
Db2 12 for z/OS

JSON Application Development
Last updated: 2024-03-12

IBM

Notes

Before using this information and the product it supports, be sure to read the general information under
"Notices" at the end of this information.

Subsequent editions of this PDF will not be delivered in IBM Publications Center. Always download the
latest edition from IBM Documentation.

2024-03-12 edition

This edition applies to Db2® 12 for z/OS® (product number 5650-DB2), Db2 12 for z/OS Value Unit Edition (product
number 5770-AF3), and to any subsequent releases until otherwise indicated in new editions. Make sure you are using
the correct edition for the level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.
© Copyright International Business Machines Corporation 2014, 2024.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html

Contents

About this information... v
Who should read this information...vi
Db2 Utilities Suite for z/OS..vi
Terminology and citations... vi
Accessibility features for Db2 for z/OS.. vii
How to send comments..vii
How to read syntax diagrams.. viii

Chapter 1. Key JSON concepts... 1
JSON namespaces... 2
JSON collections.. 2
JSON documents... 2
JSON nested objects..3

Chapter 2. JSON installation requirements...5
NoSQL properties...5

nosql.asyncMaxThreadCount property..5
nosql.connectionPoolSize property... 5
nosql.traceFile property... 6
nosql.traceLevel property.. 6

Chapter 3. Solution planning..9
Connection management...9
Query operators... 9

JSON logical operators...9
JSON comparison operators.. 10
Data evaluation operators..11

Security model... 11
Wire listener authentication...11

Performance features.. 12
Lazy fetches..12
JSON batching.. 12
Fire and forget mode.. 13

Chapter 4. Working with JSON documents with the Java API................................15
Java APIs..15

Connect to a Db2 database..15
Store JSON documents in a Db2 database..16
Select JSON documents from a Db2 database... 17
Create indexes on JSON fields...17
Import or export JSON data...17

JSON command-line interface (CLI)... 18
Starting the command-line interface...18
Command-line options...19

Wire listener... 38
Configuring the wire listener.. 38
wpListener -help - ... 39
wpListener -shutdown - .. 39
wpListener -start - ...40

 iii

Chapter 5. Working with JSON documents by using SQL....................................... 43
JSON_VAL...43
JSON_LEN.. 46
JSON_TYPE.. 46
JSON_TABLE.. 48
JSON2BSON...49
BSON2JSON...49
Creating a column to store JSON data.. 50
Inserting JSON data into a table... 50
Updating JSON data in a table...51
Retrieving data that is inside a JSON document...51
Example SQL statements with JSON2BSON, BSON2JSON, and JSON_VAL functions........................... 53

Information resources for Db2 for z/OS and related products................................57

Notices..59
Programming interface information.. 60
Trademarks.. 60
Terms and conditions for product documentation... 61
Privacy policy considerations.. 61

Glossary..63

Index.. 65

iv

About this information

Throughout this information, "Db2" means "Db2 12 for z/OS". References to other Db2 products use
complete names or specific abbreviations.

Important: To find the most up to date content for Db2 12 for z/OS, always use IBM® Documentation
or download the latest PDF file from PDF format manuals for Db2 12 for z/OS (Db2 for z/OS in IBM
Documentation).

Most documentation topics for Db2 12 for z/OS assume that the highest available function level is
activated and that your applications are running with the highest available application compatibility level,
with the following exceptions:

• The following documentation sections describe the Db2 12 migration process and how to activate new
capabilities in function levels:

– Migrating to Db2 12 (Db2 Installation and Migration)
– What's new in Db2 12 (Db2 for z/OS What's New?)
– Adopting new capabilities in Db2 12 continuous delivery (Db2 for z/OS What's New?)

• FL 501 A label like this one usually marks documentation changed for function level 500 or higher,
with a link to the description of the function level that introduces the change in Db2 12. For more
information, see How Db2 function levels are documented (Db2 for z/OS What's New?).

The availability of new function depends on the type of enhancement, the activated function level, and
the application compatibility levels of applications. In the initial Db2 12 release, most new capabilities are
enabled only after the activation of function level 500 or higher.
Virtual storage enhancements

Virtual storage enhancements become available at the activation of the function level that introduces
them or higher. Activation of function level 100 introduces all virtual storage enhancements in
the initial Db2 12 release. That is, activation of function level 500 introduces no virtual storage
enhancements.

