table
The SYSSESSION_EX table contains global variable data of LOB or array type that corresponds to the
locator stored in the GLOBAL_VARIABLES column of the SYSSESSION table. The schema is SYSIBM.

Column name Data type Description Use

TOKEN CHAR(40) FOR BIT
DATA NOT NULL

Session token representing the session.

LOCATOR CHAR(8) FOR BIT
DATA NOT NULL

Locator value corresponding to one of the global
variables with DATATYPE as array of lobs.

HEADER CHAR(89) FOR BIT
DATA NOT NULL

Array static descriptor header when locator value
corresponds to array type.

GVID CHAR(8) FOR BIT
DATA NOT NULL

Global variable identifier.

DATATYPE CHAR(2) FOR BIT
DATA NOT NULL

Data type of the global variable.

CCSID CHAR(2) FOR BIT
DATA NOT NULL

CCSID of the global variable.

GVSCHEMA VARCHAR(130) FOR
BIT DATA

Schema name of the global variable.

GVNAME VARCHAR(130) FOR
BIT DATA

Name of the global variable.

DATA BLOB(2G) Data value stored in the global variable.

SYSSESSION_STATUS catalog table
The SYSSESSION_STATUS table contains session token and timestamp values for when the
corresponding session data was last referenced. The schema is SYSIBM.

Column name Data type Description Use

TOKEN CHAR(40) FOR BIT
DATA NOT NULL

Session token representing the session.

TOKEN_TS CHAR(16) FOR BIT
DATA NOT NULL

Timestamp value when row was last referenced.

2648 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

TOKEN_MEMBER CHAR(16) FOR BIT
DATA

Member where row was last accessed.

STATUS CHAR(2) FOR BIT
DATA

Status of session corresponding to the token (such as
timed-out/clean disconnect).

SYSSTATFEEDBACK catalog table
The SYSSTATFEEDBACK table contains information about missing or conflicting catalog statistics for SQL
statements. The schema is SYSIBM.

The following values control the collection of statistics feedback data in the SYSSTATFEEDBACK catalog
table:

• The STATFDBK_SCOPE subsystem parameter controls whether the data is collected, and whether it is
collected only for static SQL statements, only for dynamic SQL statements, or for both.

• The STATSINT subsystem parameter controls when and how frequently the data is externalized.
• The STATS_FEEDBACK column of the SYSTABLES catalog table controls whether the data is collected

for a particular table.

The RUNSTATS utility removes data from the SYSSTATFEEDBACK catalog table when the recommended
statistics are collected.

Tip: The SYSSTATFEEDBACK table might contain rows that recommend collection of statistics for DEFINE
NO objects, or empty table space partitions. However, statistics cannot be collected for such objects until
after data is inserted and the underlying data sets are created. For more information, see Effect of utilities
on objects that have the DEFINE NO attribute (Db2 Utilities).

Table 359. SYSIBM.SYSSTATFEEDBACK table column descriptions

Column name Data type Description Use

TBCREATOR VARCHAR(128) The creator of the table. S

TBNAME VARCHAR(128) The name of the table. S

IXCREATOR VARCHAR(128) The creator of the index. S

IXNAME VARCHAR(128) The name of the index. S

COLNAME VARCHAR(128) The name of the column. S

NUMCOLUMNS SMALLINT The number of columns in the column group. S

COLGROUPCOLNO VARCHAR(254) FOR
BIT DATA

A hex representation that identifies the set of columns
associated with the statistics. If the statistics are only
associated with a single column, the field contains
a zero length. Otherwise, the field is an array of
SMALLINT column numbers with a dimension equal to
the value in NUMCOLUMNS.

S

Appendix H. Db2 catalog tables 2649

https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_effectutldefineno.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_effectutldefineno.html

Table 359. SYSIBM.SYSSTATFEEDBACK table column descriptions (continued)

Column name Data type Description Use

TYPE CHAR(1) The type of statistic to collect:
'C'

Cardinality.
'F'

Frequency.
'H'

Histogram.
'I'

Index.
'T'

Table.

I

DBNAME VARCHAR(24) The name of the database. S

TSNAME VARCHAR(24) The name of the table space. S

REASON CHAR(8) The reason for the statistics collection
recommendation:
'BASIC'

A basic statistical value for a column table or index
is missing.

'CONFLICT'
Another statistic conflicts with this statistic.

'COMPFFIX'
Multi-column cardinality statistics are needed for an
index compound filter factor.

'DEFAULT'
A predicate references a value that is probably a
default value.

'KEYCARD'
The cardinalities of index key columns are missing.

'LOWCARD'
The cardinality of the column is a low value, which
indicates that data skew is likely.

'NULLABLE'
Distribution statistics are not available for a nullable
column.

'RNGPRED'
Histogram statistics are not available for a range
predicate.

'PARALLEL'
Parallelism could be improved by uniform
partitioning of key ranges.

'STALE'
A statistic appears likely to be out of sync with
other statistics, based on comparison of the time
that it was collected to statistics collection times for
related objects.

S

2650 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 359. SYSIBM.SYSSTATFEEDBACK table column descriptions (continued)

Column name Data type Description Use

BLOCK_RUNSTATS CHAR(1) Whether the row is used when optimization tools collect
statistics based on the recommendations. Db2 inserts a
blank value in this column for all new rows. Db2 does
not refer to or change the value of this column. This is
an updatable column.

S

REMARKS VARCHAR(254) Free form text for extensibility. S

LASTDATE DATE The last date that this statistics recommendation was
updated by Db2.

S

Related tasks
Applying statistics recommendations to statistics profiles automatically (Db2 Performance)
Controlling the collection of statistics feedback (Db2 Performance)
Maintaining Db2 database statistics (Db2 Performance)
Related reference
DSN_STAT_FEEDBACK (Db2 Performance)
Statistics used for access path selection (Db2 Performance)
STATISTICS FEEDBACK field (STATFDBK_SCOPE subsystem parameter) (Db2 Installation and Migration)
REAL TIME STATS field (STATSINT subsystem parameter) (Db2 Installation and Migration)
SYSTABLES catalog table
The SYSTABLES table contains one row for each table, view, or alias. The schema is SYSIBM. Each
SYSTABLES table row indicates whether the object that it describes is a table, view, or alias, its name,
who created it, the database that it belongs to, the table space it belongs to, and other information. The
SYSTABLES table also has a REMARKS column in which you can store your own information about the
table in question.
RUNSTATS (Db2 Utilities)

SYSSTMT catalog table
The SYSSTMT table contains one or more rows for each SQL statement of each DBRM. The schema is
SYSIBM.

Table 360. SYSIBM.SYSSTMT table column descriptions

Column name Data type Description Use

NAME VARCHAR(24)
NOT NULL

Name of the DBRM. G

PLNAME VARCHAR(24)
NOT NULL

Name of the application plan. G

PLCREATOR VARCHAR(128)
NOT NULL

Authorization ID of the owner of the application plan. G

SEQNO INTEGER
NOT NULL

Sequence number of this row with respect to a
statement of the plan.Rows in which the values of
SEQNO, STMTNO, and SECTNO are zero are for internal
use. The numbering starts with zero.

G

Appendix H. Db2 catalog tables 2651

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_applystatsprofilesauto.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_controlstatsfeeback.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_maintaincatalogstatistics.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_dsnstatfeedback.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_statistics4accesspathselection.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_statfdbkscope.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_statsint.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_runstats.html

Table 360. SYSIBM.SYSSTMT table column descriptions (continued)

Column name Data type Description Use

STMTNO SMALLINT
NOT NULL

The statement number of the statement in the source
program. A statement number greater than 32767 is
stored as zero. If the value is zero, see STMTNOI for the
statement number. Rows in which the values of SEQNO,
STMTNO, and SECTNO are zero are for internal use.

G

SECTNO SMALLINT
NOT NULL

The section number of the statement. Rows in which the
values of SEQNO, STMTNO, and SECTNO are zero are for
internal use.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

TEXT VARCHAR(3800)
NOT NULL
FOR BIT DATA

Text or portion of the text of the SQL statement. S

ISOLATION CHAR(1)
NOT NULL WITH
DEFAULT

Isolation level for the SQL statement:
R

RR (repeatable read)
T

RS (read stability)
S

CS (cursor stability)
U

UR (uncommitted read)
L

RS isolation, with a lock-clause
X

RR isolation, with a lock-clause
blank

The WITH clause was not specified on
this statement. The isolation level is
recorded in SYSPACKAGE.ISOLATION and in
SYSPLAN.ISOLATION.

G

2652 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 360. SYSIBM.SYSSTMT table column descriptions (continued)

Column name Data type Description Use

STATUS CHAR(1)
NOT NULL WITH
DEFAULT

Status of binding the statement:
A

Distributed - statement uses Db2 private protocol
access. The statement will be parsed and executed
at the server using defaults for input variables during
access path selection.

B
Distributed - statement uses Db2 private protocol
access. The statement will be parsed and executed
at the server using values for input variables during
access path selection.

C
Compiled - statement was bound successfully using
defaults for input variables during access path
selection.

D
Distributed - statement references a remote object
using a three-part name. Db2 will implicitly use
DRDA access either because the DBPROTOCOL bind
option was not specified (defaults to DRDA), or
the bind option DBPROTOCOL(DRDA) was explicitly
specified. This option allows the use of three-part
names with DRDA access but it requires that the
package be bound at the target remote site.

E
Explain - statement is an SQL EXPLAIN statement.
The explain is done at bind time using defaults for
input variables during access path selection.

F
Parsed - statement did not bind successfully and
VALIDATE(RUN) was used. The statement will be
rebound at execution time using values for input
variables during access path selection.

G
Compiled - statement bound successfully, but
REOPT is specified. The statement will be rebound
at execution time using values for input variables
during access path selection.

H
Parsed - statement is either a data definition
statement or a statement that did not bind
successfully and VALIDATE(RUN) was used. The
statement will be rebound at execution time
using defaults for input variables during access
path selection. Data manipulation statements use
defaults for input variables during access path
selection.

I
Indefinite - statement is dynamic. The statement
will be bound at execution time using defaults for
input variables during access path selection.

S

Appendix H. Db2 catalog tables 2653

Table 360. SYSIBM.SYSSTMT table column descriptions (continued)

Column name Data type Description Use

STATUS J
Indefinite - statement is dynamic. The statement
will be bound at execution time using values for
input variables during access path selection.

K
Control - CALL statement.

L
Bad - the statement has some allowable error.
The bind continues but the statement cannot be
executed.

M
Parsed - statement references a table that is
qualified with SESSION and was not bound because
the table reference could be for a declared
temporary table that will not be defined until the
package or plan is run. The SQL statement will be
rebound at execution time using values for input
variables during access path selection.

blank
The statement is non-executable, or was bound in a
Db2 release prior to Version 5.

ACCESSPATH CHAR(1)
NOT NULL WITH
DEFAULT

For static statements, indicates if the access path for the
statement is based on user-specified optimization hints.
A value of 'H' indicates that optimization hints were
used. A blank value indicates that the access path was
determined without the use of optimization hints, or that
there is no access path associated with the statement.

For dynamic statements, the value is blank.

G

STMTNOI INTEGER
NOT NULL WITH
DEFAULT

If the value of STMTNOI is not zero, the column contains
the statement number of the statement in the source
program.

G

SECTNOI INTEGER
NOT NULL WITH
DEFAULT

The section number of the statement. G

EXPLAINABLE CHAR(1)
NOT NULL WITH
DEFAULT

Contains one of the following values:
Y

Indicates that the SQL statement can be used
with the EXPLAIN function and might have rows
describing its access path in the owner.PLAN_TABLE.

N
Indicates that the SQL statement does not have
any rows describing its access path in the
owner.PLAN_TABLE.

blank
Indicates that the SQL statement was bound prior to
Version 7.

G

2654 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 360. SYSIBM.SYSSTMT table column descriptions (continued)

Column name Data type Description Use

QUERYNO INTEGER
NOT NULL WITH
DEFAULT –1

The query number of the SQL statement in the source
program. SQL statements bound prior to Version 7 have
a default value of –1. Statements bound in Version
7 or later use the value specified on the QUERYNO
clause on SELECT, UPDATE, INSERT, DELETE, EXPLAIN,
and DECLARE CURSOR statements. If the QUERYNO
clause is not specified, the query number is set to the
statement number.

G

PLCREATORTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of creator:
blank

Authorization ID
L

Role

G

SYSSTOGROUP catalog table
The SYSSTOGROUP table contains one row for each storage group. The schema is SYSIBM.

Column name Data type Description Use

NAME VARCHAR(128)
NOT NULL

Name of the storage group. G

CREATOR VARCHAR(128)
NOT NULL

Authorization ID of the owner of the storage group. G

VCATNAME VARCHAR(24)
NOT NULL

Name of the integrated catalog facility catalog. G

VPASSWORD VARCHAR(24)
NOT NULL

Not used. N

SPACE INTEGER
NOT NULL

Number of kilobytes of DASD storage allocated to the
storage group as determined by the last execution of the
STOSPACE utility.

G

SPCDATE CHAR(5)
NOT NULL

Not used. N

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

CREATEDBY VARCHAR(128)
NOT NULL WITH
DEFAULT

Primary authorization ID of the user who created the
storage group.

G

Appendix H. Db2 catalog tables 2655

Column name Data type Description Use

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If the STOSPACE utility was executed for the storage
group, date and time when STOSPACE was last
executed.

G

CREATEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the CREATE statement was executed for the
storage group.

G

ALTEREDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the most recent ALTER STOGROUP
statement was executed for the storage group. If
no ALTER STOGROUP statement has been applied,
ALTEREDTS has the value of CREATEDTS.

G

SPACEF FLOAT
NOT NULL WITH
DEFAULT

Kilobytes of DASD storage for the storage group. The
value is -1 if statistics have not been gathered. This is an
updatable column.

G

DATACLAS VARCHAR(24)
NOT NULL

Name of the SMS data class. Blank if data class is not
used.

G

MGMTCLAS VARCHAR(24)
NOT NULL

Name of the SMS management class. Blank if
management class is not used.

G

STORCLAS VARCHAR(24)
NOT NULL

Name of the SMS storage class. Blank if storage class is
not used.

G

CREATORTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of creator:
blank

Authorization ID
L

Role

G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object.
Blank if created prior to Version 9. See Release
dependency indicators for all other values.

G

FL 502 KEYLABEL VARCHAR(192) NOT
NULL WITH DEFAULT

The default key label that is used for encrypting all the
table spaces and index spaces using the storage group.
Otherwise the value is an empty string

SYSSTRINGS catalog table
The SYSSTRINGS table contains information about character conversion. Each row describes a conversion
from one coded character set to another. The schema is SYSIBM.

Also refer to Building and using Dynamic Link Libraries (DLLs) (XL C/C++ Programming Guide) for
information on the additional conversions that are supported.

Each row in the table must have a unique combination of values for its INCCSID, OUTCCSID, and
IBMREQD columns. Rows for which the value of IBMREQD is N can be deleted, inserted, and updated
subject to this uniqueness constraint and to the constraints imposed by a VALIDPROC defined on the
table. An inserted row could have values for the INCCSID and OUTCCSID columns that match those of a
row for which the value of IBMREQD is Y. Db2 then uses the information in the inserted row instead of
the information in the IBM-supplied row. Rows for which the value of IBMREQD is Y cannot be deleted,

2656 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cbcpx01/dllsim.htm

inserted, or updated. For information about the use of inserted rows for character conversion, see How an
entry in SYSIBM.SYSSTRINGS works with character conversion (Db2 Installation and Migration).

Db2 has two methods for character conversions and applies them in the following order:

1. Conversions specified by the various combinations of the INCCSID and OUTCCSID columns in the
SYSIBM.SYSSTRINGS catalog table.

2. Conversions provided by z/OS support for Unicode. For more information, see z/OS Unicode Services
User’s Guide and Reference.

If neither of these methods can be used for a particular character conversion, Db2 returns an error.

Table 361. SYSIBM.SYSSTRINGS table column descriptions

Column name Data type Description Use

INCCSID INTEGER
NOT NULL

The source CCSID for the character conversion
represented by this row. The value of the source CCSID
must be in the range of 1 to 65533 and must not be the
same as the value for the OUTCCSID column.

G

OUTCCSID INTEGER
NOT NULL

The target CCSID for the character conversion
represented by this row. The value of the target CCSID
must be in the range of 1 to 65533 and must not be the
same as the value for the INCCSID column.

G

TRANSTYPE CHAR(2)
NOT NULL

Indicates the nature of the conversion. Values can be:
GG

GRAPHIC to GRAPHIC
MM

EBCDIC MIXED to EBCDIC MIXED
MS

EBCDIC MIXED to SBCS
PM

ASCII MIXED to EBCDIC MIXED
PS

ASCII MIXED to SBCS
SM

SBCS to EBCDIC MIXED
SS

SBCS to SBCS
MP

EBCDIC MIXED to ASCII MIXED
PP

ASCII MIXED to ASCII MIXED
SP

SBCS to ASCII MIXED

G

ERRORBYTE CHAR(1)
FOR BIT DATA
(Nulls are allowed)

The byte used in the conversion table as an error byte.
Any non-null value that is specified for the ERRORBYTE
column must not be the same as the value that is
specified for the SUBBYTE column.

Null indicates the absence of an error byte.

S

Appendix H. Db2 catalog tables 2657

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_charconvertsysstrings.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_charconvertsysstrings.html
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/abstract.htm
https://www.ibm.com/docs/SSLTBW_3.1.0/com.ibm.zos.v3r1.cunu100/abstract.htm

Table 361. SYSIBM.SYSSTRINGS table column descriptions (continued)

Column name Data type Description Use

SUBBYTE CHAR(1)
FOR BIT DATA
(Nulls are allowed)

The byte used in the conversion table as a substitution
character. Any non-null value that is specified for the
SUBBYTE column must not be the same as the value
that is specified for the ERRORBYTE column.

Null indicates the absence of a substitution character.

S

TRANSPROC VARCHAR(24)
NOT NULL WITH
DEFAULT

The name of a module or blanks. A nonblank value must
conform to the rules for z/OS program names.

If IBMREQD is 'N', a nonblank value is the name
of a conversion procedure provided by the user.
The first five characters of the name of a user-
provided conversion procedure must not be 'DSNXV';
these characters are used to distinguish user-provided
conversion procedures from Db2 modules that contain
DBCS conversion tables.

If IBMREQD is 'Y', a nonblank value is the name of a Db2
module that contains DBCS conversion tables.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

TRANSTAB VARCHAR(256)
FOR BIT DATA
NOT NULL WITH
DEFAULT

Either a 256-byte conversion table or an empty (0
length) string.

S

SYSSYNONYMS catalog table
The SYSSYNONYMS table contains one row for each synonym of a table or view. The schema is SYSIBM.

Table 362. SYSIBM.SYSSYNONYMS table column descriptions

Column name Data type Description Use

NAME VARCHAR(128)
NOT NULL

Synonym for the table or view. G

CREATOR VARCHAR(128)
NOT NULL

Authorization ID of the owner of the synonym. G

TBNAME VARCHAR(128)
NOT NULL

Name of the table or view. G

TBCREATOR VARCHAR(128)
NOT NULL

The schema of the table or view. G

2658 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 362. SYSIBM.SYSSYNONYMS table column descriptions (continued)

Column name Data type Description Use

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

CREATEDBY VARCHAR(128)
NOT NULL WITH
DEFAULT

Primary authorization ID of the user who created the
synonym.

G

CREATEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the CREATE statement was executed for the
synonym. The value is '0001-01.01.00.00.00.000000'
for synonyms created in a Db2 release prior to Version 5.

G

CREATORTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of creator:
blank

Authorization ID
L

Role

G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object.
Blank if created prior to Version 9. See Release
dependency indicators for all other values.

G

SYSTABAUTH catalog table
The SYSTABAUTH table records the privileges that users hold on tables and views. The schema is
SYSIBM.

Column name Data type Description Use

GRANTOR VARCHAR(128)
NOT NULL

Authorization ID or role of the user who granted the
privileges. Could also be PUBLIC.

G

GRANTEE VARCHAR(128)
NOT NULL

Authorization ID or role of the user who holds the
privileges or the name of an application plan or
package that uses the privileges. PUBLIC for a grant
to PUBLIC.

G

GRANTEETYPE CHAR(1)
NOT NULL

Type of grantee:
blank

An authorization ID
L

Role
P

An application plan or a package. The grantee is a
package if COLLID is not blank.

G

Appendix H. Db2 catalog tables 2659

Column name Data type Description Use

DBNAME VARCHAR(24)
NOT NULL

If the privileges were received from a user with
DBADM, DBCTRL, or DBMAINT authority, DBNAME is
the name of the database on which the GRANTOR has
that authority. Otherwise, DBNAME is blank.

G

SCREATOR VARCHAR(128)
NOT NULL

If the row of SYSIBM.SYSTABAUTH was created as a
result of a CREATE VIEW statement, SCREATOR is the
schema of a table or view referred to in the CREATE
VIEW statement. Otherwise, SCREATOR is the same as
TCREATOR.

G

STNAME VARCHAR(128)
NOT NULL

If the row of SYSIBM.SYSTABAUTH was created as a
result of a CREATE TABLE statement or a materialized
query table, STNAME is the name of a table or view
referred to in the fullselect of the CREATE TABLE
statement.

G

TCREATOR VARCHAR(128)
NOT NULL

The schema of the table or view. G

TTNAME VARCHAR(128)
NOT NULL

Name of the table or view. G

AUTHHOWGOT CHAR(1)
NOT NULL
WITH DEFAULT

Authorization level of the user from whom the
privileges were received. This authorization level is
not necessarily the highest authorization level of the
grantor.
blank

Not applicable
B

System DBADM
C

DBCTRL
D

DBADM
E

SECADM
G

ACCESSCTRL
K

SQLADM
L

SYSCTRL
M

DBMAINT
S

SYSADM
T

DATAACCESS

G

2660 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

— CHAR(12)
NOT NULL

Internal use only. I

DATEGRANTED CHAR(6)
NOT NULL

Not used. N

TIMEGRANTED CHAR(8)
NOT NULL

Not used. N

UPDATECOLS CHAR(1)
NOT NULL

The value of this column is blank if the value of
UPDATEAUTH applies uniformly to all columns of
the table or view. The value is an asterisk (*) if
the value of UPDATEAUTH applies to some columns
but not to others. In this case, rows will exist in
SYSIBM.SYSCOLAUTH with matching timestamps and
PRIVILEGE = blank. These rows list the columns on
which update privileges have been granted.

G

ALTERAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can alter the table:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

DELETEAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can delete rows from the table
or view:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

INDEXAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can create indexes on the
table:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

Appendix H. Db2 catalog tables 2661

Column name Data type Description Use

INSERTAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can insert rows into the table
or view:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

SELECTAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can select rows from the table
or view:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

UPDATEAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can update rows of the table or
view:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values, see
Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

GRANTEELOCATION VARCHAR(128)
NOT NULL WITH
DEFAULT

Not used. N

LOCATION VARCHAR(128)
NOT NULL WITH
DEFAULT

Not used. N

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

If the GRANTEE is a package, its collection name.
Otherwise, the value is blank.

G

CONTOKEN CHAR(8)
NOT NULL WITH
DEFAULT
FOR BIT DATA

If the GRANTEE is a package, the consistency token
of the DBRM from which the package was derived.
Otherwise, the value is blank.

S

2662 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

CAPTUREAUTH CHAR(1)
NOT NULL WITH
DEFAULT

Not used. N

REFERENCESAUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE can create or drop referential
constraints in which the table is a parent.
blank

Privilege is not held
G

Privilege held with the GRANT option
Y

Privilege held without the GRANT option

G

REFCOLS CHAR(1)
NOT NULL WITH
DEFAULT

The value of this column is blank if the value of
REFERENCESAUTH applies uniformly to all columns
of the table. The value is an asterisk(*) if the
value of REFERENCESAUTH applies to some columns
but not to others. In this case, rows will exist
in SYSIBM.SYSCOLAUTH with PRIVILEGE = R and
matching timestamps that list the columns on which
reference privileges have been granted.

G

GRANTEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the GRANT statement was executed. G

TRIGGERAUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE can create triggers in which the
table is named as the subject table:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

GRANTORTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantor:
blank

Authorization ID
L

Role

G

SYS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW BEGIN

Reserved for future IBM use.The row-begin column
of the SYSTEM_TIME period, for system-period data
versioning.

G

SYS_END TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW END

Reserved for future IBM use.The row-end column
of the SYSTEM_TIME period, for system-period data
versioning.

G

Appendix H. Db2 catalog tables 2663

Column name Data type Description Use

TRANS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS TRANSACTION
START ID

Reserved for future IBM use. G

UNLOADAUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE can use the UNLOAD utility to
unload data:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

SYSTABCONST catalog table
The SYSTABCONST table contains one row for each unique constraint (primary key or unique key) created
in DB2 version 7 or later. The schema is SYSIBM.

Table 363. SYSIBM.SYSTABCONST table column descriptions

Column name Data type Description Use

CONSTNAME VARCHAR(128)
NOT NULL

Name of the constraint. G

TBCREATOR VARCHAR(128)
NOT NULL

The schema of the table on which the constraint is
defined.

G

TBNAME VARCHAR(128)
NOT NULL

Name of the table on which the constraint is defined. G

CREATOR VARCHAR(128)
NOT NULL

Authorization ID under which the constraint was
created.

G

TYPE CHAR(1)
NOT NULL

Type of constraint:
F

Foreign key
P

Primary key
U

Unique key

G

IXOWNER VARCHAR(128)
NOT NULL

The schema of the index enforcing the constraint or
blank if index has not been created yet.

G

IXNAME VARCHAR(128)
NOT NULL

Name of the index enforcing the constraint or blank if
index has not been created yet.

G

2664 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 363. SYSIBM.SYSTABCONST table column descriptions (continued)

Column name Data type Description Use

CREATEDTS TIMESTAMP
NOT NULL

Time when the statement to create the constraint was
executed.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

COLCOUNT SMALLINT
NOT NULL

Number of columns in the constraint. G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object.
Blank if created prior to DB2 9. See Release dependency
indicators for all other values.

G

SYSTABLEPART catalog table
The SYSTABLEPART table contains one row for each nonpartitioned table space and one row for each
partition of a partitioned table space. The schema is SYSIBM.

Column name Data type Description Use

PARTITION SMALLINT
NOT NULL

Partition number; 0 if table space is not partitioned. G

TSNAME VARCHAR(24)
NOT NULL

Name of the table space. G

DBNAME VARCHAR(24)
NOT NULL

Name of the database that contains the table space. G

IXNAME VARCHAR(128)
NOT NULL

Name of the partitioning index. This column is blank
unless the table uses index-controlled partitioning.

G

IXCREATOR VARCHAR(128)
NOT NULL

The schema of the partitioning index. This column
is blank unless the table uses index-controlled
partitioning.

G

Appendix H. Db2 catalog tables 2665

Column name Data type Description Use

PQTY INTEGER
NOT NULL

For user-managed data sets, the value is the primary
space allocation in units of 4 KB storage blocks or -1.

PQTY is based on a value of PRIQTY in the appropriate
CREATE or ALTER TABLESPACE statement. However,
unlike PQTY, PRIQTY asks for space in 1 KB units.

A value of -1 indicates that either of the following cases
is true:

• PRIQTY was not specified for a CREATE TABLESPACE
statement or for any subsequent ALTER TABLESPACE
statements.

• -1 was the most recently specified value for PRIQTY,
either on the CREATE TABLESPACE statement or a
subsequent ALTER TABLESPACE statement.

G

SQTY SMALLINT
NOT NULL

For user-managed data sets, the value is the secondary
space allocation in units of 4 KB storage blocks or -1.

SQTY is based on a value of SECQTY in the appropriate
CREATE or ALTER TABLESPACE statement. Unlike SQTY,
however, SECQTY asks for space in 1 KB units.

A value of -1 indicates that either of the following cases
is true:

• SECQTY was not specified for a CREATE TABLESPACE
statement or for any subsequent ALTER TABLESPACE
statements.

• -1 was the most recently specified value for SECQTY,
either on the CREATE TABLESPACE statement or a
subsequent ALTER TABLESPACE statement.

If the value does not fit into the column, the value of
the column is 32767. See the description of column
SECQTYI.

G

STORTYPE CHAR(1)
NOT NULL

Type of storage allocation:
E

Explicit (storage group not used)
I

Implicit (storage group used)

This column is not used for rows that represent catalog
table spaces. Catalog data sets are managed by Db2

G

STORNAME VARCHAR(128)
NOT NULL

Name of storage group used for space allocation. Blank
if storage group not used.

This column is not used for rows that represent catalog
table spaces. Catalog data sets are managed by Db2

G

VCATNAME VARCHAR(24)
NOT NULL

Name of integrated catalog facility catalog used for
space allocation.

This column is not used for rows that represent catalog
table spaces. Catalog data sets are managed by Db2

G

2666 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

CARD INTEGER
NOT NULL

Number of rows in the table space or partition or, if
the table space is a LOB table space, the number of
LOBs in the table space. The value is '2147483647'
if the number of rows is greater than or equal to
'2147483647'. The value is -1 if statistics were not
gathered.

G

FARINDREF INTEGER
NOT NULL

Number of rows that are relocated far from their original
page. The value is -1 if statistics were not gathered. Not
applicable if the table space is a LOB table space.

S

NEARINDREF INTEGER
NOT NULL

Number of rows that are relocated near their original
page. The value is -1 if statistics were not gathered. Not
applicable if the table space is a LOB table space.

S

PERCACTIVE SMALLINT
NOT NULL

Percentage of space occupied by rows of data from
active tables. The value is -1 if statistics were not
gathered. The value is -2 if the table space is a LOB table
space.

This value is not applicable for understanding data
distribution in tables that are organized for hash access.

S

PERCDROP SMALLINT
NOT NULL

Percentage of space that rows of dropped tables occupy.
The value is -1 if statistics were not gathered. The value
is 0 for segmented table spaces. Not applicable if the
table is an auxiliary table.

S

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

LIMITKEY VARCHAR(765)
NOT NULL

The high value of the partition in external format. If
the table space was converted from index-controlled
partitioning to table-controlled partitioning, the value is
the highest possible value for an ascending key, or the
lowest possible value for a descending key. If the table
is not in a partition-by-range table space, the value is an
empty string.

This column can contain a mixture of values with
differing formats:

• Date and time values are delimited by single quotation
marks (for example, '2001-01-01'). However, values
that were added before Db2 11 do not contain these
delimiters.

• When comma decimal point indicators are used, a
space follows any comma delimiter in the value. The
comma decimal point indicator is used when the
DECIMAL POINT IS field setting is ,(comma) or a
COBOL program that executes the ALTER statement
uses the COMMA processing option. No spaces
follow comma delimiters when period decimal point
indicators are used, or for values added before Db2
11.

S

Appendix H. Db2 catalog tables 2667

Column name Data type Description Use

FREEPAGE SMALLINT
NOT NULL

Number of pages loaded before a page is left as free
space.

G

PCTFREE SMALLINT
NOT NULL

Percentage of each page that is left as free space. G

CHECKFLAG CHAR(1)
NOT NULL WITH
DEFAULT

blank
The table space is not a partition, or does
not contain rows that might violate referential
constraints, check constraints, or both.

C
The table space partition is in a check-pending
status and the table contains rows that can violate
referential constraints, check constraints, or both.

D
The inline length of the LOB column that
is associated with this LOB table space was
decremented when the inline length was altered.

I
The inline length of the LOB column that
is associated with this LOB table space was
incremented when the inline length was altered.

G

CHECKRID CHAR(4)
NOT NULL WITH
DEFAULT
FOR BIT DATA

Not used. N

SPACE INTEGER
NOT NULL WITH
DEFAULT

Number of kilobytes of DASD storage that is allocated
to the table space partition, as determined by the last
execution of the STOSPACE utility or RUNSTATS utility.
0

The STOSPACE or RUNSTATS utility was not run.
-1

The table space was defined with the DEFINE NO
clause, which defers the physical creation of the
data sets until data is first inserted into one of the
partitions, and data has yet to be inserted.

-2
The value exceeds the maximum size for an integer
value. See the SPACEF column value.

Nonzero or nonnegative value
An auxiliary table in the LOB table space.

The STOSPACE utility updates this value if the table
space is related to a storage group. The RUNSTATS utility
updates this value when RUNSTATS TABLESPACE is run
with UPDATE(ALL) or UPDATE(SPACE).

G

2668 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

COMPRESS CHAR(1)
NOT NULL WITH
DEFAULT

• For a table space partition, indicates the COMPRESS
attribute for the partition.

• For a nonpartitioned table space, indicates the
COMPRESS attribute for the table space.

Values for the column can be:
Y

The table space or partition is defined to use
compression. If the table space is not a LOB table
space, the compression algorithm is determined by
the TS_COMPRESSION_TYPE subsystem parameter.

F
FL 509The table space or partition is defined to use
fixed-length compression.

H
FL 509The table space or partition is defined to use
Huffman compression.

blank
The table space or partition is not defined to use
compression.

G

PAGESAVE SMALLINT
NOT NULL WITH
DEFAULT

Percentage of pages that are saved in the table space
or partition as a result of defining the table space with
compression. For example, a value of 25 indicates a
savings of 25 percent, so that the pages required are
only 75 percent of what would be required without
data compression. The calculation includes overhead
bytes for each row, the bytes required for dictionary,
and the bytes required for the current FREEPAGE and
PCTFREE specification for the table space or partition.
This calculation is based on an average row length, and
the result varies depending on the actual lengths of the
rows. The value is 0 if there are no savings from using
data compression, or if statistics were not gathered. The
value can be negative, if for example, data compression
causes an increase in the number of pages in the data
set.

S

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The default
value is '0001-01-01-00.00.00.000000'. The default
value indicates that statistics were not collected. This
column can be updated.

G

Appendix H. Db2 catalog tables 2669

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html

Column name Data type Description Use

GBPCACHE CHAR(1)
NOT NULL WITH
DEFAULT

Group buffer pool cache option that is specified for this
table space or table space partition.
A

Changed and unchanged pages are cached in the
group buffer pool.

N
No data is cached in the group buffer pool.

S
Only changed system pages, such as space map
pages that do not contain actual data values, are
cached in the group buffer pool.

blank
Only changed pages are cached in the group buffer
pool.

G

CHECKRID5B CHAR(5)
NOT NULL WITH
DEFAULT
FOR BIT DATA

Blank if the table or partition is not in a check-pending
status (CHECKFLAG is blank), or if the table space is
not partitioned. Otherwise, the RID of the first row of
the table space partition that can violate referential
constraints, check constraints, or both; or the value
is X'0000000000', indicating that any row can violate
referential constraints.

S

TRACKMOD CHAR(1)
NOT NULL WITH
DEFAULT

Whether to track the page modifications in the space
map pages:
N

No
blank

Yes

This column is not applicable for LOB table spaces.

G

EPOCH INTEGER
NOT NULL WITH
DEFAULT

A number that increments whenever a utility operation
that changes the location of rows in a table occurs.

G

SECQTYI INTEGER
NOT NULL WITH
DEFAULT

Secondary space allocation in units of 4KB storage. For
user-managed data sets, the value is the secondary
space allocation in units of 4KB blocks.

G

CARDF FLOAT
NOT NULL WITH
DEFAULT -1

Number of rows in the table space or partition, or if the
table space is a LOB table space, the number of LOBs
in the table space. The value is -1 if statistics were not
gathered.

G

IPREFIX CHAR(1)
NOT NULL WITH
DEFAULT 'I'

The first character of the instance qualifier for the data
set name for the table space or partition. 'I' or 'J' are the
only valid characters for this field. The default is 'I'.

G

ALTEREDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the most recent ALTER TABLESPACE
statement was executed for the table space or partition.
If no ALTER TABLESPACE statement was applied, the
value is '0001-01-01.00.00.00.000000'.

G

2670 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

SPACEF FLOAT(8)
NOT NULL WITH
DEFAULT -1

DASD storage in KB. The value is -1 if statistics were not
gathered. The value might be nonzero for an auxiliary
table in the LOB table space. This column can be
updated.

G

DSNUM INTEGER
NOT NULL WITH
DEFAULT -1

Number of data sets. The value is -1 if statistics were not
gathered. This column can be updated.

G

EXTENTS INTEGER
NOT NULL WITH
DEFAULT -1

Number of data set extents. The value is -1 if statistics
were not gathered. This column can be updated. This
value is only for the last DSNUM for the object.

G

LOGICAL_PART SMALLINT
NOT NULL WITH
DEFAULT

The logical partition number (logical ascending or
descending order) for partitioned table spaces. The
physical partition number is kept in column PARTITION.
LOGICAL_PART is 0 for nonpartitioned table spaces.
For partitioned table spaces that were created before
Version 8, LOGICAL_PART is originally 0, but might be
changed later to a nonzero value by processes such as
conversion to table-controlled partitioning.

G

LIMITKEY_
INTERNAL

VARCHAR(512)
NOT NULL WITH
DEFAULT
FOR BIT DATA

The highest value of the limit key of the partition in
an internal format. If the table uses index-controlled
partitioning instead of table-controlled partitioning or
the table is not partitioned, the value is an empty string.
If the table space was converted from index-controlled
partitioning to table-controlled partitioning, the value
is the highest possible value for an ascending key, or
the lowest possible value for a descending key. If any
column of the key has a field procedure, the internal
format is the encoded form of the value.

S

OLDEST_VERSION SMALLINT
NOT NULL WITH
DEFAULT

The version number of the oldest format of data in the
table part and any image copies at the part level.

G

CREATEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the partition was created. G

AVGROWLEN INTEGER
NOT NULL WITH
DEFAULT -1

Average length of rows for the tables in the table
space or part. If the table space or part is compressed,
the value is the compressed row length. If the table
space or part is not compressed, the value is the
uncompressed row length. The value is -1 if statistics
were not gathered.

G

FORMAT CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the format of the rows in the table space or
partition:
R

Indicates reordered row format.
blank

Indicates basic row format or a LOB table space.

G

Appendix H. Db2 catalog tables 2671

Column name Data type Description Use

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the
object. Blank if created before Version 9. See Release
dependency indicators for all other values.

G

REORG_LR_TS TIMESTAMP
NOT NULL WITH
DEFAULT

The time when the REORG or LOAD REPLACE
utility last occurred. The default value is
'0001-01-01.00.00.00.000000'.

G

HASHSPACE BIGINT
NOT NULL WITH
DEFAULT

For partition-by-range (UTS) table spaces, the amount of
space, in KB, specified at the partition level to override
the space specification at the table level. If no override
is provided it is the same as the value of HASHSPACE in
the SYSIBM.SYSTABLEPSACE catalog table.

For partition-by-growth table spaces, this value is zero.

G

HASHDATAPAGES BIGINT
NOT NULL WITH
DEFAULT

For partition-by-range table spaces, the number of
hash data pages that correspond to the value of the
HASHSPACE column for each partition. The value is 0 for
table spaces that are changed to use hash access but
not reorganized.

For partition-by-growth table spaces, the value is zero.

G

RBA_FORMAT CHAR(1)
NOT NULL WITH
DEFAULT

The RBA and LRSN format for the page sets of the table
partition:
B

The page sets are still in the basic 6-byte format.
E

The page sets are converted to the extended 10-
byte format.

U
The format is undefined because DEFINE NO was
specified when the table space was created.

blank
The page sets are still in the basic 6-byte format,
the table partition was created before Db2 11 new-
function mode (NFM), and no utility that sets the
RBA_FORMAT value was run for the table partition in
Db2 11 NFM or higher.

G

PCTFREE_UPD SMALLINT
NOT NULL
WITH DEFAULT

The percentage of free space that is reserved for
updates to variable length records, as defined when the
object as created or altered.

G

PCTFREE_UPD_CALC SMALLINT
NOT NULL
WITH DEFAULT

The percentage of free space that is reserved for
updates to variable length records, which are calculated
by Db2 or utilities.

G

2672 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

TYPE CHAR(1)
WITH DEFAULT
NULL

The type of partition.
blank

The table space was created without the LOB or
MEMBER CLUSTER options. If the DSSIZE column
is zero, the table space is not greater than 64
gigabytes.

G
The table space was defined with the
MAXPARTITIONS option (a partitioned-by-growth
table space) with the underlying structure of a
universal table space.

L
The table space can be greater than 64 gigabytes.

O
The table space was defined with the LOB option
(the table space is a LOB table space).

P
Implicit table space created for XML columns.

R
partition-by-range table space.

This value might be NULL for table spaces that were
created before Db2 12. In that case, Db2 uses the value
from the SYSTABLESPACE.TYPE column.

G

PAGENUM CHAR(1)
NOT NULL
WITH DEFAULT
'A'

Format of pages for the table space and indexes created
on tables in the table space, indicating absolute or
relative page numbering.
A

Indicates absolute addressing so that PAGENUM
contains the embedded partition number.

R
Indicates relative addressing so that PAGENUM
contains only the relative page number.

G

BPOOL CHAR(8)
WITH DEFAULT
NULL

Name of the buffer pool used for the partition.

The value might be NULL for table spaces that were
created before Db2 12. In that case, Db2 uses the value
in the SYSTABLESPACE.BPOOL column.

G

PGSIZE SMALLINT
WITH DEFAULT
NULL

Size of pages in the table space in kilobytes.

The value might be NULL for table spaces that were
created before Db2 12. In that case, Db2 uses the value
in the SYSTABLESPACE.PGSIZE column.

G

DSSIZE INTEGER
WITH DEFAULT
NULL

Maximum size on a partitioned table space data set. 0
for a nonpartitioned table space.

The value might be NULL for table spaces that were
created before Db2 12. In that case, Db2 uses the value
in SYSTABLESPACE.DSSIZE column.

G

Appendix H. Db2 catalog tables 2673

Column name Data type Description Use

MEMBER_CLUSTER CHAR(1)
WITH DEFAULT
NULL

Indicates whether MEMBER CLUSTER is specified for the
table space.
Y

MEMBER CLUSTER is specified for the table space.
blank

MEMBER CLUSTER is not specified for the table
space.

The value might be NULL for table spaces that were
created before Db2 12. In that case, Db2 uses the value
in the SYSTABLESPACE.MEMBER_CLUSTER column.

G

COMPRESSRATIO SMALLINT
NOT NULL
WITH DEFAULT

Average percentage of bytes saved by compression on
each compressed data record in the partition when
the table space is defined with compression. This
calculation includes overhead bytes for each row. The
value is based on an average row length and varies
depending on the actual length of the data rows.

For example, a value of 25 indicates that the average
compressed record size is approximately 75% the size
of the uncompressed record.

The value is -1 or 0 in the following cases:
-1

This value is not collected.
0

No compression exists or the average compressed
record length is the same as or longer than the
uncompressed record length.

G

2674 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

FL 509
COMPRESS_USED

CHAR(1)
WITH DEFAULT
NULL

For a partitioned table space, this column indicates
whether the partition is compressed. If the partition is
compressed, the column indicates which compression
algorithm is used.

For a nonpartitioned table space, this column indicates
whether the table space is compressed. If the table
space is compressed, the column indicates which
compression algorithm is used.

In rare cases, this column is not updated when
compression occurs. For more information, see
Determining the effectiveness of compression (Db2
Performance).

F
Indicates that the table space or partition is
compressed with fixed-length compression

H
Indicates that the table space or partition is
compressed with Huffman compression

blank
If the table space is a LOB table space and
COMPRESS is Y, zEnterprise data compression
(zEDC) hardware manages compression, if the
hardware is available. Otherwise the table space or
partition is not compressed.

See Support for compressing LOB data (Db2 for z/OS
What's New?).

NULL
The object was created before catalog level
V12R1M509, and the value is unknown. The LOAD,
REORG, RUNSTATS, RECOVER, or REPAIR CATALOG
utility can be used to update this column for objects
with a COMPRESS_USED value of NULL.

G

SYSTABLEPART_HIST catalog table
The SYSTABLEPART_HIST table contains rows from the SYSTABLEPART table. The schema is SYSIBM.

Rows are added or changed in this table when RUNSTATS collects history statistics. Rows in this table can
also be inserted, updated, and deleted.

Table 364. SYSIBM.SYSTABLEPART_HIST table column descriptions

Column name Data type Description Use

PARTITION SMALLINT
NOT NULL

Partition number. 0 if table space is not partitioned. G

TSNAME VARCHAR(24)
NOT NULL

Name of the table space. G

Appendix H. Db2 catalog tables 2675

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_determinecompresseffect.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_determinecompresseffect.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_lobcompression.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_lobcompression.html

Table 364. SYSIBM.SYSTABLEPART_HIST table column descriptions (continued)

Column name Data type Description Use

DBNAME VARCHAR(24)
NOT NULL

Name of the database that contains the table space. G

PQTY INTEGER
NOT NULL

For user-managed data sets, the value is the primary
space allocation in units of 4 KB storage blocks or -1.

For user-specified values of PRIQTY other than -1,
the value is set to the primary space allocation
only if RUNSTATS TABLESPACE with UPDATE(ALL) or
UPDATE(SPACE) is executed; otherwise, the value is
zero. PQTY is based on a value of PRIQTY in the
appropriate CREATE or ALTER TABLESPACE statement.
Unlike PQTY, however, PRIQTY asks for space in 1 KB
units.

A value of -1 indicates that either of the following cases
is true:

• PRIQTY was not specified for a CREATE TABLESPACE
statement or for any subsequent ALTER TABLESPACE
statements.

• -1 was the most recently specified value for PRIQTY,
either on the CREATE TABLESPACE statement or a
subsequent ALTER TABLESPACE statement.

If a storage group is not used, the value is 0.

G

SECQTYI INTEGER
NOT NULL

For user-managed data sets, the value is the secondary
space allocation in units of 4 KB storage blocks or -1.

For user-specified values of SECQTY other than -1,
the value is set to the secondary space allocation
only if RUNSTATS TABLESPACE with UPDATE(ALL) or
UPDATE(SPACE) is executed; otherwise, the value is
zero. SQTY is based on a value of SECQTY in the
appropriate CREATE or ALTER TABLESPACE statement.
Unlike SQTY, however, SECQTY asks for space in 1 KB
units.

A value of -1 indicates that either of the following cases
is true:

• SECQTY was not specified for a CREATE TABLESPACE
statement or for any subsequent ALTER TABLESPACE
statements.

• -1 was the most recently specified value for SECQTY,
either on the CREATE TABLESPACE statement or a
subsequent ALTER TABLESPACE statement.

If a storage group is not used, the value is 0.

G

FARINDREF INTEGER
NOT NULL WITH
DEFAULT -1

Number of rows that have been relocated far from their
original page. The value is -1 if statistics have not been
gathered. Not applicable if the table space is a LOB table
space.

S

2676 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 364. SYSIBM.SYSTABLEPART_HIST table column descriptions (continued)

Column name Data type Description Use

NEARINDREF INTEGER
NOT NULL WITH
DEFAULT -1

Number of rows that have been relocated near their
original page. The value is -1 if statistics have not been
gathered. Not applicable if the table space is a LOB table
space.

S

PERCACTIVE SMALLINT
NOT NULL WITH
DEFAULT -1

Percentage of space occupied by rows of data from
active tables. The value is -1 if statistics have not been
gathered. The value is -2 if the table space is a LOB table
space.

S

PERCDROP SMALLINT
NOT NULL WITH
DEFAULT -1

Percentage of space occupied by rows of dropped
tables. The value is -1 if statistics have not been
gathered. The value is 0 for segmented table spaces.
Not applicable if the table is an auxiliary table.

S

SPACEF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of kilobytes of DASD storage allocated to the
table space partition. The value is -1 if statistics have
not been gathered.

G

PAGESAVE SMALLINT
NOT NULL

Percentage of pages saved in the table space or partition
as a result of defining the table space with compression.
For example, a value of 25 indicates a savings of 25
percent, so that the pages required are only 75 percent
of what would be required without data compression.

The calculation includes overhead bytes for each row,
the bytes required for dictionary, and the bytes required
for the current FREEPAGE and PCTFREE specification for
the table space or partition. This calculation is based on
an average row length, and the result varies depending
on the actual lengths of the rows.

The value is 0 if there are no savings from using data
compression, or if statistics have not been gathered. The
value can be negative, if for example, data compression
causes an increase in the number of pages in the data
set.

S

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The default
value is '0001-01-01-00.00.00.000000'. The default
value indicates that statistics were not collected. This
column can be updated.

G

CARDF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of rows in the table space or partition, or if the
table space is a LOB table space, the number of LOBS
in the table space. The value is '-1' if statistics have not
been gathered.

S

EXTENTS INTEGER
NOT NULL WITH
DEFAULT -1

Number of data set extents. The value is '-1' if statistics
have not been gathered. This value is only for the last
DSNUM for the object.

G

Appendix H. Db2 catalog tables 2677

Table 364. SYSIBM.SYSTABLEPART_HIST table column descriptions (continued)

Column name Data type Description Use

DSNUM INTEGER
NOT NULL WITH
DEFAULT -1

Data set number within the table space. For partitioned
table spaces, this value corresponds to the partition
number for a single partition copy, or 0 for a copy of an
entire partitioned table space or index space. The value
is '-1' if statistics have not been gathered.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

AVGROWLEN INTEGER
NOT NULL WITH
DEFAULT -1

Average length of rows for the tables in the table space
or part. If the table space or part is compressed, the
value is the compressed row length. If the table space or
part is not compressed, the value is the uncompressed
row length. The value is '-1' if statistics have not been
gathered.

G

SYSTABLES catalog table
The SYSTABLES table contains one row for each table, view, or alias. The schema is SYSIBM. Each
SYSTABLES table row indicates whether the object that it describes is a table, view, or alias, its name,
who created it, the database that it belongs to, the table space it belongs to, and other information. The
SYSTABLES table also has a REMARKS column in which you can store your own information about the
table in question.

For an example query for the SYSTABLES catalog table, see Retrieving catalog information about a table
(Db2 Administration Guide).

Table 365. SYSIBM.SYSTABLES table column descriptions

Column name Data type Description Use

NAME VARCHAR(128)
NOT NULL

Name of the table, view, or alias. G

CREATOR VARCHAR(128)
NOT NULL

The schema of the table, view, or alias. G

2678 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_retrievecatinfoaboutatable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_retrievecatinfoaboutatable.html

Table 365. SYSIBM.SYSTABLES table column descriptions (continued)

Column name Data type Description Use

TYPE CHAR(1)
NOT NULL

Type of object:
A

Alias
C

Clone table
D

Accelerator-only table
G

Created global temporary table
H

History table
M

Materialized query table
P

Table that was implicitly created for XML columns
R

Archive table
T

Table
V

View
X

Auxiliary table

G

DBNAME VARCHAR(24)
NOT NULL

For a table, or a view of tables, the name of the database
that contains the table space that is named in TSNAME.
For a created temporary table, an alias, or a view of a
view, the value is DSNDB06.

G

TSNAME VARCHAR(24)
NOT NULL

For a table, or a view of one table, the name of the table
space that contains the table. For a view of more than
one table, the name of a table space that contains one
of the tables. For a created temporary table, a view of a
view, or an alias, it is SYSTSTAB.

G

DBID SMALLINT
NOT NULL

Internal identifier of the database; 0 if the row describes
a view, alias, or created temporary table. Non-zero if the
view has an INSTEAD OF trigger defined.

S

OBID SMALLINT
NOT NULL

Internal identifier of the table; 0 if the row describes a
view, an alias, or a created temporary table. Non-zero if
the view has an INSTEAD OF trigger defined.

S

COLCOUNT SMALLINT
NOT NULL

Number of columns in the table or view. The value is 0 if
the row describes an alias.

G

EDPROC VARCHAR(24)
NOT NULL

Name of the edit procedure; blank if the row describes a
view or alias or a table without an edit procedure.

G

Appendix H. Db2 catalog tables 2679

Table 365. SYSIBM.SYSTABLES table column descriptions (continued)

Column name Data type Description Use

VALPROC VARCHAR(24)
NOT NULL

Name of the validation procedure; blank if the row
describes a view or alias or a table without a validation
procedure.

G

CLUSTERTYPE CHAR(1)
NOT NULL

Whether RESTRICT ON DROP applies:
blank

No
Y

Yes. You cannot drop the table or any table space or
database that contains the table.

G

 CLUSTERRID INTEGER
NOT NULL

1
The table is a system-period temporal table with
versioning, and the table is defined with the ON
DELETE ADD EXTRA ROW clause.

0
All other tables.

N

 CARD INTEGER
NOT NULL

Not used N

NPAGES INTEGER
NOT NULL

Total number of pages that include rows of the table.
The value is -1 if statistics have not been gathered, or
the row describes a view, an alias, a created temporary
table, an accelerator-only table, or an auxiliary table.
This column can be updated.

S

PCTPAGES SMALLINT
NOT NULL

Percentage of active table space pages that contain
rows of the table. A page is termed active if it is
formatted for rows, regardless of whether it contains
any. If the table space is segmented, the percentage
is based on the number of active pages in the set of
segments that are assigned to the table. The value
is -1 if statistics have not been gathered, or the row
describes a view, alias, created temporary table, an
accelerator-only table, or auxiliary table. This column
can be updated.

S

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

REMARKS VARCHAR(762)
NOT NULL

A character string that is provided by the user with the
COMMENT statement.

G

PARENTS SMALLINT
NOT NULL

Number of relationships in which the table is a
dependent. The value is 0 if the row describes a view, an
alias, a created temporary table, or a materialized query
table.

G

2680 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 365. SYSIBM.SYSTABLES table column descriptions (continued)

Column name Data type Description Use

CHILDREN SMALLINT
NOT NULL

Number of relationships in which the table is a parent.
The value is 0 if the row describes a view, an alias, a
created temporary table, or a materialized query table.

G

KEYCOLUMNS SMALLINT
NOT NULL

Number of columns in the primary key of the table. The
value is 0 if the row describes a view, an alias, or a
created temporary table.

G

RECLENGTH SMALLINT
NOT NULL

For user tables, the maximum length of any record in the
table. Length is 8+N+L, where:

• The number 8 accounts for the header (6 bytes) and
the ID map entry (2 bytes).

• N is 10 if the table has an edit procedure, or 0
otherwise.

• L is the sum of the maximum column lengths. In
determining the maximum length of a column, take
into account whether the column allows nulls and the
data type of the column. If the column can contain
nulls and is not a LOB or ROWID column, add 1 byte
for a null indicator. Use 4 bytes for the length of a
LOB column and 19 bytes for the length of a ROWID
column. If the column has a varying-length data type
(for example, VARCHAR, CLOB, or BLOB), add 2 bytes
for a length indicator. For more information about
column lengths, see “Data types” on page 98.

The value is 0 if the row describes a view, alias, or
auxiliary table. For maximum row and record sizes, see
the note on the maximum record size in “CREATE TABLE
statement” on page 1650.

G

STATUS CHAR(1)
NOT NULL

Indicates the status of the table definition:
I

The definition of the table is incomplete. The
TABLESTATUS column indicates the reason why the
table definition is incomplete.

R
An error occurred when an attempt was made to
regenerate the internal representation of the view.

X
The table has a unique constraint (primary key or
unique key) and the table definition is complete.

blank
The table has no unique constraint (primary key or
unique key), the table is a catalog table, or the row
describes a view or alias. The definition of the table,
view, or alias is complete.

G

KEYOBID SMALLINT
NOT NULL

Internal Db2 identifier of the index that enforces
uniqueness of the primary key of the table; 0 if not
applicable.

S

Appendix H. Db2 catalog tables 2681

Table 365. SYSIBM.SYSTABLES table column descriptions (continued)

Column name Data type Description Use

LABEL VARCHAR(90)
NOT NULL

The label as given by a LABEL statement; otherwise, the
value is an empty string.

G

CHECKFLAG CHAR(1)
NOT NULL
WITH DEFAULT

C
The table space that contains the table is in CHECK-
pending status. One of the following conditions is
true:

• There are rows in the table that violate referential
constraints, check constraints, or both

• The table is a materialized query table that might
contain inconsistent data

blank
Indicates one of the following conditions:

• The table contains no rows that violate referential
constraints, check constraints, or both

• The table is a materialized query table that
contains consistent data

• The row describes a view, an alias, or a temporary
table

G

 CHECKRID CHAR(4)
NOT NULL
WITH DEFAULT
FOR BIT DATA

A value of 'FFFFFF00' in this column indicates that the
edit procedure on this table is defined without row
attribute sensitivity. Any other value indicates that the
edit procedure is defined with row attribute sensitivity.

G

AUDITING CHAR(1)
NOT NULL
WITH DEFAULT

Value of the audit option:
A

AUDIT ALL
C

AUDIT CHANGE
blank

AUDIT NONE, or the row describes a view, an alias,
or a created temporary table.

G

CREATEDBY VARCHAR(128)
NOT NULL
WITH DEFAULT

Primary authorization ID of the user who created the
table, view, or alias.

G

LOCATION VARCHAR(128)
NOT NULL
WITH DEFAULT

Location name of the object of an alias. The value is
blank for a table, a view, an alias that was not defined
with a three-part object name, or a materialized query
table.

G

2682 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 365. SYSIBM.SYSTABLES table column descriptions (continued)

Column name Data type Description Use

TBCREATOR VARCHAR(128)
NOT NULL
WITH DEFAULT

• For an alias, the schema of the referenced table or
view

• For a base table that is involved in a clone relationship,
the name of the creator of the clone table

• For a clone table that is involved in a clone
relationship, the name of the creator of the base table

• Otherwise, TBCREATOR is blank

G

TBNAME VARCHAR(128)
NOT NULL
WITH DEFAULT

• For an alias, the name for the referenced table or view
• For a base table that is involved in a clone relationship,

the name of the clone table
• For a clone table that is involved in a clone

relationship, the name of the base table
• Otherwise, TBNAME is blank

G

CREATEDTS TIMESTAMP
NOT NULL
WITH DEFAULT

Time when the CREATE statement was executed for the
table, view, or alias

G

ALTEREDTS TIMESTAMP
NOT NULL
WITH DEFAULT

For a table, the time when the latest ALTER TABLE
statement was applied. If no ALTER TABLE statement
was applied, or if the row is for an alias, ALTEREDTS has
the value of CREATEDTS. For a view, the time when the
last ALTER VIEW REGENERATE statement was applied.

G

DATACAPTURE CHAR(1)
NOT NULL
WITH DEFAULT

Records the value of the DATA CAPTURE option for a
table:
blank

No
Y

Yes

For a created temporary table, DATACAPTURE is always
blank.

G

RBA1 CHAR(10)
NOT NULL
WITH DEFAULT
FOR BIT DATA

The log RBA when the table was created. Otherwise,
RBA1 is X'00000000000000000000', indicating that
the log RBA is not known, or that the object is a view,
an alias, or a created temporary table. In a data sharing
environment, RBA1 is the LRSN (Log Record Sequence
Number) value.

S

RBA2 CHAR(10)
NOT NULL
WITH DEFAULT
FOR BIT DATA

The log RBA when the table was last altered. Otherwise,
RBA2 is X'00000000000000000000' indicating that the
log RBA is not known, or that the object is a view, an
alias, or a created temporary table. RBA1 equals RBA2
if the table has not been altered. In a data sharing
environment, RBA2 is the LRSN (Log Record Sequence
Number) value.

S

Appendix H. Db2 catalog tables 2683

Table 365. SYSIBM.SYSTABLES table column descriptions (continued)

Column name Data type Description Use

PCTROWCOMP SMALLINT
NOT NULL
WITH DEFAULT

Percentage of rows that are compressed within the
total number of active rows in the table. This number
includes any row in a table space that is defined with
compression. The value is -1 if statistics have not been
gathered, or the row describes a view, alias, created
temporary table, an accelerator-only table, or auxiliary
table. This column can be updated.

S

STATSTIME TIMESTAMP
NOT NULL
WITH DEFAULT

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The default
value is '0001-01-01-00.00.00.000000'. The default
value indicates that statistics were not collected. This
column can be updated.

For a created temporary table, the value of STATSTIME
is always the default value.

G

CHECKS SMALLINT
NOT NULL
WITH DEFAULT

Number of check constraints that are defined on the
table. The value is 0 if either of the following conditions
are true:

• The row describes a view, an alias, a created
temporary table, or a materialized query table.

• No constraints are defined on the table.

G

CARDF FLOAT
NOT NULL
WITH DEFAULT -1

Total number of rows in the table or total number of
LOBs in an auxiliary table. The value is -1 if statistics
have not been gathered or the row describes a view,
alias, accelerator-only table, or created temporary table.
This column can be updated.

S

CHECKRID5B CHAR(5)
NOT NULL
WITH DEFAULT
FOR BIT DATA

RID of the first row of the table space partition that
can violate referential constraints, check constraints, or
both. The value of X'0000000000' indicates that any
row can violate referential constraints.

The value is blank if any of the following conditions are
true:

• The table or partition is not in CHECK-pending status
(CHECKFLAG is blank)

• The table space is not partitioned
• The table is a created temporary table

S

2684 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 365. SYSIBM.SYSTABLES table column descriptions (continued)

Column name Data type Description Use

ENCODING_SCHEME CHAR(1)
NOT NULL
WITH DEFAULT 'E'

Encoding scheme for a table, view, or the table or view
that is referred to by a local alias:
E

EBCDIC. This value is 'E' even if the table contains a
Unicode column.

A
ASCII

M
Multiple CCSID set or multiple encoding schemes

U
Unicode

blank
For remote aliases

The value is 'E' for tables in non-work file databases.
The value is blank for tables in work file databases
that were created before Version 5 or in the default
database, DSNDB04.

This column is not applicable for objects that were
created before Db2 for z/OS Version 5.

This field contains the default encoding scheme for table
columns for which a CCSID is not explicitly defined. The
ENCODING_SCHEME column in SYSIBM.SYSCOLUMNS
table contains the encoding schemes for columns for
which a CCSID is explicitly defined.

G

TABLESTATUS VARCHAR(30)
NOT NULL
WITH DEFAULT

Indicates the reason for an incomplete table definition:
F

The table lacks a required BUSINESS_TIME
WITHOUT OVERLAPS index on a foreign key.

L
An auxiliary table or auxiliary index has not been
defined for a LOB column.

P
The table lacks a primary index.

R
The table lacks a required index on a row ID.

U
The table lacks a required index on a unique key.

V
An error occurred when an attempt was made to
regenerate the internal representation of the view.

blank
Definition is complete.

G

NPAGESF FLOAT(8)
NOT NULL
WITH DEFAULT -1

Number of pages that are used by the table. The value is
-1 if statistics have not been gathered or the table is an
auxiliary table or accelerator-only table. This column can
be updated.

G

Appendix H. Db2 catalog tables 2685

Table 365. SYSIBM.SYSTABLES table column descriptions (continued)

Column name Data type Description Use

SPACEF FLOAT(8)
NOT NULL
WITH DEFAULT -1

Kilobytes of DASD storage. The value is -1 if statistics
have not been gathered. The value might be non-zero for
an auxiliary table in the LOB table space. This column
can be updated.

G

AVGROWLEN INTEGER
NOT NULL
WITH DEFAULT -1

Average length of rows for the tables in the table
space. If the table space is compressed, the value is
the compressed row length. If the table space is not
compressed, the value is the uncompressed row length.
The value is -1 if statistics have not been gathered.

G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object. See
Release dependency indicators for the values.

G

NUM_DEP_MQTS SMALLINT
NOT NULL
WITH DEFAULT

Number of dependent materialized query tables. The
value is zero if the row describes an alias or a created
temporary table, or if no materialized query tables are
defined on the table.

G

VERSION SMALLINT
NOT NULL
WITH DEFAULT

The version of the data row format for this table.

• A value of zero indicates that an alter operation that
creates a new version has never occurred for this
table.

• A value of -1 indicates that the view has been
regenerated because a column of the base table has
been altered.

• A value of 800 indicates that a successful CREATE
VIEW or ALTER VIEW statement has occurred against
this view in Version 8 or later.

• A value of 900 indicates that a successful ALTER
TABLE statement with a DROP COLUMN clause has
occurred against this view.

G

PARTKEYCOLNUM SMALLINT
NOT NULL
WITH DEFAULT

The number of columns in the partitioning key. This
value is zero for tables that do not have partitioning or
use index-controlled partitioning. The value is non-zero
for tables that use table-controlled partitioning.

G

SPLIT_ROWS CHAR(1)
NOT NULL
WITH DEFAULT

This column is blank except for volatile tables. For
volatile table, this column contains 'Y' to indicate to Db2
to use index access on this table whenever possible.

G

SECURITY_LABEL CHAR(1)
NOT NULL

This column is only meaningful if the TYPE column is a T
(for table) or M (for materialized query table). The value
indicates whether the table has multilevel security:
Blank

The table does not have multilevel security.
R

The table has multilevel security with row
granularity.

G

2686 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 365. SYSIBM.SYSTABLES table column descriptions (continued)

Column name Data type Description Use

OWNER VARCHAR(128)
NOT NULL
WITH DEFAULT

Authorization ID of the owner of the table, view, or alias.
This column is blank for tables, views, or aliases that
were created before Db2 for z/OSDB2 9.

G

APPEND CHAR(1)
NOT NULL
WITH DEFAULT

Indicates whether the APPEND option is specified for
the table.
Y

The APPEND option is specified.
N

The APPEND option is not specified.

G

OWNERTYPE CHAR(1)
NOT NULL
WITH DEFAULT

Indicates the type of owner:
blank

Authorization ID
L

Role

G

CONTROL CHAR(1)
NOT NULL
WITH DEFAULT

Indicates whether access to the table is enforced by
using row or column access control:
blank

No access control enforcement
B

The table is enforced by using both row and column
access control

C
The table is enforced by using column access control

R
The table is enforced by using row access control

G

VERSIONING
_SCHEMA

VARCHAR(128)
NOT NULL
WITH DEFAULT

Indicates the schema name of the history table if the
table is a system-period temporal table with versioning.
Indicates the schema name of the system-period
temporal table if the table is a history table. Otherwise,
the value is blank.

G

VERSIONING
_TABLE

VARCHAR(128)
NOT NULL
WITH DEFAULT

Indicates the table name of the history table if the
table is a system-period temporal table with versioning.
Indicates the table name of system-period temporal
table if the table is a history table. Otherwise, the value
is blank.

G

HASHKEYCOLUMNS SMALLINT
NOT NULL
WITH DEFAULT

The number of columns in the hash key of the table.
The value is 0 if the row describes a view, an alias, or a
created temporary table.

G

Appendix H. Db2 catalog tables 2687

Table 365. SYSIBM.SYSTABLES table column descriptions (continued)

Column name Data type Description Use

ARCHIVING_
SCHEMA

VARCHAR(128)
NOT NULL
WITH DEFAULT

Contains a schema name as follows:

• If the table is an archive-enabled table, this column
contains the schema name of the archive table.

• If the table is an archive table, this column contains
the schema name of the archive-enabled table.

• If the table is not an archive-enabled table or an
archive table, the value is blank.

G

ARCHIVING
_TABLE

VARCHAR(128)
NOT NULL
WITH DEFAULT

Contains a table name as follows:

• If the table is an archive-enabled table, this column
contains the table name of the archive table.

• If the table is an archive table, this column contains
the table name of the archive-enabled table.

• If the table is not an archive-enabled table or an
archive table, the value is blank.

G

STATS_FEEDBACK CHAR (1)
NOT NULL
WITH DEFAULT

When a query qualifies for statistics collection based
on DSNZPARM STATFDBK_SCOPE, this column controls
whether statistics recommendations for this table are
placed in SYSIBM.SYSSTATFEEDBACK. You can update
this flag to 'Y' or 'N' to enable or disable collection for
the table. The default value is 'Y'.

G

REGENERATETS TIMESTAMP(12) NOT
NULL

The time when the object was regenerated. The value
is valid only for objects that can be regenerated. If
no regeneration has occurred, this column contains the
same value as the CREATEDTS column.

G

FL 502 KEYLABEL VARCHAR(192) NOT
NULL WITH DEFAULT

The key label that is specified at the table level.
Otherwise, the value is an empty string.

SYSTABLESPACE catalog table
The SYSTABLESPACE table contains one row for each table space. The schema is SYSIBM.

Column name Data type Description Use

NAME VARCHAR(24)
NOT NULL

Name of the table space. G

CREATOR VARCHAR(128)
NOT NULL

Authorization ID of the owner of the table space. G

DBNAME VARCHAR(24)
NOT NULL

Name of the database that contains the table space. G

DBID SMALLINT
NOT NULL

Internal identifier of the database which contains the
table space.

S

2688 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html

Column name Data type Description Use

OBID SMALLINT
NOT NULL

Internal identifier of the table space file descriptor. S

PSID SMALLINT
NOT NULL

Internal identifier of the table space page set descriptor. S

BPOOL CHAR(8)
NOT NULL

Name of the buffer pool used for the table space. G

PARTITIONS SMALLINT
NOT NULL

Number of partitions of the table space; 0 if the table
space is not partitioned.

G

LOCKRULE CHAR(1)
NOT NULL

Lock size of the table space:
A

Any
L

Large object (LOB)
P

Page
R

Row
S

Table space
T

Table
X

implicitly created XML table space

G

PGSIZE SMALLINT
NOT NULL

Size of pages in the table space in kilobytes. G

ERASERULE CHAR(1)
NOT NULL

Whether the data sets are to be erased when dropped.
The value is meaningless if the table space is a partition-
by-range table space.
N

No erase
Y

Erase

G

Appendix H. Db2 catalog tables 2689

Column name Data type Description Use

STATUS CHAR(1)
NOT NULL

Availability status of the table space:
A

Available
C

Definition is incomplete because the table space
does not use table-controlled partitioning and a
partitioning index has not been created.

P
Table space is in a check pending status.

S
Table space is in a check pending status with the
scope less than the entire table space.

T
Definition is incomplete because no table has been
created.

G

IMPLICIT CHAR(1)
NOT NULL

Whether the table space was created implicitly:
N

No
Y

Yes

G

NTABLES SMALLINT
NOT NULL

Number of tables defined in the table space. G

NACTIVE INTEGER
NOT NULL

Number of active pages in the table space. A page
is termed active if it is formatted for rows, even if it
currently contains none. The value is 0 if statistics have
not been gathered. This is an updatable column.

S

 VARCHAR(24)
NOT NULL

Not used N

CLOSERULE CHAR(1)
NOT NULL

Whether the data sets are candidates for closure when
the limit on the number of open data sets is reached.
N

No
Y

Yes

G

SPACE INTEGER
NOT NULL

Number of kilobytes of DASD storage allocated to the
table space, as determined by the last execution of the
STOSPACE utility. The value is 0 if the table space is not
related to a storage group, or if STOSPACE has not been
run. If the table space is partitioned, the value is the
total kilobytes of DASD storage allocated to all partitions
that are storage group defined.

G

2690 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

If ALTER TABLESPACE changes the DSSIZE value to
128G or 256G, this column value is changed to O, which
is the release dependency indicator for Version 10.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

— VARCHAR(54)
NOT NULL

Internal use only. I

— VARCHAR(24)
NOT NULL

Internal use only. I

SEGSIZE SMALLINT
NOT NULL WITH
DEFAULT

Number of pages in each segment of a segmented
table space. The value is 0 if the table space is not
segmented.

G

CREATEDBY VARCHAR(128)
NOT NULL WITH
DEFAULT

Primary authorization ID of the user who created the
table space.

G

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The default
value is '0001-01-01-00.00.00.000000'. The default
value indicates that statistics were not collected. This
column can be updated.

G

LOCKMAX INTEGER The maximum number of locks per user to acquire for
the table or table space before escalating to the next
locking level.
0

Lock escalation does not occur.
n

n, where n > 0, is the maximum number of locks
(row, page, or LOB locks for the table or table
space) an application process can acquire before
lock escalation occurs.

-1
FL 507

Indicates that LOCKMAX SYSTEM is in effect for the
table space.

G

Appendix H. Db2 catalog tables 2691

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html

Column name Data type Description Use

TYPE CHAR(1)
NOT NULL WITH
DEFAULT

The type of table space:
G

Partition-by-growth table space (PBG UTS)
R

Partition-by-range table space (PBR UTS)
O

LOB table space
P

XML table space
L

Partitioned (non-UTS) table space created with the
LARGE option (deprecated)

blank
One of the following deprecated types:

• Partitioned (non-UTS) table space
• Segmented (non-UTS) table space
• Simple table space

G

CREATEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the CREATE statement was executed for
the table space. If the table space was created
in a Db2 release prior to Version 5, the value is
'0001-01-01.00.00.00.000000'.

G

ALTEREDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the most recent ALTER TABLESPACE
statement was executed for the table space. If no ALTER
TABLESPACE statement has been applied, ALTEREDTS
has the value of CREATEDTS. If the index was created
in a Db2 release prior to Version 5, the value is
'0001-01-01.00.00.00.000000'.

G

ENCODING_SCHEME CHAR(1)
NOT NULL WITH
DEFAULT 'E'

Default encoding scheme for the table space:
E

EBCDIC
A

ASCII
U

Unicode
blank

For table spaces in a work file database or a TEMP
database (a database that was created AS TEMP,
which is for declared temporary tables.)

The value is 'E' for tables in non work file databases and
blank for tables in work file databases created prior to
Version 5 or the default database, DSNDB04.

G

SBCS_CCSID INTEGER
NOT NULL WITH
DEFAULT

Default SBCS CCSID for the table space. For a table
space in a work file database, a TEMP database, or a
database created in a Db2 release prior to Version 5, the
value is 0.

G

2692 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

DBCS_CCSID INTEGER
NOT NULL WITH
DEFAULT

Default DBCS CCSID for the table space. For a table
space in a work file database, a TEMP database, or a
database created in a Db2 release prior to Version 5, the
value is 0.

G

MIXED_CCSID INTEGER
NOT NULL WITH
DEFAULT

Default mixed CCSID for the table space. For a table
space in a work file database, a TEMP database, or a
database created in a Db2 release prior to Version 5, the
value is 0.

G

MAXROWS SMALLINT
NOT NULL
DEFAULT 255

The maximum number of rows that Db2 will place on
a data page. The default value is 255. For a LOB table
space, the value is 0 to indicate that the column is not
applicable.

G

LOCKPART CHAR(1)
NOT NULL WITH
DEFAULT

Not used. N

LOG CHAR(1)
NOT NULL WITH
DEFAULT 'Y'

Whether the changes to a table space are to be logged.
N

This table space has the NOT LOGGED attribute.
Undo and redo logging for the table space and all
indexes for tables in the table space is suppressed.
Logging is also suppressed for the auxiliary indexes
for all auxiliary tables associated with tables in the
table space.

Y
This table space has the LOGGED attribute. Normal
logging is associated with modifications to this table
space, all indexes for tables in this table space,
and all auxiliary indexes for all auxiliary tables
associated with tables in the table space.

X
This LOB or XML table space has the NOT LOGGED
attribute. Undo and redo logging for the table space
is suppressed. Also, the logging attribute for this
LOB or XML table space is linked to the logging
attribute of the associated base table space and
might not be able to be altered independently. If the
logging attribute of the base table space is altered
to LOGGED, the logging attribute of the LOB or XML
table space will also be altered to LOGGED.

G

NACTIVEF FLOAT
NOT NULL WITH
DEFAULT -1

Number of active pages in the table space. A page
is termed active if it is formatted for rows, even if it
currently contains none. The value is -1 if statistics have
not been gathered. This is an updatable column.

S

DSSIZE INTEGER
NOT NULL WITH
DEFAULT

Maximum size of a data set in kilobytes. The value might
be 0 if the table space was created prior to DB2 10,
but will contain the actual value after the table space is
converted to a partitioned by growth table space.

G

Appendix H. Db2 catalog tables 2693

Column name Data type Description Use

OLDEST_VERSION SMALLINT
NOT NULL WITH
DEFAULT

The version number of the oldest format of data in the
table space and any image copies.

G

CURRENT_VERSION SMALLINT
NOT NULL WITH
DEFAULT

The version number describing the newest format of
data in the table space. A zero indicates that the
table space has never had versioning. After the version
number reaches the maximum value, the number wraps
back to one.

G

AVGROWLEN INTEGER
NOT NULL WITH
DEFAULT -1

Average length of rows for the tables in the table space
or part. If the table space or part is compressed, the
value is the compressed row length. If the table space or
part is not compressed, the value is the uncompressed
row length. The value is -1 if statistics have not been
gathered.

G

SPACEF FLOAT
NOT NULL WITH
DEFAULT

Kilobytes of DASD storage for the storage group. The
value is -1 if statistics have not been gathered. This is an
updatable column.

G

CREATORTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of creator:
blank

Authorization ID
L

Role

G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object.
Blank if created prior to DB2 9. See Release dependency
indicators for all other values.

G

INSTANCE SMALLINT
NOT NULL WITH
DEFAULT

INSTANCE indicates the data set instance number of the
current base object (table and index).

G

CLONE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates whether the table space contains any objects
that are involved in a clone relationship:
Y

Table space contains objects that are involved in a
clone relationship

N
Table space does not contain any objects that are
involved in a clone relationship

G

MAXPARTITIONS SMALLINT
NOT NULL WITH
DEFAULT

Identifies the maximum number of partitions to which
the table space can grow. 0 if the table space is not a
partition-by-growth table space.

G

2694 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

MEMBER_CLUSTER CHAR(1)
NOT NULL WITH
DEFAULT

Whether MEMBER CLUSTER is specified for the table
space:
Y

MEMBER CLUSTER is specified for the table space
blank

MEMBER CLUSTER is not specified for the table
space

G

ORGANIZATIONTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Type of table space organization:
blank

Not known. Blank is the default.
H

Hash organization

G

HASHSPACE BIGINT
NOT NULL WITH
DEFAULT

The amount of space, in KB, that is to be allocated to
the table space or partition as hash space. For partition-
by-growth table spaces, the space applies to the whole
table space. For partition-by-range table spaces, the
space is applicable for each partition.

G

HASHDATAPAGES BIGINT
NOT NULL WITH
DEFAULT

The total number of hash data pages to preallocate for
hash space. For partition-by-growth table spaces, this
includes all pages in the fixed part of the table space.
For partition-by-range table spaces, this is the number
of pages in the fixed hash space in each partition
unless it is overridden by providing hash space at the
partition level. This is calculated by Db2 from the value
specified with the HASH SPACE option or when the
REORG utility is run with automatic estimation of space.
The calculated value is used in the hash algorithm. The
value is 0 for non-hash table spaces. The value is also 0
for table spaces which have been changed to use hash
access but have not been reorganized.

G

PAGENUM CHAR(1)
NOT NULL
WITH DEFAULT
'A'

Format of pages for the table space and indexes created
on tables in the table space, indicating absolute or
relative page numbering.
A

Indicates absolute addressing so that PAGENUM
contains the embedded partition number.

R
Indicates relative addressing so that PAGENUM
contains only the relative page number.

G

Appendix H. Db2 catalog tables 2695

Column name Data type Description Use

INSERTALG SMALLINT NOT NULL
WITH DEFAULT

The insert algorithm level for tables in this table space.
0

The insert algorithm level for tables
in this table space is determined by
the DEFAULT_INSERT_ALGORITHM subsystem
parameter. 0 is the default value.

1
The insert algorithm level for tables in this table
space is the basic insert algorithm.

2
The insert algorithm level for tables in this table
space is the fast insert algorithm when the MEMBER
CLUSTER option is specified.

PQTY INTEGER WITH
DEFAULT NULL

For user-managed data sets, the value is the primary
space allocation in units of 4 KB storage blocks or -1.

PQTY is based on a value of PRIQTY in the appropriate
CREATE or ALTER TABLESPACE statement. Unlike PQTY,
however, PRIQTY accepts space in 1 KB units.

A value of -1 indicates that one of the following cases is
true:

• PRIQTY was not specified for a CREATE TABLESPACE
statement or for any subsequent ALTER TABLESPACE
statements.

• -1 was the most recently specified value for PRIQTY,
either on the CREATE TABLESPACE statement or a
subsequent ALTER TABLESPACE statement.

This column contains the null value when the value is
unknown for objects created prior to Db2 12.

STORTYPE CHAR(1) WITH
DEFAULT NULL

Type of storage allocation:
E

Explicit (storage group not used)
I

Implicit (storage group used)

This column is not used for rows representing catalog
table spaces. Catalog data sets are managed by Db2

This column contains the null value when the value is
unknown for objects created prior to Db2 12.

STORNAME VARCHAR(128) WITH
DEFAULT NULL

Name of storage group used for space allocation. Blank
if storage group not used.

This column is not used for rows representing catalog
table spaces. Catalog data sets are managed by Db2

This column contains the null value when the value is
unknown for objects created prior to Db2 12.

2696 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

VCATNAME VARCHAR(24) WITH
DEFAULT NULL

Name of integrated catalog facility catalog used for
space allocation.

This column is not used for rows representing catalog
table spaces. Catalog data sets are managed by Db2

This column contains the null value when the value is
unknown for objects created prior to Db2 12.

FREEPAGE SMALLINT WITH
DEFAULT NULL

Number of pages loaded before a page is left as free
space.

This column contains the null value when the value is
unknown for objects created prior to Db2 12.

PCTFREE SMALLINT WITH
DEFAULT NULL

Percentage of each page left as free space.

This column contains the null value when the value is
unknown for objects created prior to Db2 12.

COMPRESS CHAR(1) WITH
DEFAULT NULL

Indicates the COMPRESS attribute for the table space.

The following values are valid for the column:

Y
The table space is defined to use compression.
If the table space is not a LOB table space,
the compression algorithm is determined by the
TS_COMPRESSION_TYPE subsystem parameter.

F
FL 509The table space or partition is defined to use
fixed-length compression

H
FL 509The table space or partition is defined to use
Huffman compression

blank
The table space or partition is not defined to use
compression.

This column contains the null value when the value is
unknown for objects created prior to Db2 12.

G

Appendix H. Db2 catalog tables 2697

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html

Column name Data type Description Use

GBPCACHE CHAR(1) WITH
DEFAULT NULL

Group buffer pool cache option specified for this table
space or table space partition.
A

Changed and unchanged pages are cached in the
group buffer pool.

N
No data is cached in the group buffer pool.

S
Only changed system pages, such as space map
pages that do not contain actual data values, are
cached in the group buffer pool.

Blank
Only changed pages are cached in the group buffer
pool.

This column contains the null value when the value is
unknown for objects created prior to Db2 12.

TRACKMOD CHAR(1) WITH
DEFAULT NULL

Whether to track the page modifications in the space
map pages:
N

No
blank

Yes

This column contains the null value when the value is
unknown for objects created prior to Db2 12.

This column is not applicable for LOB table spaces.

SECQTYI INTEGER WITH
DEFAULT NULL

Secondary space allocation in units of 4 KB storage.
For user-managed data sets, the value is the secondary
space allocation in units of 4 KB blocks.

This column contains the null value when the value is
unknown for objects created prior to Db2 12.

PCTFREE_UPD SMALLINT WITH
DEFAULT NULL

The percentage of free space that is reserved for
updates to variable length records, as defined when the
object as created or altered.

This column contains the null value when the value is
unknown for objects created prior to Db2 12.

PCTFREE_UPD_CALC SMALLINT WITH
DEFAULT NULL

The percentage of free space that is reserved for
updates to variable length records, calculated by Db2
or utilities.

This column contains the null value when the value is
unknown for objects created prior to Db2 12.

2698 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

COMPRESSRATIO SMALLINT
NOT NULL
WITH DEFAULT

Average percentage of bytes saved by compression
on each compressed data record in the table space
when the table space is defined with compression. This
calculation includes overhead bytes for each row. The
value is based on an average row length and varies
depending on the actual length of the data rows.

For example, a value of 25 indicates that the average
compressed record size is approximately 75% the size
of the uncompressed record.

The value is -1 or 0 in the following cases:
-1

This value has not been collected
0

No compression exists or the average compressed
record length is the same as or longer than the
uncompressed record length.

G

FL 502 KEYLABEL VARCHAR(192) NOT
NULL WITH DEFAULT

The key label that is specified at the table level.
Otherwise, the value is an empty string.

SYSTABLESPACESTATS catalog table
The SYSTABLESPACESTATS table contains real time statistics for table spaces. The schema is SYSIBM.

Rows in this table can be inserted, updated, and deleted. However, the following columns cannot be
updated: SYS_START, SYS_END, and TRANS_START.

Important: Use care when issuing SQL statements or using tools to update statistics values in catalog
tables. If such updates introduce invalid data, unpredictable results can occur, including abends for
RUNSTATS and other utilities. If such problems occur, you can run the RUNSTATS utility and collect
statistics at the table space level to resolve the problems, in most cases.

In data sharing environments, the values in SYSIBM.SYSTABLESPACESTATS can be negative for short
periods of time for certain situations.

Column name Data type Description Use

UPDATESTATSTIME TIMESTAMP
NOT NULL
WITH DEFAULT

The timestamp that the row in the
SYSTABLESPACESTATS table is inserted or
updated.

G

NACTIVE INTEGER The number of active pages in the table space
or partition.

G

NPAGES INTEGER The number of distinct pages with active rows in
the partition or table space. This is an updatable
column.

This column can be used to calculate an
estimate of the size of LOB data in a table space.
To produce an estimate, use the following
formula:

value of NPAGES * page size =
 approximate size of LOB data

G

Appendix H. Db2 catalog tables 2699

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html

Column name Data type Description Use

EXTENTS SMALLINT The number of extents in the table space.
For multi-piece table spaces, this value is the
number of extents for the last data set. For a
data set that is striped across multiple volumes,
the value is the number of logical extents. A
null value indicates the number of extents is
unknown.

G

LOADRLASTTIME TIMESTAMP The timestamp that the LOAD REPLACE utility
was last run on the table space or partition.

A null value indicates that the LOAD REPLACE
utility has never been run on the table space or
partition or that the timestamp is unknown.

G

REORGLASTTIME TIMESTAMP The timestamp the REORG utility was last run
on the table space or partition, or when the
REORG utility has not been run, the time when
the table space or partition was created. A null
value indicates that the timestamp is unknown.

G

REORGINSERTS INTEGER The number of rows or LOBs that have been
inserted into the table space or partition or
loaded into the table space or partition using
the LOAD utility specified without the REPLACE
option since the last time the REORG or LOAD
REPLACE utilities were run, or since the object
was created.

A null value indicates that the number of
inserted rows or LOBs is unknown.

If the value is 2147483647, the actual number
of inserted rows or LOBs might be greater than
this value.

G

REORGDELETES INTEGER The number of rows or LOBs that have been
deleted from the table space or partition since
the last time the REORG or LOAD REPLACE
utilities were run, or since the object was
created.

A null value indicates that the number of
deleted rows or LOBs is unknown.

If the value is 2147483647, the actual number
of deleted rows or LOBs might be greater than
this value.

G

REORGUPDATES INTEGER The number of rows that have been updated in
the table space or partition since the last time
the REORG or LOAD REPLACE utilities were run,
or since the object was created.

A null value indicates that the number of
updated rows is unknown.

If the value is 2147483647, the actual number
of updated rows or LOBs might be greater than
this value.

G

2700 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

REORGUNCLUSTINS INTEGER The number of rows that were inserted that are
not well-clustered with respect to the clustering
index since the last REORG or LOAD REPLACE,
or since the object was created. A record is well-
clustered if the record is inserted into a page
that is within 16 pages of the ideal candidate
page. The clustering index determines the ideal
candidate page.

A null value indicates that the number of pages
that are not well clustered is unknown.

For a table space that has the MEMBER
CLUSTER attribute, the clustering index is not
used to identify the ideal candidate page.
Therefore, this value is not updated.

G

REORGDISORGLOB INTEGER The number of LOBs that were inserted that are
not perfectly chunked since the last REORG or
LOAD REPLACE, or since the object was created.
A LOB is perfectly chunked if the allocated
pages are in the minimum number of chunks.

A null value indicates that the number of not
perfectly chunked LOBs is unknown.

G

REORGMASSDELETE INTEGER The number of mass deletes from a segmented
or LOB table space, or the number of dropped
tables from a segmented table space since the
last time the REORG or LOAD REPLACE utilities
were run, or since the object was created.

A null value indicates that the number of mass
deletes is unknown.

G

REORGNEARINDREF INTEGER The number of overflow rows that are created
and relocated near the pointer record since
the last time the REORG and LOAD REPLACE
utilities were run, or since the object was
created. For non-segmented table spaces, a
page is near the present page if the two page
numbers differ by 16 or less. For segmented
table spaces, a page is near the present page if
the two page numbers differ by SEGSIZE*2 or
less.

A null value indicates that the number of
overflow rows that are near the pointer record
is unknown.

G

Appendix H. Db2 catalog tables 2701

Column name Data type Description Use

REORGFARINDREF INTEGER The number of overflow rows that are created
and relocated far from the pointer record since
the last time the REORG and LOAD REPLACE
utilities were run, or since the object was
created. For non-segmented table spaces, a
page is far from the present page if the two page
numbers differ by more than 16. For segmented
table spaces, a page is far from the present
page if the two page numbers differ by at least
(SEGSIZE*2)+1.

A null value indicates that the number of
overflow rows that are near the pointer record
is unknown.

G

STATSLASTTIME TIMESTAMP The timestamp of the last time that the
RUNSTATS utility is run on the table space
or partition, or the time that table space or
partition was created.

G

STATSINSERTS INTEGER The number of rows or LOBs that have been
inserted into the table space or partition or
loaded into the table space or partition using
the LOAD utility specified without the REPLACE
option since the last time that the RUNSTATS
utility was run, or since the object was created.

A null value indicates that the number of
inserted rows or LOBs is unknown.

If the value is 2147483647, the actual number
of inserted rows or LOBs might be greater than
this value.

G

STATSDELETES INTEGER The number of rows or LOBs that have been
deleted from the table space or partition since
the last time that the RUNSTATS utility was run,
or since the object was created.

A null value indicates that the number of
deleted rows or LOBs is unknown.

If the value is 2147483647, the actual number
of deleted rows or LOBs might be greater than
this value.

G

STATSUPDATES INTEGER The number of rows that have been updated in
the table space or partition since the last time
that the RUNSTATS utility was run, or since the
object was created.

A null value indicates that the number of
updated rows is unknown.

If the value is 2147483647, the actual number
of updated rows or LOBs might be greater than
this value.

G

2702 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

STATSMASSDELETE INTEGER The number of mass deletes from a segmented
or LOB table space, or the number of tables
that are dropped from a segmented table space,
since the last time the RUNSTATS utility was
run, or since the object was created.

A null value indicates that the number of mass
deletes is unknown.

G

COPYLASTTIME TIMESTAMP The timestamp of the last full or incremental
image copy of the table space or partition.

A null value indicates that the COPY utility has
never been run on the table space or partition. A
null value can also indicate that the timestamp
of the last image copy is unknown.

G

COPYUPDATEDPAGES INTEGER If the COPY utility was run with a SHRLEVEL
value other than CHANGE, this value is the
number of distinct pages that have been
updated since the last time that the COPY utility
was run.

If the COPY utility was run with SHRLEVEL
CHANGE, this value is the total number of
distinct pages that were updated during the
time that the last COPY utility was run, and
since the last time that the COPY utility was run.

A null value indicates that the number of
updated pages is unknown.

G

COPYCHANGES INTEGER If the COPY utility was run with a SHRLEVEL
value other than CHANGE, this value is the
number of insert, update, and delete operations,
or the number of rows loaded, since the last
time that the COPY utility was run.

If the COPY utility was run with SHRLEVEL
CHANGE, this value is the total number of insert,
update, and delete operations, or the number of
rows loaded, during the time that the last COPY
utility was run, and since the last time that the
COPY utility was run.

This value does not include operations that
result in no change to the data, such as an
update that sets the value of a column to its
existing value.

A null value indicates that the number of insert,
update, and delete operations or the number of
rows loaded is unknown.

G

COPYUPDATELRSN CHAR(10)
FOR BIT DATA

The LRSN or RBA of the first update that occurs
after the last time the COPY utility was run.

A null value indicates that the LRSN or RBA is
unknown.

G

Appendix H. Db2 catalog tables 2703

Column name Data type Description Use

COPYUPDATETIME TIMESTAMP If the COPY utility was run with a SHRLEVEL
value other than CHANGE, this value is the
timestamp of the first update that occurred after
the last time that the COPY utility was run.

If the COPY utility was run with SHRLEVEL
CHANGE, this value is the timestamp of the first
update that occurred during the time that the
last COPY utility was run, or since the last time
that the COPY utility was run.

A null value indicates that the timestamp is
unknown.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values,
see Release dependency indicators.

The value in this field is not a reliable indicator
of release dependencies.

G

DBID SMALLINT
NOT NULL

The internal identifier of the database. This
column is used to map a DBID to its statistics.

G

PSID SMALLINT
NOT NULL

The internal identifier of the table space page
set descriptor. This column is used to map a
PSID to its statistics.

G

PARTITION SMALLINT
NOT NULL

The data set number within the table space.
This column is used to map a data set number
in a table space to its statistics. For partitioned
table spaces, this value corresponds to the
partition number for a single partition. For non-
partitioned table spaces, this value is 0.

G

INSTANCE SMALLINT
NOT NULL
WITH DEFAULT 1

Indicates if the object is associated with data
set instance 1 or 2. This is an updatable column.

G

SPACE BIGINT The amount of space, in KB, that is allocated
to the table space or partition. For multi-piece,
linear page sets, this value is the amount of
space in all data sets. A null value indicates the
amount of space is unknown.

G

TOTALROWS BIGINT The number of rows or LOBs that are in the
table space or partition, calculated from the in-
memory counters for inserts and deletes.

For XML, this column contains the number of
physical rows in the table space or partition.
Each XML document might have more than one
physical record in a table space or partition.

G

DATASIZE BIGINT The total number of bytes that row data occupy.
For LOB table spaces this column is always 0.
This is an updatable column.

G

2704 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

UNCOMPRESSEDDATASIZE BIGINT This column is not used. The value is always set
to 0.

G

DBNAME VARCHAR(24)
NOT NULL

The name of the database. This column is used
to map a database to its statistics.

G

NAME VARCHAR(24)
NOT NULL

The name of the table space. This column is
used to map a table space to its statistics.

G

REORGSCANACCESS BIGINT The number of times data is accessed for
SELECT, FETCH, searched UPDATE, or searched
DELETE since the last CREATE, LOAD REPLACE
or REORG, or since the object was created.A null
value indicates that the number of times data is
accessed is unknown.

G

REORGHASHACCESS BIGINT The number of times data is accessed using
hash access for SELECT, FETCH, searched
UPDATE, searched DELETE, or used to enforce
referential integrity constraints since the last
CREATE, LOAD REPLACE or REORG, or since
the object was created. A null value indicates
that the number of times data is accessed is
unknown.

G

HASHLASTUSED DATE The date when hash access was last used for
SELECT, FETCH, searched UPDATE, searched
DELETE, or used to enforce referential integrity
constraints.

G

REORGCLUSTERSENS BIGINT The number of times that data has been read
by SQL statements that are sensitive to the
clustering sequence of the data since the last
REORG or LOAD REPLACE, or since the object
was created.

For a table space that has the MEMBER
CLUSTER attribute, when records are inserted,
the clustering index is not used. Therefore, this
value is not updated.

G

DRIVETYPE CHAR(3)
 NOT NULL
WITH DEFAULT

The drive type on which the table space or table
space partition data set is defined.
HDD

Hard Disk Drive
SSD

Solid State Drive
For multi-volume data sets, the drive type is set
to SSD if any volume is SSD. For multi-piece
linear page sets, the drive type of the first data
set is used. This is an updatable column.

G

Appendix H. Db2 catalog tables 2705

Column name Data type Description Use

LPFACILITY CHAR(1) Whether the disk control unit has the high
performance list prefetch facility.
N

No
Y

Yes
A NULL value indicates that it is unknown
whether the disk control unit has the high
performance list prefetch facility. This is an
updatable column.

G

BIGINT Reserved for future IBM use. R

UPDATESIZE BIGINT The net number of bytes that were added or
removed by UPDATE operations since the object
was created, or since the last REORG or LOAD
REPLACE operation. Valid values can be positive
or negative.

G

LASTDATACHANGE TIMESTAMP The timestamp when one of the following
events occurred:

• The last utility operation affected the data in
a table space or partition, and Db2 did not log
the changes.

Some utility operations that update this
column are REORG with the DISCARD option,
REORG with the REBALANCE option, or
a REORG operation that moves data in
a partition-by-growth table space across
partitions. A REORG operation that reorders
data within the same partition does not result
in an update of this column.

• An SQL statement affected the data in a table
space or partition.

SQL statements that update this column
are INSERT, UPDATE, DELETE, MERGE, and
TRUNCATE.

The timestamp reflects the time at which the
real-time statistics table was updated, and not
the time at which the data in the table space or
partition was modified.

This value can also be updated when an
-ACCESS DATABASE command is issued with
the MODE(STATS) keyword, but an object
in UTRO or UTRW state prevents the
externalization of real-time statistics. In such
cases, Db2 preserves the in-memory statistics
until next possible externalization cycle.

G

2706 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

GETPAGES BIGINT The number of getpage requests for the table
space since the object was created, or since the
last REORG or LOAD REPLACE was run.

The value wraps if it exceeds
the largest possible BIGINT value,
9223372036854775807.

G

SYS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW BEGIN

The row-begin column of the SYSTEM_TIME
period, for system-period data versioning.

G

SYS_END TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW END

The row-end column of the SYSTEM_TIME
period, for system-period data versioning.

G

TRANS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS TRANSACTION
START ID

The transaction-start-ID column, for system-
period data versioning.

G

Related concepts
How Db2 maintains in-memory statistics in data sharing (Db2 Data Sharing Planning and Administration)
Related tasks
Setting up your system for real-time statistics (Db2 Performance)

SYSTABLES_HIST catalog table
The SYSTABLES_HIST table contains rows from the SYSTABLES table. The schema is SYSIBM.

Rows are added or changed in this table when RUNSTATS collects history statistics. Rows in this table can
also be inserted, updated, and deleted.

Table 366. SYSIBM.SYSTABLES_HIST table column descriptions

Column name Data type Description Use

NAME VARCHAR(128)
NOT NULL

Name of the table, view, or alias. G

CREATOR VARCHAR(128)
NOT NULL

The schema of the table, view, or alias. G

DBNAME VARCHAR(24)
NOT NULL

For a table, or a view of tables, the name of the database
that contains the table space named in TSNAME. For a
temporary table, an alias, or a view of a view, the value is
DSNDB06.

G

Appendix H. Db2 catalog tables 2707

https://www.ibm.com/docs/en/SSEPEK_12.0.0/dshare/src/tpc/db2z_howdb2maintainsstats.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_setup4realtimestatistics.html

Table 366. SYSIBM.SYSTABLES_HIST table column descriptions (continued)

Column name Data type Description Use

TSNAME VARCHAR(24)
NOT NULL

For a table, or a view of one table, the name of the table
space that contains the table. For a view of more than
one table, the name of a table space that contains one of
the tables. For a temporary table, a view of a view, or an
alias, it is SYSTSTAB.

G

COLCOUNT SMALLINT
NOT NULL

Number of columns in the table or view. The value is 0 if
the row describes an alias.

G

PCTPAGES SMALLINT
NOT NULL WITH
DEFAULT -1

Percentage of active table space pages that contain rows
of the table. A page is termed active if it is formatted for
rows, regardless of whether it contains any. If the table
space is segmented, the percentage is based on the
number of active pages in the set of segments assigned
to the table. The value is -1 if statistics have not been
gathered, or the row describes a view, alias, temporary
table, accelerator-only table, or auxiliary table.

S

PCTROWCOMP SMALLINT
NOT NULL WITH
DEFAULT -1

Percentage of rows compressed within the total number
of active rows in the table. This includes any row in a
table space that is defined with compression. The value
is -1 if statistics have not been gathered, or the row
describes a view, alias, temporary table, accelerator-only
table, or auxiliary table.

G

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the last
utility invocation updated the statistics. The default value
is '0001-01-01-00.00.00.000000'. The default value
indicates that statistics were not collected. This column
can be updated.

For a temporary table, the value of STATSTIME is always
the default value.

G

CARDF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Total number of rows in the table or total number of
LOBs in an auxiliary table. The value is -1 if statistics
have not been gathered or the row describes a view,
alias, accelerator-only table, or temporary table.

S

NPAGESF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Total number of pages on which rows of the partition
appear. The value is -1 if statistics have not been
gathered.

S

AVGROWLEN INTEGER
NOT NULL WITH
DEFAULT -1

Average row length of the table specified in the table
space. The value is -1 if statistics have not been
gathered.

G

SPACEF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Kilobytes of DASD storage. The value is -1 if statistics
have not been gathered. This is an updatable column.

G

2708 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 366. SYSIBM.SYSTABLES_HIST table column descriptions (continued)

Column name Data type Description Use

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of release
dependencies.

G

SYSTABLES_PROFILES catalog table
The SYSTABLES_PROFILES table contains one row for each profile that is associated with a table in
SYSIBM.SYSTABLES. The schema is SYSIBM.

Rows in this table can be inserted, updated, and deleted.

Table 367. SYSIBM.SYSTABLES_PROFILES table column descriptions

Column name Data type Description Use

SCHEMA VARCHAR(128)
NOT NULL

The schema (qualifier) for the table. G

TBNAME VARCHAR(128)
NOT NULL

The table name. G

PROFILE_TYPE VARCHAR(32)
NOT NULL

The type of profile. Allowed values are 'RUNSTATS'. G

— VARCHAR(32) Internal use only. I

PROFILE_TEXT CLOB(1M) The text of the profile. G

ROWID ROWID
NOT NULL
GENERATED ALWAYS

The ROWID value for the LOB column of this table. G

PROFILE_UPDATE TIMESTAMP
NOT NULL

The last time the profile was updated, or the timestamp
for when the profile was inserted into the table.

G

— TIMESTAMP Internal use only. I

Related concepts
Statistics profiles (Db2 Performance)
Related tasks
Automating statistics maintenance (Db2 Performance)

Appendix H. Db2 catalog tables 2709

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_runstatsprofiles.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_automatestatistics.html

SYSTABLES_PROFILE_TEXT catalog table
The SYSTABLES_PROFILE_TEXT table is an auxiliary table for the PROFILE_TEXT column of the
SYSIBM.SYSTABLES_PROFILES table and is required to hold LOB data. The schema is SYSIBM.

Table 368. SYSIBM.SYSTABLES_PROFILE_TEXT table column descriptions

Column name Data type Description Use

PROFILE_TEXT CLOB(2M)
NOT NULL
WITH DEFAULT

The complete text for the profile that the row
represents.

G

SYSTABSTATS catalog table
The SYSTABSTATS table contains one row for each partition of a partitioned table space. The schema is
SYSIBM.

Rows in this table can be inserted, updated, and deleted.