Subsystem parameters
New subsystem parameter settings are in effect only when the function level that introduced them or
a higher function level is activated. Many subsystem parameter changes in the initial Db2 12 release
take effect in function level 500. For more information about subsystem parameter changes in Db2
12, see Subsystem parameter changes in Db2 12 (Db2 for z/OS What's New?).

Optimization enhancements
Optimization enhancements become available after the activation of the function level that introduces
them or higher, and full prepare of the SQL statements. When a full prepare occurs depends on the
statement type:

• For static SQL statements, after bind or rebind of the package
• For non-stabilized dynamic SQL statements, immediately, unless the statement is in the dynamic

statement cache
• For stabilized dynamic SQL statements, after invalidation, free, or changed application compatibility

level

Activation of function level 100 introduces all optimization enhancements in the initial Db2 12
release. That is, function level 500 introduces no optimization enhancements.

SQL capabilities
New SQL capabilities become available after the activation of the function level that introduces them
or higher, for applications that run at the equivalent application compatibility level or higher. New SQL
capabilities in the initial Db2 12 release become available in function level 500 for applications that
run at the equivalent application compatibility level or higher. You can continue to run SQL statements

© Copyright IBM Corp. 2014, 2024 v

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_12.0.0/home/src/tpc/db2z_12_prodhome.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/inst/src/tpc/db2z_migrdb2.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_wnew.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_managenewcapability.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m501.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_aboutflinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_subsysparmchanges.html

compatibly with lower function levels, or previous Db2 releases, including Db2 11 and DB2® 10. For
details, see Application compatibility levels in Db2 (Db2 Application programming and SQL)

Who should read this information
This information is for the following users:

• Db2 for z/OS application programmers with a knowledge of SQL and the JSON programming language.
• JSON application programmers with a knowledge of SQL and the JSON programming language.

Db2 Utilities Suite for z/OS
Important: Db2 Utilities Suite for z/OS is available as an optional product. You must separately order
and purchase a license to such utilities, and discussion of those utility functions in this publication is not
intended to otherwise imply that you have a license to them.

Db2 12 utilities can use the DFSORT program regardless of whether you purchased a license for DFSORT
on your system. For more information about DFSORT, see https://www.ibm.com/support/pages/dfsort.

Db2 utilities can use IBM Db2 Sort for z/OS as an alternative to DFSORT for utility SORT and MERGE
functions. Use of Db2 Sort for z/OS requires the purchase of a Db2 Sort for z/OS license. For more
information about Db2 Sort for z/OS, see Db2 Sort for z/OS documentation.

Related concepts
Db2 utilities packaging (Db2 Utilities)

Terminology and citations
When referring to a Db2 product other than Db2 for z/OS, this information uses the product's full name to
avoid ambiguity.

The following terms are used as indicated:

Db2
Represents either the Db2 licensed program or a particular Db2 subsystem.

IBM rebranded DB2 to Db2, and Db2 for z/OS is the new name of the offering that was previously
known as "DB2 for z/OS". For more information, see Revised naming for IBM Db2 family products on
IBM z/OS platform. As a result, you might sometimes still see references to the original names, such
as "DB2 for z/OS" and "DB2", in different IBM web pages and documents. If the PID, Entitlement
Entity, version, modification, and release information match, assume that they refer to the same
product.

IBM OMEGAMON® for Db2 Performance Expert on z/OS
Refers to any of the following products:

• IBM IBM OMEGAMON for Db2 Performance Expert on z/OS
• IBM Db2 Performance Monitor on z/OS
• IBM Db2 Performance Expert for Multiplatforms and Workgroups
• IBM Db2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

CICS®
Represents CICS Transaction Server for z/OS.

IMS
Represents the IMS Database Manager or IMS Transaction Manager.

vi About this information

https://www.ibm.com/docs/en/SSEPEK_12.0.0/apsg/src/tpc/db2z_applicationcompatibility.html
https://www.ibm.com/support/pages/dfsort
https://www.ibm.com/docs/en/db2-sort-for-zos
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_utlpackaging.html
https://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/7/899/ENUSLP18-0047/index.html
https://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/7/899/ENUSLP18-0047/index.html

MVS™
Represents the MVS element of the z/OS operating system, which is equivalent to the Base Control
Program (BCP) component of the z/OS operating system.

RACF®
Represents the functions that are provided by the RACF component of the z/OS Security Server.

Accessibility features for Db2 for z/OS
Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in z/OS products, including Db2 for z/OS. These
features support:

• Keyboard-only operation.
• Interfaces that are commonly used by screen readers and screen magnifiers.
• Customization of display attributes such as color, contrast, and font size

Tip: IBM Documentation (which includes information for Db2 for z/OS) and its related publications are
accessibility-enabled for the IBM Home Page Reader. You can operate all features using the keyboard
instead of the mouse.

Keyboard navigation
For information about navigating the Db2 for z/OS ISPF panels using TSO/E or ISPF, refer to the z/OS
TSO/E Primer, the z/OS TSO/E User's Guide, and the z/OS ISPF User's Guide. These guides describe how
to navigate each interface, including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their functions.

Related accessibility information

IBM and accessibility
See the IBM Accessibility Center at http://www.ibm.com/able for more information about the commitment
that IBM has to accessibility.

How to send your comments about Db2 for z/OS documentation
Your feedback helps IBM to provide quality documentation.

Send any comments about Db2 for z/OS and related product documentation by email to
db2zinfo@us.ibm.com.

To help us respond to your comment, include the following information in your email:

• The product name and version
• The address (URL) of the page, for comments about online documentation
• The book name and publication date, for comments about PDF manuals
• The topic or section title
• The specific text that you are commenting about and your comment

Related concepts
About Db2 12 for z/OS product documentation (Db2 for z/OS in IBM Documentation)
Related reference
PDF format manuals for Db2 12 for z/OS (Db2 for z/OS in IBM Documentation)

About this information vii

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_12.0.0/home/src/tpc/db2z_12_prodhome.html
http://www.ibm.com/able
mailto:db2zinfo@us.ibm.com
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/cmn/db2z_cmn_aboutinfo.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html

How to read syntax diagrams
Certain conventions apply to the syntax diagrams that are used in IBM documentation.

Apply the following rules when reading the syntax diagrams that are used in Db2 for z/OS documentation:

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The ►►─── symbol indicates the beginning of a statement.

The ───► symbol indicates that the statement syntax is continued on the next line.

The ►─── symbol indicates that a statement is continued from the previous line.

The ───►◄ symbol indicates the end of a statement.
• Required items appear on the horizontal line (the main path).

required_item

• Optional items appear below the main path.
required_item

optional_item

If an optional item appears above the main path, that item has no effect on the execution of the
statement and is used only for readability.

required_item

optional_item

• If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.

required_item required_choice1

required_choice2

If choosing one of the items is optional, the entire stack appears below the main path.

required_item

optional_choice1

optional_choice2

If one of the items is the default, it appears above the main path and the remaining choices are shown
below.

required_item

default_choice

optional_choice

optional_choice

• An arrow returning to the left, above the main line, indicates an item that can be repeated.

required_item repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

viii About this information

required_item

,

repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the stack.
• Sometimes a diagram must be split into fragments. The syntax fragment is shown separately from the

main syntax diagram, but the contents of the fragment should be read as if they are on the main path of
the diagram.

required_item fragment-name

fragment-name
required_item

optional_name

• For some references in syntax diagrams, you must follow any rules described in the description for that
diagram, and also rules that are described in other syntax diagrams. For example:

– For expression, you must also follow the rules described in Expressions (Db2 SQL).
– For references to fullselect, you must also follow the rules described in fullselect (Db2 SQL).
– For references to search-condition, you must also follow the rules described in Search conditions

(Db2 SQL).
• With the exception of XPath keywords, keywords appear in uppercase (for example, FROM). Keywords

must be spelled exactly as shown.
• XPath keywords are defined as lowercase names, and must be spelled exactly as shown.
• Variables appear in all lowercase letters (for example, column-name). They represent user-supplied

names or values.
• If punctuation marks, parentheses, arithmetic operators, or other such symbols are shown, you must

enter them as part of the syntax.