Important: Use care when issuing SQL statements or using tools to update statistics values in catalog
tables. If such updates introduce invalid data, unpredictable results can occur, including abends for
RUNSTATS and other utilities. If such problems occur, you can run the RUNSTATS utility and collect
statistics at the table space level to resolve the problems, in most cases.

Table 369. SYSIBM.SYSTABSTATS table column descriptions

Column name Data type Description Use

CARD INTEGER
NOT NULL

Total number of rows in the partition. S

NPAGES INTEGER
NOT NULL

Total number of pages on which rows of the partition
appear.

S

PCTPAGES SMALLINT
NOT NULL

Percentage of total active pages in the partition that
contain rows of the table.

S

NACTIVE INTEGER
NOT NULL

Number of active pages in the partition. S

PCTROWCOMP SMALLINT
NOT NULL

Percentage of rows compressed within the total number
of active rows in the partition. This includes any row in a
table space that is defined with compression.

S

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The default
value is '0001-01-01-00.00.00.000000'. The default
value indicates that statistics were not collected. This
column can be updated.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

2710 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 369. SYSIBM.SYSTABSTATS table column descriptions (continued)

Column name Data type Description Use

DBNAME VARCHAR(24)
NOT NULL

Database that contains the table space named in
TSNAME.

G

TSNAME VARCHAR(24)
NOT NULL

Table space that contains the table. G

PARTITION SMALLINT
NOT NULL

Partition number of the table space that contains the
table.

G

OWNER VARCHAR(128)
NOT NULL

The schema of the table. G

NAME VARCHAR(128)
NOT NULL

Name of the table. G

CARDF FLOAT
NOT NULL WITH
DEFAULT -1

Total number of rows in the partition. S

SYSTABSTATS_HIST catalog table
The SYSTABSTATS_HIST table contains rows from the SYSTABSTATS table.

Rows are added or changed in this table when RUNSTATS collects history statistics. Rows in this table can
also be inserted, updated, and deleted.

Table 370. SYSIBM.SYSTABSTATS_HIST table column descriptions

Column name Data type Description Use

NPAGES INTEGER
NOT NULL

Total number of pages on which rows of the partition
appear.

S

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS or another utility with inline statistics
updated the statistics, the date and time when the
last utility invocation updated the statistics. The default
value is '0001-01-01-00.00.00.000000'. The default
value indicates that statistics were not collected. This
column can be updated.

G

DBNAME VARCHAR(24)
NOT NULL

Database that contains the table space named in
TSNAME.

G

TSNAME VARCHAR(24)
NOT NULL

Table space that contains the table. G

PARTITION SMALLINT
NOT NULL

Partition number of the table space that contains the
table.

G

Appendix H. Db2 catalog tables 2711

Table 370. SYSIBM.SYSTABSTATS_HIST table column descriptions (continued)

Column name Data type Description Use

OWNER VARCHAR(128)
NOT NULL

The schema of the table. G

NAME VARCHAR(128)
NOT NULL

Name of the table. G

CARDF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Total number of rows in the partition. The value is -1 if
statistics have not been gathered.

S

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

SYSTRIGGERS catalog table
The SYSTRIGGERS table contains one row for each trigger. The schema is SYSIBM.

Column name Data type Description Use

NAME VARCHAR(128)
NOT NULL

Name of the trigger and trigger package. G

SCHEMA VARCHAR(128)
NOT NULL

Schema of the trigger. This implicit or explicit qualifier
for the trigger name is also used for the collection ID of
the trigger package.

G

SEQNO SMALLINT
NOT NULL

Not used. N

DBID SMALLINT
NOT NULL

Internal identifier of the database for the trigger. G

OBID SMALLINT
NOT NULL

Internal identifier of the trigger. G

OWNER VARCHAR(128)
NOT NULL

Owner of the trigger. G

CREATEDBY VARCHAR(128)
NOT NULL

Primary authorization ID of the user who created the
trigger.

G

TBNAME VARCHAR(128)
NOT NULL

Name of the table or view. G

TBOWNER VARCHAR(128)
NOT NULL

Qualifier of the name of the table or view to which this
trigger applies.

G

2712 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

TRIGTIME CHAR(1)
NOT NULL

Time when triggered actions are applied to the base
table, relative to the event that activated the trigger:
A

Trigger is applied after the event.
B

Trigger is applied before the event.
I

Trigger is applied instead of the event

G

TRIGEVENT CHAR(1)
NOT NULL

Operation that activates the trigger:
I

Insert
D

Delete
U

Update

G

GRANULARITY CHAR(1)
NOT NULL

Trigger is executed once per:
S

Statement
R

Row

G

CREATEDTS TIMESTAMP
NOT NULL

Time when the trigger was created or recreated. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

TEXT VARCHAR(6000)
NOT NULL

Not used. N

REMARKS VARCHAR(762)
NOT NULL

A character string provided by the user with the
COMMENT statement.

G

TRIGNAME VARCHAR(128)
NOT NULL

Not used. G

OWNERTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of creator:
blank

Authorization ID
L

Role

G

Appendix H. Db2 catalog tables 2713

Column name Data type Description Use

ENVID INTEGER
NOT NULL WITH
DEFAULT

Internal environment identifier. G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object.
Blank if created prior to Version 9. See Release
dependency indicators for all other values.

G

SECURE CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Indicates if the trigger is secured:
N

The trigger is not secured
Y

The trigger is secured

G

ALTEREDTS TIMESTAMP
NOT NULL

Indicates when the trigger was last changed. G

ROWID ROWID
NULL
GENERATED
ALWAYS

ROWID column, created for the lob columns in this
table.

G

SQLPL CHAR(1)
NOT NULL
WITH DEFAULT

Indicates whether the trigger supports SQL PL:
Y

Advanced trigger that supports SQL PL.
blank

Basic trigger that does not support SQL PL.

G

DEBUG_MODE CHAR(1)
NOT NULL
WITH DEFAULT

Indicates whether the trigger is enabled for debugging:
1

This trigger is enabled for debugging, and can be
debugged in a client debug session using the Db2
Unified Debugger.

0
This trigger is not enabled for debugging.

N
This trigger can never be enabled for debugging.

blank
This trigger is a basic trigger that cannot be
debugged.

G

ASUTIME INTEGER
NOT NULL

Number of CPU service units that are allowed for a
single invocation of this trigger. If ASUTIME is zero, the
number of CPU service units is unlimited. If the trigger
consumes more CPU service units than the ASUTIME
value allows, Db2 cancels the trigger.

G

WLM_ENVIRONMENT VARCHAR(96)
NOT NULL

The WLM ENVIRONMENT FOR DEBUG MODE value in
the trigger definition. This value is the name of the WLM
environment that is used when a trigger is debugged. If
this value is blank, the trigger cannot be debugged.

G

2714 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

STATEMENT CLOB(2M)
NOT NULL
WITH DEFAULT

The text of the entire CREATE TRIGGER statement that
was used to create the object.

G

VERSION VARCHAR(122)
NOT NULL

The version identifier for a trigger. A zero length string
for a basic trigger.

G

ORIGINAL_CONTOK CHAR(8)
NOT NULL
FOR BIT DATA

The consistency token for the trigger. The column is set
to X'20' if the value of VERSION is a zero length string.

G

REGENERATETS TIMESTAMP
NOT NULL

The time when the object was regenerated. The value
is valid only for objects that can be regenerated. If
no regeneration has occurred, this column contains the
same value as the CREATEDTS column.

G

ACTIVE CHAR(1)
NOT NULL

Identifies the active version of the trigger:
Y

The version is the active version.
N

The version is not the active version.
blank

The value of VERSION is a zero length string.

G

WRAPPED CHAR(1)
NOT NULL

'Y'
The trigger text is obfuscated.

blank
The trigger text is not obfuscated.

G

SYSTRIGGERS_STMT catalog table
The SYSTRIGGERS_STMT table is an auxiliary table for the STATEMENT column of the SYSTRIGGERS table
and contains LOB data. The schema is SYSIBM.

Table 371. SYSIBM.SYSTRIGGERS_STMT table column descriptions

Column name Data type Description Use

STATEMENT CLOB(2M)
NOT NULL
WITH DEFAULT

The text of the entire CREATE TRIGGER statement that
was used to create the object.

G

SYSUSERAUTH catalog table
The SYSUSERAUTH table records the system privileges that are held by users. The schema is SYSIBM.

Column name Data type Description Use

GRANTOR VARCHAR(128)
NOT NULL

Authorization ID of the user who granted the
privileges.

G

Appendix H. Db2 catalog tables 2715

Column name Data type Description Use

GRANTEE VARCHAR(128)
NOT NULL

Authorization ID of the user that holds the
privilege. Could also be PUBLIC for a grant to
PUBLIC.

G

— CHAR(12)
NOT NULL

Internal use only. I

DATEGRANTED CHAR(6)
NOT NULL

Not used. N

TIMEGRANTED CHAR(8)
NOT NULL

Not used. N

GRANTEETYPE CHAR(1)
NOT NULL

Not used. N

AUTHHOWGOT CHAR(1)
NOT NULL
WITH DEFAULT

Authorization level of the user from whom the
privileges were received. This authorization level
is not necessarily the highest authorization level
of the grantor.
blank

Not applicable. AUTHHOWGOT is also blank
when the privilege that is held is BINDAGENT.

C
DBCTRL

D
DBADM

E
SECADM

G
ACCESSCTRL

K
SQLADM

L
SYSCTRL

M
DBMAINT

O
SYSOPR

S
SYSADM

G

ALTERBPAUTH CHAR(1)
NOT NULL

Not used. N

2716 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

BINDADDAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the BIND
subcommand with the ADD option:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

BSDSAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can issue the RECOVER
BSDS command:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

CREATEDBAAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can create databases and
automatically receive DBADM authority over the
new databases:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

CREATEDBCAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can execute the CREATE
DATABASE statement to create new databases
and automatically receive DBCTRL authority over
the new databases:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

CREATESGAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can execute the CREATE
STOGROUP statement to create new storage
groups:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

Appendix H. Db2 catalog tables 2717

Column name Data type Description Use

DISPLAYAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the DISPLAY
commands:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

RECOVERAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the RECOVER
INDOUBT command:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

STOPALLAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the STOP
command:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

STOSPACEAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the STOSPACE
utility:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

SYSADMAUTH CHAR(1)
NOT NULL

Whether the GRANTEE has system administration
authority:
blank

Privilege is not held
G

Privilege was granted with the GRANT option
Y

Privilege was granted without the GRANT
option

GRANTEE has the privilege with the GRANT option
for a value of either Y or G.

G

2718 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

SYSOPRAUTH CHAR(1)
NOT NULL

Whether the GRANTEE has system operator
authority:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

TRACEAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can issue the START
TRACE and STOP TRACE commands:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values,
see Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

MON1AUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE can obtain IFC
serviceability data:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

MON2AUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE can obtain IFC data:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

CREATEALIASAUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE can execute the CREATE
ALIAS statement:
blank

Privilege is not held
G

Privilege held with the GRANT option
Y

Privilege held without the GRANT option

G

Appendix H. Db2 catalog tables 2719

Column name Data type Description Use

SYSCTRLAUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE has SYSCTRL authority:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option
GRANTEE has the privilege with the GRANT option
for a value of either Y or G.

G

BINDAGENTAUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE has BINDAGENT privilege:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

ARCHIVEAUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE is privileged to use the
ARCHIVE LOG command:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

CAPTURE1AUTH CHAR(1)
NOT NULL WITH
DEFAULT

Not used. N

CAPTURE2AUTH CHAR(1)
NOT NULL WITH
DEFAULT

Not used. N

GRANTEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the GRANT statement was executed.
The value is '1985-04-01.00.00.00.000000' for
the one installation row.

G

CREATETMTABAUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE has CREATETMTABAUTH
privilege:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

2720 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

GRANTEETYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantee:
blank

Authorization ID
L

Role

G

GRANTORTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of grantor:
blank

Authorization ID
L

Role

G

DEBUGSESSIONAUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE has DEBUGSESSION
privilege:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

EXPLAINAUTH CHAR(1)
NOT NULL
WITH DEFAULT

Whether the GRANTEE can explain and prepare
statements:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

SQLADMAUTH CHAR(1)
NOT NULL
WITH DEFAULT

Whether the GRANTEE has SQLADM authority:
blank

Privilege is not held
G

Privilege is held with the GRANT option
Y

Privilege is held without the GRANT option

G

SDBADMAUTH CHAR(1)
NOT NULL
WITH DEFAULT

Whether the GRANTEE has system DBADM
authority:
blank

Privilege is not held
Y

Privilege is held without the GRANT option

G

Appendix H. Db2 catalog tables 2721

Column name Data type Description Use

DATAACCESSAUTH CHAR(1)
NOT NULL
WITH DEFAULT

Whether the GRANTEE has DATAACCESS
authority:
blank

Privilege is not held
Y

Privilege is held without the GRANT option

G

ACCESSCTRLAUTH CHAR(1)
NOT NULL
WITH DEFAULT

Whether the GRANTEE has ACCESSCTRL
authority:
blank

Privilege is not held
Y

Privilege is held without the GRANT option

G

CREATESECUREAUTH CHAR(1)
NOT NULL
WITH DEFAULT

Whether the GRANTEE can create secured objects
(triggers and user-defined functions):
blank

Privilege is not held
Y

Privilege is held without the GRANT option

G

SYS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW BEGIN

Reserved for future IBM use.The row-begin
column of the SYSTEM_TIME period, for system-
period data versioning.

G

SYS_END TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW END

Reserved for future IBM use.The row-end column
of the SYSTEM_TIME period, for system-period
data versioning.

G

TRANS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS TRANSACTION
START ID

Reserved for future IBM use. G

SYSVARIABLEAUTH catalog table
The SYSVARIABLEAUTH table contains one row for each privilege of each authorization ID that has
privileges on a global variable. The schema is SYSIBM.

Table 372. SYSIBM.SYSVARIABLEAUTH table column descriptions

Column name Data type Description Use

GRANTOR VARCHAR(128)
NOT NULL

The grantor of the privilege. G

2722 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 372. SYSIBM.SYSVARIABLEAUTH table column descriptions (continued)

Column name Data type Description Use

GRANTORTYPE CHAR(1)
NOT NULL

The type of grantor:
blank

Grantor is an authorization ID
L

Grantor is a role

G

GRANTEE VARCHAR(128)
NOT NULL

The holder of the privilege. G

GRANTEETYPE CHAR(1)
NOT NULL

The type of grantee:
blank

Grantee is an authorization ID
L

Grantee is a role
P

Grantee is a package. The grantee is a package if
COLLID is a value other than blank.

R
Internal use only

G

SCHEMA VARCHAR(128)
NOT NULL

The schema name of the global variable. G

NAME VARCHAR(128)
NOT NULL

The unqualified name of the global variable. G

COLLID VARCHAR(128)
NOT NULL

If the grantee is a package, this value is the COLLID of
the package.

G

CONTOKEN CHAR(8)
NOT NULL
FOR BIT DATA

If the grantee is a package, this value is the consistency
token of the DBRM from which the package is derived.
Otherwise, this value is blank.

G

READAUTH CHAR(1)
NOT NULL

The privilege to read the global variable:
blank

The READ privilege is not held
G

The READ privilege is held with the GRANT option
Y

The READ privilege is held without the GRANT
option

G

Appendix H. Db2 catalog tables 2723

Table 372. SYSIBM.SYSVARIABLEAUTH table column descriptions (continued)

Column name Data type Description Use

WRITEAUTH CHAR(1)
NOT NULL

The privilege to write to the global variable:
blank

The WRITE privilege is not held
G

The WRITE privilege is held with the GRANT option
Y

The WRITE privilege is held without the GRANT
option

G

AUTHHOWGOT CHAR(1)
NOT NULL

The authorization level of the user who granted the
privileges:
blank

Not applicable
E

SECADM
G

ACCESSCTRL
S

SYSADM
T

DATAACCESS
This authorization level is not necessarily the highest
authority level of the grantor.

G

GRANTEDTS TIMESTAMP
NOT NULL

The time when the GRANT statement was executed. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

SYSVARIABLES catalog table
The SYSVARIABLES table contains one row for each global variable that is created. The schema is
SYSIBM.

Table 373. SYSIBM.SYSVARIABLES table column descriptions

Column name Data type Description Use

VARID BIGINT
NOT NULL
GENERATED ALWAYS
AS IDENTITY

The identifier of the global variable. G

SCHEMA VARCHAR(128)
NOT NULL

The schema name of the global variable. G

2724 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 373. SYSIBM.SYSVARIABLES table column descriptions (continued)

Column name Data type Description Use

NAME VARCHAR(128)
NOT NULL

The unqualified name of the global variable. G

OWNER VARCHAR(128)
NOT NULL

The authorization ID of the owner of the global
variable.

G

OWNERTYPE CHAR(1)
NOT NULL

The type of owner of the global variable:
L

The owner is a role
blank

The owner is an authorization ID

G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object.
See Release dependency indicators for all other
values.

G

CREATEDTS TIMESTAMP
NOT NULL

Time at which the global variable was created. G

TYPESCHEMA VARCHAR(128)
NOT NULL

The schema name of the data type. For built-in data
types, this value is SYSIBM.

G

TYPENAME VARCHAR(128)
NOT NULL

The unqualified name of the data type. G

DATATYPEID INTEGER
NOT NULL

For a built-in data type, the internal ID of the built-in
type. For a user-defined type, the internal ID of the
user-defined type.

S

SOURCETYPEID INTEGER
NOT NULL

For a built-in data type, 0. For a user-defined type,
the internal ID of the built-in data type on which the
user-defined type is based.

S

LENGTH INTEGER
NOT NULL

The maximum length of the global variable. If the
variable is an array type, the value is 0.

G

SCALE SMALLINT
NOT NULL

The scale of the global variable. G

CCSID INTEGER
NOT NULL

If the variable is an array type, the value is 0.
Otherwise, the CCSID of the global variable.

G

Appendix H. Db2 catalog tables 2725

Table 373. SYSIBM.SYSVARIABLES table column descriptions (continued)

Column name Data type Description Use

DEFAULT CHAR(3)
NOT NULL

The default value of the global variable.

This column can contain one of the following values:

N
The global variable does not have a default value.
If the variable is an array type, the value is N.

S
The default value is the value of the SQL
authorization ID of the process at the time that
a default value is used.

1
The default value is a string constant.

2
The default value is a floating-point constant.

3
The default value is a decimal constant.

4
The default value is an integer constant.

5
The default value is a hexadecimal character
string.

6
The default value is a UX string.

7
The global variable has a graphic data type and
has a default value that is a character string
constant.

8
The global variable has a character data type
and has a default value that is a character string
constant.

9
The default value is a DECFLOAT constant

If this column contains one of the following values,
the default value of the global variable is the value of
the indicated special register at the time that a default
value is used:

AES
CURRENT APPLICATION ENCODING SCHEME

ACT
CURRENT CLIENT_ACCTNG

APN
CURRENT CLIENT_APPLNAME

CID
CURRENT CLIENT_USERID

G

2726 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 373. SYSIBM.SYSVARIABLES table column descriptions (continued)

Column name Data type Description Use

DEFAULT (continued) WSN
CURRENT CLIENT_WRKSTNNAME

DAT
CURRENT DATE

DBG
CURRENT DEBUG MODE

DEC
CURRENT DECFLOAT ROUNDING MODE

DEG
CURRENT DEGREE

EXP
CURRENT EXPLAIN MODE

LCT
CURRENT LOCALE LC_CTYPE

MTT
CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION

MEM
CURRENT MEMBER

HNT
CURRENT OPTIMIZATION HINT

CPP
CURRENT PACKAGE PATH

CPS
CURRENT PACKAGESET

PTH
CURRENT PATH

PRC
CURRENT PRECISION

RFA
CURRENT REFRESH AGE

RVS
CURRENT ROUTINE VERSION

RUL
CURRENT RULES

SCH
CURRENT SCHEMA

SVR
CURRENT SERVER

TIM
CURRENT TIME

TST
CURRENT TIMESTAMP

STZ
SESSION TIME ZONE

U
SESSION_USER

Appendix H. Db2 catalog tables 2727

Table 373. SYSIBM.SYSVARIABLES table column descriptions (continued)

Column name Data type Description Use

ROWID ROWID
NOT NULL
GENERATED
ALWAYS

The ROWID value for the lob columns in this table. G

DEFAULTTEXT CLOB(2M)
NOT NULL
WITH DEFAULT

The text of the default value of the global variable. G

— BLOB(2M)
NOT NULL

Reserved for future IBM use. I

ENVID INTEGER
NOT NULL

Internal environment identifier. G

REMARKS VARCHAR(762)
NOT NULL

A character string about this global variable that is
provided by using the COMMENT statement.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values, see
Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

SYSVARIABLES_DESC catalog table
The SYSVARIABLES_DESC table is an auxiliary table for the SYSIBM.SYSVARIABLES table. The schema is
SYSIBM.

Table 374. SYSIBM.SYSVARIABLES table column descriptions

Column name Data type Description Use

— BLOB(2M) Internal use only. I

SYSVARIABLES_TEXT catalog table
The SYSVARIABLES_TEXT table is an auxiliary table for the DEFAULTTEXT column of the SYSVARIABLES
table. The schema is SYSIBM.

Table 375. SYSIBM.SYSVARIABLES_TEXT table column descriptions

Column name Data type Description Use

DEFAULTTEXT CLOB(2M) The text of the default value of the global variable. G

2728 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SYSVIEWDEP catalog table
The SYSVIEWDEP table records the dependencies of views, SQL function tables, and materialized query
tables on other objects. The schema is SYSIBM.

Table 376. SYSIBM.SYSVIEWDEP table column descriptions

Column name Data type Description Use

BNAME VARCHAR(128)
NOT NULL

Name of the object on which the view, SQL function,
or materialized query table is dependent. If the object
type is a function (BTYPE='F'), the name is the specific
name of the function.

G

BCREATOR VARCHAR(128)
NOT NULL

Authorization ID of the owner of BNAME. G

BTYPE CHAR(1)
NOT NULL

Type of object:
F

Function
G

Created global temporary table
M

Materialized query table
T

Table
V

View
W

SYSTEM_TIME period
Z

BUSINESS_TIME period

G

DNAME VARCHAR(128)
NOT NULL

Name of the view. G

DCREATOR VARCHAR(128)
NOT NULL

The schema of the view. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided
with the Db2 product code. For all other values, see
Release dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

BSCHEMA VARCHAR(128)
NOT NULL WITH
DEFAULT

Schema of BNAME. G

Appendix H. Db2 catalog tables 2729

Table 376. SYSIBM.SYSVIEWDEP table column descriptions (continued)

Column name Data type Description Use

DTYPE CHAR(1)
NOT NULL

Type of dependent object:
F

SQL function
M

Materialized query table
V

View

G

DOWNER VARCHAR(128)
NOT NULL WITH
DEFAULT

Authorization ID of the dependent object. Blank for
views that were created in a Db2 release prior to
Version 9.

G

OWNERTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner:
blank

Authorization ID
L

Role

G

SYS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW BEGIN

Reserved for future IBM use. G

SYS_END TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS ROW END

Reserved for future IBM use. G

TRANS_START TIMESTAMP(12)
NOT NULL
GENERATED ALWAYS
AS TRANSACTION
START ID

Reserved for future IBM use. G

SYSVIEWS catalog table
The SYSVIEWS table contains one or more rows for each view, materialized query table, or user-defined
SQL function. The schema is SYSIBM.

Column name Data type Description Use

NAME VARCHAR(128)
NOT NULL

Name of the object. G

CREATOR VARCHAR(128)
NOT NULL

The schema of the object. G

SEQNO SMALLINT
NOT NULL

Not used. N

2730 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

CHECK CHAR(1)
NOT NULL

Whether the WITH CHECK OPTION clause was specified
in the CREATE VIEW statement:
N

No
C

Yes with the cascaded semantic
Y

Yes with the local semantic
The value is N if the view has no WHERE clause, or the
object is not a view.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

TEXT VARCHAR(1500)
NOT NULL

Not used. N

PATHSCHEMAS VARCHAR(2048)
NOT NULL WITH
DEFAULT

SQL path at the time the object was defined. The path
is used to resolve unqualified data type and function
names used in the object definition.

G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object.
Blank if created prior to Version 9. See Release
dependency indicators for all other values.

G

TYPE CHAR(1)
NOT NULL

Type of table:
F

SQL function
M

Materialized query table
V

View

G

REFRESH CHAR(1)
NOT NULL WITH
DEFAULT

Refresh mode:
D

A materialized query table with a deferred refresh
mode

blank
Not a materialized query table

G

ENABLE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates whether query optimization is enabled:
Y

Enabled
N

Disabled
blank

Not a materialized query table

G

Appendix H. Db2 catalog tables 2731

Column name Data type Description Use

MAINTENANCE CHAR(1)
NOT NULL WITH
DEFAULT

Maintenance mode:
S

For a REFRESH = 'D', a materialized query table that
is maintained by the system.

U
For a REFRESH = 'D', a materialized query table that
is maintained by the user.

blank
Not a materialized query table.

G

REFRESH_TIME TIMESTAMP
NOT NULL WITH
DEFAULT

For REFRESH = 'D' and MAINTENANCE = 'S', the
timestamp of the REFRESH TABLE statement that
last refreshed the data. Otherwise, this is the default
timestamp ('0001-01-01.00.00.00.000000').

G

ISOLATION CHAR(1)
NOT NULL WITH
DEFAULT

Isolation level when the materialized query table is
created or altered from a base table:
R

RR (repeatable read)
S

CS (cursor stability)
T

RS (read stability)
U

UR (uncommitted read)
blank

Not a materialized query table

G

SIGNATURE VARCHAR(1024)
NOT NULL WITH
DEFAULT
FOR BIT DATA

Contains an internal description. Used for materialized
query tables.

G

APP_ENCODING_
CCSID

INTEGER
NOT NULL WITH
DEFAULT

CCSID of the current application encoding scheme at the
time the object was created. For objects created prior to
Version 8 of Db2, the value is 0.

G

OWNER VARCHAR(128)
NOT NULL WITH
DEFAULT

Authorization ID of the owner of the view, blank for
views that were created in a Db2 release prior to Version
9.

G

OWNERTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the type of owner:
blank

Authorization ID
L

Role

G

ENVID INTEGER
NOT NULL
WITH DEFAULT

Internal environment identifier. G

2732 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

ROWID ROWID
NULL
GENERATED
 ALWAYS

ROWID column, created for the lob columns in this table G

STATEMENT CLOB(2M)
NOT NULL
WITH DEFAULT

The text of the statement that created the view. In some
cases, this column might instead contain the text of a
statement that altered the view. In many cases, changes
to views or to objects on which views are dependent do
not update this value.

G

— BLOB(1G)
NOT NULL
WITH DEFAULT

Internal use only. I

SYSVIEWS_STMT catalog table
The SYSVIEWS_STMT table is an auxiliary table for the STATEMENT column of the SYSIBM.SYSVIEWS
table and is required to hold LOB data. The schema is SYSIBM.

Table 377. SYSIBM.SYSVIEWS_STMT table column descriptions

Column name Data type Description Use

STATEMENT CLOB(2M)
NOT NULL
WITH DEFAULT

See the description of the STATEMENT column in
“SYSVIEWS catalog table” on page 2730

G

SYSVIEWS_TREE catalog table
The SYSVIEWS_TREE table is an auxiliary table for the PARSETREE column of the SYSVIEWS table and is
required to hold LOB data. The schema is SYSIBM.

Table 378. SYSIBM.SYSVIEWS_TREE table column descriptions

Column name Data type Description Use

— BLOB(1G)
NOT NULL
WITH DEFAULT

Internal use only. I

SYSVOLUMES catalog table
The SYSVOLUMES table contains one row for each volume of each storage group. The schema is SYSIBM.

Table 379. SYSIBM.SYSVOLUMES table column descriptions

Column name Data type Description Use

SGNAME VARCHAR(128)
NOT NULL

Name of the storage group. G

Appendix H. Db2 catalog tables 2733

Table 379. SYSIBM.SYSVOLUMES table column descriptions (continued)

Column name Data type Description Use

SGCREATOR VARCHAR(128)
NOT NULL

Authorization ID of the owner of the storage group.

To determine the type of authorization ID for the storage
group creator, see the CREATORTYPE column of the
SYSIBM.SYSSTOGROUP catalog table.

G

VOLID VARCHAR(18)
NOT NULL

Serial number of the volume or * if SMS-managed. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object.
Blank if created prior to Version 9. See Release
dependency indicators for all other values.

G

SYSXMLRELS catalog table
The SYSXMLRELS table contains one row for each XML table that is created for an XML column. The
schema is SYSIBM.

Table 380. SYSIBM.SYSXMLRELS table column descriptions

Column name Data type Description Use

TBOWNER VARCHAR(128)
NOT NULL

Schema or qualifier of the base table. G

TBNAME VARCHAR(128)
NOT NULL

Name of the base table. G

COLNAME VARCHAR(128)
NOT NULL

Name of the XML column in the base table. G

XMLTBOWNER VARCHAR(128)
NOT NULL

Schema or qualifier of the XML table. G

XMLTBNAME VARCHAR(128)
NOT NULL

Name of the XML table. G

XMLRELOBID INTEGER
NOT NULL

Internal identifier of the relationship between the base
table and the XML table.

G

2734 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 380. SYSIBM.SYSXMLRELS table column descriptions (continued)

Column name Data type Description Use

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies. RELCREATED should be used
instead.

G

CREATEDTS TIMESTAMP
NOT NULL

Time when the XML table was created. G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object. See
Release dependency indicators for the values.

G

SYSXMLSTRINGS catalog table
Each row of the SYSXMLSTRINGS table contains a single string and its unique ID that are used to
condense XML data. The string can be an element name, attribute name, name space prefix, or a
namespace URI. The schema is SYSIBM.

Table 381. SYSIBM.SYSXMLSTRINGS table column descriptions

Column name Data type Description Use

STRINGID INTEGER
NOT NULL
GENERATED
ALWAYS
AS IDENTITY

Unique ID for the string. G

STRING VARCHAR(1000)
NOT NULL

The string data. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

SYSXMLTYPMOD catalog table
The SYSXMLTYPMOD table contains rows about the XML type modifiers of XML columns. Rows in this
table can be inserted, updated and deleted. The schema is SYSIBM.

Table 382. SYSIBM.SYSXMLTYPMOD table column descriptions

Column name Data type Description Use

XML_TYPEMOD
_ID

INTEGER
NOT NULL
GENERATED ALWAYS
AS IDENTITY

An id generated for the XML type modifier, it is an identity
column and primary key.

G

Appendix H. Db2 catalog tables 2735

Table 382. SYSIBM.SYSXMLTYPMOD table column descriptions (continued)

Column name Data type Description Use

TYPE_
ANNOTATION

CHAR(1)
NOT NULL

Indicate whether there is type annotation.
Y

WITH type annotation
N

with no type annotation.

G

CREATEDTS TIMESTAMP
NOT NULL

The timestamp when this type modifier is created. G

ALTEREDTS TIMESTAMP
NOT NULL

The timestamp when this type modifier is altered G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object. See
Release dependency indicators for the values.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

CREATEDBY VARCHAR(128)
NOT NULL

Primary authorization ID of the user who created the
database.

G

SYSXMLTYPMSCHEMA catalog table
The SYSXMLTYPMSCHEMA table contains the XML schema information for an XML type modifier. It
contains one row per XML schema for an XML type modifier. The schema is SYSIBM.

Table 383. SYSIBM.SYSXMLTYPMSCHEMA table column descriptions

Column name Data type Description Use

XML_TYPEMOD
_ID

INTEGER
NOT NULL

The id for the XML type modifier. G

XSROBJECTID INTEGER
NOT NULL

The id for an XML schema registered in XSR. G

ELEMENT_
NAMESPACE

INTEGER
NOT NULL

String id for the namespace name of the root element
node. By default, it is the TARGETNAMESPACE of the
XML schema. It would be 0 if it is NO NAMESPACE.

G

ELEMENT_
NAME

INTEGER
NOT NULL

String id for the local name of the root element node. It
would be 0 if it is not specified.

G

CREATEDTS TIMESTAMP
NOT NULL

The timestamp when this type modifier is created. G

2736 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 383. SYSIBM.SYSXMLTYPMSCHEMA table column descriptions (continued)

Column name Data type Description Use

ALTEREDTS TIMESTAMP
NOT NULL

The timestamp when this type modifier is altered G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object. See
Release dependency indicators for the values.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of release
dependencies. RELCREATED should be used instead.

G

USERNAMES table
Each row in the USERNAMES table is used to carry out one outbound ID translation or inbound ID
translation and "come from" checking. The schema is SYSIBM.

Rows in this table can be inserted, updated, and deleted.

Table 384. SYSIBM.USERNAMES table column descriptions

Column name Data type Description Use

TYPE CHAR(1)
NOT NULL

How the row is to be used:
I

For inbound translation and "come from" checking.
O

For outbound translation.
S

For outbound system AUTHID to establish a trusted
connection.

G

AUTHID VARCHAR(128)
NOT NULL WITH
DEFAULT

Authorization ID to be translated. Applies to any
authorization ID if blank.

G

Appendix H. Db2 catalog tables 2737

Table 384. SYSIBM.USERNAMES table column descriptions (continued)

Column name Data type Description Use

LINKNAME VARCHAR(24)
NOT NULL

Identifies the VTAM or TCP/IP network locations
associated with this row. A blank value in this column
indicates this name translation rule applies to any
TCP/IP or SNA partner.

If a non-blank LINKNAME is specified, one or both of the
following statements must be true:

• A row exists in SYSIBM.LUNAMES whose
LUNAME matches the value specified in the
SYSIBM.USERNAMES LINKNAME column. This row
specifies the VTAM site associated with this name
translation rule.

• A row exists in SYSIBM.IPNAMES whose
LINKNAME matches the value specified in the
SYSIBM.USERNAMES LINKNAME column. This row
specifies the TCP/IP host associated with this name
translation rule.

Inbound name translation and "come from" checking
are not performed for TCP/IP clients.

G

NEWAUTHID VARCHAR(128)
NOT NULL WITH
DEFAULT

Translated value of AUTHID. Blank specifies no
translation. NEWAUTHID can be stored as encrypted
data by calling the DSNLEUSR stored procedure. To send
the encrypted value of AUTHID across a network, one of
the encryption security options in the SYSIBM.IPNAMES
table should be specified.

G

PASSWORD VARCHAR(255)
NOT NULL WITH
DEFAULT

Password to accompany an outbound request, if
passwords are not encrypted by RACF. If passwords
are encrypted, or the row is for inbound requests,
the column is not used. PASSWORD can be stored
as encrypted data by calling the DSNLEUSR stored
procedure. To send the encrypted value of PASSWORD
across a network, one of the encryption security options
in the SYSIBM.IPNAMES table should be specified.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row was provided with
the Db2 product code. For all other values, see Release
dependency indicators.

The value in this field is not a reliable indicator of
release dependencies.

G

Reorganizing the catalog
The REORG TABLESPACE utility can be run on all the table spaces in the catalog database (DSNDB06) to
reclaim unused or wasted space, which can affect performance.

For best results, also run the REORG TABLESPACE utility for any altered Db2 catalog objects that a
CATMAINT utility job places in REORG-pending (AREO*) advisory status.

The REORG TABLESPACE utility observes the PCTFREE and FREEPAGE values specified in the ALTER
INDEX statement for all the catalog indexes and the following table spaces:

• DSNDB06.SYSDDF

2738 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

• DSNDB06.SYSGPAUT
• DSNDB06.SYSGRTNS
• DSNDB06.SYSHIST
• DSNDB06.SYSJAVA
• DSNDB06.SYSJAUXA
• DSNDB06.SYSJAUXB
• DSNDB06.SYSSEQ
• DSNDB06.SYSSEQ2
• DSNDB06.SYSSTATS
• DSNDB06.SYSTSCHX
• DSNDB06.SYSTSCKD
• DSNDB06.SYSTSCKS
• DSNDB06.SYSTSCPY
• DSNDB06.SYSTSSRG
• DSNDB06.SYSUSER
• DSNDB01.SCT02
• DSNDB01.SPT01

Related tasks
Reserving free space in table spaces (Db2 Performance)
Related reference
REORG TABLESPACE (Db2 Utilities)
ALTER INDEX statement
The ALTER INDEX statement changes the description of an index at the current server.

SQL statements allowed on the catalog
Certain SQL statements can be used to change the value of certain options for existing catalog indexes,
sequences, and table spaces, or to add indexes to any of the catalog tables.

Table 385. SQL statements that can be used to change existing catalog indexes, sequences, and table
spaces, or to add indexes to any of the catalog tables

SQL statement Index Allowable clauses and usage notes

ALTER INDEX IBM-defined Only these clauses are allowed:

CLOSE
COPY
FREEPAGE
GBPCACHE
NOT PADDED
PADDED
PCTFREE
PIECESIZE

You cannot alter the GBPCACHE value for indexes
DSNDXX01, DSNDXX02, and DSNDXX03, which are on
catalog table SYSIBM.SYSINDEXES.

Appendix H. Db2 catalog tables 2739

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_reservefreespacetable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_reorgtablespace.html

Table 385. SQL statements that can be used to change existing catalog indexes, sequences, and table
spaces, or to add indexes to any of the catalog tables (continued)

SQL statement Index Allowable clauses and usage notes

ALTER INDEX User-created All clauses are allowed, except for the following:

BUFFERPOOL
REGENERATE
COMPRESS YES
Any partitioning clause

ALTER SEQUENCE The only clause allowed is MAXVALUE.

You can only change the MAXVALUE value of the
catalog sequence DSNSEQ_IMPLICITDB. The only
value specific must be an integer in the range 1–
60000, inclusive.

ALTER TABLE Only these clauses are allowed:

DATA CAPTURE CHANGES
ADD VERSIONING
DROP VERSIONING
ADD PERIOD

The ADD VERSIONING, DROP VERSIONING, and ADD
PERIOD clauses can be specified on only the following
tables:

• SYSIBM.SYSTABLESPACESTATS
• SYSIBM.SYSINDEXSPACESTATS

2740 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 385. SQL statements that can be used to change existing catalog indexes, sequences, and table
spaces, or to add indexes to any of the catalog tables (continued)

SQL statement Index Allowable clauses and usage notes

ALTER TABLESPACE Only these clauses are allowed:

• CLOSE
• FREEPAGE
• GBPCACHE
• LOCKMAX
• MAXROWS
• PCTFREE
• TRACKMOD

For DSNDB06.SYSSEQ, MAXROW can be specified only
with a value of 1.

You can specify the LOCKSIZE keyword on the ALTER
TABLESPACE statement for any catalog table spaces
that are not LOB table spaces.

You cannot alter the GBPCACHE or MAXROWS value of
some catalog table spaces. Do not specify GBPCACHE
for the following table spaces:

Table spaces Table spaces

• DSNDB06.SYSTSCOL
• DSNDB06.SYSTSDBA
• DSNDB06.SYSTSDBR
• DSNDB06.SYSTSDBU
• DSNDB06.SYSTSFAU
• DSNDB06.SYSTSFLD
• DSNDB06.SYSTSFOR
• DSNDB06.SYSTSIPT
• DSNDB06.SYSTSIXR
• DSNDB06.SYSTSIXS
• DSNDB06.SYSTSIXT
• DSNDB06.SYSTSKEY
• DSNDB06.SYSTSPKA
• DSNDB06.SYSTSPKD
• DSNDB06.SYSTSPKG
• DSNDB06.SYSTSPKL

• DSNDB06.SYSTSPKS
• DSNDB06.SYSTSPKX
• DSNDB06.SYSTSPKY
• DSNDB06.SYSTSPLA
• DSNDB06.SYSTSPLD
• DSNDB06.SYSTSPLN
• DSNDB06.SYSTSPLY
• DSNDB06.SYSTSPVR
• DSNDB06.SYSTSREL
• DSNDB06.SYSTSSTM
• DSNDB06.SYSTSSYN
• DSNDB06.SYSTSTAB
• DSNDB06.SYSTSTAU
• DSNDB06.SYSTSTPT
• DSNDB06.SYSTSTSP

Appendix H. Db2 catalog tables 2741

Table 385. SQL statements that can be used to change existing catalog indexes, sequences, and table
spaces, or to add indexes to any of the catalog tables (continued)

SQL statement Index Allowable clauses and usage notes

CREATE INDEX User-created All clauses are allowed, except for:

CLOSE YES
CLUSTER
UNIQUE
DEFER YES (only on tables SYSINDEXES,
SYSINDEXPART, and SYSKEYS)
COMPRESS YES
Any partitioning clause

The USING clause is ignored.

Indexes that are created with key-expressions are not
allowed on the catalog.

The only value allowed for BUFFERPOOL is BP0.

You can create up to 500 indexes on the catalog.

DROP INDEX User-created The statement has no clauses.

Temporal versioning for Db2 catalog tables
Db2 12 can use temporal versioning to record historical information for certain catalog tables. You can
use the historical information in statistics-related catalog tables to analyze, predict, and help prevent
specific conditions in a subsystem.

FL 500

Related concepts
Temporal tables and data versioning (Db2 Administration Guide)
Recovery of temporal tables with system-period data versioning (Db2 Administration Guide)
When Db2 externalizes real-time statistics (Db2 Performance)
Related tasks
Creating a system-period temporal table (Db2 Administration Guide)
Querying temporal tables (Db2 Administration Guide)
Collecting history statistics (Db2 Performance)

Temporal versioning for Db2 statistics-related catalog tables
You can use the historical information in Db2 12 statistics-related catalog tables to analyze, predict, and
help prevent specific conditions in a subsystem.

FL 500

The historical information for real-time statistics catalog tables can be used to analyze the rate of change
in size, organization, and activity for table space and index space partitions. This information can then be
used to develop an automated response to conditions such as table spaces and index spaces running out
of space or becoming too disorganized.

The following table lists the statistics-related catalog tables that have an associated history table for
system-period temporal versioning.

Catalog table History table

SYSINDEXSPACESTATS SYSIBM.SYSIXSPACESTATS_H

2742 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m500.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_temporaltables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_recoverytemptables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_whendb2externalizerts.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_creatingtemptableversion.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_queryingtemporaltables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_collecthistorystatistics.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m500.html

Catalog table History table

SYSTABLESPACESTATS SYSIBM.SYSTABSPACESTATS_H

Enabling the temporal relationship
The temporal relationship between a history table and its associated catalog table must be enabled
before the history table can be used to record historical information. Each member Db2 externalizes rows
whenever the interval specified by the STATSINT subsystem parameter is reached.

Tip: It is best to develop and test an aggregation and purge strategy before enabling the temporal
relationship.

To enable the temporal relationship for SYSIBM.SYSINDEXSPACESTATS and its associated history table,
SYSIBM.SYSIXSPACESTATS_H, issue the following statement:

ALTER TABLE SYSIBM.SYSINDEXSPACESTATS
 ADD VERSIONING
 USE HISTORY TABLE SYSIBM.SYSIXSPACESTATS_H;

To enable the temporal relationship for SYSIBM.SYSTABLESPACESTATS and its associated history table,
SYSIBM.SYSTABSPACESTATS_H, issue the following statement:

ALTER TABLE SYSIBM.SYSTABLESPACESTATS
 ADD VERSIONING
 USE HISTORY TABLE SYSIBM.SYSTABSPACESTATS_H;

If the temporal relationship between a catalog table and its associated history table later needs to be
removed, you can issue the ALTER TABLE statement with the DROP VERSIONING clause on the catalog
table.

Multiple inserts into a temporal history table for one insert into a real-time statistics
table
In rare cases, statistics-related catalog history tables might contain multiple rows that correspond to a
single insert into a real-time statistics table. This can happen when real-time statistics are externalized to
one of the real-time statistics tables, and the real-time statistics table is unavailable.

When temporal versioning is enabled, and Db2 inserts a row into a real-time statistics table, Db2 also
inserts a row into the corresponding temporal history table. If the insert operation for the real-time
statistics table fails because the table is unavailable, Db2 does not delete the row from the temporal
history table. Db2 makes additional attempts to insert the row into the real-time statistics table, and
with the each attempt, Db2 inserts another row into the temporal history table. When the real-time
statistics table becomes available, and the insert into the real-time statistics table is successful, Db2
writes another row into the temporal history table.

The following example shows the contents of the SYS_START and SYS_END columns in system-
period temporal table SYSIBM.SYSTABSPACESTATS_H when two unsuccessful attempts and one
successful attempt are made to insert rows into a real-time statistics table. All column values other
than SYS_END are the same. The first row corresponds to the successful attempt to insert into
SYSIBM.SYSTABLESPACESTATS, and the second and third rows correspond to the unsuccessful attempts.

SYS_START SYS_END
-------------------------- --------------------------
2020-05-13-13.03.42.279115 2020-05-13-13.39.04.139589
2020-05-13-13.03.42.279115 2020-05-13-13.21.57.603570
2020-05-13-13.03.42.279115 2020-05-13-13.13.14.991616

Related concepts
Temporal tables and data versioning (Db2 Administration Guide)
Recovery of temporal tables with system-period data versioning (Db2 Administration Guide)
When Db2 externalizes real-time statistics (Db2 Performance)

Appendix H. Db2 catalog tables 2743

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_temporaltables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_recoverytemptables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_whendb2externalizerts.html

Related tasks
Creating a system-period temporal table (Db2 Administration Guide)
Querying temporal tables (Db2 Administration Guide)
Collecting history statistics (Db2 Performance)

Catalog indexes
Indexes are defined on most catalog tables to improve catalog access.

The following table identifies the Db2 catalog tables on which indexes are defined, the columns that are in
each of the indexes, and the data types of those columns.

Table 386. Indexes on Db2 catalog tables

Table Index (type“1” on
page 2767)

Columns (data type)

IPLIST DSNDUX01 (U) LINKNAME (CHAR(8))
IPADDR (VARCHAR(254))

IPNAMES DSNFPX01 (UC) LINKNAME (CHAR(8))

LOCATIONS DSNFCX01 (UC) LOCATION (VARCHAR(128))

LULIST DSNFLX01 (UC) LINKNAME (CHAR(8))
LUNAME (VARCHAR(24))

DSNFLX02 (U) LINKNAME (CHAR(8))

LUNAMES DSNFNX01 (UC) LUNAME (VARCHAR(24))

LUMODES DSNFMX01 (UC) LUNAME (VARCHAR(24))
MODENAME (VARCHAR(24))

MODESELECT DSNFDX01 (UC) LUNAME (VARCHAR(24))
AUTHID (VARCHAR(128))
PLANNAME (CHAR(8))

SYSAUDITPOLICIES DSNAPX03 (UC) AUDITPOLICYNAME (VARCHAR(128))

SYSAUTOALERTS DSNALX01 (UC) ALERT_ID (BIGINT)

DSNALX02 (N) HISTORY_ENTRY_ID (BIGINT)

DSNALX03 (N) RETURN_CODE (INTEGER)
ACTION (VARCHAR(32))

DSNALX04 (N) TARGET_QUALIFIER (VARCHAR(128))
TARGET_OBJECT (VARCHAR(128))
TARGET_PARTITION (SMALLINT)

DSNALX05 (N) CREATEDTS (TIMESTAMP)

2744 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_creatingtemptableversion.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_queryingtemporaltables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_collecthistorystatistics.html

Table 386. Indexes on Db2 catalog tables (continued)

Table Index (type“1” on
page 2767)

Columns (data type)

DSNALX06 (N) STARTTS (TIMESTAMP)
RETURN_CODE (INTEGER)
ACTION (VARCHAR(32))

SYSAUTOALERTS_OUT DSNALX07 (A) OUTPUT (CLOB(2M))

SYSAUTORUNS_HIST DSNPHX01 (UC) HISTORY_ENTRY_ID (BIGINT)

DSNPHX03 STARTTS (TIMESTAMP)

SYSAUTORUNS_HISTOU DSNPHX04 (A) OUTPUT (CLOB(2M))

SYSAUTOTIMEWINDOWS DSNTWX01 (UC) WINDOW_ID (BIGINT)

SYSAUXRELS DSNOXX01 (NC) TBOWNER (VARCHAR(128))
TBNAME (VARCHAR(128))

DSNOXXO2 (N) AUXTBOWNER (VARCHAR(128))
AUXTBNAME (VARCHAR(128))

SYSCHECKDEP DSNSDX01 (UC) TBOWNER (VARCHAR(128))
TBNAME (VARCHAR(128))
CHECKNAME (VARCHAR(128))
COLNAME (VARCHAR(128))

SYSCHECKS DSNSCX01 (UC) TBOWNER (VARCHAR(128))
TBNAME (VARCHAR(128))
CHECKNAME (VARCHAR(128))

SYSCHECKS2 DSNCHX01 (UC) TBOWNER (VARCHAR(128))
TBNAME (VARCHAR(128))
CHECKNAME (VARCHAR(128))

SYSCOLAUTH DSNACX01 (N) CREATOR (VARCHAR(128))
TNAME (VARCHAR(128))
COLNAME (VARCHAR(128))

DSNACX02 (N) CREATOR (VARCHAR(128))
TNAME (VARCHAR(128))
TIMESTAMP (TIMESTAMP)

DSNACX03 (N) GRANTOR (VARCHAR(128))
GRANTORTYPE (CHAR(1))
CREATOR (VARCHAR(128))
TNAME (VARCHAR(128))
TIMESTAMP (CHAR(12))

Appendix H. Db2 catalog tables 2745

Table 386. Indexes on Db2 catalog tables (continued)

Table Index (type“1” on
page 2767)

Columns (data type)

DSNACX04 (N) GRANTEE (VARCHAR(128))
GRANTEETYPE (CHAR(1))
CREATOR (VARCHAR(128))
TNAME (VARCHAR(128))
TIMESTAMP (CHAR(12))

SYSCOLDIST DSNTNX01 (NC) TBOWNER (VARCHAR(128))
TBNAME (VARCHAR(128))
NAME (VARCHAR(128))

SYSCOLDISTSTATS DSNTPX01 (NC) TBOWNER (VARCHAR(128))
TBNAME (VARCHAR(128))
NAME (VARCHAR(128))
PARTITION (SMALLINT)

SYSCOLDIST_HIST DSNHFX01 (N) TBOWNER (VARCHAR(128))
TBNAME (VARCHAR(128))
NAME (VARCHAR(128))
STATSTIME (TIMESTAMP)

SYSCOLSTATS DSNTCX01 (NC) TBOWNER (VARCHAR(128))
TBNAME (VARCHAR(128))
NAME (VARCHAR(128))
PARTITION (SMALLINT)

SYSCOLUMNS DSNDCX01 (U) TBCREATOR (VARCHAR(128))
TBNAME (VARCHAR(128))
NAME (VARCHAR(128))

DSNDCX02 (N) TYPESCHEMA (VARCHAR(128))
TYPENAME (VARCHAR(128))

DSNDCX05 (N) TBCREATOR (VARCHAR(128))
TBNAME (VARCHAR(128))

DSNDCX06 (N) TBCREATOR (VARCHAR(128))
TBNAME (VARCHAR(128))
COLNO (SMALLINT)

SYSCOLUMNS_HIST DSNHEX01 (N) TBCREATOR (VARCHAR(128))
TBNAME (VARCHAR(128))
NAME (VARCHAR(128))
STATSTIME (TIMESTAMP)

SYSCONSTDEP DSNCCX01 (N) BSCHEMA (VARCHAR(128))
BNAME (VARCHAR(128))
BTYPE (CHAR(1))

2746 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 386. Indexes on Db2 catalog tables (continued)

Table Index (type“1” on
page 2767)

Columns (data type)

DSNCCX02 (N) DTBSCHEMA (VARCHAR(128))
DTBNAME (VARCHAR(128))

SYSCONTEXT DSNCTX01 (UC) NAME (VARCHAR(128))

DSNCTX02 (U)
SYSTEMAUTHID (VARCHAR(128))

DSNCTX03 (U) CONTEXTID (INTEGER)

DSNCTX04 (N) DEFAULTROLE (VARCHAR(128))

SYSCONTEXTAUTHIDS DSNCDX01 (UC) CONTEXTID (INTEGER)
AUTHID (VARCHAR(128))

DSNCDX02 (N) ROLE (VARCHAR(128))

SYSCONTROLS DSNCLX01 (U) SCHEMA (VARCHAR(128))
NAME (VARCHAR(128))

DSNCLX02 (U) CONTROL_ID (INTEGER)

DSNCLX03 (N) TBSCHEMA (VARCHAR(128))
TBNAME (VARCHAR(128))

DSNCLX04 (N) TBSCHEMA (VARCHAR(128))
TBNAME (VARCHAR(128))
ENABLE (CHAR(1))

DSNCLX05 (N) TBSCHEMA (VARCHAR(128))
TBNAME (VARCHAR(128))
ENABLE (CHAR(1))
CONTROL_TYPE (CHAR(1))

SYSCONTROLS_DESC DSNTRX02 (A) DESCRIPTOR (BLOB(2M))

SYSCONTROLS_DESC_H DSNTRX04 (A) DESCRIPTOR (BLOB(2M))

SYSCONTROLS_RTXT DSNTRX01 (A) RULETEXT (CLOB(2M))

SYSCONTROLS_RTXT_H DSNTRX03 (A) RULETEXT (CLOB(2M))

Appendix H. Db2 catalog tables 2747

Table 386. Indexes on Db2 catalog tables (continued)

Table Index (type“1” on
page 2767)

Columns (data type)

SYSCOPY DSNUCH01 (N) DBNAME (CHAR(8))
TSNAME (CHAR(8))
START_RBA (CHAR(6))
TIMESTAMP (TIMESTAMP)

DSNUCX01 (U) DSNAME (CHAR(44))

SYSCTXTTRUSTATTRS DSNCAX01 (UC) CONTEXTID (INTEGER)
NAME (VARCHAR(128))
VALUE (VARCHAR(256))

SYSDATABASE DSNDDH01 (U) NAME (VARCHAR(24))

DSNDDX02 (N) GROUP_MEMBER (VARCHAR(24))

SYSDATATYPES DSNODX01 (U) SCHEMA (VARCHAR(128))
NAME (VARCHAR(128))

DSNODX02 (U) DATATYPEID (INTEGER)

SYSDBAUTH DSNADH01 (N) GRANTEE (VARCHAR(128))
NAME (VARCHAR(24))
GRANTEETYPE (CHAR(1))

DSNADX01 (N) GRANTOR (VARCHAR(128))
NAME (VARCHAR(24))
GRANTORTYPE (CHAR(1))

DSNADH02 (N) NAME (VARCHAR(24))

SYSDBRM DSNDBX01 (N) PLNAME (VARCHAR(24))

DSNDBX02 (U) PLNAME (VARCHAR(24))
NAME (VARCHAR(24))

SYSDEPENDENCIES DSNONX01 (U) BSCHEMA (VARCHAR(128))
BNAME (VARCHAR(128))
BTYPE (CHAR(1))
BCOLNAME (VARCHAR(128))

DSNONX02 (N) DSCHEMA (VARCHAR(128))
DNAME (VARCHAR(128))
DTYPE (CHAR(1))
DCOLNAME (VARCHAR(128))

2748 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 386. Indexes on Db2 catalog tables (continued)

Table Index (type“1” on
page 2767)

Columns (data type)

SYSDYNQRY DSNDQX01 (PU) SDQ_STMT_ID (BIGINT)
COPYID (SMALLINT)

DSNDQX02 (N) SCHEMA
CURSCHEMA (VARCHAR(128))
QUERY_HASH (CHAR(16))
COPYID (SMALLINT)
RELBOUND (CHAR(1))

DSNDQX11 (U) STBLGRP (VARCHAR(128))
SDQ_STMT_ID (BIGINT)
COPYID (SMALLINT)

SYSDYNQRYDEP DSNDQX03 (N) SDQ_STMT_ID (BIGINT)
COPYID (SMALLINT)

DSNDQX04 (N) BQUALIFIER (VARCHAR(128))
BNAME (VARCHAR(128))
BTYPE (CHAR(1))
SDQ_STMT_ID (BIGINT)
COPYID (SMALLINT)

DSNDQX05 (N) CLASS (CHAR(1))
AUTHID (VARCHAR(128))
AUTHID_TYPE (CHAR(1))

DSNDQX12 (N) CLASS (CHAR(1))
BTYPE (CHAR(1))
BAUTH (SMALLINT)
AUTHID_TYPE (CHAR(1))
AUTHID (VARCHAR(128))
BQUALIFIER (VARCHAR(128))
BNAME (VARCHAR(128))

SYSDYNQRY_EXPL DSNDQX08 (A) DATA2 (BLOB(2147483647))

SYSDYNQRY_OPL DSNDQX10 (A) DATA4 (BLOB(2147483647))

SYSDYNQRY_SHTEL DSNDQX09 (A) DATA3 (BLOB(2147483647))

SYSDYNQRY_SPAL DSNDQX07 (A) DATA1 (BLOB(2147483647))

SYSDYNQRY_TXTL DSNDQX06 (A) STMTTEXT (CLOB(2M))

SYSENVIRONMENT DSNOEX01 (U) ENVID (INTEGER)

Appendix H. Db2 catalog tables 2749

Table 386. Indexes on Db2 catalog tables (continued)

Table Index (type“1” on
page 2767)

Columns (data type)

SYSFIELDS DSNDFX01 (N) TBCREATOR (VARCHAR(128))
TBNAME (VARCHAR(128))
NAME (VARCHAR(128))

SYSFOREIGNKEYS DSNDRH01 (N) CREATOR (VARCHAR(128))
TBNAME (VARCHAR(128))
RELNAME (VARCHAR(128))

SYSINDEXCLEANUP DSNICX01 (N) DBNAME (VARCHAR(24))
INDEXSPACE (VARCHAR(24))

SYSINDEXES DSNDXX01 (U) CREATOR (VARCHAR(128))
NAME (VARCHAR(128))

DSNDXX02 (U) DBNAME (VARCHAR(24))
INDEXSPACE (VARCHAR(24))

DSNDXX03 (U) TBCREATOR (VARCHAR(128))
TBNAME (VARCHAR(128))
CREATOR (VARCHAR(128))
NAME (VARCHAR(128))

DSNDXX04 (N) INDEXTYPE (CHAR(1))

DSNDXX07 (N) TBCREATOR (VARCHAR(128))
TBNAME (VARCHAR(128))

SYSINDEXES_HIST DSNHHX01 (NC) TBCREATOR (VARCHAR(128))
TBNAME (VARCHAR(128))
NAME (VARCHAR(128))
STATSTIME (TIMESTAMP)

DSNHHX02 (N) CREATOR (VARCHAR(128))
NAME (VARCHAR(128))

SYSINDEXES_RTSECT DSNDXX06 (A) RTSECTION (BLOB(1G))

SYSINDEXES_TREE DSNDXX05 (A) PARSETREE (BLOB(1G))

SYSINDEXPART DSNDRX01 (U) IXCREATOR (VARCHAR(128))
IXNAME (VARCHAR(128))
PARTITION (SMALLINT)

DSNDRX02 (N) STORNAME (VARCHAR(128))

2750 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 386. Indexes on Db2 catalog tables (continued)

Table Index (type“1” on
page 2767)

Columns (data type)

DSNDRX03 (N) IXCREATOR (VARCHAR(128))
IXNAME (VARCHAR(128))

SYSINDEXPART_HIST DSNHGX01 (N) IXCREATOR (VARCHAR(128))
IXNAME (VARCHAR(128))
PARTITION (SMALLINT)
STATSTIME (TIMESTAMP)

SYSINDEXSPACESTATS DSNRTX02 (U) DBID (SMALLINT)
ISOBID (SMALLINT)
PARTITION (SMALLINT)
INSTANCE (SMALLINT)

DSNRTX03 (N) CREATOR (VARCHAR(128))
NAME (VARCHAR(128))

SYSINDEXSTATS DSNTXX01 (UC) OWNER (VARCHAR(128))
NAME (VARCHAR(128))
PARTITION (SMALLINT)

SYSINDEXSTATS_HIST DSNHIX01 (NC) IXCREATOR (VARCHAR(128))
IXNAME (VARCHAR(128))
PARTITION (SMALLINT)
STATSTIME (TIMESTAMP)

SYSJARDATA DSNJDX01 (A) JARDATA (BLOB(100M))

SYSJARCLASS_SOURCE DSNJSX01 (A) CLASS_SOURCE (CLOB(10M))

SYSJARCONTENTS DSNJCX01 (NC) JARSCHEMA (VARCHAR(128))
JAR_ID (VARCHAR(128))

SYSJAROBJECTS DSNJOX01 (UC) JARSCHEMA (VARCHAR(128))
JAR_ID (VARCHAR(128))

SYSJAVAOPTS DSNJVX01 (UC) JARSCHEMA (VARCHAR(128))
JAR_ID (VARCHAR(128))

SYSJAVAPATHS DSNJPX01 (U) JARSCHEMA (VARCHAR(128))
JAR_ID (VARCHAR(128))
ORDINAL (SMALLINT)

DSNJPX02 (N) PE_JARSCHEMA (VARCHAR(128))
PE_JAR_ID (VARCHAR(128))

Appendix H. Db2 catalog tables 2751

Table 386. Indexes on Db2 catalog tables (continued)

Table Index (type“1” on
page 2767)

Columns (data type)

SYSKEYCOLUSE DSNCUX01 (N) TBCREATOR (VARCHAR(128))
TBNAME (VARCHAR(128))
CONSTNAME (VARCHAR(128))
COLSEQ (SMALLINT)

SYSKEYS DSNDKX01 (U) IXCREATOR (VARCHAR(128))
IXNAME (VARCHAR(128))
COLNAME (VARCHAR(128))

DSNDKX02 (N) IXCREATOR (VARCHAR(128))
IXNAME (VARCHAR(128))

DSNDKX03 (U) IXCREATOR (VARCHAR(128))
IXNAME (VARCHAR(128))
COLSEQ (SMALLINT)

SYSKEYTARGETS DSNRKX01 (UC) IXSCHEMA (VARCHAR(128))
IXNAME (VARCHAR(128))
KEYSEQ (SMALLINT)

DSNRKX02 (N) DATATYPEID (INTEGER)
KEYSPEC_INTERNAL (VARCHAR(512))

SYSKEYTARGETSTATS DSNTKX01 (U) IXSCHEMA (VARCHAR(128))
IXNAME (VARCHAR(128))
KEYSEQ (SMALLINT)
PARTITION (SMALLINT)

SYSKEYTARGETS_HIST DSNHKX01 (N) IXSCHEMA (VARCHAR(128))
IXNAME (VARCHAR(128))
KEYSEQ (SMALLINT)
STATSTIME (TIMESTAMP)

SYSKEYTGTDIST DSNTDX01 (N) IXSCHEMA (VARCHAR(128))
IXNAME (VARCHAR(128))
KEYSEQ (SMALLINT)

SYSKEYTGTDISTSTATS DSNTSX01 (N) IXSCHEMA (VARCHAR(128))
IXNAME (VARCHAR(128))
KEYSEQ (SMALLINT)
PARTITION (SMALLINT)

SYSKEYTGTDIST_HIST DSNTDX02 (N) IXSCHEMA (VARCHAR(128))
IXNAME (VARCHAR(128))
KEYSEQ (SMALLINT)
STATSTIME (TIMESTAMP)

2752 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 386. Indexes on Db2 catalog tables (continued)

Table Index (type“1” on
page 2767)

Columns (data type)

SYSLOBSTATS DSNLNX01 (UC) DBNAME (VARCHAR(24))
NAME (VARCHAR(24))

SYSLEVELSUPDATED DSNLVX01 (N) OPERATION_TYPE (CHAR(1)),
EFFECTIVE_TIME (TIMESTAMP(12))

DSNLVX02 (N) EFFECTIVE TIME (TIMESTAMP(12))

SYSLOBSTATS_HIST DSNHJX01 (NC) DBNAME (CHAR(8))
NAME (CHAR(8))
STATSTIME (TIMESTAMP)

SYSOBDS DSNDOB01 (N) CREATOR (VARCHAR(128))
NAME (VARCHAR(128))
OBDTYPE (CHAR(1))

DSNDOB02 (N) CREATOR (VARCHAR(128))
NAME (VARCHAR(128))
OBDTYPE (CHAR(1))

SYSOBD_AUX DSNOB03 (A) OBD_IMAGE (BLOB(1G))

SYSOBJROLEDEP DSNRDX01 (UC) DSCHEMA (VARCHAR(128))
DNAME (VARCHAR(128))
DTYPE (CHAR(1))

DSNRDX02 (N) ROLENAME (VARCHAR(128))

SYSPACKAUTH DSNKAX01 (N) GRANTOR (VARCHAR(128))
LOCATION (VARCHAR(128))
COLLID (VARCHAR(128))
NAME (VARCHAR(128))
GRANTORTYPE (CHAR(1))

DSNKAX02 (N) GRANTEE (VARCHAR(128))
LOCATION (VARCHAR(128))
COLLID (VARCHAR(128))
NAME (VARCHAR(128))
BINDAUTH (CHAR(1))
COPYAUTH (CHAR(1))
EXECUTEAUTH (CHAR(1))
GRANTEETYPE (CHAR(1))

DSNKAX03 (N) LOCATION (VARCHAR(128))
COLLID (VARCHAR(128))
NAME (VARCHAR(128))

Appendix H. Db2 catalog tables 2753

Table 386. Indexes on Db2 catalog tables (continued)

Table Index (type“1” on
page 2767)

Columns (data type)

SYSPACKAGE DSNKKX01 (U) LOCATION (VARCHAR(128))
COLLID (VARCHAR(128))
NAME (VARCHAR(128))
VERSION (VARCHAR(122))

DSNKKX02 (U) LOCATION (VARCHAR(128))
COLLID (VARCHAR(128))
NAME (VARCHAR(128))
CONTOKEN (CHAR(8))

SYSPACKCOPY DSNPCX01 (UC) LOCATION (VARCHAR(128))
COLLID (VARCHAR(128))
NAME (VARCHAR(128))
CONTOKEN (CHAR(8))
COPYID (INTEGER)

SYSPACKDEP DSNKDX01 (N) DLOCATION (VARCHAR(128))
DCOLLID (VARCHAR(128))
DNAME (VARCHAR(128))
DCONTOKEN (CHAR(8))

DSNKDX02 (N) BQUALIFIER (VARCHAR(128))
BNAME (VARCHAR(128))
BTYPE (CHAR(1))

DSNKDX03 (N) BQUALIFIER (VARCHAR(128))
BNAME (VARCHAR(128))
BTYPE (CHAR(1))
DTYPE (CHAR(1))

SYSPACKLIST DSNKLX01 (N) LOCATION (VARCHAR(128))
COLLID (VARCHAR(128))
NAME (VARCHAR(128))

DSNKLX02 (U) PLANNAME (VARCHAR(24))
SEQNO (SMAILLINT)
LOCATION (VARCHAR(128))
COLLID (VARCHAR(128))
NAME (VARCHAR(128))

SYSPACKSTMT DSNKSX01 (UC) LOCATION (VARCHAR(128))
COLLID (VARCHAR(128))
NAME (VARCHAR(128))
CONTOKEN (CHAR(8))
SEQNO (INTEGER)

SYSPACKSTMT_STMB DSNKSX02 (A) STMTBLOB (BLOB(2M))

2754 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 386. Indexes on Db2 catalog tables (continued)

Table Index (type“1” on
page 2767)

Columns (data type)

SYSPACKSTMT_STMT DSNPKX01 (A) STATEMENT (CLOB(2M))

SYSPARMS DSNOPX01 (U) SCHEMA (VARCHAR(128))
SPECIFICNAME (VARCHAR(128))
ROUTINETYPE (CHAR(1))
ROWTYPE (CHAR(1))
ORDINAL (SMALLINT)
VERSION (VARCHAR(122))

DSNOPX02 (N) TYPESCHEMA (VARCHAR(128))
TYPENAME (VARCHAR(128))
ROUTINETYPE (CHAR(1))
CAST_FUNCTION (CHAR(1))
OWNER (VARCHAR(128))
SCHEMA (VARCHAR(128))
SPECIFICNAME (VARCHAR(128))

DSNOPX03 (N) TYPESCHEMA (VARCHAR(128))
TYPENAME (VARCHAR(128))

DSNOPX04 (N) SCHEMA (VARCHAR(128))
SPECIFICNAME (VARCHAR(128))
ROUTINETYPE (CHAR(1))
VERSION (VARCHAR(122))

SYSPENDINGDDL DSNPDX01 (N) DBNAME (VARCHAR(24))
TSNAME (VARCHAR(24))
CREATEDTS (TIMESTAMP)
OPTION_SEQNO (SMALLINT)

DSNPDX02 (N) OBJSCHEMA (VARCHAR(128))
OBJNAME (VARCHAR(128))
OBJTYPE (CHAR(1))
CREATEDTS (TIMESTAMP)
OPTION_SEQNO (SMALLINT)

SYSPENDINGDDLTEXT DSNPDX03 (A) STATEMENT_TEXT (CLOB(2M))

SYSPENDINGOBJECTS DSNPOX01 (N) DBNAME (VARCHAR(24))
TSNAME (VARCHAR(24))
PARTITION (SMALLINT)
COLNAME (VARCHAR(128))

DSNPOX02 (N) OBJSCHEMA (VARCHAR(128))
OBJNAME (VARCHAR(128))
OBJTYPE (CHAR(1))

Appendix H. Db2 catalog tables 2755

Table 386. Indexes on Db2 catalog tables (continued)

Table Index (type“1” on
page 2767)

Columns (data type)

DSNPOX03 (N) DBNAME (VARCHAR(24))
INDEXSPACE (CHAR(8))

SYSPKSYSTEM DSNKYX01 (N) LOCATION (VARCHAR(128))
COLLID (VARCHAR(128))
NAME (VARCHAR(128))
CONTOKEN (CHAR(8))
SYSTEM (VARCHAR(24))
ENABLE (CHAR(1))

SYSPLAN DSNPPH01 (U) NAME (VARCHAR(24))

SYSPLANAUTH DSNAPH01 (N) GRANTEE (VARCHAR(128))
NAME (VARCHAR(24))
EXECUTEAUTH (CHAR(1))
GRANTEETYPE (CHAR(1))

DSNAPX01 (N) GRANTOR (VARCHAR(128))
GRANTORTYPE (CHAR(1))

DSNAPX02 (N) NAME (VARCHAR(24))

SYSPLANDEP DSNGGX01 (N) BCREATOR (VARCHAR(128))
BNAME (VARCHAR(128))
BTYPE (CHAR(1))

DSNGGX05 (N) DNAME (VARCHAR(24))

SYSPLSYSTEM DSNKPX01 (N) NAME (VARCHAR(24))
SYSTEM (VARCHAR(24))
ENABLE (CHAR(1))

SYSPROFILE_TEXT DSNPRX02 (A) PROFILE_TEXT (CLOB(1M))

SYSQUERY DSNQYX01 (N) QUERY_HASH (CHAR(16))
SCHEMA (VARCHAR(128))
SOURCE (SMALLINT)
QUERY_SEC_HASH (CHAR(16))

DSNQYX02 (U) QUERYID (BIGINT)

DSNQYX03 (N) LOCATION (VARCHAR(128))
COLLECTION (VARCHAR(128))
PACKAGE (VARCHAR(128))
VERSION (VARCHAR(128))
SECTNO (INTEGER)

2756 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 386. Indexes on Db2 catalog tables (continued)

Table Index (type“1” on
page 2767)

Columns (data type)

DSNQYX04 (N) QUERY_SEC_HASH (CHAR(16))
SCHEMA (VARCHAR(128))
SOURCE (SMALLINT)

SYSQUERYPREDICATE DSNQEX01 (UC) QUERYID (BIGINT)
PREDNO (INTEGER)

DSNQEX02 (N) QUERYID (BIGINT)

SYSQUERYOPTS DSNQPX01 (N) QUERYID (BIGINT)
COPYID (SMALLINT)

SYSQUERYPLAN DSNQNX01 (N) QUERYID (BIGINT)
COPYID (SMALLINT)

SYSQUERYSEL DSNQLX01 (PU) QUERYID (BIGINT)
PREDNO (INTEGER)
INSTANCE (SMALLINT)

DSNQLX02 (N) QUERYID (BIGINT)
PREDNO (INTEGER)

SYSQUERY_AUX DSNQSX01 (A) STMTTEXT (CLOB(2M))

SYSRELS DSNDLX01 (N) REFTBCREATOR (VARCHAR(128))
REFTBNAME (VARCHAR(128))

DSNDLX02 (N) CREATOR (VARCHAR(128))
TBNAME (VARCHAR(128))

DSNDLX03 (N) IXOWNER (VARCHAR(128))
IXNAME (VARCHAR(128))

DSNDLX04 (U) CREATOR (VARCHAR(128))
TBNAME (VARCHAR(128))
RELNAME (VARCHAR(128))

SYSRESAUTH DSNAGH01 (N) GRANTEE (VARCHAR(128))
QUALIFIER (VARCHAR(128))
NAME (VARCHAR(128))
OBTYPE (CHAR(1))
GRANTEETYPE (CHAR(1))

Appendix H. Db2 catalog tables 2757

Table 386. Indexes on Db2 catalog tables (continued)

Table Index (type“1” on
page 2767)

Columns (data type)

DSNAGX01 (N) GRANTOR (VARCHAR(128))
QUALIFIER (VARCHAR(128))
NAME (VARCHAR(128))
OBTYPE (CHAR(1))
GRANTORTYPE (CHAR(1))

SYSROLES DSNRLX01 (UC) NAME (VARCHAR(128))

SYSROUTINEAUTH DSNOAX01 (N) GRANTOR (VARCHAR(128))
SCHEMA (VARCHAR(128))
SPECIFICNAME (VARCHAR(128))
ROUTINETYPE (CHAR(1))
GRANTEETYPE (CHAR(1))
EXECUTEAUTH (CHAR(1))
GRANTORTYPE (CHAR(1))

DSNOAX02 (U) GRANTEE (VARCHAR(128))
SCHEMA (VARCHAR(128))
SPECIFICNAME (VARCHAR(128))
ROUTINETYPE (CHAR(1))
GRANTEETYPE (CHAR(1))
EXECUTEAUTH (CHAR(1))
GRANTEDTS (TIMESTAMP)

DSNOAX03 (N) SCHEMA (VARCHAR(128))
SPECIFICNAME (VARCHAR(128))
ROUTINETYPE (CHAR(1))

2758 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 386. Indexes on Db2 catalog tables (continued)

Table Index (type“1” on
page 2767)

Columns (data type)

SYSROUTINES DSNOFX01 (UC) NAME (VARCHAR(128))
PARM_COUNT (SMALLINT)
PARM_SIGNATURE (VARCHAR(150))
ROUTINETYPE (CHAR(1))
SCHEMA (VARCHAR(128))
PARM1 (SMALLINT)
PARM2 (SMALLINT)
PARM3 (SMALLINT)
PARM4 (SMALLINT)
PARM5 (SMALLINT)
PARM6 (SMALLINT)
PARM7 (SMALLINT)
PARM8 (SMALLINT)
PARM9 (SMALLINT)
PARM10 (SMALLINT)
PARM11 (SMALLINT)
PARM12 (SMALLINT)
PARM13 (SMALLINT)
PARM14 (SMALLINT)
PARM15 (SMALLINT)
PARM16 (SMALLINT)
PARM17 (SMALLINT)
PARM18 (SMALLINT)
PARM19 (SMALLINT)
PARM20 (SMALLINT)
PARM21 (SMALLINT)
PARM22 (SMALLINT)
PARM23 (SMALLINT)
PARM24 (SMALLINT)
PARM25 (SMALLINT)
PARM26 (SMALLINT)
PARM27 (SMALLINT)
PARM28 (SMALLINT)
PARM29 (SMALLINT)
PARM30 (SMALLINT)
VERSION (VARCHAR(122))

DSNOFX02 (PU) SCHEMA (VARCHAR(128))
SPECIFICNAME (VARCHAR(128))
ROUTINETYPE (CHAR(1))
VERSION (VARCHAR(122))

DSNOFX03 (N) NAME (VARCHAR(128))
SCHEMA (VARCHAR(128))
CAST_FUNCTION (CHAR(1))
PARM_COUNT (SMALLINT)
PARM_SIGNATURE (VARCHAR(150))
PARM1 (SMALLINT)

DSNOFX04 (U) ROUTINE_ID (INTEGER)

Appendix H. Db2 catalog tables 2759

Table 386. Indexes on Db2 catalog tables (continued)

Table Index (type“1” on
page 2767)

Columns (data type)

DSNOFX05 (N) SOURCESCHEMA (VARCHAR(128))
SOURCESPECIFIC (VARCHAR(128))
ROUTINETYPE (CHAR(1))

DSNOFX06 (N) SCHEMA (VARCHAR(128))
NAME (VARCHAR(128))
ROUTINETYPE (CHAR(1))
PARM_COUNT (SMALLINT)

DSNOFX07 (U) NAME (VARCHAR(128))
PARM_COUNT (SMALLINT)
ROUTINETYPE (CHAR(1))
SCHEMA (VARCHAR(128))
PARM_SIGNATURE (VARCHAR(150))
PARM1 (SMALLINT)
PARM2 (SMALLINT)
PARM3 (SMALLINT)
PARM4 (SMALLINT)
PARM5 (SMALLINT)
PARM6 (SMALLINT)
PARM7 (SMALLINT)
PARM8 (SMALLINT)
PARM9 (SMALLINT)
PARM10 (SMALLINT)
PARM11 (SMALLINT)
PARM12 (SMALLINT)
PARM13 (SMALLINT)
PARM14 (SMALLINT)
PARM15 (SMALLINT)
PARM16 (SMALLINT)
PARM17 (SMALLINT)
PARM18 (SMALLINT)
PARM19 (SMALLINT)
PARM20 (SMALLINT)
PARM21 (SMALLINT)
PARM22 (SMALLINT)
PARM23 (SMALLINT)
PARM24 (SMALLINT)
PARM25 (SMALLINT)
PARM26 (SMALLINT)
PARM27 (SMALLINT)
PARM28 (SMALLINT)
PARM29 (SMALLINT)
PARM30 (SMALLINT)
VERSION (VARCHAR(122))

DSNOFX08 (N) JARSCHEMA (VARCHAR(128))
JAR_ID (VARCHAR(128))

SYSROUTINESTEXT DSNPLX01 (A) TEXT (CLOB(2M))

2760 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 386. Indexes on Db2 catalog tables (continued)

Table Index (type“1” on
page 2767)

Columns (data type)

SYSROUTINES_OPTS DSNROX01 (UC) SCHEMA (VARCHAR(128))
ROUTINENAME (VARCHAR(128))
BUILDDATE (DATE)
BUILDTIME (TIME)

SYSROUTINES_SRC DSNRSX01 (N) ROUTINENAME (VARCHAR(128))

DSNRSX02 (UC) SCHEMA (VARCHAR(128))
ROUTINENAME (VARCHAR(128))
BUILDDATE (DATE)
SEQNO (INTEGER)

SYSROUTINES_TREE DSNPLX02 (A) PTREE (BLOB(1G))

SYSSCHEMAAUTH DSNSKX01 (N) GRANTEE (VARCHAR(128))
SCHEMANAME (VARCHAR(128))
GRANTEETYPE (CHAR(1))

DSNSKX02 (N) GRANTOR (VARCHAR(128))
GRANTORTYPE (CHAR(1))

SYSSEQUENCEAUTH DSNWCX01 (N) SCHEMA (VARCHAR(128))
NAME (VARCHAR(128))

DSNWCX02 (N) GRANTOR (VARCHAR(128))
SCHEMA (VARCHAR(128))
NAME (VARCHAR(128))
GRANTORTYPE (VARCHAR(128))

DSNWCX03 (N) GRANTEE (VARCHAR(128))
SCHEMA (VARCHAR(128))
NAME (VARCHAR(128))
GRANTEETYPE (VARCHAR(128))

SYSSEQUENCES DSNSQX01 (U) SCHEMA (VARCHAR(128))
NAME (VARCHAR(128))

DSNSQX02 (UD) SEQUENCEID (INTEGER)

DSNSQX03 (N) SEQSCHEMA (VARCHAR(128))
SEQNAME (VARCHAR(128))

SYSSEQUENCESDEP DSNSRX01 (N) DCREATOR (VARCHAR(128))
DNAME (VARCHAR(128))
DCOLNAME (VARCHAR(128))

Appendix H. Db2 catalog tables 2761

Table 386. Indexes on Db2 catalog tables (continued)

Table Index (type“1” on
page 2767)

Columns (data type)

DSNSRX02 (N) BSCHEMA (VARCHAR(128))
BNAME (VARCHAR(128))
DTYPE (CHAR(1))

SYSSESSION DSNSNX02 (PU) TOKEN (CHAR(40))

SYSSESSION_DATA DSNSNX03 (A) DATA (BLOB(2147483647))

SYSSESSION_EX DSNSNX04 (N) TOKEN (CHAR(40))

DSNSNX05 (U) TOKEN (CHAR(40))
GVID (CHAR(8))
LOCATOR (CHAR(8))

SYSSESSION_GV DSNSNX01 (A) GLOBAL_VARIABLES
(BLOB(2147483647)))

SYSSESSION_STATUS DSNSNX06 (U) TOKEN (CHAR(40))

SYSSTATFEEDBACK DSNSFX01 (N) TBCREATOR (VARCHAR(128))
TBNAME (VARCHAR(128))
IXCREATOR (VARCHAR(128))
IXNAME (VARCHAR(128))
COLNAME (VARCHAR(128))
COLGROUPNO (VARCHAR(254))
NUMCOLUMNS (SMALLINT)
TYPE (CHAR(1))

DSNSFX02 (N) TBCREATOR (VARCHAR(128))
TBNAME (VARCHAR(128))

DSNSFX03 (N) IXCREATOR (VARCHAR(128))
IXNAME (VARCHAR(128))

SYSSTOGROUP DSNSSH01 (U) NAME (VARCHAR(128))

SYSSTMT DSNPSX01 (N) PLNAME (VARCHAR(24))
NAME (VARCHAR(24))

DSNPSX02 (N) PLNAME (VARCHAR(24))
NAME (VARCHAR(24))
SEQNO (INTEGER)

SYSSTRINGS DSNSSX01 (U) OUTCCSID (INTEGER)
INCCSID (INTEGER)
IBMREQD (CHAR(1))

2762 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 386. Indexes on Db2 catalog tables (continued)

Table Index (type“1” on
page 2767)

Columns (data type)

SYSSYNONYMS DSNDYX01 (U) CREATOR (VARCHAR(128))
NAME (VARCHAR(128))

DSNDYX02 (N) TBCREATOR (VARCHAR(128))
TBNAME (VARCHAR(128))

SYSTABAUTH DSNATX01 (N) GRANTOR (VARCHAR(128))
GRANTORTYPE (CHAR(1))

DSNATX02 (N) GRANTEE (VARCHAR(128))
TCREATOR (VARCHAR(128))
TTNAME (VARCHAR(128))
GRANTEETYPE (CHAR(1))
UPDATECOLS (CHAR(1))
ALTERAUTH (CHAR(1))
DELETEAUTH (CHAR(1))
INDEXAUTH (CHAR(1))
INSERTAUTH (CHAR(1))
SELECTAUTH (CHAR(1))
UPDATEAUTH (CHAR(1))
CAPTUREAUTH (CHAR(1))
REFERENCESAUTH (CHAR(1))
REFCOLS (CHAR(1))
TRIGGERAUTH (CHAR(1))
UNLOADAUTH (CHAR(1))

DSNATX03 (N) GRANTEE (VARCHAR(128))
GRANTEETYPE (CHAR(1))
COLLID (VARCHAR(128))
CONTOKEN (CHAR(8))

DSNATX04 (N) TCREATOR (VARCHAR(128))
TTNAME (VARCHAR(8))

DSNATX05 (PU) TCREATOR (VARCHAR(128))
TTNAME (VARCHAR(128))
TIMESTAMP (CHAR(12))

SYSTABCONST DSNCNX01 (U) TBCREATOR (VARCHAR(128)) TBNAME
(VARCHAR(128)) CONSTNAME
(VARCHAR(128))

DSNCNX02 (N) IXOWNER (VARCHAR(128))
IXNAME (VARCHAR(128))

SYSTABLEPART DSNDPX01 (U) DBNAME (VARCHAR(24))
TSNAME (VARCHAR(24))
PARTITION (SMALLINT)

Appendix H. Db2 catalog tables 2763

Table 386. Indexes on Db2 catalog tables (continued)

Table Index (type“1” on
page 2767)

Columns (data type)

DSNDPX02 (N) STORNAME (VARCHAR(128))

DSNDPX03 (N) DBNAME (VARCHAR(24))
TSNAME (VARCHAR(24))
LOGICAL_PART (SMALLINT)

DSNDPX04 (N) IXCREATOR (VARCHAR(128))
IXNAME (VARCHAR(128))

DSNDPX05 (N) DBNAME (VARCHAR(24))
TSNAME (VARCHAR(24))

SYSTABLEPART_HIST DSNHCX01 (N) DBNAME (CHAR(8))
TSNAME (CHAR(8))
PARTITION (SMALLINT)
STATSTIME (TIMESTAMP)

SYSTABLES DSNDTX01 (PU) CREATOR (VARCHAR(128))
NAME (VARCHAR(128))

DSNDTX02 (U) DBID (SMALLINT)
OBID (SMALLINT)
CREATOR (VARCHAR(128))
NAME (VARCHAR(128))

DSNDTX03 (N) TBCREATOR (VARCHAR(128))
TBNAME (VARCHAR(128))

DSNDTX05 (N) DBNAME (VARCHAR(24))
TSNAME (VARCHAR(24))

SYSTABLESPACE DSNDSX01 (U) DBNAME (VARCHAR(24))
NAME (VARCHAR(24))

SYSTABLESPACESTATS DSNRTX01 (U) DBID (SMALLINT)
PSID (SMALLINT)
PARTITION (SMALLINT)
INSTANCE (SMALLINT)

SYSTABLES_HIST DSNHDX01 (N) CREATOR (VARCHAR(128))
NAME (VARCHAR(128))
STATSTIME (TIMESTAMP)

SYSTABLES_PROFILES DSNPRX01 (UC) SCHEMA (VARCHAR(128))
TBNAME (VARCHAR(128))
PROFILE_TYPE (VARCHAR(32))

2764 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 386. Indexes on Db2 catalog tables (continued)

Table Index (type“1” on
page 2767)

Columns (data type)

SYSTABSTATS DSNTTX01 (U) OWNER (VARCHAR(128))
NAME (VARCHAR(128))
PARTITION (SMALLINT)

DSNTTX02 (N) DBNAME (VARCHAR(24))
NAME (VARCHAR(128))

SYSTABSTATS_HIST DSNHBX01 (NC) OWNER (VARCHAR(128))
NAME (VARCHAR(128))
PARTITION (SMALLINT)
STATSTIME (TIMESTAMP)

SYSTRIGGERS DSNOTX01 (UC) SCHEMA (VARCHAR(128))
NAME (VARCHAR(128))
SEQNO (SMALLINT)
VERSION

DSNOTX02 (N) TBOWNER (VARCHAR(128))
TBNAME (VARCHAR(128))

DSNOTX03 (N) SCHEMA (VARCHAR(128))
TRIGNAME (VARCHAR(128))

SYSTRIGGERS_STMT DSNOTX04 (A) STATEMENT (CLOB(2M)

SYSUSERAUTH DSNAUH01 (N) GRANTEE (VARCHAR(128))
GRANTEDTS (TIMESTAMP)
GRANTEETYPE (CHAR(1))

DSNAUX02 (N) GRANTOR (VARCHAR(128))
GRANTORTYPE (CHAR(1))

SYSVARIABLEAUTH DSNVAX01 (N) GRANTEE (VARCHAR(128))
GRANTEETYPE (CHAR(1))
SCHEMA (VARCHAR(128))
NAME (VARCHAR(128))

DSNVAX02 (N) GRANTOR (VARCHAR(128))
GRANTORTYPE (CHAR(1))
SCHEMA (VARCHAR(128))
NAME (VARCHAR(128))

DSNVAX03 (N) SCHEMA (VARCHAR(128))
NAME (VARCHAR(128))

SYSVARIABLES DSNOVX01 (PU) SCHEMA (VARCHAR(128))
NAME (VARCHAR(128))

Appendix H. Db2 catalog tables 2765

Table 386. Indexes on Db2 catalog tables (continued)

Table Index (type“1” on
page 2767)

Columns (data type)

DSNOVX04 (N) TYPESCHEMA (VARCHAR(128))
TYPENAME (VARCHAR(128))

SYSVARIABLES_DESC DSNOVX03 (A) DESCRIPTOR (CLOB(2M))

SYSVARIABLES_TEXT DSNOVX02 (A) DEFAULTTEXT (CLOB(2M))

SYSVIEWDEP DSNGGX02 (N) BCREATOR (VARCHAR(128))
BNAME (VARCHAR(128))
BTYPE (CHAR(1))

DSNGGX03 (N) BSCHEMA (VARCHAR(128))
BNAME (VARCHAR(128))
BTYPE (CHAR(1))

DSNGGX04 (N) BCREATOR (VARCHAR(128))
BNAME (VARCHAR(128))
BTYPE (CHAR(1))
DTYPE (CHAR(1))

DSNGGX06 DCREATOR (VARCHAR(128))
DNAME (VARCHAR(128))
DTYPE (CHAR(1))

SYSVIEWS DSNVVX01 (U) CREATOR (VARCHAR(128))
NAME (VARCHAR(128))
SEQNO (SMALLINT)
TYPE (CHAR(1))

SYSVIEWS_STMT DSNVWX01 (A) STATEMENT (CLOB(2M))

SYSVIEWS_TREE DSNVWX02 (A) PARSETREE (BLOB(1G))

SYSVOLUMES DSNSSH02 (N) SGNAME (VARCHAR(128))

SYSXMLRELS DSNXRX01 (N) TBOWNER (VARCHAR(128))
TBNAME (VARCHAR(128))
COLNAME (VARCHAR(128))

DSNXRX02 (N) XMLTBOWNER (VARCHAR(128))
XMLTBNAME (VARCHAR(128))

SYSXMLSTRINGS DSNXSX01 (UC) STRINGID (INTEGER)

DSNXSX02 (U) STRING (VARCHAR(1000))

2766 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 386. Indexes on Db2 catalog tables (continued)

Table Index (type“1” on
page 2767)

Columns (data type)

SYSXMLTYPMOD DSNTMX01 (PU) XML_TYPMODE_ID (INTEGER)

SYSXMLTYPMSCHEMA DSNMSX01 (U) XML_TYPMODE_ID (INTEGER)
XSROBJECTID (INTEGER)

DSNMSX02 (N) XSROBJECTID (INTEGER)

USERNAMES DSNFEX01 (U) TYPE (CHAR(1))
AUTHID (VARCHAR(128))
LINKNAME (CHAR(8))

Notes:

1. The following index types are indicated:
A

Auxiliary
N

Nonunique
PU

Primary unique
U

Unique
UC

Unique clustering
UD

Unique descending

Related concepts
Index page set data pages (Diagnosing Db2 problems)
Related reference
Index Page Set Formats (Diagnosing Db2 problems)

Appendix H. Db2 catalog tables 2767

https://www.ibm.com/docs/en/SSEPEK_12.0.0/digref/src/tpc/db2z_indexpagesetdatapages.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/digref/src/tpc/db2z_indexpagesetformats.html

2768 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Appendix I. Db2 directory tables
Db2 for z/OS maintains a set of tables (in database DSNDB01) called the Db2 directory. Authorized users
can query the directory; however, it is primarily intended for use by Db2 and is therefore subject to
change.

About these topics
These topics describe the directory tables that allow SELECT operations by describing the columns of
those tables.

Authorization for SELECT for Db2 directory tables
Users must have one of the following privileges to execute SELECT statements on the directory tables:

• Installation SYSADM
• SYSADM
• SYSCTRL
• ACCESSCTRL
• DATAACCESS
• SECADM
• SQLADM
• System DBADM
• DBADM on DSNDB01
• The SELECT privilege on a specific table

All directory tables are qualified by SYSIBM. Do not use this qualifier for user-defined tables.

The directory tables are not, in most cases, updated as part of Db2 operations.

The following table lists restrictions on SQL statements that reference directory tables:

SQL statement Restriction

ALTER TABLE table-name cannot specify a directory table.

ALTER TABLESPACE The table space cannot be altered if it is associated with a directory table.

CREATE INDEX ON table-name or aux-table-name cannot specify a directory table.

CREATE TRIGGER (basic) ON table-name cannot specify a directory table.

CREATE TRIGGER
(advanced)

ON table-name cannot specify a directory table.

DELETE FROM table-name cannot specify a directory table.

DROP table-name cannot specify a directory table.

INSERT INTO table-name cannot specify a directory table.

MERGE INTO table-name cannot specify a directory table.

RENAME source-table-name cannot specify a directory table.

TRANSFER OWNERSHIP TABLE table-name cannot specify a directory table.

UPDATE table-name cannot specify a directory table.

© Copyright IBM Corp. 1982, 2024 2769

Programming interface information
None of the directory table columns are part of the general-use programming interface. The column
labeled "Use" in the table that describes the column indicates whether the column is part of the product-
sensitive interface or is for internal, IBM use, only. The values that "Use" can assume are as follows:

Value
Meaning

S
Column is part of the product-sensitive interface

I
Column is for internal use only

For columns for which "Use" is I, the name of the column and its description do not appear in the
explanation of the column.

Db2 directory table spaces and indexes

The following table lists the table space and indexes for each directory table and lists the index fields for
each index. The indexes are in ascending order.

The directory table space, tables, and indexes are primarily intended for use by Db2 and are therefore
subject to change.

Table 387. Table spaces and indexes for the directory tables

TABLE SPACE
DSNDB01. …

TABLE
SYSIBM. …

INDEX
SYSIBM. …

INDEX FIELDS

DBD01 DBDR DSNDB01X DBID.SECTION

SYSDBDXA SYSDBD_DATA DSNDB1XA DBD_DATA

SCT02 SCTR DSNSCT02 SCTNAME.SCTSEC.
SPTSEQ

SPT01 SPTR DSNSPT01 SPTPID.SPTSEC.
SPTSEQ

DSNSPT02 version.SPTID.
SPTSEC.SPTSEQ

SYSSPUXA SYSSPTSEC_DATA DSNSPDXA SPTSEC_DATA

SYSSPUXB SYSSPTSEC_EXPL DSNSPEXA SPTSEC_EXPL

SYSLGRNX SYSLGRNX DSNLLX01 LGRDBID.LGRPSID.
LGRPART.LGRMEMB.
LGRSLRSN

 DSNLLX02 LGRDBID.LGRPSID.
LGRSLRSN

SYSUTILX SYSUTIL DSNLUX01 USUUID

 SYSUTILX DSNLUX02 UTILID.SEQNO

2770 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SYSIBM.DBDR table

The DBDR table stores one row for each DBD section. The schema is SYSIBM.

Table 388. SYSIBM.SYSDBDR table column descriptions

Column name Data type Description Use

INTEGER Not used S

DBID SMALLINT DBID of the database S

SECTION SMALLINT DBD section number S

DBD_ROWID ROWID ID that is used to support the DBD_DATA column S

DBD_DATA BLOB(2G) DBD data for the section I

SYSIBM.SYSDBD_DATA table

The SYSDBD_DATA table is an auxiliary table for the SYSIBM.DBDR table. The schema is SYSIBM.

Column name Data type Description Use

DBD_DATA BLOB(2G) Contents of the DBD section. I

SYSIBM.SCTR table

The SCTR table stores Skeleton Cursor Tables (SKCT) information. The schema is SYSIBM.

Table 389. SYSIBM.SCTR table column descriptions

Column name Data type Description Use

SCTLL CHAR (4)
FOR BIT DATA

The length of the record. S

SCTNAME CHAR (14)
FOR BIT DATA

The plan name, section number, and sequence number. S

SCTDAT VARCHAR(4028) SKCT data. I

SYSIBM.SPTR table

The SPTR table stores skeleton package table (SKPT) information. The schema is SYSIBM.

Table 390. SYSIBM.SPTR table column descriptions

Column name Data type Description Use

SPTLL INTEGER The length of the record. S

SPTLOCID VARCHAR(128) Package location. S

SPTCOLID VARCHAR(128) Package collection ID. S

SPTNAME VARCHAR(128) Package name. S

Appendix I. Db2 directory tables 2771

Table 390. SYSIBM.SPTR table column descriptions (continued)

Column name Data type Description Use

SPTCONID CHAR(8)
FOR BIT DATA

Package consistency token. S

SPTRESV CHAR(2)
FOR BIT DATA

Internal use only. I

SPTSEC CHAR(4)
FOR BIT DATA

Section number. S

SPTSEQ CHAR(2)
FOR BIT DATA

Sequence number within the section. S

SPTBODY VARCHAR(1) Reserved for future IBM use. I

SPTVER VARCHAR(64) Package version. S

SPT_ROWID ROWID ROWID that Db2 creates for the LOB columns in this
table.

S

SPT_DATA BLOB(2G) Internal use only. I

SPT_EXPLAIN BLOB(2G) Internal use only. I

SYSIBM.SYSSPTSEC_DATA table

The SYSSPTSEC_DATA table is an auxiliary table that contains package data for the SPTR table. The
schema is SYSIBM.

Table 391. SYSIBM.SYSSPTSEC_DATA table column descriptions

Column name Data type Description Use

SPT_DATA BLOB(2G) Contents of the SKPT section I

SYSIBM.SYSSPTSEC_EXPL table

The SYSSPTSEC_EXPL table is an auxiliary table that contains static package explain data for the SPTR
table. The schema is SYSIBM.

Column name Data type Description Use

SPT_EXPLAIN BLOB(2G) Contents of the SKPT section explain block I

SYSIBM.SYSLGRNX table

The SYSLGRNX table stores recovery log ranges that record the time an index space defined with COPY
YES or a table space was open for updates. This provides an efficient way for Db2 to access the
appropriate log records for recovery, rather than having to scan every record in the recovery log for a
particular table. The schema is SYSIBM.

2772 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 392. SYSIBM.SYSLGRNX table column descriptions

Column name Data type Description Use

LGRDBID CHAR(2)
FOR BIT DATA

DBID of the modified object S

LGRPSID CHAR(2)
FOR BIT DATA

OBID of the modified object S

LGRUCDT CHAR(6) Modification date in the form mmddyy S

LGRUCTM CHAR(8) Modification time in the form hhmmssth S

LGRSRBA CHAR(10)
FOR BIT DATA

Starting RBA S

LGRSPBA CHAR(10)
FOR BIT DATA

Stopping RBA S

LGRPART SMALLINT Partition number in the table space or index space S

LGRSLRSN CHAR(10)
FOR BIT DATA

Starting LRSN of update log records for data sharing.
Otherwise, the system clock value that corresponds to
the first update log record.

S

LGRELRSN CHAR(10)
FOR BIT DATA

Ending LRSN of update log records for data sharing.
Otherwise, the system clock value that corresponds to
the last update log record.

S

LGRMEMB CHAR(2) Data sharing member ID of the modifying
Db2 subsystem. X'0000' for a non-data-sharing
environment.

S

SYSIBM.SYSUTIL table

The SYSUTIL table stores status information about Db2 utilities that are active or stopped. Each record
is uniquely identified by the utility identifier. Each row of the table contains the information for one utility
execution step. When the utility completes, the corresponding entries in the SYSUTIL table are deleted.
The schema is SYSIBM.

Table 393. SYSIBM.SYSUTIL table column descriptions

Name Data type Description Use

USUUID CHAR(16) UTILID value that was passed in a JOB statement
parameter

S

USUJOBNM CHAR(8) Job name from the JOB statement S

USUAUID CHAR(8) Authorization ID of the invoker S

USURDATE CHAR(4)
FOR BIT DATA

Date of the utility S

USUREL CHAR(3) Utility release level at restart time S

USUIRQD CHAR(1) IBM required field S

Appendix I. Db2 directory tables 2773

Table 393. SYSIBM.SYSUTIL table column descriptions (continued)

Name Data type Description Use

USULSIZE CHAR(4)
FOR BIT DATA

List size S

USULCUR CHAR(4)
FOR BIT DATA

The object that is currently being processed or was last
processed

S

USUUTNAM CHAR(8) Name of the currently executing utility S

USUPHASE CHAR(8) Current phase of the currently executing utility S

USUDSNU CHAR(2)
FOR BIT DATA

Data set or piece number S

USUDSNU2 CHAR(2)
FOR BIT DATA

Ending number of the partition range S

USUSTATU CHAR(1) Reserved I

USUTREQ CHAR(1) Termination requested (Y or N) S

USUFORCE CHAR(1) Element of USO forced (Y or N) S

USURLOK CHAR(1) Reload was successful (Y or N) S

USUCMPOK CHAR(1) Compatibility check passed (Y or N) S

USURSFLG BIT(8) Utility restriction flags S

USURTFLG BIT(8) Term settings S

USURSFLG2 BIT(8) Utility flags S

USUPOS CHAR(4)
FOR BIT DATA

Relative USM position in the SYSIN DD statement S

USUDONE CHAR(8)
FOR BIT DATA

Number of objects processed S

USUCKSUM CHAR(4)
FOR BIT DATA

USU checksum S

USUDBOB CHAR(2)
FOR BIT DATA

DBID for the table space S

USUPSID CHAR(2)
FOR BIT DATA

PSID for the table space or index space S

USUPSDD CHAR(2)
FOR BIT DATA

Secondary PSID for RECOVER INDEX data page set S

USUCATMGFRM CHAR(1)
FOR BIT DATA

Saved catalog level for the release from which migration
is done, from the DBD01 header page

S

2774 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 393. SYSIBM.SYSUTIL table column descriptions (continued)

Name Data type Description Use

USUOFLAG CHAR(1)
FOR BIT DATA

Flags for object properties S

USUDBNAM CHAR(8) Database name S

USUSPNAM CHAR(8) Table space or index space name S

USUMEMBR CHAR(8) Member name S

USUOCATR CHAR(1)
FOR BIT DATA

Saved catalog release level, from the DBD01 header
page

S

USUOCATV CHAR(1)
FOR BIT DATA

Saved catalog version level, from the DBD01 header
page

S

USUOCATCV CHAR(1)
FOR BIT DATA

Saved migration mode, from the DBD01 header page S

USUOCATH CHAR(1)
FOR BIT DATA

Saved highest version of the catalog S

USUUDA CHAR(150)
FOR BIT DATA

Utility-dependent data S

USURTIME CHAR(4)
FOR BIT DATA

Latest utility start time S

USURLSN CHAR(6)
FOR BIT DATA

Latest utility start LRSN S

USURDATO CHAR(4)
FOR BIT DATA

Original utility start date S

USURTIMO CHAR(4)
FOR BIT DATA

Original utility start time S

USURLSNO CHAR(4)
FOR BIT DATA

Original utility start LRSN S

USUR5 CHAR(10)
FOR BIT DATA

Reserved I

USURCNTR CHAR(31)
FOR BIT DATA

Generic counter or value holder S

USURLSNX CHAR(10)
FOR BIT DATA

Latest utility start LRSN value S

Appendix I. Db2 directory tables 2775

Table 393. SYSIBM.SYSUTIL table column descriptions (continued)

Name Data type Description Use

USURLSOX CHAR(10)
FOR BIT DATA

Original utility start LRSN value S

USUR6 Reserved I

USUUSTRN CHAR(27000)
FOR BIT DATA

Utility-dependent restart information S

SYSIBM.SYSUTILX table

The SYSUTILX table is a dependent of the SYSUTIL table. A record is created in the SYSUTILX table when
the amount of information in the parent record exceeds the record size of SYSUTIL. The rows in SYSUTILX
are uniquely identified by the utility identifier and sequence number.