Related concepts
Commands in Db2 (Db2 Commands)
Db2 online utilities (Db2 Utilities)
Db2 stand-alone utilities (Db2 Utilities)

About this information ix

https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_expressionsintro.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_fullselect.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_searchconditionssql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/sqlref/src/tpc/db2z_searchconditionssql.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/comref/src/tpc/db2z_aboutcommands.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_onlineutilities.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/ugref/src/tpc/db2z_standaloneutilities.html

x Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

Chapter 1. Key JSON concepts
A JSON data store is a database that provides the capabilities to store, process, and manage data in JSON
format. The JSON feature for Db2 enables a Db2 database to serve as a JSON data store.

JSON documents in the data store are stored in a binary format (extended BSON). A Java™ API supports
a JSON-oriented query language that is derived from the popular MongoDB query language. For the
JSON capability in Db2, this Java API is the backbone for extra application interfaces, such as the
command-line interface and the wire listener.

Figure 1. JSON components in Db2

In addition to supporting basic features of the MongoDB query language, the JSON capability in Db2
provides extensions that you can use to apply some Db2 database features to JSON documents, such as:

• Transaction control to group multiple operations into one commit scope
• Batch processing for multi-row insert operations

© Copyright IBM Corp. 2014, 2024 1

JSON namespaces
Each JSON data store can support multiple JSON namespaces. JSON namespaces are conceptually
similar to a MongoDB database and are represented as an SQL schema. By default, the namespaces are
not case-sensitive.

In the command-line interface, the namespace is set with the use command and referenced with the
command prefix db.

The following code sample represents a JSON namespace:

nosql>use media
Switched to schema MEDIA
nosql>db.getCollectionNames()
[movies, books, audio]

JSON collections
A JSON collection is a named grouping of JSON documents. Document structures in a collection might
differ significantly. However, usually documents in a collection are of a similar nature to enable finding and
grouping data.

Collections are represented in a Db2 table with a custom-defined or automatically generated unique
identifier and a binary large object to hold the semi-structured document content. A collection can be
created explicitly with the createCollection() command. A collection is implicitly created when an
insert is attempted for a collection that did not previously exist.

The document identifiers that serve as primary key must be of the same data type for all documents in the
collection.

JSON documents
JSON documents consist of fields, which are name-value pair objects. The fields can be in any order, and
be nested or arranged in arrays.

There is no enforcement of document structures. Therefore, other documents in the same collection
might have a subset of fields, extra fields, or different representations of the same field.

The keys, that is, the field names are always String data and must be unique. The values can be any of the
supported JSON data types.

Table 1. JSON data types

Data type Example in JSON format

java.lang.String "string"

java.lang.Integer 3

java.lang.Long 4294967296

java.lang.Double 6.2

java.lang.Byte [] true / false

java.util.Date (millisecond precision, in UTC) { "$binary": "(base64-encoded value)", "$type":
"0" }

java.util.regex.Pattern { "$date" : "1998-03-11T17:14:12.456Z" }

java.util.regex.Pattern { "$regex" : "ab*" , "$options" : "" }

java.util.UUID { "$uuid" : "fb46f9a6-13df-41a2-a4e3-
c77e85e747dd" }

com.ibm.nosql.bson.types.ObjectId { "$oid" : "51d2f200eefac17ea91d6831" }

2 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

Table 1. JSON data types (continued)

Data type Example in JSON format

com.ibm.nosql.bson.types.Code { "$code" : "mycode" }

com.ibm.nosql.bson.types.CodeWScope { "$code" : "i=i+1", "$scope" : {} }

com.ibm.nosql.json.api.BasicDBObject { "a" : 1, "b": { "c" : 2 } }

com.ibm.nosql.json.api.BasicDBList [1 , 2, "3", "abc", 5]

For Date string values, the client converts the value to UTC to be stored in Db2 databases. It is also
retrieved as a Date in UTC format.

The following example represents a sample JSON document:

{
 name:"Joe",
 age:25,
 phone:["555-666-7777", "444-789-1234"],
 homeAddress:
 {street:"Sycamore Avenue",
 city: “Gilroy”,
 zipcode:"95046"
 }
 businessAddress:
 {
 street:"Bailey Avenue",
 City: “San Jose”,
 zipcode:"95141"
 }
}

JSON nested objects
JSON objects can be nested inside other JSON objects. Each nested object must have a unique access
path.

The same field name can occur in nested objects in the same document. However, uniqueness must still
apply for the full access name.

To access nested fields, concatenate the field names that are separated by a . (dot). For example, use
author.lastname to access the surname for the author in this document:

{"isbn": "123-456-222",
 "author":
 {
 "lastname": "Doe",
 "firstname": "Jane"
 },
"editor":
 {
 "lastname": "Smith",
 "firstname": "Jane"
 },
 "title": "The Ultimate Database Study Guide",
 "category": ["Non-Fiction", "Technology"]
 }

In the example, the field name lastname occurs in the author and the editor object. The prefixes in
author.lastname and editor.lastname provide unique access.

Chapter 1. Key JSON concepts 3

4 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

Chapter 2. JSON installation requirements
To enable support for programming with JSON in Db2, the server and client must be running specific
software.

Table 2. JSON installation requirements

Installation requirements

• Db2 12 for z/OS with all current maintenance applied
• The Db2 12 feature of IBM Db2 Accessories Suite for z/OS, V4.1
• IBM Data Server 10.5.0.3 from http://www.ibm.com/support/docview.wss?uid=swg24036705

(required only for the JSON Java API)

NoSQL properties
You can set properties that affect the behavior of the NoSQL client.

The properties are set in the nosql.properties file. The nosql.properties file is created manually
and can be copied to any directory. The file directory must be included in the application classpath.

nosql.asyncMaxThreadCount property
Sets the maximum number of asynchronous threads. The threads are used to process
WriteConcern.NONE and WriteConcern.NORMAL inserts, in which case inserts are queued, batched,
and inserted with less frequent commits drastically increasing speed, but also increasing transaction log
space requirements on the Db2 server.

If there are too many threads, each thread has less data to consolidate. If there are too few threads, they
become a bottleneck in a system that can otherwise move more data.

The nosql.connPoolSize property limits the number of threads that you can use, because each thread
needs a connection to work with. If there are not enough connections, some threads wait until one
becomes available, and that decreases performance.

Default
10

Example
Set the asynchronous maximum thread count to 10:

nosql.asyncMaxThreadCount=10

nosql.connectionPoolSize property
Specifies the number of connections in the JDBC connection pool that is managed by the JSON API
instance. If you use the NoSQLClient.getDB(URL, username , password) property, the API
creates a JDBC connection pool and manages it for the database.

If the program needs another connection and no connections are available in the pool, the connection
request must wait until a connection is returned to the pool. Keeping the value of the property too low
might reduce concurrency. Setting the value too high might exceed the database connection limits and
cause errors.

© Copyright IBM Corp. 2014, 2024 5

http://www.ibm.com/support/docview.wss?uid=swg24036705

Default
20

Example
Set the connection pool size to 20:

nosql.connPoolSize=20

nosql.traceFile property
Specifies the name of a trace file that your program has permission to write to.

You can also configure NoSQL API tracing or logging by using the java.util.logging class. If you turn
on logging in both an application and in the properties file, the log is written to both places. In general,
logging has a performance cost.

Default
Null (no tracing)

Example
Set the name of the trace file to /tmp/nosql.text:

nosql.traceFile=/tmp/nosql.txt

nosql.traceLevel property
Sets the level of detail for the trace output. You must specify this property together with the
nosql.traceFile property.

Values
Values are as follows. They are specified in order of lowest detail level to highest detail level.
OFF

Specifies that logging is turned off.
SEVERE

Specifies that only severe problems are logged. This level indicates a serious failure.
WARNING

Specifies that potential problems are logged.
INFO

Specifies that informational messages are logged. For the JSON API, if this level is chosen, most
traceable messages are displayed. The following levels of granularity are supported:
CONFIG

Specifies that static configuration are logged.
FINE

Specifies that basic tracing messages are logged.
FINER

Specifies that detailed tracing messages are logged.
FINEST

Specifies that highly detailed tracing messages are logged.
ALL

Indicates that all messages are logged.