Table 394. SYSIBM.SYSUTILX table column descriptions

Column name Data type Description Use

UTILID CHAR(16) The utility ID that identifies the parent record in
SYSIBM.SYSUTIL

S

SEQNO SMALLINT The sequence number of this row S

 CHAR(12) Reserved I

CHECKPOINT VARCHAR(32000) The overflow checkpoint/restart information S

Related concepts
Db2 directory (Introduction to Db2 for z/OS)

2776 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_directory.html

Appendix J. Performance information for SQL
application programming

Efficient applications are an important first step to good system and application performance. As you code
applications that access data in Db2, consider performance objectives in your application design.

The following topics can help you understand how application programmers can consider performance as
they write applications that access data in Db2 for z/OS.

Concurrency and programming
The goal is to program and prepare applications in a way that:

• Protects the integrity of the data that is being read or updated from being changed by other
applications.

• Minimizes the length of time that other access to the data is prevented.

For more information about data concurrency in Db2 and recommendations for improving concurrency in
your application programs, see the following topics:

• Programming for concurrency (Db2 Performance)
• Designing databases for concurrency (Db2 Performance)
• Concurrency and locks (Db2 Performance)
• Improving concurrency (Db2 Performance)
• Improving concurrency in data sharing environments (Db2 Data Sharing Planning and Administration)

Writing efficient queries
The predicates, subqueries, and other structures in SQL statements affect the access paths that Db2 uses
to access the data.

For information about how to write SQL statements that access data efficiently, see the following topics:

• Ways to improve query performance (Introduction to Db2 for z/OS)
• Writing efficient SQL queries (Db2 Performance)

Analyzing access paths
By analyzing the access path that Db2 uses to access the data for an SQL statement, you can discover
potential problems. You can use this information to modify your statement to perform better.

Tip: Query tuning capabilities that can help you with this task, such as visual explain and statistics
advisor, are available in IBM Db2 Administration Foundation for z/OS and IBM Db2 for z/OS Developer
Extension.

For information about how you can use EXPLAIN tables to analyze the access paths for your SQL
statements, see the following topics:

• Investigating access path problems (Db2 Performance)
• 00C200A4 (Db2 Codes)
• Investigating SQL performance by using EXPLAIN (Db2 Performance)
• Interpreting data access by using EXPLAIN (Db2 Performance)
• EXPLAIN tables (Db2 Performance)
• “EXPLAIN statement” on page 1917

© Copyright IBM Corp. 1982, 2024 2777

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_programapps4concurrency.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_designdb4concurrency.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_concurrencyandlocksdefined.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_recommend4concurrency.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/dshare/src/tpc/db2z_tuninguseoflocks.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_improvequeryperformance.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_programsqlperf.html
https://www.ibm.com/docs/en/SSPQNG_1.2.0/topics/izp_con_gs_AF.htm
https://marketplace.visualstudio.com/items?itemName=ibm.db2forzosdeveloperextension
https://marketplace.visualstudio.com/items?itemName=ibm.db2forzosdeveloperextension
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_investigateaccesspaths.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/00c200a4.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_useexplain2capturesqlinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_interpretdataaccess.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_explaintables.html

Distributed data access performance
The goal is to reduce the amount of network traffic that is required to access the distributed data, and to
manage the use of system resources such as distributed database access threads and connections.

For information about improving the performance of applications that access distributed data, see the
following topics:

• Ways to reduce network traffic (Introduction to Db2 for z/OS)
• Managing Db2 threads (Db2 Performance)
• Improving performance for applications that access distributed data (Db2 Performance)
• Improving performance for SQL statements in distributed applications (Db2 Performance)

Stored procedures performance
For information about stored procedures and Db2 performance, see the following topics:

• Implementing Db2 stored procedures (Stored procedures provided by Db2)
• Improving the performance of stored procedures and user-defined functions (Db2 Performance)

Related concepts
Programming for Db2 for z/OS (Introduction to Db2 for z/OS)
Related tasks
Programming applications for performance (Db2 Performance)
Planning for and designing Db2 applications (Db2 Application programming and SQL)

2778 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_waystoreducenetworktraffic.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_managethreads.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_tunedistributedapps.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_sqloptions4dist.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sproc/src/tpc/db2z_implementstoredprocedure.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_improvestoreprocudfperf.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/intro/src/tpc/db2z_applicationprogrammingfordb2.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_programapplicationperformance.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_planapplications.html

Appendix K. Db2 XML schema repository tables
The Db2 for z/OS XML schema repository (XSR) is a set of Db2 tables where you can store XML schemas.

Db2 creates the XSR tables during installation or migration. After you add XML schemas to the Db2 XSR,
you can use them to validate XML documents before you store them in XML columns.

An XML schema consists of a set of XML schema documents. To add an XML schema to the Db2 XSR, you
register XML schema documents to Db2. The XML schema documents must be in the Unicode encoding
scheme.

Programming interface information
Not all XSR table columns are part of the general-use programming interface. Whether a column is part
of this interface is indicated in a column labeled "Use" in the row that describes the table column. The
meaning of the values for the "Use" column is indicated in the following table.

Table 395. Meaning of values in the "Use" column if table descriptions

Value Meaning

G Column is part of the general-use programming
interface

S Column is part of the product-sensitive interface

I Column is for IBM use only

N Column is not used

For columns for which "Use" is N or I, the name of the column and its description do not appear in the
explanation of the column.

Related concepts
XML schema management with the XML schema repository (XSR) (Db2 Programming for XML)
Related tasks
Additional steps for enabling the stored procedures and objects for XML schema support (Db2 Installation
and Migration)
Related information
Procedures for XML schema registration and removal that are supplied with Db2 (Db2 Programming for
XML)

XML schema repository (XSR) table spaces and indexes
Db2 XSR tables are contained in certain table spaces and have indexes.

The following tables list the table space and indexes for each XRS table and lists the index fields for each
index. The indexes are in ascending order, except where noted.

Table 396. Table spaces and indexes for the DSNXSR database tables

Table space
DSNXSR. …

Table
SYSIBM. …

Index
SYSIBM. … Index fields

SYSXSR XSROBJECTS XSROBJ01 XSROBJECTID

 XSROBJ02 XSROBJECTSCHEMA.XSROBJECTNAME

 XSROBJ03 TARGETNAMESPACE.SCHEMALOCATION

© Copyright IBM Corp. 1982, 2024 2779

https://www.ibm.com/docs/en/SSEPEK_12.0.0/xml/src/tpc/db2z_xsrmanage.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_enablexmlstprocs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_enablexmlstprocs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/xml/src/tpc/db2z_xmldb2storedprocs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/xml/src/tpc/db2z_xmldb2storedprocs.html

Table 396. Table spaces and indexes for the DSNXSR database tables (continued)

Table space
DSNXSR. …

Table
SYSIBM. …

Index
SYSIBM. … Index fields

 XSROBJ04 SCHEMALOCATION

 XSROBJECT-
COMPONENTS

XSRCOMP01 XSRCOMPONENTID

 XSRCOMP02 TARGETNAMESPACE.SCHEMALOCATION

 XSROBJECT-
HIERARCHIES

XSRHIER01 XSROBJECTID.TARGETNAMESPACE.
SCHEMALOCATION

 XSRHIER02 XSROBJECTID.TARGETNAMESPACE

SYSXSRA1 XSROBJECTGRAMMAR XSRXOG01 GRAMMAR

SYSXSRA2 XSROBJECTPROPERTY XSRXOP01 PROPERTIES

SYSXSRA3 XSRCOMPONENT XSRXCC01 COMPONENT

SYSXSRA4 XSRPROPERTY XSRXCP01 PROPERTIES

Note: Index field is in descending order

XSRANNOTATIONINFO table
The XSRANNOTATIONINFO table contains one row for each annotation in an XML schema to record the
table and column information for the annotation.

Table 397. SYSIBM.XSRANNOTATIONINFO table column descriptions

Column name Data type Description Use

XSROBJECTID INTEGER Internal identifier of the XML schema G

ANNID INTEGER Internal identifier of the XML schema
annotation

G

TABSCHEMA VARCHAR(128) Schema of the table for which
annotation information is recorded

G

TABNAME VARCHAR(128) Name of the table for which annotation
information is recorded

G

ROWSET INTEGER Name of the rowset for this annotation G

COLNAME VARCHAR(30) Name of the column for this annotation G

COLTYPE INTEGER Data type of the column for this
annotation

G

2780 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 397. SYSIBM.XSRANNOTATIONINFO table column descriptions (continued)

Column name Data type Description Use

INSTANCETYPE INTEGER Type of data that is provided by the
parser during decomposition:
2

Decimal
4

Long integer
5

Integer
6

Short integer
16

String
30

Datetime
41

Float
42

Double

G

TRUNCATE INTEGER Indication of whether data can be
truncated:
0

Data cannot be truncated
1

Data can be truncated

G

EXPRESSION VARCHAR(1024) Expression to be applied to data on
insert by Db2

G

CONDITION VARCHAR(1024) Condition to be applied before any data
is inserted by Db2

G

CASTEXPRESSION VARCHAR(20) Cast expression to be applied when the
column data is inserted by Db2 during
decomposition.

G

RELCREATED CHAR(1) NOT NULL The release of Db2 that is used to
create the object. See the information
on release dependency indicators in
Db2 catalog tables for the values.

G

XSRCOMPONENT table
The SYSIBM.XSRCOMPONENT table is an auxiliary table for the BLOB column COMPONENT in the
SYSXSROBJECTCOMPONENTS table. It is in LOB table space SYSXSRA3. The schema is SYSIBM.

Table 398. SYSIBM.XSRCOMPONENT table column descriptions

Column name Data type Description Use

COMPONENT BLOB(30M) Contents of the XML schema document G

Appendix K. Db2 XML schema repository tables 2781

XSROBJECTS table
The SYSIBM.XSROBJECTS table contains one row for each registered XML schema. The schema is
SYSIBM.

Rows in this table can only be changed using static SQL statements issued by the Db2-supplied XSR
stored procedures.

Table 399. SYSIBM.XSROBJECTS table column descriptions

Column name Data type Description Use

XSROBJECTID INTEGER
NOT NULL

Internal identifier of the XML schema. XSROBJECTID is
generated as an identity column.

G

XSROBJECTSCHEMA VARCHAR(128)
NOT NULL

Qualifier of the XML schema name. This is always set to
'SYSXSR'.

G

XSROBJECTNAME VARCHAR(128)
NOT NULL

Name of the XML schema. G

TARGETNAMESPACE INTEGER The value of the STRINGID column in
SYSIBM.SYSXMLSTRINGS when the target namespace
URI of the primary XML schema document is stored in
SYSIBM.SYSXMLSTRINGS

G

SCHEMALOCATION INTEGER The value of the STRINGID column in
SYSIBM.SYSXMLSTRINGS when the schema location
URI of the primary XML schema document is stored in
SYSIBM.SYSXMLSTRINGS

G

ROWID ROWID
NOT NULL
GENERATED
ALWAYS

The ID that is used to support BLOB data type values. G

GRAMMAR BLOB(250M) The internal binary representation of the XML schema. G

PROPERTIES BLOB(5M) Additional property information of the entire XML
schema.

G

CREATEDBY VARCHAR(128)
NOT NULL

Authorization ID under which the XML schema was
created.

G

CREATEDTS TIMESTAMP
NOT NULL

The time that the Db2-supplied stored procedure
XSR_REGISTER was executed for the XML schema.

G

STATUS CHAR(1)
NOT NULL WITH
DEFAULT

Registration status of the XML schema:
C

Complete
I

Incomplete
T

Temporary

G

2782 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 399. SYSIBM.XSROBJECTS table column descriptions (continued)

Column name Data type Description Use

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object. See
Release dependency indicators for the values.

G

CHAR(1) Not used. N

VARCHAR(128) Not used. N

REMARKS VARCHAR(762) Character string that contains comments about this XML
schema.

G

XSROBJECTCOMPONENTS table
The XSROBJECTCOMPONENTS table contains one row for each component (document) in an XML
schema. The schema is SYIBM.

Rows in this table can only be changed using static SQL statements issued by the Db2-supplied XSR
stored procedures.

Table 400. SYSIBM.XSROBJECTCOMPONENTS table column descriptions

Column name Data type Description Use

XSRCOMPONENTID INTEGER
NOT NULL

Internal identifier of the XML schema document.
XSRCOMPONENTID is generated as an identity column.

G

TARGETNAMESPACE INTEGER The value of the STRINGID column in
SYSIBM.SYSXMLSTRINGS when the target namespace
URI of the primary XML schema document is stored in
SYSIBM.SYSXMLSTRINGS.

G

SCHEMALOCATION INTEGER The value of the STRINGID column in
SYSIBM.SYSXMLSTRINGS when the schema location
URI of the primary XML schema document is stored in
SYSIBM.SYSXMLSTRINGS.

G

ROWID ROWID
NOT NULL
GENERATED
ALWAYS

The ID that is used to support BLOB data type values. G

COMPONENT BLOB(30M)
NOT NULL

Contents of the XML schema document. G

PROPERTIES BLOB(5M) If available, additional property information of the XML
schema document

G

CREATEDTS TIMESTAMP
NOT NULL

The time that the XML schema document was
registered.

G

Appendix K. Db2 XML schema repository tables 2783

Table 400. SYSIBM.XSROBJECTCOMPONENTS table column descriptions (continued)

Column name Data type Description Use

STATUS CHAR(1)
NOT NULL WITH
DEFAULT

Registration status of the XML schema:
C

Complete
I

Incomplete

G

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object. See
Release dependency indicators for the values.

G

XSROBJECTGRAMMAR table
SYSIBM.XSROBJECTGRAMMAR is an auxiliary table for the BLOB column GRAMMAR in
SYSIBM.SYSXSROBJECTS. It is in LOB table space SYSXSRA1. The schema is SYSIBM.

Table 401. SYSIBM.XSROBJECTGRAMMAR table column descriptions

Column name Data type Description Use

GRAMMAR BLOB(250M) Internal binary representation of the XML schema G

XSROBJECTHIERARCHIES table
The XSROBJECTHIERARCHIES table contains one row for each component (document) in an XML schema
to record the XML schema document hierarchy relationship. The schema is SYSIBM.

Rows in this table can only be changed using static SQL statements issued by the Db2-supplied XSR
stored procedures.

Table 402. SYSIBM.XSROBJECTHIERARCHIES table column descriptions

Column name Data type Description Use

XSROBJECTID INTEGER Internal identifier of the XML schema. G

XSRCOMPONENTID INTEGER Internal identifier of the XML schema document. G

HTYPE CHAR(1) Hierarchy type:
D

Document
P

Primary document

G

TARGETNAMESPACE INTEGER The value of the STRINGID column in
SYSIBM.SYSXMLSTRINGS when the target namespace
URI of the primary XML schema document is stored in
SYSIBM.SYSXMLSTRINGS.

G

SCHEMALOCATION INTEGER The value of the STRINGID column in
SYSIBM.SYSXMLSTRINGS when the schema location
URI of the primary XML schema document is stored in
SYSIBM.SYSXMLSTRINGS.

G

2784 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 402. SYSIBM.XSROBJECTHIERARCHIES table column descriptions (continued)

Column name Data type Description Use

RELCREATED CHAR(1)
NOT NULL

The release of Db2 that is used to create the object. See
Release dependency indicators for the values.

G

XSROBJECTPROPERTY table
The XSROBJECTPROPERTY table is an auxiliary table for the BLOB column PROPERTIES in
SYSIBM.SYSXSROBJECTS. It is in LOB table space SYSXSRA2. The schema is SYSIBM.

Table 403. SYSIBM.XSROBJECTPROPERTY table column descriptions

Column name Data type Description Use

PROPERTIES BLOB(5M) Contents of the additional property information of the
entire XML schema.

G

XSRPROPERTY table
The XSRPROPERTY table is an auxiliary table for the BLOB column COMPONENT in
XSROBJECTCOMPONENTS. It is in LOB table space SYSXSRA3. The schema is SYSIBM.

Table 404. SYSIBM.XSRPROPERTY table column descriptions

Column name Data type Description Use

COMPONENT BLOB(5M) Contents of the additional property information of the
XML schema document.

G

Appendix K. Db2 XML schema repository tables 2785

2786 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Appendix L. EXPLAIN tables
EXPLAIN tables contain information about SQL statements and functions that run on Db2 for z/OS.

You can create and maintain a set of EXPLAIN tables to capture and analyze information about the
performance of SQL statements and functions that run on Db2 for z/OS. Each row in an EXPLAIN table
describes some aspect of a step in the execution of a query or subquery in an explainable statement.
The column values for the row identify, among other things, the query or subquery, the tables and other
objects involved, the methods used to carry out each step, and cost information about those methods.
Db2 creates EXPLAIN output and populates EXPLAIN tables in the following situations:

• When an EXPLAIN statement is executed.
• At BIND or REBIND with the EXPLAIN(YES) or (ONLY) bind options. Rows are added for every

explainable statement in the plan or package being bound. For a plan, these do not include statements
in the packages that can be used with the plan. For either a package or plan, they do not include
explainable statements within EXPLAIN statements nor do they include explainable statements that
refer to declared temporary tables, which are incrementally bound at run time.

• When an explainable dynamic statement is executed and the value of the CURRENT EXPLAIN MODE
special register is set to YES or EXPLAIN.

Important: It is best to convert EXPLAIN tables to Db2 12 format during migration, or soon after
migration. In Db2 12, the EXPLAIN function supports tables in Db2 12 or Db2 11 formats only. However,
Db2 11 format EXPLAIN tables are deprecated. If you invoke EXPLAIN and Db2 11 tables are used, Db2
issues SQL code +20520. If tables of an unsupported format are found, Db2 issues SQL code -20008
and the EXPLAIN operation fails. You can call the ADMIN_EXPLAIN_MAINT stored procedure to create
EXPLAIN tables, upgrade them to the format for the current Db2 release, or complete other maintenance
tasks. See “ADMIN_EXPLAIN_MAINT stored procedure” on page 751 for information about using the
action input parameter to request each of these tasks.

Related concepts
Interpreting data access by using EXPLAIN (Db2 Performance)
Investigating SQL performance by using EXPLAIN (Db2 Performance)
Related tasks
Capturing access path information in EXPLAIN tables (Db2 Performance)
Migration step 25: Convert EXPLAIN tables to the current format (Db2 Installation and Migration)
Related reference
BIND and REBIND options for packages, plans, and services (Db2 Commands)
EXPLAIN statement
ADMIN_EXPLAIN_MAINT stored procedure
You can use the ADMIN_EXPLAIN_MAINT stored procedure to create EXPLAIN tables, upgrade the tables
to the format for the current Db2 version, and complete other administrative tasks.

PLAN_TABLE
The plan table, PLAN_TABLE, contains information about access paths that is collected from the results of
EXPLAIN statements.

Tip: You can generate diagrams of the access paths used for your SQL statements by using the visual
explain capability in tools such as IBM Db2 Administration Foundation for z/OS and IBM Db2 for z/OS
Developer Extension.

Recommendation: Do not manually insert data into system-maintained EXPLAIN tables, and use care
when deleting obsolete EXPLAIN table data. The data is intended to be manipulated only by the Db2
EXPLAIN function and optimization tools. Certain optimization tools depend on instances of the various

© Copyright IBM Corp. 1982, 2024 2787

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_interpretdataaccess.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_useexplain2capturesqlinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_captureexplaininfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_migrateexplaintables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_bindrebindoptions.html
https://www.ibm.com/docs/en/SSPQNG_1.2.0/topics/izp_con_gs_AF.htm
https://marketplace.visualstudio.com/items?itemName=ibm.db2forzosdeveloperextension
https://marketplace.visualstudio.com/items?itemName=ibm.db2forzosdeveloperextension

EXPLAIN tables. Be careful not to delete data from or drop instances EXPLAIN tables that are created for
these tools.

Qualifiers
Your subsystem or data sharing group can contain multiple instances of these tables that are qualified
by user ID. These tables are populated with statement cost information when you issue the EXPLAIN
statement or bind. They are also populated when you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND
or REBIND command. SQL optimization tools might also create EXPLAIN tables that are qualified by a
user ID. You can find the SQL statement for creating an instance of these tables in member DSNTESC of
the SDSNSAMP library.

Sample CREATE TABLE statement
You can find a sample CREATE TABLE statement for each EXPLAIN table in member DSNTESC of the
prefix.SDSNSAMP library. You can call the ADMIN_EXPLAIN_MAINT stored procedure to create EXPLAIN
tables, upgrade them to the format for the current Db2 release, or complete other maintenance tasks. See
“ADMIN_EXPLAIN_MAINT stored procedure” on page 751 for information about using the action input
parameter to request each of these tasks.

Optional PLAN_TABLE formats
A PLAN_TABLE instance can have a format with fewer columns than those shown in the sample CREATE
TABLE statement. However instances of PLAN_TABLE must have one of the following formats:
Db2 12 format

All columns shown in the sample CREATE TABLE statement, up to and including the PER_STMT_ID
column (COLCOUNT=67).

Db2 11 format
All columns shown in the sample CREATE TABLE statement, up to and including the
EXPANSION_REASON column (COLCOUNT=66). This format is deprecated in Db2 12.

Important: If the EXPLAIN tables have any format older than the Db2 11 format, Db2 returns an error for
any operation that tries to insert rows in the EXPLAIN tables. You can call the ADMIN_EXPLAIN_MAINT
stored procedure to create EXPLAIN tables, upgrade them to the format for the current Db2 release, or
complete other maintenance tasks. See “ADMIN_EXPLAIN_MAINT stored procedure” on page 751 for
information about using the action input parameter to request each of these tasks.

Column descriptions
Your subsystem or data sharing group can contain more than one of these tables, including a table with
the qualifier SYSIBM, a table with the qualifier DB2OSCA, and additional tables that are qualified by user
IDs.

The following table shows the descriptions of the columns in PLAN_TABLE.

2788 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 405. Descriptions of columns in PLAN_TABLE

Column name Data Type Description

QUERYNO INTEGER NOT NULL A number that identifies the statement that
is being explained. The origin of the value
depends on the context of the row:
For rows produced by EXPLAIN statements

The number specified in the QUERYNO
clause, which is an optional part of the
SELECT, INSERT, UPDATE, MERGE, and
DELETE statement syntax.

For rows not produced by EXPLAIN
statements

Db2 assigns a number that is based on the
line number of the SQL statement in the
source program.

When the values of QUERYNO are based on
the statement number in the source program,
values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not
guaranteed to be unique.

When the SQL statement is embedded in a
compiled SQL function, native SQL procedure,
or advanced trigger, if the QUERYNO clause
is specified, its value is used by Db2.
Otherwise Db2 assigns a number based on
the line number of the SQL statement in the
compiled SQL function, native SQL procedure,
or advanced trigger.

QBLOCKNO SMALLINT NOT NULL A number that identifies each query block
within a query. The value of the numbers
are not in any particular order, nor are they
necessarily consecutive.

APPLNAME VARCHAR(24) NOT NULL The name of the application plan for the row.
Applies only to embedded EXPLAIN statements
that are executed from a plan or to statements
that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a
compiled SQL function, native SQL procedure,
or advanced trigger, this column is not used,
and is blank.

Appendix L. EXPLAIN tables 2789

Table 405. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

PROGNAME VARCHAR(128) NOT NULL The name of the program or package containing
the statement being explained. Applies only
to embedded EXPLAIN statements and to
statements explained as the result of binding
a plan or package. A blank indicates that the
column is not applicable.

When the SQL statement is embedded in a
compiled SQL function or native SQL procedure,
this column indicates the specific name of the
compiled SQL function or native SQL procedure.
When the SQL statement is embedded in an
advanced trigger, this column contains the
name of the trigger.

PLANNO SMALLINT NOT NULL The number of the step in which the query that
is indicated in QBLOCKNO was processed. This
column indicates the order in which the steps
were executed.

METHOD SMALLINT NOT NULL A number that indicates the join method that is
used for the step:
0

The table in this step is the first table that is
accessed, a continuation of a previous table
that was accessed, or a table that is not
used.

1
A nested loop join is used. For each row of
the current composite table, matching rows
of a new table are found and joined.

2
A merge scan join is used. The current
composite table and the new table are
scanned in the order of the join columns,
and matching rows are joined.

3
Sorts are needed by ORDER BY, GROUP
BY, SELECT DISTINCT, UNION, INTERSECT,
EXCEPT, a quantified predicate, or an IN
predicate. This step does not access a new
table.

4
A hybrid join was used. The current
composite table is scanned in the order of
the join-column rows of the new table. The
new table is accessed using list prefetch.

CREATOR VARCHAR(128) NOT NULL The creator of the new table that is accessed in
this step, blank if METHOD is 3.

2790 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 405. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

TNAME VARCHAR(128) NOT NULL The name of one of the following objects:

• Table
• Materialized query table
• Created or declared temporary table
• Materialized view
• Materialized table expression
• Any of the following object names that

identify intermediate results:
'DSNWFQB(qblockno)'

The intermediate result of a UNION ALL,
INTERSECT ALL, EXCEPT ALL, or an outer
join that is materialized. If a view is
merged, the name of the view does not
appear.

'DSN_DIM_TBLX(qblockno)'
The work file of a star join dimension
table.

'DSN_SPIX_TBLX(qblockno)'
A sparse index used for a sideways table
reference.

The value is blank if METHOD is 3.

TABNO SMALLINT NOT NULL Values are for IBM use only.

ACCESSTYPE“1” on page 2806 CHAR(2) NOT NULL The method of accessing the new table.“4” on
page 2806

MATCHCOLS SMALLINT NOT NULL For ACCESSTYPE I, IN, I1, N, NR, MX, or DX, the
number of index keys that are used in an index
scan; otherwise, 0.

ACCESSCREATOR VARCHAR(128) NOT NULL For ACCESSTYPE I, I1, N, NR, MX, or DX, the
creator of the index; otherwise, blank.

ACCESSNAME VARCHAR(128) NOT NULL For ACCESSTYPE I, I1, H, MH, N, NR, MX, or
DX, the name of the index; for ACCESSTYPE P,
DSNPJW(mixopseqno) is the starting pair-wise
join leg in MIXOPSEQ; otherwise, blank.

INDEXONLY CHAR(1) NOT NULL Indication of whether access to an index alone
is enough to perform the step, or Indication of
whether data too must be accessed.
Y

Yes
N

No

Appendix L. EXPLAIN tables 2791

Table 405. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

SORTN_UNIQ CHAR(1) NOT NULL Indication of whether the new table is sorted to
remove duplicate rows.
Y

Yes
N

No

SORTN_JOIN CHAR(1) NOT NULL Indication of whether the new table is sorted
for join method 2 or 4.
Y

Yes
N

No

SORTN_ORDERBY CHAR(1) NOT NULL Indication of whether the new table is sorted
for ORDER BY.
Y

Yes
N

No

SORTN_GROUPBY CHAR(1) NOT NULL Indication of whether the new table is sorted
for GROUP BY.
Y

Yes
N

No

SORTC_UNIQ CHAR(1) NOT NULL Indication of whether the composite table is
sorted to remove duplicate rows.
Y

Yes
N

No

SORTC_JOIN CHAR(1) NOT NULL Indication of whether the composite table is
sorted for join method 1, 2 or 4.
Y

Yes
N

No

SORTC_ORDERBY CHAR(1) NOT NULL Indication of whether the composite table is
sorted for an ORDER BY clause or a quantified
predicate.
Y

Yes
N

No

2792 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 405. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

SORTC_GROUPBY CHAR(1) NOT NULL Indication of whether the composite table is
sorted for a GROUP BY clause.
Y

Yes
N

No

TSLOCKMODE CHAR(3) NOT NULL An indication of the mode of lock that is
acquired on either the new table, or its table
space or table space partitions. If the isolation
can be determined at bind time, the values are:
IS

Intent share lock
IX

Intent exclusive lock
S

Share lock
U

Update lock
X

Exclusive lock
SIX

Share with intent exclusive lock
N

UR isolation; no lock
If the isolation level cannot be determined at
bind time, the lock mode is determined by
the isolation level at run time is shown by the
following values.
NS

For UR isolation, no lock; for CS, RS, or RR,
an S lock.

NIS
For UR isolation, no lock; for CS, RS, or RR,
an IS lock.

NSS
For UR isolation, no lock; for CS or RS, an IS
lock; for RR, an S lock.

SS
For UR, CS, or RS isolation, an IS lock; for
RR, an S lock.

Continues in next row.

Appendix L. EXPLAIN tables 2793

Table 405. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

TSLOCKMODE (continued) Continued from previous row.

The data in this column is right justified. For
example, IX appears as a blank, followed by I,
followed by X. If the column contains a blank,
then no lock is acquired.

If the access method in the ACCESSTYPE
column is DX, DI, or DU, no latches are acquired
on the XML index page and no lock is acquired
on the new base table data page or row, nor
on the XML table and the corresponding table
spaces. The value of TSLOCKMODE is a blank in
this case.

TIMESTAMP CHAR(16) NOT NULL This column is deprecated. Use EXPLAIN_TIME
instead.

REMARKS VARCHAR(762) NOT NULL A field into which you can insert any character
string of 762 or fewer characters.

Db2 inserts a value into this column in certain
situations. “6” on page 2808 , “7” on page 2809

PREFETCH CHAR(1) NOT NULL WITH
DEFAULT

Indication of whether data pages are to be read
in advance by prefetch:
'D'

Optimizer expects dynamic prefetch
'S'

Pure sequential prefetch
'L'

Prefetch through a page list
'U'

List prefetch with an unsorted RID list
blank

Unknown or no prefetch

2794 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 405. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

COLUMN_FN_EVAL CHAR(1) NOT NULL WITH
DEFAULT

When an SQL aggregate function is evaluated:
'R'

While the data is being read from the table
or index

'S'
While performing a sort to satisfy a GROUP
BY clause

'X'
While data is read from a table or index,
for aggregate functions when an OFFSET
clause is specified

'Y'
While performing a sort, for aggregate
functions when an OFFSET clause is
specified

blank
After data retrieval and after any sorts

MIXOPSEQ SMALLINT NOT NULL WITH
DEFAULT

The sequence number of a step in a multiple
index operation.
1, 2, ... n

For the steps of the multiple index
procedure (ACCESSTYPE is MX, MI, MU,
DX, DI, or DU), the sequence number of
the OR predicate in the SQL statement.
(ACCESSTYPE is 'NR').

0
For any other rows.

Appendix L. EXPLAIN tables 2795

Table 405. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

VERSION VARCHAR(122) NOT NULL WITH
DEFAULT

The version identifier for the package. Applies
only to an embedded EXPLAIN statement
executed from a package, to a statement that
is explained when binding a package, or to
a manually created PLAN_TABLE row for an
optimization hint.

If the value is not blank, the value is the same
as one of the following:

• The VERSION value for the package that was
used to create this EXPLAIN table row.

• For a manually created EXPLAIN table
row, the VERSION value that identifies the
statement for which the hint is used.

For a row that is created by execution of an
EXPLAIN statement or by binding a package
with the EXPLAIN option, the version is blank
for a statement in:

• A package for a basic trigger (TYPE='T')
• A package for an application that was

precompiled without SQL processing option
VERSION

• A package that was precompiled with
an empty string for the VERSION value
(TYPE=blank)

When the SQL statement is embedded in a
compiled SQL function or native SQL procedure,
this column indicates the version identifier
of the function or procedure. When the SQL
statement is embedded in an advanced trigger
body, this column is not used and will be blank.

COLLID VARCHAR(128) NOT NULL WITH
DEFAULT

The collection ID:
'DSNDYNAMICSQLCACHE'

The row originates from the dynamic
statement cache.

'DSNEXPLAINMODEYES'
The row originates from an application that
specifies YES for the value of the CURRENT
EXPLAIN MODE special register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that
specifies EXPLAIN for the value of the
CURRENT EXPLAIN MODE special register.

When the SQL statement is embedded in a
compiled SQL function, native SQL procedure,
or advanced trigger, this column indicates the
schema name of the compiled SQL function,
native SQL procedure, or advanced trigger.

2796 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 405. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

ACCESS_DEGREE SMALLINT The number of parallel tasks or operations
that are activated by a query. This value is
determined at bind time; the actual number of
parallel operations that are used at execution
time could be different. This column contains 0
if a host variable is used. This column contains
the null value if the plan or package was bound
using a plan table with fewer than 43 columns.
Otherwise, it can contain null if the method that
it refers to does not apply.

ACCESS_PGROUP_ID“2” on
page 2806

SMALLINT The identifier of the parallel group for accessing
the new table. A parallel group is a set of
consecutive operations, executed in parallel,
that have the same number of parallel tasks.
This value is determined at bind time; it could
change at execution time.This column contains
the null value if the plan or package was bound
using a plan table with fewer than 43 columns.
Otherwise, it can contain null if the method that
it refers to does not apply.

JOIN_DEGREE SMALLINT The number of parallel operations or tasks that
are used in joining the composite table with
the new table. This value is determined at bind
time and can be 0 if a host variable is used.
The actual number of parallel operations or
tasks used at execution time could be different.
This column contains the null value if the
plan or package was bound using a plan table
with fewer than 43 columns. Otherwise, it can
contain null if the method that it refers to does
not apply.

JOIN_PGROUP_ID“2” on
page 2806

SMALLINT The identifier of the parallel group for joining
the composite table with the new table. This
value is determined at bind time; it could
change at execution time. This column contains
the null value if the plan or package was bound
using a plan table with fewer than 43 columns.
Otherwise, it can contain null if the method that
it refers to does not apply.

SORTC_PGROUP_ID“3” on
page 2806

SMALLINT The parallel group identifier for the parallel sort
of the composite table. This column contains
the null value if the plan or package was bound
using a plan table with fewer than 43 columns.
Otherwise, it can contain null if the method that
it refers to does not apply.

SORTN_PGROUP_ID“3” on
page 2806

SMALLINT The parallel group identifier for the parallel sort
of the new table. This column contains the
null value if the plan or package was bound
using a plan table with fewer than 43 columns.
Otherwise, it can contain null if the method that
it refers to does not apply.

Appendix L. EXPLAIN tables 2797

Table 405. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

PARALLELISM_
MODE“2” on page 2806

CHAR(1) The kind of parallelism, if any, that is used at
bind time:
C

Query CP parallelism.
This column contains the null value if the plan
or package was bound using a plan table with
fewer than 43 columns, if the method that
it refers to does not apply, or if the plan or
package was bound prior to DB2 10.

MERGE_
JOIN_
COLS

SMALLINT The number of columns that are joined during
a merge scan join (Method=2). This column
contains the null value if the plan or package
was bound using a plan table with fewer than
43 columns. Otherwise, it can contain null if the
method that it refers to does not apply.

CORRELATION_
NAME

VARCHAR(128) The correlation name of a table or view that
is specified in the statement. If no correlation
name exists, then the column is null. This
column contains the null value if the plan
or package was bound using a plan table
with fewer than 43 columns. Otherwise, it can
contain null if the method that it refers to does
not apply.

PAGE_RANGE CHAR(1) NOT NULL WITH
DEFAULT

Indication of whether the table qualifies for
page range screening, so that plans scan only
the partitions that are needed.
Y

Yes
blank

No

JOIN_TYPE CHAR(1) NOT NULL WITH
DEFAULT

The type of join:
F

FULL OUTER JOIN
L

LEFT OUTER JOIN
P

Pair-wise join
S

Star join
blank

INNER JOIN or no join

RIGHT OUTER JOIN converts to a LEFT OUTER
JOIN when you use it, so that JOIN_TYPE
contains L.

2798 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 405. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

GROUP_MEMBER VARCHAR(24) NOT NULL WITH
DEFAULT

The member name of the Db2 that executed
EXPLAIN. The column is blank if the Db2
subsystem was not in a data sharing
environment when EXPLAIN was executed.

IBM_
SERVICE_
DATA

VARCHAR(254) FOR BIT DATA This column contains values that are for IBM
use only.

WHEN_OPTIMIZE CHAR(1) NOT NULL WITH
DEFAULT

When the access path was determined:
blank

At bind time, using a default filter factor for
any host variables, parameter markers, or
special registers.

B
At bind time, using a default filter
factor for any host variables, parameter
markers, or special registers; however,
the statement is re-optimized at run time
using input variable values for input host
variables, parameter markers, or special
registers. The bind option REOPT(ALWAYS),
REOPT(AUTO), or REOPT(ONCE) must be
specified for reoptimization to occur.

R
At run time, using input variables
for any host variables, parameter
markers, or special registers. The bind
option REOPT(ALWAYS), REOPT(AUTO), or
REOPT(ONCE) must be specified for this to
occur.

QBLOCK_TYPE“1” on page
2806

CHAR(6) NOT NULL WITH
DEFAULT

For each query block, an indication of the
type of SQL operation that is performed. For
the outermost query, this column identifies the
statement type.“5” on page 2807

BIND_TIME TIMESTAMP NOT NULL WITH
DEFAULT

This column is deprecated. Use EXPLAIN_TIME
instead.

OPTHINT VARCHAR(128) NOT NULL WITH
DEFAULT

A string that you use to identify this row as an
optimization hint for Db2. Db2 uses this row as
input when choosing an access path.

Appendix L. EXPLAIN tables 2799

Table 405. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

HINT_USED VARCHAR(128) NOT NULL WITH
DEFAULT

One of the following values:
'APREUSE'

When an access path was successfully
reused because the APREUSE option was
specified at bind or rebind.

'opthint-value'
When PLAN_TABLE access path hints are
used. opthint-value is the value of the
OPTHINT column for the hint that was used.

'SYSQUERYPLAN query-id'
When statement-level access path hints are
used. query-id is the value of the QUERYID
column in the SYSQUERYPLAN catalog table
for the hint.

'SYSQUERYSEL query-id'
When a predicate selectivity override is
used. query-id is the value of the QUERYID
column of the SYSQUERYSEL catalog table
row for the hint.

'EXPLAIN PACKAGE: COPY copy-id'
When the row is the result of an EXPLAIN
PACKAGE statement. copy-id is one of the
following values:
CURRENT

The current copy of the package.
PREVIOUS

The previous copy of the package.
ORIGINAL

The original copy of the package.
'EXPLAIN SDQ: copy-id-number'

The string copy-id-number can have one of
the following values:
CURRENT

The current copy.
INVALID

The invalid copy.

2800 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 405. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

PRIMARY_
ACCESSTYPE

CHAR(1) NOT NULL WITH
DEFAULT

Indicates whether direct row access is
attempted first:
'D'

Db2 tries to use direct row access with a
rowid column. If Db2 cannot use direct row
access with a rowid column at run time, it
uses the access path that is described in
the ACCESSTYPE column of PLAN_TABLE.

'P'
Db2 used data partitioned secondary index
and a part-level operation to access the
data.

'S'
Db2 used sparse index access for a
sideways table reference.

'T'
The base table or result file is materialized
into a work file, and the work file is
accessed via sparse index access. If a
base table is involved, then ACCESSTYPE
indicates how the base table is accessed.

blank
Db2 does not try to use direct row access
by using a rowid column or sparse index
access for a work file. The value of
the ACCESSTYPE column of PLAN_TABLE
provides information on the method of
accessing the table.

PARENT_QBLOCKNO SMALLINT NOT NULL WITH
DEFAULT

A number that indicates the QBLOCKNO of the
parent query block.

Appendix L. EXPLAIN tables 2801

Table 405. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

TABLE_TYPE CHAR(1) The type of new table:
'B'

Buffers for SELECT from INSERT, SELECT
from UPDATE, SELECT from MERGE, or
SELECT from DELETE statement.

'C'
Common table expression

'F'
Table function

'I'
The new table is generated from an IN-
LIST predicate. If the IN-LIST predicate is
selected as the matching predicate, it will
be accessed as an in-memory table.

'M'
Materialized query table

'Q'
Temporary intermediate result table (not
materialized). For the name of a view
or nested table expression, a value of
Q indicates that the materialization was
virtual and not actual. Materialization can
be virtual when the view or nested table
expression definition contains a UNION ALL
that is not distributed.

'R'
Recursive common table expression

'S'
Subquery (correlated or non-correlated)

'T'
Table

'W'
Work file

The value of the column is null if the query uses
GROUP BY, ORDER BY, or DISTINCT, which
requires an implicit sort.

TABLE_ENCODE CHAR(1) NOT NULL WITH
DEFAULT

The encoding scheme of the table. The possible
values are:
'A'

ASCII
'E'

EBCDIC
'U'

Unicode
'M'

The table contains multiple CCSID sets

2802 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 405. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

TABLE_SCCSID SMALLINT NOT NULL WITH
DEFAULT

The SBCS CCSID value of the table. If column
TABLE_ENCODE is M, the value is 0.

TABLE_MCCSID SMALLINT NOT NULL WITH
DEFAULT

The mixed CCSID value of the table. If the value
of the TABLE_ENCODE column is M, the value
is 0. If MIXED=NO in the application defaults
module, the value is -2.

TABLE_DCCSID SMALLINT NOT NULL WITH
DEFAULT

The DBCS CCSID value of the table. If the value
of the TABLE_ENCODE column is M, the value
is 0. If MIXED=NO in the application defaults
module, the value is -2.

ROUTINE_ID INTEGER NOT NULL WITH
DEFAULT

The values in this column are for IBM use only.

CTEREF SMALLINT NOT NULL WITH
DEFAULT

If the referenced table is a common table
expression, the value is the top-level query
block number.

STMTTOKEN VARCHAR(240) User-specified statement token.

PARENT_PLANNO SMALLINT NOT NULL Corresponds to the plan number in the parent
query block where a correlated subquery is
invoked. Or, for non-correlated subqueries,
corresponds to the plan number in the parent
query block that represents the work file for the
subquery.

BIND_EXPLAIN_ONLY CHAR(1) NOT NULL WITH
DEFAULT

Identifies whether the row was inserted
because a command specified the
EXPLAIN(ONLY) option.

SECTNOI INTEGER NOT NULL WITH
DEFAULT

The section number of the statement. The
value is taken from the same column in
SYSPACKSTMT or SYSSTMT tables and can
be used to join tables to reconstruct the
access path for the statement. This column
is applicable only for static statements.
The default value of -1 indicates EXPLAIN
information that was captured in DB2 9 or
earlier.

Appendix L. EXPLAIN tables 2803

Table 405. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

EXPLAIN_TIME TIMESTAMP NOT NULL WITH
DEFAULT

The time when the EXPLAIN information was
captured:
All cached statements

When the statement entered the cache,
in the form of a full-precision timestamp
value.

Non-cached static statements
When the statement was bound, in the form
of a full precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form
of a value equivalent to a CHAR(16)
representation of the time appended by 4
zeros.

MERGC CHAR(1) NOT NULL WITH
DEFAULT

Indicates whether the composite table is
consolidated before the join.
'Y'

Yes
'N'

No

MERGN CHAR(1) NOT NULL WITH
DEFAULT

Indicates whether the new table is
consolidated before the join, or whether access
that used a data partitioned secondary index
(DPSI) involved a merge operation.
'Y'

Yes, the new table is consolidated before
the join.

'N'
No, the new table is not consolidated before
the join

'D'
Access through a DPSI involved a merge
operation.

'U'
Access through a DPSI that did not involve a
merge operation.

SCAN_DIRECTION CHAR(1) For index access, the direction of the index
scan:
'F'

Forward
'R'

Reverse
blank

Index scan is not used

2804 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 405. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

EXPANSION_REASON CHAR(2) NOT NULL WITH
DEFAULT

This column applies only to statements that
reference archive tables or temporal tables. For
other statements, this column is blank.

Indicates the effect of the CURRENT
TEMPORAL BUSINESS_TIME special
register, the CURRENT TEMPORAL
SYSTEM_TIME special register, and the
SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the
BUSTIMESENSITIVE, SYSTIMESENSITIVE, and
ARCHIVESENSITIVE bind options.

Db2 implicitly adds certain syntax to the query
if one of the following conditions are true:

• The SYSIBMADM.GET_ARCHIVE global
variable is set to Y and the
ARCHIVESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL BUSINESS_TIME
special register is not null and the
BUSTIMESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL SYSTEM_TIME
special register is not null and the
SYSTIMESENSITIVE bind option is set to YES

EXPANSION_REASON
(continued)

This column can have one of the following
values:
'A'

The query contains implicit query
transformation as a result of the
SYSIBMADM.GET_ARCHIVE built-in global
variable.

'B'
The query contains implicit query
transformation as a result of the
CURRENT TEMPORAL BUSINESS_TIME
special register.

'S'
The query contains implicit query
transformation as a result of the CURRENT
TEMPORAL SYSTEM_TIME special register.

'SB'
The query contains implicit query
transformation as a result of the
CURRENT TEMPORAL SYSTEM_TIME
special register and the CURRENT
TEMPORAL BUSINESS_TIME special
register.

blank
The query does not contain implicit query
transformation.

Appendix L. EXPLAIN tables 2805

Table 405. Descriptions of columns in PLAN_TABLE (continued)

Column name Data Type Description

PER_STMT_ID BIGINT NOT NULL The persistent statement identifier for SQL
statements in Db2 catalog tables.

For example, this column corresponds to the
following catalog table columns that identify
SQL statements:

• STMT_ID in SYSIBM.SYSPACKSTMT, for SQL
statements in packages.

• SDQ_STMT_ID in SYSIBM.SYSDYNQUERY, for
stabilized dynamic SQL statements.

AP_PLANID CHAR(16) FOR BIT DATA A unique identifier for BIND or PREPARE
optimizations for an SQL statement, in the form
of an extended timestamp value.

Notes:

1. For PLAN_TABLE rows in which ACCESSTYPE='A' and QBLOCK_TYPE='SELECT', the values of all other
columns except QUERYNO, APPLNAME, and PROGNAME are the default values for those columns.

2. In rows that are used for optimization hints, NULL values in the following columns indicate a hint for no
parallelism:

• PARALLELISM_MODE
• ACCESS_PGROUP_ID
• JOIN_PGROUP_ID

3. In rows that are used for optimization hints, NULL values in the following columns indicate a hint for no
parallel sort:

• SORTN_PGROUP_ID
• SORTC_PGROUP_ID

4. The ACCESSTYPE column contains the following values:
'A'

The query is sent to an accelerator server.
'DI'

By an intersection of multiple DOCID lists to return the final DOCID list
'DU'

By a union of multiple DOCID lists to return the final DOCID list
'DX'

By an XML index scan on the index that is named in ACCESSNAME to return a DOCID list
'E'

By direct row access using a row change timestamp column.
'H'

By hash access. IF an overflow condition occurs, the hash overflow index that is identified by
ACCESSCREATOR and ACCESSNAME is used.

'HN'
By hash access using an IN predicate, or an IN predicate that Db2 generates. If a hash overflow
condition occurs, the hash overflow index that is identified in ACCESSCREATOR and ACCESSNAME
is used.

'I'
By an index (identified in ACCESSCREATOR and ACCESSNAME)

2806 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

'IN'
By an index scan when the matching predicate contains an IN predicate and the IN-list is accessed
through an in-memory table.

'I1'
By a one-fetch index scan

'M'
By a multiple index scan. A row that contains this value might be followed by a row that contains
one of the following values:

• 'DI'
• 'DU'
• 'MH'
• 'MI'
• 'MU'
• 'MX'

'MH'
By the hash overflow index named in ACCESSNAME. A row that contains this value always follows a
row that contains M.

'MI'
By an intersection of multiple indexes. A row that contains this value always follows a row that
contains M.

'MU'
By a union of multiple indexes. A row that contains this value always follows a row that contains M.

'MX'
By an index scan on the index named in ACCESSNAME. When the access method MX follows the
access method DX, DI, or DU, the table is accessed by the DOCID index by using the DOCID list
that is returned by DX, DI, or DU. A row that contains this value always follows a row that contains
M.

'N'
One of the following types:

• By an index scan when the matching predicate contains the IN keyword
• By an index scan when Db2 rewrites a query using the IN keyword

'O'
Use of a work file was avoided when processing the result of a subquery, table expression, view, or
intermediate result table.

'NR'
Range list access.

'P'
By a dynamic pair-wise index scan

'R'
By a table space scan

'RW'
By a work file scan of the result of a materialized user-defined table function

'V'
By buffers for an INSERT statement within a SELECT

blank
Not applicable to the current row

5. The QBLOCK_TYPE column contains the following values:
'SELECT'

SELECT

Appendix L. EXPLAIN tables 2807

'INSERT'
INSERT

'UPDATE'
UPDATE

'MERGE'
MERGE

'DELETE'
DELETE

'SELUPD'
SELECT with FOR UPDATE OF

'DELCUR'
DELETE WHERE CURRENT OF CURSOR

'UPDCUR'
UPDATE WHERE CURRENT OF CURSOR

'CORSUB'
Correlated subselect or fullselect

'COTBLX'
A table expression with a sideways reference.

'TRUNCA'
TRUNCATE

'NCOSUB'
Noncorrelated subselect or fullselect

'TABLEX'
Table expression

'TRIGGR'
WHEN clause on CREATE TRIGGER

'UNION'
UNION

'UNIONA'
UNION ALL

'INTERS'
INTERSECT

'INTERA'
INTERSECT ALL

'EXCEPT'
EXCEPT

'EXCPTA'
EXCEPT ALL

'PRUNED'
Db2 does not generate an access path for the query because the query is guaranteed to qualify
zero rows, such as the case of an always-false WHERE clause. For example:WHERE 0=1

6. Db2 inserts a value into the REMARKS column at bind or rebind when the EXPLAIN(ONLY) option
is specified and reuse or comparison fails for an access path. The value might include the following
information:

• A reason code that corresponds to the reason codes in SQLCODE +395 when reuse fails
• The name of the unmatched PLAN_TABLE column for which comparison failed
• The string 'UNMATCHED ROW(S)', which indicates that there are extra rows in addition to the rows in

the original access path, or there are fewer rows than in the original access path.

2808 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/p395.html

The values that are in the REMARKS column as a result of a reuse or comparison failure do not
describe all the access path differences. The REMARKS values are not sufficient to determine if an
access path change is acceptable. They are an indication that further analysis might be necessary to
determine how the access path has changed, and whether the changes warrant any further action.

7. Db2 inserts a value into the REMARKS column when selectivity overrides cannot be used for a
statement . The value contains a reason code that indicates why the selectivity override was not used.
The value might also contain additional diagnostic information.

The reason code values correspond to SQLCODE +395 reason codes:

'1'-'41'
Indicate that an optimization hint that was generated as part of the extended optimization process
cannot be applied. Use only a single selectivity instance.

'42'
Indicates that the structure of the selectivity override is not valid. Generate the selectivity override
again.

'43'
The selectivity override cannot be applied because of an unexpected error. If the problem persists,
you might need to contact IBM Support.

'44'-'99'
Indicate that an optimization hint that was generated as part of the extended optimization process
cannot be applied. Use only a single selectivity instance.

The PLAN_TABLE_HINT_IX index
The PLAN_TABLE_HINT_IX index improves prepare performance when access path hints are
used. This index is required for statement-level access paths and optimization parameters. The
PLAN_TABLE_HINT_IX index is optional, although strongly recommended, for PLAN_TABLE access path
hints.

The statement that creates the PLAN_TABLE_HINT_IX index is included as part of the DSNTESC member
of the SDSNSAMP library.

Related concepts
Interpreting data access by using EXPLAIN (Db2 Performance)
Related tasks
Preparing to influence access paths (Db2 Performance)
Related reference
EXPLAIN statement
Related information
IBM Db2 Analytics Accelerator for z/OS documentation

DSN_COLDIST_TABLE
The column distribution table contains non-uniform column group statistics that are obtained dynamically
by Db2 from non-index leaf pages.

Recommendation: Do not manually insert data into system-maintained EXPLAIN tables, and use care
when deleting obsolete EXPLAIN table data. The data is intended to be manipulated only by the Db2
EXPLAIN function and optimization tools. Certain optimization tools depend on instances of the various
EXPLAIN tables. Be careful not to delete data from or drop instances EXPLAIN tables that are created for
these tools.

Appendix L. EXPLAIN tables 2809

https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/p395.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_interpretdataaccess.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_enablehints.html
https://www.ibm.com/docs/en/daafz

Qualifiers
Your subsystem or data sharing group can contain multiple instances of these tables that are qualified
by user ID. These tables are populated with statement cost information when you issue the EXPLAIN
statement or bind. They are also populated when you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND
or REBIND command. SQL optimization tools might also create EXPLAIN tables that are qualified by a
user ID. You can find the SQL statement for creating an instance of these tables in member DSNTESC of
the SDSNSAMP library.

Sample CREATE TABLE statement
You can find a sample CREATE TABLE statement for each EXPLAIN table in member DSNTESC of the
prefix.SDSNSAMP library. You can call the ADMIN_EXPLAIN_MAINT stored procedure to create EXPLAIN
tables, upgrade them to the format for the current Db2 release, or complete other maintenance tasks. See
“ADMIN_EXPLAIN_MAINT stored procedure” on page 751 for information about using the action input
parameter to request each of these tasks.

Column descriptions

The following table shows the descriptions of the columns in the DSN_COLDIST_TABLE table.

Table 406. Descriptions of columns in DSN_COLDIST_TABLE

Column name Data Type Description

QUERYNO INTEGER NOT NULL A number that identifies the statement that
is being explained. The origin of the value
depends on the context of the row:
For rows produced by EXPLAIN statements

The number specified in the QUERYNO
clause, which is an optional part of the
SELECT, INSERT, UPDATE, MERGE, and
DELETE statement syntax.

For rows not produced by EXPLAIN
statements

Db2 assigns a number that is based on the
line number of the SQL statement in the
source program.

When the values of QUERYNO are based on
the statement number in the source program,
values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not
guaranteed to be unique.

When the SQL statement is embedded in a
compiled SQL function, native SQL procedure,
or advanced trigger, if the QUERYNO clause
is specified, its value is used by Db2.
Otherwise Db2 assigns a number based on
the line number of the SQL statement in the
compiled SQL function, native SQL procedure,
or advanced trigger.

2810 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 406. Descriptions of columns in DSN_COLDIST_TABLE (continued)

Column name Data Type Description

APPLNAME VARCHAR(128) NOT NULL The name of the application plan for the
row. Applies only to embedded EXPLAIN
statements that are executed from a plan or
to statements that are explained when binding
a plan. A blank indicates that the column is not
applicable.

When the SQL statement is embedded in a
compiled SQL function, native SQL procedure,
or advanced trigger, this column is not used,
and is blank.

PROGNAME VARCHAR(128) NOT NULL The name of the program or package
containing the statement being explained.
Applies only to embedded EXPLAIN
statements and to statements explained as the
result of binding a plan or package. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in
a compiled SQL function or native SQL
procedure, this column indicates the specific
name of the compiled SQL function or native
SQL procedure. When the SQL statement is
embedded in an advanced trigger, this column
contains the name of the trigger.

COLLID VARCHAR(128) NOT NULL The collection ID:
'DSNEXPLAINMODEYES'

The row originates from an application that
specifies YES for the value of the CURRENT
EXPLAIN MODE special register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that
specifies EXPLAIN for the value of the
CURRENT EXPLAIN MODE special register.

When the SQL statement is embedded in a
compiled SQL function, native SQL procedure,
or advanced trigger, this column indicates the
schema name of the compiled SQL function,
native SQL procedure, or advanced trigger.

GROUP_MEMBER VARCHAR(128) NOT NULL The member name of the Db2 that executed
EXPLAIN. The column is blank if the Db2
subsystem was not in a data sharing
environment when EXPLAIN was executed.

Appendix L. EXPLAIN tables 2811

Table 406. Descriptions of columns in DSN_COLDIST_TABLE (continued)

Column name Data Type Description

SECTNOI INTEGER NOT NULL The section number of the statement. The
value is taken from the same column in
SYSPACKSTMT or SYSSTMT tables and can
be used to join tables to reconstruct the
access path for the statement. This column
is applicable only for static statements.
The default value of -1 indicates EXPLAIN
information that was captured in DB2 9 or
earlier.

VERSION VARCHAR(122) NOT NULL The version identifier for the package. Applies
only to an embedded EXPLAIN statement
executed from a package or to a statement that
is explained when binding a package.

If the value is not blank, the value is the same
as the VERSION value for the package that was
used to create this EXPLAIN table row.

The value is blank for a statement in:

• A package for a basic trigger (TYPE='T')
• A package for an application that was

precompiled without SQL processing option
VERSION

• A package that was precompiled with
an empty string for the VERSION value
(TYPE=blank)

When the SQL statement is embedded in
a compiled SQL function or native SQL
procedure, this column indicates the version
identifier of the function or procedure. When
the SQL statement is embedded in an
advanced trigger body, this column is not used
and will be blank.

EXPLAIN_TIME TIMESTAMP NOT NULL The time when the EXPLAIN information was
captured:
All cached statements

When the statement entered the cache,
in the form of a full-precision timestamp
value.

Non-cached static statements
When the statement was bound, in the
form of a full precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form
of a value equivalent to a CHAR(16)
representation of the time appended by 4
zeros.

SCHEMA VARCHAR(128) NOT NULL The schema of the table that contains the
column.

2812 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 406. Descriptions of columns in DSN_COLDIST_TABLE (continued)

Column name Data Type Description

TBNAME VARCHAR(128) NOT NULL The name of the table that contains the
column.

NAME VARCHAR(128) NOT NULL Name of the column. If the value of
NUMCOLUMNS is greater than 1, this name
identifies the first column name of the set of
columns associated with the statistics.

COLVALUE VARCHAR(2000) NOT NULL FOR
BIT DATA

Contains the data of a frequently occurring
value in the column. Statistics are not collected
for an index on a ROWID column. If the value
has a non-character data type, the data might
not be printable.

This column might contain values that depend
on the value of the type column:

TYPE='T'
One of the following values:

• 'E3C2C1C3C1D9C4C6' for TBACARDF
• 'E3C2C1D5C1C3E3C6' for TBANPAGF
• 'E3C2C1D5D7C1C7C6' for TBANACTF

TYPE='L'
'C3C1E3C6D3C4C3C6' for CATFLDCF

TYPE='P'
One of the following values:

• 'D7C3C1D7D5D9E6C6' for PCAPNRWF
• 'D7C3C1D7D5D7C7C6' for PCAPNPGF

TYPE CHAR(1) NOT NULL The type of statistics:
C

Cardinality
F

Frequent value
H

Histogram
T

Real-time table cardinality
L

Real-time column cardinality (unique index
only)

P
real-time partition cardinality

Appendix L. EXPLAIN tables 2813

Table 406. Descriptions of columns in DSN_COLDIST_TABLE (continued)

Column name Data Type Description

CARDF FLOAT NOT NULL For TYPE='C', the number of distinct values for
the column group. For TYPE='H', the number
of distinct values for the column group in
a quantile indicated by the value of the
QUANTILENO column.

For TYPE='T', a value related to real-time
statistics table values that are determined by
the COLVALUE column.

For TYPE= 'L', a value related to a real-time
statistics column value that is determined
by the COLVALUE column. The QUANTILENO
column contains the column number. The
NAME column contains the column name.

For TYPE='P' a value related to real-time
statistics partition value that is determined
by the COLVALUE column. The QUANTILENO
column contains the partition number.

COLGROUPCOLNO VARCHAR(254) NOT NULL FOR
BIT DATA

The identity of the set of columns associated
with the statistics. If the statistics are only
associated with a single column, the field
contains a zero length. Otherwise, the field
is an array of SMALLINT column numbers
with a dimension equal to the value in the
NUMCOLUMNS column. This is an updatable
column.

NUMCOLUMNS SMALLINT NOT NULL Identifies the number of columns associated
with the statistics.

FREQUENCYF FLOAT NOT NULL The percentage of rows in the table with the
value that is specified in the COLVALUE column
when the number is multiplied by 100. For
example, a value of '1' indicates 100%. A value
of '.153' indicates 15.3%.

QUANTILENO SMALLINT NOT NULL The ordinary sequence number of a quantile in
the whole consecutive value range, from low to
high. This column is not updatable.

For TYPE= 'L', this column contains the column
number.

For TYPE='P', the column contains the partition
number.

LOWVALUE VARCHAR(2000) NOT NULL FOR
BIT DATA

For TYPE='H', this is the lower bound for
the quantile indicated by the value of the
QUANTILENO column. Not used if the value of
the TYPE column is not 'H'. This column is not
updatable.

2814 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 406. Descriptions of columns in DSN_COLDIST_TABLE (continued)

Column name Data Type Description

HIGHVALUE VARCHAR(2000) NOT NULL FOR
BIT DATA

For TYPE='H', this is the higher bound for
the quantile indicated by the value of the
QUANTILENO column. This column is not used
if the value of the TYPE column is not 'H'. This
column is not updatable.

EXPANSION_REASON CHAR(2) NOT NULL WITH
DEFAULT

This column applies only to statements that
reference archive tables or temporal tables.
For other statements, this column is blank.

Indicates the effect of the CURRENT
TEMPORAL BUSINESS_TIME special
register, the CURRENT TEMPORAL
SYSTEM_TIME special register, and the
SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the
BUSTIMESENSITIVE, SYSTIMESENSITIVE, and
ARCHIVESENSITIVE bind options.

Db2 implicitly adds certain syntax to the query
if one of the following conditions are true:

• The SYSIBMADM.GET_ARCHIVE global
variable is set to Y and the
ARCHIVESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL BUSINESS_TIME
special register is not null and the
BUSTIMESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL SYSTEM_TIME
special register is not null and the
SYSTIMESENSITIVE bind option is set to YES

Appendix L. EXPLAIN tables 2815

Table 406. Descriptions of columns in DSN_COLDIST_TABLE (continued)

Column name Data Type Description

EXPANSION_REASON
(continued)

This column can have one of the following
values:
'A'

The query contains implicit query
transformation as a result of the
SYSIBMADM.GET_ARCHIVE built-in global
variable.

'B'
The query contains implicit query
transformation as a result of the
CURRENT TEMPORAL BUSINESS_TIME
special register.

'S'
The query contains implicit query
transformation as a result of the CURRENT
TEMPORAL SYSTEM_TIME special register.

'SB'
The query contains implicit query
transformation as a result of the
CURRENT TEMPORAL SYSTEM_TIME
special register and the CURRENT
TEMPORAL BUSINESS_TIME special
register.

blank
The query does not contain implicit query
transformation.

PER_STMT_ID BIGINT NOT NULL The persistent statement identifier for SQL
statements in Db2 catalog tables.

For example, this column corresponds to the
following catalog table columns that identify
SQL statements:

• STMT_ID in SYSIBM.SYSPACKSTMT, for SQL
statements in packages.

• SDQ_STMT_ID in SYSIBM.SYSDYNQUERY, for
stabilized dynamic SQL statements.

AP_PLANID CHAR(16) FOR BIT DATA A unique identifier for BIND or PREPARE
optimizations for an SQL statement, in the form
of an extended timestamp value.

Related concepts
Dynamic collection of index filtering estimates (Db2 Performance)

2816 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_dynamicindexfilterestimate.html

DSN_DETCOST_TABLE
The detailed cost table, DSN_DETCOST_TABLE, contains information about detailed cost estimation of the
mini-plans in a query.

Recommendation: Do not manually insert data into system-maintained EXPLAIN tables, and use care
when deleting obsolete EXPLAIN table data. The data is intended to be manipulated only by the Db2
EXPLAIN function and optimization tools. Certain optimization tools depend on instances of the various
EXPLAIN tables. Be careful not to delete data from or drop instances EXPLAIN tables that are created for
these tools.

Qualifiers
Your subsystem or data sharing group can contain multiple instances of these tables that are qualified
by user ID. These tables are populated with statement cost information when you issue the EXPLAIN
statement or bind. They are also populated when you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND
or REBIND command. SQL optimization tools might also create EXPLAIN tables that are qualified by a
user ID. You can find the SQL statement for creating an instance of these tables in member DSNTESC of
the SDSNSAMP library.

Sample CREATE TABLE statement
You can find a sample CREATE TABLE statement for each EXPLAIN table in member DSNTESC of the
prefix.SDSNSAMP library. You can call the ADMIN_EXPLAIN_MAINT stored procedure to create EXPLAIN
tables, upgrade them to the format for the current Db2 release, or complete other maintenance tasks. See
“ADMIN_EXPLAIN_MAINT stored procedure” on page 751 for information about using the action input
parameter to request each of these tasks.

Column descriptions
The following table describes the columns of DSN_DETCOST_TABLE.

Table 407. DSN_DETCOST_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT
NULL

A number that identifies the statement that is being explained.
The origin of the value depends on the context of the row:
For rows produced by EXPLAIN statements

The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE, and
DELETE statement syntax.

For rows not produced by EXPLAIN statements
Db2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement
number in the source program, values that exceed 32767 are
reported as 0. However, in certain rare cases, the value is not
guaranteed to be unique.

When the SQL statement is embedded in a compiled SQL
function, native SQL procedure, or advanced trigger, if the
QUERYNO clause is specified, its value is used by Db2.
Otherwise Db2 assigns a number based on the line number of
the SQL statement in the compiled SQL function, native SQL
procedure, or advanced trigger.

Appendix L. EXPLAIN tables 2817

Table 407. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query. The
value of the numbers are not in any particular order, nor are they
necessarily consecutive.

APPLNAME VARCHAR(24)
NOT NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan
or to statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL
function, native SQL procedure, or advanced trigger, this column
is not used, and is blank.

PROGNAME VARCHAR(128)
NOT NULL

The name of the program or package containing the statement
being explained. Applies only to embedded EXPLAIN statements
and to statements explained as the result of binding a plan or
package. A blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL
function or native SQL procedure, this column indicates the
specific name of the compiled SQL function or native SQL
procedure. When the SQL statement is embedded in an
advanced trigger, this column contains the name of the trigger.

PLANNO SMALLINT NOT
NULL

The plan number, a number used to identify each mini-plan with
a query block.

OPENIO FLOAT(4) NOT
NULL

The Do-at-open IO cost for non-correlated subquery.

OPENCPU FLOAT(4) NOT
NULL

The Do-at-open CPU cost for non-correlated subquery.

OPENCOST FLOAT(4) NOT
NULL

The Do-at-open total cost for non-correlated subquery.

DMIO FLOAT(4) NOT
NULL

IBM internal use only.

DMCPU FLOAT(4) NOT
NULL

IBM internal use only.

DMTOT FLOAT(4) NOT
NULL

IBM internal use only.

SUBQIO FLOAT(4) NOT
NULL

IBM internal use only.

SUBQCOST FLOAT(4) NOT
NULL

IBM internal use only.

BASEIO FLOAT(4) NOT
NULL

IBM internal use only.

BASECPU FLOAT(4) NOT
NULL

IBM internal use only.

BASETOT FLOAT(4) NOT
NULL

IBM internal use only.

2818 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 407. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

ONECOMPROWS FLOAT(4) NOT
NULL

The number of rows qualified after applying local predicates.

IMLEAF FLOAT(4) NOT
NULL

The number of index leaf pages scanned by Data Manager.

IMIO FLOAT(4) NOT
NULL

IBM internal use only.

IMPREFH CHAR(2) NOT
NULL

IBM internal use only.

IMMPRED INTEGER NOT
NULL

IBM internal use only.

IMFF FLOAT(4) NOT
NULL

The filter factor of matching predicates only.

IMSRPRED INTEGER NOT
NULL

IBM internal use only.

IMFFADJ FLOAT(4) NOT
NULL

The filter factor of matching and screening predicates.

IMSCANCST FLOAT(4) NOT
NULL

IBM internal use only.

IMROWCST FLOAT(4) NOT
NULL

IBM internal use only.

IMPAGECST FLOAT(4) NOT
NULL

IBM internal use only.

IMRIDSORT FLOAT(4) NOT
NULL

IBM internal use only.

IMMERGCST FLOAT(4) NOT
NULL

IBM internal use only.

IMCPU FLOAT(4) NOT
NULL

IBM internal use only.

IMTOT FLOAT(4) NOT
NULL

IBM internal use only.

IMSEQNO SMALLINT NOT
NULL

IBM internal use only.

DMPEREFH FLOAT(4) NOT
NULL

IBM internal use only.

DMCLUDIO FLOAT(4) NOT
NULL

IBM internal use only.

DMPREDS INTEGER NOT
NULL

IBM internal use only.

DMSROWS FLOAT(4) NOT
NULL

IBM internal use only.

DMSCANCST FLOAT(4) NOT
NULL

IBM internal use only.

Appendix L. EXPLAIN tables 2819

Table 407. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

DMCOLS FLOAT(4) NOT
NULL

The number of data manager columns.

DMROWS FLOAT(4) NOT
NULL

The number of data manager rows returned (after all stage 1
predicates are applied).

RDSROWCST FLOAT(4) NOT
NULL

IBM internal use only.

DMPAGECST FLOAT(4) NOT
NULL

IBM internal use only.

DMDATAIO FLOAT(4) NOT
NULL

IBM internal use only.

DMDATAIO FLOAT(4) NOT
NULL

IBM internal use only.

DMDATACPU FLOAT(4) NOT
NULL

IBM internal use only.

DMDATACPU FLOAT(4) NOT
NULL

IBM internal use only.

RDSROW FLOAT(4) NOT
NULL

The number of RDS rows returned (after all stage 1 and stage 2
predicates are applied).

SNCOLS SMALLINT NOT
NULL

The number of columns as sort input for new table.

SNROWS FLOAT(4) NOT
NULL

The number of rows as sort input for new table.

SNRECSZ INTEGER NOT
NULL

The record size for new table.

SNPAGES FLOAT(4) NOT
NULL

The page size for new table.

SNRUNS FLOAT(4) NOT
NULL

The number of runs generated for sort of new table.

SNMERGES FLOAT(4) NOT
NULL

The number of merges needed during sort.

SNIOCOST FLOAT(4) NOT
NULL

IBM internal use only.

SNCPUCOST FLOAT(4) NOT
NULL

IBM internal use only.

SNCOST FLOAT(4) NOT
NULL

IBM internal use only.

SNCSCANIO FLOAT(4) NOT
NULL

IBM internal use only.

SNSCANCPU FLOAT(4) NOT
NULL

IBM internal use only.

SNCCOLS FLOAT(4) NOT
NULL

The number of columns as sort input for Composite table.

2820 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 407. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

SCROWS FLOAT(4) NOT
NULL

The number of rows as sort input for Composite Table.

SCRECSZ FLOAT(4) NOT
NULL

The record size for Composite table.

SCPAGES FLOAT(4) NOT
NULL

The page size for Composite table.

SCRUNS FLOAT(4) NOT
NULL

The number of runs generated during sort of composite.

SCMERGES FLOAT(4) NOT
NULL

The number of merges needed during sort of composite.

SCIOCOST FLOAT(4) NOT
NULL

IBM internal use only.

SCCPUCOST FLOAT(4) NOT
NULL

IBM internal use only.

SCCOST FLOAT(4) NOT
NULL

IBM internal use only.

SCSCANIO FLOAT(4) NOT
NULL

IBM internal use only.

SCSCANCPU FLOAT(4) NOT
NULL

IBM internal use only.

SCSCANCOST FLOAT(4) NOT
NULL

IBM internal use only.

COMPCARD FLOAT(4) NOT
NULL

The total composite cardinality.

COMPIOCOST FLOAT(4) NOT
NULL

IBM internal use only.

COMPCPUCOST FLOAT(4) NOT
NULL

IBM internal use only.

COMPCOST FLOAT(4) NOT
NULL

The total cost.

JOINCOLS SMALLINT NOT
NULL

IBM internal use only.

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:
All cached statements

When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

Appendix L. EXPLAIN tables 2821

Table 407. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

COSTBLK INTEGER NOT
NULL

IBM internal use only.

COSTSTOR INTEGER NOT
NULL

IBM internal use only.

MPBLK INTEGER NOT
NULL

IBM internal use only.

MPSTOR INTEGER NOT
NULL

IBM internal use only.

COMPOSITES INTEGER NOT
NULL

IBM internal use only.

CLIPPED INTEGER NOT
NULL

IBM internal use only.

TABREF VARCHAR(64)
NOT NULL FOR
BIT DATA

IBM internal use only.

MAX_COMPOSITES INTEGER NOT
NULL

IBM internal use only.

MAX_STOR INTEGER NOT
NULL

IBM internal use only.

MAX_CPU INTEGER NOT
NULL

IBM internal use only.

MAX_ELAP INTEGER NOT
NULL

IBM internal use only.

TBL_JOINED_THRESH INTEGER NOT
NULL

IBM internal use only.

STOR_USED INTEGER NOT
NULL

IBM internal use only.

CPU_USED INTEGER NOT
NULL

IBM internal use only.

ELAPSED INTEGER NOT
NULL

IBM internal use only.

MIN_CARD_KEEP FLOAT(4) NOT
NULL

IBM internal use only.

MAX_CARD_KEEP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_COST_KEEP FLOAT(4) NOT
NULL

IBM internal use only.

MAX_COST_KEEP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_VALUE_KEEP FLOAT(4) NOT
NULL

IBM internal use only.

2822 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 407. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

MIN_VALUE_CARD_KEEP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_VALUE_COST_KEEP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_CARD_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MAX_CARD_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_COST_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MAX_COST_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_VALUE_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_VALUE_CARD_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MIN_VALUE_COST_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MAX_VALUE_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MAX_VALUE_CARD_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

MAX_VALUE_COST_CLIP FLOAT(4) NOT
NULL

IBM internal use only.

GROUP_MEMBER VARCHAR(24)
NOT NULL

The member name of the Db2 that executed EXPLAIN. The
column is blank if the Db2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

PSEQIOCOST FLOAT(4) NOT
NULL

IBM internal use only.

PSEQIOCOST FLOAT(4) NOT
NULL

IBM internal use only.

PSEQCPUCOST FLOAT(4) NOT
NULL

IBM internal use only.

PSEQCOST FLOAT(4) NOT
NULL

IBM internal use only.

PADJIOCOST FLOAT(4) NOT
NULL

IBM internal use only.

PADJCPUCOST FLOAT(4) NOT
NULL

IBM internal use only.

PADJCOST FLOAT(4) NOT
NULL

IBM internal use only.

Appendix L. EXPLAIN tables 2823

Table 407. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

UNCERTAINTY FLOAT(4) NOT
NULL WITH
DEFAULT

Describes the uncertainty factor of inner table index access. It is
aggregated from uncertainty of inner table probing predicates.
A larger value indicates a higher uncertainty. 0 indicates no
uncertainty or uncertainty not considered.

UNCERTAINTY_1T FLOAT(4) NOT
NULL WITH
DEFAULT

Describes the uncertainty factor of ONECOMPROWS column of
the table. It is aggregated from all local predicates on the table.
A larger value indicates a higher uncertainty. 0 indicates no
uncertainty or uncertainty not considered.

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from
the same column in SYSPACKSTMT or SYSSTMT tables and can
be used to join tables to reconstruct the access path for the
statement. This column is applicable only for static statements.
The default value of -1 indicates EXPLAIN information that was
captured in DB2 9 or earlier.

COLLID VARCHAR(128)
NOT NULL

The collection ID:
'DSNEXPLAINMODEYES'

The row originates from an application that specifies YES for
the value of the CURRENT EXPLAIN MODE special register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a compiled SQL
function, native SQL procedure, or advanced trigger, this column
indicates the schema name of the compiled SQL function, native
SQL procedure, or advanced trigger.

VERSION VARCHAR(128)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to
a statement that is explained when binding a package. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL
function, native SQL procedure, or advanced trigger, this column
indicates the schema name of the compiled SQL function, native
SQL procedure, or advanced trigger.

IMNP FLOAT(4) NOT
NULL WITH
DEFAULT

IBM internal use only.

DMNP FLOAT(4) NOT
NULL WITH
DEFAULT

IBM internal use only.

IMJC FLOAT(4) NOT
NULL WITH
DEFAULT

IBM internal use only.

IMFC FLOAT(4) NOT
NULL WITH
DEFAULT

IBM internal use only.

2824 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 407. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

IMJBC FLOAT(4) NOT
NULL WITH
DEFAULT

IBM internal use only.

IMJFC FLOAT(4) NOT
NULL WITH
DEFAULT

IBM internal use only.

CRED INTEGER NOT
NULL WITH
DEFAULT

IBM internal use only.

IXSCAN_SKIP_DUPS CHAR(1) NOT
NULL WITH
DEFAULT 'N'

Whether duplicate index key values are skipped during an index
scan.
'Y'

Duplicate key values are skipped.
'N'

Duplicate key values are not skipped.

IXSCAN_SKIP_SCREEN CHAR(1) NOT
NULL WITH
DEFAULT 'N'

Whether key ranges that are disqualified by index screening
predicates are skipped during an index scan.
'Y'

Disqualified key ranges are skipped.
'N'

Key ranges are not skipped.

EARLY_OUT CHAR(1) NOT
NULL WITH
DEFAULT ' '

Whether fetching from the table stops after the first qualified
row.
'Y'

Internal fetching stops after the first qualified row
'N'

Internal fetching continues after the first qualified row.
blank

The EXPLAIN information was captured in a previous
release, or the EXPLAIN information was captured for a
package that was bound in a previous release.

Appendix L. EXPLAIN tables 2825

Table 407. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

EXPANSION_REASON CHAR(2) NOT
NULL WITH
DEFAULT

This column applies only to statements that reference archive
tables or temporal tables. For other statements, this column is
blank.

Indicates the effect of the CURRENT TEMPORAL
BUSINESS_TIME special register, the CURRENT
TEMPORAL SYSTEM_TIME special register, and the
SYSIBMADM.GET_ARCHIVE built-in global variable. These items
are controlled by the BUSTIMESENSITIVE, SYSTIMESENSITIVE,
and ARCHIVESENSITIVE bind options.

Db2 implicitly adds certain syntax to the query if one of the
following conditions are true:

• The SYSIBMADM.GET_ARCHIVE global variable is set to Y and
the ARCHIVESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL BUSINESS_TIME special register is
not null and the BUSTIMESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL SYSTEM_TIME special register is
not null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:
'A'

The query contains implicit query transformation as a result
of the SYSIBMADM.GET_ARCHIVE built-in global variable.

'B'
The query contains implicit query transformation as a
result of the CURRENT TEMPORAL BUSINESS_TIME special
register.

'S'
The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special register.

'SB'
The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special register
and the CURRENT TEMPORAL BUSINESS_TIME special
register.

blank
The query does not contain implicit query transformation.

BLOCK_FETCH CHAR(1) NOT
NULL WITH
DEFAULT 'N'

Indicates whether block fetch was used for the query.
'Y'

Block fetch was used.
'N'

Block fetch was not used.

2826 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 407. DSN_DETCOST_TABLE description (continued)

Column name Data type Description

PER_STMT_ID BIGINT NOT
NULL

The persistent statement identifier for SQL statements in Db2
catalog tables.

For example, this column corresponds to the following catalog
table columns that identify SQL statements:

• STMT_ID in SYSIBM.SYSPACKSTMT, for SQL statements in
packages.

• SDQ_STMT_ID in SYSIBM.SYSDYNQUERY, for stabilized
dynamic SQL statements.

AP_PLANID CHAR(16) FOR
BIT DATA

A unique identifier for BIND or PREPARE optimizations for an
SQL statement, in the form of an extended timestamp value.

Related information
IBM Db2 Analytics Accelerator for z/OS documentation

DSN_FILTER_TABLE
The filter table, DSN_FILTER_TABLE, contains information about how predicates are used during query
processing.

Recommendation: Do not manually insert data into system-maintained EXPLAIN tables, and use care
when deleting obsolete EXPLAIN table data. The data is intended to be manipulated only by the Db2
EXPLAIN function and optimization tools. Certain optimization tools depend on instances of the various
EXPLAIN tables. Be careful not to delete data from or drop instances EXPLAIN tables that are created for
these tools.

Qualifiers
Your subsystem or data sharing group can contain multiple instances of these tables that are qualified
by user ID. These tables are populated with statement cost information when you issue the EXPLAIN
statement or bind. They are also populated when you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND
or REBIND command. SQL optimization tools might also create EXPLAIN tables that are qualified by a
user ID. You can find the SQL statement for creating an instance of these tables in member DSNTESC of
the SDSNSAMP library.

Sample CREATE TABLE statement
You can find a sample CREATE TABLE statement for each EXPLAIN table in member DSNTESC of the
prefix.SDSNSAMP library. You can call the ADMIN_EXPLAIN_MAINT stored procedure to create EXPLAIN
tables, upgrade them to the format for the current Db2 release, or complete other maintenance tasks. See
“ADMIN_EXPLAIN_MAINT stored procedure” on page 751 for information about using the action input
parameter to request each of these tasks.

Column descriptions
The following table describes the columns of DSN_FILTER_TABLE.

Appendix L. EXPLAIN tables 2827

https://www.ibm.com/docs/en/daafz

Table 408. DSN_FILTER_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT
NULL

A number that identifies the statement that is being explained.
The origin of the value depends on the context of the row:
For rows produced by EXPLAIN statements

The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE, and
DELETE statement syntax.

For rows not produced by EXPLAIN statements
Db2 assigns a number that is based on the line number of the
SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as
0. However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a compiled SQL function,
native SQL procedure, or advanced trigger, if the QUERYNO clause
is specified, its value is used by Db2. Otherwise Db2 assigns a
number based on the line number of the SQL statement in the
compiled SQL function, native SQL procedure, or advanced trigger.

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query. The
value of the numbers are not in any particular order, nor are they
necessarily consecutive.

PLANNO SMALLINT The plan number, a number used to identify each miniplan with a
query block.

APPLNAME VARCHAR(24) NOT
NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or
to statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function,
native SQL procedure, or advanced trigger, this column is not
used, and is blank.

PROGNAME VARCHAR(128)
NOT NULL

The name of the program or package containing the statement
being explained. Applies only to embedded EXPLAIN statements
and to statements explained as the result of binding a plan or
package. A blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the specific name
of the compiled SQL function or native SQL procedure. When the
SQL statement is embedded in an advanced trigger, this column
contains the name of the trigger.

2828 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 408. DSN_FILTER_TABLE description (continued)

Column name Data type Description

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

The collection ID:
'DSNEXPLAINMODEYES'

The row originates from an application that specifies YES for
the value of the CURRENT EXPLAIN MODE special register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies EXPLAIN
for the value of the CURRENT EXPLAIN MODE special register.

When the SQL statement is embedded in a compiled SQL function,
native SQL procedure, or advanced trigger, this column indicates
the schema name of the compiled SQL function, native SQL
procedure, or advanced trigger.

ORDERNO INTEGER NOT
NULL

The sequence number of evaluation. Indicates the order in which
the predicate is applied within each stage

PREDNO INTEGER NOT
NULL

The predicate number, a number used to identify a predicate
within a query.

STAGE CHAR(9) NOT
NULL

The processing stage in which the predicate is evaluated:
MATCHING

During the index matching stage.
SCREENING

During the index screening stage.
PAGERANGE

Db2 used page range screening to limit the number of
partitions that were accessed to evaluate the predicate in a
join context.

STAGE1
During stage 1 processing, after data page access.

STAGE2
During stage 2 processing on the returned data rows.

ORDERCLASS INTEGER NOT
NULL

IBM internal use only.

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:
All cached statements

When the statement entered the cache, in the form of a full-
precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full precision
timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

MIXOPSEQNO SMALLINT NOT
NULL

IBM internal use only.

REEVAL CHAR(1) NOT
NULL

IBM internal use only.

Appendix L. EXPLAIN tables 2829

Table 408. DSN_FILTER_TABLE description (continued)

Column name Data type Description

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the Db2 that executed EXPLAIN. The
column is blank if the Db2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from
the same column in SYSPACKSTMT or SYSSTMT tables and can
be used to join tables to reconstruct the access path for the
statement. This column is applicable only for static statements.
The default value of -1 indicates EXPLAIN information that was
captured in DB2 9 or earlier.

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to a
statement that is explained when binding a package.

If the value is not blank, the value is the same as the VERSION
value for the package that was used to create this EXPLAIN table
row.

The value is blank for a statement in:

• A package for a basic trigger (TYPE='T')
• A package for an application that was precompiled without SQL

processing option VERSION
• A package that was precompiled with an empty string for the

VERSION value (TYPE=blank)

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the version
identifier of the function or procedure. When the SQL statement
is embedded in an advanced trigger body, this column is not used
and will be blank.

PUSHDOWN CHAR(1) NOT
NULL WITH
DEFAULT

Whether the predicate is pushed down the Index Manager or Data
Manager subcomponents for evaluation:
'I'

The Index Manager subcomponent evaluates the predicate.
'D'

The Data Manager subcomponent evaluates the predicate.
blank

The predicate is not pushed down for evaluation.

2830 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 408. DSN_FILTER_TABLE description (continued)

Column name Data type Description

EXPANSION_REASON CHAR(2) NOT
NULL WITH
DEFAULT

This column applies only to statements that reference archive
tables or temporal tables. For other statements, this column is
blank.

Indicates the effect of the CURRENT TEMPORAL BUSINESS_TIME
special register, the CURRENT TEMPORAL SYSTEM_TIME special
register, and the SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind options.

Db2 implicitly adds certain syntax to the query if one of the
following conditions are true:

• The SYSIBMADM.GET_ARCHIVE global variable is set to Y and
the ARCHIVESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL BUSINESS_TIME special register is
not null and the BUSTIMESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL SYSTEM_TIME special register is not
null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:
'A'

The query contains implicit query transformation as a result of
the SYSIBMADM.GET_ARCHIVE built-in global variable.

'B'
The query contains implicit query transformation as a result of
the CURRENT TEMPORAL BUSINESS_TIME special register.

'S'
The query contains implicit query transformation as a result of
the CURRENT TEMPORAL SYSTEM_TIME special register.

'SB'
The query contains implicit query transformation as a result of
the CURRENT TEMPORAL SYSTEM_TIME special register and
the CURRENT TEMPORAL BUSINESS_TIME special register.

blank
The query does not contain implicit query transformation.

PER_STMT_ID BIGINT NOT NULL The persistent statement identifier for SQL statements in Db2
catalog tables.

For example, this column corresponds to the following catalog
table columns that identify SQL statements:

• STMT_ID in SYSIBM.SYSPACKSTMT, for SQL statements in
packages.

• SDQ_STMT_ID in SYSIBM.SYSDYNQUERY, for stabilized dynamic
SQL statements.

AP_PLANID CHAR(16) FOR BIT
DATA

A unique identifier for BIND or PREPARE optimizations for an SQL
statement, in the form of an extended timestamp value.

Appendix L. EXPLAIN tables 2831

DSN_FUNCTION_TABLE
The function table, DSN_FUNCTION_TABLE, contains descriptions of functions that are used in specified
SQL statements.

Recommendation: Do not manually insert data into system-maintained EXPLAIN tables, and use care
when deleting obsolete EXPLAIN table data. The data is intended to be manipulated only by the Db2
EXPLAIN function and optimization tools. Certain optimization tools depend on instances of the various
EXPLAIN tables. Be careful not to delete data from or drop instances EXPLAIN tables that are created for
these tools.

Qualifiers
Your subsystem or data sharing group can contain multiple instances of these tables that are qualified
by user ID. These tables are populated with statement cost information when you issue the EXPLAIN
statement or bind. They are also populated when you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND
or REBIND command. SQL optimization tools might also create EXPLAIN tables that are qualified by a
user ID. You can find the SQL statement for creating an instance of these tables in member DSNTESC of
the SDSNSAMP library.

Sample CREATE TABLE statement
You can find a sample CREATE TABLE statement for each EXPLAIN table in member DSNTESC of the
prefix.SDSNSAMP library. You can call the ADMIN_EXPLAIN_MAINT stored procedure to create EXPLAIN
tables, upgrade them to the format for the current Db2 release, or complete other maintenance tasks. See
“ADMIN_EXPLAIN_MAINT stored procedure” on page 751 for information about using the action input
parameter to request each of these tasks.

Column descriptions

The following table describes the columns of DSN_FUNCTION_TABLE.

2832 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 409. Descriptions of columns in DSN_FUNCTION_TABLE

Column name Data type Description

QUERYNO INTEGER NOT
NULL WITH
DEFAULT

A number that identifies the statement that is being explained.
The origin of the value depends on the context of the row:
For rows produced by EXPLAIN statements

The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE, and
DELETE statement syntax.

For rows not produced by EXPLAIN statements
Db2 assigns a number that is based on the line number of the
SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as
0. However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a compiled SQL function,
native SQL procedure, or advanced trigger, if the QUERYNO clause
is specified, its value is used by Db2. Otherwise Db2 assigns a
number based on the line number of the SQL statement in the
compiled SQL function, native SQL procedure, or advanced trigger.

QBLOCKNO INTEGER NOT
NULL WITH
DEFAULT

A number that identifies each query block within a query. The
value of the numbers are not in any particular order, nor are they
necessarily consecutive.

APPLNAME VARCHAR(24) NOT
NULL WITH
DEFAULT

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or
to statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function,
native SQL procedure, or advanced trigger, this column is not
used, and is blank.

PROGNAME VARCHAR(128)
NOT NULL WITH
DEFAULT

The name of the program or package containing the statement
being explained. Applies only to embedded EXPLAIN statements
and to statements explained as the result of binding a plan or
package. A blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the specific name
of the compiled SQL function or native SQL procedure. When the
SQL statement is embedded in an advanced trigger, this column
contains the name of the trigger.

Appendix L. EXPLAIN tables 2833

Table 409. Descriptions of columns in DSN_FUNCTION_TABLE (continued)

Column name Data type Description

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

The collection ID:
'DSNDYNAMICSQLCACHE'

The row originates from the dynamic statement cache.
'DSNEXPLAINMODEYES'

The row originates from an application that specifies YES for
the value of the CURRENT EXPLAIN MODE special register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies EXPLAIN
for the value of the CURRENT EXPLAIN MODE special register.

When the SQL statement is embedded in a compiled SQL function,
native SQL procedure, or advanced trigger, this column indicates
the schema name of the compiled SQL function, native SQL
procedure, or advanced trigger.

GROUP_MEMBER VARCHAR(24) NOT
NULL WITH
DEFAULT

The member name of the Db2 that executed EXPLAIN. The
column is blank if the Db2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

EXPLAIN_TIME TIMESTAMP NOT
NULL WITH
DEFAULT

The time when the EXPLAIN information was captured:
All cached statements

When the statement entered the cache, in the form of a full-
precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full precision
timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time appended
by 4 zeros.

SCHEMA_NAME VARCHAR(128)
NOT NULL WITH
DEFAULT

The schema name of the function invoked in the explained
statement.

FUNCTION_NAME VARCHAR(128)
NOT NULL WITH
DEFAULT

The name of the function invoked in the explained statement.

SPEC_FUNC_NAME VARCHAR(128)
NOT NULL WITH
DEFAULT

The specific name of the function invoked in the explained
statement.

FUNCTION_TYPE CHAR(2) NOT NULL
WITH DEFAULT

The type of function invoked in the explained statement. Possible
values are:
CU

Column function
SU

Scalar function
TU

Table function

2834 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 409. Descriptions of columns in DSN_FUNCTION_TABLE (continued)

Column name Data type Description

VIEW_CREATOR VARCHAR(128)
NOT NULL WITH
DEFAULT

If the function specified in the FUNCTION_NAME column is
referenced in a view definition, the creator of the view. Otherwise,
blank.

VIEW_NAME VARCHAR(128)
NOT NULL WITH
DEFAULT

If the function specified in the FUNCTION_NAME column is
referenced in a view definition, the name of the view. Otherwise,
blank.

PATH VARCHAR(2048)
NOT NULL WITH
DEFAULT

The value of the SQL path that was used to resolve the schema
name of the function.

FUNCTION_TEXT VARCHAR(1500)
NOT NULL WITH
DEFAULT

The text of the function reference (the function name and
parameters). If the function reference is over 100 bytes, this
column contains the first 100 bytes. For functions specified in
infix notation, FUNCTION_TEXT contains only the function name.
For example, for a function named /, which overloads the SQL
divide operator, if the function reference is A/B, FUNCTION_TEXT
contains only /.

FUNC_VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

For a version of a non-inline SQL scalar function, this column
contains the version identifier. For all other cases, this column
contains a zero length string. A version of a non-inline SQL
scalar function is defined in the SYSIBM.SYSROUTINES table
with ORIGIN='Q', FUNCTION_TYPE='S', INLINE='N', and VERSION
column containing the version identifier.

SECURE CHAR(1) NOT NULL
WITH DEFAULT

Whether the user-defined function is secure.

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from
the same column in SYSPACKSTMT or SYSSTMT tables and can
be used to join tables to reconstruct the access path for the
statement. This column is applicable only for static statements.
The default value of -1 indicates EXPLAIN information that was
captured in DB2 9 or earlier.

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to a
statement that is explained when binding a package.

If the value is not blank, the value is the same as the VERSION
value for the package that was used to create this EXPLAIN table
row.

The value is blank for a statement in:

• A package for a basic trigger (TYPE='T')
• A package for an application that was precompiled without SQL

processing option VERSION
• A package that was precompiled with an empty string for the

VERSION value (TYPE=blank)

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the version
identifier of the function or procedure. When the SQL statement
is embedded in an advanced trigger body, this column is not used
and will be blank.

Appendix L. EXPLAIN tables 2835

Table 409. Descriptions of columns in DSN_FUNCTION_TABLE (continued)

Column name Data type Description

EXPANSION_REASON CHAR(2) NOT NULL
WITH DEFAULT

This column applies only to statements that reference archive
tables or temporal tables. For other statements, this column is
blank.

Indicates the effect of the CURRENT TEMPORAL BUSINESS_TIME
special register, the CURRENT TEMPORAL SYSTEM_TIME special
register, and the SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind options.

Db2 implicitly adds certain syntax to the query if one of the
following conditions are true:

• The SYSIBMADM.GET_ARCHIVE global variable is set to Y and
the ARCHIVESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL BUSINESS_TIME special register is
not null and the BUSTIMESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL SYSTEM_TIME special register is not
null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:
'A'

The query contains implicit query transformation as a result of
the SYSIBMADM.GET_ARCHIVE built-in global variable.

'B'
The query contains implicit query transformation as a result of
the CURRENT TEMPORAL BUSINESS_TIME special register.

'S'
The query contains implicit query transformation as a result of
the CURRENT TEMPORAL SYSTEM_TIME special register.

'SB'
The query contains implicit query transformation as a result of
the CURRENT TEMPORAL SYSTEM_TIME special register and
the CURRENT TEMPORAL BUSINESS_TIME special register.

blank
The query does not contain implicit query transformation.

PER_STMT_ID BIGINT NOT NULL The persistent statement identifier for SQL statements in Db2
catalog tables.

For example, this column corresponds to the following catalog
table columns that identify SQL statements:

• STMT_ID in SYSIBM.SYSPACKSTMT, for SQL statements in
packages.

• SDQ_STMT_ID in SYSIBM.SYSDYNQUERY, for stabilized dynamic
SQL statements.

AP_PLANID CHAR(16) FOR BIT
DATA

Used to uniquely identify the BIND or PREPARE optimizations for a
SQL statement. Contains an extended timestamp value.

2836 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Related tasks
Checking how Db2 resolves functions by using DSN_FUNCTION_TABLE (Db2 Application programming
and SQL)

DSN_KEYTGTDIST_TABLE
The key-target distribution table contains non-uniform index expression statistic that are obtained
dynamically by the Db2 optimizer.

Recommendation: Do not manually insert data into system-maintained EXPLAIN tables, and use care
when deleting obsolete EXPLAIN table data. The data is intended to be manipulated only by the Db2
EXPLAIN function and optimization tools. Certain optimization tools depend on instances of the various
EXPLAIN tables. Be careful not to delete data from or drop instances EXPLAIN tables that are created for
these tools.

Qualifiers
Your subsystem or data sharing group can contain multiple instances of these tables that are qualified
by user ID. These tables are populated with statement cost information when you issue the EXPLAIN
statement or bind. They are also populated when you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND
or REBIND command. SQL optimization tools might also create EXPLAIN tables that are qualified by a
user ID. You can find the SQL statement for creating an instance of these tables in member DSNTESC of
the SDSNSAMP library.

Sample CREATE TABLE statement
You can find a sample CREATE TABLE statement for each EXPLAIN table in member DSNTESC of the
prefix.SDSNSAMP library. You can call the ADMIN_EXPLAIN_MAINT stored procedure to create EXPLAIN
tables, upgrade them to the format for the current Db2 release, or complete other maintenance tasks. See
“ADMIN_EXPLAIN_MAINT stored procedure” on page 751 for information about using the action input
parameter to request each of these tasks.

COLUMN descriptions
The following table shows the descriptions of the columns in the DSN_KEYTGTDIST_TABLE table.

Appendix L. EXPLAIN tables 2837

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_checkfunctionresolution.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_checkfunctionresolution.html

Table 410. Descriptions of columns in DSN_KEYTGTDIST_TABLE

Column name Data Type Description

QUERYNO INTEGER NOT NULL A number that identifies the statement that
is being explained. The origin of the value
depends on the context of the row:
For rows produced by EXPLAIN statements

The number specified in the QUERYNO
clause, which is an optional part of the
SELECT, INSERT, UPDATE, MERGE, and
DELETE statement syntax.

For rows not produced by EXPLAIN
statements

Db2 assigns a number that is based on the
line number of the SQL statement in the
source program.

When the values of QUERYNO are based on
the statement number in the source program,
values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not
guaranteed to be unique.

When the SQL statement is embedded in a
compiled SQL function, native SQL procedure,
or advanced trigger, if the QUERYNO clause
is specified, its value is used by Db2.
Otherwise Db2 assigns a number based on
the line number of the SQL statement in the
compiled SQL function, native SQL procedure,
or advanced trigger.

APPLNAME VARCHAR(128) NOT NULL The name of the application plan for the
row. Applies only to embedded EXPLAIN
statements that are executed from a plan or
to statements that are explained when binding
a plan. A blank indicates that the column is not
applicable.

When the SQL statement is embedded in a
compiled SQL function, native SQL procedure,
or advanced trigger, this column is not used,
and is blank.

PROGNAME VARCHAR(128) NOT NULL The name of the program or package
containing the statement being explained.
Applies only to embedded EXPLAIN
statements and to statements explained as the
result of binding a plan or package. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in
a compiled SQL function or native SQL
procedure, this column indicates the specific
name of the compiled SQL function or native
SQL procedure. When the SQL statement is
embedded in an advanced trigger, this column
contains the name of the trigger.

2838 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 410. Descriptions of columns in DSN_KEYTGTDIST_TABLE (continued)

Column name Data Type Description

COLLID VARCHAR(128) NOT NULL The collection ID:
'DSNEXPLAINMODEYES'

The row originates from an application that
specifies YES for the value of the CURRENT
EXPLAIN MODE special register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that
specifies EXPLAIN for the value of the
CURRENT EXPLAIN MODE special register.

When the SQL statement is embedded in a
compiled SQL function, native SQL procedure,
or advanced trigger, this column indicates the
schema name of the compiled SQL function,
native SQL procedure, or advanced trigger.

GROUP_MEMBER VARCHAR(128) NOT NULL The member name of the Db2 that executed
EXPLAIN. The column is blank if the Db2
subsystem was not in a data sharing
environment when EXPLAIN was executed.

SECTNOI INTEGER NOT NULL The section number of the statement. The
value is taken from the same column in
SYSPACKSTMT or SYSSTMT tables and can
be used to join tables to reconstruct the
access path for the statement. This column
is applicable only for static statements.
The default value of -1 indicates EXPLAIN
information that was captured in DB2 9 or
earlier.

Appendix L. EXPLAIN tables 2839

Table 410. Descriptions of columns in DSN_KEYTGTDIST_TABLE (continued)

Column name Data Type Description

VERSION VARCHAR(122) NOT NULL The version identifier for the package. Applies
only to an embedded EXPLAIN statement
executed from a package or to a statement that
is explained when binding a package.

If the value is not blank, the value is the same
as the VERSION value for the package that was
used to create this EXPLAIN table row.

The value is blank for a statement in:

• A package for a basic trigger (TYPE='T')
• A package for an application that was

precompiled without SQL processing option
VERSION

• A package that was precompiled with
an empty string for the VERSION value
(TYPE=blank)

When the SQL statement is embedded in
a compiled SQL function or native SQL
procedure, this column indicates the version
identifier of the function or procedure. When
the SQL statement is embedded in an
advanced trigger body, this column is not used
and will be blank.

EXPLAIN_TIME TIMESTAMP NOT NULL The time when the EXPLAIN information was
captured:
All cached statements

When the statement entered the cache,
in the form of a full-precision timestamp
value.

Non-cached static statements
When the statement was bound, in the
form of a full precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form
of a value equivalent to a CHAR(16)
representation of the time appended by 4
zeros.

IXSCHEMA VARCHAR(128) NOT NULL The qualifier of the index.

IXNAME VARCHAR(128) NOT NULL The name of the index.

KEYSEQ VARCHAR(128) NOT NULL The numeric position of the key-target in the
index.

2840 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 410. Descriptions of columns in DSN_KEYTGTDIST_TABLE (continued)

Column name Data Type Description

KEYVALUE VARCHAR(2000) NOT NULL FOR
BIT DATA

Contains the data of a frequently occurring
value. Statistics are not collected for an index
on a ROWID column. If the value has a non-
character data type, the data might not be
printable.

When the value of the TYPE column contains
'I', this column contains one of the following
values:

• 'C9C4E7C6E4D3D2C6' for IDXFULKF
• 'C9C4E7D3C5C1C6C6' for IDXLEAFF
• 'C9C4E7D5D3E5D3C6' for IDXNLVLF

TYPE CHAR(1) NOT NULL The type of statistics:
C

Cardinality
F

Frequent value
H

Histogram
I

Real-time index statistics

CARDF FLOAT NOT NULL For TYPE='C', the number of distinct values for
the column group. For TYPE='H', the number
of distinct values for the column group in
a quantile indicated by the value of the
QUANTILENO column.

For TYPE='I', a value related to real-time index
statistics values determined by the KEYVALUE
column.

KEYGROUPKEYNO VARCHAR(254) NOT NULL FOR
BIT DATA

Contains a value that identifies the set of
keys that are associated with the statistics. If
the statistics are associated with more than a
single key, it contains an array of SMALLINT
key numbers with a dimension that is equal to
the value in NUMKEYS. If the statistics are only
associated with a single key, it contains 0.

NUMKEYS SMALLINT NOT NULL The number of keys that are associated with
the statistics.

FREQUENCYF FLOAT NOT NULL The percentage of rows in the table with the
value that is specified in the COLVALUE column
when the number is multiplied by 100. For
example, a value of '1' indicates 100%. A value
of '.153' indicates 15.3%.

QUANTILENO SMALLINT NOT NULL The ordinary sequence number of a quantile in
the whole consecutive value range, from low to
high. This column is not updatable

Appendix L. EXPLAIN tables 2841

Table 410. Descriptions of columns in DSN_KEYTGTDIST_TABLE (continued)

Column name Data Type Description

LOWVALUE VARCHAR(2000) NOT NULL FOR
BIT DATA

For TYPE='H', this is the lower bound for
the quantile indicated by the value of the
QUANTILENO column. Not used if the value of
the TYPE column is not 'H'. This column is not
updatable.

HIGHVALUE VARCHAR(2000) NOT NULL FOR
BIT DATA

For TYPE='H', this is the higher bound for
the quantile indicated by the value of the
QUANTILENO column. This column is not used
if the value of the TYPE column is not 'H'. This
column is not updatable.

EXPANSION_REASON CHAR(2) NOT NULL WITH
DEFAULT

This column applies only to statements that
reference archive tables or temporal tables.
For other statements, this column is blank.

Indicates the effect of the CURRENT
TEMPORAL BUSINESS_TIME special
register, the CURRENT TEMPORAL
SYSTEM_TIME special register, and the
SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the
BUSTIMESENSITIVE, SYSTIMESENSITIVE, and
ARCHIVESENSITIVE bind options.

Db2 implicitly adds certain syntax to the query
if one of the following conditions are true:

• The SYSIBMADM.GET_ARCHIVE global
variable is set to Y and the
ARCHIVESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL BUSINESS_TIME
special register is not null and the
BUSTIMESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL SYSTEM_TIME
special register is not null and the
SYSTIMESENSITIVE bind option is set to YES

2842 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 410. Descriptions of columns in DSN_KEYTGTDIST_TABLE (continued)

Column name Data Type Description

EXPANSION_REASON
(continued)

This column can have one of the following
values:
'A'

The query contains implicit query
transformation as a result of the
SYSIBMADM.GET_ARCHIVE built-in global
variable.

'B'
The query contains implicit query
transformation as a result of the
CURRENT TEMPORAL BUSINESS_TIME
special register.

'S'
The query contains implicit query
transformation as a result of the CURRENT
TEMPORAL SYSTEM_TIME special register.

'SB'
The query contains implicit query
transformation as a result of the
CURRENT TEMPORAL SYSTEM_TIME
special register and the CURRENT
TEMPORAL BUSINESS_TIME special
register.

blank
The query does not contain implicit query
transformation.

PER_STMT_ID BIGINT NOT NULL The persistent statement identifier for SQL
statements in Db2 catalog tables.

For example, this column corresponds to the
following catalog table columns that identify
SQL statements:

• STMT_ID in SYSIBM.SYSPACKSTMT, for SQL
statements in packages.

• SDQ_STMT_ID in SYSIBM.SYSDYNQUERY, for
stabilized dynamic SQL statements.

AP_PLANID CHAR(16) FOR BIT DATA A unique identifier for BIND or PREPARE
optimizations for an SQL statement, in the form
of an extended timestamp value.

Related concepts
Dynamic collection of index filtering estimates (Db2 Performance)

Appendix L. EXPLAIN tables 2843

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_dynamicindexfilterestimate.html

DSN_PGRANGE_TABLE
The page range table, DSN_PGRANGE_TABLE, contains information about qualified partitions for all page
range scans in a query.

Recommendation: Do not manually insert data into system-maintained EXPLAIN tables, and use care
when deleting obsolete EXPLAIN table data. The data is intended to be manipulated only by the Db2
EXPLAIN function and optimization tools. Certain optimization tools depend on instances of the various
EXPLAIN tables. Be careful not to delete data from or drop instances EXPLAIN tables that are created for
these tools.

Qualifiers
Your subsystem or data sharing group can contain multiple instances of these tables that are qualified
by user ID. These tables are populated with statement cost information when you issue the EXPLAIN
statement or bind. They are also populated when you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND
or REBIND command. SQL optimization tools might also create EXPLAIN tables that are qualified by a
user ID. You can find the SQL statement for creating an instance of these tables in member DSNTESC of
the SDSNSAMP library.

Sample CREATE TABLE statement
You can find a sample CREATE TABLE statement for each EXPLAIN table in member DSNTESC of the
prefix.SDSNSAMP library. You can call the ADMIN_EXPLAIN_MAINT stored procedure to create EXPLAIN
tables, upgrade them to the format for the current Db2 release, or complete other maintenance tasks. See
“ADMIN_EXPLAIN_MAINT stored procedure” on page 751 for information about using the action input
parameter to request each of these tasks.

Column descriptions
The following table describes the columns of DSN_PGRANGE_TABLE.

Table 411. DSN_PGRANGE_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT NULL A number that identifies the statement that is being explained.
The origin of the value depends on the context of the row:
For rows produced by EXPLAIN statements

The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE, and
DELETE statement syntax.

For rows not produced by EXPLAIN statements
Db2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement
number in the source program, values that exceed 32767 are
reported as 0. However, in certain rare cases, the value is not
guaranteed to be unique.

When the SQL statement is embedded in a compiled SQL
function, native SQL procedure, or advanced trigger, if the
QUERYNO clause is specified, its value is used by Db2.
Otherwise Db2 assigns a number based on the line number
of the SQL statement in the compiled SQL function, native SQL
procedure, or advanced trigger.

2844 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 411. DSN_PGRANGE_TABLE description (continued)

Column name Data type Description

QBLOCKNO SMALLINT NOT NULL A number that identifies each query block within a query. The
value of the numbers are not in any particular order, nor are
they necessarily consecutive.

TABNO SMALLINT NOT NULL The table number, a number which uniquely identifies the
corresponding table reference within a query.

RANGE SMALLINT NOT NULL The sequence number of the current page range.

FIRSTPART SMALLINT NOT NULL The starting partition in the current page range.

LASTPART SMALLINT NOT NULL The ending partition in the current page range.

NUMPARTS SMALLINT NOT NULL The number of partitions in the current page range.

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:
All cached statements

When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the Db2 that executed EXPLAIN. The
column is blank if the Db2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

SECTNOI INTEGER NOT NULL
WITH DEFAULT

The section number of the statement. The value is taken
from the same column in SYSPACKSTMT or SYSSTMT tables
and can be used to join tables to reconstruct the access
path for the statement. This column is applicable only for
static statements. The default value of -1 indicates EXPLAIN
information that was captured in DB2 9 or earlier.

APPLNAME VARCHAR(24) NOT
NULL WITH DEFAULT

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan
or to statements that are explained when binding a plan. A
blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL
function, native SQL procedure, or advanced trigger, this
column is not used, and is blank.

Appendix L. EXPLAIN tables 2845

Table 411. DSN_PGRANGE_TABLE description (continued)

Column name Data type Description

PROGNAME VARCHAR(128) NOT
NULL WITH DEFAULT

The name of the program or package containing the
statement being explained. Applies only to embedded
EXPLAIN statements and to statements explained as the result
of binding a plan or package. A blank indicates that the column
is not applicable.

When the SQL statement is embedded in a compiled SQL
function or native SQL procedure, this column indicates the
specific name of the compiled SQL function or native SQL
procedure. When the SQL statement is embedded in an
advanced trigger, this column contains the name of the trigger.

COLLID VARCHAR(128) NOT
NULL WITH DEFAULT

The collection ID:
'DSNEXPLAINMODEYES'

The row originates from an application that specifies YES
for the value of the CURRENT EXPLAIN MODE special
register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a compiled SQL
function, native SQL procedure, or advanced trigger, this
column indicates the schema name of the compiled SQL
function, native SQL procedure, or advanced trigger.

VERSION VARCHAR(122) NOT
NULL WITH DEFAULT

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or
to a statement that is explained when binding a package.

If the value is not blank, the value is the same as the VERSION
value for the package that was used to create this EXPLAIN
table row.

The value is blank for a statement in:

• A package for a basic trigger (TYPE='T')
• A package for an application that was precompiled without

SQL processing option VERSION
• A package that was precompiled with an empty string for the

VERSION value (TYPE=blank)

When the SQL statement is embedded in a compiled SQL
function or native SQL procedure, this column indicates the
version identifier of the function or procedure. When the SQL
statement is embedded in an advanced trigger body, this
column is not used and will be blank.

2846 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 411. DSN_PGRANGE_TABLE description (continued)

Column name Data type Description

EXPANSION_REASON CHAR(2) NOT NULL
WITH DEFAULT

This column applies only to statements that reference archive
tables or temporal tables. For other statements, this column is
blank.

Indicates the effect of the CURRENT TEMPORAL
BUSINESS_TIME special register, the CURRENT
TEMPORAL SYSTEM_TIME special register, and the
SYSIBMADM.GET_ARCHIVE built-in global variable. These
items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind options.

Db2 implicitly adds certain syntax to the query if one of the
following conditions are true:

• The SYSIBMADM.GET_ARCHIVE global variable is set to Y
and the ARCHIVESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL BUSINESS_TIME special register
is not null and the BUSTIMESENSITIVE bind option is set to
YES

• The CURRENT TEMPORAL SYSTEM_TIME special register is
not null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:
'A'

The query contains implicit query transformation as a
result of the SYSIBMADM.GET_ARCHIVE built-in global
variable.

'B'
The query contains implicit query transformation as
a result of the CURRENT TEMPORAL BUSINESS_TIME
special register.

'S'
The query contains implicit query transformation as a
result of the CURRENT TEMPORAL SYSTEM_TIME special
register.

'SB'
The query contains implicit query transformation as a
result of the CURRENT TEMPORAL SYSTEM_TIME special
register and the CURRENT TEMPORAL BUSINESS_TIME
special register.

blank
The query does not contain implicit query transformation.

PER_STMT_ID BIGINT NOT NULL The persistent statement identifier for SQL statements in Db2
catalog tables.

For example, this column corresponds to the following catalog
table columns that identify SQL statements:

• STMT_ID in SYSIBM.SYSPACKSTMT, for SQL statements in
packages.

• SDQ_STMT_ID in SYSIBM.SYSDYNQUERY, for stabilized
dynamic SQL statements.

Appendix L. EXPLAIN tables 2847

Table 411. DSN_PGRANGE_TABLE description (continued)

Column name Data type Description

AP_PLANID CHAR(16) FOR BIT
DATA

A unique identifier for BIND or PREPARE optimizations for an
SQL statement, in the form of an extended timestamp value.

DSN_PGROUP_TABLE
The parallel group table, DSN_PGROUP_TABLE, contains information about the parallel groups in a query.

Recommendation: Do not manually insert data into system-maintained EXPLAIN tables, and use care
when deleting obsolete EXPLAIN table data. The data is intended to be manipulated only by the Db2
EXPLAIN function and optimization tools. Certain optimization tools depend on instances of the various
EXPLAIN tables. Be careful not to delete data from or drop instances EXPLAIN tables that are created for
these tools.

Qualifiers
Your subsystem or data sharing group can contain multiple instances of these tables that are qualified
by user ID. These tables are populated with statement cost information when you issue the EXPLAIN
statement or bind. They are also populated when you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND
or REBIND command. SQL optimization tools might also create EXPLAIN tables that are qualified by a
user ID. You can find the SQL statement for creating an instance of these tables in member DSNTESC of
the SDSNSAMP library.

Sample CREATE TABLE statement
You can find a sample CREATE TABLE statement for each EXPLAIN table in member DSNTESC of the
prefix.SDSNSAMP library. You can call the ADMIN_EXPLAIN_MAINT stored procedure to create EXPLAIN
tables, upgrade them to the format for the current Db2 release, or complete other maintenance tasks. See
“ADMIN_EXPLAIN_MAINT stored procedure” on page 751 for information about using the action input
parameter to request each of these tasks.

Column descriptions
The following table describes the columns of DSN_PGROUP_TABLE

2848 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 412. DSN_PGROUP_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT NULL A number that identifies the statement that is being
explained. The origin of the value depends on the context of
the row:
For rows produced by EXPLAIN statements

The number specified in the QUERYNO clause, which is
an optional part of the SELECT, INSERT, UPDATE, MERGE,
and DELETE statement syntax.

For rows not produced by EXPLAIN statements
Db2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement
number in the source program, values that exceed 32767 are
reported as 0. However, in certain rare cases, the value is not
guaranteed to be unique.

When the SQL statement is embedded in a compiled SQL
function, native SQL procedure, or advanced trigger, if the
QUERYNO clause is specified, its value is used by Db2.
Otherwise Db2 assigns a number based on the line number
of the SQL statement in the compiled SQL function, native
SQL procedure, or advanced trigger.

QBLOCKNO SMALLINT NOT NULL A number that identifies each query block within a query. The
value of the numbers are not in any particular order, nor are
they necessarily consecutive.

PLANNAME VARCHAR(24) NOT
NULL

The application plan name.

COLLID VARCHAR(128) NOT
NULL

The collection ID:
'DSNEXPLAINMODEYES'

The row originates from an application that specifies YES
for the value of the CURRENT EXPLAIN MODE special
register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a compiled SQL
function, native SQL procedure, or advanced trigger, this
column indicates the schema name of the compiled SQL
function, native SQL procedure, or advanced trigger.

Appendix L. EXPLAIN tables 2849

Table 412. DSN_PGROUP_TABLE description (continued)

Column name Data type Description

PROGNAME VARCHAR(128) NOT
NULL

The name of the program or package containing the
statement being explained. Applies only to embedded
EXPLAIN statements and to statements explained as the
result of binding a plan or package. A blank indicates that
the column is not applicable.

When the SQL statement is embedded in a compiled SQL
function or native SQL procedure, this column indicates
the specific name of the compiled SQL function or native
SQL procedure. When the SQL statement is embedded in
an advanced trigger, this column contains the name of the
trigger.

EXPLAIN_TIME TIMESTAMP NOT NULL The time when the EXPLAIN information was captured:
All cached statements

When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

VERSION VARCHAR(122) NOT
NULL

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or
to a statement that is explained when binding a package.

If the value is not blank, the value is the same as the
VERSION value for the package that was used to create this
EXPLAIN table row.

The value is blank for a statement in:

• A package for a basic trigger (TYPE='T')
• A package for an application that was precompiled without

SQL processing option VERSION
• A package that was precompiled with an empty string for

the VERSION value (TYPE=blank)

When the SQL statement is embedded in a compiled SQL
function or native SQL procedure, this column indicates the
version identifier of the function or procedure. When the SQL
statement is embedded in an advanced trigger body, this
column is not used and will be blank.

GROUPID SMALLINT NOT NULL The parallel group identifier within the current query block.

FIRSTPLAN SMALLINT NOT NULL The plan number of the first contributing mini-plan
associated within this parallel group.

LASTPLAN SMALLINT NOT NULL The plan number of the last mini-plan associated within this
parallel group.

2850 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 412. DSN_PGROUP_TABLE description (continued)

Column name Data type Description

CPUCOST REAL NOT NULL The estimated total CPU cost of this parallel group in
milliseconds.

IOCOST REAL NOT NULL The estimated total I/O cost of this parallel group in
milliseconds.

BESTTIME REAL NOT NULL The estimated elapsed time for each parallel task for this
parallel group.

DEGREE SMALLINT NOT NULL The degree of parallelism for this parallel group determined
at bind time. Max parallelism degree if the Table space is
large is 255, otherwise 64.

MODE CHAR(1) NOT NULL The parallel mode:
'I'

I/O parallelism
'C'

CPU parallelism
'N'

No parallelism

REASON SMALLINT NOT NULL The reason code for downgrading parallelism mode.

LOCALCPU SMALLINT NOT NULL The number of CPUs currently online when preparing the
query.

TOTALCPU SMALLINT NOT NULL The total number of CPUs in sysplex. LOCALCPU and
TOTALCPU are different only for the Db2 coordinator in a
sysplex.

FIRSTBASE SMALLINT The table number of the table that partitioning is performed
on.

LARGETS CHAR(1) 'Y' if the TableSpace is large in this group.

PARTKIND CHAR(1) The partitioning type:
'L'

Logical partitioning
'P'

Physical partitioning

GROUPTYPE CHAR(3) Determines what operations this parallel group contains:
table Access, Join, or Sort 'A' 'AJ' 'AJS'

ORDER CHAR(1) The ordering requirement of this parallel group :
'N'

No order. Results need no ordering.
'T'

Natural Order. Ordering is required but results already
ordered if accessed via index.

'K'
Key Order. Ordering achieved by sort. Results ordered by
sort key. This value applies only to parallel sort.

Appendix L. EXPLAIN tables 2851

Table 412. DSN_PGROUP_TABLE description (continued)

Column name Data type Description

STYLE CHAR(4) The Input/Output format style of this parallel group. Blank for
IO Parallelism. For other modes:
'RIRO'

Records IN, Records OUT
'WIRO'

Work file IN, Records OUT
'WIWO'

Work file IN, Work file OUT

RANGEKIND CHAR(1) The range type:
'K'

Key range
'L'

IN-list elements partitioning
'P'

Page range
'R'

Record range partitioning

NKEYCOLS SMALLINT The number of interesting key columns, that is, the number
of columns that will participate in the key operation for this
parallel group.

LOWBOUND VARCHAR(40) FOR BIT
DATA

The low bound of parallel group.

HIGHBOUND VARCHAR(40) FOR BIT
DATA

The high bound of parallel group.

LOWKEY VARCHAR(40) FOR BIT
DATA

The low key of range if partitioned by key range.

HIGHKEY VARCHAR(40) FOR BIT
DATA

The high key of range if partitioned by key range.

FIRSTPAGE CHAR(4) FOR BIT DATA The first page in range if partitioned by page range.

LASTPAGE CHAR(4) FOR BIT DATA The last page in range if partitioned by page range.

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the Db2 that executed EXPLAIN. The
column is blank if the Db2 subsystem was not in a data
sharing environment when EXPLAIN was executed.

HOST_REASON SMALLINT IBM internal use only.

PARA_TYPE CHAR(4) IBM internal use only.

PART_INNER CHAR(1) IBM internal use only.

GRNU_KEYRNG CHAR(1) IBM internal use only.

OPEN_KEYRNG CHAR(1) IBM internal use only.

2852 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 412. DSN_PGROUP_TABLE description (continued)

Column name Data type Description

APPLNAME VARCHAR(24) NOT
NULL WITH DEFAULT

The name of the application plan for the row. Applies only
to embedded EXPLAIN statements that are executed from a
plan or to statements that are explained when binding a plan.
A blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL
function, native SQL procedure, or advanced trigger, this
column is not used, and is blank.

SECTNOI INTEGER NOT NULL
WITH DEFAULT

The section number of the statement. The value is taken
from the same column in SYSPACKSTMT or SYSSTMT tables
and can be used to join tables to reconstruct the access
path for the statement. This column is applicable only for
static statements. The default value of -1 indicates EXPLAIN
information that was captured in DB2 9 or earlier.

STRAW_MODEL CHAR(1) NOT NULL
WITH DEFAULT

IBM internal use only.

Appendix L. EXPLAIN tables 2853

Table 412. DSN_PGROUP_TABLE description (continued)

Column name Data type Description

EXPANSION_REASON CHAR(2) NOT NULL
WITH DEFAULT

This column applies only to statements that reference archive
tables or temporal tables. For other statements, this column
is blank.

Indicates the effect of the CURRENT TEMPORAL
BUSINESS_TIME special register, the CURRENT
TEMPORAL SYSTEM_TIME special register, and the
SYSIBMADM.GET_ARCHIVE built-in global variable. These
items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind options.

Db2 implicitly adds certain syntax to the query if one of the
following conditions are true:

• The SYSIBMADM.GET_ARCHIVE global variable is set to Y
and the ARCHIVESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL BUSINESS_TIME special register
is not null and the BUSTIMESENSITIVE bind option is set to
YES

• The CURRENT TEMPORAL SYSTEM_TIME special register is
not null and the SYSTIMESENSITIVE bind option is set to
YES

This column can have one of the following values:
'A'

The query contains implicit query transformation as a
result of the SYSIBMADM.GET_ARCHIVE built-in global
variable.

'B'
The query contains implicit query transformation as
a result of the CURRENT TEMPORAL BUSINESS_TIME
special register.

'S'
The query contains implicit query transformation as a
result of the CURRENT TEMPORAL SYSTEM_TIME special
register.

'SB'
The query contains implicit query transformation as a
result of the CURRENT TEMPORAL SYSTEM_TIME special
register and the CURRENT TEMPORAL BUSINESS_TIME
special register.

blank
The query does not contain implicit query transformation.

PER_STMT_ID BIGINT NOT NULL The persistent statement identifier for SQL statements in Db2
catalog tables.

For example, this column corresponds to the following
catalog table columns that identify SQL statements:

• STMT_ID in SYSIBM.SYSPACKSTMT, for SQL statements in
packages.

• SDQ_STMT_ID in SYSIBM.SYSDYNQUERY, for stabilized
dynamic SQL statements.

2854 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 412. DSN_PGROUP_TABLE description (continued)

Column name Data type Description

AP_PLANID CHAR(16) FOR BIT
DATA

A unique identifier for BIND or PREPARE optimizations for an
SQL statement, in the form of an extended timestamp value.

DSN_PREDICAT_TABLE
The predicate table, DSN_PREDICAT_TABLE, contains information about all of the predicates in a query.
It is also used as input when you issue a BIND QUERY command to override predicate selectivities for
matching SQL statements.

Recommendation: Do not manually insert data into system-maintained EXPLAIN tables, and use care
when deleting obsolete EXPLAIN table data. The data is intended to be manipulated only by the Db2
EXPLAIN function and optimization tools. Certain optimization tools depend on instances of the various
EXPLAIN tables. Be careful not to delete data from or drop instances EXPLAIN tables that are created for
these tools.

Qualifiers
Your subsystem or data sharing group can contain multiple instances of these tables that are qualified
by user ID. These tables are populated with statement cost information when you issue the EXPLAIN
statement or bind. They are also populated when you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND
or REBIND command. SQL optimization tools might also create EXPLAIN tables that are qualified by a
user ID. You can find the SQL statement for creating an instance of these tables in member DSNTESC of
the SDSNSAMP library.

Sample CREATE TABLE statement
You can find a sample CREATE TABLE statement for each EXPLAIN table in member DSNTESC of the
prefix.SDSNSAMP library. You can call the ADMIN_EXPLAIN_MAINT stored procedure to create EXPLAIN
tables, upgrade them to the format for the current Db2 release, or complete other maintenance tasks. See
“ADMIN_EXPLAIN_MAINT stored procedure” on page 751 for information about using the action input
parameter to request each of these tasks.

Column descriptions
The following table describes the columns of the DSN_PREDICAT_TABLE

Appendix L. EXPLAIN tables 2855

Table 413. DSN_PREDICAT_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT
NULL

A number that identifies the statement that is being explained.
The origin of the value depends on the context of the row:
For rows produced by EXPLAIN statements

The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE, and
DELETE statement syntax.

For rows not produced by EXPLAIN statements
Db2 assigns a number that is based on the line number of the
SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as
0. However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a compiled SQL function,
native SQL procedure, or advanced trigger, if the QUERYNO clause
is specified, its value is used by Db2. Otherwise Db2 assigns a
number based on the line number of the SQL statement in the
compiled SQL function, native SQL procedure, or advanced trigger.

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query. The
value of the numbers are not in any particular order, nor are they
necessarily consecutive.

APPLNAME VARCHAR(24)
NOT NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or
to statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function,
native SQL procedure, or advanced trigger, this column is not
used, and is blank.

PROGNAME VARCHAR(128)
NOT NULL

The name of the program or package containing the statement
being explained. Applies only to embedded EXPLAIN statements
and to statements explained as the result of binding a plan or
package. A blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the specific name
of the compiled SQL function or native SQL procedure. When the
SQL statement is embedded in an advanced trigger, this column
contains the name of the trigger.

PREDNO INTEGER NOT
NULL

The predicate number, a number used to identify a predicate
within a query.

2856 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 413. DSN_PREDICAT_TABLE description (continued)

Column name Data type Description

TYPE CHAR(8) NOT
NULL

A string used to indicate the type or the operation of the
predicate. The possible values are:

• 'AND'
• 'BETWEEN'
• 'EQUAL'
• 'EXISTS
• 'COMPOUND'
• 'HAVING'
• 'IN'
• 'LIKE'
• 'NOT LIKE'
• 'NOTEXIST'
• 'OTHERS'
• 'OR'
• 'RANGE'
• 'SUBQUERY'
• 'XEXISTS'
• 'NXEXISTS'

LEFT_HAND_SIDE VARCHAR(128)
NOT NULL

Describes the left side of the predicate.

If the left side of the predicate is a table column, this value
indicates the name of that column.

Other possible values are:

• 'VALUE'
• 'COLEXP'
• 'NONCOLEXP'
• 'CORSUB'
• 'NONCORSUB'
• 'SUBQUERY'
• 'EXPRESSION'
• Blanks

LEFT_HAND_PNO INTEGER NOT
NULL

If the predicate is a compound predicate (AND/OR), then this
column indicates the first child predicate. However, this column is
not reliable when the predicate tree consolidation happens. Use
PARENT_PNO instead to reconstruct the predicate tree.

LHS_TABNO SMALLINT NOT
NULL

If the left side of the predicate is a table column or a column
expression in an expression-based index, then this column
indicates a number which uniquely identifies the corresponding
table reference within a query.

LHS_QBNO SMALLINT NOT
NULL

If the left side of the predicate is a table column or a column
expression in expression-based index, then this column indicates
a number which uniquely identifies the corresponding query block
within a query.

Appendix L. EXPLAIN tables 2857

Table 413. DSN_PREDICAT_TABLE description (continued)

Column name Data type Description

RIGHT_HAND_SIDE VARCHAR(128)
NOT NULL

Describes the right side of the predicate.

If the right side of the predicate is a table column, this value
column indicates the column name.

Other possible values are:

• 'VALUE'
• 'COLEXP'
• 'NONCOLEXP'
• 'CORSUB'
• 'NONCORSUB'
• 'SUBQUERY'
• 'EXPRESSION'
• Blanks

RIGHT_HAND_PNO INTEGER NOT
NULL

If the predicate is a compound predicate (AND/OR), then this
column indicates the second child predicate. However, this
column is not reliable when the predicate tree consolidation
happens. Use PARENT_PNO instead to reconstruct the predicate
tree.

RHS_TABNO CHAR(1) NOT
NULL

If the right side of the predicate is a table column or a column
expression in an index on expression, then this column indicates
a number which uniquely identifies the corresponding table
reference within a query.

RHS_QBNO CHAR(1) NOT
NULL

If the right side of the predicate is a subquery or a column
expression in an expression-based index, then this column
indicates a number which uniquely identifies the corresponding
query block within a query.

FILTER_FACTOR FLOAT NOT NULL The estimated filter factor.

BOOLEAN_TERM CHAR(1) NOT
NULL

Whether this predicate can be used to determine the truth value
of the whole WHERE clause.

SEARCHARG CHAR(1) NOT
NULL

Whether this predicate can be processed by data manager (DM). If
it is not, then the relational data service (RDS) needs to be used to
take care of it, which is more costly.

JOIN CHAR(1) NOT
NULL

Whether the predicate can be used as a simple join predicate
between two tables.

AFTER_JOIN CHAR(1) NOT
NULL

Indicates the predicate evaluation phase:
'A'

After join
'D'

During join
blank

Not applicable

2858 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 413. DSN_PREDICAT_TABLE description (continued)

Column name Data type Description

ADDED_PRED CHAR(1) NOT
NULL

Whether the predicate is generated by Db2, and the reason why
the predicate is added:
blank

Db2 did not add the predicate.
'B'

For bubble up.
'C'

For correlation.
'J'

For join.
'K'

For LIKE for expression-based index.
'L'

For localization.
'P'

For push down.
'R'

For page range.
'S'

For simplification.
'T'

For transitive closure.

REDUNDANT_PRED CHAR(1) NOT
NULL

Whether it is a redundant predicate, which means evaluation of
other predicates in the query already determines the result that
the predicate provides.

DIRECT_ACCESS CHAR(1) NOT
NULL

Whether the predicate is direct access, which means one can
navigate directly to the row through ROWID.

KEYFIELD CHAR(1) NOT
NULL

Whether the predicate includes the index key column of the
involved table for all applicable indexes considered by Db2.

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:
All cached statements

When the statement entered the cache, in the form of a full-
precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full precision
timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

CATEGORY SMALLINT NOT
NULL

IBM internal use only.

CATEGORY_B SMALLINT NOT
NULL

IBM internal use only.

Appendix L. EXPLAIN tables 2859

Table 413. DSN_PREDICAT_TABLE description (continued)

Column name Data type Description

TEXT VARCHAR(2000)
NOT NULL

The text of the transformed predicate text. If the text of the
predicate contains more than 2000 characters, it is truncated.

PRED_ENCODE CHAR(1) NOT
NULL WITH
DEFAULT

IBM internal use only.

PRED_CCSID SMALLINT NOT
NULL WITH
DEFAULT

IBM internal use only.

PRED_MCCSID SMALLINT NOT
NULL WITH
DEFAULT

IBM internal use only.

MARKER CHAR(1) NOT
NULL WITH
DEFAULT

Whether this predicate includes host variables, parameter
markers, or special registers.

PARENT_PNO INTEGER NOT
NULL

The parent predicate number. If this predicate is a root predicate
within a query block, then this column is 0.

NEGATION CHAR(1) NOT
NULL

Whether this predicate is negated via NOT.

LITERALS VARCHAR(128)
NOT NULL

This column indicates the literal value or literal values separated
by colon symbols.

CLAUSE CHAR(8) NOT
NULL

The clause where the predicate exists:
'HAVING '

The HAVING clause
'ON '

The ON clause
'WHERE '

The WHERE clause
SELECT

The SELECT clause

GROUP_MEMBER VARCHAR(24)
NOT NULL

The member name of the Db2 that executed EXPLAIN. The
column is blank if the Db2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

ORIGIN CHAR(1) NOT
NULL WITH
DEFAULT

Indicates the origin of the predicate.
Blank

Generated by Db2
C

Column mask
R

Row permission
U

Specified by the user

UNCERTAINTY FLOAT(4) NOT
NULL WITH
DEFAULT

Describes the uncertainty factor of a predicate's estimated filter
factor. A bigger value indicates a higher degree of uncertainty.
Value zero indicates no uncertainty or uncertainty not considered.

2860 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 413. DSN_PREDICAT_TABLE description (continued)

Column name Data type Description

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from
the same column in SYSPACKSTMT or SYSSTMT tables and can
be used to join tables to reconstruct the access path for the
statement. This column is applicable only for static statements.
The default value of -1 indicates EXPLAIN information that was
captured in DB2 9 or earlier.

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

The collection ID:
'DSNEXPLAINMODEYES'

The row originates from an application that specifies YES for
the value of the CURRENT EXPLAIN MODE special register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies EXPLAIN
for the value of the CURRENT EXPLAIN MODE special register.

When the SQL statement is embedded in a compiled SQL function,
native SQL procedure, or advanced trigger, this column indicates
the schema name of the compiled SQL function, native SQL
procedure, or advanced trigger.

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to a
statement that is explained when binding a package.

If the value is not blank, the value is the same as the VERSION
value for the package that was used to create this EXPLAIN table
row.

The value is blank for a statement in:

• A package for a basic trigger (TYPE='T')
• A package for an application that was precompiled without SQL

processing option VERSION
• A package that was precompiled with an empty string for the

VERSION value (TYPE=blank)

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the version
identifier of the function or procedure. When the SQL statement
is embedded in an advanced trigger body, this column is not used
and will be blank.

Appendix L. EXPLAIN tables 2861

Table 413. DSN_PREDICAT_TABLE description (continued)

Column name Data type Description

EXPANSION_REASON CHAR(2) NOT
NULL WITH
DEFAULT

This column applies only to statements that reference archive
tables or temporal tables. For other statements, this column is
blank.

Indicates the effect of the CURRENT TEMPORAL BUSINESS_TIME
special register, the CURRENT TEMPORAL SYSTEM_TIME special
register, and the SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind options.

Db2 implicitly adds certain syntax to the query if one of the
following conditions are true:

• The SYSIBMADM.GET_ARCHIVE global variable is set to Y and
the ARCHIVESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL BUSINESS_TIME special register is
not null and the BUSTIMESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL SYSTEM_TIME special register is not
null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:
'A'

The query contains implicit query transformation as a result of
the SYSIBMADM.GET_ARCHIVE built-in global variable.

'B'
The query contains implicit query transformation as a result of
the CURRENT TEMPORAL BUSINESS_TIME special register.

'S'
The query contains implicit query transformation as a result of
the CURRENT TEMPORAL SYSTEM_TIME special register.

'SB'
The query contains implicit query transformation as a result of
the CURRENT TEMPORAL SYSTEM_TIME special register and
the CURRENT TEMPORAL BUSINESS_TIME special register.

blank
The query does not contain implicit query transformation.

PER_STMT_ID BIGINT NOT NULL The persistent statement identifier for SQL statements in Db2
catalog tables.

For example, this column corresponds to the following catalog
table columns that identify SQL statements:

• STMT_ID in SYSIBM.SYSPACKSTMT, for SQL statements in
packages.

• SDQ_STMT_ID in SYSIBM.SYSDYNQUERY, for stabilized dynamic
SQL statements.

AP_PLANID CHAR(16) FOR BIT
DATA

A unique identifier for BIND or PREPARE optimizations for an SQL
statement, in the form of an extended timestamp value.

Related concepts
Predicates

2862 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

A predicate specifies a condition that is true, false, or unknown about a given value, row, or group.
Predicates and access path selection (Db2 Performance)
Related tasks
Overriding predicate selectivities at the statement level (Db2 Performance)
Related reference
Tables for influencing access path selection (Db2 Performance)
BIND QUERY subcommand (DSN) (Db2 Commands)

DSN_PREDICATE_SELECTIVITY table
The predicate selectivity table contains information about the selectivity of predicates that are used
for access path selection. It is used as an input table for the BIND QUERY command when selectivity
overrides are specified.

When selectivity overrides are not specified, or specified selectivity overrides cannot not be used by Db2,
the DSN_PREDICATE_SELECTIVITY table contains one row for each predicate in DSN_PREDICAT_TABLE
that is used for access path selection. These rows contain ASSUMPTION='NORMAL' values.
DSN_PREDICATE_SELECTIVITY does not contain rows from DSN_PREDICAT_TABLE for predicates that
are not used for access path selection.

When selectivity overrides are specified and used by Db2, this table also contains one row for each
selectivity override that was used. These rows contain ASSUMPTION='OVERRIDE' values.

Additionally, if the sum of the weights for all specified selectivity override instances is less than one, this
table contains one row for each predicate in DSN_PREDICAT_TABLE that is used for access path selection.
These rows contain ASSUMPTION='NORMAL' values and WEIGHT values equal to one minus the sum of
the specified override weight values.

Recommendation: Do not manually insert data into system-maintained EXPLAIN tables, and use care
when deleting obsolete EXPLAIN table data. The data is intended to be manipulated only by the Db2
EXPLAIN function and optimization tools. Certain optimization tools depend on instances of the various
EXPLAIN tables. Be careful not to delete data from or drop instances EXPLAIN tables that are created for
these tools.

Qualifiers
Your subsystem or data sharing group can contain multiple instances of these tables that are qualified
by user ID. These tables are populated with statement cost information when you issue the EXPLAIN
statement or bind. They are also populated when you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND
or REBIND command. SQL optimization tools might also create EXPLAIN tables that are qualified by a
user ID. You can find the SQL statement for creating an instance of these tables in member DSNTESC of
the SDSNSAMP library.

Sample CREATE TABLE statement
You can find a sample CREATE TABLE statement for each EXPLAIN table in member DSNTESC of the
prefix.SDSNSAMP library. You can call the ADMIN_EXPLAIN_MAINT stored procedure to create EXPLAIN
tables, upgrade them to the format for the current Db2 release, or complete other maintenance tasks. See
“ADMIN_EXPLAIN_MAINT stored procedure” on page 751 for information about using the action input
parameter to request each of these tasks.

Column descriptions
Your subsystem or data sharing group can contain more than one of these tables, including a table with
the qualifier SYSIBM, a table with the qualifier DB2OSCA, and additional tables that are qualified by user
IDs.

Appendix L. EXPLAIN tables 2863

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_predicateproperties.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_createselecthint.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_bindquerytables.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_bindquery.html

The following table shows the descriptions of the columns in the DSN_PREDICATE_SELECTIVITY table.

Table 414. Descriptions of columns in the DSN_PREDICATE_SELECTIVITY table

Column name Data Type Description

QUERYNO INTEGER NOT NULL A number that identifies the statement that
is being explained. The origin of the value
depends on the context of the row:
For rows produced by EXPLAIN statements

The number specified in the QUERYNO
clause, which is an optional part of the
SELECT, INSERT, UPDATE, MERGE, and
DELETE statement syntax.

For rows not produced by EXPLAIN
statements

Db2 assigns a number that is based on the
line number of the SQL statement in the
source program.

When the values of QUERYNO are based on
the statement number in the source program,
values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not
guaranteed to be unique.

When the SQL statement is embedded in a
compiled SQL function, native SQL procedure,
or advanced trigger, if the QUERYNO clause is
specified, its value is used by Db2. Otherwise
Db2 assigns a number based on the line number
of the SQL statement in the compiled SQL
function, native SQL procedure, or advanced
trigger.

QBLOCKNO SMALLINT NOT NULL A number that identifies each query block
within a query. The value of the numbers are not
in any particular order, nor are they necessarily
consecutive.

APPLNAME VARCHAR(24) NOT NULL The name of the application plan for the row.
Applies only to embedded EXPLAIN statements
that are executed from a plan or to statements
that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a
compiled SQL function, native SQL procedure,
or advanced trigger, this column is not used, and
is blank.

2864 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 414. Descriptions of columns in the DSN_PREDICATE_SELECTIVITY table (continued)

Column name Data Type Description

PROGNAME VARCHAR(128) NOT NULL The name of the program or package containing
the statement being explained. Applies only
to embedded EXPLAIN statements and to
statements explained as the result of binding
a plan or package. A blank indicates that the
column is not applicable.

When the SQL statement is embedded in a
compiled SQL function or native SQL procedure,
this column indicates the specific name of the
compiled SQL function or native SQL procedure.
When the SQL statement is embedded in an
advanced trigger, this column contains the
name of the trigger.

SECTNOI INTEGER NOT NULL WITH
DEFAULT

The section number of the statement. The
value is taken from the same column in
SYSPACKSTMT or SYSSTMT tables and can
be used to join tables to reconstruct the
access path for the statement. This column
is applicable only for static statements.
The default value of -1 indicates EXPLAIN
information that was captured in DB2 9 or
earlier.

COLLID VARCHAR(128) NOT NULL The collection ID:
'DSNEXPLAINMODEYES'

The row originates from an application that
specifies YES for the value of the CURRENT
EXPLAIN MODE special register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that
specifies EXPLAIN for the value of the
CURRENT EXPLAIN MODE special register.

When the SQL statement is embedded in a
compiled SQL function, native SQL procedure,
or advanced trigger, this column indicates the
schema name of the compiled SQL function,
native SQL procedure, or advanced trigger.

Appendix L. EXPLAIN tables 2865

Table 414. Descriptions of columns in the DSN_PREDICATE_SELECTIVITY table (continued)

Column name Data Type Description

VERSION VARCHAR(122) NOT NULL The version identifier for the package. Applies
only to an embedded EXPLAIN statement
executed from a package or to a statement that
is explained when binding a package.

If the value is not blank, the value is the same
as the VERSION value for the package that was
used to create this EXPLAIN table row.

The value is blank for a statement in:

• A package for a basic trigger (TYPE='T')
• A package for an application that was

precompiled without SQL processing option
VERSION

• A package that was precompiled with
an empty string for the VERSION value
(TYPE=blank)

When the SQL statement is embedded in a
compiled SQL function or native SQL procedure,
this column indicates the version identifier
of the function or procedure. When the SQL
statement is embedded in an advanced trigger
body, this column is not used and will be blank.

PREDNO INTEGER NOT NULL The predicate number, a number used to
identify a specific predicate within a query.

INSTANCE SMALLINT NOT NULL The selectivity instance. Used to group related
selectivities.

SELECTIVITY FLOAT NOT NULL The selectivity estimate.

WEIGHT FLOAT(4) NOT NULL The percentage of executions that have the
specified selectivity. For example, a value of
0.25 means that 25% of the time when query
is executed it has this selectivity.

ASSUMPTION VARCHAR(128) NOT NULL Indicates how the selectivity was estimated, or
is used. One of the following values:
'NORMAL'

Selectivity is estimated by using the normal
selectivity assumptions.

'OVERRIDE'
Selectivity is based on an override.

INSERT_TIME TIMESTAMP NOT NULL
GENERATED ALWAYS FOR EACH
ROW ON UPDATE AS ROW
CHANGE TIMESTAMP

The time when the row was inserted or
updated.

2866 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 414. Descriptions of columns in the DSN_PREDICATE_SELECTIVITY table (continued)

Column name Data Type Description

EXPLAIN_TIME TIMESTAMP The time when the EXPLAIN information was
captured:
All cached statements

When the statement entered the cache, in
the form of a full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form
of a full precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form
of a value equivalent to a CHAR(16)
representation of the time appended by 4
zeros.

REMARKS VARCHAR(762) IBM internal use only.

EXPANSION_REASON CHAR(2) NOT NULL WITH
DEFAULT

This column applies only to statements that
reference archive tables or temporal tables. For
other statements, this column is blank.

Indicates the effect of the CURRENT TEMPORAL
BUSINESS_TIME special register, the CURRENT
TEMPORAL SYSTEM_TIME special register, and
the SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the
BUSTIMESENSITIVE, SYSTIMESENSITIVE, and
ARCHIVESENSITIVE bind options.

Db2 implicitly adds certain syntax to the query if
one of the following conditions are true:

• The SYSIBMADM.GET_ARCHIVE global
variable is set to Y and the
ARCHIVESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL BUSINESS_TIME
special register is not null and the
BUSTIMESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL SYSTEM_TIME
special register is not null and the
SYSTIMESENSITIVE bind option is set to YES

Appendix L. EXPLAIN tables 2867

Table 414. Descriptions of columns in the DSN_PREDICATE_SELECTIVITY table (continued)

Column name Data Type Description

EXPANSION_REASON
(continued)

This column can have one of the following
values:
'A'

The query contains implicit query
transformation as a result of the
SYSIBMADM.GET_ARCHIVE built-in global
variable.

'B'
The query contains implicit query
transformation as a result of the
CURRENT TEMPORAL BUSINESS_TIME
special register.

'S'
The query contains implicit query
transformation as a result of the CURRENT
TEMPORAL SYSTEM_TIME special register.

'SB'
The query contains implicit query
transformation as a result of the
CURRENT TEMPORAL SYSTEM_TIME special
register and the CURRENT TEMPORAL
BUSINESS_TIME special register.

blank
The query does not contain implicit query
transformation.

PER_STMT_ID BIGINT NOT NULL The persistent statement identifier for SQL
statements in Db2 catalog tables.

For example, this column corresponds to the
following catalog table columns that identify
SQL statements:

• STMT_ID in SYSIBM.SYSPACKSTMT, for SQL
statements in packages.

• SDQ_STMT_ID in SYSIBM.SYSDYNQUERY, for
stabilized dynamic SQL statements.

Related tasks
Overriding predicate selectivities at the statement level (Db2 Performance)
Related reference
BIND QUERY subcommand (DSN) (Db2 Commands)
DSN_PREDICAT_TABLE (Db2 Performance)
Tables for influencing access path selection (Db2 Performance)

2868 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_createselecthint.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_bindquery.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/usrtab/src/tpc/db2z_dsnpredicattable.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_bindquerytables.html

DSN_PTASK_TABLE
The parallel tasks table, DSN_PTASK_TABLE, contains information about all of the parallel tasks in a
query.

Recommendation: Do not manually insert data into system-maintained EXPLAIN tables, and use care
when deleting obsolete EXPLAIN table data. The data is intended to be manipulated only by the Db2
EXPLAIN function and optimization tools. Certain optimization tools depend on instances of the various
EXPLAIN tables. Be careful not to delete data from or drop instances EXPLAIN tables that are created for
these tools.

Qualifiers
Your subsystem or data sharing group can contain multiple instances of these tables that are qualified
by user ID. These tables are populated with statement cost information when you issue the EXPLAIN
statement or bind. They are also populated when you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND
or REBIND command. SQL optimization tools might also create EXPLAIN tables that are qualified by a
user ID. You can find the SQL statement for creating an instance of these tables in member DSNTESC of
the SDSNSAMP library.

Sample CREATE TABLE statement
You can find a sample CREATE TABLE statement for each EXPLAIN table in member DSNTESC of the
prefix.SDSNSAMP library. You can call the ADMIN_EXPLAIN_MAINT stored procedure to create EXPLAIN
tables, upgrade them to the format for the current Db2 release, or complete other maintenance tasks. See
“ADMIN_EXPLAIN_MAINT stored procedure” on page 751 for information about using the action input
parameter to request each of these tasks.

Column descriptions
The following table describes the columns of DSN_PTASK_TABLE.

Table 415. DSN_PTASK_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT
NULL

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:
For rows produced by EXPLAIN statements

The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE, and
DELETE statement syntax.

For rows not produced by EXPLAIN statements
Db2 assigns a number that is based on the line number of the
SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as
0. However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a compiled SQL function,
native SQL procedure, or advanced trigger, if the QUERYNO clause
is specified, its value is used by Db2. Otherwise Db2 assigns a
number based on the line number of the SQL statement in the
compiled SQL function, native SQL procedure, or advanced trigger.

Appendix L. EXPLAIN tables 2869

Table 415. DSN_PTASK_TABLE description (continued)

Column name Data type Description

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query. The
value of the numbers are not in any particular order, nor are they
necessarily consecutive.

PGDNO SMALLINT NOT
NULL

The parallel group identifier within the current query block.
This value corresponds to the value of the GROUPID column in
DSN_PGROUP_TABLE table rows.

APPLNAME VARCHAR(24) NOT
NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or
to statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function,
native SQL procedure, or advanced trigger, this column is not used,
and is blank.

PROGNAME VARCHAR(128)
NOT NULL

The name of the program or package containing the statement
being explained. Applies only to embedded EXPLAIN statements
and to statements explained as the result of binding a plan or
package. A blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the specific name
of the compiled SQL function or native SQL procedure. When the
SQL statement is embedded in an advanced trigger, this column
contains the name of the trigger.

LPTNO SMALLINT NOT
NULL

The parallel task number.

KEYCOLID SMALLINT The key column ID (KEY range only).

DPSI CHAR(1) NOT
NULL

Indicates if a data partition secondary index (DPSI) is used.

LPTLOKEY VARCHAR(40) FOR
BIT DATA

The low key value for this key column for this parallel task (KEY
range only).

LPTHIKEY VARCHAR(40) FOR
BIT DATA

The high key value for this key column for this parallel task (KEY
range only).

LPTLOPAG CHAR(4) FOR BIT
DATA

The low page information if partitioned by page range.

LPTLHIPAG CHAR(4) FOR BIT
DATA

The high page information if partitioned by page range.

LPTLOPG“1” on page
2873

CHAR(4) FOR BIT
DATA

The lower bound page number for this parallel task (Page range or
DPSI enabled only).

LPTHIPG“1” on page
2873

CHAR(4) FOR BIT
DATA

The upper bound page number for this parallel task (Page range or
DPSI enabled only).

LPTLOPT“1” on page
2873

SMALLINT The lower bound partition number for this parallel task (Page range
or DPSI enabled only).

LPTHIPT“1” on page 2873 SMALLINT The upper bound partition number for this parallel task (Page
range or DPSI enabled only).

KEYCOLDT SMALLINT The data type for this key column (KEY range only).

2870 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 415. DSN_PTASK_TABLE description (continued)

Column name Data type Description

KEYCOLPREC SMALLINT The precision/length for this key column (KEY range only).

KEYCOLSCAL SMALLINT The scale for this key column (KEY range with Decimal datatype
only).

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:
All cached statements

When the statement entered the cache, in the form of a full-
precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full precision
timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value equivalent
to a CHAR(16) representation of the time appended by 4 zeros.

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the Db2 that executed EXPLAIN. The
column is blank if the Db2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

SECTNOI INTEGER NOT
NULL WITH
DEFAULT WITH
DEFAULT

The section number of the statement. The value is taken from
the same column in SYSPACKSTMT or SYSSTMT tables and can
be used to join tables to reconstruct the access path for the
statement. This column is applicable only for static statements.
The default value of -1 indicates EXPLAIN information that was
captured in DB2 9 or earlier.

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

The collection ID:
'DSNEXPLAINMODEYES'

The row originates from an application that specifies YES for
the value of the CURRENT EXPLAIN MODE special register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies EXPLAIN
for the value of the CURRENT EXPLAIN MODE special register.

When the SQL statement is embedded in a compiled SQL function,
native SQL procedure, or advanced trigger, this column indicates
the schema name of the compiled SQL function, native SQL
procedure, or advanced trigger.

Appendix L. EXPLAIN tables 2871

Table 415. DSN_PTASK_TABLE description (continued)

Column name Data type Description

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to a
statement that is explained when binding a package.

If the value is not blank, the value is the same as the VERSION
value for the package that was used to create this EXPLAIN table
row.

The value is blank for a statement in:

• A package for a basic trigger (TYPE='T')
• A package for an application that was precompiled without SQL

processing option VERSION
• A package that was precompiled with an empty string for the

VERSION value (TYPE=blank)

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the version
identifier of the function or procedure. When the SQL statement
is embedded in an advanced trigger body, this column is not used
and will be blank.

2872 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 415. DSN_PTASK_TABLE description (continued)

Column name Data type Description

EXPANSION_REASON CHAR(2) NOT
NULL WITH
DEFAULT

This column applies only to statements that reference archive
tables or temporal tables. For other statements, this column is
blank.

Indicates the effect of the CURRENT TEMPORAL BUSINESS_TIME
special register, the CURRENT TEMPORAL SYSTEM_TIME special
register, and the SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind options.

Db2 implicitly adds certain syntax to the query if one of the
following conditions are true:

• The SYSIBMADM.GET_ARCHIVE global variable is set to Y and
the ARCHIVESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL BUSINESS_TIME special register is
not null and the BUSTIMESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL SYSTEM_TIME special register is not
null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:
'A'

The query contains implicit query transformation as a result of
the SYSIBMADM.GET_ARCHIVE built-in global variable.

'B'
The query contains implicit query transformation as a result of
the CURRENT TEMPORAL BUSINESS_TIME special register.

'S'
The query contains implicit query transformation as a result of
the CURRENT TEMPORAL SYSTEM_TIME special register.

'SB'
The query contains implicit query transformation as a result of
the CURRENT TEMPORAL SYSTEM_TIME special register and
the CURRENT TEMPORAL BUSINESS_TIME special register.

blank
The query does not contain implicit query transformation.

PER_STMT_ID BIGINT NOT NULL The persistent statement identifier for SQL statements in Db2
catalog tables.

For example, this column corresponds to the following catalog
table columns that identify SQL statements:

• STMT_ID in SYSIBM.SYSPACKSTMT, for SQL statements in
packages.

• SDQ_STMT_ID in SYSIBM.SYSDYNQUERY, for stabilized dynamic
SQL statements.

AP_PLANID CHAR(16) FOR BIT
DATA

A unique identifier for BIND or PREPARE optimizations for an SQL
statement, in the form of an extended timestamp value.

Notes:

1. The name of these columns originally contained the # symbol as the last character in the names.
However, the names that contain these characters are obsolete and are no longer supported.

Appendix L. EXPLAIN tables 2873

DSN_QUERYINFO_TABLE
The query information table, DSN_QUERYINFO_TABLE, contains information about the eligibility of query
blocks for automatic query rewrite, information about the materialized query tables that are considered
for eligible query blocks, reasons why ineligible query blocks are not eligible, and information about
acceleration of query blocks.

Recommendation: Do not manually insert data into system-maintained EXPLAIN tables, and use care
when deleting obsolete EXPLAIN table data. The data is intended to be manipulated only by the Db2
EXPLAIN function and optimization tools. Certain optimization tools depend on instances of the various
EXPLAIN tables. Be careful not to delete data from or drop instances EXPLAIN tables that are created for
these tools.

Qualifiers
Your subsystem or data sharing group can contain more than one of these tables:
userID

You can create additional instances of EXPLAIN tables that are qualified by user ID. These tables are
populated with statement cost information when you issue the EXPLAIN statement or bind, or rebind,
a plan or package with the EXPLAIN(YES) option. SQL optimization tools might also create EXPLAIN
tables that are qualified by a user ID. You can find the SQL statement for creating an instance of these
tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement
You can find a sample CREATE TABLE statement for each EXPLAIN table in member DSNTESC of the
prefix.SDSNSAMP library. You can call the ADMIN_EXPLAIN_MAINT stored procedure to create EXPLAIN
tables, upgrade them to the format for the current Db2 release, or complete other maintenance tasks. See
“ADMIN_EXPLAIN_MAINT stored procedure” on page 751 for information about using the action input
parameter to request each of these tasks.

2874 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column descriptions
Table 416. Descriptions of columns in DSN_QUERYINFO_TABLE

Column name Data type Description

QUERYNO INTEGER NOT NULL A number that identifies the statement that is being explained.
The origin of the value depends on the context of the row:
For rows produced by EXPLAIN statements

The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE, and
DELETE statement syntax.

For rows not produced by EXPLAIN statements
Db2 assigns a number that is based on the line number of the
SQL statement in the source program.

When the values of QUERYNO are based on the statement
number in the source program, values that exceed 32767 are
reported as 0. However, in certain rare cases, the value is not
guaranteed to be unique.

When the SQL statement is embedded in a compiled SQL
function, native SQL procedure, or advanced trigger, if the
QUERYNO clause is specified, its value is used by Db2. Otherwise
Db2 assigns a number based on the line number of the SQL
statement in the compiled SQL function, native SQL procedure,
or advanced trigger.

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query. The
value of the numbers are not in any particular order, nor are they
necessarily consecutive.

QINAME1 VARCHAR(128) NOT
NULL WITH
DEFAULT

When TYPE='A':

• When REASON_CODE=0, this value is the name of the
accelerator server to which the statement is sent.

• When REASON_CODE<>0, the statement was not sent to an
accelerator server. The REASON_CODE value indicates why the
statement was not sent to the accelerator server.

When TYPE='ACCELMDL', this statement used accelerator
modeling.

For static queries, the value in this field might be the name of the
accelerator server that is available at execution time.

QINAME2 VARCHAR(128) NOT
NULL WITH
DEFAULT

When TYPE='A' and REASON_CODE=0, this value is the name
of the location name of the accelerator server to which the
statement is sent.

For static queries, the value in this field might be the name of the
accelerator server that is available at execution time.

APPLNAME VARCHAR(24) NOT
NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or
to statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL
function, native SQL procedure, or advanced trigger, this column
is not used, and is blank.

Appendix L. EXPLAIN tables 2875

Table 416. Descriptions of columns in DSN_QUERYINFO_TABLE (continued)

Column name Data type Description

PROGNAME VARCHAR(128) NOT
NULL

The name of the program or package containing the statement
being explained. Applies only to embedded EXPLAIN statements
and to statements explained as the result of binding a plan or
package. A blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL
function or native SQL procedure, this column indicates the
specific name of the compiled SQL function or native SQL
procedure. When the SQL statement is embedded in an
advanced trigger, this column contains the name of the trigger.

VERSION VARCHAR(122) NOT
NULL

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to
a statement that is explained when binding a package.

If the value is not blank, the value is the same as the VERSION
value for the package that was used to create this EXPLAIN table
row.

The value is blank for a statement in:

• A package for a basic trigger (TYPE='T')
• A package for an application that was precompiled without SQL

processing option VERSION
• A package that was precompiled with an empty string for the

VERSION value (TYPE=blank)

When the SQL statement is embedded in a compiled SQL
function or native SQL procedure, this column indicates the
version identifier of the function or procedure. When the SQL
statement is embedded in an advanced trigger body, this column
is not used and will be blank.

COLLID VARCHAR(128) NOT
NULL

The collection ID:
'DSNEXPLAINMODEYES'

The row originates from an application that specifies YES for
the value of the CURRENT EXPLAIN MODE special register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a compiled SQL
function, native SQL procedure, or advanced trigger, this column
indicates the schema name of the compiled SQL function, native
SQL procedure, or advanced trigger.

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the Db2 that executed EXPLAIN. The
column is blank if the Db2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

2876 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 416. Descriptions of columns in DSN_QUERYINFO_TABLE (continued)

Column name Data type Description

SECTNOI INTEGER NOT NULL
WITH DEFAULT

The section number of the statement. The value is taken from
the same column in SYSPACKSTMT or SYSSTMT tables and can
be used to join tables to reconstruct the access path for the
statement. This column is applicable only for static statements.
The default value of -1 indicates EXPLAIN information that was
captured in DB2 9 or earlier.

SEQNO INTEGER NOT NULL
WITH DEFAULT

The sequence number for this row if QI_DATA exceeds the size of
its column.

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:
All cached statements

When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

TYPE CHAR(8) NOT NULL
WITH DEFAULT

The type of the output for this row:
A

This row is for a statement that Db2 attempts to run on
an accelerator server. The value in column REASON_CODE
indicates the outcome.

REASON_CODE SMALLINT NOT
NULL WITH
DEFAULT

The reason code for the row when TYPE='A'.

For a description of the meaning, see “REASON_CODE values”
on page 2878. You can also check the QI_DATA column value,
which might contain more specific information.

QI_DATA CLOB(2M) NOT
NULL WITH
DEFAULT

When TYPE='A':

• For REASON_CODE values other than 0, this value is a
description of the REASON_CODE value. For more information,
see “REASON_CODE values” on page 2878.

• For a REASON_CODE value of 0, this value is the statement
text, after it is converted for processing by the accelerator.

SERVICE_INFO BLOB(2M) NOT
NULL WITH
DEFAULT

IBM internal use only.

QB_INFO_ROWID ROWID NOT
NULL GENERATED
ALWAYS

IBM internal use only.

Appendix L. EXPLAIN tables 2877

Table 416. Descriptions of columns in DSN_QUERYINFO_TABLE (continued)

Column name Data type Description

EXPANSION_REASON CHAR(2) NOT NULL
WITH DEFAULT

This column applies only to statements that reference archive
tables or temporal tables. For other statements, this column is
blank.

Indicates the effect of the CURRENT TEMPORAL
BUSINESS_TIME special register, the CURRENT
TEMPORAL SYSTEM_TIME special register, and the
SYSIBMADM.GET_ARCHIVE built-in global variable. These items
are controlled by the BUSTIMESENSITIVE, SYSTIMESENSITIVE,
and ARCHIVESENSITIVE bind options.

Db2 implicitly adds certain syntax to the query if one of the
following conditions are true:

• The SYSIBMADM.GET_ARCHIVE global variable is set to Y and
the ARCHIVESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL BUSINESS_TIME special register is
not null and the BUSTIMESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL SYSTEM_TIME special register is not
null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:
'A'

The query contains implicit query transformation as a result
of the SYSIBMADM.GET_ARCHIVE built-in global variable.

'B'
The query contains implicit query transformation as a
result of the CURRENT TEMPORAL BUSINESS_TIME special
register.

'S'
The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special register.

'SB'
The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special register
and the CURRENT TEMPORAL BUSINESS_TIME special
register.

blank
The query does not contain implicit query transformation.

AP_PLANID CHAR(16) FOR BIT
DATA

A unique identifier for BIND or PREPARE optimizations for an
SQL statement, in the form of an extended timestamp value.

REASON_CODE values
The REASON_CODE values correspond in most cases to the reason-code values that are returned with
SQL code -4742.

For rows with non-zero REASON_CODE values, the QI_DATA column contains a description of reason
code, sometimes with specific values included.

0
The query block qualifies for routing to an accelerator server. The values of QINAME1 and QINAME2
identify the accelerator server.

2878 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/codes/src/tpc/n4742.html

For example, for version 1 of IBM Db2 Analytics Accelerator for z/OS, the associated data mart
name is recorded in the QINAME2 column, with the following naming convention: data-mart-
name@accelerator-name@digits.

The QI_DATA column contains the statement text, after it is converted for processing by the
accelerator.

1
No active accelerator server was found or the table was not enabled for query acceleration when the
statement was executed.

2
The CURRENT QUERY ACCELERATION special register is set to NONE.

3
Db2 classified the query as a short-running query, or Db2 determined that sending the query to an
accelerator server provided no performance advantage.

4
The query is not read-only.

6
The cursor is defined as scrollable or is a rowset-positioned cursor.

7
The query references objects with multiple encoding schemes.

8
The FROM clause of the query specifies a data-change-table-reference.

9
The query contains a table expression with one or more correlated references to other tables in the
same FROM clause.

10
The query contains a recursive reference to a common table expression.

11
The query contains an unsupported expression. The text of the expression is in QI_DATA.

12
The query references a table that has any of the following characteristics:

• Is not defined in the accelerator server
• Is defined in a different accelerator server from another table in the query
• Is defined in the accelerator server, but is not enabled for query acceleration

13
The accelerator server that contains the tables that are referenced in the query is not started.

14
A column that is referenced in the query was altered in Db2 after the data was loaded in the
accelerator server.

15
The query uses functionality that is available only in DB2 10 or later, and the functionality is not
supported by the accelerator server.

17
The query is an INSERT from SELECT statement. Subsystem parameter QUERY_ACCEL_OPTIONS
does not specify option 2 to enable the acceleration of INSERT from SELECT statements.

18
The query uses functionality that is available only in Db2 11 or later, and the functionality is not
supported by the accelerator server.

Appendix L. EXPLAIN tables 2879

19
The accelerator server is not at the correct level and does not support a function in the SQL
statement. The QI_DATA column contains the function text or expression text that is using the
unsupported function for the accelerator server.

20
The query is a rowset cursor that is declared WITH RETURN, executes remotely, or executes under an
SQL PL routine.

21
The query contains a correlated subquery that is not supported for acceleration.

22
The statement references an accelerator-only table, but the statement cannot run on the accelerator.
For example:

• MERGE statement references an accelerator-only table.
• UPDATE or DELETE statement references an accelerator-only table, but the target table of

the UPDATE, DELETE is a normal Db2 table: UPDATE DB2_TABLE SET .. (SELECT .. FROM
ACCEL_ONLY_TABLE).

• INSERT, UPDATE or DELETE of a row-fullselect with subselect. UPDATE ACCEL_ONLY_TABLE SET
(C1, C2) = (SELECT C3, C4 FROM TABLE2);

23
The SELECT INTO statement is bound for acceleration but is run as a remote SELECT INTO statement,
which is not supported for acceleration.

24
The DDL or DML statement cannot run on the accelerator because the connection to the accelerator
server does not allow updates. This problem can occur when a two-phase commit requester (for
example, a Db2 for z/OS requester) connects to a Db2 for z/OS server to run a DDL or DML statement
on an accelerator.

25
The statement contains a reference to a column with an unsupported data type.

26
FL 509 The CREATE TABLE statement clause IN ACCELERATOR specifies an accelerator alias that
resolves to more than one accelerator and at least one of the following conditions is true:

• Your Db2 function level is lower than V12R1M509.
• The SYSACCEL.SYSACCELERATEDTABLES table does not have the FEATURE column.

27
The DROP TABLE statement specifies a referencing accelerator-only table, which cannot be removed
by using the DROP TABLE statement.

28
FL 509 The SQL INSERT, UPDATE, or DELETE statement references a high availability accelerator-only
table (AOT) that is defined in multiple accelerators and one of the following conditions is true:

• Neither the CURRENT ACCELERATOR special register nor the ACCELERATOR bind option is used.
• The CURRENT ACCELERATOR special register or the ACCELERATOR bind option specifies one of the

following values:

– An alias that resolves to multiple accelerators. The alias must resolve to one V7 or later
accelerator.

– An accelerator that is not a V7 or later accelerator. A V7 or later accelerator is required to execute
the SQL statement.

– An accelerator that does not exist or is not available when the SQL statement is executed.
– An accelerator that is not qualified to execute the SQL statement for a high availability AOT.

2880 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html

29
During a Db2 for z/OS special runtime incremental bind of a static query that was originally bound
for acceleration with the QUERYACCELERATION bind option value of ELIGIBLE or ENABLE (not
ENABLEWITHFAILBACK), the query cannot be bound for acceleration to the target accelerator that
Db2 has selected for this particular run of the query. This special incremental bind usually occurs for
one of the following reasons:

• The user table has been dropped and re-created in Db2 for z/OS but has not been refreshed in the
target accelerator since the last time the static query was bound for acceleration.

• The archive status of the user table in the target accelerator has changed since the last time the
static query was bound for acceleration.

Failure to bind the static query for acceleration during this incremental bind can occur if the user table
in the target accelerator is down-level from the current definition of that table in the Db2 for z/OS
catalog. This failure might also occur due to other reasons.

30
Accelerator WAITFORDATA behavior is requested but cannot be achieved for this query. The query
will not be accelerated. The query specifies a Db2 accelerated table, but the same Db2 unit of work
includes a previous uncommitted Db2 change that will not be available to the query when it is run on
the accelerator. The Db2 change might or might not be related to the Db2 accelerated table that is
referenced in the query.

31
Accelerator WAITFORDATA behavior is requested but cannot be achieved for this query that specifies
both an accelerator-only table (AOT) and a Db2 accelerated table. The query will not be accelerated
and cannot be run in Db2. The same Db2 unit of work includes a previous uncommitted Db2 change
that will not be available to the query when it is run on the accelerator. The change might or might not
be related to the Db2 accelerated table that is referenced in the query.

32
Accelerator WAITFORDATA behavior is requested but cannot be achieved for this query. The query
will not be accelerated. The query specifies a Db2 accelerated table, but the same Db2 unit of work
includes a previous uncommitted accelerator-only table (AOT) change. This uncommitted change
resulted in the creation of an accelerator database snapshot isolation (SI) for this unit of work before
the query was run. This accelerator database SI can prevent committed and replicated Db2 changes,
made either by this transaction or by a different transaction, from being available to the accelerated
query, even if the Db2 changes are replicated to the accelerator before the query is run there.

33
The query could not run on the accelerator due to different reasons on different versions of the
accelerator.

34
The statement included an expression that can run on an accelerator server only when the CURRENT
QUERY ACCELERATION special register is set to ALL, ENABLE, or ELIGIBLE. However, the CURRENT
QUERY ACCELERATION special register is set to NONE or ENABLE WITH FAILBACK.

See the programmer responses for the two different REASON_CODE values for the corresponding
version of the accelerator.

35
The query uses functionality that is available only in Db2 12 or later, and the accelerator server does
not support the functionality.

36
The USE ONLY NEW ACCELERATOR_TYPE subsystem parameter is set to YES; however, either an
active V7 or later accelerator was not found or the table was not enabled for query acceleration in the
V7 or later accelerator when the statement was executed.

37
The USE ONLY NEW ACCELERATOR_TYPE subsystem parameter is set to YES, but the V7 or later
accelerator that contains the tables of the query is not started.

Appendix L. EXPLAIN tables 2881

38
The USE ONLY NEW ACCELERATOR_TYPE subsystem parameter is set to YES, but the V7 or later
accelerator is not at the correct level.

42
The SYSACCEL.SYSACCELERATORS or SYSACCEL.SYSACCELERATEDTABLES tables are not found.

900-999
For IBM internal use only.

Related information
IBM Db2 Analytics Accelerator for z/OS documentation

DSN_QUERY_TABLE
The query table, DSN_QUERY_TABLE, contains information about a SQL statement, and displays the
statement before and after query transformation.

Unlike other EXPLAIN tables, rows in DSN_QUERY_TABLE are not populated for static SQL statements at
BIND or REBIND with the EXPLAIN(YES) option.

Recommendation: Do not manually insert data into system-maintained EXPLAIN tables, and use care
when deleting obsolete EXPLAIN table data. The data is intended to be manipulated only by the Db2
EXPLAIN function and optimization tools. Certain optimization tools depend on instances of the various
EXPLAIN tables. Be careful not to delete data from or drop instances EXPLAIN tables that are created for
these tools.

Qualifiers
Your subsystem or data sharing group can contain multiple instances of these tables that are qualified
by user ID. These tables are populated with statement cost information when you issue the EXPLAIN
statement or bind. They are also populated when you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND
or REBIND command. SQL optimization tools might also create EXPLAIN tables that are qualified by a
user ID. You can find the SQL statement for creating an instance of these tables in member DSNTESC of
the SDSNSAMP library.

Sample CREATE TABLE statement
You can find a sample CREATE TABLE statement for each EXPLAIN table in member DSNTESC of the
prefix.SDSNSAMP library. You can call the ADMIN_EXPLAIN_MAINT stored procedure to create EXPLAIN
tables, upgrade them to the format for the current Db2 release, or complete other maintenance tasks. See
“ADMIN_EXPLAIN_MAINT stored procedure” on page 751 for information about using the action input
parameter to request each of these tasks.

Column descriptions
The following table describes the columns of DSN_QUERY_TABLE.

2882 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/daafz

Table 417. DSN_QUERY_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT
NULL

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:
For rows produced by EXPLAIN statements

The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE, and
DELETE statement syntax.

For rows not produced by EXPLAIN statements
Db2 assigns a number that is based on the line number of the
SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as
0. However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a compiled SQL function,
native SQL procedure, or advanced trigger, if the QUERYNO clause is
specified, its value is used by Db2. Otherwise Db2 assigns a number
based on the line number of the SQL statement in the compiled SQL
function, native SQL procedure, or advanced trigger.

TYPE CHAR(8) NOT
NULL

The type of the data in the NODE_DATA column.

QUERY STAGE CHAR(8) NOT
NULL WITH
DEFAULT

The stage during query transformation when this row is populated.

SEQNO NOT NULL The sequence number for this row if NODE_DATA exceeds the size
of its column.

NODE_DATA CLOB(2M) The XML data containing the SQL statement and its query block,
table, and column information.

EXPLAIN_TIME TIMESTAMP The EXPLAIN timestamp.

QUERY_ROWID ROWID NOT NULL
GENERATED
ALWAYS

The ROWID of the statement.

GROUP MEMBER VARCHAR(24)
NOT NULL

The member name of the Db2 subsystem that executed EXPLAIN.
The column is blank if the Db2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

HASHKEY INTEGER NOT
NULL

The hash value of the contents in NODE_DATA

HAS_PRED CHAR(1) NOT
NULL

When NODE_DATA contains an SQL statement, this column
indicates if the statement contains a parameter marker literal, non-
parameter marker literal, or no predicates.

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be used
to join tables to reconstruct the access path for the statement. This
column is applicable only for static statements. The default value
of -1 indicates EXPLAIN information that was captured in DB2 9 or
earlier.

Appendix L. EXPLAIN tables 2883

Table 417. DSN_QUERY_TABLE description (continued)

Column name Data type Description

APPLNAME VARCHAR(24)
NOT NULL WITH
DEFAULT

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or
to statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function,
native SQL procedure, or advanced trigger, this column is not used,
and is blank.

PROGNAME VARCHAR(128)
NOT NULL WITH
DEFAULT

The name of the program or package containing the statement
being explained. Applies only to embedded EXPLAIN statements
and to statements explained as the result of binding a plan or
package. A blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the specific name
of the compiled SQL function or native SQL procedure. When the
SQL statement is embedded in an advanced trigger, this column
contains the name of the trigger.

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

The collection ID:
'DSNEXPLAINMODEYES'

The row originates from an application that specifies YES for the
value of the CURRENT EXPLAIN MODE special register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies EXPLAIN
for the value of the CURRENT EXPLAIN MODE special register.

When the SQL statement is embedded in a compiled SQL function,
native SQL procedure, or advanced trigger, this column indicates
the schema name of the compiled SQL function, native SQL
procedure, or advanced trigger.

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an embedded
EXPLAIN statement executed from a package or to a statement that
is explained when binding a package.

If the value is not blank, the value is the same as the VERSION
value for the package that was used to create this EXPLAIN table
row.

The value is blank for a statement in:

• A package for a basic trigger (TYPE='T')
• A package for an application that was precompiled without SQL

processing option VERSION
• A package that was precompiled with an empty string for the

VERSION value (TYPE=blank)

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the version identifier
of the function or procedure. When the SQL statement is embedded
in an advanced trigger body, this column is not used and will be
blank.

2884 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 417. DSN_QUERY_TABLE description (continued)

Column name Data type Description

EXPANSION_REASON CHAR(2) NOT
NULL WITH
DEFAULT

This column applies only to statements that reference archive
tables or temporal tables. For other statements, this column is
blank.

Indicates the effect of the CURRENT TEMPORAL BUSINESS_TIME
special register, the CURRENT TEMPORAL SYSTEM_TIME special
register, and the SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind options.

Db2 implicitly adds certain syntax to the query if one of the
following conditions are true:

• The SYSIBMADM.GET_ARCHIVE global variable is set to Y and the
ARCHIVESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL BUSINESS_TIME special register is not
null and the BUSTIMESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL SYSTEM_TIME special register is not
null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:
'A'

The query contains implicit query transformation as a result of
the SYSIBMADM.GET_ARCHIVE built-in global variable.

'B'
The query contains implicit query transformation as a result of
the CURRENT TEMPORAL BUSINESS_TIME special register.

'S'
The query contains implicit query transformation as a result of
the CURRENT TEMPORAL SYSTEM_TIME special register.

'SB'
The query contains implicit query transformation as a result of
the CURRENT TEMPORAL SYSTEM_TIME special register and
the CURRENT TEMPORAL BUSINESS_TIME special register.

blank
The query does not contain implicit query transformation.

DSN_SORTKEY_TABLE
The sort key table, DSN_SORTKEY_TABLE, contains information about sort keys for all of the sorts
required by a query.

Recommendation: Do not manually insert data into system-maintained EXPLAIN tables, and use care
when deleting obsolete EXPLAIN table data. The data is intended to be manipulated only by the Db2
EXPLAIN function and optimization tools. Certain optimization tools depend on instances of the various
EXPLAIN tables. Be careful not to delete data from or drop instances EXPLAIN tables that are created for
these tools.

Appendix L. EXPLAIN tables 2885

Qualifiers
Your subsystem or data sharing group can contain multiple instances of these tables that are qualified
by user ID. These tables are populated with statement cost information when you issue the EXPLAIN
statement or bind. They are also populated when you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND
or REBIND command. SQL optimization tools might also create EXPLAIN tables that are qualified by a
user ID. You can find the SQL statement for creating an instance of these tables in member DSNTESC of
the SDSNSAMP library.

Sample CREATE TABLE statement
You can find a sample CREATE TABLE statement for each EXPLAIN table in member DSNTESC of the
prefix.SDSNSAMP library. You can call the ADMIN_EXPLAIN_MAINT stored procedure to create EXPLAIN
tables, upgrade them to the format for the current Db2 release, or complete other maintenance tasks. See
“ADMIN_EXPLAIN_MAINT stored procedure” on page 751 for information about using the action input
parameter to request each of these tasks.

Column descriptions
The following table describes the columns of DSN_SORTKEY_TABLE.

Table 418. DSN_SORTKEY_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT
NULL

A number that identifies the statement that is being explained.
The origin of the value depends on the context of the row:
For rows produced by EXPLAIN statements

The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE, and
DELETE statement syntax.

For rows not produced by EXPLAIN statements
Db2 assigns a number that is based on the line number of the
SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as
0. However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a compiled SQL function,
native SQL procedure, or advanced trigger, if the QUERYNO clause
is specified, its value is used by Db2. Otherwise Db2 assigns a
number based on the line number of the SQL statement in the
compiled SQL function, native SQL procedure, or advanced trigger.

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query. The
value of the numbers are not in any particular order, nor are they
necessarily consecutive.

PLANNO SMALLINT NOT
NULL

The plan number, a number used to identify each miniplan with a
query block.

2886 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 418. DSN_SORTKEY_TABLE description (continued)

Column name Data type Description

APPLNAME VARCHAR(24) NOT
NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or
to statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function,
native SQL procedure, or advanced trigger, this column is not used,
and is blank.

PROGNAME VARCHAR(128)
NOT NULL

The name of the program or package containing the statement
being explained. Applies only to embedded EXPLAIN statements
and to statements explained as the result of binding a plan or
package. A blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the specific name
of the compiled SQL function or native SQL procedure. When the
SQL statement is embedded in an advanced trigger, this column
contains the name of the trigger.

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

The collection ID:
'DSNEXPLAINMODEYES'

The row originates from an application that specifies YES for
the value of the CURRENT EXPLAIN MODE special register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies EXPLAIN
for the value of the CURRENT EXPLAIN MODE special register.

When the SQL statement is embedded in a compiled SQL function,
native SQL procedure, or advanced trigger, this column indicates
the schema name of the compiled SQL function, native SQL
procedure, or advanced trigger.

SORTNO SMALLINT NOT
NULL

The sequence number of the sort

ORDERNO SMALLINT NOT
NULL

The sequence number of the sort key

EXPTYPE CHAR(3) NOT NULL The type of the sort key. The possible values are:

• 'COL'
• 'EXP'
• 'QRY'

TEXT VARCHAR(128)
NOT NULL

The sort key text, can be a column name, an expression, or a
scalar subquery, or 'Record ID'.

TABNO SMALLINT NOT
NULL

The table number, a number which uniquely identifies the
corresponding table reference within a query.

COLNO SMALLINT NOT
NULL

The column number, a number which uniquely identifies the
corresponding column within a query. Only applicable when the
sort key is a column.

Appendix L. EXPLAIN tables 2887

Table 418. DSN_SORTKEY_TABLE description (continued)

Column name Data type Description

DATATYPE CHAR(18) The data type of sort key. The possible values are

• 'HEXADECIMAL'
• 'CHARACTER'
• 'PACKED FIELD '
• 'FIXED(31)'
• 'FIXED(15)'
• 'DATE'
• 'TIME'
• 'VARCHAR'
• 'PACKED FLD'
• 'FLOAT'
• 'TIMESTAMP'
• 'UNKNOWN DATA TYPE'

LENGTH INTEGER NOT
NULL

The length of sort key.

CCSID INTEGER NOT
NULL

IBM internal use only.

ORDERCLASS INTEGER NOT
NULL

IBM internal use only.

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:
All cached statements

When the statement entered the cache, in the form of a full-
precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full precision
timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value equivalent
to a CHAR(16) representation of the time appended by 4 zeros.

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the Db2 that executed EXPLAIN. The
column is blank if the Db2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from
the same column in SYSPACKSTMT or SYSSTMT tables and can
be used to join tables to reconstruct the access path for the
statement. This column is applicable only for static statements.
The default value of -1 indicates EXPLAIN information that was
captured in DB2 9 or earlier.

2888 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 418. DSN_SORTKEY_TABLE description (continued)

Column name Data type Description

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to a
statement that is explained when binding a package.

If the value is not blank, the value is the same as the VERSION
value for the package that was used to create this EXPLAIN table
row.

The value is blank for a statement in:

• A package for a basic trigger (TYPE='T')
• A package for an application that was precompiled without SQL

processing option VERSION
• A package that was precompiled with an empty string for the

VERSION value (TYPE=blank)

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the version
identifier of the function or procedure. When the SQL statement
is embedded in an advanced trigger body, this column is not used
and will be blank.

Appendix L. EXPLAIN tables 2889

Table 418. DSN_SORTKEY_TABLE description (continued)

Column name Data type Description

EXPANSION_REASO
N

CHAR(2) NOT NULL
WITH DEFAULT

This column applies only to statements that reference archive
tables or temporal tables. For other statements, this column is
blank.

Indicates the effect of the CURRENT TEMPORAL BUSINESS_TIME
special register, the CURRENT TEMPORAL SYSTEM_TIME special
register, and the SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind options.

Db2 implicitly adds certain syntax to the query if one of the
following conditions are true:

• The SYSIBMADM.GET_ARCHIVE global variable is set to Y and
the ARCHIVESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL BUSINESS_TIME special register is
not null and the BUSTIMESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL SYSTEM_TIME special register is not
null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:
'A'

The query contains implicit query transformation as a result of
the SYSIBMADM.GET_ARCHIVE built-in global variable.

'B'
The query contains implicit query transformation as a result of
the CURRENT TEMPORAL BUSINESS_TIME special register.

'S'
The query contains implicit query transformation as a result of
the CURRENT TEMPORAL SYSTEM_TIME special register.

'SB'
The query contains implicit query transformation as a result of
the CURRENT TEMPORAL SYSTEM_TIME special register and
the CURRENT TEMPORAL BUSINESS_TIME special register.

blank
The query does not contain implicit query transformation.

PER_STMT_ID BIGINT NOT NULL The persistent statement identifier for SQL statements in Db2
catalog tables.

For example, this column corresponds to the following catalog
table columns that identify SQL statements:

• STMT_ID in SYSIBM.SYSPACKSTMT, for SQL statements in
packages.

• SDQ_STMT_ID in SYSIBM.SYSDYNQUERY, for stabilized dynamic
SQL statements.

AP_PLANID CHAR(16) FOR BIT
DATA

A unique identifier for BIND or PREPARE optimizations for an SQL
statement, in the form of an extended timestamp value.

2890 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

DSN_SORT_TABLE
The sort table, DSN_SORT_TABLE, contains information about the sort operations required by a query.

Recommendation: Do not manually insert data into system-maintained EXPLAIN tables, and use care
when deleting obsolete EXPLAIN table data. The data is intended to be manipulated only by the Db2
EXPLAIN function and optimization tools. Certain optimization tools depend on instances of the various
EXPLAIN tables. Be careful not to delete data from or drop instances EXPLAIN tables that are created for
these tools.

Qualifiers
Your subsystem or data sharing group can contain multiple instances of these tables that are qualified
by user ID. These tables are populated with statement cost information when you issue the EXPLAIN
statement or bind. They are also populated when you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND
or REBIND command. SQL optimization tools might also create EXPLAIN tables that are qualified by a
user ID. You can find the SQL statement for creating an instance of these tables in member DSNTESC of
the SDSNSAMP library.

Sample CREATE TABLE statement
You can find a sample CREATE TABLE statement for each EXPLAIN table in member DSNTESC of the
prefix.SDSNSAMP library. You can call the ADMIN_EXPLAIN_MAINT stored procedure to create EXPLAIN
tables, upgrade them to the format for the current Db2 release, or complete other maintenance tasks. See
“ADMIN_EXPLAIN_MAINT stored procedure” on page 751 for information about using the action input
parameter to request each of these tasks.

Column descriptions
The following table describes the columns of DSN_SORT_TABLE.

Table 419. DSN_SORT_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT
NULL

A number that identifies the statement that is being explained.
The origin of the value depends on the context of the row:
For rows produced by EXPLAIN statements

The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE, and
DELETE statement syntax.

For rows not produced by EXPLAIN statements
Db2 assigns a number that is based on the line number of the
SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as
0. However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a compiled SQL function,
native SQL procedure, or advanced trigger, if the QUERYNO clause
is specified, its value is used by Db2. Otherwise Db2 assigns a
number based on the line number of the SQL statement in the
compiled SQL function, native SQL procedure, or advanced trigger.

Appendix L. EXPLAIN tables 2891

Table 419. DSN_SORT_TABLE description (continued)

Column name Data type Description

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query. The
value of the numbers are not in any particular order, nor are they
necessarily consecutive.

PLANNO SMALLINT NOT
NULL

The plan number, a number used to identify each miniplan with a
query block.

APPLNAME VARCHAR(24) NOT
NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or
to statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function,
native SQL procedure, or advanced trigger, this column is not
used, and is blank.

PROGNAME VARCHAR(128)
NOT NULL

The name of the program or package containing the statement
being explained. Applies only to embedded EXPLAIN statements
and to statements explained as the result of binding a plan or
package. A blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the specific name
of the compiled SQL function or native SQL procedure. When the
SQL statement is embedded in an advanced trigger, this column
contains the name of the trigger.

COLLID VARCHAR(128)
NOT NULL

The collection ID:
'DSNEXPLAINMODEYES'

The row originates from an application that specifies YES for
the value of the CURRENT EXPLAIN MODE special register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies EXPLAIN
for the value of the CURRENT EXPLAIN MODE special register.

When the SQL statement is embedded in a compiled SQL function,
native SQL procedure, or advanced trigger, this column indicates
the schema name of the compiled SQL function, native SQL
procedure, or advanced trigger.

SORTC CHAR(5) NOT
NULL WITH
DEFAULT

Indicates the reasons for sort of the composite table. The reasons
are shown as a series of bytes:

• Byte 1 is 'G' if the reason is GROUP BY, or otherwise blank.
• The second byte is 'J' if the reason is JOIN, or otherwise blank.
• Byte is 'O' if the reason is ORDER BY, or otherwise blank.
• The fourth by is 'U' if the reason is uniqueness, or otherwise

blank.

2892 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 419. DSN_SORT_TABLE description (continued)

Column name Data type Description

SORTN CHAR(5) NOT
NULL WITH
DEFAULT

Indicates the reasons for sort of the new table. The reasons are
shown as a series of bytes:

• The first byte is 'G' if the reason is GROUP BY, or otherwise
blank.

• The second byte is 'J' if the reason is JOIN, or otherwise blank.
• The third byte is 'O' if the reason is ORDER BY, or otherwise

blank.
• The fourth by is 'U' if the reason is uniqueness, or otherwise

blank.

SORTNO SMALLINT NOT
NULL

The sequence number of the sort.

KEYSIZE SMALLINT NOT
NULL

The sum of the lengths of the sort keys.

ORDERCLASS INTEGER NOT
NULL

IBM internal use only.

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:
All cached statements

When the statement entered the cache, in the form of a full-
precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full precision
timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the Db2 that executed EXPLAIN. The
column is blank if the Db2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from
the same column in SYSPACKSTMT or SYSSTMT tables and can
be used to join tables to reconstruct the access path for the
statement. This column is applicable only for static statements.
The default value of -1 indicates EXPLAIN information that was
captured in DB2 9 or earlier.

Appendix L. EXPLAIN tables 2893

Table 419. DSN_SORT_TABLE description (continued)

Column name Data type Description

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to a
statement that is explained when binding a package.

If the value is not blank, the value is the same as the VERSION
value for the package that was used to create this EXPLAIN table
row.

The value is blank for a statement in:

• A package for a basic trigger (TYPE='T')
• A package for an application that was precompiled without SQL

processing option VERSION
• A package that was precompiled with an empty string for the

VERSION value (TYPE=blank)

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the version
identifier of the function or procedure. When the SQL statement
is embedded in an advanced trigger body, this column is not used
and will be blank.

2894 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 419. DSN_SORT_TABLE description (continued)

Column name Data type Description

EXPANSION_REASON CHAR(2) NOT
NULL WITH
DEFAULT

This column applies only to statements that reference archive
tables or temporal tables. For other statements, this column is
blank.

Indicates the effect of the CURRENT TEMPORAL BUSINESS_TIME
special register, the CURRENT TEMPORAL SYSTEM_TIME special
register, and the SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind options.

Db2 implicitly adds certain syntax to the query if one of the
following conditions are true:

• The SYSIBMADM.GET_ARCHIVE global variable is set to Y and
the ARCHIVESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL BUSINESS_TIME special register is
not null and the BUSTIMESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL SYSTEM_TIME special register is not
null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:
'A'

The query contains implicit query transformation as a result of
the SYSIBMADM.GET_ARCHIVE built-in global variable.

'B'
The query contains implicit query transformation as a result of
the CURRENT TEMPORAL BUSINESS_TIME special register.

'S'
The query contains implicit query transformation as a result of
the CURRENT TEMPORAL SYSTEM_TIME special register.

'SB'
The query contains implicit query transformation as a result of
the CURRENT TEMPORAL SYSTEM_TIME special register and
the CURRENT TEMPORAL BUSINESS_TIME special register.

blank
The query does not contain implicit query transformation.

PER_STMT_ID BIGINT NOT NULL The persistent statement identifier for SQL statements in Db2
catalog tables.

For example, this column corresponds to the following catalog
table columns that identify SQL statements:

• STMT_ID in SYSIBM.SYSPACKSTMT, for SQL statements in
packages.

• SDQ_STMT_ID in SYSIBM.SYSDYNQUERY, for stabilized dynamic
SQL statements.

AP_PLANID CHAR(16) FOR BIT
DATA

A unique identifier for BIND or PREPARE optimizations for an SQL
statement, in the form of an extended timestamp value.

Appendix L. EXPLAIN tables 2895

DSN_STATEMENT_CACHE_TABLE
The statement cache table, DSN_STATEMENT_CACHE_TABLE, contains information about the SQL
statements in the statement cache, information captured as the results of an EXPLAIN STATEMENT
CACHE ALL statement.

Recommendation: Do not manually insert data into system-maintained EXPLAIN tables, and use care
when deleting obsolete EXPLAIN table data. The data is intended to be manipulated only by the Db2
EXPLAIN function and optimization tools. Certain optimization tools depend on instances of the various
EXPLAIN tables. Be careful not to delete data from or drop instances EXPLAIN tables that are created for
these tools.

Qualifiers
Your subsystem or data sharing group can contain multiple instances of these tables that are qualified
by user ID. These tables are populated with statement cost information when you issue the EXPLAIN
statement or bind. They are also populated when you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND
or REBIND command. SQL optimization tools might also create EXPLAIN tables that are qualified by a
user ID. You can find the SQL statement for creating an instance of these tables in member DSNTESC of
the SDSNSAMP library.

Sample CREATE TABLE statement
You can find a sample CREATE TABLE statement for each EXPLAIN table in member DSNTESC of the
prefix.SDSNSAMP library. You can call the ADMIN_EXPLAIN_MAINT stored procedure to create EXPLAIN
tables, upgrade them to the format for the current Db2 release, or complete other maintenance tasks. See
“ADMIN_EXPLAIN_MAINT stored procedure” on page 751 for information about using the action input
parameter to request each of these tasks.

Column descriptions
The following table shows the descriptions of the columns in DSN_STATEMENT_CACHE_TABLE.

Table 420. Descriptions of columns in DSN_STATEMENT_CACHE_TABLE

Column name Data Type Description

STMT_ID INTEGER NOT NULL The statement ID; this value is the EDM unique token for
the statement.

STMT_TOKEN VARCHAR(240) The statement token; you provide this value as an
identification string.

COLLID VARCHAR(128) NOT
NULL

The collection ID:
'DSNEXPLAINMODEYES'

The row originates from an application that specifies
YES for the value of the CURRENT EXPLAIN MODE
special register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN
MODE special register.

PROGRAM_NAME VARCHAR(128) NOT
NULL

The name of the package that performed the initial
PREPARE for the statement.

INV_DROPALT CHAR(1) NOT NULL This column is not used.

2896 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 420. Descriptions of columns in DSN_STATEMENT_CACHE_TABLE (continued)

Column name Data Type Description

INV_REVOKE CHAR(1) NOT NULL This column is not used.

INV_LRU CHAR(1) NOT NULL This column is not used.

INV_RUNSTATS CHAR(1) NOT NULL This column is not used.

CACHED_TS TIMESTAMP NOT
NULL

The timestamp when the statement was stored in the
dynamic statement cache.“3” on page 2906

USERS INTEGER NOT NULL The number of current users of the statement. This
number indicates the users that have prepared or run the
statement during their current unit of work. “1” on page
2906,“3” on page 2906

COPIES INTEGER NOT NULL The number of copies of the statement that are owned by
all threads in the system. “1” on page 2906,“3” on page
2906

LINES INTEGER NOT NULL The precompiler line number from the initial PREPARE of
the statement. “1” on page 2906

PRIMAUTH VARCHAR(128) NOT
NULL

The primary authorization ID that did the initial PREPARE
of the statement.

CURSQLID VARCHAR(128) NOT
NULL

The CURRENT SQLID that did the initial PREPARE of the
statement.

BIND_QUALIFIER VARCHAR(128) NOT
NULL

The BIND qualifier. For unqualified table names, this is
the object qualifier.

BIND_ISO CHAR(2) NOT NULL The value of the ISOLATION BIND option that is in effect
for this statement. The value will be one of the following
values:
'UR'

Uncommitted read
'CS'

Cursor stability
'RS'

Read stability
'RR'

Repeatable read

BIND_CDATA CHAR(1) NOT NULL The value of the CURRENTDATA BIND option that is in
effect for this statement. The value will be one of the
following values:
'Y'

CURRENTDATA(YES)
'N'

CURRENTDATA(NO)

Appendix L. EXPLAIN tables 2897

Table 420. Descriptions of columns in DSN_STATEMENT_CACHE_TABLE (continued)

Column name Data Type Description

BIND_DYNRL CHAR(1) NOT NULL The value of the DYNAMICRULES BIND option that is in
effect for this statement. The value will be one of the
following values:
'B'

DYNAMICRULE(BIND)
'R'

DYNAMICRULES(RUN)

BIND_DEGRE CHAR(1) NOT NULL The value of the CURRENT DEGREE special register that
is in effect for this statement. The value will be one of the
following values:
'A'

CURRENT DEGREE = ANY
'1'

CURRENT DEGREE = 1

BIND_SQLRL CHAR(1) NOT NULL The value of the CURRENT RULES special register that is
in effect for this statement. The value will be one of the
following values:
'D'

CURRENT RULES = DB2
'S'

CURRENT RULES = SQL

BIND_CHOLD CHAR(1) NOT NULL The value of the WITH HOLD attribute of the PREPARE
for this statement. The value will be one of the following
values:
'Y'

Initial PREPARE specified WITH HOLD
'N'

Initial PREPARE specified WITHOUT HOLD

STAT_TS TIMESTAMP NOT
NULL

Timestamp of the statistics. This is the timestamp when
IFCID 318 is started. “2” on page 2906

STAT_EXEC INTEGER NOT NULL This column is deprecated. Use STAT_EXECB instead.

STAT_GPAG INTEGER NOT NULL This column is deprecated. Use STAT_GPAGB instead. “1”
on page 2906

STAT_SYNR INTEGER NOT NULL This column is deprecated. Use STAT_SYNRB instead. “1”
on page 2906

STAT_WRIT INTEGER NOT NULL This column is deprecated. Use STAT_WRITB instead. “1”
on page 2906

STAT_EROW INTEGER NOT NULL This column is deprecated. Use STAT_EROWB instead.
“1” on page 2906

STAT_PROW INTEGER NOT NULL This column is deprecated. Use STAT_PROWB instead.
“1” on page 2906

STAT_SORT INTEGER NOT NULL This column is deprecated. Use STAT_SORTB instead. “1”
on page 2906

2898 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 420. Descriptions of columns in DSN_STATEMENT_CACHE_TABLE (continued)

Column name Data Type Description

STAT_INDX INTEGER NOT NULL This column is deprecated. Use STAT_INDXB instead.

STAT_RSCN INTEGER NOT NULL This column is deprecated. Use STAT_RSCNB instead.

STAT_PGRP INTEGER NOT NULL This column is deprecated. Use STAT_PGRPB instead.

STAT_ELAP FLOAT NOT NULL The accumulated elapsed time that is used for the
statement. “2” on page 2906

STAT_CPU FLOAT NOT NULL The accumulated CPU time that is used for the statement.
“2” on page 2906

STAT_SUS_SYNIO FLOAT NOT NULL The accumulated wait time for synchronous I/O
operations for the statement. “2” on page 2906

STAT_SUS_LOCK FLOAT NOT NULL The accumulated wait time for lock requests for the
statement. “2” on page 2906

STAT_SUS_SWIT FLOAT NOT NULL The accumulated wait time for synchronous execution
unit switch for the statement. “2” on page 2906

STAT_SUS_GLCK FLOAT NOT NULL The accumulated wait time for global parent L-locks for
this statement. “2” on page 2906

STAT_SUS_OTHR FLOAT NOT NULL The accumulated wait time for read activity that is done
by another thread. “2” on page 2906

STAT_SUS_OTHW FLOAT NOT NULL The accumulated wait time for write activity done by
another thread. “2” on page 2906

STAT_RIDLIMT INTEGER NOT NULL This column is deprecated. Use STAT_SORTB instead.

STAT_RIDSTOR INTEGER NOT NULL This column is deprecated. Use STAT_SORTB instead.

EXPLAIN_TS TIMESTAMP NOT
NULL

The timestamp for when the statement cache table is
populated.

SCHEMA VARCHAR(128) NOT
NULL

The value of the CURRENT SCHEMA special register.

STMT_TEXT CLOB(2M) NOT
NULL

The statement that is being explained.

STMT_ROWID ROWID NOT
NULL GENERATED
ALWAYS

The ROWID of the statement.

BIND_RO_TYPE CHAR(1) NOT NULL
WITH DEFAULT

The current specification of the REOPT option for the
statement“3” on page 2906:
'N'

REOPT(NONE) or its equivalent
'1'

REOPT(ONCE) or its equivalent
'A'

REOPT(AUTO) or its equivalent
'O'

The current plan is deemed optimal and there is no
need for REOPT(AUTO)

Appendix L. EXPLAIN tables 2899

Table 420. Descriptions of columns in DSN_STATEMENT_CACHE_TABLE (continued)

Column name Data Type Description

BIND_RA_TOT INTEGER NOT NULL
WITH DEFAULT

The total number of REBIND commands that have
been issued for the dynamic statement because of the
REOPT(AUTO) option.“1” on page 2906,“3” on page 2906

GROUP_MEMBER VARCHAR(24) NOT
NULL WITH
DEFAULT

The member name of the Db2 that executed EXPLAIN.
The column is blank if the Db2 subsystem was not in a
data sharing environment when EXPLAIN was executed.

STAT_EXECB BIGINT NOT NULL
WITH DEFAULT

The number of times this statement has been run. For a
statement with a cursor, this is the number of OPENs.“2”
on page 2906

STAT_GPAGB BIGINT NOT NULL
WITH DEFAULT

The number of getpage operations that are performed for
the statement. “2” on page 2906

STAT_SYNRB BIGINT NOT NULL
WITH DEFAULT

The number of synchronous buffer reads that are
performed for the statement. “2” on page 2906

STAT_WRITB BIGINT NOT NULL
WITH DEFAULT

The number of buffer write operations that are performed
for the statement. “2” on page 2906

STAT_EROWB BIGINT NOT NULL
WITH DEFAULT

The number of rows that are examined for the statement.
“2” on page 2906

STAT_PROWB BIGINT NOT NULL
WITH DEFAULT

The number of rows that are processed for the statement.
“2” on page 2906

STAT_SORTB BIGINT NOT NULL
WITH DEFAULT

The number of sorts that are performed for the
statement.“2” on page 2906

STAT_INDXB BIGINT NOT NULL
WITH DEFAULT

The number of index scans that are performed for the
statement.“2” on page 2906

STAT_RSCNB BIGINT NOT NULL
WITH DEFAULT

The number of table space scans that are performed for
the statement.“2” on page 2906

STAT_PGRPB BIGINT NOT NULL
WITH DEFAULT

The number of parallel groups that are created for the
statement.“2” on page 2906

STAT_RIDLIMTB BIGINT NOT NULL
WITH DEFAULT

The number of times a RID list was not used because the
number of RIDs would have exceeded Db2 limits.“2” on
page 2906

STAT_RIDSTORB BIGINT NOT NULL
WITH DEFAULT

The number of times a RID list was not used because
there is not enough storage available to hold the list of
RIDs.“2” on page 2906

2900 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 420. Descriptions of columns in DSN_STATEMENT_CACHE_TABLE (continued)

Column name Data Type Description

LITERAL_REPL CHAR(1) NOT NULL
WITH DEFAULT

Identifies cached statements where the literal values are
replaced by the '&' symbol:“3” on page 2906
'R'

The statement is prepared with CONCENTRATE
STATEMENTS WITH LITERALS behavior and the literal
constants in the statement have been replaced with
'&' .

'D'
This statement is a duplicate statement instance with
different literal reusability criteria.

blank
Literal values are not replaced.

STAT_SUS_LATCH FLOAT NOT NULL
WITH DEFAULT

The accumulated wait time for latch requests for the
statement.

STAT_SUS_PLATCH FLOAT NOT NULL
WITH DEFAULT

The accumulated wait time for page latch requests for the
statement.

STAT_SUS_DRAIN FLOAT NOT NULL
WITH DEFAULT

The accumulated wait time for drain lock requests for the
statement.

STAT_SUS_CLAIM FLOAT NOT NULL
WITH DEFAULT

The accumulated wait time for claim count requests for
the statement.

STAT_SUS_LOG FLOAT NOT NULL
WITH DEFAULT

The accumulated wait time for log writer requests for the
statement.

Appendix L. EXPLAIN tables 2901

Table 420. Descriptions of columns in DSN_STATEMENT_CACHE_TABLE (continued)

Column name Data Type Description

EXPANSION_REASON CHAR(2) NOT NULL
WITH DEFAULT

This column applies only to statements that reference
archive tables or temporal tables. For other statements,
this column is blank.

Indicates the effect of the CURRENT TEMPORAL
BUSINESS_TIME special register, the CURRENT
TEMPORAL SYSTEM_TIME special register, and the
SYSIBMADM.GET_ARCHIVE built-in global variable. These
items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind
options.

Db2 implicitly adds certain syntax to the query if one of
the following conditions are true:

• The SYSIBMADM.GET_ARCHIVE global variable is set to
Y and the ARCHIVESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL BUSINESS_TIME special
register is not null and the BUSTIMESENSITIVE bind
option is set to YES

• The CURRENT TEMPORAL SYSTEM_TIME special
register is not null and the SYSTIMESENSITIVE bind
option is set to YES

This column can have one of the following values:
'A'

The query contains implicit query transformation as
a result of the SYSIBMADM.GET_ARCHIVE built-in
global variable.

'B'
The query contains implicit query transformation as
a result of the CURRENT TEMPORAL BUSINESS_TIME
special register.

'S'
The query contains implicit query transformation as
a result of the CURRENT TEMPORAL SYSTEM_TIME
special register.