6 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

Default
OFF

Example
Set the trace level to ALL:

nosql.traceLevel=ALL

Chapter 2. JSON installation requirements 7

8 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

Chapter 3. Solution planning
Information about connection management, query operators, JSON security, and performance features
will help you plan your implementation of JSON.

Connection management
There are two options to connect to a JSON data store. The first option is through a single-mode
connection, which is explicitly established with the provided connection information. The second option is
through a shared connection pool.

By default, a connection pool is used. Operations such as insert() and update() attempt to obtain
a connection from the pool, perform the operation with that connection, and return it to the pool when
done. For details, see the information about the nosql.connectionPoolSize property.

For connections in single-mode, the JSON API allows control of transactional behavior when you are
working with JSON documents. Therefore, it is possible to combine multiple operations in a transaction,
control auto-commit behavior, and trigger a rollback if errors occur. The transaction APIs are not
applicable for the fire and forget mode. For details, see the information about connecting to a Db2
database.

Query operators
Various query operators are supported, such as logical operators, comparison operators, and data
evaluation operators.

JSON logical operators
The $and, $or, $not, and $nor logical operators are supported.

$and
The following example uses the $and operator:

{"$and":[{"age":5},{"name":"Joe"}]}

You can imply the $and operator by using a comma. The following version of the previous example
uses this alternative syntax for the $and operator:

{"name":"Joe","age":5}

$not
The following example uses the $not operator:

{"$not":{"age":4}}

$or
The following example uses the $or operator:

{"$or":[{"age":4},{"name":"Joe"}]}

$nor
The following example uses the $nor operator:

{"$nor":[{"age":3},{"name":"Moe"}]}

© Copyright IBM Corp. 2014, 2024 9

JSON comparison operators
A number of different comparison operators are supported.

equality comparison operator
The following example uses the equality comparison operator:

{"name":"Joe"}

$ne (inequality comparator operator)
The following example uses the inequality comparator operator:

{"age":{"$ne":3}}

$in
The following example uses the $in operator to match at least one value in a set:

{"age":{"$in":[1,2,3,4,5]}}

You cannot use the $in operator, or the “in” operator in a index if the array contains different data
types.

Do not use different types for the same field, as shown in the following incorrect example:

{"age":{"$in":[1,2,"A",3,4,5]}}

$nin
The following example uses the $nin operator to match to no values in a set, which is also referred to
as the "not in" comparison operator:

{"age":{"$nin":[1,2,3,4]}}

$lt
The following example uses the $lt operator, which is also referred to as the "less than" comparison
operator:

{"age":{"$lt":3}}

$lte
The following example uses the $lte operator, which is also referred to as the “less than or equals"
operator:

{"age":{"$lte":3}}

$gt
The following example uses the $gt operator, which is also referred to as the “greater than" operator:

{"age":{"$gt":3}}

$gte
The following example uses the $gte operator, which is also referred to as the “greater than or equals"
operator:

{"age":{"$gte":3}}

$regex (regular expression predicate)
The following example uses the regular expression predicate ($regex):

{"name":{"$regex":/^a.*\/}}

10 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

Data evaluation operators
JSON data evaluation operators provide ways to locate data within the database. They work in different
manners for queries on individual documents and aggregation queries.

$size
The $size operator returns the number of documents if the array field is of the specified size. The
following example uses the $size operator:

{"arr":{"$size":4}}

$mod
The $mod operator performs a modulo operation on the value of the field and returns the document
that meets the specified result. The following examples use the $mod operator:

• The following query finds the value that has a remainder of 1 after it is divided by 4:

{"age":{"$mod":[4,1]}}

• The following query finds the value that has a remainder of 0 after it is divided by 5:

{"age":{"$mod":[5]}}

For details about supported data evaluation operators in queries that are constructed by using
aggregation tasks, see the topic about aggregation tasks and operators.

Security model
The JSON security model is based on roles. To fulfill such a role, certain database privileges must be
available to a user.

The three user roles are listed as shown:

• JSON administrator

– This user role requires SYSCTRL or SYSADM authority to be set for the authorization ID.
• JSON collection manager

– A JSON collection manager role requires authorizations for the CREATE TABLE, CREATE TRIGGER,
and CREATE INDEX statements.