'SB'
The query contains implicit query transformation as
a result of the CURRENT TEMPORAL SYSTEM_TIME
special register and the CURRENT TEMPORAL
BUSINESS_TIME special register.

blank
The query does not contain implicit query
transformation.

2902 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 420. Descriptions of columns in DSN_STATEMENT_CACHE_TABLE (continued)

Column name Data Type Description

ACCELERATED CHAR(10) Identifies whether a cached dynamic statement was
prepared for acceleration to an accelerator server.
Possible values are:
'NO'

The cached statement was not prepared for
acceleration. This is the default value.

This value also applies to cached statements under
the following conditions:

• The query acceleration behavior was not specified
or was explicitly set to NONE when the dynamic
statement was prepared.

• A query acceleration behavior other than ALL
was specified when the dynamic statement was
prepared. Db2 did not prepare the statement
for acceleration because it did not qualify for
acceleration based on the query acceleration
behavior that was specified.

'YES'
The cached statement was prepared for acceleration
to an accelerator server based on the query
acceleration behavior that was specified. If query
acceleration behavior is specified when a dynamic
statement is prepared, Db2 can consider this
cache entry for a possible cache match during the
prepare operation of the dynamic statement. If query
acceleration behavior is not specified, or is explicitly
set to NONE when the statement is prepared, Db2
does not consider this cache entry for a cache match
during the prepare operation.

'NEVER'
The cached statement was not prepared for
acceleration to an accelerated server, because the
statement can never be accelerated.

• If the query acceleration behavior is set to ENABLE,
ENABLE WITH FAILBACK, or ELIGIBLE for the
prepare of the statement, Db2 considers this cache
entry first as a possible cache match during the
prepare operation. This action verifies whether the
statement was cached previously as one that can
never be accelerated.

(Continued in the following row.)

Appendix L. EXPLAIN tables 2903

Table 420. Descriptions of columns in DSN_STATEMENT_CACHE_TABLE (continued)

Column name Data Type Description

ACCELERATED (continued) (Continued from the previous row.)

'NEVER' (continued)

• If the query acceleration behavior is set to ALL
for the prepare of the statement, Db2 does not
consider this cache entry as a possible cache match
during the prepare operation.

• If the query acceleration behavior is not specified,
or is explicitly set to NONE for the prepare of
the statement, Db2 does not consider this cache
entry as a possible cache match during the prepare
operation.

'ACCEL_ONLY'
The cached statement was prepared for acceleration
to an accelerator. The statement references at
least one accelerator-only table and can only be
prepared to execute in the accelerator server. If
query acceleration behavior is specified when a
dynamic statement is prepared, Db2 can consider this
cache entry for a possible cache match during the
prepare operation of the dynamic statement. If query
acceleration behavior is not specified, or is explicitly
set to NONE when the statement is prepared, Db2
does not consider this cache entry for a cache match
during the prepare operation.

Query acceleration behavior is specified by either
the QUERY_ACCELERATION subsystem parameter, the
QUERYACCELERATION bind option, or the CURRENT
QUERY ACCELERATION special register, and depends
on their order of precedence. The order of precedence
(lowest to highest) is:

• The QUERY_ACCELERATION subsystem parameter
• The QUERYACCELERATION bind option, if specified
• An explicit SET CURRENT QUERY ACCELERATION

statement

STAT_ACC_ELAP BIGINT The accumulated elapsed time for the accelerator.

STAT_ACC_CPU BIGINT The accumulated CPU time for the accelerator.

STAT_ACC_ROW BIGINT The accumulated number of rows that are returned from
the accelerator.

STAT_ACC_BYTE BIGINT The accumulated number of bytes that are returned from
the accelerator.

STAT_ACC_1ROW BIGINT The time waited for the first row of the query result to be
available from the accelerator.

STAT_ACC_DB2 BIGINT The total time the accelerator waited for Db2 to request
query results.

STAT_ACC_EXEC BIGINT The accumulated execution time for the accelerator.

2904 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 420. Descriptions of columns in DSN_STATEMENT_CACHE_TABLE (continued)

Column name Data Type Description

STAT_ACC_WAIT BIGINT The accumulated queue wait time for the accelerator.

ACCEL_OFFLOAD_ELIGIBLE CHAR(1) 'NO'
The statement is not eligible for acceleration. This is
the default value.

'YES'
The statement is a candidate for acceleration when an
accelerator server is available to the Db2 subsystem.

ACCELERATOR_NAME VARCHAR(128) The concatenated name of the accelerator server that
processed the query.

PER_STMT_ID BIGINT NOT NULL The statement identifier of the stabilized dynamic SQL
statement. This value is set if this entry was stabilized to
or loaded from the SYSIBM.SYSDNQRY catalog table

STBLGRP VARCHAR(128)
NOT NULL

The stabilization group name specified in a START
DYNQRY command. This value is set if this entry was
stabilized to or loaded from the SYSIBM.SYSDNQRY
catalog table.

QUERY_HASH CHAR(16) NOT
NULL FOR BIT DATA

The hash key generated by the statement text.

QUERY_HASH_VERSION INTEGER NOT NULL The version of QUERY_HASH.

STABILIZED CHAR(1) NOT NULL Indicates whether the statement was stabilized.

APPLCOMPAT VARCHAR(10) NOT
NULL

The application compatibility level of a dynamic SQL
statement.

CNO BIGINT NOT NULL The command number for the dynamic query capture
monitor if applicable. Otherwise 0.

STAT_SUS_CHILDLLOCK FLOAT NOT NULL
WITH DEFAULT

The accumulated wait time for child L-locks for the
statement.

STAT_SUS_OTHERLLOCK FLOAT NOT NULL
WITH DEFAULT

The accumulated wait time for other L-locks for the
statement.

STAT_SUS_PAGESETPLOCK FLOAT NOT NULL
WITH DEFAULT

The accumulated wait time for global pageset or partition
L-locks for the statement.

STAT_SUS_PAGEPLOCK FLOAT NOT NULL
WITH DEFAULT

The accumulated wait time for page P-locks for the
statement.

STAT_SUS_OTHERPLOCK FLOAT NOT NULL
WITH DEFAULT

The accumulated wait time for other P-locks for the
statement.

STAT_SUS_PIPE FLOAT NOT NULL
WITH DEFAULT

The accumulated wait time for pipe requests for the
statement.

STAT_SUS_PQSYNC FLOAT NOT NULL
WITH DEFAULT

The accumulated waittime for parallel query waits for the
statement.

STAT_ACC_TWDP BIGINT The accumulated wait time for the accelerator delay
protocol.

STAT_ACC_NWDP BIGINT The accumulated number of statements for which the
wait time for the accelerator delay protocol has expired.

Appendix L. EXPLAIN tables 2905

Table 420. Descriptions of columns in DSN_STATEMENT_CACHE_TABLE (continued)

Column name Data Type Description

STMT_HASHID2 CHAR(8) FOR BIT
DATA

Used to identify an SQL statement. Based on normalized
SQL statement text.

• Includes certain BIND options for static SQL, and
PREPARE attributes for dynamic SQL.

• Includes COLLID and PACKAGE name for static SQL.
• Excludes COLLID and PACKAGE name for dynamic SQL.
• Excludes VERSION name for static SQL.

STMT_HASH2VER INTEGER Used to identify the version of the hash algorithm that is
used to compute the STMT_HASHID2 value.

AP_PLANID CHAR(16) FOR BIT
DATA

A unique identifier for BIND or PREPARE optimizations for
an SQL statement, in the form of an extended timestamp
value.

AP_PLANHASH CHAR(16) FOR BIT
DATA

Used to identifier an access path based on selected
columns of the PLAN_TABLE that contribute to the access
path. This value excludes columns that do not affect the
access path, such as APPLNAME, PROGNAME, VERSION,
and others.

AP_PLANHASHVER INTEGER Used to identify the version of the hash algorithm that is
used to compute the AP_PLANHASH value.

CONNECTION_TYPE CHAR(8) Connection type which did the PREPARE or BIND for the
statement.

CLIENT_USERID VARCHAR(128) The client user ID name information.

CLIENT_APPLNAME VARCHAR(255) The client application name information.

CLIENT_WRKSTNNAME VARCHAR(255) The client workstation name information.

Notes:

1. If the specified value exceeds 2147483647, the column contains the value 2147483647.
2. Statistics are cumulative, across executions of the same statement, and across threads, if the value

of COLLID is DSNDYNAMICSQLCACHE. If the value of COLLID is DSNEXPLAINMODEYES, the values
are for a single run of the statement only. If the value of COLLID is DSNEXPLAINMODE EXPLAIN, the
values of all statistics columns are 0.

3. The column is not applicable when the value of the COLLID column is 'DSNEXPLAINMODEYES' or
'DSNEXPLAINMODEEXPLAIN'

DSN_STATEMNT_TABLE
The statement table, DSN_STATEMNT_TABLE, contains information about the estimated cost of specified
SQL statements.

Recommendation: Do not manually insert data into system-maintained EXPLAIN tables, and use care
when deleting obsolete EXPLAIN table data. The data is intended to be manipulated only by the Db2
EXPLAIN function and optimization tools. Certain optimization tools depend on instances of the various

2906 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

EXPLAIN tables. Be careful not to delete data from or drop instances EXPLAIN tables that are created for
these tools.

Qualifiers
Your subsystem or data sharing group can contain multiple instances of these tables that are qualified
by user ID. These tables are populated with statement cost information when you issue the EXPLAIN
statement or bind. They are also populated when you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND
or REBIND command. SQL optimization tools might also create EXPLAIN tables that are qualified by a
user ID. You can find the SQL statement for creating an instance of these tables in member DSNTESC of
the SDSNSAMP library.

Sample CREATE TABLE statement
You can find a sample CREATE TABLE statement for each EXPLAIN table in member DSNTESC of the
prefix.SDSNSAMP library. You can call the ADMIN_EXPLAIN_MAINT stored procedure to create EXPLAIN
tables, upgrade them to the format for the current Db2 release, or complete other maintenance tasks. See
“ADMIN_EXPLAIN_MAINT stored procedure” on page 751 for information about using the action input
parameter to request each of these tasks.

Column descriptions
The following table describes the content of each column in STATEMNT_TABLE.

Table 421. Descriptions of columns in DSN_STATEMNT_TABLE

Column name Data type Description

QUERYNO INTEGER NOT
NULL WITH
DEFAULT

A number that identifies the statement that is being explained.
The origin of the value depends on the context of the row:
For rows produced by EXPLAIN statements

The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE, and
DELETE statement syntax.

For rows not produced by EXPLAIN statements
Db2 assigns a number that is based on the line number of the
SQL statement in the source program.

When the values of QUERYNO are based on the statement
number in the source program, values that exceed 32767 are
reported as 0. However, in certain rare cases, the value is not
guaranteed to be unique.

When the SQL statement is embedded in a compiled SQL
function, native SQL procedure, or advanced trigger, if the
QUERYNO clause is specified, its value is used by Db2. Otherwise
Db2 assigns a number based on the line number of the SQL
statement in the compiled SQL function, native SQL procedure, or
advanced trigger.

APPLNAME VARCHAR(24)
NOT NULL WITH
DEFAULT

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or
to statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL
function, native SQL procedure, or advanced trigger, this column
is not used, and is blank.

Appendix L. EXPLAIN tables 2907

Table 421. Descriptions of columns in DSN_STATEMNT_TABLE (continued)

Column name Data type Description

PROGNAME VARCHAR(128)
NOT NULL WITH
DEFAULT

The name of the program or package containing the statement
being explained. Applies only to embedded EXPLAIN statements
and to statements explained as the result of binding a plan or
package. A blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL
function or native SQL procedure, this column indicates the
specific name of the compiled SQL function or native SQL
procedure. When the SQL statement is embedded in an advanced
trigger, this column contains the name of the trigger.

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

The collection ID:
'DSNDYNAMICSQLCACHE'

The row originates from the dynamic statement cache.
'DSNEXPLAINMODEYES'

The row originates from an application that specifies YES for
the value of the CURRENT EXPLAIN MODE special register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a compiled SQL
function, native SQL procedure, or advanced trigger, this column
indicates the schema name of the compiled SQL function, native
SQL procedure, or advanced trigger.

GROUP_MEMBER VARCHAR(24)
NOT NULL WITH
DEFAULT

The member name of the Db2 that executed EXPLAIN. The
column is blank if the Db2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

EXPLAIN_TIME TIMESTAMP NOT
NULL WITH
DEFAULT

The time when the EXPLAIN information was captured:
All cached statements

When the statement entered the cache, in the form of a full-
precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full precision
timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

2908 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 421. Descriptions of columns in DSN_STATEMNT_TABLE (continued)

Column name Data type Description

STMT_TYPE CHAR(6) NOT
NULL WITH
DEFAULT

The type of statement being explained. Possible values are:
SELECT

SELECT
INSERT

INSERT
UPDATE

UPDATE
MERGE

MERGE
DELETE

DELETE
TRUNCA

TRUNCATE
SELUPD

SELECT with FOR UPDATE OF
DELCUR

DELETE WHERE CURRENT OF CURSOR
UPDCUR

UPDATE WHERE CURRENT OF CURSOR
PRUNED

A query that always returns 0 rows.
blank

None of the above statement types.

COST_CATEGORY CHAR(1) NOT
NULL WITH
DEFAULT

Indicates if Db2 was forced to use default values when making its
estimates. Possible values:
A

Indicates that Db2 had enough information to make a cost
estimate without using default values.

B
Indicates that some condition exists for which Db2 was
forced to use default values. See the values in REASON to
determine why Db2 was unable to put this estimate in cost
category A.

PROCMS INTEGER NOT
NULL WITH
DEFAULT

The estimated processor cost, in milliseconds, for the SQL
statement. The estimate is rounded up to the next integer value.
The maximum value for this cost is 2147483647 milliseconds,
which is equivalent to approximately 24.8 days. If the estimated
value exceeds this maximum, the maximum value is reported. If
an accelerator is used, the difference is reflected in this value.

PROCSU INTEGER NOT
NULL WITH
DEFAULT

The estimated processor cost, in service units, for the SQL
statement. The estimate is rounded up to the next integer value.
The maximum value for this cost is 2147483647 service units. If
the estimated value exceeds this maximum, the maximum value
is reported. If an accelerator is used, this value represents the
estimated cost including any impact of acceleration.

Appendix L. EXPLAIN tables 2909

Table 421. Descriptions of columns in DSN_STATEMNT_TABLE (continued)

Column name Data type Description

REASON VARCHAR(254)
WITH DEFAULT

A string that indicates the reasons for putting an estimate into
cost category B.
ACCELMODEL ELIGIBLE

The query is eligible for acceleration.
ACCELMODEL NOT ELIGIBLE

The query is not eligible for acceleration.
HAVING CLAUSE

A subselect in the SQL statement contains a HAVING clause.
HOST VARIABLES

The statement uses host variables, parameter markers, or
special registers.

OPTIMIZATION HINTS
An statement-level access path, or PLAN_TABLE access path
hint is applied to the statement, or APREUSE(ERROR/WARN)
is applied for the package.

PROFILEID value
When profile monitoring is used for the statement, the value
of the PROFILEID column in SYSIBM.DSN_PROFILE_TABLE.

REFERENTIAL CONSTRAINTS
Referential constraints of the type CASCADE or SET NULL
exist on the target table of a DELETE statement.

TABLE CARDINALITY
The cardinality statistics are missing for one or more of the
tables that are used in the statement, or the statement used
materialized views or table expressions.

TRIGGERS
Triggers are defined on the target table of an insert, update,
or delete operation.

UDF
The statement uses user-defined functions.

STMT_ENCODE CHAR(1) WITH
DEFAULT

Encoding scheme of the statement. If the statement represents a
single CCSID set, the possible values are:
A

ASCII
E

EBCDIC
U

Unicode

If the statement has multiple CCSID sets, the value is M.

TOTAL_COST FLOAT NOT NULL
WITH DEFAULT

The overall estimated cost of the statement. If an accelerator is
used, the benefit is reflected in this value. . Use this value for
reference purposes only. Db2 does not always choose the access
path that has the lowest TOTAL_COST value. Db2 also uses other
factors during access path selection, such as the reliability of the
filter factor estimates.

2910 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 421. Descriptions of columns in DSN_STATEMNT_TABLE (continued)

Column name Data type Description

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from
the same column in SYSPACKSTMT or SYSSTMT tables and can
be used to join tables to reconstruct the access path for the
statement. This column is applicable only for static statements.
The default value of -1 indicates EXPLAIN information that was
captured in DB2 9 or earlier.

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to
a statement that is explained when binding a package.

If the value is not blank, the value is the same as the VERSION
value for the package that was used to create this EXPLAIN table
row.

The value is blank for a statement in:

• A package for a basic trigger (TYPE='T')
• A package for an application that was precompiled without SQL

processing option VERSION
• A package that was precompiled with an empty string for the

VERSION value (TYPE=blank)

When the SQL statement is embedded in a compiled SQL
function or native SQL procedure, this column indicates the
version identifier of the function or procedure. When the SQL
statement is embedded in an advanced trigger body, this column
is not used and will be blank.

Appendix L. EXPLAIN tables 2911

Table 421. Descriptions of columns in DSN_STATEMNT_TABLE (continued)

Column name Data type Description

EXPANSION_REASON CHAR(2) NOT
NULL WITH
DEFAULT

This column applies only to statements that reference archive
tables or temporal tables. For other statements, this column is
blank.

Indicates the effect of the CURRENT TEMPORAL BUSINESS_TIME
special register, the CURRENT TEMPORAL SYSTEM_TIME special
register, and the SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind options.

Db2 implicitly adds certain syntax to the query if one of the
following conditions are true:

• The SYSIBMADM.GET_ARCHIVE global variable is set to Y and
the ARCHIVESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL BUSINESS_TIME special register is
not null and the BUSTIMESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL SYSTEM_TIME special register is not
null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:
'A'

The query contains implicit query transformation as a result
of the SYSIBMADM.GET_ARCHIVE built-in global variable.

'B'
The query contains implicit query transformation as a result
of the CURRENT TEMPORAL BUSINESS_TIME special register.

'S'
The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special register.

'SB'
The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special register
and the CURRENT TEMPORAL BUSINESS_TIME special
register.

blank
The query does not contain implicit query transformation.

2912 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 421. Descriptions of columns in DSN_STATEMNT_TABLE (continued)

Column name Data type Description

APCOMPARE_STATUS CHAR(1) NOT
NULL WITH
DEFAULT

The status of the access path comparison operation for the
APCOMPARE option of a BIND or REBIND command.
'S'

Access path comparison succeeded, and the structure of the
new access path matches the previous access path.

'F'
The structure of the new access path does not match
the previous access path, or the access path comparison
operation failed.

'N'
No match was found.

blank
This is the default value. APCOMPARE is not used,
APCOMPARE was used prior to Db2 12, or APCOMPARE was
used before this column was added to the table.

APREUSE_STATUS CHAR(1) NOT
NULL WITH
DEFAULT

The status of the access path reuse operation for the APREUSE
option of a BIND or REBIND command.
'S'

Access path reuse succeeded.
'F'

Access path reuse failed.
'N'

No match was found.
blank

This is the default value. APREUSE was not used, APREUSE
was used prior to Db2 12, or APREUSE was used before this
column was added to the table.

APREUSE_VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. The value is the bind
version of the package whose access path is reused. The default
value blank is used when APREUSE_STATUS is blank.

APREUSE_COPYID INTEGER NOT
NULL WITH
DEFAULT

The copy number of identifier for the package. The value is
the copy number of the package whose access plan is being
taken to be reused. The default value -1 blank is used when
APREUSE_STATUS is blank.

Appendix L. EXPLAIN tables 2913

Table 421. Descriptions of columns in DSN_STATEMNT_TABLE (continued)

Column name Data type Description

EXPLAIN_TYPE CHAR(1) The type of action that created the row:
'A'

Automatic bind
'B'

BIND command
'C'

EXPLAIN STATEMENT CACHE statement
'D'

Dynamic EXPLAIN statement
'R'

REBIND command
'S'

EXPLAIN STABILIZED DYNAMIC QUERY statement.
blank

The row existed before this column was added to the table.
This is the default value.

PER_STMT_ID BIGINT NOT
NULL

The persistent statement identifier for SQL statements in Db2
catalog tables.

For example, this column corresponds to the following catalog
table columns that identify SQL statements:

• STMT_ID in SYSIBM.SYSPACKSTMT, for SQL statements in
packages.

• SDQ_STMT_ID in SYSIBM.SYSDYNQUERY, for stabilized
dynamic SQL statements.

QUERY_HASH CHAR(16) NOT
NULL FOR BIT
DATA

The hash key that is generated by the statement text. This
value is not unique for each statement. Other columns for the
collection ID, package name, section number, and query number
can be used with the hash key for uniqueness.

FUNCTION_LVL VARCHAR(10)
NOT NULL WITH
DEFAULT

The function level of the Db2 subsystem when the access path
was selected for the statement.

STMT_HASHID2 CHAR(8) FOR BIT
DATA

Used to identify an SQL statement. Based on normalized SQL
statement text.

• Includes certain BIND options for static SQL, and PREPARE
attributes for dynamic SQL.

• Includes COLLID and PACKAGE name for static SQL.
• Excludes COLLID and PACKAGE name for dynamic SQL.
• Excludes VERSION name for static SQL.

STMT_HASH2VER INTEGER Used to identify the version of the hash algorithm that is used to
compute the STMT_HASHID2 value.

AP_PLANID CHAR(16) FOR
BIT DATA

A unique identifier for BIND or PREPARE optimizations for an SQL
statement, in the form of an extended timestamp value.

2914 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 421. Descriptions of columns in DSN_STATEMNT_TABLE (continued)

Column name Data type Description

AP_PLANHASH CHAR(16) FOR
BIT DATA

Used to identify an access path. Based on selected columns of
the PLAN_TABLE which contribute to the access path. Excludes
cols that don’t affect the access path, such as APPLNAME,
PROGNAME, VERSION, etc.

AP_PLANHASHVER INTEGER Used to identify the version of the hash algorithm that is used to
compute the AP_PLANHASH value.

AP_SERVICE_DATA VARCHAR(512)
FOR BIT DATA

Used to save optimizer-sensitive environment variables at the
time of optimization.

CONNECTION_TYPE CHAR(8) Connection type which did the PREPARE or BIND for the
statement.

CLIENT_USERID VARCHAR(128) The client user ID name information.

CLIENT_APPLNAME VARCHAR(255) The client application name information.

CLIENT_WRKSTNNAME VARCHAR(255) The client workstation name information.

Related information
IBM Db2 Analytics Accelerator for z/OS documentation

DSN_STAT_FEEDBACK
The DSN_STAT_FEEDBACK table contains recommendations for capturing missing or conflicting statistics
that are defined during EXPLAIN.

Collecting these statistics by the RUNSTATS utility might improve the performance of the query.

The values in this table are updated only at EXPLAIN time, and are not modified by the RUNSTATS
utility.

Information is captured in this table only for EXPLAIN operations that use the access path selection
process. The access path selection process is not used when you issue an EXPLAIN statement with the
STMTCACHE or PACKAGE options.

Recommendation: Do not manually insert data into system-maintained EXPLAIN tables, and use care
when deleting obsolete EXPLAIN table data. The data is intended to be manipulated only by the Db2
EXPLAIN function and optimization tools. Certain optimization tools depend on instances of the various
EXPLAIN tables. Be careful not to delete data from or drop instances EXPLAIN tables that are created for
these tools.

Qualifiers
Your subsystem or data sharing group can contain multiple instances of these tables that are qualified
by user ID. These tables are populated with statement cost information when you issue the EXPLAIN
statement or bind. They are also populated when you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND
or REBIND command. SQL optimization tools might also create EXPLAIN tables that are qualified by a
user ID. You can find the SQL statement for creating an instance of these tables in member DSNTESC of
the SDSNSAMP library.

Sample CREATE TABLE statement
You can find a sample CREATE TABLE statement for each EXPLAIN table in member DSNTESC of the
prefix.SDSNSAMP library. You can call the ADMIN_EXPLAIN_MAINT stored procedure to create EXPLAIN

Appendix L. EXPLAIN tables 2915

https://www.ibm.com/docs/en/daafz

tables, upgrade them to the format for the current Db2 release, or complete other maintenance tasks. See
“ADMIN_EXPLAIN_MAINT stored procedure” on page 751 for information about using the action input
parameter to request each of these tasks.

Column descriptions
The following table contains descriptions of the columns in the DSN_STAT_FEEDBACK table.

Table 422. Descriptions of columns in the DSN_STAT_FEEDBACK table

Column name Data Type Descriptions

QUERYNO INTEGER NOT NULL A number that identifies the statement that is being explained.
The origin of the value depends on the context of the row:
For rows produced by EXPLAIN statements

The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE, and
DELETE statement syntax.

For rows not produced by EXPLAIN statements
Db2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement
number in the source program, values that exceed 32767 are
reported as 0. However, in certain rare cases, the value is not
guaranteed to be unique.

When the SQL statement is embedded in a compiled SQL
function, native SQL procedure, or advanced trigger, if the
QUERYNO clause is specified, its value is used by Db2.
Otherwise Db2 assigns a number based on the line number
of the SQL statement in the compiled SQL function, native SQL
procedure, or advanced trigger.

APPLNAME VARCHAR(24) NOT NULL The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan
or to statements that are explained when binding a plan. A
blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL
function, native SQL procedure, or advanced trigger, this
column is not used, and is blank.

PROGNAME VARCHAR(128) NOT
NULL

The name of the program or package containing the
statement being explained. Applies only to embedded
EXPLAIN statements and to statements explained as the result
of binding a plan or package. A blank indicates that the column
is not applicable.

When the SQL statement is embedded in a compiled SQL
function or native SQL procedure, this column indicates the
specific name of the compiled SQL function or native SQL
procedure. When the SQL statement is embedded in an
advanced trigger, this column contains the name of the trigger.

2916 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 422. Descriptions of columns in the DSN_STAT_FEEDBACK table (continued)

Column name Data Type Descriptions

COLLID VARCHAR(128) NOT
NULL WITH DEFAULT

The collection ID:
'DSNEXPLAINMODEYES'

The row originates from an application that specifies YES
for the value of the CURRENT EXPLAIN MODE special
register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a compiled SQL
function, native SQL procedure, or advanced trigger, this
column indicates the schema name of the compiled SQL
function, native SQL procedure, or advanced trigger.

GROUP_MEMBER VARCHAR(24) NOT NULL The member name of the Db2 that executed EXPLAIN. The
column is blank if the Db2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

EXPLAIN_TIME TIMESTAMP NOT NULL The time when the EXPLAIN information was captured:
All cached statements

When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

SECTNOI INTEGER NOT NULL
WITH DEFAULT WITH
DEFAULT

The section number of the statement. The value is taken from
the same column in SYSPACKSTMT or SYSSTMT tables and can
be used to join tables to reconstruct the access path for the
statement. This column is applicable only for static statements.
The default value of -1 indicates EXPLAIN information that was
captured in DB2 9 or earlier.

Appendix L. EXPLAIN tables 2917

Table 422. Descriptions of columns in the DSN_STAT_FEEDBACK table (continued)

Column name Data Type Descriptions

VERSION VARCHAR(122) NOT
NULL WITH DEFAULT

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to
a statement that is explained when binding a package.

If the value is not blank, the value is the same as the VERSION
value for the package that was used to create this EXPLAIN
table row.

The value is blank for a statement in:

• A package for a basic trigger (TYPE='T')
• A package for an application that was precompiled without

SQL processing option VERSION
• A package that was precompiled with an empty string for the

VERSION value (TYPE=blank)

When the SQL statement is embedded in a compiled SQL
function or native SQL procedure, this column indicates the
version identifier of the function or procedure. When the SQL
statement is embedded in an advanced trigger body, this
column is not used and will be blank.

TBCREATOR VARCHAR(128) NOT
NULL

The creator of the table.

TBNAME VARCHAR(128) NOT
NULL

The name of the table.

IXCREATOR VARCHAR(128) NOT
NULL

The creator of the index.

IXNAME VARCHAR(128) NOT
NULL

The name of the index.

COLNAME VARCHAR(128) NOT
NULL

The name of the column.

NUMCOLUMNS SMALLINT NOT NULL The number of columns in the column group.

COLGROUPCOLNO VARCHAR(254) NOT
NULL FOR BIT DATA

A hex representation that identifies the set of columns
associated with the statistics. If the statistics are only
associated with a single column, the field contains a
zero length. Otherwise, the field is an array of SMALLINT
column numbers with a dimension equal to the value in
NUMCOLUMNS.

2918 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 422. Descriptions of columns in the DSN_STAT_FEEDBACK table (continued)

Column name Data Type Descriptions

TYPE CHAR(1) NOT NULL The type of statistic to collect:
'C'

Cardinality.
'F'

Frequency.
'H'

Histogram.
'I'

Index.
'T'

Table.

DBNAME VARCHAR(24) NOT NULL The name of the database.

TSNAME VARCHAR(24) NOT NULL The name of the table space.

REASON CHAR(8) NOT NULL The reason for the statistics collection recommendation:
'BASIC'

A basic statistic value for a column, table, or index is
missing. No statistics were collected for the identified
object.

'CONFLICT'
Another statistic contains a value that conflicts with the
value of this statistic. Such conflicts usually occur because
statistics were collected for related objects at different
times.

'COMPFFIX'
Multi-column cardinality statistics are needed for an index
compound filter factor.

'DEFAULT'
A predicate references a value that is probably a default
value, which indicates that data might be skewed.

'KEYCARD'
The cardinalities of index key columns are missing.

'LOWCARD'
The cardinality of the column is a low value, which
indicates that data might be skewed.

'NULLABLE'
Distribution statistics are not available for a nullable
column, which indicates that data might be skewed.

'RANGEPRD'
Histogram statistics are not available for a range predicate.

'PARALLEL'
Parallelism might be improved by uniform partitioning of
key ranges.

'STALE'
A statistic appears likely to be out of sync with other
statistics, based on comparison of the time that it was
collected to statistics collection times for related objects.

Appendix L. EXPLAIN tables 2919

Table 422. Descriptions of columns in the DSN_STAT_FEEDBACK table (continued)

Column name Data Type Descriptions

REMARKS VARCHAR(254) NOT
NULL

Free form text for extensibility.

AP_PLANID CHAR(16) FOR BIT DATA A unique identifier for BIND or PREPARE optimizations for an
SQL statement, in the form of an extended timestamp value.

Related tasks
Controlling the collection of statistics feedback (Db2 Performance)
Applying statistics recommendations to statistics profiles automatically (Db2 Performance)
Maintaining Db2 database statistics (Db2 Performance)
Related reference
RUNSTATS (Db2 Utilities)
Statistics used for access path selection (Db2 Performance)
SYSSTATFEEDBACK catalog table
The SYSSTATFEEDBACK table contains information about missing or conflicting catalog statistics for SQL
statements. The schema is SYSIBM.

DSN_STRUCT_TABLE
The structure table, DSN_STRUCT_TABLE, contains information about all of the query blocks in a query.

Recommendation: Do not manually insert data into system-maintained EXPLAIN tables, and use care
when deleting obsolete EXPLAIN table data. The data is intended to be manipulated only by the Db2
EXPLAIN function and optimization tools. Certain optimization tools depend on instances of the various
EXPLAIN tables. Be careful not to delete data from or drop instances EXPLAIN tables that are created for
these tools.

Qualifiers
Your subsystem or data sharing group can contain multiple instances of these tables that are qualified
by user ID. These tables are populated with statement cost information when you issue the EXPLAIN
statement or bind. They are also populated when you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND
or REBIND command. SQL optimization tools might also create EXPLAIN tables that are qualified by a
user ID. You can find the SQL statement for creating an instance of these tables in member DSNTESC of
the SDSNSAMP library.

Sample CREATE TABLE statement
You can find a sample CREATE TABLE statement for each EXPLAIN table in member DSNTESC of the
prefix.SDSNSAMP library. You can call the ADMIN_EXPLAIN_MAINT stored procedure to create EXPLAIN
tables, upgrade them to the format for the current Db2 release, or complete other maintenance tasks. See
“ADMIN_EXPLAIN_MAINT stored procedure” on page 751 for information about using the action input
parameter to request each of these tasks.

Column descriptions
The following table describes the columns of DSN_STRUCT_TABLE

2920 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_controlstatsfeeback.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_applystatsprofilesauto.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_maintaincatalogstatistics.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utl_runstats.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_statistics4accesspathselection.html

Table 423. DSN_STRUCT_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT
NULL

A number that identifies the statement that is being explained.
The origin of the value depends on the context of the row:
For rows produced by EXPLAIN statements

The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE, and
DELETE statement syntax.

For rows not produced by EXPLAIN statements
Db2 assigns a number that is based on the line number of the
SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as
0. However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a compiled SQL function,
native SQL procedure, or advanced trigger, if the QUERYNO clause
is specified, its value is used by Db2. Otherwise Db2 assigns a
number based on the line number of the SQL statement in the
compiled SQL function, native SQL procedure, or advanced trigger.

QBLOCKNO SMALLINT NOT
NULL

A number that identifies each query block within a query. The
value of the numbers are not in any particular order, nor are they
necessarily consecutive.

APPLNAME VARCHAR(24)
NOT NULL

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or
to statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function,
native SQL procedure, or advanced trigger, this column is not
used, and is blank.

PROGNAME VARCHAR(128)
NOT NULL

The name of the program or package containing the statement
being explained. Applies only to embedded EXPLAIN statements
and to statements explained as the result of binding a plan or
package. A blank indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the specific name
of the compiled SQL function or native SQL procedure. When the
SQL statement is embedded in an advanced trigger, this column
contains the name of the trigger.

PARENT SMALLINT NOT
NULL

The parent query block number of the current query block in the
structure of SQL text; this is the same as the PARENT_QBLOCKNO
in PLAN_TABLE.

TIMES FLOAT NOT NULL The estimated number of rows returned by Data Manager; also the
estimated number of times this query block is executed.

ROWCOUNT INTEGER NOT
NULL

The estimated number of rows returned by RDS (Query
Cardinality).

ATOPEN CHAR(1) NOT
NULL

Whether the query block is moved up for do-at-open processing;
'Y' if done-at-open; 'N': otherwise.

Appendix L. EXPLAIN tables 2921

Table 423. DSN_STRUCT_TABLE description (continued)

Column name Data type Description

CONTEXT CHAR(10) NOT
NULL

This column indicates what the context of the current query block
is. The possible values are:

• 'TOP LEVEL'
• 'UNION'
• 'UNION ALL'
• 'PREDICATE'
• 'TABLE EXP'
• 'UNKNOWN'

ORDERNO SMALLINT NOT
NULL

Not currently used.

DOATOPEN_PARENT SMALLINT NOT
NULL

The parent query block number of the current query block; Do-
at-open parent if the query block is done-at-open, this may be
different from the PARENT_QBLOCKNO in PLAN_TABLE.

QBLOCK_TYPE CHAR(6) NOT
NULL WITH
DEFAULT

This column indicates the type of the current query block. The
possible values are

• 'SELECT'
• 'INSERT'
• 'UPDATE'
• 'DELETE'
• 'SELUPD'
• 'DELCUR'
• ''UPDCUR'
• 'CORSUB'
• 'NCOSUB'
• 'TABLEX'
• 'TRIGGR'
• 'UNION'
• 'UNIONA'
• 'CTE'

It is equivalent to QBLOCK_TYPE column in PLAN_TABLE, except
for CTE.

EXPLAIN_TIME TIMESTAMP NOT
NULL

The time when the EXPLAIN information was captured:
All cached statements

When the statement entered the cache, in the form of a full-
precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full precision
timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time appended
by 4 zeros.

2922 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 423. DSN_STRUCT_TABLE description (continued)

Column name Data type Description

QUERY_STAGE CHAR(8) NOT
NULL

IBM internal use only.

GROUP_MEMBER VARCHAR(24)
NOT NULL

The member name of the Db2 that executed EXPLAIN. The
column is blank if the Db2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

ORIGIN CHAR(1) NOT
NULL WITH
DEFAULT

Indicates the origin of the query block:
Blank

Generated by Db2
C

Column mask
R

Row permission
U

Specified by the user

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from
the same column in SYSPACKSTMT or SYSSTMT tables and can
be used to join tables to reconstruct the access path for the
statement. This column is applicable only for static statements.
The default value of -1 indicates EXPLAIN information that was
captured in DB2 9 or earlier.

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

The collection ID:
'DSNEXPLAINMODEYES'

The row originates from an application that specifies YES for
the value of the CURRENT EXPLAIN MODE special register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies EXPLAIN
for the value of the CURRENT EXPLAIN MODE special register.

When the SQL statement is embedded in a compiled SQL function,
native SQL procedure, or advanced trigger, this column indicates
the schema name of the compiled SQL function, native SQL
procedure, or advanced trigger.

Appendix L. EXPLAIN tables 2923

Table 423. DSN_STRUCT_TABLE description (continued)

Column name Data type Description

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to a
statement that is explained when binding a package.

If the value is not blank, the value is the same as the VERSION
value for the package that was used to create this EXPLAIN table
row.

The value is blank for a statement in:

• A package for a basic trigger (TYPE='T')
• A package for an application that was precompiled without SQL

processing option VERSION
• A package that was precompiled with an empty string for the

VERSION value (TYPE=blank)

When the SQL statement is embedded in a compiled SQL function
or native SQL procedure, this column indicates the version
identifier of the function or procedure. When the SQL statement
is embedded in an advanced trigger body, this column is not used
and will be blank.

2924 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 423. DSN_STRUCT_TABLE description (continued)

Column name Data type Description

EXPANSION_REASON CHAR(2) NOT
NULL WITH
DEFAULT

This column applies only to statements that reference archive
tables or temporal tables. For other statements, this column is
blank.

Indicates the effect of the CURRENT TEMPORAL BUSINESS_TIME
special register, the CURRENT TEMPORAL SYSTEM_TIME special
register, and the SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind options.

Db2 implicitly adds certain syntax to the query if one of the
following conditions are true:

• The SYSIBMADM.GET_ARCHIVE global variable is set to Y and
the ARCHIVESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL BUSINESS_TIME special register is
not null and the BUSTIMESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL SYSTEM_TIME special register is not
null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:
'A'

The query contains implicit query transformation as a result of
the SYSIBMADM.GET_ARCHIVE built-in global variable.

'B'
The query contains implicit query transformation as a result of
the CURRENT TEMPORAL BUSINESS_TIME special register.

'S'
The query contains implicit query transformation as a result of
the CURRENT TEMPORAL SYSTEM_TIME special register.

'SB'
The query contains implicit query transformation as a result of
the CURRENT TEMPORAL SYSTEM_TIME special register and
the CURRENT TEMPORAL BUSINESS_TIME special register.

blank
The query does not contain implicit query transformation.

PER_STMT_ID BIGINT NOT NULL The persistent statement identifier for SQL statements in Db2
catalog tables.

For example, this column corresponds to the following catalog
table columns that identify SQL statements:

• STMT_ID in SYSIBM.SYSPACKSTMT, for SQL statements in
packages.

• SDQ_STMT_ID in SYSIBM.SYSDYNQUERY, for stabilized dynamic
SQL statements.

AP_PLANID CHAR(16) FOR BIT
DATA

A unique identifier for BIND or PREPARE optimizations for an SQL
statement, in the form of an extended timestamp value.

Appendix L. EXPLAIN tables 2925

DSN_VIEWREF_TABLE
The view reference table, DSN_VIEWREF_TABLE, contains information about all of the views and
materialized query tables that are used to process a query.

Recommendation: Do not manually insert data into system-maintained EXPLAIN tables, and use care
when deleting obsolete EXPLAIN table data. The data is intended to be manipulated only by the Db2
EXPLAIN function and optimization tools. Certain optimization tools depend on instances of the various
EXPLAIN tables. Be careful not to delete data from or drop instances EXPLAIN tables that are created for
these tools.

Qualifiers
Your subsystem or data sharing group can contain multiple instances of these tables that are qualified
by user ID. These tables are populated with statement cost information when you issue the EXPLAIN
statement or bind. They are also populated when you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND
or REBIND command. SQL optimization tools might also create EXPLAIN tables that are qualified by a
user ID. You can find the SQL statement for creating an instance of these tables in member DSNTESC of
the SDSNSAMP library.

Sample CREATE TABLE statement
You can find a sample CREATE TABLE statement for each EXPLAIN table in member DSNTESC of the
prefix.SDSNSAMP library. You can call the ADMIN_EXPLAIN_MAINT stored procedure to create EXPLAIN
tables, upgrade them to the format for the current Db2 release, or complete other maintenance tasks. See
“ADMIN_EXPLAIN_MAINT stored procedure” on page 751 for information about using the action input
parameter to request each of these tasks.

Column descriptions
The following table describes the columns of DSN_VIEWREF_TABLE.

Table 424. DSN_VIEWREF_TABLE description

Column name Data type Description

QUERYNO INTEGER NOT NULL
WITH DEFAULT

A number that identifies the statement that is being explained.
The origin of the value depends on the context of the row:
For rows produced by EXPLAIN statements

The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE, and
DELETE statement syntax.

For rows not produced by EXPLAIN statements
Db2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement
number in the source program, values that exceed 32767 are
reported as 0. However, in certain rare cases, the value is not
guaranteed to be unique.

When the SQL statement is embedded in a compiled SQL
function, native SQL procedure, or advanced trigger, if the
QUERYNO clause is specified, its value is used by Db2.
Otherwise Db2 assigns a number based on the line number of
the SQL statement in the compiled SQL function, native SQL
procedure, or advanced trigger.

2926 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 424. DSN_VIEWREF_TABLE description (continued)

Column name Data type Description

APPLNAME VARCHAR(24) NOT
NULL WITH DEFAULT

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan
or to statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a compiled SQL
function, native SQL procedure, or advanced trigger, this column
is not used, and is blank.

PROGNAME VARCHAR(128) NOT
NULL WITH DEFAULT

The name of the program or package containing the
statement being explained. Applies only to embedded EXPLAIN
statements and to statements explained as the result of binding
a plan or package. A blank indicates that the column is not
applicable.

When the SQL statement is embedded in a compiled SQL
function or native SQL procedure, this column indicates the
specific name of the compiled SQL function or native SQL
procedure. When the SQL statement is embedded in an
advanced trigger, this column contains the name of the trigger.

VERSION VARCHAR(122) NOT
NULL WITH DEFAULT

The version identifier for the package. Applies only to an
embedded EXPLAIN statement executed from a package or to
a statement that is explained when binding a package.

If the value is not blank, the value is the same as the VERSION
value for the package that was used to create this EXPLAIN
table row.

The value is blank for a statement in:

• A package for a basic trigger (TYPE='T')
• A package for an application that was precompiled without

SQL processing option VERSION
• A package that was precompiled with an empty string for the

VERSION value (TYPE=blank)

When the SQL statement is embedded in a compiled SQL
function or native SQL procedure, this column indicates the
version identifier of the function or procedure. When the SQL
statement is embedded in an advanced trigger body, this column
is not used and will be blank.

COLLID VARCHAR(128) NOT
NULL WITH DEFAULT

The collection ID:
'DSNEXPLAINMODEYES'

The row originates from an application that specifies YES for
the value of the CURRENT EXPLAIN MODE special register.

'DSNEXPLAINMODEEXPLAIN'
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a compiled SQL
function, native SQL procedure, or advanced trigger, this column
indicates the schema name of the compiled SQL function, native
SQL procedure, or advanced trigger.

Appendix L. EXPLAIN tables 2927

Table 424. DSN_VIEWREF_TABLE description (continued)

Column name Data type Description

CREATOR VARCHAR(128) NOT
NULL WITH DEFAULT

Authorization ID of the owner of the object.

NAME VARCHAR(128) Name of the object.

TYPE CHAR(1) NOT NULL
WITH DEFAULT

The type of the object:
'V'

View
'R'

MQT that has been used to replace the base table for rewrite
'M'

MQT

MQTUSE SMALLINT WITH
DEFAULT

IBM internal use only.

EXPLAIN_TIME TIMESTAMP NOT
NULL WITH DEFAULT

The time when the EXPLAIN information was captured:
All cached statements

When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

GROUP_MEMBER VARCHAR(24) NOT
NULL

The member name of the Db2 that executed EXPLAIN. The
column is blank if the Db2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

SECTNOI INTEGER NOT NULL
WITH DEFAULT

The section number of the statement. The value is taken from
the same column in SYSPACKSTMT or SYSSTMT tables and can
be used to join tables to reconstruct the access path for the
statement. This column is applicable only for static statements.
The default value of -1 indicates EXPLAIN information that was
captured in DB2 9 or earlier.

2928 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 424. DSN_VIEWREF_TABLE description (continued)

Column name Data type Description

EXPANSION_REASON CHAR(2) NOT NULL
WITH DEFAULT

This column applies only to statements that reference archive
tables or temporal tables. For other statements, this column is
blank.

Indicates the effect of the CURRENT TEMPORAL
BUSINESS_TIME special register, the CURRENT
TEMPORAL SYSTEM_TIME special register, and the
SYSIBMADM.GET_ARCHIVE built-in global variable. These items
are controlled by the BUSTIMESENSITIVE, SYSTIMESENSITIVE,
and ARCHIVESENSITIVE bind options.

Db2 implicitly adds certain syntax to the query if one of the
following conditions are true:

• The SYSIBMADM.GET_ARCHIVE global variable is set to Y and
the ARCHIVESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL BUSINESS_TIME special register is
not null and the BUSTIMESENSITIVE bind option is set to YES

• The CURRENT TEMPORAL SYSTEM_TIME special register is
not null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:
'A'

The query contains implicit query transformation as a result
of the SYSIBMADM.GET_ARCHIVE built-in global variable.

'B'
The query contains implicit query transformation as a
result of the CURRENT TEMPORAL BUSINESS_TIME special
register.

'S'
The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special register.

'SB'
The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special register
and the CURRENT TEMPORAL BUSINESS_TIME special
register.

blank
The query does not contain implicit query transformation.

AP_PLANID CHAR(16) FOR BIT
DATA

A unique identifier for BIND or PREPARE optimizations for an
SQL statement, in the form of an extended timestamp value.

Appendix L. EXPLAIN tables 2929

2930 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Appendix M. Tables that support query acceleration
To interact with accelerator servers, Db2 requires several tables that record characteristics of accelerated
servers and tables.

The following table lists these tables, the table spaces and indexes for these tables, and the index fields
for each index. The indexes are in ascending order, except where noted.

Table 425. Tables, table spaces, and indexes for tables that support acceleration of queries

Table Description Table
space*

Indexes Index fields

“SYSACCEL.SYSACCELERATORS
table” on page 2931

Records the
characteristics of
accelerator servers.

SYSTSACC DSNACC01 ACCELERATORNAME

“SYSACCEL.SYSACCELERATEDTAB
LES table” on page 2932

Records the
characteristics of each
table that is marked for
acceleration.

SYSTSACT DSNACT01 CREATOR, NAME,
ACCELERATORNAME

“SYSACCEL.SYSACCELERATEDPAC
KAGES table” on page 2934

Records the
characteristics of Db2
packages that are
bound with the
QUERYACCELERATION
and
GETACCELARCHIVE
bind options.

SYSTSACP DSNACP01 LOCATION, COLLID,
NAME, VERSION

DSNACP02 LOCATION, COLLID,
NAME, CONTOKEN

“SYSACCEL.SYSACCELERATEDTAB
LESAUTH table” on page 2934

Records the privileges
that are held by
user users over tables
that are enabled for
acceleration.

SYSTSATA DSNATA01 TCREATOR, TNAME,
ACCELERATORNAME,
GRANTEE

* The table spaces listed in this table are universal table spaces (UTSs). Prior to these table spaces being
migrated to type UTS, all of the catalog tables for accelerated queries used the SYSACCEL segmented table
space. SYSACCEL is still supported; however, segmented table spaces have been deprecated. If you want to
migrate from the single SYSACCEL segmented table space, see Migrating query acceleration tables to universal
table spaces (Db2 Installation and Migration).

Related tasks
Creating database objects that support query acceleration (Db2 Installation and Migration)

SYSACCEL.SYSACCELERATORS table
The SYSACCEL.SYSACCELERATORS table contains rows that describe the characteristics of each
accelerator server.

Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

ACCELERATOR-
NAME

VARCHAR(128)
NOT NULL

A unique name for the accelerator server. This is the
name by which the accelerator server is known to the
local Db2 accelerated query tables.

G

© Copyright IBM Corp. 1982, 2024 2931

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_migratetblsforaccelerator.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_migratetblsforaccelerator.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_createtblsforaccelerator.html

Column name Data type Description Use

LOCATION VARCHAR(128) Identifies the location name that is associated with the
accelerator server.

G

ACCELERATORSRL CHAR(64) FOR BIT
DATA

Internal use only I

ACCELERATOR_TYPE SMALLINT
NOT NULL

The type of accelerator:
1

Indicates Version 5 or earlier of IBM Db2 Analytics
Accelerator for z/OS (an on-premises accelerator
hardware appliance based on IBM PureData® System
for Analytics and IBM Netezza® technology).

2
Indicates Version 7 of IBM Db2 Analytics
Accelerator for z/OS.

The default value is 1.

G

SYSACCEL.SYSACCELERATEDTABLES table
The SYSACCEL.SYSACCELERATEDTABLES table contains rows that describe the characteristics of each
table that is marked for acceleration.

Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

NAME VARCHAR(128)
NOT NULL

The name of the table. G

CREATOR VARCHAR(128)
NOT NULL

The schema of the table. G

ACCELERATORNAME VARCHAR(128)
NOT NULL

A unique name for the accelerator server. This is the
name by which the accelerator server is known to the
local Db2 accelerated query tables.

G

REMOTENAME VARCHAR(128)
NOT NULL

The name of the base alias object. G

REMOTECREATOR VARCHAR(128)
NOT NULL

The owner of the base alias object. G

ENABLE CHAR(1)
NOT NULL

Indicates whether the remote table is enabled or
disabled for query acceleration:
Y

Enabled
N

Disabled
T

Transition state. Queries are not sent to an
accelerator server.

G

2932 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

CREATEDBY VARCHAR(128)
NOT NULL

The primary authorization ID of the user who created
the table.

G

CREATEDTS TIMESTAMP
NOT NULL
WITH DEFAULT

The time when the CREATE statement was executed for
the table.

G

ALTEREDTS TIMESTAMP
NOT NULL
WITH DEFAULT

The time when the table was last altered. G

REFRESH_TIME TIMESTAMP
NOT NULL
WITH DEFAULT

The timestamp when the data was last refreshed. If the
data was not refreshed, this column contains the default
timestamp ('0001-01-01.00.00.00.000000').

G

SUPPORTLEVEL SMALLINT
NOT NULL

Internal use only. I

ARCHIVE CHAR(1) The archive status of the table in the accelerator
database:
A

The table is archived in the accelerator server that
is specified by the ACCELERATORNAME value. The
accelerator server contains active and archived data.

B
The table is partially archived in the accelerator
server that is specified by the ACCELERATORNAME
value. The accelerator server can answer queries
that contain active data.

C
The table is archived in other accelerator servers.
The accelerator server that is specified by the
ACCELERATORNAME value contains only active data.

X
The table was restored on another accelerator
server. The accelerator server that is specified by the
ACCELERATORNAME value cannot answer queries.

blank
The table is not archived in an accelerator server.

G

REMOTELOCATION VARCHAR(128) NOT
NULL WITH DEFAULT

The location of the owner table of the referenced
accelerator-only table. For tables that are not
referenced accelerator-only tables, this column is blank.

G

FL 509 FEATURE INTEGER NOT NULL Indicates additional features of the table:
0

The table does not have any of the additional
features that are indicated by the other values. 0 is
the default value.

1
The table is a high availability accelerator-only table.

G

Appendix M. Tables that support query acceleration 2933

https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html

SYSACCEL.SYSACCELERATEDTABLESAUTH table
The SYSACCEL.SYSACCELERATEDTABLESAUTH table records the privileges that are held by users over
tables that are enabled for acceleration.

Column name Data type Description Use

ACCELERATORNAME VARCHAR(128)
NOT NULL

A unique name for the accelerator server. This is the
name by which the accelerator server is known to the
local Db2 accelerated query tables.

G

GRANTOR VARCHAR(128)
NOT NULL

Authorization ID of the user who granted the privilege. G

GRANTEE VARCHAR(128)
NOT NULL

Grantee who holds the privileges to access the table in
the accelerator.

Currently, only a location name for a referencing Db2 for
z/OS subsystem is supported.

The location name must be the name of a Db2 for z/OS
subsystem that was paired to the accelerator when the
ACCEL_GRANT_TABLES_REFERENCE stored procedure
granted the privilege.

G

GRANTEETYPE CHAR(1) NOT NULL Indicates the type of grantee:
S

Subsystem location name

G

TCREATOR VARCHAR(128)
NOT NULL

The schema of the table. G

TNAME VARCHAR(128)
NOT NULL

The name of the table. G

SELECTAUTH CHAR(1) NOT NULL Indicates whether the GRANTEE can select rows from
the table or view:
blank

Privilege is not held.
Y

Privilege is held without the GRANT option.

G

GRANTEDTS TIMESTAMP
NOT NULL
WITH DEFAULT

The time when the GRANT statement was executed for
the table.

G

SYSACCEL.SYSACCELERATEDPACKAGES table
The SYSACCEL.SYSACCELERATEDPACKAGES table contains rows that describe the characteristics of Db2
packages that are bound with the QUERYACCELERATION and GETACCELARCHIVE bind options.

Do not modify the definition of the SYSACCEL.SYSACCELERATEDPACKAGES table or its indexes unless
directed by IBM Support.

2934 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

LOCATION VARCHAR(128)
NOT NULL

Always contains blanks. S

COLLID VARCHAR(128)
NOT NULL

The name of the package collection. G

NAME VARCHAR(128)
NOT NULL

The name of the package. G

CONTOKEN CHAR(8)
NOT NULL
FOR BIT DATA

Consistency token for the package. S

VERSION VARCHAR(122) NOT
NULL

Version identifier for the package. G

OWNER VARCHAR(128)
NOT NULL

Authorization ID of the package owner. G

CREATOR VARCHAR(128)
NOT NULL

Authorization ID of the owner of the creator of the
package version.

G

TIMESTAMP TIMESTAMP
NOT NULL

Timestamp indicating when the package was created. G

BINDTIME TIMESTAMP
NOT NULL

Timestamp indicating when the package was last
bound.

G

RELBOUND CHAR(1)
NOT NULL

The Db2 release when the package was bound or
rebound.

G

TYPE CHAR(1)
NOT NULL

Type of package. Identifies how the package is
created:
F

A CREATE FUNCTION or ALTER FUNCTION
statement, or a BIND PACKAGE DEPLOY command
created the package, and this package is a non-
inline SQL scalar function package.

N
A CREATE PROCEDURE or ALTER PROCEDURE
statement, or a BIND PACKAGE DEPLOY command
created the package, and this package is a native
SQL routine package.

blank
A BIND PACKAGE command created the package.

G

COPYID INTEGER
NOT NULL

Internal use only. The value is zero. I

Appendix M. Tables that support query acceleration 2935

Column name Data type Description Use

QUERYACCELERATION CHAR(1)
NOT NULL

Indicates the query acceleration behavior that is
specified for the static SQL queries in the package.
This behavior can also apply to dynamic queries in
the package if the package does not issue an explicit
SET for the CURRENT QUERY ACCELERATION special
register. The QUERYACCELERATION bind option does
not have a default value.
N

NONE. No static SQL query in the package is bound
for acceleration or will be accelerated when the
package runs. NONE is not a default value.

E
ENABLE. A static SQL query is bound for
acceleration if it satisfies the acceleration criteria,
including the cost and heuristics criteria. The query
is routed to an accelerator when the application
runs.

If a static query does not satisfy the acceleration
criteria, the query is bound for execution in Db2.

F
ENABLEWITHFAILBACK. Same behavior as
ENABLE, except if an error occurs on the first
OPEN of the accelerated static query when the
application runs. In this case, instead of failing the
query and returning a negative SQL code to the
application, Db2 performs a temporary statement-
level incremental bind of the query and runs the
query in Db2.

L
ELIGIBLE. A static SQL query is bound for
acceleration if the query meets the basic
acceleration criteria, regardless of the cost or
heuristics criteria. The query is routed to the
accelerator when the application runs.

A
ALL. All static SQL queries in the application are
to be bound for acceleration and routed to the
accelerator when the application runs. If Db2
determines that a static query cannot be bound to
run on the accelerator and the query references
a user base table or view, Db2 fails the BIND
or REBIND PACKAGE operation with an error
message for that query.

G

2936 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Column name Data type Description Use

GETACCELARCHIVE CHAR(1)
NOT NULL

Indicates whether a static SQL query should retrieve
archived data from the accelerator instead of active
data from the accelerator. This behavior can also
apply to dynamic queries in the package if the
package does not issue an explicit SET for the
CURRENT GET_ACCEL_ARCHIVE special register. The
GETACCELARCHIVE bind option does not have a
default value.
N

NO. No static SQL query is bound to retrieve
archived data from the accelerator. If the static
query also is not bound for acceleration, the query
is bound to run in Db2.

If the static query is bound for acceleration
because the QUERYACCELERATION bind option is
specified, when the application is run the query
is routed to the accelerator. However, the query
retrieves only active data on the accelerator.
Archived data is not retrieved.

Y
YES. If the static query is bound for acceleration,
the query retrieves archived data on the
accelerator when the application runs if the
following criteria is met:

• The QUERYACCELERATION bind option is also
specified.

• The static SQL query references an accelerated
table that has partitioned data archived on an
accelerator.

If the static query cannot be bound for
acceleration, Db2 fails the BIND or REBIND
PACKAGE operation with an error message for that
query.

G

ACCELERATOR VARCHAR(128) NOT
NULL

Indicates the preferred target accelerator or
accelerators to be used for queries accelerated from
this Db2 package:
accelerator-name

An unqualified name that identifies an accelerator.
An accelerator name can consist of 1–8 uppercase
characters or numbers. The name must be
unique within the Db2 subsystem or data sharing
group. This name can be a physical accelerator
name or a logical name (alias) that maps to a
physical accelerator name or a group of physical
accelerator names.

blank

If the ACCELERATOR bind option not specified,
this is the default value, which indicates that no
preferred target accelerator will be used and Db2
will determine the target accelerator.

G

Appendix M. Tables that support query acceleration 2937

Column name Data type Description Use

ACCELERATION_WAITFO
RDATA

DECIMAL(5,1) NOT
NULL

Indicates the maximum amount of time, if any, that
the accelerator will delay a query while the accelerator
waits for the replication of committed Db2 data
changes that occurred prior to Db2 running the query.
nnnn.m

If the ACCELERATIONWAITFORDATA bind option
is specified, this value indicates the maximum
decimal number of seconds that the accelerator
will delay the query when needed.

-1.0

If the ACCELERATIONWAITFORDATA bind option
is not specified, this is the default value of this
catalog column. Db2 considers this as the default
value of 0.0. No accelerator delay is requested,
and static queries accelerated from this Db2
package will not be delayed.

G

2938 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Appendix N. Tables that are used for program
authorization

For program authorization, a table is provided to record the authorization for a program to execute a plan.

Table spaces and indexes for program authorization
Tables that are used for program authorization are contained in certain table spaces and have indexes.

The following table lists the table space and index for the table that is used for program authorization, and
lists the index fields for the index. The index is in ascending order.

Table 426. Table spaces and indexes for the tables that are used for program authorization

TABLE SPACE
DSNMDCDB. …

TABLE
SYSIBM. …

INDEX
SYSIBM. …

INDEX FIELDS

DSNMDCTS DSNPROGAUTH DSNPROGAUTH_IDX
1

PROGNAME.PLANNAME

SYSIBM.DSNPROGAUTH table
The SYSIBM.DSNPROGAUTH table enables program authorization with or without program data integrity
checking.

Column name Data type Description Use

PROGNAME VARCHAR(24)
NOT NULL

Name of the application program that can run the plan. G

PLANNAME VARCHAR(24)
NOT NULL

Name of the application plan for the application program. G

PROGMDCVAL CHAR(16)
 NOT NULL
FOR BIT DATA
WITH DEFAULT
X'00000000000000
0-
0000000000000000
0'

Reserved. G

PROGMDCPAD CHAR(1)
NOT NULL
WITH DEFAULT

Reserved. G

CREATOR VARCHAR(128)
NOT NULL
WITH DEFAULT
CURRENT SQLID

The authorization ID under which the row was inserted or
most recently updated.

G

© Copyright IBM Corp. 1982, 2024 2939

Column name Data type Description Use

ENABLED CHAR(1)
NOT NULL
WITH DEFAULT 'N'

Whether program authorization is enabled:
Y

Program authorization is enabled.
N

Program authorization is disabled.

CREATETS TIMESTAMP
NOT NULL WITH
DEFAULT

The time at which the row was inserted or most recently
updated.

G

REMARKS VARCHAR(762) A user-specified character string. G

2940 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Appendix O. Sample user-defined functions
Some sample user-defined functions are provided with Db2. You can use the functions in your
applications just as you would use other user-defined functions, or as examples to help you define your
own user-defined functions.

All REST functions are created by installation job DSNTIJRF or the createUDFzOS.sql script and can be
used to allow applications to access REST-based services through SQL. For all other sample functions, the
following points apply:

• To use these functions in your applications: Use the functions only if installation job DSNTEJ2U, which
prepares the functions for use, has been run. Because the external programs that implement the logic of
the sample functions are written in C and C++, the installation job requires that your site has IBM C/C++
for z/OS. For information, see Job DSNTEJ2U (Db2 Installation and Migration).

• If you want to use these functions as examples to help you define and implement your own user-
defined functions: Data set prefix.SDSNSAMP contains the code for the sample functions.

• The detailed descriptions of the functions include their external program names and specific names.
The functions are in schema DSN8. The functions are defined to treat character or graphic string
parameters, both input and output, as EBCDIC-encoded data.

Related concepts
Job DSNTEJ2U (Db2 Installation and Migration)
Related tasks
Examples of granting privileges for routines (Managing Security)
Creating REST user-defined functions (Db2 Installation and Migration)
Related reference
User-defined function samples that ship with Db2 (Db2 Application programming and SQL)

ALTDATE
The ALTDATE function returns the current date in the specified format or converts a user-specified date
from one format to another.

ALTDATE(

input-date, input-format,

output-format)

The schema is DSN8.

The ALTDATE function returns the current date in one of the following formats or converts a user-specified
date from one format to another:

 D MONTH YY D MONTH YYYY DD MONTH YY DD MONTH YYYY
 D.M.YY D.M.YYYY DD.MM.YY DD.MM.YYYY
 D-M-YY D-M-YYYY DD-MM-YY DD-MM-YYYY
 D/M/YY D/M/YYYY DD/MM/YY DD/MM/YYYY
 M/D/YY M/D/YYYY MM/DD/YY MM/DD/YYYY
 YY/M/D YYYY/M/D YY/MM/DD YYYY/MM/DD
 YY.M.D YYYY.M.D YY.MM.DD YYYY.MM.DD
 YYYY-M-D YYYY-MM-DD
 YYYY-D-XX YYYY-DD-XX
 YYYY-XX-D YYYY-XX-DD
 where:
 D: Suppress leading zero if the day is less than 10
 DD: Retain leading zero if the day is less than 10
 M: Suppress leading zero if the month is less than 10
 MM: Retain leading zero if the month is less than 10
 MONTH: Use English-language name of month
 XX: Use a capital Roman numeral for month

© Copyright IBM Corp. 1982, 2024 2941

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntej2u.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntej2u.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/seca/src/tpc/db2z_grantprivilegethruroutine.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_createrestudfs.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_udfsamples.html

 YY: Use a year format without century
 YYYY: Use a year format with century

The ALTDATE function demonstrates how you can create an overloaded function—a function name for
which there are multiple function instances. Each instance supports a different parameter list enabling
you to group related but distinct functions in a single user-defined function. The ALTDATE function has
two forms.

Form 1: ALTDATE(output-format)
This form of the function converts the current date into the specified format.
output-format

A character string that matches one of the 34 date formats that are shown above. The character
string must have a data type of VARCHAR and an actual length that is not greater than 13 bytes.

The result of the function is VARCHAR(17).

Form 2: ALTDATE(input-date, input-format, output-format)
This form of the function converts a date (input-date) in one user-specified format (input-format) into
another format (output-format).
input-date

The argument must be a date or a character string representation of a date in the format specified
by input-format. The character string must have a data type of VARCHAR and an actual length that
is not greater than 17 bytes.

input-format
A character string that matches one of the 34 date formats that are shown above. The character
string must have a data type of VARCHAR and an actual length that is not greater than 13 bytes.

output-format
A character string that matches one of the 34 date formats that are shown above. The character
string must have a data type of VARCHAR and an actual length that is not greater than 13 bytes.

The result of the function is VARCHAR(17).

The following table shows the external and specific names for the two forms of the function, which are
based on the input to the function.

Table 427. External program and specific names for ALTDATE

Conversion type Input arguments External name Specific name

Current date output-format (VARCHAR) DSN8DUAD DSN8.DSN8DUADV

User-specified
date

input-date (VARCHAR)
input-format (VARCHAR)
output-format (VARCHAR)

DSN8DUCD DSN8.DSN8DUCDVVV

input-date (DATE)
input-format (VARCHAR)
output-format (VARCHAR)

DSN8DUCD DSN8.DSN8DUCDDVV

Example 1: Convert the current date into format 'DD MONTH YY', a format that will include any leading
zero for the month, the name of the month in English, and the year without the two digits for the century.

 VALUES DSN8.ALTDATE('DD MONTH YY');

Example 2: Convert the current date into format 'D.M.YYYY', a format that will suppress any leading zero
for the day or month and include the year with the century.

 VALUES DSN8.ALTDATE('D.M.YYYY');

2942 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Example 3: Convert the current date into format 'YYYY-XX-DD', a format that will include the century, the
month of the year as a roman numeral, and the day of the month with any leading zero.

 VALUES DSN8.ALTDATE('YYYY-XX-DD');

Example 4: Convert a date in the format of 'DD MONTH YYYY' to a date in the format of 'YYYY/MM/DD'.

 VALUES DSN8.ALTDATE('11 November 1918',
 'DD MONTH YYYY',
 'YYYY/MM/DD');

The result of the above example is '1918/11/18'.

Example 5: Convert the date that employee 000130 was hired, a date in ISO format, into the format of
'D.M.YY'.

 SELECT FIRSTNME || ' '
 || LASTNAME || ' was hired on '
 || DSN8.ALTDATE(HIREDATE,
 'YYYY-MM-DD',
 'D.M.YY')
 FROM EMP
 WHERE EMPNO = '000130';

Assuming that the HIREDATE is '1971-07-28', the above example returns: 'DELORES QUINTANA was
hired on 28.7.71'.

ALTTIME
The ALTTIME function returns the current time in the specified format or converts a user-specified time
from one format to another.

ALTTIME(

input-time, input-format,

output-format)

The schema is DSN8.

The ALTTIME function returns the current time in one of the following formats or converts a user-specified
time from one of the formats to another:

 H:MM AM/PM HH:MM AM/PM
 HH:MM:SS AM/PM HH:MM:SS
 H.MM HH.MM
 H.MM.SS HH.MM.SS
 where:
 H: Suppress leading zero if the hour is less than 10
 HH: Retain leading zero if the hour is less than 10
 M: Suppress leading zero if the minute is less than 10
 MM: Retain leading zero if the minute is less than 10
 AM/PM: Return time in 12-hour clock format, else 24-hour

The ALTTIME function demonstrates how you can create an overloaded function—a function name for
which there are multiple function instances. Each instance supports a different parameter list enabling
you to group related but distinct functions in a single user-defined function. The ALTTIME function has
two forms.

Form 1: ALTTIME(output-format)
This form of the function converts the current time into the specified format.
output-format

A character string that matches one of the 8 time formats that are shown above. The character
string must have a data type of VARCHAR and an actual length that is not greater than 14 bytes.

The result of the function is VARCHAR(11).

Appendix O. Sample user-defined functions 2943

Form 2: ALTTIME(input-time, input-format, output-format)
This form of the function converts a time (input-date) in one user-specified format (input-format) into
another format (output-format).
input-time

The argument must be a time or a character string representation of a time in the format specified
by input-format. A character string argument must have a data type of VARCHAR and an actual
length that is not greater than 11 bytes.

input-format
A character string that matches one of the 8 time formats that are shown above. The character
string must have a data type of VARCHAR and an actual length that is not greater than 14 bytes.

output-format
A character string that matches one of the 8 time formats that are shown above. The character
string must have a data type of VARCHAR and an actual length that is not greater than 14 bytes.

The result of the function is VARCHAR(11).

The following table shows the external program and specific names for the two forms of the function,
which are based on the input to the function.

Table 428. External and specific names for ALTTIME

Conversion type Input arguments External name Specific name

Current time output-format (VARCHAR) DSN8DUAT DSN8.DSN8DUATV

User-specified
time

input-time (VARCHAR)
input-format (VARCHAR)
output-format (VARCHAR)

DSN8DUCT DSN8.DSN8DUCTVVV

input-time (TIME)
input-format (VARCHAR)
output-format (VARCHAR)

DSN8DUCT DSN8.DSN8DUCTTVV

Example 1: Convert the current time into a 12-hour clock format without seconds, 'H.MM AM/PM'.

 VALUES DSN8.ALTTIME('H:MM AM/PM');

Example 2: Convert the current time into a 24-hour clock format without seconds, 'HH.MM'.

 VALUES DSN8.ALTTIME('HH.MM');

Example 3: Convert the current time into a 24-hour clock format with seconds, 'HH.MM.SS'.

 VALUES DSN8.ALTTIME('HH.MM.SS');

Example 4: Convert '00:00:00', a time in 24-hour clock format with seconds, to a time in 12-hour clock
format without seconds.

 VALUES DSN8.ALTTIME('00:00:00','HH:MM:SS','HH:MM AM/PM');

The function returns '12:00 AM'.

Example 5: Convert '00:00:00', a time in 24-hour clock format with seconds, to a time in 12-hour clock
format without seconds and without any leading zero on the hour.

 VALUES DSN8.ALTTIME('06.42.37','HH.MM.SS','H:MM AM/PM');

The function returns '6:42 AM'.

2944 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

BASE64ENCODE and BASE64DECODE
The BASE64ENCODE and BASE64DECODE helper REST functions complete Base64 encoding or decoding
of the provided text.

Tip: The sample HTTP user-defined functions are intended to be used within Db2 SQL applications to
access remote non-Db2 REST-based services through SQL statements. Do not confuse them with Db2
native REST services, which supports using a REST-based interface to interact with Db2 data from web,
mobile, and cloud applications.

BASE64ENCODE

BASE64DECODE

( text)

The schema is DB2XML.

text
Specifies the text to encode or decode. For BASE64ENCODE, this argument is provided as a
VARCHAR(2732) value and the function returns a Base64-encoded string. For BASE64DECODE, this
argument is provided as a Base64-encoded VARCHAR(4096) value and the function returns the data
as binary.

Related tasks
Creating REST user-defined functions (Db2 Installation and Migration)

CURRENCY
The CURRENCY function returns a value that is formatted as an amount with a user-specified currency
symbol and, if specified, one of three symbols that indicate debit or credit.

CURRENCY(input-amount, currency-symbol

, credit/debit-indicator

)

The schema is DSN8.

input-amount
An expression that specifies the value to be formatted. The expression must be a floating-point value.

currency-symbol
A character string that specifies the currency symbol. The string must have a data type of VARCHAR
and an actual length that is not greater than 2 bytes.

credit/debit-indicator
A character string that specifies the symbol that is included with the result to indicate whether the
value is negative or positive. The string must have a data type of VARCHAR and an actual length that
is not greater than 5 bytes. If credit/debit-indicator is not specified or is the value null, the result is
formatted without an indicator symbol. You can specify the following symbols:
CR/DB

Bank style. Negative input values are appended with 'DB'; positive input values are appended with
'CR'.

+/-
Arithmetic style. Negative input values are prefixed with a minus sign '-'; positive values are
formatted without symbols.

(/)
Accounting style. Negative input values are enclosed in parentheses '()'; positive values are
formatted without symbols.

The result of the function is VARCHAR(19).

Appendix O. Sample user-defined functions 2945

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_createrestudfs.html

The CURRENCY function uses the C language functions strfmon to facilitate formatting of money
amounts and setlocale to initialize strfmon for local conventions. If setlocale fails, the CURRENCY
function returns an error.

The following table shows the external program and specific names for CURRENCY. The specific names
differ depending on the input to the function.

Table 429. External program and specific names for CURRENCY

Input arguments External name Specific name

input-amount
currency-symbol

DSN8DUCY DSN8.DSN8DUCYFV

input-amount
currency-symbol
credit/debit-indicator

DSN8DUCY DSN8.DSN8DUCYFVV

Example 1: Express® '-1234.56' as an amount in US dollars, using the bank style debit/credit indicator to
indicate whether the value is negative or positive.

 VALUES DSN8.CURRENCY(-1234.56,'$','CR/DB');

The result of the function is '$1,234.56 DB'.

Example 2: Express '-1234.56' as an amount in Deutsche marks, using the accounting style debit/credit
indicator to indicate whether the value is negative or positive.

 VALUES DSN8.CURRENCY(-1234.56,'DM','(/)');

The result of the function is '(DM 1,234.56)'.

Example 3: Express '-1234.56' as an amount in Canadian dollars, using the accounting style debit/credit
indicator to indicate whether the value is negative or positive.

 VALUES DSN8.CURRENCY(-1234.56,'CD','+/-');

The result of the function is '-CD 1,234.56'.

DAYNAME
The DAYNAME function returns the name of the weekday on which a given date falls. The name is
returned in English.

DAYNAME( input-date)

The schema is DSN8.

input-date
A valid date or valid character string representation of a date. A character string representation The
string must have a data type of VARCHAR and an actual length that is not greater than 10 bytes. The
date must be in ISO format.

The result of the function is VARCHAR(9).

The DAYNAME function uses the IBM C++ classIDate.

The following table shows the external and specific names for DAYNAME. The specific names differ
depending on the data type of the input argument.

2946 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Table 430. External and specific names for DAYNAME

Input arguments External name Specific name

input-date (VARCHAR) DSN8EUDN DSN8.DSN8EUDNV

input-date (DATE) DSN8EUDN DSN8.DSN8EUDND

Example 1: For the current date, find the day of the week.

 VALUES DSN8.DAYNAME(CURRENT DATE);

Example 2: Find the day of the week on which leap year falls in the year 2008.

 VALUES DSN8.DAYNAME('2008-02-29');

The result of the function is 'Friday'.

Example 3: Find the day of the week on which Delores Quintana, employee number 000130, was hired.

 SELECT FIRSTNME || ' '
 || LASTNAME || ' was hired on '
 || DSN8.DAYNAME(HIREDATE) || ', '
 || CHAR(HIREDATE)
 FROM EMP
 WHERE EMPNO = '000130';

The result of the function is 'DELORES QUINTANA was hired on Wednesday, 1971-07-28'.

HDFS_READ
The HDFS_READ function reads data from a delimiter-separated file in the Hadoop Distributed File
System (HDFS).

HDFS_READ(file-url , options)

The schema is SYSFUN.

file-url
An expression that specifies the server address and path of the input file in HDFS. file-url is a
VARCHAR(512) value.

options
An expression that specifies a list of name=value pairs. Each pair must be separated from the
following pair by a space character. options is a VARCHAR(256) value. options can contain any of
the following name and value pairs:
delimiter=delimiter-value

Identifies the character that is used as the delimiter in the input file that is specified by file-url.
user=user-value

Specifies an IBM InfoSphere® BigInsights® user name that has access to the input file that is
specified by file-url.

password=password-value
Specifies the password for the IBM InfoSphere BigInsights user that is identified by user=user-
value.

authport=authport-value
Specifies the port for form-based authentication of the input. The default is 8080.

Appendix O. Sample user-defined functions 2947

The HDFS_READ function returns a table with one row for each record in the input file. HDFS_READ is a
generic table function, which means that the columns in the returned table are defined when the table is
referenced, instead of when the table is defined.

Example 1: Read an HDFS file whose URL is http://hdfssrv.svl.ibm.com:8080. The input file delimiter is a
comma. Use the default authorization port. The records in the input file have two fields: a DECIMAL(8,3)
field, and an INTEGER field.

SELECT * FROM TABLE(
 HDFS_READ(
 'http://hdfssrv.svl.ibm.com:8080',
 'delimiter=, user=biadmin password=passw0rd'))
 AS T1(C1 DECIMAL(8,3), C2 INTEGER);

Example 2: Read an HDFS file whose URL is the location to which the output of a successful Jaql query
is written. That location is specified by the return-string parameter of the JAQL_SUBMIT invocation that
submits the Jaql query.

SELECT * FROM TABLE(
 HDFS_READ(
 JAQL_SUBMIT(
 '[[15.3, 16],[170.99,180]]->
 write(del(location=''/tmp/test1.csv''));',
 'http://hdfssrv.svl.ibm.com:14000/webhdfs/v1/tmp/test1.csv',
 'http://jaqlsrv.svl.ibm.com:8080',
 'timeout=60 user='biadmin', password=passw0rd'),
 'user=biadmin password=passw0rd'))
 AS T1(C1 DECIMAL(8,3), C2 INTEGER);

Related reference
JAQL_SUBMIT
The JAQL_SUBMIT function invokes an IBM InfoSphere BigInsights Jaql query from a Db2 application.
Related information
Db2 11 for z/OS Technical Overview (IBM Redbooks)

HTTPBLOB
The HTTPBLOB REST function completes an HTTP request with the specified HTTP verb. Response
messages from the server are returned as BLOB data.

Tip: The sample HTTP user-defined functions are intended to be used within Db2 SQL applications to
access remote non-Db2 REST-based services through SQL statements. Do not confuse them with Db2
native REST services, which supports using a REST-based interface to interact with Db2 data from web,
mobile, and cloud applications.

HTTPBLOB ( url , method ,

httpHeader

,

<input>

)

The schema is DB2XML.

url
Specifies the URL at which to complete the request. This argument is defined as a VARCHAR(2048)
value.

method
Specifies the HTTP verb to use. Valid values are GET, POST, PUT, and DELETE.

httpHeader
Specifies an optional header XML document. This argument is defined as a CLOB(10K) value.

2948 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

http://www.redbooks.ibm.com/abstracts/sg248180.html?Open

The XML header document can provide additional HTTP header values in the following format:

<httpHeader headerAttribute="headerAttributeValue">
 <header name="name" value="value" />
</httpHeader>

headerAttribute
Specify any of the following optional attributes:
connectTimeout

Specifies an integer value for the connection timeout threshold in milliseconds.
readTimeout

Specifies an integer value for the read timeout threshold in milliseconds.
followRedirects

Specifies whether redirects should be followed. This is a boolean value.
useCaches

Specifies whether caches should be used. This is a boolean value.
responseMsgFormat

Specifies the header attribute value errorTagged, to indicate that when the server returns an
error message to the user-defined function, the user-defined function returns the following
values to the caller:

• SQLCODE 0
• The error message from the server, in the following format:

<error httprc="{HTTP-status-code}">
 {error-message-returned-from-server}
</error>

headerAttributeValue
Specifies a value for the headerAttribute. Separate headerAttribute and headerAttributeValue
combinations with single spaces.

name
The header name.

value
The header value.

<input>
Specifies the data to update at the specified URL. This argument is defined as BLOB(5M).

Related tasks
Creating REST user-defined functions (Db2 Installation and Migration)

HTTPCLOB
The HTTPCLOB REST function completes an HTTP request with the specified HTTP verb. Response
messages from the server are returned as CLOB data. The character set is converted into the database
code page if necessary.

Tip: The sample HTTP user-defined functions are intended to be used within Db2 SQL applications to
access remote non-Db2 REST-based services through SQL statements. Do not confuse them with Db2
native REST services, which supports using a REST-based interface to interact with Db2 data from web,
mobile, and cloud applications.

HTTPCLOB ( url , method ,

httpHeader

,

<input>

)

The schema is DB2XML.

Appendix O. Sample user-defined functions 2949

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_createrestudfs.html

url
Specifies the URL at which to complete the request. This argument is defined as a VARCHAR(2048)
value.

method
Specifies the HTTP verb to use. Valid values are GET, POST, PUT, and DELETE.

httpHeader
Specifies an optional header XML document. This argument is defined as a CLOB(10K) value.

The XML header document can provide additional HTTP header values in the following format:

<httpHeader headerAttribute="headerAttributeValue">
 <header name="name" value="value" />
</httpHeader>

headerAttribute
Specify any of the following optional attributes:
connectTimeout

Specifies an integer value for the connection timeout threshold in milliseconds.
readTimeout

Specifies an integer value for the read timeout threshold in milliseconds.
followRedirects

Specifies whether redirects should be followed. This is a boolean value.
useCaches

Specifies whether caches should be used. This is a boolean value.
responseMsgFormat

Specifies the header attribute value errorTagged, to indicate that when the server returns an
error message to the user-defined function, the user-defined function returns the following
values to the caller:

• SQLCODE 0
• The error message from the server, in the following format:

<error httprc="{HTTP-status-code}">
 {error-message-returned-from-server}
</error>

headerAttributeValue
Specifies a value for the headerAttribute. Separate headerAttribute and headerAttributeValue
combinations with single spaces.

name
The header name.

value
The header value.

<input>
Specifies the data to update at the specified URL. This argument is defined as CLOB(5M).

Related tasks
Creating REST user-defined functions (Db2 Installation and Migration)

HTTPDELETEBLOB and HTTPDELETECLOB
The HTTPDELETEBLOB and HTTPDELETECLOB REST functions delete a binary or text-based resource
from the specified URL through an HTTP DELETE request. HTTPDELETEBLOB returns messages as BLOB

2950 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_createrestudfs.html

data. HTTPDELETECLOB returns messages as CLOB data. The character set is converted into the database
code page if necessary.

Tip: The sample HTTP user-defined functions are intended to be used within Db2 SQL applications to
access remote non-Db2 REST-based services through SQL statements. Do not confuse them with Db2
native REST services, which supports using a REST-based interface to interact with Db2 data from web,
mobile, and cloud applications.

HTTPDELETEBLOB

HTTPDELETECLOB

( url ,

httpHeader

)

The schema is DB2XML.

url
Specifies the URL of the resource being accessed. This parameter is defined as a VARCHAR(2048)
value.

httpHeader
Specifies an optional header XML document. This argument is defined as a CLOB(10K) value.

The XML header document can provide additional HTTP header values in the following format:

<httpHeader headerAttribute="headerAttributeValue">
 <header name="name" value="value" />
</httpHeader>

headerAttribute
Specify any of the following optional attributes:
connectTimeout

Specifies an integer value for the connection timeout threshold in milliseconds.
readTimeout

Specifies an integer value for the read timeout threshold in milliseconds.
followRedirects

Specifies whether redirects should be followed. This is a boolean value.
useCaches

Specifies whether caches should be used. This is a boolean value.
responseMsgFormat

Specifies the header attribute value errorTagged, to indicate that when the server returns an
error message to the user-defined function, the user-defined function returns the following
values to the caller:

• SQLCODE 0
• The error message from the server, in the following format:

<error httprc="{HTTP-status-code}">
 {error-message-returned-from-server}
</error>

headerAttributeValue
Specifies a value for the headerAttribute. Separate headerAttribute and headerAttributeValue
combinations with single spaces.

name
The header name.

value
The header value.

Related tasks
Creating REST user-defined functions (Db2 Installation and Migration)

Appendix O. Sample user-defined functions 2951

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_createrestudfs.html

HTTPGETBLOB and HTTPGETCLOB
The HTTPGETBLOB and HTTPGETCLOB REST functions retrieve a binary or text-based resource from the
specified URL through an HTTP GET request. HTTPGETBLOB returns the resource as BLOB(5M) data.
HTTPGETCLOB returns the resource as CLOB(5M) data. The character set is converted into the database
code page if necessary.

Tip: The sample HTTP user-defined functions are intended to be used within Db2 SQL applications to
access remote non-Db2 REST-based services through SQL statements. Do not confuse them with Db2
native REST services, which supports using a REST-based interface to interact with Db2 data from web,
mobile, and cloud applications.

HTTPGETBLOB

HTTPGETCLOB

( url ,

httpHeader

)

The schema is DB2XML.

url
Specifies the URL of the resource being accessed. This argument is defined as a VARCHAR(2048)
value.

httpHeader
Specifies an optional header XML document. This argument is defined as a CLOB(10K) value.

The XML header document can provide additional HTTP header values in the following format:

<httpHeader headerAttribute="headerAttributeValue">
 <header name="name" value="value" />
</httpHeader>

headerAttribute
Specify any of the following optional attributes:
connectTimeout

Specifies an integer value for the connection timeout threshold in milliseconds.
readTimeout

Specifies an integer value for the read timeout threshold in milliseconds.
followRedirects

Specifies whether redirects should be followed. This is a boolean value.
useCaches

Specifies whether caches should be used. This is a boolean value.
responseMsgFormat

Specifies the header attribute value errorTagged, to indicate that when the server returns an
error message to the user-defined function, the user-defined function returns the following
values to the caller:

• SQLCODE 0
• The error message from the server, in the following format:

<error httprc="{HTTP-status-code}">
 {error-message-returned-from-server}
</error>

headerAttributeValue
Specifies a value for the headerAttribute. Separate headerAttribute and headerAttributeValue
combinations with single spaces.

name
The header name.

2952 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

value
The header value.

Examples
The examples in this section assume that the following requirements have been met:

• db2restudf.jar is defined in your CLASSPATH.
• The REST user-defined function (UDF) has been created.
• The server that is specified in the SQL statement is running.

In most cases, the results that are shown are truncated to include only the relevant parts of the output.

Example 1. The following SQL statement retrieves data from the www.ibm.com web page.

SELECT DB2XML.HTTPGETCLOB(
 CAST ('https://www.ibm.com' AS VARCHAR(2048)),
 CAST(NULL AS CLOB(1K)))
 FROM SYSIBM.SYSDUMMY1

The output is similar to the following:

<!doctype html>
<html lang="en-US">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width"/>
 <meta charSet="utf-8"/><title>IBM - United States</title>
 <link rel="canonical" href="https://www.ibm.com/us-en"/>
 <meta name="robots" content="index,follow"/>
 <meta name="description" content="For more than a century IBM has been dedicated ..."/>
 <meta name="keywords" content="IBM"/>
...
</html>

Example 2. The following SQL statement retrieves information that is in JSON format, about a book based
on its ISBN identifier:

SELECT DB2XML.HTTPGETCLOB(
 CAST ('https://www.googleapis.com/books/v1/volumes?q=isbn:9781583478608' AS VARCHAR(255)),
 CAST(NULL AS CLOB(1K)))
 FROM SYSIBM.SYSDUMMY1

The output is similar to the following:

{
 "kind": "books#volumes",
 "totalItems": 1,
 "items": [
 {
 "kind": "books#volume",
 "id": "7qGQvgAACAAJ",
 "etag": "qov9fok2EyI",
 "selfLink": "https://www.googleapis.com/books/v1/volumes/7qGQvgAACAAJ",
 "volumeInfo": {
 "title": "DB2 12 for Z/OS--The #1 Enterprise Database",
 "subtitle": "SECURE, SEAMLESS INTEGRATION for an Analytics, Mobile and Cloud World",
 "authors": [
 "Surekha Parekh"
],
 "publisher": "MC Press",
 "publishedDate": "2016-11-01",
 ...
}

Example 3. The following SQL statement retrieves information from the www.geonames.org web site. The
results are in XML format.

SELECT DB2XML.HTTPGETCLOB(
 CAST('http://www.geonames.org/countryInfo?lang=' ||

Appendix O. Sample user-defined functions 2953

 DB2XML.URLENCODE('en','') ||
 '&country=' ||
 DB2XML.URLENCODE('us','') ||
 '&type=XML' AS VARCHAR(255)),
 CAST(NULL AS CLOB(1K)))
FROM SYSIBM.SYSDUMMY1

This statement returns output that is similar to the following:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 <geonames>
 <country>
 <countryCode>US</countryCode>
 <countryName>United States</countryName>
 <isoNumeric>840</isoNumeric>
 <isoAlpha3>USA</isoAlpha3>
 <fipsCode>US</fipsCode>
 <continentName>North America</continentName>
 <capital>Washington</capital>
 <areaInSqKm>9629091.0</areaInSqKm>
 <population>327167434</population>
 <currencyCode>USD</currencyCode>
 <languages>en-US,es-US,haw,fr</languages>
 <geonameId>6252001</geonameId>
 <west>-124.733692</west>
 <north>49.384358</north>
 <east>-66.949607</east>
 <south>24.544093</south>
 <postalCodeFormat>#####-####</postalCodeFormat>
 </country>
 </geonames>

Related tasks
Creating REST user-defined functions (Db2 Installation and Migration)

HTTPGETBLOBFILE and HTTPGETCLOBFILE
The HTTPGETBLOBFILE and HTTPGETCLOBFILE REST functions retrieve a binary or text-based resource
from the specified URL through an HTTP GET request. The resource is stored in a temporary file, and the
path of the temporary file is returned as VARCHAR data. The character set is converted into the database
code page if necessary.

Tip: The sample HTTP user-defined functions are intended to be used within Db2 SQL applications to
access remote non-Db2 REST-based services through SQL statements. Do not confuse them with Db2
native REST services, which supports using a REST-based interface to interact with Db2 data from web,
mobile, and cloud applications.

HTTPGETBLOBFILE

HTTPGETCLOBFILE

( url ,

httpHeader

)

The schema is DB2XML.

url
Specifies the URL of the resource that is being accessed. This argument is defined as a
VARCHAR(2048) value.

httpHeader
Specifies an optional header XML document. This argument is defined as a CLOB(10K) value.

The XML header document can provide additional HTTP header values in the following format:

<httpHeader headerAttribute="headerAttributeValue">
 <header name="name" value="value" />
</httpHeader>

2954 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_createrestudfs.html

headerAttribute
Specify any of the following optional attributes:
connectTimeout

Specifies an integer value for the connection timeout threshold in milliseconds.
readTimeout

Specifies an integer value for the read timeout threshold in milliseconds.
followRedirects

Specifies whether redirects should be followed. This is a boolean value.
useCaches

Specifies whether caches should be used. This is a boolean value.
responseMsgFormat

Specifies the header attribute value errorTagged, to indicate that when the server returns an
error message to the user-defined function, the user-defined function returns the following
values to the caller:

• SQLCODE 0
• The error message from the server, in the following format:

<error httprc="{HTTP-status-code}">
 {error-message-returned-from-server}
</error>

headerAttributeValue
Specifies a value for the headerAttribute. Separate headerAttribute and headerAttributeValue
combinations with single spaces.

name
The header name.

value
The header value.

Related tasks
Creating REST user-defined functions (Db2 Installation and Migration)

HTTPHEAD
The HTTPHEAD REST function verifies the HTTP header for the specified resource through an HTTP HEAD
request. The HTTP header is returned as CLOB or XML data.

Tip: The sample HTTP user-defined functions are intended to be used within Db2 SQL applications to
access remote non-Db2 REST-based services through SQL statements. Do not confuse them with Db2
native REST services, which supports using a REST-based interface to interact with Db2 data from web,
mobile, and cloud applications.

HTTPHEAD ( url ,

httpHeader

)

The schema is DB2XML.

url
Specifies the URL of the resource. This argument is defined as a VARCHAR(2048) value.

httpHeader
Specifies an optional header XML document. This argument is defined as a CLOB(10K) value.

Appendix O. Sample user-defined functions 2955

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_createrestudfs.html

The XML header document can provide additional HTTP header values in the following format:

<httpHeader headerAttribute="headerAttributeValue">
 <header name="name" value="value" />
</httpHeader>

headerAttribute
Specify any of the following optional attributes:
connectTimeout

Specifies an integer value for the connection timeout threshold in milliseconds.
readTimeout

Specifies an integer value for the read timeout threshold in milliseconds.
followRedirects

Specifies whether redirects should be followed. This is a boolean value.
useCaches

Specifies whether caches should be used. This is a boolean value.
headerAttributeValue

Specifies a value for the headerAttribute. Separate headerAttribute and headerAttributeValue
combinations with single spaces.

name
The header name.

value
The header value.

Related tasks
Creating REST user-defined functions (Db2 Installation and Migration)

HTTPPOSTBLOB and HTTPPOSTCLOB
The HTTPPOSTBLOB and HTTPPOSTCLOB REST functions update a binary or text-based resource under
the specified URL through an HTTP POST request. Response messages from the server are returned
as BLOB for HTTPPOSTBLOB or as CLOB for HTTPPOSTCLOB. The character set is converted into the
database code page if necessary.

Tip: The sample HTTP user-defined functions are intended to be used within Db2 SQL applications to
access remote non-Db2 REST-based services through SQL statements. Do not confuse them with Db2
native REST services, which supports using a REST-based interface to interact with Db2 data from web,
mobile, and cloud applications.

HTTPPOSTBLOB

HTTPPOSTCLOB

( url ,

httpHeader

, <input>)

The schema is DB2XML.

url
Specifies the URL at which to update the data. This argument is defined as a VARCHAR(2048) value.

httpHeader
Specifies an optional header XML document. This argument is defined as a CLOB(10K) value.

The XML header document can provide additional HTTP header values in the following format:

<httpHeader headerAttribute="headerAttributeValue">
 <header name="name" value="value" />
</httpHeader>

headerAttribute
Specify any of the following optional attributes:

2956 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_createrestudfs.html

connectTimeout
Specifies an integer value for the connection timeout threshold in milliseconds.

readTimeout
Specifies an integer value for the read timeout threshold in milliseconds.

followRedirects
Specifies whether redirects should be followed. This is a boolean value.

useCaches
Specifies whether caches should be used. This is a boolean value.

responseMsgFormat
Specifies the header attribute value errorTagged, to indicate that when the server returns an
error message to the user-defined function, the user-defined function returns the following
values to the caller:

• SQLCODE 0
• The error message from the server, in the following format:

<error httprc="{HTTP-status-code}">
 {error-message-returned-from-server}
</error>

headerAttributeValue
Specifies a value for the headerAttribute. Separate headerAttribute and headerAttributeValue
combinations with single spaces.

name
The header name.

value
The header value.

<input>
Specifies the data to update at the specified URL. This argument is defined as BLOB(5M) for
HTTPPOSTBLOB or CLOB(5M) for HTTPPOSTCLOB.

Related tasks
Creating REST user-defined functions (Db2 Installation and Migration)

HTTPPUTBLOB and HTTPPUTCLOB
The HTTPPUTBLOB and HTTPPUTCLOB REST functions create or update a binary or text-based resource
under the specified URL through an HTTP PUT request. Response messages from the server are returned
as BLOB for HTTPPUTBLOB or as CLOB for HTTPPUTCLOB. The character set is converted into the
database code page if necessary.

Tip: The sample HTTP user-defined functions are intended to be used within Db2 SQL applications to
access remote non-Db2 REST-based services through SQL statements. Do not confuse them with Db2
native REST services, which supports using a REST-based interface to interact with Db2 data from web,
mobile, and cloud applications.

HTTPPUTBLOB

HTTPPUTCLOB

( url ,

httpHeader

, <input>)

The schema is DB2XML.

url
Specifies the URL at which to create or update the data. This argument is defined as a
VARCHAR(2048) value.

httpHeader
Specifies an optional header XML document. This argument is defined as a CLOB(10K) value.

Appendix O. Sample user-defined functions 2957

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_createrestudfs.html

The XML header document can provide additional HTTP header values in the following format:

<httpHeader headerAttribute="headerAttributeValue">
 <header name="name" value="value" />
</httpHeader>

headerAttribute
Specify any of the following optional attributes:
connectTimeout

Specifies an integer value for the connection timeout threshold in milliseconds.
readTimeout

Specifies an integer value for the read timeout threshold in milliseconds.
followRedirects

Specifies whether redirects should be followed. This is a boolean value.
useCaches

Specifies whether caches should be used. This is a boolean value.
responseMsgFormat

Specifies the header attribute value errorTagged, to indicate that when the server returns an
error message to the user-defined function, the user-defined function returns the following
values to the caller:

• SQLCODE 0
• The error message from the server, in the following format:

<error httprc="{HTTP-status-code}">
 {error-message-returned-from-server}
</error>

headerAttributeValue
Specifies a value for the headerAttribute. Separate headerAttribute and headerAttributeValue
combinations with single spaces.

name
The header name.

value
The header value.

<input>
Specifies the data to create or update at the specified URL. This argument is defined as BLOB(5M) for
HTTPPUTBLOB or CLOB(5M) for HTTPPUTCLOB.

Related tasks
Creating REST user-defined functions (Db2 Installation and Migration)

JAQL_SUBMIT
The JAQL_SUBMIT function invokes an IBM InfoSphere BigInsights Jaql query from a Db2 application.

JAQL_SUBMIT(jaql-script , return-string , url , options)

The schema is SYSFUN.

jaql-script
Specifies a script that contains one or more Jaql queries, with or without parameter declarations.
jaql-script is a VARCHAR(8000) value.

return-string
Specifies a string that is used as the returned value when the Jaql script completes successfully.
return-string is a VARCHAR(512) value.

2958 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_createrestudfs.html

url
Specifies the URL of a Jaql server that accepts requests from the Db2 client, runs the queries that are
specified in jaql-script, and returns results. url is a VARCHAR(512) value.

options
An expression that specifies a list of name=value pairs. Each pair must be separated from the
following pair by a space character. options is a VARCHAR(256) value. options can contain any of
the following name and value pairs:
timeout=timeout-value

Specifies the maximum time in seconds to wait for results to be returned from the Jaql server that
is specified in the url parameter.

user=user-value
Specifies an IBM InfoSphere BigInsights user name that has access to the Jaql server.

password=password-value
Specifies the password for the IBM InfoSphere BigInsights user that is identified by user=user-
value.

The JAQL_SUBMIT function returns a VARCHAR(512) string that contains the results of executing the Jaql
script.

Example 1: Submit a Jaql script to a Jaql server. The Jaql script writes an array to a file, in delimited
format. The URL of the Jaql server is http://jaqlsrv.svl.ibm.com:8080. Do not specify the string that is
to be returned if the script completes successfully. Wait for a maximum of 60 seconds for output to be
returned.

SELECT SYSFUN.JAQL_SUBMIT(
 '[[15.3, 16],[170.99,180]]->
 write(del(location=''/tmp/test1.csv''));',
 '',
 'http://jaqlsrv.svl.ibm.com:8080',
 'timeout=60 user=biadmin password=passw0rd')
 FROM SYSIBM.SYSDUMMY1;

Related information
Db2 11 for z/OS Technical Overview (IBM Redbooks)

MONTHNAME
The MONTHNAME function returns the calendar name of the month in which a given date falls. The name
is returned in English.

MONTHNAME( input-date)

The schema is DSN8.

input-date
A valid date or valid character string representation of a date. A character string representation must
have a data type of VARCHAR and an actual length that is no greater than 10 bytes. The date must be
in ISO format.

The result of the function is VARCHAR(9).

The MONTHNAME function uses the IBM C++ class IDate.

The following table shows the external and specific names for MONTHNAME. The specific names differ
depending on the data type of the input argument.

Appendix O. Sample user-defined functions 2959

http://www.redbooks.ibm.com/abstracts/sg248180.html?Open

Table 431. External and specific names for MONTHNAME

Input arguments External name Specific name

input-date (VARCHAR) DSN8EUMN DSN8.DSN8EUMNV

input-date (DATE) DSN8EUMN DSN8.DSN8EUMND

Example 1: For the current date, find the name of the month.

 VALUES DSN8.MONTHNAME(CURRENT DATE);

Example 2: Find the month of the year in which Delores Quintana, employee number 000130, was hired.

 SELECT FIRSTNME || ' '
 || LASTNAME || ' was hired in the month of '
 || DSN8.MONTHNAME(HIREDATE)
 || CHAR(HIREDATE)
 FROM EMP
 WHERE EMPNO = '000130';

The result of the function is 'DELORES QUINTANA was hired in the month of July'.

TABLE_LOCATION
The TABLE_LOCATION function searches for an object and returns the location name of the object after
any alias chains have been resolved.

TABLE_LOCATION(object-name

, object-schema

, location-name

)

The schema is DSN8.

The starting point of the resolution is the object that is specified by object-name and, if specified,
object-schema and location-name. If the starting point does not refer to an alias, the location name of the
starting point is returned. The resulting name can be of a table, view, or undefined object. The function
returns a blank if there is no location name.

object-name
A character expression that specifies the unqualified name to be resolved. The unqualified name is
usually of an existing alias. object-name must have a data type of VARCHAR and an actual length that
is no greater than 18 bytes.

object-schema
A character expression that represents the schema that is used to qualify the value specified in
object-name before resolution. object-schema must have a data type of VARCHAR and an actual
length that is no greater than 8 bytes.

If object-schema is not specified or is null, the default schema is used for the qualifier.

location-name
A character expression that represents the location that is used to qualify the value specified in
object-name before resolution. location-name must have a data type of VARCHAR and an actual length
that is no greater than 16 bytes.

If location-name is not specified or is null, the location name is equivalent to "any".

The result of the function is VARCHAR(16). If object-name can be null, the result can be null; if object-
name is null, the result is the null value.

2960 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

The following table shows the external and specific names for TABLE_LOCATION. The specific names
differ depending on the number of input arguments to the function.

Table 432. External and specific names for TABLE_LOCATION

Input arguments External name Specific name

object-name (VARCHAR) DSN8DUTI DSN8.DSN8DUTILV

object-name (VARCHAR)
object-schema (VARCHAR)

DSN8DUTI DSN8.DSN8DUTILVV

object-name (VARCHAR)
object-schema (VARCHAR)
location-name (VARCHAR)

DSN8DUTI DSN8.DSN8DUTILVVV

Example: Assume that:

• DSN8.ALIAS_RS_SYSTABLES is an alias of SYSIBM.SYSTABLES at location name 'REMOTE_SITE'.
• The CURRENT SQLID is DSN8.

Use TABLE_LOCATION to find the location name where the base object for ALIAS_RS_SYSTABLES resides.

 VALUES DSN8.TABLE_LOCATION('ALIAS_RS_SYSTABLES');

The result of the function is 'REMOTE_SITE'.

TABLE_NAME
The TABLE_NAME function searches for an object and returns the unqualified name of the object after any
alias chains have been resolved.

TABLE_NAME(object-name

, object-schema

, location-name

)

The schema is DSN8.

The starting point of the resolution is the object that is specified by object-name and, if specified,
object-schema and location name. If the starting point does not refer to an alias, the unqualified name of
the starting point is returned. The resulting name can be of a table, view, or undefined object.

object-name
A character expression that specifies the unqualified name to be resolved. The unqualified name is
usually of an existing alias. object-name must have a data type of VARCHAR and an actual length that
is no greater than 18 bytes.

object-schema
A character expression that represents the schema that is used to qualify the value specified in
object-name before resolution. object-schema must have a data type of VARCHAR and an actual
length that is no greater than 8 bytes.

If object-schema is not specified or is null, the default schema is used for the qualifier.

location-name
A character expression that represents the location that is used to qualify the value specified in
object-name before resolution. location-name must have a data type of VARCHAR and an actual length
than is no greater than 16 bytes.

Appendix O. Sample user-defined functions 2961

If location-name is not specified or is null, the location name is equivalent to "any".

The result of the function is VARCHAR(128). If object-name can be null, the result can be null; if object-
name is null, the result is the null value.

The following table shows the external and specific names for TABLE_NAME. The specific names differ
depending on the number of input arguments to the function.

Table 433. External and specific names for TABLE_NAME

Input arguments External name Specific name

object-name (VARCHAR) DSN8DUTI DSN8.DSN8DUTINV

object-name (VARCHAR)
object-schema (VARCHAR)

DSN8DUTI DSN8.DSN8DUTINVV

object-name (VARCHAR)
object-schema (VARCHAR)
location-name (VARCHAR)

DSN8DUTI DSN8.DSN8DUTINVVV

Example: Assume that:

• DSN8.VIEW_OF_SYSTABLES is a view of SYSIBM.SYSTABLES.
• DSN8.ALIAS_OF_VIEW is an alias of DSN8.VIEW_OF_SYSTABLES.
• The CURRENT SQLID is DSN8.

Use TABLE_NAME to find the name of the base object for ALIAS_OF_VIEW.

 VALUES DSN8.TABLE_NAME('ALIAS_OF_VIEW');

The result of the function is 'VIEW_OF_SYSTABLES'.

TABLE_SCHEMA
The TABLE_SCHEMA function searches for an object and returns the schema name of the object after any
synonyms or alias chains have been resolved.

TABLE_SCHEMA(object-name

, object-schema

, location-name

)

The schema is DSN8.

The starting point of the resolution is the object that is specified by objectname and objectschema. If the
starting point does not refer to an alias or synonym, the schema name of the starting point is returned.
The resulting schema name can be of a table, view, or undefined object.

object-name
A character expression that specifies the unqualified name to be resolved. The unqualified name is
usually of an existing alias. object-name must have a data type of VARCHAR and an actual length that
is no greater than 18 bytes.

object-schema
A character expression that represents the schema that is used to qualify the value specified in
object-name before resolution. object-schema must have a data type of VARCHAR and an actual
length that is no greater than 8 bytes.

If object-schema is not specified or is null, the default schema is used for the qualifier.

2962 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

location-name
A character expression that represents the location that is used to qualify the value specified in
object-name before resolution. location-name must have a data type of VARCHAR (and an actual
length that is no greater than 16 bytes.

If location-name is not specified or is null, the location name is equivalent to "any".

The result of the function is VARCHAR(128). If object-name can be null, the result can be null; if object-
name is null, the result is the null value.

The following table shows the external and specific names for TABLE_SCHEMA. The specific names differ
depending on the number of input arguments.

Table 434. External and specific names for function TABLE_SCHEMA

Input arguments External name Specific name

object-name (VARCHAR) DSN8DUTI DSN8.DSN8DUTISV

object-name (VARCHAR)
object-schema (VARCHAR)

DSN8DUTI DSN8.DSN8DUTISVV

object-name (VARCHAR)
object-schema (VARCHAR)
location-name (VARCHAR)

DSN8DUTI DSN8.DSN8DUTISVVV

Example: Assume that:

• DSN8.ALIAS_OF_SYSTABLES is an alias of SYSIBM.SYSTABLES.
• The CURRENT SQLID is DSN8.

Find the name of the schema of the base table for ALIAS_OF_SYSTABLES.

 VALUES DSN8.TABLE_SCHEMA('ALIAS_OF_SYSTABLES');

The result of the function is 'SYSIBM'.

URLENCODE and URLDECODE
The URLENCODE and URLDECODE helper REST functions complete URL encoding or decoding of the
provided text.

Tip: The sample HTTP user-defined functions are intended to be used within Db2 SQL applications to
access remote non-Db2 REST-based services through SQL statements. Do not confuse them with Db2
native REST services, which supports using a REST-based interface to interact with Db2 data from web,
mobile, and cloud applications.

URLENCODE

URLDECODE

( text , encoding)

The schema is DB2XML.

text
Specifies the text to encode or decode. This argument is defined as a VARCHAR(2048) value.

encoding
Specifies the character set that is to be used. It can be set to NULL where UTF-8 is used as the
default.

Appendix O. Sample user-defined functions 2963

Related tasks
Creating REST user-defined functions (Db2 Installation and Migration)

WEATHER
The WEATHER function returns information from a TSO data set as a Db2 table. The TSO data set contains
sample weather statistics for various cities in the United States. The statistics are returned to the client
with a row for each city and a column for each statistic. The WEATHER function is provided primarily to
help you design and implement table functions.

WEATHER( input-data-set-name) RETURNS TABLE(name-of-city

temperature-in-fahrenheit

percent-humidity

wind-direction

wind-velocity

barometer

forecast

)

The schema is DSN8.

Unlike the other sample user-defined functions, which are scalar functions, WEATHER is a table function.
WEATHER shows how to use a table function to make non-relational data available to a client for
manipulation by SQL.

input-data-set-name
The name of the TSO data set that contains sample weather statistics. The name is a character string
with a data type of VARCHAR and an actual length that is not greater than 44 bytes.

The result of the function is a Db2 table with the following columns. Each column can be null.
name-of-city

VARCHAR(30)
temperature-in-fahrenheit

INTEGER
percent-humidity

INTEGER
wind-direction

VARCHAR(5)
wind-velocity

INTEGER
barometer

FLOAT
forecast

VARCHAR(25)

The external program name for the function is DSN8DUWF, and the specific name is DSN8.DSN8DUWF.

Example: Find the name of and the forecast for the cities that have a temperature less than 25 degrees.

 SELECT CITY, FORECAST
 FROM TABLE(DSN8.WEATHER('prefix.SDSNIVPD(DSN8LWC)')) AS W
 WHERE TEMP_IN_F < 25
 ORDER BY CITY;

This example returns:

2964 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_createrestudfs.html

 Bessemer, MI Slight chance of snow
 Cheyenne, WY Continued cooling
 Helena, MT Heavy snow
 Pierre, SD Continued cold

Appendix O. Sample user-defined functions 2965

2966 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Information resources for Db2 for z/OS and related
products

You can find the online product documentation for Db2 12 for z/OS and related products in IBM
Documentation.

For all online product documentation for Db2 12 for z/OS, see IBM Documentation (https://
www.ibm.com/docs/en/db2-for-zos/12).

For other PDF manuals, see PDF format manuals for Db2 12 for z/OS (https://www.ibm.com/docs/en/
db2-for-zos/12?topic=zos-pdf-format-manuals-db2-12).

© Copyright IBM Corp. 1982, 2024 2967

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_12.0.0/home/src/tpc/db2z_12_prodhome.html
https://www.ibm.com/docs/en/db2-for-zos/12
https://www.ibm.com/docs/en/db2-for-zos/12
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/en/db2-for-zos/12?topic=zos-pdf-format-manuals-db2-12
https://www.ibm.com/docs/en/db2-for-zos/12?topic=zos-pdf-format-manuals-db2-12

2968 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785 US

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

© Copyright IBM Corp. 1982, 2024 2969

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice
as shown below:

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. (enter the year or years).

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
This information is intended to help you to code SQL statements. This information primarily documents
General-use Programming Interface and Associated Guidance Information provided by Db2 12 for z/OS.
This information also documents Product-sensitive Programming Interface and Associated Guidance
Information provided by Db2 12 for z/OS.

General-use Programming Interface and Associated Guidance Information
General-use Programming Interfaces allow the customer to write programs that obtain the services of
Db2 12 for z/OS.

Product-sensitive Programming Interface and Associated Guidance Information
Product-sensitive Programming Interfaces allow the customer installation to perform tasks such as
diagnosing, modifying, monitoring, repairing, tailoring, or tuning of this IBM software product. Use of such
interfaces creates dependencies on the detailed design or implementation of the IBM software product.
Product-sensitive Programming Interfaces should be used only for these specialized purposes. Because
of their dependencies on detailed design and implementation, it is to be expected that programs written
to such interfaces may need to be changed in order to run with new product releases or versions, or as a
result of service.

Product-sensitive Programming Interface and Associated Guidance Information is identified where it
occurs by the following markings:

Product-sensitive Programming Interface and Associated Guidance Information...

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered marks of International Business Machines
Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at: http://www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

2970 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

http://www.ibm.com/legal/copytrade.shtml

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions:

Applicability: These terms and conditions are in addition to any terms of use for the IBM website.

Personal use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Rights: Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes,
see IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies”
and the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Notices 2971

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy

2972 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Glossary

The glossary is available in IBM Documentation

For definitions of Db2 for z/OS terms, see Db2 glossary (Db2 Glossary).

© Copyright IBM Corp. 1982, 2024 2973

https://www.ibm.com/docs/en/SSEPEK_12.0.0/glossary/src/gloss/db2z_gloss.html

2974 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

Index

Special Characters
_ (underscore character) as escape character 308
- (minus sign) 250
, (comma) as decimal point 323
: (colon)

preceding a host variable 227
! (exclamation mark) as not sign 297
? (question mark) 1910
. (period) as decimal point 323
* (asterisk)

COUNT function 353
COUNT_BIG function 353
multiply sign 250
use in subselect 1011

/ (divide sign) 250
% (percent sign) as escape character 308
+ (plus sign) 250
+ (plus sign) as escape character 308
|| (vertical bars) 247

A
ABS function 382
ABSOLUTE clause

FETCH statement 1930
ABSVAL function 382
accelerator tables

SYSACCELERATEDPACKAGES 2934
SYSACCELERATEDTABLES 2932
SYSACCELERATEDTABLESAUTH 2934
SYSACCELERATORS 2931

accelerators tables
indexes 2931
table space 2931

ACCESSCTRL privilege
GRANT statement 1983
REVOKE statement 2097

accessibility
keyboard xxv
shortcut keys xxv

ACCESSPATH column
SYSPACKSTMT catalog table 2558
SYSSTMT catalog table 2651

ACOS function 383
ACQUIRE

column of SYSPLAN catalog table 2575
ACTION column

SYSINDEXCONTROL catalog table 2460
ACTIVATE VERSION clause

ALTER PROCEDURE (SQL - native) statement 1201
ACTIVE column

SYSROUTINES catalog table 2621
active logs 40
ACTIVE VERSION clause

ALTER PROCEDURE (SQL - native) statement 1200
ADD ATTRIBUTES clause

ADD ATTRIBUTES clause (continued)
ALTER TRUSTED CONTEXT statement 1372

ADD clause
ALTER TABLE statement 1246

ADD CLONE clause
ALTER TABLE statement 1289

ADD COLUMN clause
ALTER INDEX statement 1168

ADD MATERIALIZED QUERY clause
ALTER TABLE statement 1285

ADD ORGANIZE BY HASH clause
ALTER TABLE statement 1312

ADD PARTITION clause
ALTER TABLE statement 1276

ADD RESTRICT ON DROP clause
ALTER TABLE statement 1290

ADD USE FOR clause
ALTER TRUSTED CONTEXT statement 1374

ADD VERSION clause
ALTER PROCEDURE (SQL - native) statement 1200

ADD VOLUMES clause of ALTER STOGROUP statement 1229
ADD_DAYS scalar function 383
ADD_MONTHS function 384
ADDRESS clause

ALTER TRUSTED CONTEXT statement 1372
CREATE TRUSTED CONTEXT statement 1790

ADMIN_COMMAND_Db2 stored procedure 699
ADMIN_COMMAND_DSN stored procedure 712
ADMIN_COMMAND_MVS stored procedure 714
ADMIN_COMMAND_UNIX stored procedure 725
ADMIN_DB_BROWSE stored procedure 729
ADMIN_DB_DELETE stored procedure 732
ADMIN_DS_LIST stored procedure 735
ADMIN_DS_RENAME stored procedure 741
ADMIN_DS_SEARCH stored procedure 744
ADMIN_DS_WRITE stored procedure 747
ADMIN_EXPLAIN_MAINT 751
ADMIN_INFO_HOST stored procedure 760
ADMIN_INFO_SMS stored procedure 766
ADMIN_INFO_SQL stored procedure 771
ADMIN_INFO_SSID stored procedure 770
ADMIN_INFO_SYSLOG stored procedure 781
ADMIN_INFO_SYSPARM stored procedure 784
ADMIN_JOB_CANCEL stored procedure 788
ADMIN_JOB_FETCH stored procedure 791
ADMIN_JOB_QUERY stored procedure 794
ADMIN_JOB_SUBMIT stored procedure 798
ADMIN_TASK_ADD stored procedure 802
ADMIN_TASK_CANCEL stored procedure 808
ADMIN_TASK_LIST function 669
ADMIN_TASK_OUTPUT function 673
ADMIN_TASK_REMOVE stored procedure 809
ADMIN_TASK_STATUS function 675
ADMIN_TASK_UPDATE stored procedure 811
ADMIN_UPDATE_SYSPARM stored procedure 814
ADMIN_UTL_EXECUTE

stored procedure 822

Index 2975

ADMIN_UTL_MODIFY
stored procedure 830

ADMIN_UTL_MONITOR
stored procedure 824

ADMIN_UTL_SCHEDULE stored procedure 832
ADMIN_UTL_SORT stored procedure 841
administrative task schedulers

ADMIN_TASK_CANCEL stored procedure 808
ADMIN_TASK_UPDATE stored procedure 811
tasks

adding 802
removing 809

AFTER clause
FETCH statement 1928

AFTER clause of CREATE TRIGGER statement 1348, 1746,
1773
aggregate function

COVAR_SAMP 361
COVARIANCE_SAMP 361

alias
creating 1415
description 88
dropping 1891
naming convention 79
qualifying a column name 220
unqualified name 86

ALIAS clause
COMMENT statement 1401
CREATE ALIAS statement 1415
DROP statement 1891
LABEL statement 2016

aliases 32
ALL

clause of RELEASE statement 2064
clause of subselect 1010
keyword

aggregate functions 353
AVG function 357
COUNT function 358
COUNT_BIG function 359
MAX function 367
MIN function 369
STDDEV_POP function 376
STDDEV_SAMP function 377
SUM function 378
VAR_POP function 379
VARIANCE_SAMP function 380

quantified predicate 300
ALL PRIVILEGES clause

GRANT statement 1988
REVOKE statement 2101

ALL SQL clause of RELEASE statement 2064
ALLOBJAUTH

column of SYSDYNQRYDEP catalog table 2446
ALLOCATE CURSOR statement

description 1093
example 1093

ALLOW DEBUG MODE clause
ALTER PROCEDURE (external) statement 1188
ALTER PROCEDURE (SQL - native) statement 1203
CREATE PROCEDURE (external) statement 1588
CREATE PROCEDURE (SQL - native) statement 1124,
1438, 1618

ALLOW PARALLEL clause

ALLOW PARALLEL clause (continued)
ALTER FUNCTION statement 1108
CREATE FUNCTION statement 1437, 1467

ALLOWPUBLIC column
SYSCONTEXT catalog table 2401

alphabetic extender 75
ALTDATE function 2941
ALTDATE user-defined function

sample 20
ALTER ATTRIBUTES clause

ALTER TRUSTED CONTEXT statement 1372
ALTER clause

ALTER TRUSTED CONTEXT statement 1370
ALTER COLUMN clause

ALTER TABLE statement 1259
ALTER DATABASE statement

description 1095
example 1095

ALTER FUNCTION (compiled SQL scalar) statement
description 1113
examples 1141

ALTER FUNCTION (external scalar) statement
example 1112

ALTER FUNCTION (external) statement
description 1097

ALTER FUNCTION (inlined SQL scalar) statement
description 1142

ALTER FUNCTION (SQL scalar) statement
examples 1150

ALTER FUNCTION (SQL table) statement
description 1150
examples 1157

ALTER INDEX statement
description 1157
example 1173

ALTER MASK statement
description 1174
examples 1177

ALTER MATERIALIZED QUERY clause
ALTER TABLE statement 1287

ALTER PARTITION
clause of ALTER INDEX statement 1170
clause of CREATE TABLESPACE statement 1726

ALTER PARTITION clause
ALTER TABLE statement 1279
ALTER TABLESPACE statement 1335

ALTER PERMISSION statement
description 1177
examples 1179

ALTER privilege
GRANT statement 1979, 1988
REVOKE statement 2093, 2101

ALTER PROCEDURE (external) statement
description 1180
example 1189

ALTER PROCEDURE (SQL - external) statement
description 1189
example 1194

ALTER PROCEDURE (SQL - native) statement
description 1194
examples 1222

ALTER SEQUENCE statement
description 1224
example 1228

2976 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

ALTER STOGROUP statement
description 1228
example 1231

ALTER TABLE statement
alternative syntax 1316
check constraints

defining 27
DEFAULT clause 25
description 1232
examples 1316

ALTER TABLESPACE statement
description 1321
example 1342

ALTER TRIGGER statement
description 1342, 1365
examples 1365, 1367

ALTER TRUSTED CONTEXT statement
description 1368
examples 1378
usage notes 1376

ALTER VERSION clause
ALTER PROCEDURE (SQL - native) statement 1200

ALTER VIEW statement
description 1378

ALTERAUTH
column of SYSSEQUENCEAUTH catalog table 2640

ALTERAUTH column of SYSTABAUTH catalog table 2659
ALTEREDTS

SYSSTOGROUP catalog table 2655
ALTEREDTS column

SYSCOLUMNS catalog table 2381
SYSCONTEXT catalog table 2401
SYSDATABASE catalog table 2427
SYSINDEXES catalog table 2461
SYSINDEXPART catalog table 2474
SYSJAROBJECTS catalog table 2495
SYSROUTINES catalog table 2621
SYSSEQUENCES catalog table 2643
SYSTABLEPART catalog table 2665
SYSTABLES catalog table 2678
SYSTABLESPACE catalog table 2688

ALTERIN privilege
GRANT statement 1978
REVOKE statement 2091

ALTERINAUTH column of SYSSCHEMAAUTH catalog table
2638
alternative syntax

GRANT (type or JAR file privileges) statement 1991
REVOKE (type or JAR file privileges) statement 2105
SET PATH statement 2165

ALTTIME function 2943
ALTTIME user-defined function

sample 20
AND

truth table 319
ANY

quantified predicate 300
USING clause of DESCRIBE statement 1874, 1882,
2044

APOST option
precompiler 324

apostrophe
string delimiter precompiler option 324

APOSTSQL option

APOSTSQL option (continued)
precompiler 324

APP_ENCODING_CCSID column
SYSVIEWS catalog table 2730

APPEND
clause of CREATE TABLE statement 1700

APPEND clause
ALTER TABLE statement 1291

APPEND column
SYSTABLES catalog table 2678

APPLICATION ENCODING SCHEME clause
ALTER PROCEDURE (SQL - native) statement 1207
CREATE PROCEDURE (SQL - native) statement 1126,
1441, 1622
CREATE TRIGGER statement 1353, 1751

application plan
privileges

GRANT statement 1977
REVOKE statement 2089

application plans 45, 57
application process

initial state in distributed unit of work 69
initial state in remote unit of work 72
state transitions 69

application processes 42, 43, 55
application program

SQLCA 2303
SQLDA 2313

application programming
performance

for application programmers 2777
recommendations 2777

performance recommendations 2777
application programs

recovery 43, 55
application requester

definition of 68
application server

definition of 68
APPLICATION_ENCODING_CCSID column

SYSENVIRONMENT catalog table 2452
APPLICATION_ENCODING_SCHEME session variable 336
APREUSE_NO_FL column

SYSPACKAGE catalog table 2519
APREUSE_NO_TS column

SYSPACKAGE catalog table 2519
archive logs 40
ARCHIVE privilege

GRANT statement 1983
REVOKE statement 2097

archive-enabled table
creating 1293

ARCHIVEAUTH column of SYSUSERAUTH catalog table 2715
arguments

passing to stored procedure 1387
arithmetic

regression functions 374
arithmetic operators 250
array

variable 234
array constructor

definition 279
array element specification

definition 278

Index 2977

array type
comparison of values 166
creating 1795
description 127
naming convention 80

array variable
FETCH statement 1936

ARRAY_AGG function 354
ARRAY_DELETE function 386
ARRAY_EXISTS predicate 302
ARRAY_FIRST function 387
ARRAY_LAST function 388
ARRAY_NEXT function 389
ARRAY_PRIOR function 391
ARRAY_TRIM function 392
array-variable

SELECT INTO statement 2119
ARRAYINDEXSUBTYPE column

SYSDATATYPES catalog table 2429
ARRAYINDEXTYPEID column

SYSDATATYPES catalog table 2429
ARRAYINDEXTYPELEN column

SYSDATATYPES catalog table 2429
ARRAYLENGTH column

SYSDATATYPES catalog table 2429
AS (fullselect) WITH NO DATA clause

DECLARE GLOBAL TEMPORARY TABLE statement 1837
AS clause

CREATE VIEW statement 1815
naming result columns 1011
use in subselect 1011

AS IDENTITY clause
ALTER TABLE statement 1251
CREATE TABLE statement 1676
DECLARE GLOBAL TEMPORARY TABLE statement 1836

AS LOCATOR clause
CREATE FUNCTION statement 1458, 1477, 1503
CREATE PROCEDURE (external) statement 1587
CREATE PROCEDURE (SQL - native) statement 1617

AS SECURITY LABEL clause
ALTER TABLE statement 1257
CREATE TABLE statement 1679

AS WORKFILE clause of CREATE DATABASE statement 1422
ASC clause

ALTER TABLE statement 1275
CREATE INDEX statement 1532
CREATE TABLE statement 1695
select-statement 1045

ASCII
definition 59
effect on MBCS and DBCS characters 104
encoding schemes 17

ASCII function 393
ASCII_CHR function 393
ASCII_STR function 394
ASCIISTR function 394
ASENSITIVE clause

DECLARE CURSOR statement 1821
ASIN function 395
assembler application program

host variable
EXECUTE IMMEDIATE statement 1915
referencing 227

INCLUDE SQLCA 2308

assembler application program (continued)
INCLUDE SQLDA 2326
varying-length string variables 104

assignment
compatibility rules 143
datetime values 151
numbers 145
row ID values 153
statement

example 2217, 2281
SQL procedure 2217, 2281

strings, basic rules for 149
user-defined type values 153
XML values 153

ASSOCIATE LOCATORS statement
description 1380
example 1382

asterisk (*)
COUNT function 358
COUNT_BIG function 359
multiply sign 250
use in subselect 1011

ASUTIME clause
ALTER FUNCTION statement 1109
ALTER PROCEDURE (external) statement 1186
ALTER PROCEDURE (SQL - external) statement 1192
ALTER PROCEDURE (SQL - native) statement 1204
CREATE FUNCTION statement 1468, 1486
CREATE PROCEDURE (external) statement 1593
CREATE PROCEDURE (SQL - external) statement 1604
CREATE PROCEDURE (SQL - native) statement 1124,
1438, 1619
CREATE TRIGGER statement 1351, 1749

ASUTIME column
SYSROUTINES catalog table 2621
SYSTRIGGERS catalog table 2712

ATAN function 395
ATAN2 function 396
ATANH function 395
ATOMIC clause

INSERT statement 2005
PREPARE statement 2049

ATTRIBUTES clause
CREATE TRUSTED CONTEXT statement 1790
PREPARE statement 2045

AUDIT
clause of CREATE TABLE statement 1697

AUDIT clause
ALTER TABLE statement 1292

auditing
ALTER TABLE statement 1292
CREATE TABLE statement 1697

AUDITING column of SYSTABLES catalog table 2678
AUTHENTICATE column

SYSCONTEXTAUTHIDS catalog table 2404
AUTHENTICATEPUBLIC column

SYSCONTEXT catalog table 2401
AUTHHOWGOT

column of SYSSEQUENCEAUTH catalog table 2640
AUTHHOWGOT column

SYSDBAUTH catalog table 2432
SYSPACKAUTH catalog table 2536
SYSPLANAUTH catalog table 2582
SYSRESAUTH catalog table 2615

2978 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

AUTHHOWGOT column (continued)
SYSROUTINEAUTH catalog table 2619
SYSSCHEMAAUTH catalog table 2638
SYSUSERAUTH catalog table 2715
SYSVARIABLEAUTH catalog table 2722

AUTHHOWGOT column of SYSTABAUTH catalog table 2659
AUTHID

column of MODESELECT catalog table 2358
column of SYSCOPY catalog table 2408
column of SYSDYNQRYDEP catalog table 2446
column of USERNAMES catalog table 2737

AUTHID column
SYSCONTEXTAUTHIDS catalog table 2404

AUTHID_TYPE
column of SYSDYNQRYDEP catalog table 2446

authorization
clause of CONNECT statement 1410
naming convention 80

authorization ID
primary 92
privileges 90
secondary 92
translating

concepts 98
autonomic statistics

stored procedures
ADMIN_UTL_EXECUTE 822
ADMIN_UTL_MODIFY 830
ADMIN_UTL_MONITOR 824

AUX clause of CREATE AUXILIARY TABLE statement 1419
aux-table

naming convention 80
AUXILIARY clause of CREATE AUXILIARY TABLE statement
1419
auxiliary table

CREATE AUXILIARY TABLE statement 1418
AUXRELOBID column

SYSAUXRELS catalog table 2368
AUXTBNAME column of SYSAUXRELS catalog table 2368
AUXTBOWNER column of SYSAUXRELS catalog table 2368
AVG function 357
AVGKEYLEN column

SYSINDEXES catalog table 2461
SYSINDEXES_HIST catalog table 2472
SYSINDEXPART catalog table 2474
SYSINDEXPART_HIST catalog table 2480

AVGROWLEN column
SYSTABLEPART catalog table 2665
SYSTABLEPART_HIST catalog table 2675
SYSTABLES catalog table 2678
SYSTABLES_HIST catalog table 2707
SYSTABLESPACE catalog table 2688

AVGSIZE column
SYSLOBSTATS catalog table 2516
SYSPACKAGE catalog table 2519
SYSPLAN catalog table 2575

B
BASE64DECODE function 2945
BASE64ENCODE function 2945
BASED UPON CONNECTION clause

CREATE TRUSTED CONTEXT statement 1789
basic operations in SQL 143

basic predicate 297
BAUTH

column of SYSDYNQRYDEP catalog table 2446
BAUTH column

SYSDEPENDENCIES catalog table 2439
BCOLNAME column

SYSDEPENDENCIES catalog table 2439
BCOLNO column

SYSDEPENDENCIES catalog table 2439
BCREATOR column

SYSPLANDEP catalog table 2584
SYSVIEWDEP catalog table 2729

BEFORE clause of CREATE TRIGGER statement 1348, 1746,
1772
BEGIN DECLARE SECTION statement

description 1383
example 1384

BETWEEN predicate 303
BIGINT

data type
CREATE TABLE statement 1663

BIGINT (binary large integer) function 396
BINARY

data type 1663
BINARY function 397
binary large object (BLOB) 116
BINARY LARGE OBJECT data type 116
binary string

constants 172
description 116
operands 168

binary strings
varying-length

description 116
bind behavior for dynamic SQL statements 94
BIND PACKAGE subcommand of DSN

options
QUALIFIER 86

BIND PLAN subcommand of DSN
options

QUALIFIER 86
BIND privilege

GRANT statement 1975, 1977
REVOKE statement 2087, 2089

bind process 93
BIND_OPTS column

SYSJAVAOPTS catalog table 2496
SYSROUTINES_OPTS catalog table 2635

BINDADD privilege
binding a package 96
GRANT statement 1983
REVOKE statement 2097

BINDADDAUTH column of SYSUSERAUTH catalog table
2715
BINDAGENT privilege

GRANT statement 1983
REVOKE statement 2097

BINDAGENTAUTH column of SYSUSERAUTH catalog table
2715
BINDAUTH column

SYSPACKAUTH catalog table 2536
SYSPLANAUTH catalog table 2582

BINDERROR column of SYSPACKSTMT catalog table 2558
binding

Index 2979

binding (continued)
process 93

BINDTIME column
SYSPACKAGE catalog table 2519

BIT data
description 104

BIT string subtype 17
BITAND function 398
BITANDNOT function 398
BITNOT function 398
BITOR function 398
BITXOR function 398
BLOB

length 17
LOB data type 22

BLOB (binary large object)
data type

description 116
description 116
file reference 232
locator 230
variable 230

BLOB (binary large object) function 400
BLOB LARGE OBJECT data type 1663
BLOCKING_THREADS function 678
BNAME

column of SYSDYNQRYDEP catalog table 2446
BNAME column

SYSCONSTDEP catalog table 2400
SYSDEPENDENCIES catalog table 2439
SYSPACKDEP catalog table 2554
SYSPLANDEP catalog table 2584
SYSVIEWDEP catalog table 2729

BNAME column of SYSSEQUENCEDEP catalog table 2646
bootstrap data set (BSDS)

overview 40
BOTH

USING clause of DESCRIBE statement 1874, 1882
BOUNDBY column of SYSPLAN catalog table 2575
BOUNDTS column

SYSPLAN catalog table 2575
BOWNER column

SYSDEPENDENCIES catalog table 2439
BOWNERTYPE column

SYSDEPENDENCIES catalog table 2439
BPOOL column

SYSDATABASE catalog table 2427
SYSINDEXES catalog table 2461
SYSTABLESPACE catalog table 2688

BQUALIFIER
column of SYSDYNQRYDEP catalog table 2446

BQUALIFIER column of SYSPACKDEP catalog table 2554
BSCHEMA column

SYSCONSTDEP catalog table 2400
SYSDEPENDENCIES catalog table 2439
SYSVIEWDEP catalog table 2729

BSCHEMA column of SYSSEQUENCEDEP catalog table 2646
BSDS (bootstrap data set)

privilege
granting 1983
revoking 2097

BSDSAUTH column of SYSUSERAUTH catalog table 2715
BSEQUENCEID column of SYSSEQUENCEDEP catalog table
2646

BTRIM function 401
BTYPE

column of SYSDYNQRYDEP catalog table 2446
BTYPE column

SYSCONSTDEP catalog table 2400
SYSDEPENDENCIES catalog table 2439
SYSPACKDEP catalog table 2554
SYSPLANDEP catalog table 2584
SYSVIEWDEP catalog table 2729

buffer pool
naming convention 80

buffer pools
described 41

BUFFERPOOL
clause of CREATE TABLE statement 1701

BUFFERPOOL clause
ALTER DATABASE statement 1095
ALTER INDEX statement 1161
ALTER TABLESPACE statement 1324
CREATE DATABASE statement 1422
CREATE INDEX statement 1544
CREATE LOB TABLESPACE statement 1556
CREATE TABLESPACE statement 1724

BUFFERPOOL privilege
GRANT statement 1993
REVOKE statement 2108

BUILDDATE column
SYSROUTINES_OPTS catalog table 2635
SYSROUTINES_SRC catalog table 2637

BUILDNAME column
SYSJAVAOPTS catalog table 2496
SYSROUTINES_OPTS catalog table 2635

BUILDOWNER column
SYSJAVAOPTS catalog table 2496
SYSROUTINES_OPTS catalog table 2635

BUILDSCHEMA column
SYSJAVAOPTS catalog table 2496
SYSROUTINES_OPTS catalog table 2635

BUILDSTATUS column
SYSROUTINES_OPTS catalog table 2635
SYSROUTINES_SRC catalog table 2637

BUILDTIME column
SYSROUTINES_OPTS catalog table 2635
SYSROUTINES_SRC catalog table 2637

built-in data type 98
built-in function

description 237
invocation 242
resolution 239, 243
string units 106

built-in functions
list 341

built-in global variable
CATALOG_LEVEL 329
CLIENT_IPADDR 330
DEFAULT_SQLLEVEL 330
GET_ARCHIVE 330
MAX_LOCKS_PER_TABLESPACE 331
MAX_LOCKS_PER_USER 331
MOVE_TO_ARCHIVE 332
PRODUCTID_EXT 332
REPLICATION_OVERRIDE 333
TEMPORAL_LOGICAL_TRANSACTION_TIME 334
TEMPORAL_LOGICAL_TRANSACTIONS 334

2980 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

built-in session variables 227
business rules

enforcing 15, 32
triggers 32

BUSINESS_TIME SENSITIVE clause
CREATE TRIGGER statement 1357, 1755

BY clause of REVOKE statement 2071

C
C application program

host variable
EXECUTE IMMEDIATE statement 1915
referencing 227

INCLUDE SQLCA 2308
INCLUDE SQLDA 2326
varying-length string 104

CACHE
clause of ALTER SEQUENCE statement 1226

CACHE clause
ALTER TABLE statement 1253
CREATE SEQUENCE statement 1642

CACHE column of SYSSEQUENCES catalog table 2643
CACHESIZE

column of SYSPLAN catalog table 2575
Call Level Interface (CLI) 3
CALL statement

description 1384
example 1394, 2218, 2282
SQL procedure 2218, 2282

CALLED ON NULL INPUT clause
ALTER FUNCTION statement 1105, 1148
CREATE FUNCTION (inlined SQL scalar) statement 1496
CREATE FUNCTION statement 1437, 1463, 1482
CREATE PROCEDURE (external) statement 1595
CREATE PROCEDURE (SQL - external) statement 1603

capturing changed data
ALTER TABLE statement 1288
CREATE TABLE statement 1698

CARD column
SYSTABLEPART catalog table

description 2665
SYSTABSTATS catalog table

description 2710
CARDF column

SYSCOLDIST catalog table 2373
SYSCOLDIST_HIST catalog table 2377
SYSCOLDISTSTATS catalog table 2375
SYSINDEXPART catalog table 2474
SYSINDEXPART_HIST catalog table 2480
SYSKEYTARGETS catalog table 2500
SYSKEYTARGETS_HIST catalog table 2505
SYSKEYTARGETSTATS catalog table 2503
SYSKEYTGTDIST catalog table 2509
SYSKEYTGTDIST_HIST catalog table 2513
SYSKEYTGTDISTSTATS catalog table 2511
SYSTABLEPART catalog table 2665
SYSTABLEPART_HIST catalog table 2675
SYSTABLES catalog table 2678
SYSTABLES_HIST catalog table 2707
SYSTABSTATS catalog table 2710
SYSTABSTATS_HIST catalog table 2711

CARDINALITY clause 1021
CARDINALITY column

CARDINALITY column (continued)
SYSROUTINES catalog table 2621

CARDINALITY function 402
CARDINALITY MULTIPLIER clause 1021
CASCADE delete rule

ALTER TABLE statement 1271
CREATE TABLE statement 1684

cascade revoke 2072
CASE expression

description 264
CASE statement

example 2219, 2284
SQL procedure 2219, 2284

cast function 238
CAST specification

definition 267
NULL 267
parameter marker 267
string units 106

CAST_FUNCTION column
SYSPARMS catalog table 2565
SYSROUTINES catalog table 2621

CAST_FUNCTION_ID column of SYSPARMS catalog table
2565
casting

XML values 277
casts

data types 130
catalog

naming convention 80
catalog indexes 2744
catalog name

VCAT clause
ALTER INDEX statement 1163
CREATE INDEX statement 1538
CREATE LOB TABLESPACE statement 1559
CREATE TABLESPACE statement 1732

catalog tables
description 2333
history tables 2742
IPLIST 2348
IPNAMES 2349
LOCATIONS 2351
LULIST 2353
LUMODES 2353
LUNAMES 2354
MODESELECT 2358
release dependency indicators 2333
SQL statements allowed 2739
SYSAUDITPOLICIES

contents 2358
SYSAUTOALERTS 2364
SYSAUTOALERTS_OUT 2365
SYSAUTORUNS_HIST 2366
SYSAUTORUNS_HISTOU 2366
SYSAUTOTIMEWINDOWS 2367
SYSAUXRELS 2368
SYSCHECKDEP 2369
SYSCHECKS 2369
SYSCHECKS2 2370
SYSCOLAUTH 2371
SYSCOLDIST

contents 2373
SYSCOLDISTSTATS

Index 2981

catalog tables (continued)
SYSCOLDISTSTATS (continued)

contents 2375
SYSCOLSTATS

contents 2379
SYSCOLUMNS

contents 2381
SYSCOLUMNS_HIST

contents 2395
SYSCONSTDEP 2400
SYSCONTEXT

contents 2401
SYSCONTEXTAUTHIDS

contents 2404
SYSCONTROLS

contents 2405
SYSCOPY

contents 2408
SYSCTXTTRUSTATTRS

contents 2426
SYSDATABASE

contents 2427
SYSDATATYPES 2429
SYSDBAUTH 2432
SYSDBRM 2437
SYSDEPENDENCIES 2439
SYSDUMMY1 2443
SYSDUMMYA 2443
SYSDUMMYE 2444
SYSDUMMYU 2444
SYSDYNQRY

contents 2444
SYSDYNQRYDEP

contents 2446
SYSENVIRONMENT 2452
SYSFIELDS 2456
SYSFOREIGNKEYS 2458
SYSIBM.SYSINDEXCLEANUP 2458
SYSIBM.SYSQUERYSEL 2611
SYSIBM.SYSSTATFEEDBACK 2649
SYSIBMS.SYSQUERYPREDICATE 2606
SYSINDEXCONTROL

contents 2460
SYSINDEXES

contents 2461
SYSINDEXES_HIST

contents 2472
SYSINDEXES_RTSECT 2474
SYSINDEXES_TREE 2474
SYSINDEXPART

contents 2474
SYSINDEXPART_HIST 2480
SYSINDEXSPACESTATS

contents 2482
SYSINDEXSTATS

contents 2490
SYSINDEXSTATS_HIST 2492
SYSJARCLASS_SOURCE 2494
SYSJARCONTENTS 2494
SYSJARDATA 2495
SYSJAROBJECTS 2495
SYSJAVAOPTS 2496
SYSJAVAPATHS 2497
SYSKEYCOLUSE 2497

catalog tables (continued)
SYSKEYS 2498
SYSKEYTARGETS

contents 2500
SYSKEYTARGETS_HIST

contents 2505
SYSKEYTARGETSTATS

contents 2503
SYSKEYTGTDIST

contents 2509
SYSKEYTGTDIST_HIST

contents 2513
SYSKEYTGTDISTSTATS

contents 2511
SYSLEVELUPDATES 2515
SYSLOBSTATS 2516
SYSLOBSTATS_HIST 2516
SYSOBJROLEDEP

contents 2517
SYSPACKAGE 2519
SYSPACKAUTH 2536
SYSPACKCOPY 2538
SYSPACKDEP 2554
SYSPACKLIST 2558
SYSPACKSTMT 2558
SYSPACKSTMT_STMB 2565
SYSPACKSTMT_STMT 2565
SYSPARMS 2565
SYSPENDINGDDL

contents 2570
SYSPENDINGOBJECTS

contents 2572
SYSPKSYSTEM 2574
SYSPLAN 2575
SYSPLANAUTH

contents 2582
SYSPLANDEP

contents 2584
SYSPLSYSTEM 2586
SYSQUERY 2587
SYSQUERY_AUX 2613
SYSQUERYOPTS 2590
SYSQUERYPLAN 2592
SYSRELS

contents 2613
SYSRESAUTH 2615
SYSROLES

contents 2618
SYSROUTINEAUTH 2619
SYSROUTINES

contents 2621
SYSROUTINES_OPTS 2635
SYSROUTINES_SRC 2637
SYSROUTINES_TREE 2637
SYSROUTINESTEXT

contents 2635
SYSSCHEMAAUTH 2638
SYSSEQUENCEAUTH 2640
SYSSEQUENCES 2643
SYSSEQUENCESDEP 2646
SYSSESESSION 2647
SYSSESESSION_EX 2648
SYSSESESSION_STATUS 2648
SYSSTMT 2651

2982 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

catalog tables (continued)
SYSSTOGROUP

contents 2655
SYSSTRINGS

contents 2656
SYSSYNONYMS 2658
SYSTABAUTH

contents 2659
SYSTABCONST

contents 2664
SYSTABLEPART

contents 2665
SYSTABLEPART_HIST

contents 2675
SYSTABLES

contents 2678
SYSTABLES_HIST

contents 2707
SYSTABLES_PROFILE_TEXT 2710
SYSTABLES_PROFILES 2709
SYSTABLESPACE

contents 2688
SYSTABLESPACESTATS

contents 2699
SYSTABSTATS

contents 2710
SYSTABSTATS_HIST

contents 2711
SYSTRIGGERS 2712
SYSTRIGGERS_STMT 2715
SYSUSERAUTH 2715
SYSVARIABLEAUTH 2722
SYSVARIABLES 2724
SYSVARIABLES_DESC 2728
SYSVARIABLES_TEXT 2728
SYSVIEWDEP

contents 2729
SYSVIEWS 2730
SYSVIEWS_STMT 2733
SYSVIEWS_TREE 2733
SYSVOLUMES 2733
SYSXMLRELS 2734
SYSXMLSTRINGS 2735
SYSXMLTYPMOD 2735
SYSXMLTYPMSCHEMA 2736
temporal data 2742
USERNAMES 2737

CATALOG_LEVEL
built-in global variable 329

catalog, DB2
tables 2333

catalogs 38
CCSID

clause of CREATE DATABASE statement 1423
clause of CREATE FUNCTION (inlined SQL scalar)
statement 1494
clause of CREATE FUNCTION statement 1434, 1458,
1477, 1502
clause of CREATE GLOBAL TEMPORARY TABLE
statement 1521
clause of CREATE TABLE statement 1698
clause of CREATE TABLESPACE statement 1727
clause of CREATE TYPE (distinct) statement 1803

CCSID (continued)
clause of DECLARE GLOBAL TEMPORARY TABLE
statement 1839
column of SYSPARMS catalog table 2565

CCSID (coded character set identifier)
definition 59
Definition 62
description 59

CCSID (Coded Character Set Identifier)
of strings 63

CCSID clause
ALTER DATABASE statement 1095
ALTER TABLESPACE statement 1324
CREATE PROCEDURE (external) statement 1586
CREATE PROCEDURE (SQL - external) statement 1601

CCSID column
SYSCOLUMNS catalog table 2381
SYSKEYTARGETS catalog table 2500
SYSVARIABLES catalog table 2724

CCSID_ENCODING function 403
CDB (communications database) 38
CEIL function 404
CEILING function 404
CHAR

data type 103
CHAR function 405
CHAR LARGE OBJECT data type 103, 1663
CHAR VARYING data type 103, 1663
CHAR_LENGTH function 413
character 75
character conversion

ASCII 59
character set 59
code page 59
code point 59
coded character set 59
comparison rules 159
concatenation rules 1066
contracting conversion 68
description 59
EBCDIC 59
encoding scheme 59
expanding conversion 67
set operations rules 1066
substitution character 59
SYSIBM.SYSSTRINGS catalog table 2656
Unicode 59
UTF-16 59
UTF-8 59

Character conversion
Coded character sets and ccsids 62

CHARACTER data type
CREATE TABLE statement 1663
description 103

character large object (CLOB) 116
CHARACTER LARGE OBJECT data type 103, 1663
character set 59
character string

comparison 157
description 102
empty 102
operands 168

character strings
BTRIM scalar function 401

Index 2983

CHARACTER VARYING data type 103, 1663
CHARACTER_LENGTH function 413
CHARSET column

SYSDBRM catalog table 2437
SYSENVIRONMENT catalog table 2452
SYSPACKAGE catalog table 2519

CHECK
clause of CREATE TABLE statement 1685
column of SYSVIEWS catalog table 2730

CHECK clause
ALTER TABLE statement 1273

check constraint
defining

ALTER TABLE statement 1273
SYSCHECKDEP catalog table 2369

check constraints
column values

enforcing validity 27
inserting rows into tables 27
updating tables 27

CHECKCONDITION column
SYSCHECKS catalog table 2369

CHECKEXISTINGDATA column
SYSRELS catalog table 2613

CHECKFLAG column
SYSTABLEPART catalog table 2665
SYSTABLES catalog table 2678

CHECKNAME column
SYSCHECKDEP catalog table 2369
SYSCHECKS catalog table 2369
SYSCHECKS2 catalog table 2370

CHECKRID5B column
SYSTABLEPART catalog table 2665
SYSTABLES catalog table 2678

CHECKS column
SYSTABLES catalog table 2678

CHILDREN column of SYSTABLES catalog table 2678
CHR function 415
CLASS

column of SYSDYNQRYDEP catalog table 2446
CLASS column

SYSJARCONTENTS catalog table 2494
SYSROUTINES catalog table 2621

CLASS_SOURCE column
SYSJARCLASS_SOURCE catalog table 2494
SYSJARCONTENTS catalog table 2494

CLASS_SOURCE_ROWID column
SYSJARCONTENTS catalog table 2494

CLI (Call Level Interface) 3
CLIENT_IPADDR

built-in global variable 330
CLOB

LOB data type 22
CLOB (character large object)

description 103, 116, 1663
file reference 232
function 415
locator 230
variable 230

CLONE column
SYSTABLESPACE catalog table 2688

clone table
naming convention 80

CLOSE

CLOSE (continued)
clause of ALTER INDEX statement 1161
clause of CREATE INDEX statement

description 1544
clause of CREATE TABLESPACE statement

description 1556, 1728
statement

description 1395
example 1396

CLOSE clause
ALTER TABLESPACE statement 1325

closed state of cursor 2039
CLOSERULE column

SYSINDEXES catalog table 2461
SYSTABLESPACE catalog table 2688

CLUSTER clause
ALTER INDEX statement 1167
CREATE INDEX statement 1537

CLUSTERED column
SYSINDEXES catalog table 2461

CLUSTERING column
SYSINDEXES catalog table 2461
SYSINDEXES_HIST catalog table 2472

CLUSTERRATIO column
SYSINDEXES catalog table 2461
SYSINDEXSTATS catalog table 2490

CLUSTERRATIOF column
SYSINDEXES catalog table 2461
SYSINDEXES_HIST catalog table 2472
SYSINDEXSTATS catalog table 2490
SYSINDEXSTATS_HIST catalog table 2492

CLUSTERTYPE column of SYSTABLES catalog table 2678
CNAME column

SYSPKSYSTEM catalog table 2574
SYSPLSYSTEM catalog table 2586

COALESCE function 166, 417, 479
COBOL application program

host structure 235
host variable

description 227
EXECUTE IMMEDIATE statement 1915

host-variable-arrays 236
INCLUDE SQLCA 2308
varying-length string 104

COBOL_STRING_DELIMITER session variable 336
code page 59
code point 59
coded character set 59
CODEUNITS16 106
CODEUNITS32 106
COLCARDDATA column of SYSCOLSTATS catalog table 2379
COLCARDF column

SYSCOLUMNS catalog table 2381
SYSCOLUMNS_HIST catalog table 2395

COLCOUNT column
SYSINDEXES catalog table 2461
SYSRELS catalog table 2613
SYSTABCONST catalog table 2664
SYSTABLES catalog table 2678
SYSTABLES_HIST catalog table 2707

COLGROUPCOLNO column
SYSCOLDIST catalog table 2373
SYSCOLDIST_HIST catalog table 2377
SYSCOLDISTSTATS catalog table 2375

2984 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

COLLATION_KEY function 418
collection-derived table

description 1031
collection-id

naming convention 80
collection, package

granting privileges 1967
revoking privileges 2076
SET CURRENT PACKAGESET statement 2146

COLLID
column of SYSSEQUENCEAUTH catalog table 2640

COLLID clause
ALTER FUNCTION statement 1109
ALTER PROCEDURE (external) statement 1186
ALTER PROCEDURE (SQL - external) statement 1191
CREATE FUNCTION statement 1467, 1485
CREATE PROCEDURE (external) statement 1593
CREATE PROCEDURE (SQL - external) statement 1603

COLLID column
SYSCOLAUTH catalog table 2371
SYSPACKAGE catalog table 2519
SYSPACKAUTH catalog table 2536
SYSPACKLIST catalog table 2558
SYSPACKSTMT catalog table 2558
SYSPKSYSTEM catalog table 2574
SYSROUTINEAUTH catalog table 2619
SYSROUTINES catalog table 2621
SYSTABAUTH catalog table 2659
SYSVARIABLEAUTH catalog table 2722

COLNAME column
SYSAUXRELS catalog table 2368
SYSCHECKDEP catalog table 2369
SYSFOREIGNKEYS catalog table 2458
SYSKEYCOLUSE catalog table 2497
SYSKEYS catalog table 2498
SYSXMLRELS catalog table 2734

COLNAME column of SYSCOLAUTH catalog table 2371
COLNO column

SYSCOLUMNS_HIST catalog table 2395
SYSFIELDS catalog table 2456
SYSFOREIGNKEYS catalog table 2458
SYSKEYCOLUSE catalog table 2497
SYSKEYS catalog table 2498
SYSKEYTARGETS catalog table 2500

COLNO column of SYSCOLUMNS catalog table 2381
colon

host variable in SQL 227
COLSEQ column

SYSFOREIGNKEYS catalog table 2458
SYSKEYCOLUSE catalog table 2497
SYSKEYS catalog table 2498

COLSTATUS column of SYSCOLUMNS catalog table 2381
COLTYPE column

SYSCOLUMNS_HIST catalog table 2395
COLTYPE column of SYSCOLUMNS catalog table 2381
column

derived
CREATE VIEW statement 1814
DELETE statement 1861
functions 341
INSERT statement 2000
string comparison 159
UPDATE statement 2187

name

column (continued)
name (continued)

ambiguous reference 221
correlated reference 222
in a result 1014
undefined reference 221

naming convention 80
COLUMN clause

COMMENT statement 1401
LABEL statement 2016

column definitions
components of

datetime data types 20
ROWID data type 22
string data types 17

distinct types 23
large object (LOB) data types 22

column mask
altering 1174

column masks
creating 1562

columns
choosing a data type 16
values

enforcing validity 27
COLVALUE column

SYSCOLDIST catalog table 2373
SYSCOLDIST_HIST catalog table 2377
SYSCOLDISTSTATS catalog table

description 2375
COMMA

column of SYSDBRM catalog table 2437
column of SYSPACKAGE catalog table 2519
option of precompiler 323

comment
adding 1396
replacing 1396
SQL 75

COMMENT ON statement
column name qualification 220

COMMENT statement
description 1396
example 1405

comments
SQL statements 1092

COMMIT ON RETURN clause
ALTER PROCEDURE (external) statement 1187
ALTER PROCEDURE (SQL - external) statement 1193
AUTONOMOUS clause

CREATE PROCEDURE (SQL - native) statement 1619
CREATE PROCEDURE (external) statement 1595
CREATE PROCEDURE (SQL - external) statement 1605
CREATE PROCEDURE (SQL - native) statement 1204,
1619

commit operations 42, 43, 55
commit processing 68
COMMIT statement

description 1406
example 1409

COMMIT_ON_RETURN column
SYSROUTINES catalog table 2621

common table expression 1069
communications database (CDB) 38
COMPARE_DECFLOAT function 421

Index 2985

comparison
array type values 166
compatibility rules 143
datetime values 158
distinct type values 164
numbers 156
row ID values 159
strings 157
user-defined type values 164
XML values 159

comparisons
string 157

compatibility
data types 143
rules 143

COMPILE_OPTS column
SYSROUTINES_OPTS catalog table 2635

COMPONENT column
SYSIBM.XSRCOMPONENT table 2781
SYSIBM.XSROBJECTCOMPONENTS table 2783
SYSIBM.XSRPROPERTY table 2785

composite keys 10
compound statement

example 2221, 2286
order of statements in 2221, 2286
SQL procedure 2221, 2286

COMPRESS
clause of CREATE LOB TABLESPACE statement 1556
clause of CREATE TABLESPACE statement 1728
column of SYSTABLEPART catalog table 2665

COMPRESS clause
ALTER TABLESPACE statement 1325

COMPRESS column
SYSINDEXES catalog table 2461
SYSTABLESPACE catalog table 2688

COMPRESS NO
clause of CREATE TABLE statement 1700

COMPRESS NO clause
ALTER INDEX statement 1167
CREATE INDEX statement 1542

COMPRESS YES
clause of CREATE TABLE statement 1700

COMPRESS YES clause
ALTER INDEX statement 1167
CREATE INDEX statement 1542

COMPRESSRATIO column
SYSTABLEPART catalog table 2665
SYSTABLESPACE catalog table 2688

COMPRESSRATION column
SYSTABLESPACE catalog table 2688

CONC_STMT column
SYSPACKAGE catalog table 2519

CONCAT
function 422
operator 247

concatenation
CONCAT function 422
operator 247

concepts 1
concurrency

LOCK TABLE statement 2017
CONCURRENT ACCESS RESOLUTION clause

CREATE PROCEDURE (SQL - native) statement 1125,
1206, 1352, 1440, 1621, 1750

condition
naming convention 84

CONNECT
option of precompiler 320
statement 1409

connectable and connected state 72
connectable and unconnected state 72
connected state 71
connection

application process states 71, 72
definition of 68
initial state in distributed unit of work 69
management in distributed unit of work 69
management in remote unit of work 72
SQL state

in a distributed unit of work 70
state transitions 69
when ended in a distributed unit of work 71

connection exit routine
description 207

connection state
SET CONNECTION statement 2122

constant
binary string 172
datetime 174
graphic string 173

CONSTNAME column
SYSKEYCOLUSE catalog table 2497
SYSTABCONST catalog table 2664

constraint
naming convention 81

CONSTRAINT
clause of CREATE TABLE statement 1685

CONSTRAINT clause
ALTER TABLE statement 1267, 1269, 1272
CREATE TABLE statement 1667, 1681, 1682

constraints
types 11

CONTAINS function 422
CONTAINS SQL clause

ALTER FUNCTION statement 1105
ALTER PROCEDURE (external) statement 1185
ALTER PROCEDURE (SQL - external) statement 1191
ALTER PROCEDURE (SQL - native) statement 1203
CREATE FUNCTION (inlined SQL scalar) statement 1496
CREATE FUNCTION statement 1437, 1464, 1482
CREATE PROCEDURE (external) statement 1591
CREATE PROCEDURE (SQL - external) statement 1603
CREATE PROCEDURE (SQL - native) statement 1618

context-name
naming convention 81

context-name clause
ALTER TRUSTED CONTEXT statement 1370
CREATE TRUSTED CONTEXT statement 1789

CONTEXTID column
SYSCONTEXT catalog table 2401
SYSCONTEXTAUTHIDS catalog table 2404
SYSCTXTTRUSTATTRS catalog table 2426

CONTINUE
clause of WHENEVER statement 2204

CONTINUE AFTER FAILURE clause
ALTER FUNCTION statement 1110
ALTER PROCEDURE (external) statement 1188
ALTER PROCEDURE (SQL - external) statement 1193

2986 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

CONTINUE AFTER FAILURE clause (continued)
CREATE FUNCTION statement 1469, 1487
CREATE PROCEDURE (external) statement 1594
CREATE PROCEDURE (SQL - external) statement 1606

CONTINUE handler
SQL procedure 2221, 2286

CONTOKEN
column of SYSSEQUENCEAUTH catalog table 2640

CONTOKEN column
SYSCOLAUTH catalog table 2371
SYSPACKAGE catalog table 2519
SYSPACKSTMT catalog table 2558
SYSPKSYSTEM catalog table 2574
SYSROUTINEAUTH catalog table 2619
SYSROUTINES catalog table 2621
SYSTABAUTH catalog table 2659
SYSVARIABLEAUTH catalog table 2722

control character 75
control statement 2207, 2279
CONVERT TO clause

ALTER INDEX statement 1157
CONVLIMIT column of LUMODES catalog table

description 2353
Coordinated Universal Time (UTC) 179
COPY

clause of ALTER INDEX statement 1161
clause of CREATE INDEX statement 1546

COPY column
SYSINDEXES catalog table 2461

COPY privilege
GRANT statement 1975
REVOKE statement 2087

COPYAUTH column of SYSPACKAUTH catalog table 2536
COPYCHANGES column

SYSINDEXSPACESTATS catalog table 2482
SYSTABLESPACESTATS catalog table 2699

COPYID
column of SYSDYNQRY catalog table 2444
column of SYSDYNQRYDEP catalog table 2446

COPYLASTTIME column
SYSINDEXSPACESTATS catalog table 2482
SYSTABLESPACESTATS catalog table 2699

COPYLRSN column
SYSINDEXES catalog table 2461

COPYPAGESF column of SYSCOPY catalog table 2408
COPYUPDATEDPAGES column

SYSINDEXSPACESTATS catalog table 2482
SYSTABLESPACESTATS catalog table 2699

COPYUPDATELRSN column
SYSINDEXSPACESTATS catalog table 2482
SYSTABLESPACESTATS catalog table 2699

COPYUPDATELRSN_EX column
SYSINDEXSPACESTATS catalog table 2482
SYSTABLESPACESTATS catalog table 2699

COPYUPDATETIME column
SYSINDEXSPACESTATS catalog table 2482
SYSTABLESPACESTATS catalog table 2699

CORR
function 358

correlated reference
correlation name

defining 220
FROM clause of subselect 1017
naming convention 81

correlated reference (continued)
correlation name (continued)

qualifying a column name 220
description 222
HAVING clause 1043
WHERE clause 1036

CORRELATION
function 358

correlation-clause
description 1028

COS function 425
COSH function 425
COUNT function 358
COUNT_BIG function 359
COVAR_POP

function 360
COVAR_SAMP

function 361
COVARIANCE

function 360
COVARIANCE_SAMP

function 361
CPAGESF column of SYSCOPY catalog table 2408
CREATE ALIAS statement

description 1415
examples 1417

CREATE AUXILIARY TABLE statement
description 1418
example 1420

CREATE DATABASE statement
description 1421
example 1423

CREATE DISTINCT TYPE statement 23
CREATE FUNCTION (compiled SQL scalar) statement

description 1428
example 1452

CREATE FUNCTION (external scalar) statement
description 1453
example 1471

CREATE FUNCTION (external table) statement
description 1472
example 1489

CREATE FUNCTION (inlined SQL scalar) statement
description 1489
example 1498

CREATE FUNCTION (sourced) statement
description 1498
example 1509

CREATE FUNCTION (SQL table) statement
description 1510
examples 1517

CREATE FUNCTION statement 1424
CREATE GLOBAL TEMPORARY TABLE statement

description 1518
example 1523

CREATE IN privilege
binding a package 96
GRANT statement 1967
REVOKE statement 2076

CREATE INDEX statement
description 1524
example 1552

CREATE MASK statement
description 1562

Index 2987

CREATE MASK statement (continued)
examples 1568

CREATE PERMISSION statement
description 1571
examples 1577

CREATE PROCEDURE (external) statement
description 1580
example 1596

CREATE PROCEDURE (SQL - external) statement
description 1597
example 1606

CREATE PROCEDURE (SQL - native) statement
description 1607
examples 1636

CREATE PROCEDURE statement
assignment statement 2217, 2281
SQL procedure body 2212, 2280

CREATE ROLE statement
description 1637
example 1638

CREATE SEQUENCE statement
description 1638
example 1644

CREATE STOGROUP statement
example 1648

CREATE SYNONYM statement
description 1649
example 1650

CREATE TABLE statement
check constraints

defining 27
DEFAULT clause 25
description 1650
example 1715
materialized query table 1650
NOT NULL clause 24

CREATE TABLESPACE statement
description 1718
example 1738

CREATE TRIGGER statement
description 1740, 1769
example 1764, 1784

CREATE TRUSTED CONTEXT statement
description 1787
example 1794
usage notes 1793

CREATE TYPE (array) statement
description 1795
example 1800

CREATE TYPE (distinct) statement
description 1801
example 1807

CREATE TYPE statement
description 1795

CREATE VARIABLE statement
description 1808

CREATE VIEW statement
description 1812
example 1818

CREATE_DGTT procedure 916
CREATE_SECURE_OBJECT privilege

GRANT statement 1983
REVOKE statement 2097

CREATEALIAS privilege

CREATEALIAS privilege (continued)
GRANT statement 1983
REVOKE statement 2097

CREATEALIASAUTH column of SYSUSERAUTH catalog table
2715
CREATEDBA privilege

GRANT statement 1983
REVOKE statement 2097

CREATEDBAAUTH column of SYSUSERAUTH catalog table
2715
CREATEDBC privilege

GRANT statement 1983
REVOKE statement 2097

CREATEDBCAUTH column of SYSUSERAUTH catalog table
2715
CREATEDBY column

SYSDATABASE catalog table 2427
SYSDATATYPES catalog table 2429
SYSIBM.XSROBJECTS table 2782
SYSINDEXES catalog table 2461
SYSROUTINES catalog table 2621
SYSSEQUENCES catalog table 2643
SYSSTOGROUP catalog table 2655
SYSSYNONYMS catalog table 2658
SYSTABLES catalog table 2678
SYSTABLESPACE catalog table 2688
SYSTRIGGERS catalog table 2712

CREATEDTS column
SYSCOLUMNS catalog table 2381
SYSCONTEXT catalog table 2401
SYSCONTEXTAUTHIDS catalog table 2404
SYSCTXTTRUSTATTRS catalog table 2426
SYSDATABASE catalog table 2427
SYSDATATYPES catalog table 2429
SYSIBM.XSROBJECTCOMPONENTS table 2783
SYSIBM.XSROBJECTS table 2782
SYSINDEXES catalog table 2461
SYSINDEXPART catalog table 2474
SYSJAROBJECTS catalog table 2495
SYSKEYTARGETS catalog table 2500
SYSROLES catalog table 2618
SYSROUTINES catalog table 2621
SYSSEQUENCES catalog table 2643
SYSSTOGROUP catalog table 2655
SYSSYNONYMS catalog table 2658
SYSTABCONST catalog table 2664
SYSTABLEPART catalog table 2665
SYSTABLES catalog table 2678
SYSTABLESPACE catalog table 2688
SYSTRIGGERS catalog table 2712
SYSVARIABLES catalog table 2724
SYSXMLRELS catalog table 2734

CREATEIN privilege
GRANT statement 1978
REVOKE statement 2091

CREATEINAUTH column of SYSSCHEMAAUTH catalog table
2638
CREATESG privilege

GRANT statement 1983
REVOKE statement 2097

CREATESGAUTH column of SYSUSERAUTH catalog table
2715
CREATESTMT column

SYSROUTINES_SRC catalog table 2637

2988 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

CREATETAB privilege
GRANT statement 1968
REVOKE statement 2079

CREATETABAUTH column of SYSDBAUTH catalog table 2432
CREATETMTAB privilege

GRANT statement 1983
REVOKE statement 2097

CREATETMTABAUTH column
SYSUSERAUTH catalog table 2715

CREATETS
column of DSNPROGAUTH table 2939

CREATETS privilege
GRANT statement 1968
REVOKE statement 2079

CREATETSAUTH column of SYSDBAUTH catalog table 2432
CREATOR column

DSNPROGAUTH table 2939
SYSCHECKS catalog table 2369
SYSCOLAUTH catalog table 2371
SYSDATABASE catalog table 2427
SYSFOREIGNKEYS catalog table 2458
SYSINDEXES catalog table 2461
SYSINDEXES_HIST catalog table 2472
SYSINDEXSPACESTATS catalog table 2482
SYSPACKAGE catalog table 2519
SYSPLAN catalog table 2575
SYSRELS catalog table 2613
SYSSTOGROUP catalog table 2655
SYSSYNONYMS catalog table 2658
SYSTABCONST catalog table 2664
SYSTABLES catalog table 2678
SYSTABLES_HIST catalog table 2707
SYSTABLESPACE catalog table 2688
SYSVIEWS catalog table 2730

CREATORTYPE column
SYSDATABASE catalog table 2427
SYSPLAN catalog table 2575
SYSSTOGROUP catalog table 2655
SYSSYNONYMS catalog table 2658
SYSTABCONST catalog table 2664
SYSTABLESPACE catalog table 2688

CUBE clause
examples 1054

CUME_DIST function 362
CURRENCY function 2945
CURRENT

clause of RELEASE statement 2064
CURRENT ACCELERATOR special register

description 184
CURRENT APPLICATION COMPATIBILITY special register

description 184
CURRENT APPLICATION ENCODING SCHEME special
register 185
CURRENT clause

FETCH statement 1930
CURRENT CLIENT_ACCTNG special register 186
CURRENT CLIENT_APPLNAME special register 187
CURRENT CLIENT_CORR_TOKEN special register 189
CURRENT CLIENT_USERID special register 189
CURRENT CLIENT_WRKSTNNAME special register 190
current connection state 70
CURRENT DATA clause

ALTER PROCEDURE (SQL - native) statement 1206

CURRENT DATA clause (continued)
CREATE PROCEDURE (SQL - native) statement 1125,
1439, 1621
CREATE TRIGGER statement 1352, 1750

CURRENT DATE special register 192
CURRENT DEBUG MODE special register 192, 2133
CURRENT DECFLOAT ROUNDING MODE special register 193,
2134
CURRENT DEGREE special register

assigning a value 2136
description 194
setting 2136

CURRENT EXPLAIN MODE special register
assigning a value 2137
description 194
setting 2137

CURRENT GET_ACCEL_ARCHIVE special register
description 195

CURRENT LC_CTYPE special register
description 196

CURRENT LOCALE LC_CTYPE special register
assigning a value 2139
description 196

CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
special register

description 197
CURRENT MEMBER

description 198
CURRENT OPTIMIZATION HINT special register

assigning a value 2142
description 198

CURRENT PACKAGE PATH clause
SET PATH statement 2164

CURRENT PACKAGE PATH special register
description 199

CURRENT PACKAGESET special register
assigning a value 2146
description 199
stored procedures 2147

CURRENT PATH clause
SET PATH statement 2164

CURRENT PATH special register
assigning a value 2163
description 200

CURRENT PRECISION special register
assigning a value 2148
description 201

CURRENT QUERY ACCELERATION special register
description 202

CURRENT QUERY ACCELERATION WAITFORDATA special
register

description 203
CURRENT REFRESH AGE special register

description 204
CURRENT ROUTINE VERSION special register 204, 2154
CURRENT ROWSET clause

FETCH statement 1934
CURRENT RULES special register

assigning a value 2156
description 205

CURRENT SCHEMA special register
assigning a value 2166
description 206

CURRENT SERVER special register

Index 2989

CURRENT SERVER special register (continued)
description 207

CURRENT SQLID special register
assigning a value 2156
description 207
initial value 94

CURRENT TEMPORAL BUSINESS_TIME special register
assigning a value 2158

CURRENT TEMPORAL SYSTEM_TIME special register
assigning a value 2160

CURRENT TIME special register
description 211

CURRENT TIMESTAMP special register
description 212

CURRENT TIMEZONE special register 213, 214
CURRENT_SCHEMA column

SYSENVIRONMENT catalog table 2452
CURRENT_VERSION column

SYSINDEXES catalog table 2461
SYSTABLESPACE catalog table 2688

CURRENTSERVER
column of SYSPLAN catalog table 2575

cursor
ASENSITIVE 1821
closed state 2039
closing

CLOSE statement 1395
CONNECT statement 1409
error in FETCH 1941
error in UPDATE 2190

DYNAMIC 1821
INSENSITIVE 1821, 2045
naming convention 81
NO SCROLL 1821, 2046
open state 1941
opening

errors 2039
OPEN statement 2037

rowset positioning 1824
rowset-positioning 2047
SCROLL 1821, 2046
SENSITIVE 1821
SENSITIVE DYNAMIC 2046
SENSITIVE STATIC 2046
STATIC 1822
using

current row 1941
DECLARE CURSOR statement 1819
FETCH statement 1924
positions 1941

cursor-name clause
DECLARE CURSOR statement 1821
FETCH statement 1935

CURSQLID
column of SYSDYNQRY catalog table 2444

CYCLE
clause of ALTER SEQUENCE statement 1226

CYCLE clause
ALTER TABLE statement 1252
CREATE SEQUENCE statement 1641

CYCLE column of SYSSEQUENCES catalog table 2643

D
DATA CAPTURE clause

ALTER TABLE statement 1288
CREATE TABLE statement 1698

data compression
COMPRESS clause

ALTER TABLESPACE statement 1325
CREATE LOB TABLESPACE statement 1556
CREATE TABLESPACE statement 1728

data structures
databases 48
hash spaces 53
hierarchy 5
index spaces 51
indexes 29
keys 10
segments 51
table spaces 50
types 5
views 30

data type
array 127
built-in 98
cast from numeric 141
cast from string 142
casting between 130
character string 102
compatibility matrix 143
CREATE TABLE statement 1663
datetime 118
distinct 126
graphic string 112
list of built-in types 98
name, unqualified 86
naming convention

built-in 80
distinct type 81

numeric 99
promotion 129
result column 1014
results of an operation 166
row ID 124
unqualified name 86
XML values 125

DATA TYPE clause 1905
data types

BIGINT 19
BLOB 17, 22
built-in 16
CHAR 17, 20
CLOB 22
comparing 16
datetime 20
DBCLOB 22
distinct types 23
GRAPHIC 17
large object (LOB) 22
numeric 19
ROWID 22
SMALLINT 19
string

encoding schemes 17
string subtypes 17

2990 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

data types (continued)
VARCHAR

compared to CHAR 17
VARGRAPHIC

storage limit 22
XML 21

DATA_FORMAT column
SYSENVIRONMENT catalog table 2452

DATA_SHARING_GROUP_NAME session variable 336
DATAACCESS privilege

GRANT statement 1984
REVOKE statement 2097

database
altering

ALTER DATABASE statement 1095
creating 1421
default database 84
dropping 1892
DSNDB04 (default database) 84
DSNXSR (XML schema repository) 2780–2785
limits 2247
naming convention 81
privileges

granting 1968
revoking 2078

DATABASE
clause of GRANT statement 1969
clause of REVOKE statement 2079

DATABASE clause
ALTER DATABASE statement 1095
DROP statement 1892

database descriptors
contents 39

Database ExplorerQMF for Workstation 4
database request module (DBRM) 45, 57
databases

creating 48
default databases 48
lock operations 48
overview 48
starting 48
stopping 48
users who need their own 48

DATACAPTURE column of SYSTABLES catalog table 2678
DATACLAS clause

CREATE STOGROUP statement 1230, 1647
DATACLAS column

SYSSTOGROUP catalog table 2655
DATAREPEATFACTORF column

SYSINDEXES catalog table 2461
SYSINDEXES_HIST catalog table 2472
SYSINDEXESSTATS catalog table 2490
SYSINDEXESSTATS_HIST catalog table 2492

DATASIZE column
SYSTABLESPACESTATS catalog table 2699

DATATYPEID column
DATATYPES catalog table 2429
SYSCOLUMNS catalog table 2381
SYSKEYTARGETS catalog table 2500
SYSKEYTARGETS_HIST catalog table 2505
SYSPARMS catalog table 2565
SYSSEQUENCES catalog table 2643
SYSVARIABLES catalog table 2724

date

date (continued)
arithmetic 260
data type 118
duration 257
strings 120, 124

DATE
data type

CREATE TABLE statement 1663
function 425

DATE
data type

description 118
DATE data type 20
DATE FORMAT clause

ALTER PROCEDURE (SQL - native) statement 1213
CREATE PROCEDURE (SQL - native) statement 1131,
1445, 1629
CREATE TRIGGER statement 1356, 1754

DATE FORMAT field of panel DSNTIP4 325
date routine

CHAR function 405
DATE_FORMAT session variable 336
DATE_LENGTH session variable 336
datetime

arithmetic 259
constants 174
data types

description 118
string representation 120

EUR (IBM European standard) 120
format

setting through the CHAR function 405
ISO (International Standards Organization) 120
JIS (Japanese Industrial Standard) 120
LOCAL 120
operands 169
string formats 120
USA 120

datetime data types 20
datetime host variables

data type
description 120

DAY column
SYSINDEXCONTROL catalog table 2460

DAY function 426
day of week calculation 432
DAYNAME function 2946
DAYOFMONTH function 428
DAYOFWEEK function 429
DAYOFWEEK_ISO function 430
DAYOFYEAR function 431
DAYS function 432
DAYS_BETWEEN scalar function 433
DB2 databases 48
Db2 private protocol access

authorization ID 96
Db2 Query Management Facility (QMF) 48
Db2 Query Management Facility (QMF)QMF for Workstation
4
Db2 subsystem

local 68
Db2-defined defaults 25
Db2-supplied

stored procedures 699

Index 2991

DBADM authority
GRANT statement 1968
REVOKE statement 2078

DBADM privilege
GRANT statement 1984
REVOKE statement 2097

DBADMAUTH column of SYSDBAUTH catalog table 2432
DBALIAS column

LOCATIONS catalog table 2351
DBCLOB

function 434
LOB data type 22

DBCLOB (double-byte character large object)
data type 112, 1663
description 116
file reference 232
locator 230
variable 230

DBCS (double-byte character set)
ASCII 104
EBCDIC 104
SQL ordinary identifier 75, 77
Unicode 104

DBCS_CCSID column
SYSDATABASE catalog table 2427
SYSTABLESPACE catalog table 2688

DBCTRL authority
GRANT statement 1968
REVOKE statement 2078

DBCTRLAUTH column of SYSDBAUTH catalog table 2432
DBD01 directory table space

contents 39
DBID

column of SYSCHECKS catalog table 2369
column of SYSDATABASE catalog table 2427
column of SYSTABLES catalog table 2678
column of SYSTABLESPACE catalog table 2688
column of SYSTRIGGERS catalog table 2712

DBID column
SYSINDEXES catalog table 2461
SYSINDEXSPACESTATS catalog table 2482
SYSTABLESPACESTATS catalog table 2699

DBINFO
clause of ALTER FUNCTION statement 1108
clause of CREATE FUNCTION statement 1467, 1485
column of SYSROUTINES catalog table 2621

DBINFO clause
ALTER PROCEDURE (external) statement 1185
CREATE PROCEDURE (external) statement 1592

DBMAINT authority
GRANT statement 1968
REVOKE statement 2079

DBMAINTAUTH column of SYSDBAUTH catalog table 2432
DBNAME

column of SYSDYNQRYDEP catalog table 2446
DBNAME column

SYSCOPY catalog table 2408
SYSINDEXES catalog table 2461
SYSINDEXSPACESTATS catalog table 2482
SYSLOBSTATS catalog table 2516
SYSLOBSTATS_HIST catalog table 2516
SYSTABAUTH catalog table 2659
SYSTABLEPART catalog table 2665
SYSTABLEPART_HIST catalog table 2675

DBNAME column (continued)
SYSTABLES catalog table 2678
SYSTABLES_HIST catalog table 2707
SYSTABLESPACE catalog table 2688
SYSTABLESPACESTATS catalog table 2699
SYSTABSTATS catalog table 2710
SYSTABSTATS_HIST catalog table 2711

DBPROTOCOL column
SYSPACKAGE catalog table 2519
SYSPLAN catalog table 2575

DBRMLIB column of SYSJAVAOPTS catalog table 2496
DCLGEN subcommand of DSN

description 118
DCOLLID column of SYSPACKDEP catalog table 2554
DCOLNAME column

SYSDEPENDENCIES catalog table 2439
DCOLNAME column of SYSSEQUENCEDEP catalog table
2646
DCOLNO column

SYSDEPENDENCIES catalog table 2439
DCONSTNAME column of SYSCONSTDEP catalog table 2400
DCONTOKEN column of SYSPACKDEP catalog table 2554
DCREATOR column

SYSSEQUENCEDEP catalog table 2646
SYSVIEWDEP catalog table 2729

DDCS (data definition control support)
database 41

deadlocks
locks 43, 55
uncommitted changes 43, 55

DEBUG_MODE column
SYSROUTINES catalog table 2621
SYSROUTINES_OPTS catalog table 2635
SYSTRIGGERS catalog table 2712

DEBUGSESSION privilege
GRANT statement 1984
REVOKE statement 2098

DEBUGSESSIONAUTH column
SYSUSERAUTH catalog table 2715

DEC function 441
DEC15 precompiler option 250
DEC31

column of SYSDBRM catalog table 2437
column of SYSPACKAGE catalog table 2519
precompiler option 250

DECFLOAT
data type

CREATE TABLE statement 1663
rounding mode 323

DECFLOAT data type 19
DECFLOAT function 437
DECFLOAT_FORMAT function 438
DECFLOAT_SORTKEY function 440
DECIMAL

data type
CREATE TABLE statement 1663

function
description 441

DECIMAL clause
ALTER PROCEDURE (SQL - native) statement 1213
CREATE PROCEDURE (SQL - native) statement 1131,
1446, 1629
CREATE TRIGGER statement 1356, 1754

DECIMAL data type 19

2992 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

decimal division 250
DECIMAL POINT IS field of panel DSNTIPF 323
decimal point precompiler option 323
DECIMAL_ARITHMETIC column

SYSENVIRONMENT catalog table 2452
DECIMAL_ARITHMETIC session variable 336
DECIMAL_POINT column

SYSENVIRONMENT catalog table 2452
DECIMAL_POINT session variable 336
DECLARE CURSOR statement

description 1819
example 1819

declare default element namespace clause
CREATE INDEX statement 1534

DECLARE GLOBAL TEMPORARY TABLE statement
description 1830
example 1843

declare namespace clause
CREATE INDEX statement 1534

DECLARE STATEMENT statement
description 1844
example 1844

DECLARE TABLE statement
description 1845
example 1850

DECLARE VARIABLE statement
description 1850
example 1852

DECODE function 443
DECOMPOSITION column

SYSIBM.XSROBJECTS table 2782
DECOMPOSITION_VERSION column

SYSIBM.XSROBJECTS table 2782
decrementing time 261
DECRYPT_BINARY function 444
DECRYPT_BIT function 444
DECRYPT_CHAR function 444
DECRYPT_DATAKEY_BIGINT function 446
DECRYPT_DATAKEY_BIT function 446
DECRYPT_DATAKEY_CLOB function 446
DECRYPT_DATAKEY_DBCLOB function 446
DECRYPT_DATAKEY_DECIMAL function 446
DECRYPT_DATAKEY_INTEGER function 446
DECRYPT_DATAKEY_VARCHAR function 446
DECRYPT_DATAKEY_VARGRAPHIC function 446
DECRYPT_DB function 444
DEFAULT clause

ALTER TABLE statement 1248
DEFAULT column

SYSCOLUMNS catalog table 2381
SYSVARIABLES catalog table 2724

default database (DSNDB04)
defining 48
implicit specification 84

DEFAULT REGISTERS clause
ALTER PROCEDURE (external) statement 1188
ALTER PROCEDURE (SQL - external) statement 1193
ALTER PROCEDURE (SQL - native) statement 1205
CREATE PROCEDURE (SQL - external) statement 1606
CREATE PROCEDURE (SQL - native) statement 1125,
1439, 1620

DEFAULT ROLE clause
ALTER TRUSTED CONTEXT statement 1371
CREATE TRUSTED CONTEXT statement 1789

DEFAULT SECURITY LABEL clause
ALTER TRUSTED CONTEXT statement 1372
CREATE TRUSTED CONTEXT statement 1790

DEFAULT SPECIAL REGISTERS clause
ALTER FUNCTION statement 1111
CREATE FUNCTION statement 1470, 1487
CREATE PROCEDURE (external) statement 1595

default values
compared to null values 26
Db2-defined defaults 25
ROWID data type 25
user-defined default values 25

DEFAULT_DECFLOAT_ROUND_MODE session variable 336
DEFAULT_DEFAULT_SSID session variable 336
DEFAULT_LANGUAGE session variable 336
DEFAULT_LOCALE_LC_CTYPE session variable 336
DEFAULT_SQLLEVEL

built-in global variable 330
DEFAULTROLE column

SYSCONTEXT catalog table 2401
DEFAULTSECURITYLABEL column

SYSCONTEXT catalog table 2401
DEFAULTTEXT column

SYSVARIABLES catalog table 2724
DEFAULTVALUE column of SYSCOLUMNS catalog table 2381
DEFER

clause of CREATE INDEX statement 1544
DEFER PREPARE clause

ALTER PROCEDURE (SQL - native) statement 1205
CREATE PROCEDURE (SQL - native) statement 1620

DEFERPREP column
SYSPACKAGE catalog table 2519
SYSPLAN catalog table 2575

DEFERPREPARE column of SYSPACKAGE catalog table 2519
deferred embedded SQL 2
define behavior for dynamic SQL statements 94
DEFINE clause

CREATE INDEX statement 1541
CREATE LOB TABLESPACE statement 1557
CREATE TABLESPACE statement 1728

DEFINER column
SYSCONTEXT catalog table 2401
SYSOBJROLEDEP catalog table 2517
SYSROLES catalog table 2618

DEFINERTYPE column
SYSCONTEXT catalog table 2401
SYSOBJROLEDEP catalog table 2517
SYSROLES catalog table 2618

DEFINITION ONLY clause
CREATE TABLE statement 1714
DECLARE GLOBAL TEMPORARY TABLE statement 1843

DEGREE
column of SYSPACKAGE catalog table 2519
column of SYSPLAN catalog table 2575

DEGREE clause
ALTER PROCEDURE (SQL - native) statement 1206
CREATE PROCEDURE (SQL - native) statement 1125,
1439, 1621

DEGREES function 449
DELETE

clause of TRIGGER statement 1348, 1756, 1776
statement

description 1853
example 1868

Index 2993

DELETE privilege
GRANT statement 1988
REVOKE statement 2101

delete rules 1864
DELETEAUTH column of SYSTABAUTH catalog table 2659
DELETERULE column of SYSRELS catalog table 2613
deleting

all rows from a table 2175
rows from a table 1853
SQL objects 1886

delimited identifier in SQL 77
delimiter

SQL 77
DENSE_RANK expression 280
DENSERANK expression 280
dependency

of objects on each other 1902
dependent rows 12
dependent tables 12
DERIVED_FROM column

SYSKEYTARGETS catalog table 2500
DESC clause

ALTER TABLE statement 1275
CREATE INDEX statement 1532
CREATE TABLE statement 1695
select-statement 1045

DESCRIBE CURSOR statement
description 1869
example 1871

DESCRIBE INPUT statement
prepared statement 1871

DESCRIBE OUTPUT statement 1873
DESCRIBE PROCEDURE statement

description 1879
example 1880

DESCRIBE statement
variables 1873, 1882

DESCRIBE TABLE statement 1881
descriptor

naming convention 81
DESCRIPTOR column

SYSVARIABLES catalog table 2724
DESCSTAT column

SYSPACKAGE catalog table 2519
DETERMINISTIC clause

ALTER FUNCTION statement 1104, 1122, 1147
ALTER PROCEDURE (external) statement 1184
ALTER PROCEDURE (SQL - external) statement 1191
ALTER PROCEDURE (SQL - native) statement 1203
CREATE FUNCTION (inlined SQL scalar) statement 1495
CREATE FUNCTION statement 1436, 1463, 1481
CREATE PROCEDURE (external) statement 1592
CREATE PROCEDURE (SQL - external) statement 1603
CREATE PROCEDURE (SQL - native) statement 1618

DETERMINISTIC column of SYSROUTINES catalog table
2621
DEVTYPE column of SYSCOPY catalog table 2408
DFSMShsm (Data Facility Hierarchical Storage Manager)

dropping an index or table space 1902
DIFFERENCE function 450
digit, description in DB2 75
DIGITS function 450
directory

table space names 39

directory tables
description 2769
indexes 2770
table space 2770

directory, Db2
formats

SYSIBM.DRDR 2771
SYSIBM.SCTR 2771
SYSIBM.SPTR 2771
SYSIBM.SYSDBD_DATA 2771
SYSIBM.SYSLGRNX 2772
SYSIBM.SYSSPTSEC_DATA 2772
SYSIBM.SYSSPTSEC_EXPL 2772
SYSIBM.SYSUTIL 2773
SYSIBM.SYSUTILX 2776

directory, DB2
SYSUTIL 2773
SYSUTILX 2776
tables 2769

disability xxv
DISABLE ARCHIVE clause

ALTER TABLE statement 1294
DISABLE clause

ALTER TRUSTED CONTEXT statement 1371
CREATE TRUSTED CONTEXT statement 1790

DISABLE DEBUG MODE clause
ALTER PROCEDURE (external) statement 1188
ALTER PROCEDURE (SQL - native) statement 1203
CREATE PROCEDURE (external) statement 1588
CREATE PROCEDURE (SQL - native) statement 1124,
1438, 1618

DISABLE procedure 917
DISALLOW DEBUG MODE clause

ALTER PROCEDURE (external) statement 1188
ALTER PROCEDURE (SQL - native) statement 1203
CREATE PROCEDURE (external) statement 1588
CREATE PROCEDURE (SQL - native) statement 1124,
1438, 1618

DISALLOW PARALLEL clause
ALTER FUNCTION statement 1108
CREATE FUNCTION statement 1467, 1485

DISCONNECT
column of SYSPLAN catalog table 2575

DISPLAY privilege
GRANT statement 1984
REVOKE statement 2097

DISPLAYAUTH column of SYSUSERAUTH catalog table 2715
DISPLAYDB privilege

GRANT statement 1969
REVOKE statement 2079

DISPLAYDBAUTH column of SYSDBAUTH catalog table 2432
DISTINCT

clause of subselect 1010
keyword

AVG function 357
COUNT function 358
COUNT_BIG function 359
MAX function 367
MIN function 369
STDDEV_POP function 376
STDDEV_SAMP function 377
SUM function 378
VAR_POP function 379
VARIANCE_SAMP function 380

2994 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

DISTINCT predicate 304
distinct type

casting 130
comparison of values 164
CREATE TABLE statement 1667
creating 1801
description 126
granting privileges 1991
name, unqualified 81, 86
naming convention 81
promotion 129
revoking privileges 2104
unqualified name 86

distinct types 23
distributed access

restriction 77
distributed data

CONNECT statement 1409
CURRENT SERVER special register 207
RELEASE (connection) statement 2063
SET CONNECTION statement 2122

distributed relational database
definition of 68

Distributed Relational Database Architecture (DRDA) 68
distributed unit of work

connection management 69
definition of 69

DISTRIBUTED_SQL_STRING_DELIMITER session variable
336
DLOCATION column of SYSPACKDEP catalog table 2554
DNAME column

SYSDEPENDENCIES catalog table 2439
SYSOBJROLEDEP catalog table 2517
SYSPACKDEP catalog table 2554
SYSPLANDEP catalog table 2584
SYSSEQUENCEDEP catalog table 2646
SYSVIEWDEP catalog table 2729

dormant connection state 70
DOUBLE data type

CREATE TABLE statement 1663
DOUBLE function 451
DOUBLE or DOUBLE_PRECISION

function 451
DOUBLE PRECISION data type

CREATE TABLE statement 1663
DOUBLE_PRECISION function 451
double-byte character

LABEL statement 2016
truncated during assignment 150

double-byte character large object (DBCLOB) 116
double-byte character set (DBCS) 17
DOWNER column

SYSDEPENDENCIES catalog table 2439
SYSVIEWDEP catalog table 2729

DOWNER column of SYSPACKDEP catalog table 2554
DOWNERTYPE column

SYSDEPENDENCIES catalog table 2439
SYSPACKDEP catalog table 2554

DRDA access
authorization ID 96
mixed environment 2269

DROP ATTRIBUTES clause
ALTER TRUSTED CONTEXT statement 1373

DROP CHECK clause

DROP CHECK clause (continued)
ALTER TABLE statement 1274

DROP CLONE clause
ALTER TABLE statement 1289

DROP CONSTRAINT clause
ALTER TABLE statement 1274

DROP FOREIGN KEY clause
ALTER TABLE statement 1274

DROP MATERIALIZED QUERY clause
ALTER TABLE statement 1288

DROP PENDING CHANGES clause
ALTER TABLESPACE statement 1326

DROP PRIMARY KEY clause
ALTER TABLE statement 1274

DROP privilege
GRANT statement 1969
REVOKE statement 2079

DROP RESTRICT ON DROP clause
ALTER TABLE statement 1290

DROP statement
description 1886
example 1905

DROP STORAGE clause
TRUNCATE statement 2176

DROP UNIQUE clause
ALTER TABLE statement 1274

DROP USE FOR clause
ALTER TRUSTED CONTEXT statement 1376

DROP VERSION clause
ALTER PROCEDURE (SQL - native) statement 1202

DROPAUTH column of SYSDBAUTH catalog table 2432
DROPIN privilege

GRANT statement 1978
REVOKE statement 2091

DROPINAUTH column of SYSSCHEMAAUTH catalog table
2638
DSCHEMA column

SYSDEPENDENCIES catalog table 2439
SYSOBJROLEDEP catalog table 2517

DSCHEMA column of SYSSEQUENCEDEP catalog table 2646
DSN_DETCOST_TABLE

columns 2817
DSN_FILTER_TABLE

columns 2827
DSN_FUNCTION_TABLE

column descriptions 2832
DSN_PGRANGE_TABLE

columns 2844
DSN_PGROUP_TABLE

columns 2848
DSN_PREDICATE_SELECTIVITY

column descriptions 2863
DSN_PREDICATE_TABLE

columns 2855
DSN_PTASK_TABLE

columns 2869
DSN_QUERY_TABLE

columns 2882
DSN_QUERYINFO_TABLE

EXPLAIN table 2874
DSN_SORT_TABLE

columns 2891
DSN_SORTKEY_TABLE

columns 2885

Index 2995

DSN_STRUCT_TABLE
columns 2920

DSN_VIEWREF_TABLE
columns 2926

DSN_WLM_APPLENV procedure 913
DSN_XMLVALIDATE function 452
DSNACCOX stored procedure

description 848
option descriptions 852
output 870
syntax diagram 850

DSNACICS stored procedure 880
DSNAIMS stored procedure 885
DSNAIMS2 stored procedure 889
DSNAME

column of SYSCOPY catalog table 2408
DSNDB04 default database 48
DSNHDECP_NAME session variable 336
DSNLEUSR stored procedure 893
DSNUM column

SYSCOPY catalog table 2408
SYSINDEXPART catalog table 2474
SYSINDEXPART_HIST catalog table 2480
SYSTABLEPART catalog table 2665
SYSTABLEPART_HIST catalog table 2675

DSNUTILS stored procedure
authorization required 897
data sets 897
description 895
option descriptions 899
output 906
restarting a utility 895
sample JCL 905
syntax diagram 899
terminating a utility 895

DSNUTILU stored procedure
authorization required 907
data sets 907
description 906
option descriptions 908
output 909
restarting a utility 906
sample JCL 909
syntax diagram 908

DSNUTILV stored procedure
authorization required 911
data sets 911
description 910
option descriptions 911
output 913
restarting a utility 910
sample JCL 913
syntax diagram 911

DSNXSR database
SYSIBM.XSRANNOTATIONINFO table 2780
SYSIBM.XSRCOMPONENT table 2781
SYSIBM.XSROBJECTCOMPONENTS table 2783
SYSIBM.XSROBJECTGRAMMAR table 2784
SYSIBM.XSROBJECTHIERARCHIES table 2784
SYSIBM.XSROBJECTPROPERTY table 2785
SYSIBM.XSROBJECTS table 2782
SYSIBM.XSRPROPERTY table 2785

DSSIZE
clause of CREATE INDEX statement 1161, 1544

DSSIZE (continued)
clause of CREATE LOB TABLESPACE statement 1557
clause of CREATE TABLE statement 1701

DSSIZE clause
ALTER TABLESPACE statement 1326

DSSIZE column
SYSINDEXES catalog table 2461
SYSTABLESPACE catalog table 2688

DSVOLSER column of SYSCOPY catalog table 2408
DTBCREATOR column of SYSCONSTDEP catalog table 2400
DTBNAME column of SYSCONSTDEP catalog table 2400
DTBOWNER column

SYSCONSTDEP catalog table 2400
DTYPE column

SYSCONSTDEP catalog table 2400
SYSDEPENDENCIES catalog table 2439
SYSOBJROLEDEP catalog table 2517
SYSPACKDEP catalog table 2554
SYSVIEWDEP catalog table 2729

DTYPE column of SYSSEQUENCEDEP catalog table 2646
dual logging 40
duplicate rows, UNION clause 1061
duration

date 257
labeled 257
time 257
timestamp 257

DYNAMIC clause
DECLARE CURSOR statement 1821

DYNAMIC RESULT SET clause
ALTER PROCEDURE (external) statement 1182
ALTER PROCEDURE (SQL - native) statement 1203
CREATE PROCEDURE (SQL - external) statement 1602
CREATE PROCEDURE (SQL - native) statement 1618

DYNAMIC RESULT SETS clause
ALTER PROCEDURE (SQL - external) statement 1191
CREATE PROCEDURE (external) statement 1588

dynamic SQL
description 2, 1086
DYNAMICRULES bind option 94
EXECUTE IMMEDIATE statement 1914
EXECUTE statement 1909
execution 1088
INTO clause

DESCRIBE statement 1873
PREPARE statement 2044

invocation of SELECT statement 1089
preparation 1088
SQLDA 2313
statements allowed 2269

DYNAMIC_RULES session variable 336
DYNAMICRULES

column of SYSPACKAGE catalog table 2519
column of SYSPLAN catalog table 2575
dynamic SQL authorization 94
option 86
unqualified names 86

DYNAMICRULES behavior 94
DYNAMICRULES clause

ALTER PROCEDURE (SQL - native) statement 1207
CREATE PROCEDURE (SQL - native) statement 1126,
1440, 1621
CREATE TRIGGER statement 1352, 1751

2996 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

E
EBCDIC

definition 59
effect on MBCS and DBCS characters 104
encoding schemes 17

EBCDIC CCSID field of panel DSNTIPF 325
EBCDIC_CHR function 453
EBCDIC_STR function 453
edit routine

named in CREATE TABLE statement 1697
specified by EDITPROC option 1697

EDITPROC clause
CREATE TABLE statement 1697

EDPROC column of SYSTABLES catalog table 2678
ENABLE

column of SYSPKSYSTEM catalog table 2574
column of SYSPLSYSTEM catalog table 2586

ENABLE ARCHIVE clause
ALTER TABLE statement 1293

ENABLE clause
ALTER TRUSTED CONTEXT statement 1371
CREATE TRUSTED CONTEXT statement 1790

ENABLE column
SYSVIEWS catalog table 2730

ENABLE procedure 918
ENABLE QUERY OPTIMIZATION clause

ALTER TABLE statement 1272
CREATE TABLE statement 1685

ENABLED
column of DSNPROGAUTH table 2939

ENABLED column
SYSCONTEXT catalog table 2401

encoding scheme
of strings 63

encoding schemes
ASCII 17
EBCDIC 17
Unicode 17

ENCODING_CCSID column
SYSPACKAGE catalog table 2519
SYSPLAN catalog table 2575

ENCODING_SCHEME column
SYSCOLUMNS catalog table 2381
SYSDATABASE catalog table 2427
SYSDATATYPES catalog table 2429
SYSPARMS catalog table 2565
SYSTABLES catalog table 2678
SYSTABLESPACE catalog table 2688

ENCODING_SCHEME session variable 336
ENCRYPT function 454, 456
ENCRYPT_DATAKEY function 454
ENCRYPT_TDES function 456
encryption 1791
ENCRYPTION clause

ALTER TRUSTED CONTEXT statement 1372
CREATE TRUSTED CONTEXT statement 1791

encryption password 2161
ENCRYPTION PASSWORD special register 213
ENCRYPTPSWDS column of LUNAMES catalog table 2354
END DECLARE SECTION statement

description 1907
example 1907

ENDING AT clause

ENDING AT clause (continued)
ALTER INDEX statement 1170
ALTER TABLE statement 1275, 1278
CREATE INDEX statement 1543
CREATE TABLE statement 1696

ENFORCED clause
ALTER TABLE statement 1272
CREATE TABLE statement 1685

ENFORCED column
SYSRELS catalog table 2613

ENFORCED_CONS column
SYSINDEXES catalog table 2461

entity integrity 12
ENVID column

SYSENVIRONMENT catalog table 2452
SYSINDEXES catalog table 2461
SYSTRIGGERS catalog table 2712
SYSVARIABLES catalog table 2724

EPOCH column of SYSTABLEPART catalog table 2665
ERASE clause

ALTER INDEX statement 1164
ALTER TABLESPACE statement 1334
CREATE INDEX statement 1539

ERASERULE column
SYSINDEXES catalog table 2461
SYSTABLESPACE catalog table 2688

error
closes cursor 2039
during FETCH 1941
during update 2190
signaling 2169

ERRORBYTE column of SYSSTRINGS catalog table 2656
ESCAPE clause

LIKE predicate 308
evaluation order 263
EXCEPT clause 1061
EXCEPTION clause 1962
EXCHANGE statement

description 1908
example 1908

EXCLUDING COLUMN DEFAULTS clause
CREATE TABLE statement 1689
DECLARE GLOBAL TEMPORARY TABLE statement 1838

EXCLUDING IDENTITY COLUMN ATTRIBUTES clause
CREATE TABLE statement 1688
DECLARE GLOBAL TEMPORARY TABLE statement 1837

EXCLUDING ROW CHANGE TIMESTAMP COLUMN
ATTRIBUTES clause

CREATE TABLE statement 1688
EXCLUSIVE

option of LOCK TABLE statement 2017
exclusive dependence 2072
executable statement 1086, 1087
EXECUTE IMMEDIATE statement

description 1914
example 1916

EXECUTE privilege
GRANT statement 1973, 1975, 1977
REVOKE statement 2084, 2087, 2089

EXECUTE statement
description 1909
example 1913

EXECUTEAUTH column
SYSPACKAUTH catalog table 2536

Index 2997

EXECUTEAUTH column (continued)
SYSPLANAUTH catalog table 2582
SYSROUTINEAUTH catalog table 2619

EXISTS predicate 305
EXIT handler

SQL procedure 2221, 2286
exit routine

named in ALTER TABLE statement 1292
named in CREATE TABLE statement 1678

EXITPARM column of SYSFIELDS catalog table 2456
EXITPARML column of SYSFIELDS catalog table 2456
EXP function 458
EXPLAIN

column of SYSPACKAGE catalog table 2519
statement

description 1917
example 1923

EXPLAIN privilege
GRANT statement 1984
REVOKE statement 2098

EXPLAIN tables
DSN_COLDIST_TABLE 2809
DSN_DETCOST_TABLE 2817
DSN_FILTER_TABLE 2827
DSN_FUNCTION_TABLE 2832
DSN_KEYTGTDIST_TABLE 2837
DSN_PGRANGE_TABLE 2844
DSN_PGROUP_TABLE 2848
DSN_PREDICAT_TABLE 2855
DSN_PREDICATE_SELECTIVITY 2863
DSN_PTASK_TABLE 2869
DSN_QUERY_TABLE 2882
DSN_QUERYINFO_TABLE

columns 2874
DSN_SORT_TABLE 2891
DSN_SORTKEY_TABLE 2885
DSN_STATEMENT_CACHE_TABLE 2896
DSN_STATEMNT_TABLE 2906
DSN_STRUCT_TABLE 2920
DSN_VIEWREF_TABLE 2926
overview 2787
PLAN_TABLE 2787
stored procedure 751

EXPLAINABLE column
SYSPACKSTMT catalog table 2558
SYSSTMT catalog table 2651

explainable statement
description 1917
EXPLAIN statement 1919

EXPLAN column of SYSPLAN catalog table 2575
exposed name 223
EXPREDICATE column of SYSPLAN catalog table 2575
expression

arithmetic operators 250
array constructor 279
array element specification 278
CASE 264
CAST specification 267
concatenation operator 247
datetime operands 257
decimal operands 250
DENSE_RANK expression 280
DENSERANK expression 280
distinct type operands 250

expression (continued)
integer operands 250
NEXT VALUE expression 292
nextval-expression 292
OLAP-specification 280
precedence of operation 263
PREVIOUS VALUE expression 292
prevval-expression 292
RANK expression 280
ROW CHANGE TIMESTAMP expression 291
ROW CHANGE TOKEN expression 291
ROW_NUMBER expression 280
row-value 296
ROWNUMBER expression 280
subselect statement 1011
time zone specific 258

expressions 245
EXTENTS column

SYSINDEXPART catalog table 2474
SYSINDEXPART_HIST catalog table 2480
SYSINDEXSPACESTATS catalog table 2482
SYSTABLEPART catalog table 2665
SYSTABLEPART_HIST catalog table 2675
SYSTABLESPACESTATS catalog table 2699

EXTERNAL ACTION clause
ALTER FUNCTION statement 1106, 1122, 1147
CREATE FUNCTION (inlined SQL scalar) statement 1495
CREATE FUNCTION statement 1436, 1464, 1482

EXTERNAL clause
ALTER PROCEDURE (external) statement 1182
CREATE FUNCTION statement 1461, 1480
CREATE PROCEDURE (external) statement 1589

EXTERNAL NAME clause
ALTER FUNCTION statement 1102
ALTER PROCEDURE (SQL - external) statement 1191
CREATE PROCEDURE (SQL - external) statement 1603

external SQL procedures 35
external stored procedures 35
EXTERNAL_ACTION column of SYSROUTINES catalog table
2621
EXTERNAL_NAME column of SYSROUTINES catalog table
2621
EXTERNAL_SECURITY column

SYSROUTINES catalog table 2621
external-java-routine-name clause

ALTER FUNCTION statement 1102
ALTER PROCEDURE (external) statement 1182
CREATE FUNCTION statement 1461
CREATE PROCEDURE (external) statement 1589

external-program
naming convention 81

external-program-name clause
CREATE FUNCTION statement 1461

EXTRACT function 459

F
FARINDREF column

SYSTABLEPART catalog table 2665
SYSTABLEPART_HIST catalog table 2675

FAROFFPOSF column
SYSINDEXPART catalog table 2474
SYSINDEXPART_HIST catalog table 2480

FENCED

2998 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

FENCED (continued)
clause of CREATE FUNCTION statement 1463, 1482
column of SYSROUTINES catalog table 2621

FENCED clause
CREATE PROCEDURE (external) statement 1588
CREATE PROCEDURE (SQL - external) statement 1602

FETCH FIRST clause 1047
FETCH NEXT clause 1047
FETCH statement

description 1924
example 1947

fetch-clause 1047
field description 1258
field procedure

named in ALTER TABLE statement 1258
named in CREATE TABLE statement 1678

FIELDPROC clause
ALTER TABLE statement 1258
CREATE TABLE statement 1678

file reference
LOB 232

FILESEQNO column of SYSCOPY catalog table 2408
FINAL CALL clause

ALTER FUNCTION statement 1108, 1466
CREATE FUNCTION statement 1484

FINAL TABLE clause
FROM clause 1022

FINAL_CALL column of SYSROUTINES catalog table 2621
FIRST clause

FETCH statement 1929
FIRST ROWSET clause

FETCH statement 1933
FIRSTKEYCARD column

SYSINDEXSTATS catalog table 2490
FIRSTKEYCARDF column

SYSINDEXES catalog table 2461
SYSINDEXES_HIST catalog table 2472
SYSINDEXSTATS catalog table 2490
SYSINDEXSTATS_HIST catalog table 2492

fixed-length binary strings 116
FLDPROC column

SYSCOLUMNS catalog table 2381
SYSFIELDS catalog table 2456

FLDTYPE column of SYSFIELDS catalog table 2456
FLOAT

data type
CREATE TABLE statement 1663

FLOAT function 451
FLOAT_FORMAT column

SYSENVIRONMENT catalog table 2452
FLOOR function 462
FOLD column

SYSENVIRONMENT catalog table 2452
FOR

clause of CREATE SYNONYM statement 1649
clause of CREATE TABLE statement 1663
clause of CREATE TYPE (distinct) statement 1803
clause of EXPLAIN statement 1919

FOR EACH ROW clause of TRIGGER statement 1749
FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

clause
ALTER TABLE statement 1254
CREATE TABLE statement 1673

FOR EACH STATEMENT clause of TRIGGER statement 1749

FOR FETCH ONLY clause 1072
FOR host-variable or integer constant

clause
FETCH statement 1937

FOR MULTIPLE ROWS clause
PREPARE statement 2049

FOR n ROWS clause
EXECUTE statement 1912
INSERT statement 2004

FOR READ ONLY clause 1072
FOR RESULT SET clause of ALLOCATE CURSOR statement
1093
FOR ROW n OF ROWSET clause

DELETE statement 1862
UPDATE statement 2189

FOR SEQUENCE
clause of CREATE ALIAS statement 1417

FOR SINGLE ROW clause
PREPARE statement 2049

FOR statement
example 2229
SQL procedure 2229

FOR TABLE
clause of CREATE ALIAS statement 1417

FOR UPDATE clause
NOFOR precompiler option 326
select-statement 1071

FOR UPDATE CLAUSE OPTIONAL clause
ALTER PROCEDURE (SQL - native) statement 1214
CREATE PROCEDURE (SQL - native) statement 1132,
1446, 1629
CREATE TRIGGER statement 1356, 1754

FOR UPDATE CLAUSE REQUIRED clause
ALTER PROCEDURE (SQL - native) statement 1214
CREATE PROCEDURE (SQL - native) statement 1132,
1446, 1629
CREATE TRIGGER statement 1356, 1754

FOREIGN KEY clause
ALTER TABLE statement 1269
CREATE TABLE statement 1682

foreign keys 10
FOREIGNKEY column of SYSCOLUMNS catalog table 2381
FORMAT column

SYSTABLEPART catalog table 2665
Fortran application program

host variable 227
INCLUDE SQLCA 2308
varying-length string 104

FREE LOCATOR statement
description 1949
example 1949

FREE PAGE column
SYSINDEXES catalog table 2461

free space
index 1540
table space 1331

FREEPAGE
clause of ALTER INDEX statement

description 1166
clause of CREATE INDEX statement

description 1540
clause of CREATE TABLESPACE statement

description 1729
column of SYSINDEXPART catalog table 2474

Index 2999

FREEPAGE (continued)
column of SYSTABLEPART catalog table 2665

FREEPAGE clause
ALTER TABLESPACE statement

description 1331
FREEPAGE column

SYSTABLESPACE catalog table 2688
FREESPACE column

SYSLOBSTATS catalog table 2516
SYSLOBSTATS_HIST catalog table 2516

FREQUENCYF column
SYSCOLDIST catalog table 2373
SYSCOLDIST_HIST catalog table 2377
SYSCOLDISTSTATS catalog table 2375
SYSKEYTGTDIST catalog table 2509
SYSKEYTGTDIST_HIST catalog table 2513
SYSKEYTGTDISTSTATS catalog table 2511

FROM clause
DELETE statement 1857
PREPARE statement 2050
REVOKE statement 2071
subselect 1017

FROM_TIME column
SYSINDEXCONTROL catalog table 2460

FULL OUTER JOIN
description 1034
example 1048
FROM clause of subselect 1034

FULLKEYCARD column of SYSINDEXSTATS catalog table
2490
FULLKEYCARDF column

SYSINDEXES catalog table 2461
SYSINDEXES_HIST catalog table 2472
SYSINDEXSTATS catalog table 2490
SYSINDEXSTATS_HIST catalog table 2492

fullselect
CREATE VIEW statement 1815
description 1060
example 1064
INSERT statement 2003

function
aggregate

ARRAY_AGG 354
AVG 357
column name 219
CORR 358
CORRELATION 358
COUNT 358
COUNT_BIG 359
COVAR 360
COVAR_POP 360
COVAR_SAMP 361
COVARIANCE 360
COVARIANCE_SAMP 361
CUME_DIST 362
description 353
example 353
GROUPING 363
LISTAGG 364
MAX 367
MEDIAN 368
MIN 369
PERCENT_RANK 372
PERCENTILE_CONT 370

function (continued)
aggregate (continued)

PERCENTILE_DISC 371
STDDEV_POP 376
STDDEV_SAMP 377
SUM 378
VAR 379
VAR_POP 379
VAR_SAMP or VARIANCE_SAMP 380
VARIANCE 379
XMLAGG 381

built-in 237
cast function 238
CHR 415
column 238
CORR function 358
CORRELATION function 358
CUME_DIST function 280
DENSE_RANK function 280
DENSERANK function 280
description 341
FIRST_VALUE function 280
invocation 242
LAG function 280
LEAD function 280
maximum number in select 2247
name, unqualified 86
NTH_VALUE function 280
NTILE function 280
PERCENT_RANK function 280
RANK function 280
RATIO_TO_REPORT function 280
resolution 239
row

description 696
ROW_NUMBER function 280
ROWNUMBER function 280
scalar

ABS 382
ACOS 383
ADD_MONTHS 384
ARRAY_DELETE 386
ARRAY_FIRST 387
ARRAY_LAST 388
ARRAY_NEXT 389
ARRAY_PRIOR 391
ARRAY_TRIM 392
ASCII 393
ASCII_CHR 393
ASCII_STR 394
ASCIISTR 394
ASIN 395
ATAN 395
ATAN2 396
ATANH 395
BIGINT 396
BINARY 397
BITAND 398
BITANDNOT 398
BITNOT 398
BITOR 398
BITXOR 398
BLOB 400
CARDINALITY 402

3000 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

function (continued)
scalar (continued)

CCSID_ENCODING 403
CEILING or CEIL 404
CHAR 405
CHAR_LENGTH 413
CHARACTER_LENGTH 413
CHR 415
CLOB 415
COALESCE 417
COLLATION_KEY 418
COMPARE_DECFLOAT 421
CONCAT 422
COS 425
COSH 425
DATE 425
DAY 426
DAYOFMONTH 428
DAYOFWEEK 429
DAYOFWEEK_ISO 430
DAYOFYEAR 431
DAYS 432
DBCLOB 434
DECFLOAT 437
DECFLOAT_FORMAT 438
DECFLOAT_SORTKEY 440
DECIMAL or DEC 441
DECODE 443
DECRYPT_BINARY 444
DECRYPT_BIT 444
DECRYPT_CHAR 444
DECRYPT_DATAKEY_BIGINT 446
DECRYPT_DATAKEY_BIT 446
DECRYPT_DATAKEY_CLOB 446
DECRYPT_DATAKEY_DBCLOB 446
DECRYPT_DATAKEY_DECIMAL 446
DECRYPT_DATAKEY_INTEGER 446
DECRYPT_DATAKEY_VARCHAR 446
DECRYPT_DATAKEY_VARGRAPHIC 446
DEGREES 449
DIFFERENCE 450
DIGITS 450
DOUBLE or DOUBLE_PRECISION 451
DSN_XMLVALIDATE 452
EBCDIC_CHR 453
EBCDIC_STR 453
ENCRYPT_DATAKEY 454
ENCRYPT_TDES 456
EXP 458
EXTRACT 459
FLOOR 462
GENERATE_UNIQUE 462
GENERATE_UNIQUE_BINARY 462
GETHINT 463
GETVARIABLE 464
GRAPHIC 465
GREATEST 470
HASH 471
HASH_MD5 472
HASH_SHA1 472
HASH_SHA256 472
HEX 474
HOUR 475
IDENTITY_VAL_LOCAL 476

function (continued)
scalar (continued)

IFNULL 479
INSERT 480
INSTR 482
JULIAN_DAY 484
LAST_DAY 485
LCASE 495
LCASE function 486
LEAST 486
LEFT 487, 576
LENGTH 489
LN 490
LOCATE 490
LOCATE_IN_STRING 493
LOG 490
LOG10 494
LOWER 495
LPAD 498
LTRIM 500
MAX 501
MAX_CARDINALITY 502
MICROSECOND 503
MIDNIGHT_SECONDS 504
MIN 505
MINUTE 505
MOD 506
MONTH 508
MONTHS_BETWEEN 508
MULTIPLY_ALT 517
NEXT_DAY 518
NORMALIZE_DECFLOAT 520
NORMALIZE_STRING 521
NULLIF 522
NVL 523
OVERLAY 523
PACK 526
POSITION 529
POSSTR 532
POWER 533
QUANTIZE 534
QUARTER 535
RADIANS 536
RAISE_ERROR 536
RAND 537
RANDOM 537
REAL 538
REGEXP_COUNT 539
REGEXP_INSTR 541
REGEXP_LIKE 543
REGEXP_REPLACE 546
REGEXP_SUBSTR 549
REPEAT 551
REPLACE 552
RID 555
RIGHT 556
ROUND 558
ROUND_TIMESTAMP 559
ROWID 563
RPAD 563
RTRIM 565
SECOND 568
SIGN 570
SIN 570

Index 3001

function (continued)
scalar (continued)

SINH 571
SMALLINT 571
SOAPHTTPC and SOAPHTTPV 573
SOAPHTTPNC and SOAPHTTPNV 574
SOUNDEX 572
SPACE 575
SQRT 575
STRIP 576
STRLEFT 556, 576
STRPOS 577
STRRIGHT 577
SUBSTR 577
SUBSTRING 579
TAN 583
TANH 583
TIME 584
TIMESTAMP 584
TIMESTAMP_FORMAT 591
TIMESTAMP_ISO 595
TIMESTAMP_TZ 596
TIMESTAMPADD 587
TIMESTAMPDIFF 588
TO_CHAR 598, 623
TO_CLOB 598
TO_DATE 591, 599
TO_NUMBER 599
TO_TIMESTAMP 591, 600
TOTALORDER 599
TRANSLATE 600
TRIM 603
TRIM_ARRAY 605
TRUNC_TIMESTAMP 607
TRUNCATE 606
UCASE 610, 612
UNICODE 610
UNICODE_STR 611
UNISTR 611
UNPACK 696
UPPER 612
VALUE 417
VARBINARY 614
VARCHAR 615
VARCHAR_BIT_FORMAT 622
VARCHAR_FORMAT 623
VARGRAPHIC 632
VERIFY_GROUP_FOR_USER 637
VERIFY_ROLE_FOR_USER 638
VERIFY_TRUSTED_CONTEXT_ROLE_F
OR_USER 640
WEEK 641
WEEK_ISO 642
XMLATTRIBUTES 644
XMLCOMMENT 645
XMLCONCAT 645
XMLDOCUMENT 646
XMLELEMENT 647
XMLFOREST 651
XMLMODIFY 653
XMLNAMESPACES 656
XMLPARSE 657
XMLPI 659
XMLQUERY 659

function (continued)
scalar (continued)

XMLSERIALIZE 662
XMLTEXT 665
XMLXSROBJECTID 666
XSLTRANSFORM 667
YEAR 668

string units 106
table

ADMIN_TASK_LIST function 669
ADMIN_TASK_OUTPUT function 673
ADMIN_TASK_STATUS function 675
BLOCKING_THREADS function 678
description 669
MQREAD function 510
MQREADALL function 685
MQREADALLCLOB function 687
MQREADCLOB function 511
MQRECEIVE function 512
MQRECEIVEALL function 689
MQRECEIVEALLCLOB function 691
MQRECEIVECLOB function 514
MQSEND function 516

types 237
unqualified name 86
version resolution 243

FUNCTION clause
COMMENT statement 1401
DROP statement 1892

function resolution
built-in function 243
data type cast 242
data type promotion 241
implicit casting 242
promotable process 241

function table 1917
FUNCTION_LVL

column of SYSDYNQRY catalog table 2444
FUNCTION_LVL column

SYSPACKAGE catalog table 2519
FUNCTION_TYPE column

SYSROUTINES catalog table 2621
function, built-in

nesting 382
scalar

description 382
example 382

functions
best fit 241
casting

XMLCAST 277
column

REGR_AVGX 374
REGR_AVGY 374
REGR_COUNT 374
REGR_ICPT 374
REGR_INTERCEPT 374
REGR_R2 374
REGR_SLOPE 374
REGR_SXX 374
REGR_SXY 374
REGR_SYY 374
regression 374

CONTAINS 422

3002 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

functions (continued)
introduction 35
list 341
scalar

ADD_DAYS 383
BTRIM 401
DAYS_BETWEEN 433
NEXT_MONTH 520

SCORE 566
table

XMLTABLE 693
VALUE 614

FUNCTIONTS column
SYSPACKAGE catalog table 2519
SYSPLAN catalog table 2575

G
GBPCACHE clause

ALTER INDEX statement 1166
ALTER TABLESPACE statement 1334
CREATE INDEX statement 1541
CREATE LOB TABLESPACE statement 1557
CREATE TABLESPACE statement 1730

GBPCACHE column
SYSINDEXES catalog table 2461
SYSINDEXPART catalog table 2474
SYSTABLEPART catalog table 2665
SYSTABLESPACE catalog table 2688

GEN_SESSION_USER column
SYSROLES catalog table 2618, 2722

general-use programming information, described 2970
GENERATE KEY USING clause

CREATE INDEX statement 1534
GENERATE_UNIQUE function 462
GENERATE_UNIQUE_BINARY function 462
GENERATED clause

ALTER TABLE statement 1250
CREATE TABLE statement 1672
DECLARE GLOBAL TEMPORARY TABLE statement 1836

GENERIC column of LUNAMES catalog table 2354
GET DIAGNOSTICS statement

description 1949
SQL procedure 2230, 2290

GET_ARCHIVE
built-in global variable 330

GET_CONFIG stored procedure 923
GET_LINE procedure 919, 923
GET_LINES procedure 920
GET_MESSAGE stored procedure 942
GET_SYSTEM_INFO stored procedure 949
GETHINT function 463
GETVARIABLE function 464
global variable

built-in 329–334
CATALOG_LEVEL 329
CLIENT_IPADDR 330
DEFAULT_SQLLEVEL 330
dropping 1899
GET_ARCHIVE 330
MAX_LOCKS_PER_TABLESPACE 331
MAX_LOCKS_PER_USER 331
MOVE_TO_ARCHIVE 332
naming convention 81

global variable (continued)
PRODUCTID_EXT 332
REPLICATION_OVERRIDE 333
TEMPORAL_LOGICAL_TRANSACTION_TIME 334
TEMPORAL_LOGICAL_TRANSACTIONS 334

global variable, built-in 329
global variables

privileges
granting 1992
revoking 2106

GO TO clause of WHENEVER statement 2204
GOTO statement

example 2290
examples 2231
SQL procedure 2231, 2290

GRAMMAR column
SYSIBM.XSROBJECTGRAMMAR table 2784
SYSIBM.XSROBJECTS table 2782

GRANT statement
collection privileges 1967
database privileges 1968
description 1963
function privileges 1970
package privileges 1975
plan privileges 1977
procedure privileges 1970
schema privileges 1978
sequence privileges 1979
system privileges 1981
table privileges 1988
USAGE privilege 1991
use privileges 1993
variable privileges 1992
view privileges 1988

GRANTEDTS
column of SYSSEQUENCEAUTH catalog table 2640

GRANTEDTS column
SYSCOLAUTH catalog table 2371
SYSDBAUTH catalog table 2432
SYSPLANAUTH catalog table 2582
SYSRESAUTH catalog table 2615
SYSROUTINEAUTH catalog table 2619
SYSSCHEMAAUTH catalog table 2638
SYSTABAUTH catalog table 2659
SYSUSERAUTH catalog table 2715
SYSVARIABLEAUTH catalog table 2722

GRANTEE
column of SYSSEQUENCEAUTH catalog table 2640

GRANTEE column
SYSCOLAUTH catalog table 2371
SYSDBAUTH catalog table 2432
SYSPACKAUTH catalog table 2536
SYSPLANAUTH catalog table 2582
SYSRESAUTH catalog table 2615
SYSROUTINEAUTH catalog table 2619
SYSSCHEMAAUTH catalog table 2638
SYSTABAUTH catalog table 2659
SYSUSERAUTH catalog table 2715
SYSVARIABLEAUTH catalog table 2722

GRANTEETYPE
column of SYSSEQUENCEAUTH catalog table 2640

GRANTEETYPE column
SYSCOLAUTH catalog table 2371
SYSDBAUTH catalog table 2432

Index 3003

GRANTEETYPE column (continued)
SYSPACKAUTH catalog table 2536
SYSPLANAUTH catalog table 2582
SYSRESAUTH catalog table 2615
SYSROUTINEAUTH catalog table 2619
SYSSCHEMAAUTH catalog table 2638
SYSTABAUTH catalog table 2659
SYSUSERAUTH catalog table 2715
SYSVARIABLEAUTH catalog table 2722

GRANTOR column
SYSCOLAUTH catalog table 2371
SYSDBAUTH catalog table 2432
SYSPACKAUTH catalog table 2536
SYSPLANAUTH catalog table 2582
SYSRESAUTH catalog table 2615
SYSROUTINEAUTH catalog table 2619
SYSSCHEMAAUTH catalog table 2638
SYSTABAUTH catalog table 2659
SYSUSERAUTH catalog table 2715
SYSVARIABLEAUTH catalog table 2722

GRANTORS
column of SYSSEQUENCEAUTH catalog table 2640

GRANTORTYPE column
SYSCOLAUTH catalog table 2371
SYSDBAUTH catalog table 2432
SYSPACKAUTH catalog table 2536
SYSPLANAUTH catalog table 2582
SYSRESAUTH catalog table 2615
SYSROUTINEAUTH catalog table 2619
SYSSCHEMAAUTH catalog table 2638
SYSSEQUENCEAUTH catalog table 2640
SYSTABAUTH catalog table 2659
SYSUSERAUTH catalog table 2715
SYSVARIABLEAUTH catalog table 2722

GRANULARITY column of SYSTRIGGERS catalog table 2712
GRAPHIC

data type
CREATE TABLE statement 1663
description 112

function 465
option of precompiler 325

GRAPHIC data type 17
graphic string

constants 173
description 112
operands 168

graphic strings 17
GREATEST function 470, 501
group buffer pools

described 41
GROUP BY clause

cannot join view 1817
subselect

description 1037
results 1010

GROUP_MEMBER column
SYSCOPY catalog table 2408
SYSDATABASE catalog table 2427
SYSPACKAGE catalog table 2519
SYSPLAN catalog table 2575

grouping column 1037
GROUPING function 363
GROUPING SETS clause

examples 1054

H
handler

SQL procedure 2221, 2286
handling errors

SQL procedure 2221, 2286
hash access 53
HASH column

SYSINDEXES catalog table 2461
HASH function 471
hash spaces 53
HASH_CRC32 function 472
HASH_MD5 function 472
HASH_SHA1 function 472
HASH_SHA256 function 472
HASHDATAPAGES column

SYSTABLESPACE catalog table 2688
HASHSPACE column

SYSTABLESPACE catalog table 2688
HAVING clause of subselect

description 1043
results 1010

HDFS_READ function 2947
held connection state 70
HEX function 474
HIDDEN column of SYSCOLUMNS catalog table 2381
high encryption 1791
HIGH2KEY column

SYSCOLSTATS catalog table 2379
SYSCOLUMNS catalog table 2381
SYSCOLUMNS_HIST catalog table 2395
SYSKEYTARGETS catalog table 2500
SYSKEYTARGETS_HIST catalog table 2505
SYSKEYTARGETSTATS catalog table 2503

HIGHDSNUM column of SYSCOPY catalog table 2408
HIGHKEY column

SYSKEYTARGETSTATS catalog table 2503
HIGHKEY column of SYSCOLSTATS catalog table 2379
HIGHVALUE column

SYSCOLDIST catalog table 2373
SYSCOLDIST_HIST catalog table 2377
SYSCOLDISTSTATS catalog table 2375
SYSKEYTGTDIST catalog table 2509
SYSKEYTGTDIST_HIST catalog table 2513
SYSKEYTGTDISTSTATS catalog table 2511

history tables
Db2 catalog 2742

HOLD LOCATOR statement
description 1994
example 1995

host identifier 77
host label

naming convention 81
host structure

description 235
host variable

colon 227
description 227
EXECUTE IMMEDIATE statement 1915
EXPLAIN statement 1919
input 227
naming convention 82
output 227
SELECT INTO statement 2119

3004 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

HOST_LANGUAGE column
SYSENVIRONMENT catalog table 2452

host-variable-arrays
description 236

HOSTLANG column
SYSDBRM catalog table 2437
SYSPACKAGE catalog table 2519

HOUR function 475
HPJCOMPILE_OPTS column

SYSJAVAOPTS catalog table 2496
HTTPBLOB function 2948
HTTPCLOB function 2949
HTTPDELETEBLOB function 2950
HTTPDELETECLOB function 2950
HTTPGETBLOB function 2952
HTTPGETBLOBFILE function 2954
HTTPGETCLOB function 2952
HTTPGETCLOBFILE function 2954
HTTPHEAD function 2955
HTTPPOSTBLOB function 2956
HTTPPOSTCLOB function 2956
HTTPPUTBLOB function 2957
HTTPPUTCLOB function 2957
HTYPE column

SYSIBM.XSROBJECTHIERARCHIES table 2784

I
I/O processing

CURRENT DEGREE special register 194
CURRENT EXPLAIN MODE special register 194

IBM MQ functions 341
IBMREQD

column of SYSSEQUENCEAUTH catalog table 2640
IBMREQD column

IPLIST catalog table 2348
IPNAMES catalog table 2349
LOCATIONS catalog table 2351
LULIST catalog table 2353
LUMODES catalog table 2353
LUNAMES catalog table 2354
MODESELECT catalog table 2358
release dependency indicators 2333
SYSAUXRELS catalog table 2368
SYSCHECKDEP catalog table 2369
SYSCHECKS catalog table 2369
SYSCHECKS2 catalog table 2370
SYSCOLDIST catalog table 2373
SYSCOLDIST_HIST catalog table 2377
SYSCOLDISTSTATS catalog table 2375
SYSCOLSTATS catalog table 2379
SYSCOLUMNS catalog table 2381
SYSCOLUMNS_HIST catalog table 2395
SYSCONSTDEP catalog table 2400
SYSCONTEXT catalog table 2401
SYSCONTEXTAUTHIDS catalog table 2404
SYSCOPY catalog table 2408
SYSCTXTTRUSTATTRS catalog table 2426
SYSDATABASE catalog table 2427
SYSDATATYPES catalog table 2429
SYSDBAUTH catalog table 2432
SYSDBRM catalog table 2437
SYSDEPENDENCIES catalog table 2439
SYSDUMMY1 catalog table 2443

IBMREQD column (continued)
SYSDUMMYA catalog table 2443
SYSDUMMYE catalog table 2444
SYSDUMMYU catalog table 2444
SYSENVIRONMENT catalog table 2452
SYSFIELDS catalog table 2456
SYSFOREIGNKEYS catalog table 2458
SYSINDEXES catalog table 2461
SYSINDEXES_HIST catalog table 2472
SYSINDEXPART catalog table 2474
SYSINDEXPART_HIST catalog table 2480
SYSINDEXSPACESTATS catalog table 2482
SYSINDEXSTATS catalog table 2490
SYSINDEXSTATS_HIST catalog table 2492
SYSJARCONTENTS catalog table 2494
SYSJAROBJECTS catalog table 2495
SYSJAVAOPTS catalog table 2496
SYSJAVAPATHS catalog table 2497
SYSKEYCOLUSE catalog table 2497
SYSKEYS catalog table 2498
SYSKEYTARGETS catalog table 2500
SYSKEYTARGETS_HIST catalog table 2505
SYSKEYTARGETSTATS catalog table 2503
SYSKEYTGTDIST catalog table 2509
SYSKEYTGTDIST_HIST catalog table 2513
SYSKEYTGTDISTSTATS catalog table 2511
SYSLOBSTATS catalog table 2516
SYSLOBSTATS_HIST catalog table 2516
SYSOBJROLEDEP catalog table 2517
SYSPACKAGE catalog table 2519
SYSPACKAUTH catalog table 2536
SYSPACKDEP catalog table 2554
SYSPACKLIST catalog table 2558
SYSPACKSTMT catalog table 2558
SYSPARMS catalog table 2565
SYSPKSYSTEM catalog table 2574
SYSPLAN catalog table 2575
SYSPLANAUTH catalog table 2582
SYSPLANDEP catalog table 2584
SYSPLSYSTEM catalog table 2586
SYSRELS catalog table 2613
SYSRESAUTH catalog table 2615
SYSROLES catalog table 2618
SYSROUTINEAUTH catalog table 2619
SYSROUTINES catalog table 2621
SYSROUTINES_OPTS catalog table 2635
SYSROUTINES_SRC catalog table 2637
SYSSCHEMAAUTH catalog table 2638
SYSSEQUENCEDEP catalog table 2646
SYSSEQUENCES catalog table 2643
SYSSTMT catalog table 2651
SYSSTOGROUP catalog table 2655
SYSSTRINGS catalog table 2656
SYSSYNONYMS catalog table 2658
SYSTABAUTH catalog table 2659
SYSTABCONST catalog table 2664
SYSTABLEPART catalog table 2665
SYSTABLEPART_HIST catalog table 2675
SYSTABLES catalog table 2678
SYSTABLES_HIST catalog table 2707
SYSTABLESPACE catalog table 2688
SYSTABLESPACESTATS catalog table 2699
SYSTABSTATS catalog table 2710
SYSTABSTATS_HIST catalog table 2711

Index 3005

IBMREQD column (continued)
SYSTRIGGERS catalog table 2712
SYSUSERAUTH catalog table 2715
SYSVARIABLEAUTH catalog table 2722
SYSVARIABLES catalog table 2724
SYSVIEWDEP catalog table 2729
SYSVIEWS catalog table 2730
SYSVOLUMES catalog table 2733
SYSXMLRELS catalog table 2734
SYSXMLSTRINGS catalog table 2735
USERNAMES catalog table 2737

IBMREQD column of SYSCOLAUTH catalog table 2371
ICBACKUP column of SYSCOPY catalog table 2408
ICTYPE column of SYSCOPY catalog table 2408
ICUNIT column of SYSCOPY catalog table 2408
identifier in SQL

delimited 77
ordinary 77

identifiers
SQL 77

identity column
ALTER TABLE statement 1251
CREATE TABLE statement 1676

identity columns 19
IDENTITY_VAL_LOCAL function 476
IF statement

example 2232, 2292
SQL procedure 2232, 2292

IFNULL function 479
IGNORE DELETE TRIGGERS clause

TRUNCATE statement 2177
IMAGCOPY privilege

GRANT statement 1969
REVOKE statement 2079

IMAGCOPYAUTH column of SYSDBAUTH catalog table 2432
IMMEDIATE clause

TRUNCATE statement 2177
IMMEDWRITE column

SYSPACKAGE catalog table 2519
SYSPLAN catalog table 2575

IMPLICIT column
SYSDATABASE catalog table 2427
SYSINDEXES catalog table 2461
SYSTABLESPACE catalog table 2688

implicit time zone 124
IMPLICITLY HIDDEN clause

ALTER TABLE statement 1257
CREATE TABLE statement 1679

IN
clause of CREATE AUXILIARY TABLE statement 1419
clause of CREATE LOB TABLESPACE statement 1556
clause of CREATE TABLE statement 1693, 1694
clause of CREATE TABLESPACE statement 1724
predicate 166, 306

IN clause
ALTER PROCEDURE (SQL - native) statement 1202
CREATE PROCEDURE (external) statement 1586
CREATE PROCEDURE (SQL - external) statement 1601
CREATE PROCEDURE (SQL - native) statement 1616

IN EXCLUSIVE MODE clause of LOCK TABLE statement 2017
IN list 306
IN SHARE MODE clause of LOCK TABLE statement 2017
INCCSID column of SYSSTRINGS catalog table 2656
INCLUDE clause

INCLUDE clause (continued)
DELETE statement 1860
INSERT statement 2001
MERGE statement 2025
UPDATE statement 2187

INCLUDE statement
assembler declarations 2308
description 1995
example 1996
SQLCA

C 2308
COBOL 2308
Fortran 2308

SQLDA
assembler 2326
C 2326
C++ 2326
COBOL 2326
PL/I 2308, 2326

INCLUDING COLUMN DEFAULTS clause
CREATE TABLE statement 1689
DECLARE GLOBAL TEMPORARY TABLE statement 1838

INCLUDING DEPENDENT PRIVILEGES clause of REVOKE
statement 2072, 2077, 2079, 2085, 2088, 2089, 2092,
2093, 2099, 2102, 2104, 2107, 2109
INCLUDING IDENTITY COLUMN ATTRIBUTES clause

CREATE TABLE statement 1688
DECLARE GLOBAL TEMPORARY TABLE statement 1837

INCLUDING ROW CHANGE TIMESTAMP COLUMN
ATTRIBUTES clause

CREATE TABLE statement 1688
INCLUSIVE clause

ALTER INDEX statement 1171
ALTER TABLE statement 1276, 1279, 1280, 1282
CREATE INDEX statement 1544
CREATE TABLE statement 1696

INCREMENT BY
clause of ALTER SEQUENCE statement 1225

INCREMENT BY clause
CREATE SEQUENCE statement 1640

INCREMENT column of SYSSEQUENCES catalog table 2643
incrementing time 261
index

accelerators table 2931
altering

ALTER INDEX statement 1157
creating with CREATE INDEX statement 1524
directory table 2770
dropping 1894
name, unqualified 86
naming convention 82
partitioning 1543
program authorization table 2939
renaming with RENAME statement 2066
types

changing 1157
unqualified name 86
XML schema repository table 2779

INDEX clause
ALTER INDEX statement 1157
COMMENT statement 1403
CREATE INDEX statement 1530
DROP statement 1894

INDEX privilege

3006 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

INDEX privilege (continued)
GRANT statement 1989
REVOKE statement 2102

index spaces 51
INDEXAUTH column of SYSTABAUTH catalog table 2659
INDEXBP

clause of CREATE DATABASE statement 1422
column of SYSDATABASE catalog table 2427

INDEXBP clause
ALTER DATABASE statement 1095

indexes 29
INDEXSPACE column

SYSINDEXES catalog table 2461
SYSINDEXSPACESTATS catalog table 2482

INDEXSTATUS column
SYSINDEXES catalog table 2461

INDEXTYPE column
SYSINDEXES catalog table 2461

indicator array 235
indicator variable

description 227
string expression 1915

infix operators 250
INHERIT SPECIAL REGISTERS clause

ALTER FUNCTION statement 1111
ALTER PROCEDURE (external) statement 1188
ALTER PROCEDURE (SQL - external) statement 1193
ALTER PROCEDURE (SQL - native) statement 1205
CREATE FUNCTION statement 1469, 1487
CREATE PROCEDURE (external) statement 1595
CREATE PROCEDURE (SQL - external) statement 1605
CREATE PROCEDURE (SQL - native) statement 1125,
1439, 1620

INITIAL_INSTS column of SYSROUTINES catalog table 2621
INITIAL_IOS column of SYSROUTINES catalog table 2621
INLINE LENGTH clause

CREATE TABLE statement 1258, 1679
INLINE_LENGTH column

SYSDATATYPES catalog table 2429
inlined SQL scalar statements

ALTER FUNCTION 1142
INNER JOIN

description 1034
example 1048
FROM clause of subselect 1034

INOUT clause
ALTER PROCEDURE (SQL - native) statement 1202
CREATE PROCEDURE (external) statement 1586
CREATE PROCEDURE (SQL - external) statement 1601
CREATE PROCEDURE (SQL - native) statement 1616

input host variable 227
INPUT SEQUENCE clause

ORDER BY clause of subselect 1044
INSENSITIVE clause

DECLARE CURSOR statement 1821
FETCH statement 1927, 1928

INSERT clause of CREATE TRIGGER statement 1348, 1756,
1776
INSERT function 480
INSERT privilege

GRANT statement 1989
REVOKE statement 2102

insert rule 2005
INSERT statement

INSERT statement (continued)
check constraints 27
description 1996
example 2011

INSERTALG column
SYSTABLESPACE catalog table 2688

INSERTAUTH column of SYSTABAUTH catalog table 2659
inserting

declaration in a program 1995
rows in a table 1996, 2019

INSTANCE column
SYSINDEXSPACESTATS catalog table 2482
SYSTABLESPACE catalog table 2688
SYSTABLESPACESTATS catalog table 2699

INSTR function 482
INSTS_PER_INVOC column of SYSROUTINES catalog table
2621
INT function 483
INTEGER

data type
CREATE TABLE statement 1663

INTEGER data type 19
INTEGER or INT 483
integrated catalog facility

CREATE INDEX statement 1540
integrated catalog facility (ICF)

identifier 80
interactive SQL 2, 1090
INTERSECT clause 1061
INTO clause

DESCRIBE CURSOR statement 1870
DESCRIBE INPUT statement 1871
DESCRIBE PROCEDURE statement 1879
DESCRIBE statement 1873, 1882
FETCH statement 1936
INSERT statement 2000
MERGE statement 2024
PREPARE statement 2044
SELECT INTO statement 2119
VALUES INTO statement 2201

INTO DESCRIPTOR clause
FETCH statement 1937, 1938

INTO host-variable-array
clause

FETCH statement 1938
invoke behavior for dynamic SQL statements 94
IOS_PER_INVOC column of SYSROUTINES catalog table
2621
IPADDR column

IPLIST catalog table 2348
IPADDR column of IPNAMES catalog table 2349
IPREFIX column

SYSINDEXPART catalog table 2474
SYSTABLEPART catalog table 2665

IS clause
COMMENT statement 1404
LABEL statement 2016

IS DISTINCT FROM predicate 304
IS NULL predicate 24
ISOBID column

SYSINDEXES catalog table 2461
ISOLATION

column of SYSPACKAGE catalog table 2519
column of SYSPACKSTMT catalog table 2558

Index 3007

ISOLATION (continued)
column of SYSPLAN catalog table 2575
column of SYSSTMT catalog table 2651

ISOLATION column
SYSVIEWS catalog table 2730

isolation level
control by SQL statement

DELETE statement 1863
INSERT statement 2003
select-statement 1073
UPDATE statement 2190

ISOLATION LEVEL clause
ALTER PROCEDURE (SQL - native) statement 1208
CREATE PROCEDURE (SQL - native) statement 1128,
1442, 1623
CREATE TRIGGER statement 1354, 1752

isolation-clause
DELETE statement 1863
INSERT statement 2003
UPDATE statement 2190

ITERATE statement
example 2293
examples 2233
SQL procedure 2233, 2293

IX_EXTENSION_TYPE column
SYSINDEXES catalog table 2461

IXCREATOR column
SYSINDEXPART catalog table 2474
SYSINDEXPART_HIST catalog table 2480
SYSKEYS catalog table 2498
SYSTABLEPART catalog table 2665

IXCREATORc column
SYSINDEXCONTROL catalog table 2460

IXNAME column
SYSINDEXCONTROL catalog table 2460
SYSINDEXPART catalog table 2474
SYSINDEXPART_HIST catalog table 2480
SYSKEYS catalog table 2498
SYSKEYTARGETS catalog table 2500
SYSKEYTARGETS_HIST catalog table 2505
SYSKEYTARGETSTATS catalog table 2503
SYSKEYTGTDIST catalog table 2509
SYSKEYTGTDIST_HIST catalog table 2513
SYSKEYTGTDISTSTATS catalog table 2511
SYSTABCONST catalog table 2664
SYSTABLEPART catalog table 2665

IXNAME column of SYSRELS catalog table 2613
IXOWNER column

SYSRELS catalog table 2613
SYSTABCONST catalog table 2664

IXSCHEMA column
SYSKEYTARGETS catalog table 2500
SYSKEYTARGETS_HIST catalog table 2505
SYSKEYTARGETSTATS catalog table 2503
SYSKEYTGTDIST catalog table 2509
SYSKEYTGTDIST_HIST catalog table 2513
SYSKEYTGTDISTSTATS catalog table 2511

J
JAQL_SUBMIT function 2958
JAR file

unqualified name 86
JAR file privileges

JAR file privileges (continued)
granting 1991
revoking 2104

JAR_DATA column
SYSJARDATA catalog table 2495
SYSJAROBJECTS catalog table 2495

JAR_DATA_ROWID column
SYSJAROBJECTS catalog table 2495

JAR_ID column
SYSJARCONTENTS catalog table 2494
SYSJAROBJECTS catalog table 2495
SYSJAVAOPTS catalog table 2496
SYSJAVAPATHS catalog table 2497
SYSROUTINES catalog table 2621

JARSCHEMA column
SYSROUTINES catalog table 2621

JARSCHENA column
SYSJARCONTENTS catalog table 2494
SYSJAROBJECTS catalog table 2495
SYSJAVAOPTS catalog table 2496
SYSJAVAPATHS catalog table 2497

JAVA_SIGNATURE column
SYSROUTINES catalog table 2621

JDBC 4
JOBNAME clause

ALTER TRUSTED CONTEXT statement 1373
CREATE TRUSTED CONTEXT statement 1791

JOBNAME column of SYSCOPY catalog table 2408
join operation

example 1048
FROM clause of subselect 1036
FULL OUTER JOIN

FROM clause of subselect 1034
INNER JOIN

FROM clause of subselect 1034
joining tables 1034
LEFT OUTER JOIN

FROM clause of subselect 1034
RIGHT OUTER JOIN

FROM clause of subselect 1034
summary of results 1036

JULIAN_DAY function 484

K
Katakana character 75
KATAKANA value for EBCDIC CCSID 75
KEEPDYNAMIC column

SYSPACKAGE catalog table 2519
SYSPLAN catalog table 2575

key
length

maximum 2247
partitioning index 1170, 1543, 2187

primary
defining on a single column 1668

key-expression clause
CREATE INDEX statement 1531

KEYCOLUMNS column of SYSTABLES catalog table 2678
KEYCOUNT column of SYSINDEXSTATS catalog table 2490
KEYCOUNTF column

SYSINDEXSTATS catalog table 2490
SYSINDEXSTATS_HIST catalog table 2492

KEYGROUPKEYNO column

3008 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

KEYGROUPKEYNO column (continued)
SYSKEYTGTDIST catalog table 2509
SYSKEYTGTDIST_HIST catalog table 2513
SYSKEYTGTDISTSTATS catalog table 2511

KEYLABEL column
SYSTABLESPACE catalog table 2688

KEYLABLE column
SYSINDEXES catalog table 2461

KEYOBID column of SYSTABLES catalog table 2678
keys

composite keys 10
foreign keys 10
parent keys 10
primary keys 10
unique keys 10

KEYSEQ column
SYSKEYTARGETS catalog table 2500
SYSKEYTARGETS_HIST catalog table 2505
SYSKEYTARGETSTATS catalog table 2503
SYSKEYTGTDIST catalog table 2509
SYSKEYTGTDIST_HIST catalog table 2513
SYSKEYTGTDISTSTATS catalog table 2511

KEYSEQ column of SYSCOLUMNS catalog table 2381
KEYTARGET_COUNT column

SYSINDEXES catalog table 2461
KEYVALUE column

SYSKEYTGTDIST catalog table 2509
SYSKEYTGTDIST_HIST catalog table 2513
SYSKEYTGTDISTSTATS catalog table 2511

keywords, reserved 2258

L
LABEL

column of SYSTABLES catalog table 2678
LABEL column

SYSCOLUMNS catalog table 2381
LABEL statement

description 2015
example 2016

labeled duration 257
labels 2210
LABELS

USING clause of DESCRIBE statement 1874, 1882
USING clause of PREPARE statement 2044

LANGUAGE
clause of ALTER FUNCTION statement 1103
clause of CREATE FUNCTION statement 1462, 1480

LANGUAGE clause
ALTER PROCEDURE (external) statement 1183
CREATE PROCEDURE (external) statement 1590
CREATE PROCEDURE (SQL - external) statement 1602

LANGUAGE column
SYSROUTINES catalog table 2621

LANGUAGE SQL clause
CREATE FUNCTION (inlined SQL scalar) statement 1494
CREATE FUNCTION statement 1435
CREATE PROCEDURE (SQL - native) statement 1617

large object (LOB)
description 116

large object table spaces 50
large objects (LOBs)

data types 22
LAST ROWSET clause

LAST ROWSET clause (continued)
FETCH statement 1934

LAST_DAY function 485
LASTUSED

column of SYSDYNQRY catalog table 2444
LASTUSED column

SYSINDEXSPACESTATS catalog table 2482
LCASE function 486, 495
LEAFDIST column

SYSINDEXPART_HIST catalog table 2480
LEAFDIST column of SYSINDEXPART catalog table

description 2474
LEAFFAR column

SYSINDEXPART catalog table 2474
SYSINDEXPART_HIST catalog table 2480

LEAFNEAR column
SYSINDEXPART catalog table 2474
SYSINDEXPART_HIST catalog table 2480

LEAST
scalar function 486

LEAST function 505
LEAVE statement

example 2234, 2293
SQL procedure 2234, 2293

LEFT function 487
LEFT OUTER JOIN

example 1048
FROM clause of subselect 1034

length attribute of column 103
LENGTH column

SYSCOLUMNS catalog table 2381
SYSCOLUMNS_HIST catalog table 2395
SYSDATATYPES catalog table 2429
SYSFIELDS catalog table 2456
SYSKEYTARGETS catalog table 2500
SYSKEYTARGETS_HIST catalog table 2505
SYSPARMS catalog table 2565
SYSVARIABLES catalog table 2724

LENGTH function 489
LENGTH2 column

SYSCOLUMNS catalog table 2381
SYSCOLUMNS_HIST catalog table 2395
SYSKEYTARGETS catalog table 2500
SYSKEYTARGETS_HIST catalog table 2505

letter, description in DB2 75
LIKE clause

CREATE GLOBAL TEMPORARY TABLE statement 1521
CREATE TABLE statement 1686
DECLARE GLOBAL TEMPORARY TABLE statement 1836

LIKE predicate 308
LIMITKEY column

SYSINDEXPART catalog table 2474
SYSTABLEPART catalog table 2665

LIMITKEY_INTERNAL column
SYSTABLEPART catalog table 2665

limits, DB2 2247
LINK_OPTS column

SYSROUTINES_OPTS catalog table 2635
LINKNAME column

IPLIST catalog table 2348
IPNAMES catalog table 2349
LOCATIONS catalog table 2351
LULIST catalog table 2353
USERNAMES catalog table 2737

Index 3009

links
non-IBM Web sites
2971

LISTAGG function 364
literal 170
LN function 490
LOAD privilege

GRANT statement 1969
REVOKE statement 2079

LOADAUTH column of SYSDBAUTH catalog table 2432
LOADLASTTIME column

SYSTABLESPACESTATS catalog table 2699
LOADRLASTTIME column

SYSINDEXSPACESTATS catalog table 2482
LOB

restrictions 117
LOB (large object)

description 116
file reference 232
host variable 117
locator 117, 230
variable 230

LOBCOLUMNS column of SYSROUTINES catalog table 2621
local Db2 subsystem 68
locale

CURRENT LOCALE LC_CTYPE special register 196
LOCATE function 490
LOCATE_IN_STRING function 493
location

naming convention 82
LOCATION

column of SYSPACKAGE catalog table 2519
column of SYSPACKAUTH catalog table 2536
column of SYSPACKLIST catalog table 2558
column of SYSPACKSTMT catalog table 2558
column of SYSPKSYSTEM catalog table 2574
column of SYSTABLES catalog table 2678

LOCATION column
LOCATIONS catalog table 2351

locator
LOB 117, 230
result set 234

LOCATOR column of SYSPARMS catalog table 2565
locator variable

freeing 1949
holding beyond a unit of work 1994

lock
ALTER TABLESPACE statement 1327
CREATE LOB TABLESPACE statement 1558
CREATE TABLESPACE statement 1731
during update 2190
LOCK TABLE statement 2017
object

table space (table) 2017
LOCK TABLE statement

description 2017
example 2018

locking 42
LOCKMAX clause

ALTER TABLESPACE statement
description 1327

CREATE LOB TABLESPACE statement
description 1558

CREATE TABLESPACE statement

LOCKMAX clause (continued)
CREATE TABLESPACE statement (continued)

description 1730
LOCKMAX column

SYSTABLESPACE catalog table 2688
LOCKPART

clause of ALTER TABLESPACE statement 1341
LOCKPART clause

CREATE LOB TABLESPACE statement 1561
CREATE TABLESPACE statement 1738

LOCKRULE column
SYSTABLESPACE catalog table 2688

locks 43, 55
LOCKSIZE clause

ALTER TABLESPACE statement
description 1327

CREATE LOB TABLESPACE statement
description 1558

CREATE TABLESPACE statement
description 1731

LOG
function 490

LOG column
SYSTABLESPACE catalog table 2688

LOG NO
clause of ALTER TABLESPACE statement 1341
clause of CREATE LOB TABLESPACE statement 1561
clause of CREATE TABLESPACE statement 1738

log range directory 39
LOG YES

clause of ALTER TABLESPACE statement 1341
clause of CREATE LOB TABLESPACE statement 1561
clause of CREATE TABLESPACE statement 1738

LOG10 function 494
LOGGED

clause of CREATE TABLE statement 1699
LOGGED clause

ALTER TABLESPACE statement 1328
CREATE LOB TABLESPACE statement 1559
CREATE TABLESPACE statement 1731
DECLARE GLOBAL TEMPORARY TABLE statement 1839

LOGGED column
SYSCOPY catalog table 2408

logical operator 319
LOGICAL_PART column

SYSCOPY catalog table 2408
SYSTABLEPART catalog table 2665

logs 40
long column string 112
LONG VARCHAR data type

description 103
LONG VARGRAPHIC data type

description 112
LOOP statement

example 2236, 2294
SQL procedure 2236, 2294

low encryption 1791
LOW2KEY column

SYSCOLSTATS catalog table 2379
SYSCOLUMNS catalog table 2381
SYSCOLUMNS_HIST catalog table 2395
SYSKEYTARGETS catalog table 2500
SYSKEYTARGETS_HIST catalog table 2505
SYSKEYTARGETSTATS catalog table 2503

3010 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

LOWDSNUM column of SYSCOPY catalog table 2408
LOWER function 495
lowercase character folded to uppercase 75
LOWKEY column

SYSKEYTARGETSTATS catalog table 2503
LOWKEY column of SYSCOLSTATS catalog table 2379
LOWVALUE column

SYSCOLDIST catalog table 2373
SYSCOLDIST_HIST catalog table 2377
SYSCOLDISTSTATS catalog table 2375
SYSKEYTGTDIST catalog table 2509
SYSKEYTGTDIST_HIST catalog table 2513
SYSKEYTGTDISTSTATS catalog table 2511

LPAD function 498
LTRIM function 500
LUNAME

column of LULIST catalog table 2353
column of LUMODES catalog table 2353
column of LUNAMES catalog table 2354
column of MODESELECT catalog table 2358

M
MAINTENANCE column

SYSVIEWS catalog table 2730
mappings from SQL to XML 327
MASK clause

COMMENT statement 1403
mask-name

naming convention 82
materialized-query-definition

CREATE TABLE statement 1691
MAX

aggregate function 367
scalar function 501

MAX_CARDINALITY function 502
MAX_FAILURE column

SYSROUTINES catalog table 2621
MAX_LOCKS_PER_TABLESPACE

built-in global variable 331
MAX_LOCKS_PER_USER

built-in global variable 331
MAXASSIGNEDVAL column of SYSSEQUENCES catalog table
2643
MAXPARTITIONS clause

ALTER TABLESPACE statement 1329
CREATE TABLESPACE statement 1724

MAXPARTITIONS column
SYSTABLESPACE catalog table 2688

MAXROWS
clause of CREATE TABLESPACE statement 1732

MAXROWS clause
ALTER TABLESPACE statement 1329

MAXROWS column
SYSTABLESPACE catalog table 2688

MAXVALUE
clause of ALTER SEQUENCE statement 1226
clause of CREATE TABLE statement 1676

MAXVALUE clause
ALTER TABLE statement 1252
CREATE SEQUENCE statement 1641

MAXVALUE column of SYSSEQUENCES catalog table 2643
MEDIAN function 368
MEMBER CLUSTER

MEMBER CLUSTER (continued)
clause of CREATE TABLE statement 1701

MEMBER CLUSTER clause
CREATE TABLESPACE statement 1732

MEMBER_CLUSTER column
SYSTABLESPACE catalog table 2688

MERGE statement
description 2019
examples 2034
usage 2031

message
precompiler processing of DECLARE TABLE statement
1850

METATYPE column of SYSDATATYPES catalog table 2429
MGMTCLAS clause

CREATE STOGROUP statement 1230, 1647
MGMTCLAS column

SYSSTOGROUP catalog table 2655
MICROSECOND function 503
MIDNIGHT_SECONDS function 504
MIN

aggregate function 369
scalar function 505

MIN_DIVIDE_SCALE column
SYSENVIRONMENT catalog table 2452

Minimum divide result scale 250
MINUTE function 505
MINVALUE

clause of ALTER SEQUENCE statement 1225
clause of CREATE TABLE statement 1676

MINVALUE clause
ALTER TABLE statement 1252
CREATE SEQUENCE statement 1640

MINVALUE column of SYSSEQUENCES catalog table 2643
MIXED column

SYSDBRM catalog table 2437
SYSPACKAGE catalog table 2519

mixed data
convention xxvii
description 104
in string assignments 150
LIKE predicate 308

MIXED DATA
field of panel DSNTIPF 102, 113, 325

mixed data character string columns 17
MIXED string subtype 17
MIXED_CCSID column

SYSDATABASE catalog table 2427
SYSTABLESPACE catalog table 2688

MIXED_DATA column
SYSENVIRONMENT catalog table 2452

MIXED_DATA session variable 336
MOD function 506
MODE DB2SQL clause 1764, 1784
MODE SQL clause of TRIGGER statement 1776
MODENAME column

LUMODES catalog table 2353
MODESELECT catalog table 2358

MODESELECT column of LUNAMES catalog table 2354
MODIFIES SQL DATA clause

ALTER FUNCTION statement 1105
ALTER PROCEDURE (external) statement 1185
ALTER PROCEDURE (SQL - native) statement 1203
CREATE FUNCTION statement 1437, 1464

Index 3011

MODIFIES SQL DATA clause (continued)
CREATE PROCEDURE (external) statement 1591
CREATE PROCEDURE (SQL - external) statement 1603
CREATE PROCEDURE (SQL - native) statement 1618

MON1AUTH column of SYSUSERAUTH catalog table 2715
MON2AUTH column of SYSUSERAUTH catalog table 2715
MONITOR1 privilege

GRANT statement 1985
REVOKE statement 2098

MONITOR2 privilege
GRANT statement 1985
REVOKE statement 2098

MONTH column
SYSINDEXCONTROL catalog table 2460

MONTH function 508
MONTH_WEEK column

SYSINDEXCONTROL catalog table 2460
MONTHNAME function 2959
MONTHS_BETWEEN function 508
MOVE_TO_ARCHIVE

built-in global variable 332
MQREAD function 510
MQREADALL function 685
MQREADALLCLOB function 687
MQREADCLOB function 511
MQRECEIVE function 512
MQRECEIVEALL function 689
MQRECEIVEALLCLOB function 691
MQRECEIVECLOB function 514
MQSEND function 516
multiple-row-fetch clause

FETCH statement 1937
MULTIPLY_ALT function 517

N
NACTIVE column

SYSINDEXSPACESTATS catalog table 2482
SYSTABLESPACE catalog table

description 2688
SYSTABLESPACESTATS catalog table 2699
SYSTABSTATS catalog table 2710

NACTIVEF
SYSTABLESPACE catalog table 2688

NAME
column of SYSCOLDIST catalog table 2373
column of SYSCOLDISTSTATS catalog table 2375
column of SYSCOLSTATS catalog table 2379
column of SYSCOLUMNS catalog table 2381
column of SYSSEQUENCEAUTH catalog table 2640

NAME clause
CREATE FUNCTION statement 1461
CREATE PROCEDURE (external) statement 1589

NAME column
SYSCOLDIST_HIST catalog table 2377
SYSCOLUMNS_HIST catalog table 2395
SYSCONTEXT catalog table 2401
SYSCTXTTRUSTATTRS catalog table 2426
SYSDATABASE catalog table 2427
SYSDATATYPES catalog table 2429
SYSDBAUTH catalog table 2432
SYSDBRM catalog table 2437
SYSFIELDS catalog table 2456
SYSINDEXES catalog table 2461

NAME column (continued)
SYSINDEXES_HIST catalog table 2472
SYSINDEXSPACESTATS catalog table 2482
SYSINDEXSTATS catalog table 2490
SYSINDEXSTATS_HIST catalog table 2492
SYSLOBSTATS catalog table 2516
SYSLOBSTATS_HIST catalog table 2516
SYSPACKAGE catalog table 2519
SYSPACKAUTH catalog table 2536
SYSPACKLIST catalog table 2558
SYSPACKSTMT catalog table 2558
SYSPARMS catalog table 2565
SYSPKSYSTEM catalog table 2574
SYSPLAN catalog table 2575
SYSPLANAUTH catalog table 2582
SYSRESAUTH catalog table 2615
SYSROLES catalog table 2618
SYSROUTINES catalog table 2621
SYSSEQUENCES catalog table 2643
SYSSTMT catalog table 2651
SYSSTOGROUP catalog table 2655
SYSSYNONYMS catalog table 2658
SYSTABLES catalog table 2678
SYSTABLES_HIST catalog table 2707
SYSTABLESPACE catalog table 2688
SYSTABLESPACESTATS catalog table 2699
SYSTABSTATS catalog table 2710
SYSTABSTATS_HIST catalog table 2711
SYSTRIGGERS catalog table 2712
SYSVARIABLEAUTH catalog table 2722
SYSVARIABLES catalog table 2724
SYSVIEWS catalog table 2730

names
object naming conventions 79

NAMES
USING clause of DESCRIBE statement 1882

NAMES
USING clause of DESCRIBE statement 1874
USING clause of PREPARE statement 2044

names, prepared SQL statements 1844
naming conventions

SQL 79
native SQL procedures 35
NEARINDREF column

SYSTABLEPART catalog table 2665
SYSTABLEPART_HIST catalog table 2675

NEAROFFPOSF column
SYSINDEXPART catalog table 2474
SYSINDEXPART_HIST catalog table 2480

Nested compound statements and scope of names 2210
nested table expressions 1020
NEW AS clause of CREATE TRIGGER statement 1349, 1747,
1774
new line control character 75
NEW TABLE AS clause of CREATE TRIGGER statement 1349,
1747, 1774
NEW TABLE clause 1764, 1784
NEW_LINE procedure 921
NEWAUTHID column of USERNAMES catalog table 2737
NEWFUN session variable 336
NEXT clause

FETCH statement 1928
NEXT ROWSET clause

FETCH statement 1932

3012 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

NEXT VALUE expression
definition 292

NEXT_DAY function 518
NEXT_MONTH scalar function 520
NLEAF column

SYSINDEXES catalog table
description 2461

SYSINDEXES_HIST catalog table 2472
SYSINDEXSPACESTATS catalog table 2482
SYSINDEXSTATS catalog table 2490
SYSINDEXSTATS_HIST catalog table 2492

NLEVELS column
SYSINDEXES catalog table

description 2461
SYSINDEXES_HIST catalog table 2472
SYSINDEXSPACESTATS catalog table 2482
SYSINDEXSTATS catalog table 2490
SYSINDEXSTATS_HIST catalog table 2492

NO ACTION delete rule
CREATE TABLE statement 1684

NO CACHE
clause of ALTER SEQUENCE statement 1226

NO CACHE clause
ALTER TABLE statement 1253
CREATE SEQUENCE statement 1642

NO CASCADE clause of CREATE TRIGGER statement 1348,
1746
NO COLLID clause

ALTER FUNCTION statement 1109
ALTER PROCEDURE (external) statement 1186
ALTER PROCEDURE (SQL - external) statement 1191
CREATE FUNCTION statement 1467, 1485

NO CYCLE
clause of ALTER SEQUENCE statement 1226

NO CYCLE clause
ALTER TABLE statement 1252
CREATE SEQUENCE statement 1641

NO DBINFO clause
ALTER FUNCTION statement 1108
ALTER PROCEDURE (external) statement 1185
CREATE FUNCTION statement 1467, 1485
CREATE PROCEDURE (external) statement 1592
CREATE PROCEDURE (SQL - external) statement 1603

NO DEFAULT ROLE clause
ALTER TRUSTED CONTEXT statement 1371
CREATE TRUSTED CONTEXT statement 1789

no encryption 1791
NO EXTERNAL ACTION clause

ALTER FUNCTION statement 1106, 1122, 1147
CREATE FUNCTION (inlined SQL scalar) statement 1495
CREATE FUNCTION statement 1436, 1464, 1482

NO FINAL CALL clause
ALTER FUNCTION statement 1108, 1466
CREATE FUNCTION statement 1484

NO MAXVALUE
clause of ALTER SEQUENCE statement 1226
clause of CREATE TABLE statement 1676

NO MAXVALUE clause
ALTER TABLE statement 1252
CREATE SEQUENCE statement 1641

NO MINVALUE
clause of ALTER SEQUENCE statement 1225
clause of CREATE TABLE statement 1676

NO MINVALUE clause

NO MINVALUE clause (continued)
ALTER TABLE statement 1252
CREATE SEQUENCE statement 1640

NO ORDER
clause of ALTER SEQUENCE statement 1227
clause of CREATE TABLE statement 1678

NO ORDER clause
ALTER TABLE statement 1253
CREATE SEQUENCE statement 1642

NO PACKAGE PATH clause
ALTER FUNCTION statement 1106
ALTER PROCEDURE (external) statement 1185
CREATE FUNCTION statement 1465, 1483
CREATE PROCEDURE (external) statement 1592

NO SCRATCHPAD clause
ALTER FUNCTION statement 1107
CREATE FUNCTION statement 1465, 1483

NO SCROLL clause
DECLARE CURSOR statement 1821

NO SQL clause
ALTER FUNCTION statement 1105
ALTER PROCEDURE (external) statement 1185
CREATE FUNCTION statement 1464, 1482
CREATE PROCEDURE (external) statement 1591

NOCACHE clause
CREATE SEQUENCE statement 1644
CREATE TABLE statement 1714

NOCOLLID clause
CREATE PROCEDURE (external) statement 1593
CREATE PROCEDURE (SQL - external) statement 1603

NOCYCLE clause
CREATE SEQUENCE statement 1644
CREATE TABLE statement 1714

NODEFER PREPARE clause
ALTER PROCEDURE (SQL - native) statement 1205
CREATE PROCEDURE (SQL - native) statement 1620

NOFOR option
precompiler 326

NOGRAPHIC option of precompiler 325
NOMAXVALUE clause

CREATE SEQUENCE statement 1644
CREATE TABLE statement 1714

NOMINVALUE clause
CREATE SEQUENCE statement 1644
CREATE TABLE statement 1714

nonexecutable statement 1086, 1087
NOORDER clause

CREATE SEQUENCE statement 1644
CREATE TABLE statement 1714

NORMALIZE_DECFLOAT function 520
NORMALIZE_STRING function 521
NOT ATOMIC clause

compound statement of an SQL procedure 2221, 2286
NOT ATOMIC CONTINUE ON SQLEXCEPTION clause

INSERT statement 2005
MERGE statement 2030
PREPARE statement 2049

NOT CLUSTER
clause of ALTER INDEX statement 1167

NOT CLUSTER clause
CREATE INDEX statement 1537

NOT DETERMINISTIC clause
ALTER FUNCTION statement 1104, 1122, 1147
ALTER PROCEDURE (external) statement 1184

Index 3013

NOT DETERMINISTIC clause (continued)
ALTER PROCEDURE (SQL - external) statement 1191
ALTER PROCEDURE (SQL - native) statement 1203
CREATE FUNCTION (inlined SQL scalar) statement 1495
CREATE FUNCTION statement 1436, 1463, 1481
CREATE PROCEDURE (external) statement 1592
CREATE PROCEDURE (SQL - external) statement 1603
CREATE PROCEDURE (SQL - native) statement 1618

NOT ENFORCED clause
ALTER TABLE statement 1272
CREATE TABLE statement 1685

NOT FOUND clause of WHENEVER statement 2204
NOT LOGGED

clause of CREATE TABLE statement 1699
NOT LOGGED clause

ALTER TABLESPACE statement 1328
CREATE LOB TABLESPACE statement 1559
CREATE TABLESPACE statement 1731
DECLARE GLOBAL TEMPORARY TABLE statement 1839

NOT NULL clause
ALTER TABLE statement 1248
CREATE GLOBAL TEMPORARY TABLE statement 1521
CREATE TABLE statement

description 1667
DECLARE GLOBAL TEMPORARY TABLE statement 1836

NOT PADDED
clause of ALTER INDEX statement 1168

NOT PADDED clause
CREATE INDEX statement 1537

NOT VARIANT clause
CREATE PROCEDURE (external) statement 1596
CREATE PROCEDURE (SQL - external) statement 1606
CREATE PROCEDURE (SQL - native) statement 1635

NOT VOLATILE
clause of CREATE TABLE statement 1699

NOT VOLATILE clause
ALTER TABLE statement 1289

NPAGES column
SYSINDEXSPACESTATS catalog table 2482
SYSTABLES catalog table

description 2678
SYSTABLESPACESTATS catalog table 2699
SYSTABSTATS catalog table 2710
SYSTABSTATS_HIST catalog table 2711

NPAGESF column
SYSCOPY catalog table 2408
SYSTABLES catalog table 2678
SYSTABLES_HIST catalog table 2707

NTABLES column of SYSTABLESPACE catalog table 2688
NULL

CAST specification 267
predicate 316

NULL CALL clause
CREATE PROCEDURE (external) statement 1596

null value
assigned to target variable 2119
assignment 143
duplicate rows 1010
grouping columns 1037
specified by indicator variable 227

null values
compared to default values 26
usage 24

NULL_CALL column of SYSROUTINES catalog table 2621

NULLIF function 522
NULLS column

SYSCOLUMNS catalog table 2381
SYSCOLUMNS_HIST catalog table 2395
SYSKEYTARGETS catalog table 2500
SYSKEYTARGETS_HIST catalog table 2505

NULLS LAST clause
ALTER TABLE statement 1275
CREATE TABLE statement 1695

NUM_DEP_MQTS column
SYSROUTINES catalog table 2621
SYSTABLES catalog table 2678

numbers
data types

string representation 101
numbers in SQL 99
NUMCOLUMNS column

SYSCOLDIST catalog table 2373
SYSCOLDIST_HIST catalog table 2377
SYSCOLDISTSTATS catalog table 2375

numeric
assignments 145
comparisons 156
data type 99
operands 167

NUMERIC data type
CREATE TABLE statement 1663

numeric data types
DECIMAL 19
DOUBLE 19
identity columns 19
INTEGER 19
REAL 19
SMALLINT 19

NUMKEYS column
SYSKEYTGTDIST catalog table 2509
SYSKEYTGTDIST_HIST catalog table 2513
SYSKEYTGTDISTSTATS catalog table 2511

NUMPARTS
clause of CREATE TABLESPACE statement 1726

NVL function 523

O
OBID

clause of CREATE TABLE statement 1698
column of SYSCHECKS catalog table 2369
column of SYSTABLES catalog table 2678
column of SYSTABLESPACE catalog table 2688
column of SYSTRIGGERS catalog table 2712

OBID column
SYSINDEXES catalog table 2461

object name, resolution 86
object ownership 90
object table 220
OBJECTOWNERTYPE column

SYSCONTEXT catalog table 2401
objects

naming conventions 79
OBTYPE column of SYSRESAUTH catalog table 2615
OCTETS 106
ODBC (Open Database Connectivity) 3
OFFSET clause

subselect-statement 1046

3014 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

OLAP-specification
expression 280

OLD AS clause of TRIGGER statement 1774
OLD ROW AS clause of TRIGGER statement 1349, 1747
OLD TABLE AS clause of CREATE TRIGGER statement 1349,
1747, 1774
OLD TABLE clause

FROM clause 1022
OLDEST_VERSION column

catalog table 2688
SYSCOPY catalog table 2408
SYSINDEXES catalog table 2461
SYSINDEXPART catalog table 2474
SYSTABLEPART catalog table 2665

ON clause
CREATE INDEX statement 1530
CREATE TRIGGER statement 1746, 1773
joining tables 1034

ON COMMIT clause
DECLARE GLOBAL TEMPORARY TABLE statement 1839

ON DELETE clause
ALTER TABLE statement 1271
CREATE TABLE statement 1684

ON ROLLBACK RETAIN CURSORS clause
SAVEPOINT statement 2114

ON ROLLBACK RETAIN LOCKS clause
SAVEPOINT statement 2114

ON search condition
MERGE statement 2026

ON TABLE clause
GRANT statement 1989
REVOKE statement 2102

one-phase commit 68
OPEN

statement
description 2037
example 2041

open cursor 1941
Open Database Connectivity (ODBC) 3
operands

binary string 168
character string 168
datetime 169, 257
decimal 250
distinct type 250
graphic string 168
integer 250
numeric 167
Row ID 169
XML 169

operation
SQL

assignment 143
comparison 156
description 143

OPERATIVE column
SYSPACKAGE catalog table 2519
SYSPLAN catalog table 2575

operator
arithmetic 250

OPTHINT clause
ALTER PROCEDURE (SQL - native) statement 1209
CREATE PROCEDURE (SQL - native) statement 1128,
1442, 1624

OPTHINT clause (continued)
CREATE TRIGGER statement 1354, 1752

OPTHINT column
SYSPACKAGE catalog table 2519
SYSPLAN catalog table 2575

optimization hints 1128, 1209, 1354, 1442, 1624, 1752
OPTIMIZE FOR n ROWS clause 1073
OR truth table 319
ORDER

clause of ALTER SEQUENCE statement 1227
clause of CREATE TABLE statement 1678

ORDER BY clause
subselect 1043

ORDER clause
ALTER TABLE statement 1253
CREATE SEQUENCE statement 1642

ORDER column of SYSSEQUENCES catalog table 2643
ORDER OF clause

ORDER BY clause of subselect 1044
order of evaluation, operators 263
order of statements in a compound statement 2221, 2286
ORDERING column

SYSKEYTARGETS catalog table 2500
ORDERING column of SYSKEYS catalog table 2498
ORDINAL column

SYSJAVAPATHS catalog table 2497
ORDINAL column of SYSPARMS catalog table 2565
ordinary identifier in SQL 77
ORGANIZATIONTYPE column

SYSTABLESPACE catalog table 2688
ORGRATIO column

SYSLOBSTATS catalog table 2516
SYSLOBSTATS_HIST catalog table 2516

ORIGIN column
SYSPACKAGE catalog table 2519

ORIGIN column of SYSROUTINES catalog table 2621
ORIGINAL_ENCODING_CCSID column

SYSENVIRONMENT catalog table 2452
ORIGINALTS column

SYSTRIGGERS catalog table 2712
OTYPE column of SYSCOPY catalog table 2408
OUT clause

ALTER PROCEDURE (SQL - native) statement 1202
CREATE PROCEDURE (external) statement 1586
CREATE PROCEDURE (SQL - external) statement 1601
CREATE PROCEDURE (SQL - native) statement 1616

OUTCCSID column of SYSSTRINGS catalog table 2656
outer join

FULL OUTER JOIN
example 1048
FROM clause of subselect 1034

LEFT OUTER JOIN
example 1048
FROM clause of subselect 1034

RIGHT OUTER JOIN
example 1048
FROM clause of subselect 1034

output host variable 227
OVERLAY function 523
OVERRIDING USER VALUE

clause of INSERT statement 2001
OWNER

column of SYSDATATYPES catalog table 2429
column of SYSINDEXSTATS catalog table 2490

Index 3015

OWNER (continued)
column of SYSINDEXSTATS_HIST catalog table 2492
column of SYSJAROBJECTS catalog table 2495
column of SYSPACKAGE catalog table 2519
column of SYSPARMS catalog table 2565
column of SYSROUTINES catalog table 2621
column of SYSSEQUENCES catalog table 2643
column of SYSTABSTATS catalog table 2710
column of SYSTABSTATS_HIST catalog table 2711
column of SYSTRIGGERS catalog table 2712

OWNER column
SYSINDEXES catalog table 2461
SYSJAVAPATHS catalog table 2497
SYSTABLES catalog table 2678
SYSVARIABLES catalog table 2724
SYSVIEWS catalog table 2730

ownership
transferring

TRANSFER OWNERSHIP statement 2172
OWNERTYPE column

SYSCONSTDEP catalog table 2400
SYSDATABASE catalog table 2429
SYSINDEXES catalog table 2461
SYSJAROBJECTS catalog table 2495
SYSPACKAGE catalog table 2519
SYSPARMS catalog table 2565
SYSROUTINES catalog table 2621
SYSSEQUENCES catalog table 2643
SYSTABLES catalog table 2678
SYSTABLESPACE catalog table 2712
SYSVARIABLES catalog table 2724
SYSVIEWDEP catalog table 2729
SYSVIEWS catalog table 2730

P
PACK function 526
PACKADM authority

GRANT statement 1967
REVOKE statement 2076

package
binding

remote 96
dropping 1894
privileges

granting 1975
remote bind 96
revoking 2087

PACKAGE
clause of GRANT statement 1976
clause of REVOKE statement 2088

PACKAGE clause
COMMENT statement 1403
DROP statement 1894

PACKAGE OWNER clause
ALTER PROCEDURE (SQL - native) statement 1204
CREATE PROCEDURE (SQL - native) statement 1124,
1438, 1619

PACKAGE PATH clause
ALTER FUNCTION statement 1106
ALTER PROCEDURE (external) statement 1185
CREATE FUNCTION statement 1465, 1483
CREATE PROCEDURE (external) statement 1592

PACKAGE_NAME session variable 336

PACKAGE_SCHEMA session variable 336
PACKAGE_VERSION session variable 336
package-name

naming convention 82
PACKAGEPATH column

SYSROUTINES catalog table 2621
packages 45, 57
PAD_NUL_TERMINATED session variable 336
PADDED clause

ALTER INDEX statement 1168
CREATE INDEX statement 1537

PADDED column
SYSINDEXES catalog table 2461

page sets 48
PAGENUM

clause of CREATE TABLE statement 1701
PAGENUM column

SYSINDEXES catalog table 2461
SYSTABLESPACE catalog table 2688

PAGESAVE column
SYSTABLEPART catalog table 2665
SYSTABLEPART_HIST catalog table 2675

PARALLEL column of SYSROUTINES catalog table 2621
parallel processing

SET CURRENT DEGREE statement 2136
Parallel Sysplex

group buffer pool 41
parameter

passing to stored procedure 2218, 2282
PARAMETER CCSID ASCII clause

ALTER PROCEDURE (SQL - native) statement 1204
PARAMETER CCSID clause

CREATE FUNCTION (inlined SQL scalar) statement 1495
CREATE FUNCTION (SQL - native) statement 1438
CREATE FUNCTION statement 1460, 1479, 1504
CREATE PROCEDURE (external) statement 1588
CREATE PROCEDURE (SQL - external) statement 1602
CREATE PROCEDURE (SQL - native) statement 1619

PARAMETER CCSID EBCDIC clause
ALTER PROCEDURE (SQL - native) statement 1204

PARAMETER CCSID UNICODE clause
ALTER PROCEDURE (SQL - native) statement 1204

parameter marker
CAST specification 267
description 2051
EXECUTE statement 1910
EXPLAIN statement 1919
obtaining information with DESCRIBE INPUT 1871
OPEN statement 2039
PREPARE statement 2051
rules 2051
typed 2051
untyped 2051
variables in dynamic SQL 230

PARAMETER STYLE clause
ALTER FUNCTION statement 1104
ALTER PROCEDURE (external) statement 1184
CREATE FUNCTION statement 1462, 1481
CREATE PROCEDURE (external) statement 1591

PARAMETER STYLE DB2SQL clause
CREATE PROCEDURE (external) statement 1596

PARAMETER VARCHAR clause
CREATE FUNCTION statement 1460, 1479
CREATE PROCEDURE (external) statement 1588

3016 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

PARAMETER_CCSID column
SYSROUTINES catalog table 2621

PARAMETER_STYLE column of SYSROUTINES catalog table
2621
PARAMETER_VARCHARFORM column

SYSROUTINES catalog table 2621
parameter-name

naming convention 82
parent keys 10, 12
parent rows 12
parent tables 12
PARENTS column of SYSTABLES catalog table 2678
PARM_COUNT column of SYSROUTINES catalog table 2621
PARM_SIGNATURE column of SYSROUTINES catalog table
2621
PARM1 - PARM30 columns of SYSROUTINES catalog table
2621
PARMLIST column

SYSFIELDS catalog table 2456
PARMNAME column of SYSPARMS catalog table 2565
PARSETREE column

SYSINDEXES catalog table 2461
PART

clause of CREATE AUXILIARY TABLE statement 1420
PART clause

CREATE INDEX statement 1551
CREATE LOB TABLESPACE statement 1561
CREATE TABLE statement 1714
CREATE TABLESPACE statement 1738
synonym for PARTITION clause 2018

partition
maximum size 1161, 1557

PARTITION
clause of ALTER INDEX statement 1170
clause of CREATE INDEX statement 1543
clause of CREATE TABLESPACE statement 1726
clause of LOCK TABLE statement 2017

PARTITION BY RANGE
clause of CREATE INDEX statement 1542

PARTITION BY RANGE clause
ALTER TABLE statement 1274
CREATE TABLE statement 1695

PARTITION BY SIZE clause
CREATE TABLE statement 1694

PARTITION clause
ALTER TABLE statement 1275
CREATE TABLE statement 1695

PARTITION column
SYSCOLDISTSTATS catalog table 2375
SYSCOLSTATS catalog table 2379
SYSINDEXCONTROL catalog table 2460
SYSINDEXPART catalog table 2474
SYSINDEXPART_HIST catalog table 2480
SYSINDEXSPACESTATS catalog table 2482
SYSINDEXSTATS catalog table 2490
SYSINDEXSTATS_HIST catalog table 2492
SYSKEYTARGETSTATS catalog table 2503
SYSKEYTGTDISTSTATS catalog table 2511
SYSTABLEPART catalog table 2665
SYSTABLEPART_HIST catalog table 2675
SYSTABLESPACE catalog table 2688
SYSTABLESPACESTATS catalog table 2699
SYSTABSTATS catalog table 2710
SYSTABSTATS_HIST catalog table 2711

PARTITION column of SYSAUXRELS catalog table 2368
partition-by-clause

CREATE TABLE statement 1694
PARTITIONED clause

CREATE INDEX statement 1537
partitioned table spaces 50
PARTITIONS column

SYSINDEXES catalog table 2461
PARTKEY_COLSEQ column

SYSCOLUMNS catalog table 2381
PARTKEY_ORDERING column

SYSCOLUMNS catalog table 2381
PARTKEYCOLNUM column

SYSTABLES catalog table 2678
PASSWORD column

USERNAMES catalog table 2737
password, encryption 2161
PATH column

SYSJAROBJECTS catalog table 2495
PATHSCHEMAS column

SYSCHECKS2 catalog table 2370
SYSENVIRONMENT catalog table 2452
SYSPACKAGE catalog table 2519
SYSPLAN catalog table 2575
SYSVIEWS catalog table 2730

PCTFREE
clause of ALTER INDEX statement 1166
clause of CREATE INDEX statement 1540
clause of CREATE TABLESPACE statement 1729
column of SYSINDEXPART catalog table 2474
column of SYSTABLEPART catalog table 2665

PCTFREE clause
ALTER TABLESPACE statement 1331

PCTFREE column
SYSINDEXES catalog table 2461
SYSTABLESPACE catalog table 2688

PCTFREE_UPD column
SYSTABLEPART catalog table 2665
SYSTABLESPACE catalog table 2688

PCTFREE_UPD_CALC column
SYSTABLEPART catalog table 2665
SYSTABLESPACE catalog table 2688

PCTIMESTAMP column of SYSPACKAGE catalog table 2519
PCTPAGES column

SYSTABLES catalog table 2678
SYSTABLES_HIST catalog table 2707
SYSTABSTATS catalog table 2710

PCTROWCOMP column
SYSTABLES catalog table

description 2678
SYSTABLES_HIST catalog table 2707
SYSTABSTATS catalog table 2710

PDSNAME column
SYSDBRM catalog table 2437
SYSPACKAGE catalog table 2519

PE_CLASS_PATTERN column
SYSJAVAPATHS catalog table 2497

PE_JAR_ID column
SYSJAVAPATHS catalog table 2497

PE_JARSCHEMA column
SYSJAVAPATHS catalog table 2497

PER_STMT_ID
column of SYSDYNQRYDEP catalog table 2446

PERCACTIVE column

Index 3017

PERCACTIVE column (continued)
SYSTABLEPART catalog table

description 2665
SYSTABLEPART_HIST catalog table 2675

PERCDROP column
SYSTABLEPART catalog table

description 2665
SYSTABLEPART_HIST catalog table 2675

PERCENT_RANK function 372
PERCENTILE_CONT function 370
PERCENTILE_DISC function 371
PERIOD option of precompiler 323
PERMISSION clause

COMMENT statement 1403
permission-name

naming convention 82
PGSIZE column

SYSINDEXES catalog table 2461
SYSTABLESPACE catalog table 2688

PIECESIZE clause
ALTER INDEX statement 1162
CREATE INDEX statement 1545

PIECESIZE column
SYSINDEXES catalog table 2461

PIT_RBA column of SYSCOPY catalog table 2408
PIT_RBA_EX column

SYSCOPY catalog table 2408
PKSIZE column of SYSPACKAGE catalog table 2519
PL/I application program

host structure 235
host variable

description 227
host-variable-arrays 236
INCLUDE SQLCA 2308
INCLUDE SQLDA 2326
varying-length string 104

PLAN
clause of EXPLAIN statement 1919

PLAN
clause of GRANT statement 1977
clause of REVOKE statement 2089

PLAN clause
COMMENT statement 1403

plan element 2146
plan table

column descriptions 2787
creating 2787
format 2787
SET CURRENT EXPLAIN MODE statement 2137

PLAN_NAME session variable 336
PLAN_TABLE

column descriptions 2787
plan-name

naming convention 82
PLANNAME column

DSNPROGAUTH table 2939
MODESELECT catalog table 2358
SYSPACKLIST catalog table 2558

PLCREATOR column
SYSDBRM catalog table 2437
SYSSTMT catalog table 2651

PLCREATORTYPE column
SYSDBRM catalog table 2437
SYSSTMT catalog table 2651

PLENTRIES column of SYSPLAN catalog table 2575
PLNAME column

SYSDBRM catalog table 2437
SYSSTMT catalog table 2651

PLSIZE column of SYSPLAN catalog table 2575
POBJECT_LIB column

SYSJAVAOPTS catalog table 2496
points of consistency 43, 55
PORT column

LOCATIONS catalog table 2351
POSITION function 529
POSSTR function 532
POWER function 533
PQTY column

SYSINDEXES catalog table 2461
SYSINDEXPART catalog table 2474
SYSINDEXPART_HIST catalog table 2480
SYSTABLEPART catalog table 2665
SYSTABLEPART_HIST catalog table 2675
SYSTABLESPACE catalog table 2688

precedence of operators 263
PRECISION column

SYSSEQUENCES catalog table 2643
precision of numbers

description 99
determined by SQLLEN variable 2322
in assignments 145
in comparisons 156
results of arithmetic operations 250
values for data types 99

PRECOMPILE_OPTS column of SYSROUTINES_OPTS catalog
table 2635
precompiler

checks SQL statements 1847
DECLARE TABLE statement 1845
DECLARE VARIABLE statement 1850
escape character 77
options

COBOL decimal point 323
CONNECT 320
date 325
NOFOR 326
STDSQL 326
string delimiter 324
time 325

SET CURRENT ACCELERATOR statement 2129
SET CURRENT APPLICATION ENCODING SCHEME
statement 2132
using INCLUDE statements 1995

PRECOMPTS column of SYSDBRM catalog table 2437
predicate

ARRAY_EXISTS 302
basic 297
BETWEEN 303
description 296
DISTINCT 304
EXISTS 305
IN 306
LIKE 308
NULL 316
quantified 300
XMLEXISTS 316

predicate selectivity table
column descriptions 2863

3018 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

predicate selectivity table (continued)
creating 2863
format 2863

prefix operator 250
PRELINK_OPTS column

SYSROUTINES_OPTS catalog table 2635
PREPARE statement

description 2042
example 2061

prepared SQL statement
dynamically prepared by PREPARE 2042
executing 1909
identifying by DECLARE 1844
obtaining information

with DESCRIBE 1873
with DESCRIBE INPUT 1871

SQLDA provides information 2313
statements allowed 2269

PREVIOUS VALUE expression
definition 292

PRIMARY KEY clause
ALTER TABLE statement

description 1268
CREATE TABLE statement 1668, 1681

primary keys 10
PRIOR clause

FETCH statement 1929
PRIOR ROWSET clause

FETCH statement 1933
PRIQTY clause

ALTER INDEX statement 1163
ALTER TABLESPACE statement 1332
CREATE INDEX statement 1538

privilege
granting 1963
revoking 2070
types 1963

PRIVILEGE column of SYSCOLAUTH catalog table 2371
privileges

object ownership 90
procedure

creating with CREATE PROCEDURE statement 1578
PROCEDURE clause

COMMENT statement 1403
DROP statement 1895

procedure, stored
naming convention 82

procedures
CREATE_DGTT 916
creating

with CREATE PROCEDURE (SQL - native) statement
1607

DISABLE 917
DSN_WLM_APPLENV 913
ENABLE 918
external SQL procedures 35
external stored procedures 35
GET_LINE 919, 923
GET_LINES 920
inheriting special registers 215
introduction 35
native SQL procedures 35
NEW_LINE 921
PUT 921

procedures (continued)
PUT_LINE 922
WLM_SET_CLIENT_INFO 999

product-sensitive programming information, described 2970
PRODUCTID_EXT

built-in global variable 332
PROGAUTH column

SYSPLAN catalog table 2575
PROGMDCPAD column

DSNPROGAUTH table 2939
PROGMDCVAL

column of DSNPROGAUTH table 2939
PROGNAME column

DSNPROGAUTH table 2939
program

naming convention 83
program authorization tables

indexes 2939
table space 2939

PROGRAM clause 1905
PROGRAM TYPE clause

ALTER FUNCTION statement 1110
ALTER PROCEDURE (external) statement 1187
ALTER PROCEDURE (SQL - external) statement 1192
CREATE FUNCTION statement 1469, 1486
CREATE PROCEDURE (external) statement 1594
CREATE PROCEDURE (SQL - external) statement 1605

PROGRAM_TYPE column of SYSROUTINES catalog table
2621
programming interface information, described 2970
promotion of data types 129
PROPERTIES column

SYSIBM.XSROBJECTCOMPONENTS table 2783
SYSIBM.XSROBJECTPROPERTY table 2785
SYSIBM.XSROBJECTS table 2782

PSEUDO_DEL_ENTRIES column
SYSINDEXPART catalog table 2474
SYSINDEXPART_HIST catalog table 2480

PSID column
SYSINDEXSPACESTATS catalog table 2482
SYSTABLESPACE catalog table 2688
SYSTABLESPACESTATS catalog table 2699

PSPI symbols 2970
PUBLIC

clause of CREATE ALIAS statement 1416
PUBLIC clause

CREATE TRUSTED CONTEXT statement 1793
GRANT statement 1965
REVOKE statement 2071

PUBLICAUTH
column of SYSDYNQRYDEP catalog table 2446

PUT procedure 921
PUT_LINE procedure 922

Q
QMF for Workstation

Database Explorer feature 4
query results 4
query-related features 4
SQL statements

entering and processing 4
qualification of column names 220
QUALIFIER

Index 3019

QUALIFIER (continued)
column of SYSPACKAGE catalog table 2519
column of SYSPLAN catalog table 2575
column of SYSRESAUTH catalog table 2615
unqualified object names 86

QUALIFIER clause
ALTER PROCEDURE (SQL - native) statement 1204
CREATE PROCEDURE (SQL - native) statement 1124,
1438, 1619
CREATE TRIGGER statement 1351, 1749

quantified predicate 300
QUANTILENO column

SYSCOLDIST catalog table 2373
SYSCOLDIST_HIST catalog table 2377
SYSCOLDISTSTATS catalog table 2375
SYSKEYTGTDIST catalog table 2509
SYSKEYTGTDIST_HIST catalog table 2513
SYSKEYTGTDISTSTATS catalog table 2511

QUANTIZE function 534
QUARTER function 535
query 1007
QUERY_HASH

column of SYSDYNQRY catalog table 2444
QUERY_HASH_VERSIO N

column of SYSDYNQRY catalog table 2444
QUERYNO clause

DELETE statement 1863
INSERT statement 2003
SELECT INTO statement 2120
select-statement 1075
UPDATE statement 2190

QUERYNO column
SYSPACKSTMT catalog table 2558
SYSSTMT catalog table 2651

question mark (?) 1910
quotation mark 77, 324
QUOTE

column of SYSDBRM catalog table 2437
column of SYSPACKAGE catalog table 2519
option of precompiler 324

QUOTESQL option of precompiler 324

R
RACF (Resource Access Control Facility)

security for remote execution 98
RADIANS function 536
RAISE_ERROR function 536
RAND function 537
RANDOM function 537
RANK expression 280
RBA column of SYSCHECKS catalog table 2369
RBA_EX column

SYSCHECKS catalog table 2369
RBA_FORMAT column

SYSINDEXPART catalog table 2474
SYSTABLEPART catalog table 2665

RBA1 column of SYSTABLES catalog table 2678
RBA1_EX column

SYSTABLES catalog table 2678
RBA2 column of SYSTABLES catalog table 2678
RBA2_EX column

SYSTABLES catalog table 2678
READ SQL clause

READ SQL clause (continued)
ALTER PROCEDURE (external) statement 1185

READ SQL DATA clause
ALTER FUNCTION statement 1105

read-only
FOR FETCH ONLY clause 1072
FOR READ ONLY clause 1072
view 1817

READAUTH column
SYSVARIABLEAUTH catalog table 2722

READS SQL DATA clause
ALTER PROCEDURE (SQL - external) statement 1191
ALTER PROCEDURE (SQL - native) statement 1203
CREATE FUNCTION (inlined SQL scalar) statement 1496
CREATE FUNCTION statement 1437, 1464, 1482
CREATE PROCEDURE (external) statement 1591
CREATE PROCEDURE (SQL - external) statement 1603
CREATE PROCEDURE (SQL - native) statement 1618

REAL data type
CREATE TABLE statement 1663

REAL function 538
real-time statistics

stored procedure 848
REBUILDLASTTIME column

SYSINDEXSPACESTATS catalog table 2482
RECLENGTH column of SYSTABLES catalog table 2678
RECOVER privilege

GRANT statement 1985
REVOKE statement 2098

RECOVERAUTH column of SYSUSERAUTH catalog table 2715
RECOVERDB privilege

GRANT statement 1969
REVOKE statement 2079

RECOVERDBAUTH column of SYSDBAUTH catalog table
2432
recovery

COMMIT statement 1406
restoring data consistency 43, 55
unit of 44, 56

REFCOLS column of SYSTABAUTH catalog table 2659
REFERENCES clause

ALTER TABLE statement 1270
REFERENCES privilege

GRANT statement 1989
REVOKE statement 2102

REFERENCESAUTH column of SYSTABAUTH catalog table
2659
REFERENCING clause of TRIGGER statement 1349, 1747,
1773
referencing SQL parameters 2208
referencing SQL variables 2208
referential constraint

ALTER TABLE statement 1269
CREATE TABLE statement 1682

referential constraints 11, 12
referential integrity 12
REFRESH column

SYSVIEWS catalog table 2730
REFRESH TABLE statement

description 2062
REFRESH_TIME column

SYSVIEWS catalog table 2730
REFTBCREATOR column of SYSRELS catalog table 2613
REFTBNAME column of SYSRELS catalog table 2613

3020 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

REGENERATE clause
ALTER INDEX statement 1160
ALTER VIEW statement 1379

REGENERATE VERSION clause
ALTER PROCEDURE (SQL - native) statement 1201

REGENERATETS column
SYSINDEXES catalog table 2461

REGENTS column
SYSTRIGGERS catalog table 2712

REGEXP_COUNT scalar function 539
REGEXP_INSTR scalar function 541
REGEXP_LIKE scalar function 543
REGEXP_REPLACE scalar function 546
REGEXP_SUBSTR scalar function 549
registering XML schema

XSR_REGISTER 1003
regression functions 374
RELATIVE clause

FETCH statement 1931
RELBND

column of SYSDYNQRY catalog table 2444
RELBOUND column

SYSPACKAGE catalog table 2519
SYSPLAN catalog table 2575

RELCREATED column
SYSAUXRELS catalog table 2368
SYSCHECKS catalog table 2369, 2370
SYSCOLUMNS catalog table 2381
SYSCONTEXT catalog table 2401
SYSCOPY catalog table 2408
SYSDATABASE catalog table 2427
SYSDATATYPES catalog table 2429
SYSDBRM catalog table 2437
SYSENVIRONMENT catalog table 2452
SYSIBM.XSROBJECTCOMPONENTS table 2783
SYSIBM.XSROBJECTHIERARCHIES table 2784
SYSIBM.XSROBJECTS table 2782
SYSINDEXES catalog table 2461
SYSKEYTARGETS catalog table 2500
SYSRELS catalog table 2613
SYSROLES catalog table 2618
SYSROUTINES catalog table 2621
SYSSEQUENCES catalog table 2643
SYSSTOGROUP catalog table 2655
SYSSYNONYMS catalog table 2658
SYSTABCONST catalog table 2664
SYSTABLEPART catalog table 2665
SYSTABLES catalog table 2678
SYSTABLESPACE catalog table 2688
SYSTRIGGERS catalog table 2712
SYSVARIABLES catalog table 2724
SYSVIEWS catalog table 2730
SYSVOLUMES catalog table 2733
SYSXMLRELS catalog table 2734

RELEASE
column of SYSPACKAGE catalog table 2519
column of SYSPLAN catalog table 2575

RELEASE (connection) statement
description 2063
example 2064

RELEASE AT clause
ALTER PROCEDURE (SQL - native) statement 1210
CREATE PROCEDURE (SQL - native) statement 1625
CREATE TRIGGER statement 1355, 1753

release dependency indicators 2333
RELEASE SAVEPOINT statement

description 2065
example 2065

release-pending connection state 70
RELNAME column

SYSFOREIGNKEYS catalog table 2458
SYSRELS catalog table 2613

RELOBID1 column of SYSRELS catalog table 2613
RELOBID2 column of SYSRELS catalog table 2613
REMARKS column

SYSCOLUMNS catalog table 2381
SYSCONTEXT catalog table 2401
SYSDATATYPES catalog table 2429
SYSIBM.XSROBJECTS table 2782
SYSINDEXES catalog table 2461
SYSPACKAGE catalog table 2519
SYSPLAN catalog table 2575
SYSROLES catalog table 2618
SYSROUTINES catalog table 2621
SYSSEQUENCES catalog table 2643
SYSTABLES catalog table 2678
SYSTRIGGERS catalog table 2712
SYSVARIABLES catalog table 2724

REMOTE column of SYSPACKAGE catalog table 2519
remote database server

definition of 68
Remote Recovery Data Facility (RRDF) 1698
remote servers

accessing
with aliases 32

remote unit of work
connection management 72
definition of 72

REMOVE VOLUMES clause of ALTER STOGROUP statement
1230
RENAME COLUMN clause

ALTER TABLE statement 1265
RENAME statement

description 2066
example 2069

REOPT clause
ALTER PROCEDURE (SQL - native) statement 1212
CREATE PROCEDURE (SQL - native) statement 1128,
1442, 1625

REOPTVAR column
SYSPACKAGE catalog table 2519
SYSPLAN catalog table 2575

REORDMASSDELETE column
SYSINDEXSPACESTATS catalog table 2482
SYSTABLESPACESTATS catalog table 2699

REORG privilege
GRANT statement 1969
REVOKE statement 2079

REORG_LR_TS column
SYSTABLEPART catalog table 2665

REORGAPPENDINSERT column
SYSINDEXSPACESTATS catalog table 2482

REORGAUTH column of SYSDBAUTH catalog table 2432
REORGDELETES column

SYSINDEXSPACESTATS catalog table 2482
SYSTABLESPACESTATS catalog table 2699

REORGDISORGLOB column
SYSTABLESPACESTATS catalog table 2699

Index 3021

REORGFARINDREF column
SYSTABLESPACESTATS catalog table 2699

REORGINSERTS column
SYSINDEXSPACESTATS catalog table 2482
SYSTABLESPACESTATS catalog table 2699

REORGLASTTIME column
SYSINDEXSPACESTATS catalog table 2482
SYSTABLESPACESTATS catalog table 2699

REORGLEAFFAR column
SYSINDEXSPACESTATS catalog table 2482

REORGLEAFNEAR column
SYSINDEXSPACESTATS catalog table 2482

REORGNEARINDREF column
SYSTABLESPACESTATS catalog table 2699

REORGNUMLEVELS column
SYSINDEXSPACESTATS catalog table 2482

REORGPSEUDODELETES column
SYSINDEXSPACESTATS catalog table 2482

REORGUNCLUSTINS column
SYSTABLESPACESTATS catalog table

description 2699
REORGUPDATES column

SYSTABLESPACESTATS catalog table
description 2699

REPAIR privilege
GRANT statement 1969
REVOKE statement 2079

REPAIRAUTH column of SYSDBAUTH catalog table 2432
REPEAT function 551
REPEAT statement

example 2237
SQL procedure 2237, 2295

REPLACE function 552
REPLACE USE FOR clause

ALTER TRUSTED CONTEXT statement 1375
REPLACE VERSION clause

ALTER PROCEDURE (SQL - native) statement 1200
REPLICATION_OVERRIDE

built-in global variable 333
reserved keywords 2258
reserved schema names 2257
RESET

clause of CONNECT statement 1410
RESET clause

ALTER TABLE statement 1282
RESIGNAL statement

example 2238, 2296
SQL procedure 2238, 2296

resource limit facility (governor)
database 41

RESTART WITH
clause of ALTER SEQUENCE statement 1225

RESTART WITH clause
ALTER TABLE statement 1264

restarting a utility
DSNUTILS 895
DSNUTILU 906
DSNUTILV 910

RESTARTWITH column
SYSSEQUENCES catalog table 2643

RESTRICT
delete rule

ALTER TABLE statement 1271
CREATE TABLE statement 1684

RESTRICT clause of REVOKE statement 2072, 2105
RESTRICT WHEN DELETE TRIGGERS clause

TRUNCATE statement 2177
result column

data type 1014
names 1014

RESULT SET clause
CREATE PROCEDURE (external) statement 1596
CREATE PROCEDURE (SQL - external) statement 1606
CREATE PROCEDURE (SQL - native) statement 1635

result set locator
description 234

RESULT SETS clause
CREATE PROCEDURE (external) statement 1596
CREATE PROCEDURE (SQL - external) statement 1606
CREATE PROCEDURE (SQL - native) statement 1635

RESULT_COLS column of SYSROUTINES catalog table 2621
RESULT_SETS column

SYSROUTINES catalog table 2621
RETURN statement

example 2298
examples 2240
SQL procedure 2240, 2298

RETURN STATUS clause 1962
RETURN_TYPE column of SYSROUTINES catalog table 2621
RETURN-statement clause

CREATE FUNCTION (inlined SQL scalar) statement 1497
RETURNS clause

CREATE FUNCTION (inlined SQL scalar) statement 1494
CREATE FUNCTION statement 1435

RETURNS clause of CREATE FUNCTION statement 1459,
1503
RETURNS GENERIC TABLE clause

CREATE FUNCTION statement 1479
RETURNS NULL ON NULL INPUT clause

ALTER FUNCTION statement 1105
CREATE FUNCTION statement 1437, 1463, 1482

RETURNS TABLE clause
CREATE FUNCTION statement 1478

REUSE STORAGE clause
TRUNCATE statement 2176

REVOKE statement
alternative syntax 1976, 2088
cascading effect 2072
collection privileges 2076
database privileges 2078
description 2070
function privileges 2081
JAR file privileges 2104
package privileges 2087
plan privileges 2089
procedure privileges 2081
schema privileges 2091
sequence privileges 2093
system privileges 2095
table privileges 2101
type privileges 2104
use privileges 2108
variable privileges 2106
view privileges 2101

REXX
SQLCA 2310
SQLDA 2329

REXX SQLCA 2310

3022 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

REXX SQLDA 2329
RID function 555
RIGHT function 556
RIGHT OUTER JOIN

example 1048
FROM clause of subselect 1034

role
defining 1637
naming convention 83

ROLE AS OBJECT OWNER clause
ALTER TRUSTED CONTEXT statement 1371
CREATE TRUSTED CONTEXT statement 1789

ROLE clause
COMMENT statement 1403
CREATE TRUSTED CONTEXT statement 1792
DROP statement 1895
GRANT statement 1965
REVOKE statement 2071

ROLE column
SYSCONTEXTAUTHIDS catalog table 2404

ROLENAME column
SYSOBJROLEDEP catalog table 2517

rollback operations 42, 43, 55
ROLLBACK statement

description 2110
example 2112

ROLLUP clause
examples 1054

ROTATE PARTITION FIRST TO LAST clause
ALTER TABLE statement 1281

ROTATE PARTITION integer TO LAST clause
ALTER TABLE statement 1281

ROUND function 558
ROUND_TIMESTAMP function 559
ROUNDING clause

ALTER PROCEDURE (SQL - native) statement 1213
CREATE PROCEDURE (SQL - native) statement 1131,
1445, 1628
CREATE TRIGGER statement 1355, 1754

ROUNDING column
SYSENVIRONMENT catalog table 2452
SYSPACKAGE catalog table 2519
SYSPLAN catalog table 2575

rounding mode
DECFLOAT values 323

routine versions
naming convention 83, 1435

ROUTINEID column
SYSPARMS catalog table 2565
SYSROUTINES catalog table 2621

ROUTINENAME column
SYSROUTINES_OPTS catalog table 2635
SYSROUTINES_SRC catalog table 2637

routines
functions 35
inheriting special registers 215
procedures 35
types 35

ROUTINETYPE column
SYSPARMS catalog table 2565
SYSROUTINEAUTH catalog table 2619
SYSROUTINES catalog table 2621

row
deleting 1853

row (continued)
inserting 1996, 2019
selecting single row 2117
updating 2178

ROW CHANGE TIMESTAMP
expression 291

row change timestamp column
CREATE TABLE statement 1673

row change timestamp columns
ALTER TABLE statement 1254

ROW CHANGE TIMESTAMP expression
definition 291

ROW CHANGE TOKEN
expression 291

ROW CHANGE TOKEN expression
definition 291

row ID
assignment of values 153
comparison of values 159
data type 124, 1663

Row ID
operands 169

row permission
creating 1571

row permissions
altering 1177

ROW_NUMBER expression 280
row-positioned clause

FETCH statement 1928
row-value expression 296
ROWID

data type
CREATE TABLE statement 1663
description 124

function 563
ROWID column

SYSIBM.XSROBJECTCOMPONENTS table 2783
SYSIBM.XSROBJECTS table 2782
SYSINDEXES catalog table 2461
SYSVARIABLES catalog table 2724

ROWID data type
default values 25

ROWNUMBER expression 280
rows

description 1
inserting

with check constraints 27
ROWSET STARTING AT clause

FETCH statement 1934
rowset-positioned clause

FETCH statement 1932
rowset-positioning clause

DECLARE CURSOR statement 1824
PREPARE statement 2047

ROWTYPE column of SYSPARMS catalog table 2565
RPAD function 563
RRDF (Remote Recovery Data Facility)

altering a table for 1288
creating a table for 1698

RTRIM function 565
RTSECTION column

SYSINDEXES catalog table 2461
rules

naming conventions 79

Index 3023

run behavior for dynamic SQL statements 94
RUN OPTIONS clause

ALTER FUNCTION statement 1110
ALTER PROCEDURE (external) statement 1187
ALTER PROCEDURE (SQL - external) statement 1193
CREATE FUNCTION statement 1469, 1487
CREATE PROCEDURE (external) statement 1595
CREATE PROCEDURE (SQL - external) statement 1605

RUNOPTS column
SYSROUTINES catalog table 2621

S
sample user-defined functions 2941
savepoint

naming convention 83
releasing 2065
setting 2113

SAVEPOINT statement
description 2113
example 2114

SBCS data
description 104

SBCS string subtype 17
SBCS_CCSID column

SYSDATABASE catalog table 2427
SYSTABLESPACE catalog table 2688

scalar 483
scalar-fullselect 256
SCALE column

SYSCOLUMNS catalog table 2381
SYSDATATYPES catalog table 2429
SYSFIELDS catalog table 2456
SYSKEYTARGETS catalog table 2500
SYSKEYTARGETS_HIST catalog table 2505
SYSPARMS catalog table 2565
SYSVARIABLES catalog table 2724

scale of numbers
comparisons 156
results of arithmetic operations 250

schema
naming convention 83
privileges 1978, 2091

SCHEMA
column of SYSSEQUENCEAUTH catalog table 2640

SCHEMA column
SYSDATATYPES catalog table 2429
SYSPARMS catalog table 2565
SYSROUTINEAUTH catalog table 2619
SYSROUTINES catalog table 2621
SYSROUTINES_OPTS catalog table 2635
SYSROUTINES_SRC catalog table 2637
SYSSEQUENCES catalog table 2643
SYSTRIGGERS catalog table 2712
SYSVARIABLEAUTH catalog table 2722
SYSVARIABLES catalog table 2724

schema names 6
schema names, reserved 2257
schema qualifiers 6
SCHEMALOCATION column

SYSIBM.XSROBJECTCOMPONENTS table 2783, 2784
SYSIBM.XSROBJECTS table 2782

SCHEMANAME column
SYSSCHEMAAUTH catalog table 2638

schemas 6
SCORE function 566
SCRATCHPAD clause

ALTER FUNCTION statement 1107
CREATE FUNCTION statement 1465, 1483

SCRATCHPAD column of SYSROUTINES catalog table 2621
SCRATCHPAD_LENGTH column of SYSROUTINES catalog
table 2621
SCREATOR column of SYSTABAUTH catalog table 2659
SCROLL clause

DECLARE CURSOR statement 1821
SCT02 table space 39
search condition

DELETE statement 1861
description 319
HAVING clause 1043
order of evaluation 319
UPDATE statement 2188
WHERE clause 1036

SECLABEL session variable 336
SECOND function 568
SECQTY clause

ALTER INDEX statement 1164
ALTER TABLESPACE statement 1333
CREATE INDEX statement 1539

SECQTY column
SYSINDEXES catalog table 2461

SECQTYI column
SYSINDEXPART catalog table 2474
SYSINDEXPART_HIST catalog table 2480
SYSTABLEPART catalog table 2665
SYSTABLEPART_HIST catalog table 2675
SYSTABLESPACE catalog table 2688

SECTNO column
SYSPACKSTMT catalog table 2558
SYSSTMT catalog table 2651

SECTNOI column
SYSPACKSTMT catalog table 2558
SYSSTMT catalog table 2651

SECURE column
LOCATIONS catalog table 2351

SECURITY clause
ALTER FUNCTION statement 1110
ALTER PROCEDURE (external) statement 1187
ALTER PROCEDURE (SQL - external) statement 1192
CREATE FUNCTION statement 1469, 1486
CREATE PROCEDURE (external) statement 1594
CREATE PROCEDURE (SQL - external) statement 1605

SECURITY LABEL clause
CREATE TRUSTED CONTEXT statement 1792, 1793

SECURITY_IN column of LUNAMES catalog table 2354
SECURITY_LABEL column

SYSTABLES catalog table 2678
SECURITY_OUT column

IPNAMES catalog table 2349
LUNAMES catalog table 2354

SECURITYLABEL column
SYSCONTEXTAUTHIDS catalog table 2404

segmented table spaces 50
segments 51
SEGSIZE

clause of CREATE TABLESPACE statement 1727
column of SYSTABLESPACE catalog table 2688

SEGSIZE clause

3024 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SEGSIZE clause (continued)
ALTER TABLESPACE statement 1330

SELECT
clause as syntax component 1010

SELECT INTO statement
description 2117
example 2121

SELECT privilege
GRANT statement 1989
REVOKE statement 2102

SELECT statement
common table expression 1069
description 1015, 1067, 2114
dynamic invocation 1089
example 1077
fullselect 1060
list

application 1010
description 1010
maximum number of elements 2247
notation 1011

static invocation 1089
subselect 1009

SELECTAUTH column of SYSTABAUTH catalog table 2659
selecting

single row 2117
self-referencing tables 12
SENSITIVE clause

DECLARE CURSOR statement 1821
FETCH statement 1927

SEQNO column
SYSPACKLIST catalog table 2558
SYSPACKSTMT catalog table 2558
SYSROUTINES_SRC catalog table 2637
SYSSTMT catalog table 2651
SYSTRIGGERS catalog table 2712
SYSVIEWS catalog table 2730

SEQTYPE column of SYSSEQUENCES catalog table 2643
sequence

ALTER SEQUENCE statement 1224
CREATE SEQUENCE statement 1638
dropping 1896
granting privileges 1979
name, unqualified 86
naming convention 83
reference 292
revoking privileges 2093
unqualified name 86

SEQUENCE
clause of ALTER SEQUENCE statement 1225

SEQUENCE clause
COMMENT statement 1403
CREATE SEQUENCE statement 1640
DROP statement 1896
GRANT statement 1979
REVOKE statement 2093

SEQUENCEID column of SYSSEQUENCES catalog table 2643
sequences 37
SERVAUTH clause

ALTER TRUSTED CONTEXT statement 1373
CREATE TRUSTED CONTEXT statement 1792

server
naming convention 83
remote 68

SESSION TIME ZONE special register
assigning a value 2168

session variable
built-in 329, 336
returning values 464

session variable, built-in 329, 336
session variables

built-in 227
user-defined 227

SESSION_USER 215
SESSION_USER clause

SET PATH statement 2164
SESSION_USER special register 214
SET assignment-statement

description 2124
SET assignment-statement statement

example 2128
SET CACHE clause

ALTER TABLE statement 1264
SET clause

DELETE statement 1861
SET clause of UPDATE statement 2187
SET CONNECTION statement

description 2122
example 2123

SET CURRENT ACCELERATOR statement
description 2129
example 2130

SET CURRENT APPLICATION COMPATIBILITY statement
description 2130
example 2132

SET CURRENT APPLICATION ENCODING SCHEME
statement

description 2132
example 2133

SET CURRENT DEBUG MODE statement
description 2133
example 2134

SET CURRENT DECFLOAT ROUNDING MODE statement
description 2134
example 2136

SET CURRENT DEGREE statement
description 2136
example 2137

SET CURRENT EXPLAIN MODE statement
description 2137
example 2138

SET CURRENT GET_ACCEL_ARCHIVE statement
description 2138

SET CURRENT LOCALE LC_CTYPE statement
description 2139
example 2140

SET CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION statement

description 2141
example 2142

SET CURRENT OPTIMIZATION HINT statement
description 2142
example 2143

SET CURRENT PACKAGE PATH
statement

description 2143
example 2145

SET CURRENT PACKAGESET statement

Index 3025

SET CURRENT PACKAGESET statement (continued)
description 2146
example 2147

SET CURRENT PRECISION statement
description 2148
example 2148

SET CURRENT QUERY ACCELERATION statement
description 2148

SET CURRENT QUERY ACCELERATION WAITFORDATA
statement

description 2150
SET CURRENT REFRESH AGE statement

description 2153
SET CURRENT ROUTINE VERSION statement

description 2154
example 2155

SET CURRENT RULES statement
description 2156
example 2156

SET CURRENT SQLID statement
description 2156
example 207, 2158

SET CURRENT TEMPORAL BUSINESS_TIME statement
description 2158

SET CURRENT TEMPORAL SYSTEM_TIME statement
description 2160

SET CYCLE clause
ALTER TABLE statement 1264

SET ENCRYPTION PASSWORD statement 2161
SET INCREMENT BY clause

ALTER TABLE statement 1264
SET MAXVALUE clause

ALTER TABLE statement 1264
SET MINVALUE clause

ALTER TABLE statement 1264
SET NO CYCLE clause

ALTER TABLE statement 1264
SET NO MAXVALUE clause

ALTER TABLE statement 1264
SET NO MINVALUE clause

ALTER TABLE statement 1264
SET NO ORDER clause

ALTER TABLE statement 1264
SET NULL delete rule

ALTER TABLE statement 1271
CREATE TABLE statement 1684

set operators 1061
SET ORDER clause

ALTER TABLE statement 1264
SET PATH statement

description 2163
example 2165

SET QUERYNO clause of EXPLAIN statement 1919
SET SCHEMA statement

description 2166
SET SESSION TIME ZONE statement

description 2168
example 2169

SGCREATOR column of SYSVOLUMES catalog table 2733
SGNAME column of SYSVOLUMES catalog table 2733
SHARE

option of LOCK TABLE statement 2017
shift-in character

convention xxvii

shift-in character (continued)
LABEL statement 2016
not truncated by assignments 150

shift-out character
convention xxvii
LABEL statement 2016

short string column 103, 112
shortcut keys

keyboard xxv
SHRLEVEL

column of SYSCOPY catalog table 2408
SIGN function 570
sign-on exit routine

CURRENT SQLID special register 94, 207
SIGNAL statement

description 2169
example 2242, 2299
SQL procedure 2299
SQL routine 2242

SIGNATURE column
SYSVIEWS catalog table 2730

SIMPLE CALL clause
CREATE PROCEDURE (external) statement 1596

SIMPLE CALL WITH NULLS clause
CREATE PROCEDURE (external) statement 1596

simple table spaces 50
SIN function 570
single logging 40
single-byte character set (SBCS) 17
single-row-fetch clause

FETCH statement 1936
SINH function 571
SKCT (skeleton cursor table) 39
skeleton cursor table (SKCT) 39
skeleton package table (SKPT) 39
SKIP LOCKED DATA clause

DELETE statement 1863
SELECT INTO statement 2120
select-statement 1076
UPDATE statement 2190

SKPT (skeleton package table) 39
SMALLINT function 571
SOAPHTTPC and SOAPHTTPV functions 573
SOAPHTTPNC and SOAPHTTPNV functions 574
SOME quantified predicate 300
sort-key

ORDER BY clause of subselect 1044
SOUNDEX function 572
SOURCE clause of CREATE FUNCTION statement 1504
SOURCEDSN column

SYSROUTINES_OPTS catalog table 2635
SOURCESCHEMA column

SYSDATATYPES catalog table 2429
SYSROUTINES catalog table 2621

SOURCESPECIFIC column of SYSROUTINES catalog table
2621
SOURCETYPE column of SYSDATATYPES catalog table 2429
SOURCETYPEID column

DATATYPES catalog table 2429
SYSCOLUMNS catalog table 2381
SYSKEYTARGETS catalog table 2500
SYSKEYTARGETS_HIST catalog table 2505
SYSPARMS catalog table 2565
SYSSEQUENCES catalog table 2643

3026 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SOURCETYPEID column (continued)
SYSVARIABLES catalog table 2724

space character 75
SPACE column

SYSINDEXES catalog table 2461
SYSINDEXPART catalog table 2474
SYSSTOGROUP catalog table 2655
SYSTABLEPART catalog table 2665
SYSTABLESPACE catalog table 2688

SPACE column of SYSINDEXSPACESTATS catalog table 2482
SPACE column of SYSTABLESPACESTATS catalog table 2699
SPACE function 575
SPACEF column

SYSINDEXES catalog table 2461
SYSINDEXES_HIST catalog table 2472
SYSINDEXPART catalog table 2474
SYSINDEXPART_HIST catalog table 2480
SYSSTOGROUP catalog table 2655
SYSTABLEPART catalog table 2665
SYSTABLEPART_HIST catalog table 2675
SYSTABLES catalog table 2678
SYSTABLES_HIST catalog table 2707
SYSTABLESPACE catalog table 2688

SPARSE column
SYSINDEXES catalog table 2461

SPARTKEYCOLNUM column
SYSINDEXES catalog table 2461

special character 75
special register

behavior in user-defined functions and stored
procedures 215
CURRENT ACCELERATOR 184
CURRENT APPLICATION COMPATIBILITY 184
CURRENT APPLICATION ENCODING SCHEME 185
CURRENT CLIENT_ACCTNG 186
CURRENT CLIENT_APPLNAME 187
CURRENT CLIENT_CORR_TOKEN 189
CURRENT CLIENT_USERID 189
CURRENT CLIENT_WRKSTNNAME 190
CURRENT DATE 192
CURRENT DEBUG MODE 192
CURRENT DECFLOAT ROUNDING MODE 193
CURRENT DEGREE 194
CURRENT EXPLAIN MODE 194
CURRENT GET_ACCEL_ARCHIVE 195
CURRENT LOCALE LC_CTYPE 196
CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION 197
CURRENT MEMBER 198
CURRENT OPTIMIZATION HINT 198
CURRENT PACKAGE PATH 199
CURRENT PACKAGESET 199
CURRENT PATH 200
CURRENT PRECISION 201
CURRENT QUERY ACCELERATION 202
CURRENT QUERY ACCELERATION WAITFORDATA 203
CURRENT REFRESH AGE 204
CURRENT ROUTINE VERSION 204
CURRENT RULES 205
CURRENT SCHEMA 206
CURRENT SERVER 207
CURRENT SQLID 207
CURRENT TEMPORAL BUSINESS_TIME 208
CURRENT TEMPORAL SYSTEM_TIME 210

special register (continued)
CURRENT TIME 211
CURRENT TIMESTAMP 212
CURRENT TIMEZONE 213, 214
CURRENT_DATE 192
CURRENT_TIME 211
CURRENT_TIMESTAMP 212
description 177
ENCRYPTION PASSWORD 213
SESSION_USER 214
USER 214
values in trigger 1763, 1782

SPECIAL REGS column
SYSROUTINES catalog table 2621

specific
naming convention 83

SPECIFIC clause
CREATE FUNCTION (inlined SQL scalar) statement 1494
CREATE FUNCTION statement 1435, 1460, 1479, 1504

SPECIFIC FUNCTION clause of ALTER FUNCTION statement
1102
specific name

unqualified name 86
SPECIFIC procedure-name clause

CREATE PROCEDURE (external) statement 1588
specifications

XMLCAST 277
SPECIFICNAME column

SYSPARMS catalog table 2565
SYSROUTINEAUTH catalog table 2619
SYSROUTINES catalog table 2621

SPLIT_ROWS column
SYSTABLES catalog table 2678

SPT01 table space 39
SQD_STMT_ID

column of SYSDYNQRY catalog table 2444
SQL

statements 1079
SQL (structured query language)

executing 1
SQL (Structured Query Language)

assignment operation 143
Call Level Interface (CLI) 3
character 75
comparison operation 143
constants 170
data types

binary strings 116
casting 130
character strings 102
datetime 118
description 98
graphic strings 112
LOBs (large objects) 116
numbers 99
numeric implicit cast 141
promotion 129
results of an operation 166
row ID 124
string implicit cast 142
XML values 125

deferred embedded 2
delimited identifier 77
dynamic

Index 3027

SQL (Structured Query Language) (continued)
dynamic (continued)

statements allowed 2269
identifier 77
JDBC 4
keywords, reserved 2258
limits 2247
naming conventions 79
Open Database Connectivity (ODBC) 3
ordinary identifier 75
rules 205
schema names, reserved 2257
SQLJ 4
standard 326
standards xxviii
static 1
token 75
value 98
variable names 79

SQL comments 1092
SQL condition

naming convention 84
SQL condition names 2209, 2210
SQL control statement

assignment statement 2217, 2281
CALL statement 2218, 2282
CASE statement 2219, 2284
compound statement 2221, 2286
CONTINUE handler 2221, 2286
EXIT handler 2221, 2286
FOR statement 2229
GET DIAGNOSTICS statement 2230, 2290
GOTO statement 2231, 2290
handler 2221, 2286
handling errors 2221, 2286
IF statement 2232, 2292
ITERATE statement 2233, 2293
LEAVE statement 2234, 2293
LOOP statement 2236, 2294
order of statements 2221, 2286
REPEAT statement 2237, 2295
RESIGNAL statement 2238, 2296
RETURN statement 2240, 2298
SIGNAL statement 2242, 2299
WHILE statement 2245, 2302

SQL cursor names 2210
SQL identifier

delimited 77
ordinary 77

SQL label
naming convention 84

SQL parameter
naming convention 84

SQL parameters 2208
SQL path 85, 239
SQL PATH clause

ALTER PROCEDURE (SQL - native) statement 1209
CREATE FUNCTION statement 1128, 1442
CREATE PROCEDURE (SQL - native) statement 1624
CREATE TRIGGER statement 1354, 1752

SQL procedure
new line control character 75

SQL scalar statements
ALTER FUNCTION 1113

SQL statements
ALLOCATE CURSOR 1093
ALTER DATABASE 1095
ALTER FUNCTION 1097
ALTER FUNCTION (SQL table) 1150
ALTER INDEX 1157
ALTER MASK 1174
ALTER PERMISSION 1177
ALTER PROCEDURE (external) 1180
ALTER PROCEDURE (SQL - external) 1189
ALTER PROCEDURE (SQL - native) statement 1194
ALTER SEQUENCE 1224
ALTER STOGROUP 1228
ALTER TABLE 1232
ALTER TABLESPACE 1321
ALTER TRIGGER 1342, 1365
ALTER TRUSTED CONTEXT 1368
ALTER VIEW 1378
ASSOCIATE LOCATORS 1380
BEGIN DECLARE SECTION 1383
CALL 1384
catalog table restrictions 2739
CLOSE 1395
COMMENT 1396
COMMIT 1406
CONNECT 1409
CONTINUE 2204
CREATE ALIAS 1415
CREATE AUXILIARY TABLE 1418
CREATE DATABASE 1421
CREATE FUNCTION 1424
CREATE FUNCTION (compiled SQL scalar) 1428
CREATE FUNCTION (external scalar) 1453
CREATE FUNCTION (external table) 1472
CREATE FUNCTION (inlined SQL scalar) 1489
CREATE FUNCTION (sourced) 1498
CREATE FUNCTION (SQL table) 1510
CREATE GLOBAL TEMPORARY TABLE 1518
CREATE INDEX 1524
CREATE MASK 1562
CREATE PERMISSION 1571
CREATE PROCEDURE 1578
CREATE PROCEDURE (external) 1580
CREATE PROCEDURE (SQL - external) 1597
CREATE PROCEDURE (SQL - native) 1607
CREATE ROLE 1637
CREATE SEQUENCE 1638
CREATE STOGROUP 1645
CREATE SYNONYM 1649
CREATE TABLE 1650
CREATE TABLESPACE 1718
CREATE TRIGGER 1740, 1769
CREATE TRUSTED CONTEXT 1787
CREATE TYPE 1795
CREATE TYPE (array) 1795
CREATE TYPE (distinct) 1801
CREATE VARIABLE 1808
CREATE VIEW 1812
DECLARE CURSOR

description 1819
example 1819

DECLARE GLOBAL TEMPORARY TABLE 1830
DECLARE STATEMENT 1844
DECLARE TABLE 1845

3028 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

SQL statements (continued)
DECLARE VARIABLE 1850
DELETE

description 1853
example 1868

DESCRIBE 1869
DESCRIBE CURSOR 1869
DESCRIBE INPUT 1871
DESCRIBE OUTPUT 1873
DESCRIBE PROCEDURE 1879
DESCRIBE TABLE 1881
DROP 1886
END DECLARE SECTION 1907
EXCHANGE 1908
EXECUTE 1909
EXECUTE IMMEDIATE 1914
EXPLAIN

description 1917
example 1923

FETCH
description 1924
example 1947

FOR 1919
FREE LOCATOR 1949
GET DIAGNOSTICS 1949
GRANT 1963
HOLD LOCATOR 1994
INCLUDE

description 1995
example 1996
SQLCA 2308
SQLDA 2326

INSERT
description 1996
example 2011

invocation 1086
LABEL 2015
LOCALE LC_CTYPE 2139
LOCK TABLE 2017
MERGE

description 2019
examples 2034

OPEN
description 2037
example 2041

PREPARE 2042
REFRESH TABLE 2062
RELEASE (connection) 2063
RELEASE SAVEPOINT 2065
remote execution

description 96
RENAME 2066
REVOKE 2070
ROLLBACK 2110
SAVEPOINT 2113
SELECT

unpacked-row 1015
SELECT INTO 2117
SET assignment-statement 2124
SET CONNECTION 2122
SET CURRENT ACCELERATOR 2129
SET CURRENT APPLICATION COMPATIBILITY 2130
SET CURRENT APPLICATION ENCODING SCHEME 2132
SET CURRENT DEBUG MODE 2133

SQL statements (continued)
SET CURRENT DECFLOAT ROUNDING MODE 2134
SET CURRENT DEGREE 2136
SET CURRENT EXPLAIN MODE 2137
SET CURRENT GET_ACCEL_ARCHIVE 2138
SET CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION 2141
SET CURRENT OPTIMIZATION HINT 2142
SET CURRENT PACKAGE PATH

example 2145
SET CURRENT PRECISION 2148
SET CURRENT QUERY ACCELERATION 2148
SET CURRENT QUERY ACCELERATION WAITFORDATA
2150
SET CURRENT REFRESH AGE 2153
SET CURRENT ROUTINE VERSION 2154
SET CURRENT RULES 2156
SET CURRENT SQLID 2156
SET CURRENT TEMPORAL BUSINESS_TIME 2158
SET CURRENT TEMPORAL SYSTEM_TIME 2160
SET ENCRYPTION PASSWORD 2161
SET PATH 2163
SET SCHEMA 2166
SET SESSION TIME ZONE 2168
SIGNAL 2169
TRANSFER OWNERSHIP 2172
TRUNCATE 2175
UPDATE

description 2178
example 2196

VALUES 2199
VALUES INTO 2200
WHENEVER 2204

SQL syntax
regression functions 374

SQL variable
naming convention 84

SQL variables 2208
SQL_DATA_ACCESS column of SYSROUTINES catalog table
2621
SQL_STRING_DELIMITER column

SYSENVIRONMENT catalog table 2452
SQL_STRING_DELIMITER session variable 336
SQL-routine-body

ALTER PROCEDURE (SQL - native) statement 1216
CREATE PROCEDURE (SQL - native) statement 1631

SQL-routine-body clause
CREATE FUNCTION statement 1134, 1448

SQL/OLB 4
SQLADM privilege

GRANT statement 1985
REVOKE statement 2098

SQLCA
REXX 2310

SQLCA (SQL communication area)
contents 2303
entry changed by UPDATE 2190
INCLUDE statement 1995

SQLCABC field of SQLCA 2303
SQLCAID field of SQLCA 2303
SQLCODE

+100 1092, 2003, 2037, 2117, 2204
description 1092
field of SQLCA 2303

Index 3029

SQLD field of SQLDA 1876, 1884, 2314
SQLDA

header 2314
REXX 2329
unrecognized data types 2325

SQLDA (SQL descriptor area)
clause of INCLUDE statement 1995
contents 2313

SQLDABC field of SQLDA 1876, 1884, 2314
SQLDAID field of SQLDA 1875, 1884, 2314
SQLDATA field of SQLDA 1876, 1885, 2317
SQLDATAL field of SQLDA 2320
SQLDATALEN field of SQLDA 2320
SQLDATATYPE field of SQLDA 1877, 1886
SQLDATATYPE-NAME field of SQLDA 2320
SQLERRD(n) field of SQLCA 2303
SQLERRMC field of SQLCA 2303
SQLERRML field of SQLCA 2303
SQLERROR

clause of WHENEVER statement 2204
column of SYSPACKAGE catalog table 2519

SQLERRP field of SQLCA 2303
SQLIND field of SQLDA 1876, 1885, 2317
SQLJ 4
SQLJ.ALTER_JAVA_PATH stored procedure 988
SQLJ.DB2_INSTALL_JAR stored procedure 991
SQLJ.DB2_REPLACE_JAR stored procedure 992
SQLJ.INSTALL_JAR stored procedure 994
SQLJ.REMOVE_JAR stored procedure 995
SQLJ.REPLACE_JAR stored procedure 996
SQLLEN field of SQLDA 1876, 1885, 2317
SQLLONGL field of SQLDA 2320
SQLLONGLEN field of SQLDA 1877, 1885, 2320
SQLN field of SQLDA

description 1873, 1882, 2314
SQLNAME field of SQLDA 1876, 1885, 2317
SQLPL column

SYSTRIGGERS catalog table 2712
SQLRULES

column of SYSPLAN catalog table 2575
SQLSTATE

'02000' 2003, 2037, 2117, 2204
description 1091
field of SQLCA 2303
signaling 2169

SQLTNAME field of SQLDA 2320
SQLTYPE field of SQLDA

description 2317
values 1876, 1885, 2322

SQLVAR
base 1876, 1884
extended 1876, 1884

SQLVAR field of SQLDA 1876, 1884
SQLWARN6 field of SQLCA 260
SQLWARNING clause

WHENEVER statement 2204
SQLWARNn field of SQLCA 2303
SQRT function 575
SQTY column

SYSINDEXPART catalog table 2474
SYSTABLEPART catalog table 2665

SSID column
SYSINDEXCONTROL catalog table 2460

SSID session variable 336

STANDARD CALL clause
CREATE PROCEDURE (external) statement 1596

STANDARD_SQL session variable 336
standard, SQL (ANSI/ISO)

description xxviii
SET CONNECTION statement 2122
SQL-style comments 75
STDSQL precompiler option 326

START column of SYSSEQUENCES catalog table 2643
START WITH clause

CREATE SEQUENCE statement 1640
START_RBA column of SYSCOPY catalog table 2408
START_RBA_EX column

SYSCOPY catalog table 2408
STARTDB privilege

GRANT statement 1969
REVOKE statement 2079

STARTDBAUTH column of SYSDBAUTH catalog table 2432
state

application process 71, 72
SQL connection 70

statement
naming convention 84

STATEMENT clause of DECLARE STATEMENT statement
1844
STATEMENT column

SYSTRIGGERS catalog table 2712
statement table

EXPLAIN statement 1917
statements

SQL 1079
STATIC clause

DECLARE CURSOR statement 1822
STATIC DISPATCH clause

ALTER FUNCTION statement 1111, 1124, 1148
CREATE FUNCTION (inlined SQL scalar) statement 1496
CREATE FUNCTION statement 1437, 1470, 1487, 1516

static SQL
description 1086
invocation of SELECT statement 1089

statistics
real-time

stored procedure 848
STATS privilege

GRANT statement 1969
REVOKE statement 2079

STATS_FORMAT column
SYSCOLSTATS catalog table 2379
SYSCOLUMNS catalog table 2381
SYSCOLUMNS_HIST catalog table 2395
SYSKEYTARGETS catalog table 2500
SYSKEYTARGETS_HIST catalog table 2505
SYSKEYTARGETSTATS catalog table 2503

STATSAUTH column of SYSDBAUTH catalog table 2432
STATSDELETES column

SYSINDEXSPACESTATS catalog table 2482
SYSTABLESPACESTATS catalog table 2699

STATSINSERTS column
SYSINDEXSPACESTATS catalog table 2482
SYSTABLESPACESTATS catalog table 2699

STATSLASTTIME column
SYSINDEXSPACESTATS catalog table 2482
SYSTABLESPACESTATS catalog table 2699

STATSMASSDELETE column

3030 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

STATSMASSDELETE column (continued)
SYSTABLESPACESTATS catalog table 2699

STATSMASSDELETES column
SYSINDEXSPACESTATS catalog table 2482

STATSTIME column
SYSCOLDIST catalog table 2373
SYSCOLDIST_HIST catalog table 2377
SYSCOLDISTSTATS catalog table 2375
SYSCOLSTATS catalog table 2379
SYSCOLUMNS catalog table 2381
SYSCOLUMNS_HIST catalog table 2395
SYSINDEXES catalog table 2461
SYSINDEXES_HIST catalog table 2472
SYSINDEXPART catalog table 2474
SYSINDEXPART_HIST catalog table 2480
SYSINDEXSTATS catalog table 2490
SYSINDEXSTATS_HIST catalog table 2492
SYSKEYTARGETS catalog table 2500
SYSKEYTARGETS_HIST catalog table 2505
SYSKEYTARGETSTATS catalog table 2503
SYSKEYTGTDIST catalog table 2509
SYSKEYTGTDIST_HIST catalog table 2513
SYSKEYTGTDISTSTATS catalog table 2511
SYSLOBSTATS catalog table 2516
SYSLOBSTATS_HIST catalog table 2516
SYSSTOGROUP catalog table 2655
SYSTABLEPART catalog table 2665
SYSTABLEPART_HIST catalog table 2675
SYSTABLES catalog table 2678
SYSTABLES_HIST catalog table 2707
SYSTABLESPACE catalog table 2688
SYSTABSTATS catalog table 2710
SYSTABSTATS_HIST catalog table 2711

STATSUPDATES column
SYSTABLESPACESTATS catalog table 2699

STATUS column
SYSIBM.XSROBJECTCOMPONENTS table 2783
SYSIBM.XSROBJECTS table 2782
SYSINDEXES catalog table 2461
SYSPACKSTMT catalog table 2558
SYSSTMT catalog table 2651
SYSTABLES catalog table 2678
SYSTABLESPACE catalog table 2688

STAY RESIDENT clause
ALTER FUNCTION statement 1110
ALTER PROCEDURE (external) statement 1186
ALTER PROCEDURE (SQL - external) statement 1192
CREATE FUNCTION statement 1468, 1486
CREATE PROCEDURE (external) statement 1594
CREATE PROCEDURE (SQL - external) statement 1604

STAYRESIDENT column
SYSROUTINES catalog table 2621

STBLGRP
column of SYSDYNQRY catalog table 2444

STD SQL LANGUAGE field of panel DSNTIP4 326
STDDEV function 376
STDDEV_POP

aggregate function 376
STDDEV_SAMP

aggregate function 377
STDSQL option

precompiler 326
STGROUP column of SYSDATABASE catalog table 2427
STMT column of SYSPACKSTMT catalog table 2558

STMTCACHE clause of EXPLAIN statement 1920
STMTHASH

column of SYSDYNQRYDEP catalog table 2446
STMTNO column

SYSPACKSTMT catalog table 2558
SYSSTMT catalog table 2651

STMTNOI column
SYSPACKSTMT catalog table 2558
SYSSTMT catalog table 2651

STMTTEXT
column of SYSDYNQRY catalog table 2444

STNAME column of SYSTABAUTH catalog table 2659
stogroup

naming convention 84
STOGROUP

clause of ALTER INDEX statement 1163, 1165
clause of ALTER STOGROUP statement 1228
clause of CREATE DATABASE statement 1423
clause of CREATE INDEX statement 1538, 1540
clause of CREATE LOB TABLESPACE statement 1559
clause of CREATE TABLESPACE statement 1733

STOGROUP clause
ALTER DATABASE statement 1095
ALTER TABLESPACE statement 1332
DROP statement 1896

STOGROUP privilege
GRANT statement 1993
REVOKE statement 2109

STOP AFTER SYSTEM DEFAULT FAILURES clause
ALTER FUNCTION statement 1110
ALTER PROCEDURE (external) statement 1188
ALTER PROCEDURE (SQL - external) statement 1193
CREATE FUNCTION statement 1469, 1487
CREATE PROCEDURE (external) statement 1594
CREATE PROCEDURE (SQL - external) statement 1606

STOPALL privilege
GRANT statement 1986
REVOKE statement 2099

STOPALLAUTH column of SYSUSERAUTH catalog table 2715
STOPAUTH column of SYSDBAUTH catalog table 2432
STOPDB privilege

GRANT statement 1969
REVOKE statement 2079

storage group, DB2
altering 1228
creating 1645
dropping 1896

storage groups 54
storage structures

index spaces 48
table spaces 48

STORCLAS clause
CREATE STOGROUP statement 1230, 1647

STORCLAS column
SYSSTOGROUP catalog table 2655

stored procedure
altering

ALTER PROCEDURE (external) statement 1180
with ALTER PROCEDURE (SQL - external) statement
1189
with ALTER PROCEDURE (SQL - native) statement
1194

CALL statement 1384
creating

Index 3031

stored procedure (continued)
creating (continued)

CREATE PROCEDURE (external) statement 1580
with CREATE PROCEDURE (SQL - external)
statement 1597
with CREATE PROCEDURE (SQL - native) statement
1607

CURRENT PACKAGESET special register 2147
dropping 1895
DSNUTILS 895
DSNUTILU 906
DSNUTILV 910
invoking 1384
name, unqualified 86
naming convention 82
privileges

granting 1970
revoking 2081

statements allowed 2275
unqualified name 86
WLM_REFRESH 997

stored procedures
ADMIN_COMMAND_Db2 699
ADMIN_COMMAND_DSN 712
ADMIN_COMMAND_MVS 714
ADMIN_COMMAND_UNIX 725
ADMIN_DB_BROWSE 729
ADMIN_DB_DELETE 732
ADMIN_DS_LIST 735
ADMIN_DS_RENAME 741
ADMIN_DS_SEARCH 744
ADMIN_DS_WRITE 747
ADMIN_INFO_HOST 760
ADMIN_INFO_SMS 766
ADMIN_INFO_SQL 771
ADMIN_INFO_SSID 770
ADMIN_INFO_SYSLOG 781
ADMIN_INFO_SYSPARM 784
ADMIN_JOB_CANCEL 788
ADMIN_JOB_FETCH 791
ADMIN_JOB_QUERY 794
ADMIN_JOB_SUBMIT 798
ADMIN_TASK_ADD 802
ADMIN_TASK_CANCEL 808
ADMIN_TASK_REMOVE 809
ADMIN_TASK_UPDATE 811
ADMIN_UPDATE_SYSPARM 814
ADMIN_UTL_EXECUTE 822
ADMIN_UTL_MODIFY 830
ADMIN_UTL_MONITOR 824
ADMIN_UTL_SCHEDULE 832
ADMIN_UTL_SORT 841
Db2-supplied 699
DSNACCOX 848
DSNACICS 880
DSNAIMS 885
DSNAIMS2 889
DSNLEUSR 893
external SQL procedures 35
external stored procedures 35
GET_CONFIG 923
GET_MESSAGE 942
GET_SYSTEM_INFO 949
inheriting special registers 215

stored procedures (continued)
native SQL procedures 35
real-time statistics 848

STORENAME column
SYSTABLESPACE catalog table 2688

STORES clause of CREATE AUXILIARY TABLE statement
1419
STORNAME column

SYSINDEXES catalog table 2461
SYSINDEXPART catalog table 2474
SYSTABLEPART catalog table 2665

STORTYPE column
SYSINDEXES catalog table 2461
SYSINDEXPART catalog table 2474
SYSTABLEPART catalog table 2665
SYSTABLESPACE catalog table 2688

STOSPACE privilege
GRANT statement 1986
REVOKE statement 2099

STOSPACEAUTH column of SYSUSERAUTH catalog table
2715
string

binary 116
CCSID 63
character 102
comparison 157
conversion 59
datetime values 120
delimiter

COBOL 324
controlling representation 324
SQL 324

description 59
encoding scheme 63
fixed-length

description 103, 112
graphic 112
long column

description 112
limitations 1012

numbers 101
short 103, 112
varying-length

description 103, 112
string clause

CREATE PROCEDURE (external) statement 1589
STRING column

SYSXMLSTRINGS catalog table 2735
string comparisons 157
string data types

encoding schemes 17
string delimiter precompiler option 324
string unit 106
STRING_DELIMITER column

SYSENVIRONMENT catalog table 2452
STRINGID column

SYSXMLSTRINGS catalog table 2735
STRIP function 565, 576
STRLEFT function 576
strong typing 126
STRPOS function 577
STRRIGHT function 577
structured query language (SQL)

executing

3032 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

structured query language (SQL) (continued)
executing (continued)

from a workstation 2
interactive SQL 2

QMF for Workstation 4
STYPE column of SYSCOPY catalog table 2408
SUBBYTE column of SYSSTRINGS catalog table 2656
subquery

description 222
HAVING clause 1043
ORDER BY clause 1043
WHERE clause 1036

subselect
CREATE VIEW statement 1009
description 1009
examples 1048
INSERT statement 1009

subselect query
cube

examples 1054
grouping sets

examples 1054
joins

examples 1054
rollup

examples 1054
substitution character 59
SUBSTR function 577
SUBSTRING function 579
SUBTYPE column

SYSDATATYPES catalog table 2429
SYSKEYTARGETS catalog table 2500
SYSPARMS catalog table 2565

SUM function 378
synonym

defining 1649
description 89
dropping 1896
naming convention 84
qualifying a column name 220

SYNONYM clause
CREATE SYNONYM statement 1649
DROP statement 1896

syntax diagram
DSNUTILS stored procedure 899
DSNUTILU stored procedure 908
DSNUTILV stored procedure 911
how to read xxvi

SYS_END column
SYSROLES catalog table 2618, 2722

SYS_START column
SYSROLES catalog table 2618, 2722

SYSADM authority
GRANT statement 1986
REVOKE statement 2099

SYSADMAUTH column of SYSUSERAUTH catalog table 2715
SYSCTRL authority

GRANT statement 1986
REVOKE statement 2099

SYSCTRLAUTH column of SYSUSERAUTH catalog table 2715
SYSENTRIES column

SYSPACKAGE catalog table 2519
SYSPLAN catalog table 2575

SYSIBM.DBDR 2771

SYSIBM.SCTR 2771
SYSIBM.SPTR 2771
SYSIBM.SYSDBD_DATA 2771
SYSIBM.SYSINDEXCLEANUP

catalog table 2458
SYSIBM.SYSLGRNX 2772
SYSIBM.SYSQUERYPREDICATE

catalog table 2606
columns 2606

SYSIBM.SYSQUERYSEL
catalog table 2611
columns 2611

SYSIBM.SYSSPTSEC_DATA 2772
SYSIBM.SYSSPTSEC_EXPL 2772
SYSIBM.SYSSTATFEEDBACK

catalog table 2649
SYSIBM.SYSUTIL 2773
SYSIBM.SYSUTILX 2776
SYSLEVELUPDATES

catalog table 2515
SYSLGRNX directory table

table space 39
SYSMODENAME column of LUNAMES catalog table 2354
SYSOPR authority

GRANT statement 1986
REVOKE statement 2099

SYSOPRAUTH column of SYSUSERAUTH catalog table 2715
SYSSESESSION

catalog table 2647
SYSSESESSION_EX

catalog table 2648
SYSSESESSION_STATUS

catalog table 2648
SYSTEM AUTHID clause

ALTER TRUSTED CONTEXT statement 1370
SYSTEM column

SYSPKSYSTEM catalog table 2574
SYSPLSYSTEM catalog table 2586

system objects 38
SYSTEM PATH clause

SET PATH statement 2164
system schemas 6
system structures

active logs 40
archive logs 40
bootstrap data set (BSDS) 40
buffer pools 41
catalog tables 38
catalogs 38

SYSTEM_ASCII_CCSID session variable 336
SYSTEM_EBCDIC_CCSID session variable 336
SYSTEM_NAME session variable 336
SYSTEM_TIME SENSITIVE clause

CREATE TRIGGER statement 1357, 1755
SYSTEM_UNICODE_CCSID session variable 336
system, limits 2247
SYSTEMAUTHID column

SYSCONTEXT catalog table 2401
SYSUTILX directory table space 39

T
table

altering

Index 3033

table (continued)
altering (continued)

ALTER TABLE statement 1232
creating

CREATE AUXILIARY TABLE statement 1418
CREATE GLOBAL TEMPORARY TABLE statement
1518
CREATE TABLE statement 1650
CREATE VARIABLE statement 1808
DECLARE GLOBAL TEMPORARY TABLE statement
1830

designator 221
dropping

DROP statement 1896
joining 1034
naming convention 84
privileges

revoking 2101
renaming with RENAME statement 2066
result table 2039
temporary copy 2039

Table
expressions, common 1069
expressions, nested 1069

TABLE
clause of DECLARE TABLE statement 1845
column of SYSPARMS catalog table 2565

table check constraint
defining

CREATE TABLE statement 1685
deleting rows 1864
inserting rows 2005
updating rows 2191

TABLE clause
COMMENT statement 1404
DROP statement 1896

table function reference 1021
TABLE LIKE clause

CREATE FUNCTION statement 1458, 1478, 1503
CREATE PROCEDURE (external) statement 1587
CREATE PROCEDURE (SQL - external) statement 1602
CREATE PROCEDURE (SQL - native) statement 1617

table locator variable 1020
table name

qualifying a column name 220
unqualified 86

table space
accelerators table 2931
altering with ALTER TABLESPACE statement 1321
creating

CREATE TABLESPACE statement 1718
implicitly 1693

directory table 2770
dropping 1898
naming convention 84
program authorization table 2939
XML schema repository table 2779

table spaces
large object 50
partitioned 50
segmented 50
simple 50
universal 50
XML 50

TABLE_COLNO column of SYSPARMS catalog table 2565
TABLE_LOCATION function 2960
TABLE_NAME function 2961
TABLE_SCHEMA function 2962
table-name clause

EXCHANGE statement 1908
TABLE◄

clause of LABEL statement 2016
tables

column definitions
choosing a data type 16
components 15

dependent 12
DSNPROGAUTH 2939
inserting rows

check constraints 27
overview 7
self-referencing 12
supplied by Db2

DSN_COLDIST_TABLE 2809
DSN_DETCOST_TABLE 2817
DSN_FILTER_TABLE 2827
DSN_FUNCTION_TABLE 2832
DSN_KEYTGTDIST_TABLE 2837
DSN_PGRANGE_TABLE 2844
DSN_PGROUP_TABLE 2848
DSN_PREDICAT_TABLE 2855
PLAN_TABLE 2787

updating with check constraints 27
TABLESPACE

clause of ALTER TABLESPACE statement 1321
TABLESPACE clause

DROP statement 1898
TABLESPACE privilege

GRANT statement 1993
REVOKE statement 2109

TABLESTATUS column of SYSTABLES catalog table 2678
TAN function 583
TANH function 583
target variable

FETCH statement 1936
target-variable

SELECT INTO statement 2119
TARGETNAMESPACE column

SYSIBM.XSROBJECTCOMPONENTS table 2783
SYSIBM.XSROBJECTHIERARCHIES table 2784
SYSIBM.XSROBJECTS table 2782

TBCREATOR column
SYSCOLUMNS catalog table 2381
SYSCOLUMNS_HIST catalog table 2395
SYSFIELDS catalog table 2456
SYSINDEXES catalog table 2461
SYSINDEXES_HIST catalog table 2472
SYSKEYCOLUSE catalog table 2497
SYSSYNONYMS catalog table 2658
SYSTABCONST catalog table 2664
SYSTABLES catalog table 2678

TBNAME column
SYSAUXRELS catalog table 2368
SYSCHECKDEP catalog table 2369
SYSCHECKS catalog table 2369
SYSCHECKS2 catalog table 2370
SYSCOLDIST catalog table 2373
SYSCOLDIST_HIST catalog table 2377

3034 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

TBNAME column (continued)
SYSCOLDISTSTATS catalog table 2375
SYSCOLSTATS catalog table 2379
SYSCOLUMNS catalog table 2381
SYSCOLUMNS_HIST catalog table 2395
SYSFIELDS catalog table 2456
SYSFOREIGNKEYS catalog table 2458
SYSINDEXES catalog table 2461
SYSINDEXES_HIST catalog table 2472
SYSKEYCOLUSE catalog table 2497
SYSRELS catalog table 2613
SYSSYNONYMS catalog table 2658
SYSTABCONST catalog table 2664
SYSTABLES catalog table 2678
SYSTRIGGERS catalog table 2712
SYSXMLRELS catalog table 2734

TBOWNER column
SYSAUXRELS catalog table 2368
SYSCHECKDEP catalog table 2369
SYSCHECKS catalog table 2369
SYSCHECKS2 catalog table 2370
SYSCOLDIST catalog table 2373
SYSCOLDIST_HIST catalog table 2377
SYSCOLDISTSTATS catalog table 2375
SYSCOLSTATS catalog table 2379
SYSTRIGGERS catalog table 2712
SYSXMLRELS catalog table 2734

TCREATOR column of SYSTABAUTH catalog table 2659
TEMPORAL_LOGICAL_TRANSACTION_TIME

built-in global variable 334
TEMPORAL_LOGICAL_TRANSACTIONS

built-in global variable 334
temporary

copy of table 2039
temporary table

creating 1518, 1830
terminating a utility

DSNUTILS 895
TEXT column

SYSROUTINES catalog table 2621
SYSROUTINESTEXT catalog table 2635
SYSSTMT catalog table 2651
SYSTRIGGERS catalog table 2712
SYSVIEWS catalog table 2730

TEXT_ENVID column
SYSROUTINES catalog table 2621

TEXT_ROWID column
SYSROUTINES catalog table 2621

time
arithmetic 261
data type 119
duration 257
strings 120, 124

TIME
data type

CREATE TABLE statement 1663
description 119

function 584
TIME data type 20
TIME FORMAT clause

ALTER PROCEDURE (SQL - native) statement 1214
CREATE PROCEDURE (SQL - native) statement 1132,
1446, 1629
CREATE TRIGGER statement 1356, 1754

TIME FORMAT field of panel DSNTIP4 325
time zone

implicit 124
TIME_FORMAT column

SYSENVIRONMENT catalog table 2452
TIME_FORMAT session variable 336
TIME_LENGTH session variable 336
timestamp

arithmetic 262
data type 119
duration 257
strings 120

TIMESTAMP
column of SYSCHECKS catalog table 2369
column of SYSCOPY catalog table 2408
column of SYSDBRM catalog table 2437
column of SYSPACKAGE catalog table 2519
column of SYSPACKAUTH catalog table 2536
column of SYSPACKLIST catalog table 2558
column of SYSRELS catalog table 2613
data type

CREATE TABLE statement 1663
description 119

function 584
TIMESTAMP data type 20
TIMESTAMP_FORMAT function 591
TIMESTAMP_ISO

function 595
TIMESTAMP_TZ

function 596
TIMESTAMPADD

function 587
TIMESTAMPDIFF

function 588
TNAME column of SYSCOLAUTH catalog table 2371
TO

clause of CONNECT statement 1409
TO clause

GRANT statement 1965
TO SAVEPOINT clause

ROLLBACK statement 2111
TO_CHAR function 598, 623
TO_CLOB (character large object)

function 598
TO_DATE function 591, 599
TO_NUMBER function 599
TO_TIME column

SYSINDEXCONTROL catalog table 2460
TO_TIMESTAMP function 600
token in SQL 75
TOTALENTRIES column

SYSINDEXSPACESTATS catalog table 2482
TOTALORDER function 599
TOTALROWS column

SYSTABLESPACESTATS catalog table 2699
TPN column

LOCATIONS catalog table 2351
TRACE privilege

GRANT statement 1986
REVOKE statement 2099

TRACEAUTH column of SYSUSERAUTH catalog table 2715
TRACKMOD

clause of CREATE TABLESPACE statement 1732
column of SYSTABLEPART catalog table 2665

Index 3035

TRACKMOD clause
ALTER TABLESPACE statement 1330

TRACKMOD column
SYSTABLESPACE catalog table 2688

TRACKMOD NO
clause of CREATE TABLE statement 1701

TRACKMOD YES
clause of CREATE TABLE statement 1701

TRANS_START column
SYSROLES catalog table 2618, 2722

transactions 42
TRANSFER OWNERSHIP statement

database objects 2172
description 2172
example 2175
system objects 2172

TRANSLATE function 600
TRANSPROC column of SYSSTRINGS catalog table 2656
TRANSTAB column of SYSSTRINGS catalog table 2656
TRANSTYPE column of SYSSTRINGS catalog table 2656
TRIGEVENT column of SYSTRIGGERS catalog table 2712
trigger

altering 1342, 1365
creating 1740, 1769
dropping 1898
name, unqualified 86
naming convention 84
unqualified name 86

TRIGGER clause
COMMENT statement 1404
DROP statement 1898

TRIGGER privilege
GRANT statement 1989
REVOKE statement 2102

trigger versions
naming convention 85

TRIGGERAUTH column
SYSTABAUTH catalog table 2659

triggered-SQL-statement clause of TRIGGER statement
1358, 1757, 1777
triggers

overview 32
TRIGTIME column of SYSTRIGGERS catalog table 2712
TRIM function 603
TRIM_ARRAY function 605
TRUNC function 606
TRUNC_TIMESTAMP function 607
TRUNCATE function 606
TRUNCATE statement

description 2175
examples 2178

truncation
numbers 145

TRUSTED column
LOCATIONS catalog table 2351

trusted context
altering 1368
defining 1787

TRUSTED CONTEXT clause
COMMENT statement 1404
DROP statement 1898

truth table 319
truth valued logic 319
TSNAME column

TSNAME column (continued)
SYSCOPY catalog table 2408
SYSTABLEPART catalog table 2665
SYSTABLEPART_HIST catalog table 2675
SYSTABLES catalog table 2678
SYSTABLES_HIST catalog table 2707
SYSTABSTATS catalog table 2710
SYSTABSTATS_HIST catalog table 2711

TTNAME column of SYSTABAUTH catalog table 2659
TTYPE column

SYSCOPY catalog table 2408
two-phase commit 68
TYPE clause

COMMENT statement 1404
DROP statement 1898

TYPE column
SYSCOLDIST catalog table 2373
SYSCOLDIST_HIST catalog table 2377
SYSCOLDISTSTATS catalog table 2375
SYSDATABASE catalog table 2427
SYSINDEXCONTROL catalog table 2460
SYSKEYTGTDIST catalog table 2509
SYSKEYTGTDIST_HIST catalog table 2513
SYSKEYTGTDISTSTATS catalog table 2511
SYSPACKAGE catalog table 2519
SYSTABCONST catalog table 2664
SYSTABLES catalog table 2678
SYSTABLESPACE catalog table 2688
USERNAMES catalog table 2737

typed parameter marker 2051
typed-correlation-clause

description 1029
TYPENAME column

SYSCOLUMNS catalog table 2381
SYSKEYTARGETS catalog table 2500
SYSKEYTARGETS_HIST catalog table 2505
SYSPARMS catalog table 2565
SYSVARIABLES catalog table 2724

TYPESCHEMA column
SYSCOLUMNS catalog table 2381
SYSKEYTARGETS catalog table 2500
SYSKEYTARGETS_HIST catalog table 2505
SYSPARMS catalog table 2565
SYSVARIABLES catalog table 2724

U
UCASE function 610, 612
unary operation 250
UNCOMPRESSEDDATASIZE column

SYSTABLESPACESTATS catalog table 2699
unconnectable and connected state 72
unconnectable and unconnected state 72
unconnected state 71
Unicode

definition 59
effect on MBCS and DBCS characters 104
encoding schemes 17

Unicode column in an EBCDIC table
migration to Db2 12 115

UNICODE function 610
UNICODE_STR function 611
UNION clause

duplicate rows 1061

3036 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

UNION clause (continued)
fullselect 1061

UNIQUE clause
ALTER TABLE statement 1268
CREATE INDEX statement 1530
CREATE TABLE statement 1668, 1681
SAVEPOINT statement 2113

unique constraints 11, 12
unique indexes 10
unique keys 10
UNIQUE_COUNT column

SYSINDEXES catalog table 2461
UNIQUERULE

SYSINDEXES catalog table 2461
UNISTR function 611
unit of recovery

COMMIT statement 1406
ROLLBACK statement 2110

unit of work
closes cursors 2039
ending 43, 55, 1406, 2110
initiating 43, 55
referring to prepared statements 2042

universal table spaces (UTS) 50
universal time, coordinated (UTC) 179
UNLOAD privilege

GRANT statement 1989
REVOKE statement 2102

UNNEST
description 1031

UNPACK function 696
unqualified object names

resolution 86
unsupported data types

SQLDA 2325
untyped parameter marker 2051
UPDATE

clause of TRIGGER statement 1348, 1757, 1776
statement

description 2178
example 2196

UPDATE privilege
GRANT statement 1989
REVOKE statement 2102

update rule 2190
UPDATE statement

updates and check constraints 27
UPDATEAUTH column of SYSTABAUTH catalog table 2659
UPDATECOLS column of SYSTABAUTH catalog table 2659
UPDATES column

SYSCOLUMNS catalog table 2381
UPDATESTATSTIME column

SYSINDEXSPACESTATS catalog table 2482
SYSTABLESPACESTATS catalog table 2699

updating
rows in a table 2178

UPPER function 612
URLDECODE function 2963
URLENCODE function 2963
USAGE privilege

GRANT statement 1979, 1991
REVOKE statement 2093, 2104

USEAUTH
column of SYSSEQUENCEAUTH catalog table 2640

USEAUTH column of SYSRESAUTH catalog table 2615
USER 215
USER clause

SET PATH statement 2164
USER special register 214
user-defined data types 126
user-defined default values 25
user-defined function

altering with ALTER FUNCTION (inlined SQL scalar)
statement 1142
altering with ALTER FUNCTION statement 1097, 1113
changing with ALTER FUNCTION statement 1150
creating with CREATE FUNCTION (inlined SQL scalar)
statement 1489
creating with CREATE FUNCTION statement 1424,
1428, 1453, 1472, 1498, 1510
dropping 1892
privileges

revoking 2081
statements allowed 2275

user-defined function (UDF)
description 238
external functions 238
IBM MQ functions 341
inheriting special registers 215
invocation 242
name, unqualified 86
naming convention 81
resolution 239
sample

ALTDATE 2941
ALTTIME 2943
BASE64DECODE 2945
BASE64ENCODE 2945
CURRENCY 2945
DAYNAME 2946
HDFS_READ 2947
HTTPBLOB 2948
HTTPCLOB 2949
HTTPDELETEBLOB 2950
HTTPDELETECLOB 2950
HTTPGETBLOB 2952
HTTPGETBLOBFILE 2954
HTTPGETCLOB 2952
HTTPGETCLOBFILE 2954
HTTPHEAD 2955
HTTPPOSTBLOB 2956
HTTPPOSTCLOB function 2956
HTTPPUTBLOB 2957
HTTPPUTCLOB 2957
JAQL_SUBMIT 2958
MONTHNAME 2959
TABLE_LOCATION 2960
TABLE_NAME 2961
TABLE_SCHEMA 2962
URLDECODE 2963
URLENCODE 2963
WEATHER 2964

sourced functions 238
table functions 238
unqualified name 86
version resolution 243

user-defined functions
samples

Index 3037

user-defined functions (continued)
samples (continued)

ALTDATE 20
ALTTIME 20

user-defined session variables 227
user-defined type

assignment of values 153
comparison of values 164
dropping 1898

user-defined types 35
USERNAMES column

IPNAMES catalog table 2349
LUNAMES catalog table 2354

USING clause
ALTER INDEX statement 1163, 1165
ALTER TABLESPACE statement 1332
CREATE INDEX statement 1538, 1539
CREATE LOB TABLESPACE statement 1559
CREATE TABLESPACE statement 1732
DESCRIBE statement 1874, 1882
EXECUTE statement 1910
OPEN statement 2038
PREPARE statement 2044

USING DESCRIPTOR clause
EXECUTE statement 1911
OPEN statement 2039

USING host-variable-array
clause

EXECUTE statement 1911
USING TYPE DEFAULTS clause

CREATE TABLE statement 1689
DECLARE GLOBAL TEMPORARY TABLE statement 1838

UTC (universal time, coordinated) 179
UTF-16 59
UTF-8 59

V
VALID

column of SYSDYNQRY catalog table 2444
VALID column

SYSPACKAGE catalog table 2519
SYSPLAN catalog table 2575

VALIDATE
column of SYSPACKAGE catalog table 2519
column of SYSPLAN catalog table 2575

VALIDATE clause
ALTER PROCEDURE (SQL - native) statement 1213
CREATE PROCEDURE (SQL - native) statement 1131,
1445, 1628

validation procedure 1292
validation routine

VALIDPROC clause 1292, 1697
VALIDPROC clause

ALTER TABLE statement 1292
CREATE TABLE statement 1697

VALPROC column of SYSTABLES catalog table 2678
value

SQL 98
VALUE column

SYSCTXTTRUSTATTRS catalog table 2426
VALUE function 166, 417, 479, 614
VALUES clause

CREATE INDEX statement 1551

VALUES clause (continued)
CREATE TABLE statement 1714
INSERT statement 2001, 2004
VALUES INTO statement 2201
VALUES statement 2199

VALUES INTO statement
description 2200
example 2203

VALUES statement
description 2199
example 2200

VAR function 379
VAR_POP function 379
VAR_SAMP function 380
VARBINARY

data type
description 116

function 614
VARCHAR

data type
CREATE TABLE statement 1663
description 103

function 615
VARCHAR_BIT_FORMAT scalar function 622
VARCHAR_FORMAT function 623
VARGRAPHIC

data type
CREATE TABLE statement 1663
description 112

function 632
variable

built-in global
CATALOG_LEVEL 329
CLIENT_IPADDR 330
DEFAULT_SQLLEVEL 330
GET_ARCHIVE 330
MAX_LOCKS_PER_TABLESPACE 331
MAX_LOCKS_PER_USER 331
MOVE_TO_ARCHIVE 332
PRODUCTID_EXT 332
referencing 329
REPLICATION_OVERRIDE 333
TEMPORAL_LOGICAL_TRANSACTION_TIME 334
TEMPORAL_LOGICAL_TRANSACTIONS 334

built-in session
referencing 329, 336

description 225
global 225
global variable 225
host

referencing 227
SQL syntax 227

PREPARE statement 2050
referencing 225
SQL syntax 225
substitution for parameter markers 1910
XML 231

VARIABLE clause
COMMENT statement 1404
DECLARE VARIABLE statement 1850

variables
session 227

VARIANCE function 379
VARIANCE_SAMP function 380

3038 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

VARIANT clause
CREATE PROCEDURE (external) statement 1596
CREATE PROCEDURE (SQL - external) statement 1606
CREATE PROCEDURE (SQL - native) statement 1635

VARID column
SYSVARIABLES catalog table 2724

VCAT
USING clause

ALTER INDEX statement 1163
CREATE INDEX statement 1165, 1538, 1540
CREATE LOB TABLESPACE statement 1559
CREATE TABLESPACE statement 1732

VCAT clause
ALTER TABLESPACE statement 1332
CREATE STOGROUP statement 1646

VCATNAME column
SYSINDEXES catalog table 2461
SYSINDEXPART catalog table 2474
SYSSTOGROUP catalog table 2655
SYSTABLEPART catalog table 2665
SYSTABLESPACE catalog table 2688

VERIFY_GROUP_FOR_USER function 637
VERIFY_ROLE_FOR_USER function 638
VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER function 640
VERSION

column of SYSDBRM catalog table 2437
column of SYSPACKAGE catalog table 2519
column of SYSPACKSTMT catalog table 2558

VERSION clause
COMMENT statement 1403
CREATE PROCEDURE (SQL - native) statement 1617
DROP statement 1895

VERSION column
SYSINDEXES catalog table 2461
SYSPARMS catalog table 2565
SYSROUTINES catalog table 2621
SYSTABLES catalog table 2678

version resolution 243
VERSION session variable 336
view

creating
CREATE VIEW statement 1812

dropping
description 1899

name, unqualified 86
naming convention 85
privileges

granting 1988
regenerating

ALTER VIEW statement 1378
unqualified name 86
using

read-only 1817
VIEW clause

CREATE VIEW statement 1812
DROP statement 1899

views
overview 30

VOLATILE
clause of CREATE TABLE statement 1699

VOLATILE clause
ALTER TABLE statement 1288

VOLID column of SYSVOLUMES catalog table 2733
VOLUMES clause

VOLUMES clause (continued)
CREATE STOGROUP statement 1646

VSAM (virtual storage access method)
catalog 1540

W
WEATHER function 2964
WEEK function 641
WEEK_ISO function 642
WHEN clause of TRIGGER statement 1358, 1757, 1776
WHEN MATCHED clause

MERGE statement 2026
WHEN NOT MATCHED clause

MERGE statement 2026
WHENEVER statement

description 2204
example 2205

WHERE clause
DELETE statement 1861
description 1036
search condition 1036
UPDATE statement 2188

WHERE CURRENT OF clause
DELETE statement 1862
UPDATE statement 2189

WHILE statement
example 2245, 2302
SQL procedure 2245, 2302

WITH AUTHENTICATION clause
ALTER TRUSTED CONTEXT statement 1376
CREATE TRUSTED CONTEXT statement 1792, 1793

WITH CHECK OPTION clause of CREATE VIEW statement
1815
WITH clause

select-statement 1073
WITH common-table-expression clause

select-statement 1069
WITH common-table-expression clause of CREATE VIEW
statement 1815
WITH EXPLAIN clause

ALTER PROCEDURE (SQL - native) statement 1207
CREATE PROCEDURE (SQL - native) statement 1127,
1441, 1622
CREATE TRIGGER statement 1353, 1751

WITH GRANT OPTION clause
GRANT statement 1966

WITH HOLD clause of DECLARE CURSOR statement 1822
WITH IMMEDIATE WRITE clause

ALTER PROCEDURE (SQL - native) statement 1208
CREATE PROCEDURE (SQL - native) statement 1127,
1441, 1623
CREATE TRIGGER statement 1353, 1752

WITH KEEP DYNAMIC clause
ALTER PROCEDURE (SQL - native) statement 1209
CREATE PROCEDURE (SQL - native) statement 1623

WITH PROCEDURE clause of ASSOCIATE LOCATORS
statement 1380
WITH RETURN clause of DECLARE CURSOR statement 1823
WITH RETURN clause of PREPARE statement 2047
WITH ROWSET POSITIONING clause

DECLARE CURSOR statement 1824
PREPARE statement 2047

WITH USE FOR clause

Index 3039

WITH USE FOR clause (continued)
CREATE TRUSTED CONTEXT statement 1792

WITHOUT AUTHENTICATION clause
ALTER TRUSTED CONTEXT statement 1376
CREATE TRUSTED CONTEXT statement 1792, 1793

WITHOUT EXPLAIN clause
ALTER PROCEDURE (SQL - native) statement 1207
CREATE PROCEDURE (SQL - native) statement 1127,
1441, 1622
CREATE TRIGGER statement 1353, 1751

WITHOUT HOLD clause of DECLARE CURSOR statement
1822
WITHOUT IMMEDIATE WRITE clause

ALTER PROCEDURE (SQL - native) statement 1208
CREATE PROCEDURE (SQL - native) statement 1127,
1441, 1623
CREATE TRIGGER statement 1353, 1752

WITHOUT KEEP DYNAMIC clause
ALTER PROCEDURE (SQL - native) statement 1209
CREATE PROCEDURE (SQL - native) statement 1623

WITHOUT RETURN clause of DECLARE CURSOR statement
1823
WITHOUT RETURN clause of PREPARE statement 2047
WITHOUT ROWSET POSITIONING clause

DECLARE CURSOR statement 1824
PREPARE statement 2047

WLM ENVIRONMENT clause
ALTER FUNCTION statement 1109
ALTER PROCEDURE (external) statement 1186
ALTER PROCEDURE (SQL - external) statement 1192
CREATE FUNCTION statement 1468, 1485
CREATE PROCEDURE (external) statement 1593
CREATE PROCEDURE (SQL - external) statement 1604

WLM ENVIRONMENT FOR DEBUG MODE clause
ALTER PROCEDURE (SQL - native) statement 1205
CREATE PROCEDURE (SQL - native) statement 1125,
1439, 1620
CREATE TRIGGER statement 1351, 1750

WLM_ENV_FOR_NESTED column of SYSROUTINES catalog
table 2621
WLM_ENVIRONMENT column

SYSTRIGGERS catalog table 2712
WLM_ENVIRONMENT column of SYSROUTINES catalog table
2621
WLM_REFRESH stored procedure

description 997
option descriptions 997
sample JCL 998
syntax diagram 997

WLM_SET_CLIENT_INFO procedure 999
work file database

creating 1422
description 42

WORKAREA column of SYSFIELDS catalog table 2456
WRITEAUTH column

SYSVARIABLEAUTH catalog table 2722

X
XML

assignment of values 153
comparison of values 159
data type

CREATE TABLE statement 1663

XML (continued)
variable 231

XML (Extensible Markup Language) 21
XML operands 169
XML pattern expression clause

CREATE INDEX statement 1534
XML schema registration

XSR_ADDSCHEMADOC stored procedure 1000
XSR_COMPLETE stored procedure 1002
XSR_REMOVE stored procedure 1005

XML schema repository
description 2779

XML schema repository tables
indexes 2779
table space 2779
XSRANNOTATIONINFO 2780
XSRCOMPONENT 2781
XSROBJECTCOMPONENTS 2783
XSROBJECTGRAMMAR 2784
XSROBJECTHIERARCHIES 2784
XSROBJECTPROPERTY 2785
XSROBJECTS 2782
XSRPROPERTY 2785

XML schema repository, DB2
tables 2779

XML table spaces 50
XML values

data type 125
XML-attribute

naming convention 85
XML-element

naming convention 85
XMLAGG function 381
XMLATTRIBUTES function 644
XMLCAST specification

description 277
XMLCOMMENT function 645
XMLCONCAT function 645
XMLDOCUMENT function 646
XMLELEMENT function 647
XMLEXISTS

predicate 316
XMLFOREST function 651
XMLMODIFY

function 653
XMLNAMESPACES function 656
XMLPARSE function 657
XMLPATTERN clause

CREATE INDEX statement 1534
XMLPI function 659
XMLQUERY function 659
XMLRELOBID column

SYSXMLRELS catalog table 2734
XMLSCHEMA

data type
CREATE TABLE statement 1663

XMLSERIALIZE function 662
XMLTABLE table function

description 693
XMLTBNAME column

SYSXMLRELS catalog table 2734
XMLTBOWNER column

SYSXMLRELS catalog table 2734
XMLTEXT function 665

3040 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

XMLXSROBJECTID function 666
XSLTRANSFORM function 667
XSR, See XML schema repository
XSR_COMPLETE stored procedure 1002
XSR_REGISTER

register XML schema 1003
XSRCOMPONENTID column

SYSIBM.XSROBJECTCOMPONENTS table 2783
SYSIBM.XSROBJECTHIERARCHIES table 2784

XSROBJECTID column
SYSIBM.XSROBJECTHIERARCHIES table 2784
SYSIBM.XSROBJECTS table 2782

XSROBJECTNAME column
SYSIBM.XSROBJECTS table 2782

XSROBJECTSCHEMA column
SYSIBM.XSROBJECTS table 2782

Y
YEAR function 668

Index 3041

3042 Db2 12 for z/OS: SQL Reference (Last updated: 2024-05-14)

IBM®

Product Number: 5650-DB2
 5770-AF3

SC27-8859-02

	Contents
	About this information
	Who should read this information
	Db2 Utilities Suite for z/OS
	Terminology and citations
	Accessibility features for Db2 for z/OS
	How to send comments
	How to read syntax diagrams
	Conventions for describing mixed data values
	Industry standards for SQL

	Chapter 1. Db2 for z/OS and SQL concepts
	Submitting SQL statements to Db2
	Static SQL
	Embedded dynamic SQL
	Deferred embedded SQL
	Interactive SQL
	SQL Call Level Interface and Open Database Connectivity
	Java database connectivity and embedded SQL for Java
	Use of QMF for Workstation

	Db2 database objects overview
	Db2 schemas and schema qualifiers
	Db2 tables
	Db2 keys
	Constraints
	Unique constraints
	Referential constraints
	Check constraints

	Db2 table columns
	Data types of columns
	String data types
	Numeric data types
	Date, time, and timestamp data types
	XML data type
	Large object data types
	ROWID data type
	Distinct types

	Null values in table columns
	Default values for table columns
	When to use null or default values
	Check constraints for column values

	Db2 indexes

	Db2 views
	Aliases
	Triggers
	User-defined types
	Routines in Db2 for z/OS: functions and procedures
	Sequences
	Db2 system objects
	Db2 catalog
	Db2 directory
	Active and archive logs
	Bootstrap data set
	Buffer pools
	Data definition control support database
	The resource limit facility
	Work file database
	Application processes and transactions
	Application processes, concurrency, and recovery
	Locking, commit, and rollback
	Unit of work
	Unit of recovery
	Rolling back work
	Packages and application plans

	Subsystem parameters

	Storage structures
	Db2 databases
	Db2 table spaces
	Partitions
	Segments

	Db2 index spaces
	Rules for primary and secondary space allocation
	Db2 hash spaces (deprecated)
	Db2 storage groups

	Application processes, concurrency, and recovery
	Locking, commit, and rollback
	Unit of work
	Unit of recovery
	Rolling back work

	Packages and application plans
	Character conversion
	Character sets and code pages
	Coded character sets and CCSIDS
	Determining the encoding scheme and CCSID of a string
	Expanding conversions
	Contracting conversions

	Distributed relational databases
	Connections
	Distributed unit of work
	Connection management
	SQL connection states
	Application process connection states

	Remote unit of work
	Connection management

	Chapter 2. Language elements in SQL
	Characters and tokens in SQL
	Identifiers in SQL
	Naming conventions in SQL
	SQL path
	Unqualified object name resolution
	Aliases
	Synonyms (deprecated)
	Authorization, privileges, permissions, masks, and object ownership
	Authorization IDs, roles, and authorization names
	Authorization IDs and statement preparation
	Authorization IDs and dynamic SQL
	Authorization IDs and remote execution
	DRDA access with Db2 for z/OS only
	DRDA access with a server or requester other than Db2
	Authorization ID translations
	Other security measures

	Data types
	Numeric data types
	Numeric host variables
	Character strings
	String unit specifications
	Difference between CODEUNITS16 and CODEUNITS32
	Determining the length attribute of the final result

	Graphic strings
	Unicode columns in EBCDIC tables
	Migrating Db2 11 Unicode columns in EBCDIC tables to Db2 12 or later Unicode columns in EBCDIC tables

	Binary strings
	Large objects (LOBs)
	Restrictions using LOBs
	Manipulating LOBs using locators

	Datetime values
	Date
	Time
	Timestamp
	Datetime host variables
	String representations of datetime values
	Determination of the implicit time zone
	Restrictions on the use of local datetime formats

	Row ID values
	XML values
	User-defined data types
	Distinct types
	Array types and values

	Promotion of data types
	Casting between data types
	Implicit cast from numeric data to string data
	Implicit cast from string data to numeric data

	Assignment and comparison
	Numeric assignments
	String assignments
	Datetime assignments
	Row ID assignments
	XML assignments
	User-defined type assignments
	Assignments to LOB locators
	Numeric comparisons
	String comparisons
	Datetime comparisons
	Row ID comparisons
	XML comparisons
	Conversion rules for comparisons
	User-defined type comparisons
	Rules for result data types

	Constants
	Graphic string constants
	Datetime constants

	Special registers
	General rules for special registers
	Rules for setting special registers by using profile tables
	CURRENT ACCELERATOR special register
	CURRENT APPLICATION COMPATIBILITY special register
	CURRENT APPLICATION ENCODING SCHEME special register
	CURRENT CLIENT_ACCTNG special register
	CURRENT CLIENT_APPLNAME special register
	CURRENT CLIENT_CORR_TOKEN special register
	CURRENT CLIENT_USERID special register
	CURRENT CLIENT_WRKSTNNAME special register
	CURRENT DATE special register
	CURRENT DEBUG MODE special register
	CURRENT DECFLOAT ROUNDING MODE special register
	CURRENT DEGREE special register
	CURRENT EXPLAIN MODE special register
	CURRENT GET_ACCEL_ARCHIVE special register
	CURRENT LOCALE LC_CTYPE special register
	CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special register
	CURRENT MEMBER special register
	CURRENT OPTIMIZATION HINT special register
	CURRENT PACKAGE PATH special register
	CURRENT PACKAGESET special register
	CURRENT PATH special register
	CURRENT PRECISION special register
	CURRENT QUERY ACCELERATION special register
	CURRENT QUERY ACCELERATION WAITFORDATA special register
	CURRENT REFRESH AGE special register
	CURRENT ROUTINE VERSION special register
	CURRENT RULES special register
	CURRENT SCHEMA special register
	CURRENT SERVER special register
	CURRENT SQLID special register
	CURRENT TEMPORAL BUSINESS_TIME special register
	CURRENT TEMPORAL SYSTEM_TIME special register
	CURRENT TIME special register
	CURRENT TIMESTAMP special register
	CURRENT TIME ZONE special register
	ENCRYPTION PASSWORD special register
	SESSION TIME ZONE special register
	SESSION_USER special register
	USER special register
	Special registers in a user-defined function or a stored procedure

	Column names
	Qualified column names
	Correlation names
	Column name qualifiers to avoid ambiguity
	Column name qualifiers in correlated references
	Resolution of column name qualifiers and column names

	Variables
	Global variables
	Session variables
	Host variables
	Variables in dynamic SQL
	LOB variables
	LOB locator variables
	XML variables
	LOB or XML file reference variables
	Result set locator variables
	Array variables
	Host structures in PL/I, C, and COBOL
	Host-variable arrays in PL/I, C, C++, and COBOL

	Functions
	Function invocation
	Function resolution
	Determining the best fit
	Promotable process
	Function resolution and input argument casting
	Best-fit consideration

	SQL path considerations for built-in functions
	Version resolution
	Examples of function resolution

	Expressions
	Concatenation operators in expressions
	Arithmetic operators in expressions
	Scalar-fullselect
	Datetime operands and durations
	Time zone specific expressions
	Datetime arithmetic in SQL
	Date arithmetic
	Time arithmetic
	Timestamp arithmetic

	Precedence of operations
	CASE expressions
	CAST specification
	XMLCAST specification
	Array element specification
	Array constructor
	OLAP specifications
	ROW CHANGE expression
	Sequence reference

	Predicates
	Basic predicate
	Quantified predicate
	ARRAY_EXISTS predicate
	BETWEEN predicate
	DISTINCT predicate
	EXISTS predicate
	IN predicate
	LIKE predicate
	NULL predicate
	XMLEXISTS predicate

	Search conditions
	Options affecting SQL
	SQL processing options for dynamic statements
	DECFLOAT rounding mode
	Decimal point representation
	Apostrophes and quotation marks as string delimiters
	Katakana characters for EBCDIC
	Mixed data in character strings
	Formatting of datetime strings
	SQL standard language
	Positioned updates of columns

	Mappings from SQL to XML
	Mapping SQL character sets to XML character sets
	Mapping SQL identifiers to XML names
	Mapping SQL data values to XML data values

	Chapter 3. Built-in global variables and session variables
	Built-in global variables
	CATALOG_LEVEL
	CLIENT_IPADDR
	DEFAULT_SQLLEVEL
	GET_ARCHIVE
	MAX_LOCKS_PER_TABLESPACE
	MAX_LOCKS_PER_USER
	MOVE_TO_ARCHIVE
	PRODUCTID_EXT
	REPLICATION_OVERRIDE
	TEMPORAL_LOGICAL_TRANSACTION_TIME
	TEMPORAL_LOGICAL_TRANSACTIONS

	Rules for setting built-in global variables by using profile tables
	Built-in session variables

	Chapter 4. Built-in functions
	List of supported built-in functions
	Aggregate functions
	ARRAY_AGG aggregate function
	AVG aggregate function
	CORR or CORRELATION aggregate function
	COUNT aggregate function
	COUNT_BIG aggregate function
	COVAR_POP or COVARIANCE or COVAR aggregate function
	COVAR_SAMP or COVARIANCE_SAMP aggregate function
	CUME_DIST
	GROUPING aggregate function
	LISTAGG aggregate function
	MAX aggregate function
	MEDIAN aggregate function
	MIN aggregate function
	PERCENTILE_CONT aggregate function
	PERCENTILE_DISC aggregate function
	PERCENT_RANK
	REGR_AVGX, REGR_AVGY, REGR_COUNT, ...
	STDDEV_POP or STDDEV aggregate function
	STDDEV_SAMP aggregate function
	SUM aggregate function
	VAR_POP or VARIANCE or VAR aggregate function
	VAR_SAMP or VARIANCE_SAMP aggregate function
	XMLAGG aggregate function

	Scalar functions
	ABS or ABSVAL scalar function
	ACOS scalar function
	ADD_DAYS
	ADD_MONTHS scalar function
	ARRAY_DELETE scalar function
	ARRAY_FIRST scalar function
	ARRAY_LAST scalar function
	ARRAY_NEXT scalar function
	ARRAY_PRIOR scalar function
	ARRAY_TRIM scalar function
	ASCII scalar function
	ASCII_CHR scalar function
	ASCII_STR or ASCIISTR scalar function
	ASIN scalar function
	ATAN scalar function
	ATANH scalar function
	ATAN2 scalar function
	BIGINT scalar function
	BINARY scalar function
	BITAND, BITANDNOT, BITOR, BITXOR, and BITNOT scalar functions
	BLOB scalar function
	BTRIM
	CARDINALITY scalar function
	CCSID_ENCODING scalar function
	CEILING or CEIL scalar function
	CHAR scalar function
	CHAR9 scalar function
	CHARACTER_LENGTH or CHAR_LENGTH scalar function
	CHR scalar function
	CLOB scalar function
	COALESCE scalar function
	COLLATION_KEY scalar function
	COMPARE_DECFLOAT scalar function
	CONCAT scalar function
	CONTAINS scalar function
	COS scalar function
	COSH scalar function
	DATE scalar function
	DAY scalar function
	DAYOFMONTH scalar function
	DAYOFWEEK scalar function
	DAYOFWEEK_ISO scalar function
	DAYOFYEAR scalar function
	DAYS scalar function
	DAYS_BETWEEN
	DBCLOB scalar function
	DECFLOAT scalar function
	DECFLOAT_FORMAT scalar function
	DECFLOAT_SORTKEY scalar function
	DECIMAL or DEC scalar function
	DECODE scalar function
	DECRYPT_BINARY, DECRYPT_BIT, DECRYPT_CHAR, and DECRYPT_DB scalar functions
	DECRYPT_DATAKEY_INTEGER, DECRYPT_DATAKEY_BIGINT, DECRYPT_DATAKEY_DECIMAL, DECRYPT_DATAKEY_VARCHAR, DECRYPT_DATAKEY_CLOB, DECRYPT_DATAKEY_VARGRAPHIC, DECRYPT_DATAKEY_DBCLOB, and DECRYPT_DATAKEY_BIT scalar functions
	DEGREES scalar function
	DIFFERENCE scalar function
	DIGITS scalar function
	DOUBLE_PRECISION or DOUBLE scalar function
	DSN_XMLVALIDATE scalar function
	EBCDIC_CHR scalar function
	EBCDIC_STR scalar function
	ENCRYPT_DATAKEY scalar function
	ENCRYPT_TDES or ENCRYPT scalar function
	EXP scalar function
	EXTRACT scalar function
	FLOAT scalar function
	FLOOR scalar function
	GENERATE_UNIQUE and GENERATE_UNIQUE_BINARY scalar functions
	GETHINT scalar function
	GETVARIABLE scalar function
	GRAPHIC scalar function
	GREATEST scalar function
	HASH scalar function
	HASH_CRC32, HASH_MD5, HASH_SHA1, and HASH_SHA256 scalar functions
	HEX scalar function
	HOUR scalar function
	IDENTITY_VAL_LOCAL scalar function
	IFNULL scalar function
	INSERT scalar function
	INSTR scalar function
	INTEGER or INT scalar function
	JULIAN_DAY
	LAST_DAY scalar function
	LCASE scalar function
	LEAST scalar function
	LEFT scalar function
	LENGTH scalar function
	LN scalar function
	LOCATE scalar function
	LOCATE_IN_STRING scalar function
	LOG10 scalar function
	LOWER scalar function
	LPAD scalar function
	LTRIM scalar function
	MAX scalar function
	MAX_CARDINALITY scalar function
	MICROSECOND scalar function
	MIDNIGHT_SECONDS scalar function
	MIN scalar function
	MINUTE scalar function
	MOD scalar function
	MONTH scalar function
	MONTHS_BETWEEN scalar function
	MQREAD scalar function
	MQREADCLOB scalar function
	MQRECEIVE scalar function
	MQRECEIVECLOB scalar function
	MQSEND scalar function
	MULTIPLY_ALT scalar function
	NEXT_DAY scalar function
	NEXT_MONTH
	NORMALIZE_DECFLOAT scalar function
	NORMALIZE_STRING scalar function
	NULLIF scalar function
	NVL scalar function
	OVERLAY scalar function
	PACK scalar function
	POSITION scalar function
	POSSTR or STRPOS scalar function
	POWER or POW scalar function
	QUANTIZE scalar function
	QUARTER scalar function
	RADIANS scalar function
	RAISE_ERROR scalar function
	RANDOM or RAND scalar function
	REAL scalar function
	REGEXP_COUNT
	REGEXP_INSTR
	REGEXP_LIKE
	REGEXP_REPLACE
	REGEXP_SUBSTR
	REPEAT scalar function
	REPLACE scalar function
	RID scalar function
	RIGHT scalar function
	ROUND scalar function
	ROUND_TIMESTAMP scalar function
	ROWID scalar function
	RPAD scalar function
	RTRIM scalar function
	SCORE scalar function
	SECOND scalar function
	SIGN scalar function
	SIN scalar function
	SINH scalar function
	SMALLINT scalar function
	SOUNDEX scalar function
	SOAPHTTPC and SOAPHTTPV scalar function
	SOAPHTTPNC and SOAPHTTPNV scalar function
	SPACE scalar function
	SQRT scalar function
	STRIP scalar function
	STRLEFT scalar function
	STRPOS scalar function
	STRRIGHT scalar function
	SUBSTR scalar function
	SUBSTRING scalar function
	TAN scalar function
	TANH scalar function
	TIME scalar function
	TIMESTAMP scalar function
	TIMESTAMPADD scalar function
	TIMESTAMPDIFF scalar function
	TIMESTAMP_FORMAT or TO_TIMESTAMP scalar function
	TIMESTAMP_ISO scalar function
	TIMESTAMP_TZ scalar function
	TO_CHAR scalar function
	TO_CLOB scalar function
	TO_DATE scalar function
	TO_NUMBER scalar function
	TOTALORDER scalar function
	TO_TIMESTAMP scalar function
	TRANSLATE scalar function
	TRIM scalar function
	TRIM_ARRAY scalar function
	TRUNCATE or TRUNC scalar function
	TRUNC_TIMESTAMP scalar function
	UCASE scalar function
	UNICODE scalar function
	UNICODE_STR or UNISTR scalar function
	UPPER scalar function
	VALUE scalar function
	VARBINARY scalar function
	VARCHAR scalar function
	VARCHAR9 scalar function
	VARCHAR_BIT_FORMAT scalar function
	VARCHAR_FORMAT scalar function
	VARGRAPHIC scalar function
	VERIFY_GROUP_FOR_USER scalar function
	VERIFY_ROLE_FOR_USER scalar function
	VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER scalar function
	WEEK scalar function
	WEEK_ISO scalar function
	WRAP scalar function
	XMLATTRIBUTES scalar function
	XMLCOMMENT scalar function
	XMLCONCAT scalar function
	XMLDOCUMENT scalar function
	XMLELEMENT scalar function
	XMLFOREST scalar function
	XMLMODIFY scalar function
	XMLNAMESPACES scalar function
	XMLPARSE scalar function
	XMLPI scalar function
	XMLQUERY scalar function
	XMLSERIALIZE scalar function
	XMLTEXT scalar function
	XMLXSROBJECTID scalar function
	XSLTRANSFORM scalar function
	YEAR scalar function

	Table functions
	ADMIN_TASK_LIST table function
	ADMIN_TASK_OUTPUT table function
	ADMIN_TASK_STATUS table function
	BLOCKING_THREADS table function
	MQREADALL table function
	MQREADALLCLOB table function
	MQRECEIVEALL table function
	MQRECEIVEALLCLOB table function
	XMLTABLE table function

	Row functions
	UNPACK row function

	Chapter 5. Procedures that are supplied with Db2
	ADMIN_COMMAND_DB2
	ADMIN_COMMAND_DSN
	ADMIN_COMMAND_MVS
	ADMIN_COMMAND_UNIX
	ADMIN_DS_BROWSE
	ADMIN_DS_DELETE
	ADMIN_DS_LIST
	ADMIN_DS_RENAME
	ADMIN_DS_SEARCH
	ADMIN_DS_WRITE
	ADMIN_EXPLAIN_MAINT
	ADMIN_INFO_HOST
	ADMIN_INFO_IFCID
	ADMIN_INFO_SMS
	ADMIN_INFO_SSID
	ADMIN_INFO_SQL
	ADMIN_INFO_SYSLOG
	ADMIN_INFO_SYSPARM
	ADMIN_JOB_CANCEL
	ADMIN_JOB_FETCH
	ADMIN_JOB_QUERY
	ADMIN_JOB_SUBMIT
	ADMIN_TASK_ADD
	ADMIN_TASK_CANCEL
	ADMIN_TASK_REMOVE
	ADMIN_TASK_UPDATE
	ADMIN_UPDATE_SYSPARM
	ADMIN_UTL_EXECUTE
	ADMIN_UTL_MONITOR
	ADMIN_UTL_MODIFY
	ADMIN_UTL_SCHEDULE
	ADMIN_UTL_SORT
	CREATE_WRAPPED
	DSNACCOX
	DSNACICS
	DSNAIMS
	DSNAIMS2
	DSNLEUSR
	DSNUTILS
	DSNUTILU
	DSNUTILV
	DSN_WLM_APPENV
	DSN8.CREATE_DGTT
	DSN8.DISABLE
	DSN8.ENABLE
	DSN8.GET_LINE
	DSN8.GET_LINES
	DSN8.NEW_LINE
	DSN8.PUT
	DSN8.PUT_LINE
	Objects that are used by the sample trace stored procedures
	GET_CONFIG
	GET_MESSAGE
	GET_SYSTEM_INFO
	SET_MAINT_MODE_RECORD_NO_TEMPORALHISTORY
	SET_PLAN_HINT
	SQLJ.ALTER_JAVA_PATH
	SQLJ.DB2_INSTALL_JAR
	SQLJ.DB2_REPLACE_JAR
	SQLJ.INSTALL_JAR
	SQLJ.REMOVE_JAR
	SQLJ.REPLACE_JAR
	WLM_REFRESH
	WLM_SET_CLIENT_INFO
	XSR_ADDSCHEMADOC
	XSR_COMPLETE
	XSR_REGISTER
	XSR_REMOVE

	Chapter 6. Queries
	Authorization
	subselect
	select-clause
	unpacked-row

	from-clause
	table-reference
	correlation-clause
	typed-correlation-clause

	collection-derived-table
	joined-table
	join-condition
	Join operations

	where-clause
	group-by-clause
	having-clause
	order-by-clause
	offset-clause
	fetch-clause
	Examples of subselects
	Examples of grouping sets, rollup, and cube queries

	fullselect
	Character conversion in set operations and concatenations
	Selecting the result CCSID

	select-statement
	common-table-expression
	update-clause
	read-only-clause
	optimize-clause
	isolation-clause
	queryno-clause
	SKIP LOCKED DATA
	Examples of SELECT statements

	Chapter 7. Statements
	List of supported statements
	How SQL statements are invoked
	Embedding a statement in an application program
	Dynamic preparation and execution
	Static invocation of a SELECT statement
	Dynamic invocation of a SELECT statement
	Interactive invocation
	SQL diagnostics information
	Detecting and processing error and warning conditions in host language applications
	SQLSTATE
	SQLCODE

	SQL comments
	ALLOCATE CURSOR statement
	ALTER DATABASE statement
	ALTER FUNCTION statement (external function)
	ALTER FUNCTION statement (compiled SQL scalar function)
	ALTER FUNCTION statement (inlined SQL scalar function)
	ALTER FUNCTION statement (SQL table function)
	ALTER INDEX statement
	ALTER MASK statement
	ALTER PERMISSION statement
	ALTER PROCEDURE statement (external procedure)
	ALTER PROCEDURE statement (SQL - external procedure) (deprecated)
	ALTER PROCEDURE statement (SQL - native procedure)
	ALTER SEQUENCE statement
	ALTER STOGROUP statement
	ALTER TABLE statement
	ALTER TABLESPACE statement
	ALTER TRIGGER statement (advanced trigger)
	ALTER TRIGGER statement (basic trigger)
	ALTER TRUSTED CONTEXT statement
	ALTER VIEW statement
	ASSOCIATE LOCATORS statement
	BEGIN DECLARE SECTION statement
	CALL statement
	CLOSE statement
	COMMENT statement
	COMMIT statement
	CONNECT statement
	CREATE ALIAS statement
	CREATE AUXILIARY TABLE statement
	CREATE DATABASE statement
	CREATE FUNCTION statement (overview)
	CREATE FUNCTION statement (compiled SQL scalar function)
	CREATE FUNCTION statement (external scalar function)
	CREATE FUNCTION statement (external table function)
	CREATE FUNCTION statement (inlined SQL scalar function)
	CREATE FUNCTION statement (sourced function)
	CREATE FUNCTION statement (SQL table function)
	CREATE GLOBAL TEMPORARY TABLE statement
	CREATE INDEX statement
	CREATE LOB TABLESPACE
	CREATE MASK statement
	CREATE PERMISSION statement
	CREATE PROCEDURE statement (overview)
	CREATE PROCEDURE statement (external procedure)
	CREATE PROCEDURE statement (SQL - external procedure) (deprecated)
	CREATE PROCEDURE statement (SQL - native procedure)
	CREATE ROLE statement
	CREATE SEQUENCE statement
	CREATE STOGROUP statement
	CREATE SYNONYM statement (unsupported)
	CREATE TABLE statement
	CREATE TABLESPACE statement
	CREATE TRIGGER statement (advanced trigger)
	CREATE TRIGGER statement (basic trigger)
	CREATE TRUSTED CONTEXT statement
	CREATE TYPE statement
	CREATE TYPE statement (array type)
	CREATE TYPE statement (distinct type)
	CREATE VARIABLE statement
	CREATE VIEW statement
	DECLARE CURSOR statement
	DECLARE GLOBAL TEMPORARY TABLE statement
	DECLARE STATEMENT statement
	DECLARE TABLE statement
	DECLARE VARIABLE statement
	DELETE statement
	DESCRIBE statement
	DESCRIBE CURSOR statement
	DESCRIBE INPUT statement
	DESCRIBE OUTPUT statement
	DESCRIBE PROCEDURE statement
	DESCRIBE TABLE statement
	DROP statement
	END DECLARE SECTION statement
	EXCHANGE statement
	EXECUTE statement
	EXECUTE IMMEDIATE statement
	EXPLAIN statement
	FETCH statement
	FREE LOCATOR statement
	GET DIAGNOSTICS statement
	GRANT statement
	GRANT statement (collection privileges)
	GRANT statement (database privileges)
	GRANT statement (function or procedure privileges)
	GRANT statement (package privileges)
	GRANT statement (plan privileges)
	GRANT statement (schema privileges)
	GRANT statement (sequence privileges)
	GRANT statement (system privileges)
	GRANT statement (table or view privileges)
	GRANT statement (type or JAR file privileges)
	GRANT statement (variable privileges)
	GRANT statement (use privileges)
	HOLD LOCATOR statement
	INCLUDE statement
	INSERT statement
	LABEL statement
	LOCK TABLE statement
	MERGE statement
	OPEN statement
	PREPARE statement
	REFRESH TABLE statement
	RELEASE statement (connection)
	RELEASE SAVEPOINT statement
	RENAME statement
	REVOKE statement
	REVOKE statement (collection privileges)
	REVOKE statement (database privileges)
	REVOKE statement (function or procedure privileges)
	REVOKE statement (package privileges)
	REVOKE statement (plan privileges)
	REVOKE statement (schema privileges)
	REVOKE statement (sequence privileges)
	REVOKE statement (system privileges)
	REVOKE statement (table or view privileges)
	REVOKE (type or JAR file privileges)
	REVOKE (variable privileges)
	REVOKE statement (use privileges)
	ROLLBACK statement
	SAVEPOINT statement
	SELECT statement
	SELECT INTO statement
	SET CONNECTION statement
	SET assignment-statement statement
	SET CURRENT ACCELERATOR statement
	SET CURRENT APPLICATION COMPATIBILITY statement
	SET CURRENT APPLICATION ENCODING SCHEME
	SET CURRENT DEBUG MODE statement
	SET CURRENT DECFLOAT ROUNDING MODE statement
	SET CURRENT DEGREE statement
	SET CURRENT EXPLAIN MODE statement
	SET CURRENT GET_ACCEL_ARCHIVE statement
	SET CURRENT LOCALE LC_CTYPE statement
	SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION statement
	SET CURRENT OPTIMIZATION HINT statement
	SET CURRENT PACKAGE PATH statement
	SET CURRENT PACKAGESET statement
	SET CURRENT PRECISION statement
	SET CURRENT QUERY ACCELERATION statement
	SET CURRENT QUERY ACCELERATION WAITFORDATA statement
	SET CURRENT REFRESH AGE statement
	SET CURRENT ROUTINE VERSION statement
	SET CURRENT RULES statement
	SET CURRENT SQLID statement
	SET CURRENT TEMPORAL BUSINESS_TIME statement
	SET CURRENT TEMPORAL SYSTEM_TIME statement
	SET ENCRYPTION PASSWORD statement
	SET PATH statement
	SET SCHEMA statement
	SET SESSION TIME ZONE statement
	SIGNAL statement
	TRANSFER OWNERSHIP statement
	TRUNCATE statement
	UPDATE statement
	VALUES statement
	VALUES INTO statement
	WHENEVER statement

	Chapter 8. SQL procedural language (SQL PL)
	References to SQL parameters and variables in SQL PL
	References to SQL condition names
	References to SQL cursor names
	References to SQL labels
	References to SQL statement names
	Summary of name scoping in nested compound statements
	SQL-procedure-statement (SQL PL)
	assignment-statement
	CALL statement
	CASE statement
	compound-statement
	FOR statement
	GET DIAGNOSTICS statement
	GOTO statement
	IF statement
	ITERATE statement
	LEAVE statement
	LOOP statement
	REPEAT statement
	RESIGNAL statement
	RETURN statement
	SIGNAL statement
	WHILE statement

	Appendix A. Limits in Db2 for z/OS
	Appendix B. Reserved schema names and reserved words in Db2 for z/OS
	Reserved schema names in Db2 for z/OS
	Reserved words in Db2 for z/OS

	Appendix C. Actions allowed on SQL statements
	Appendix D. SQL statement data access classification for routines
	Appendix E. SQL control statements for external SQL procedures
	References to SQL parameters and SQL variables in external SQL procedures
	SQL-procedure-statement (external)
	assignment-statement (SQL control statements for external routines)
	CALL statement
	CASE statement
	compound-statement
	GET DIAGNOSTICS statement
	GOTO statement
	IF statement
	ITERATE statement
	LEAVE statement
	LOOP statement
	REPEAT statement
	RESIGNAL statement
	RETURN statement
	SIGNAL statement
	WHILE statement

	Appendix F. SQL communication area (SQLCA)
	Description of SQLCA fields
	The included SQLCA
	The REXX SQLCA

	Appendix G. SQL descriptor area (SQLDA)
	Description of SQLDA fields
	The SQLDA Header
	SQLVAR entries
	Determining how many SQLVAR occurrences are needed
	Field descriptions of an occurrence of a base SQLVAR
	Field descriptions of an occurrence of an extended SQLVAR
	SQLTYPE and SQLLEN
	SQLDATA

	Unrecognized and unsupported SQLTYPES
	The included SQLDA
	Identifying an SQLDA in C or C++
	The REXX SQLDA

	Appendix H. Db2 catalog tables
	IPLIST catalog table
	IPNAMES catalog table
	LOCATIONS catalog table
	LULIST catalog table
	LUMODES catalog table
	LUNAMES catalog table
	MODESELECT catalog table
	SYSAUDITPOLICIES catalog table
	SYSAUTOALERTS catalog table
	SYSAUTOALERTS_OUT catalog table
	SYSAUTORUNS_HIST catalog table
	SYSAUTORUNS_HISTOU catalog table
	SYSAUTOTIMEWINDOWS catalog table
	SYSAUXRELS catalog table
	SYSCHECKDEP catalog table
	SYSCHECKS catalog table
	SYSCHECKS2 catalog table
	SYSCOLAUTH catalog table
	SYSCOLDIST catalog table
	SYSCOLDISTSTATS catalog table
	SYSCOLDIST_HIST catalog table
	SYSCOLSTATS catalog table
	SYSCOLUMNS catalog table
	SYSCOLUMNS_HIST catalog table
	SYSCONSTDEP catalog table
	SYSCONTEXT catalog table
	SYSCONTEXTAUTHIDS catalog table
	SYSCONTROLS catalog table
	SYSCOPY catalog table
	SYSCTXTTRUSTATTRS catalog table
	SYSDATABASE catalog table
	SYSDATATYPES catalog table
	SYSDBAUTH catalog table
	SYSDBRM catalog table
	SYSDEPENDENCIES catalog table
	SYSDUMMY1 catalog table
	SYSDUMMYA catalog table
	SYSDUMMYE catalog table
	SYSDUMMYU catalog table
	SYSDYNQRY catalog table
	SYSDYNQRYDEP catalog table
	SYSDYNQRY_EXPL catalog table
	SYSDYNQRY_OPL catalog table
	SYSDYNQRY_SHTEL catalog table
	SYSDYNQRY_SPAL catalog table
	SYSDYNQRY_TXTL catalog table
	SYSENVIRONMENT catalog table
	SYSFIELDS catalog table
	SYSFOREIGNKEYS catalog table
	SYSINDEXCLEANUP catalog table
	SYSINDEXCONTROL catalog table
	SYSINDEXES catalog table
	SYSINDEXES_HIST catalog table
	SYSINDEXES_RTSECT catalog table
	SYSINDEXES_TREE catalog table
	SYSINDEXPART catalog table
	SYSINDEXPART_HIST catalog table
	SYSINDEXSPACESTATS catalog table
	SYSINDEXSTATS catalog table
	SYSINDEXSTATS_HIST catalog table
	SYSJARCLASS_SOURCE catalog table
	SYSJARCONTENTS catalog table
	SYSJARDATA catalog table
	SYSJAROBJECTS catalog table
	SYSJAVAOPTS catalog table
	SYSJAVAPATHS catalog table
	SYSKEYCOLUSE catalog table
	SYSKEYS catalog table
	SYSKEYTARGETS catalog table
	SYSKEYTARGETSTATS catalog table
	SYSKEYTARGETS_HIST catalog table
	SYSKEYTGTDIST catalog table
	SYSKEYTGTDISTSTATS catalog table
	SYSKEYTGTDIST_HIST catalog table
	SYSLEVELUPDATES catalog table
	SYSLOBSTATS catalog table
	SYSLOBSTATS_HIST catalog table
	SYSOBJROLEDEP catalog table
	SYSPACKAGE catalog table
	SYSPACKAUTH catalog table
	SYSPACKCOPY catalog table
	SYSPACKDEP catalog table
	SYSPACKLIST catalog table
	SYSPACKSTMT catalog table
	SYSPACKSTMT_STMB catalog table
	SYSPACKSTMT_STMT catalog table
	SYSPARMS catalog table
	SYSPENDINGDDL catalog table
	SYSPENDINGOBJECTS catalog table
	SYSPKSYSTEM catalog table
	SYSPLAN catalog table
	SYSPLANAUTH catalog table
	SYSPLANDEP catalog table
	SYSPLSYSTEM catalog table
	SYSQUERY catalog table
	SYSQUERYOPTS catalog table
	SYSQUERYPLAN catalog table
	SYSQUERYPREDICATE catalog table
	SYSQUERYSEL catalog table
	SYSQUERY_AUX catalog table
	SYSRELS catalog table
	SYSRESAUTH catalog table
	SYSROLES catalog table
	SYSROUTINEAUTH catalog table
	SYSROUTINES catalog table
	SYSROUTINESTEXT catalog table
	SYSROUTINES_OPTS catalog table (deprecated)
	SYSROUTINES_TREE catalog table
	SYSROUTINES_SRC catalog table (deprecated)
	SYSSCHEMAAUTH catalog table
	SYSSEQUENCEAUTH catalog table
	SYSSEQUENCES catalog table
	SYSSEQUENCESDEP catalog table
	SYSSESSION catalog table
	SYSSESSION_EX catalog table
	SYSSESSION_STATUS catalog table
	SYSSTATFEEDBACK catalog table
	SYSSTMT catalog table
	SYSSTOGROUP catalog table
	SYSSTRINGS catalog table
	SYSSYNONYMS catalog table
	SYSTABAUTH catalog table
	SYSTABCONST catalog table
	SYSTABLEPART catalog table
	SYSTABLEPART_HIST catalog table
	SYSTABLES catalog table
	SYSTABLESPACE catalog table
	SYSTABLESPACESTATS catalog table
	SYSTABLES_HIST catalog table
	SYSTABLES_PROFILES catalog table
	SYSTABLES_PROFILE_TEXT catalog table
	SYSTABSTATS catalog table
	SYSTABSTATS_HIST catalog table
	SYSTRIGGERS catalog table
	SYSTRIGGERS_STMT catalog table
	SYSUSERAUTH catalog table
	SYSVARIABLEAUTH catalog table
	SYSVARIABLES catalog table
	SYSVARIABLES_DESC catalog table
	SYSVARIABLES_TEXT catalog table
	SYSVIEWDEP catalog table
	SYSVIEWS catalog table
	SYSVIEWS_STMT catalog table
	SYSVIEWS_TREE catalog table
	SYSVOLUMES catalog table
	SYSXMLRELS catalog table
	SYSXMLSTRINGS catalog table
	SYSXMLTYPMOD catalog table
	SYSXMLTYPMSCHEMA catalog table
	USERNAMES table
	Reorganizing the catalog
	SQL statements allowed on the catalog
	Temporal versioning for Db2 catalog tables
	Temporal versioning for Db2 statistics-related catalog tables

	Catalog indexes

	Appendix I. Db2 directory tables
	Appendix J. Performance information for SQL application programming
	Appendix K. Db2 XML schema repository tables
	XML schema repository (XSR) table spaces and indexes
	XSRANNOTATIONINFO table
	XSRCOMPONENT table
	XSROBJECTS table
	XSROBJECTCOMPONENTS table
	XSROBJECTGRAMMAR table
	XSROBJECTHIERARCHIES table
	XSROBJECTPROPERTY table
	XSRPROPERTY table

	Appendix L. EXPLAIN tables
	PLAN_TABLE
	DSN_COLDIST_TABLE
	DSN_DETCOST_TABLE
	DSN_FILTER_TABLE
	DSN_FUNCTION_TABLE
	DSN_KEYTGTDIST_TABLE
	DSN_PGRANGE_TABLE
	DSN_PGROUP_TABLE
	DSN_PREDICAT_TABLE
	DSN_PREDICATE_SELECTIVITY table
	DSN_PTASK_TABLE
	DSN_QUERYINFO_TABLE
	DSN_QUERY_TABLE
	DSN_SORTKEY_TABLE
	DSN_SORT_TABLE
	DSN_STATEMENT_CACHE_TABLE
	DSN_STATEMNT_TABLE
	DSN_STAT_FEEDBACK
	DSN_STRUCT_TABLE
	DSN_VIEWREF_TABLE

	Appendix M. Tables that support query acceleration
	SYSACCEL.SYSACCELERATORS table
	SYSACCEL.SYSACCELERATEDTABLES table
	SYSACCEL.SYSACCELERATEDTABLESAUTH table
	SYSACCEL.SYSACCELERATEDPACKAGES table

	Appendix N. Tables that are used for program authorization
	Table spaces and indexes for program authorization
	SYSIBM.DSNPROGAUTH table

	Appendix O. Sample user-defined functions
	ALTDATE
	ALTTIME
	BASE64ENCODE and BASE64DECODE
	CURRENCY
	DAYNAME
	HDFS_READ
	HTTPBLOB
	HTTPCLOB
	HTTPDELETEBLOB and HTTPDELETECLOB
	HTTPGETBLOB and HTTPGETCLOB
	HTTPGETBLOBFILE and HTTPGETCLOBFILE
	HTTPHEAD
	HTTPPOSTBLOB and HTTPPOSTCLOB
	HTTPPUTBLOB and HTTPPUTCLOB
	JAQL_SUBMIT
	MONTHNAME
	TABLE_LOCATION
	TABLE_NAME
	TABLE_SCHEMA
	URLENCODE and URLDECODE
	WEATHER

	Information resources for Db2 for z/OS and related products
	Notices
	Programming interface information
	Trademarks
	Terms and conditions for product documentation
	Privacy policy considerations

	Glossary
	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