– Might need authority to create new SQL schemas, if the JSON administrator has not already created
the schemas.

– Collection managers automatically have the document user role for their collections.
– Collections are created with default access rights for database users.

• JSON document user

– Can insert, update, and delete JSON documents.
– Authorizations must be explicitly assigned by the JSON collection manager.
– If implicit creation of documents is allowed, the document user must also have the collection

manager role.

For applications that connect through the Java API, or for connections from the command-line interface,
the authentication ID of the connected user is used to determine the access privileges. However, the wire
listener uses proxy users.

Wire listener authentication
The wire listener uses an MD5-hash mechanism to verify that applications are a trusted source of
messages.

The wire listener connects with a proxy user to the database. The proxy user must have DBADM privileges.

Chapter 3. Solution planning 11

When the incoming message from a client application is authenticated by the wire listener, the listener
submits the request to the database with a proxy user connection. The proxy user must have JSON
collection manager and JSON document user roles for all JSON collections that should be accessible with
this wire listener.

The application must authenticate users. It accepts user ID, password if applicable. Applications might
accept unauthenticated users, in which case, the application must ensure that such users can only run
approved queries.

The wire listener keeps a registration file on the host, which contains a list of registered applications and
MD5-hash-tokens. These tokens might be per application, per application and schema, or just a single
token per wire listener. This registration file is maintained by the JSON administrator by using a wire
listener script. Access to the configuration list is controlled by operating system security, so that only
those with access to the system and read or write access to the directory can work with the file.

The application sends messages with the user queries to the wire listener. The application must know
the connection information (host, port) and have a valid token for the listener. The token is exchanged
between the application manager and wire listener manager. The application id or token is then sent by
the application by using the user ID and md5-hash mechanism in the message that is otherwise used for
user ID or password.

The wire listener authenticates the application user ID only once, rather than for every message it
receives from the application for a user. If the application switches the user ID then it is authenticated
again by the wire listener.

The application and wire listener must be behind a firewall to prevent external snooping.

Remember: If a malicious user has access inside the firewall, they can snoop the message exchanges
between the application and the wire listener, including the token, through some network sniffer, and can
get access to the JSON data included in these messages.

Performance features
Various performance features are provided with the JSON capability for Db2, such as lazy fetching of
queries, batching of JSON documents, and the fire and forget mode for insert operations.

Lazy fetches
Queries that use the DBCollection.find() method return a DBCursor object, which represents a
forward-only cursor that iterates over results. To fetch blocks of results that load as you demand them,
use the DBCursor.lazyFetch() method.By default, queries fetch results eagerly, or all at once.

The purpose of lazy fetching is memory optimization. You must specify the lazy fetch before opening the
cursor. It is important to close the cursor after fetching the results. Otherwise, memory leaks might occur.

JSON batching
Batching refers to accumulating multiple JSON documents and then sending them together to the JSON
store instead of sending each one separately. The JSON API provides a programmatic way to perform
batching. The major advantage of batching is improved performance.

The following types of batching are supported:
Homogenous batching

Occurs when the JSON documents in the batch are part of the same collection and the same
operation is applied to all documents.

Heterogeneous batching
Occurs when the JSON documents in the batch are part of different collections or different operations
are applied to the documents.

To mark the start of a batch, use the startBatch() method. To trigger the insert, update, remove,
or save operations for the documents, use the endBatch() method. If an operation in the batch fails,
processing continues with the next operation in the batch.

12 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

Example 1:
In the following example, homogeneous batching is used to insert three documents in one collection:

DBCollection batch = db.getCollection("batch");

BasicDBObject dbObj1 = new BasicDBObject("name", "Joe1");
dbObj1.put("_id", 1);

BasicDBObject dbObj2 = new BasicDBObject("name", "Joe2");
dbObj2.put("_id", 2);

BasicDBObject dbObj3 = new BasicDBObject("name", "Joe3");
dbObj3.put("_id", 3);

db.startBatch();

batch.insert(dbObj1);
batch.insert(dbObj2);
batch.insert(dbObj3);

db.endBatch();

Example 2:
In the following example, heterogeneous batching is used to insert three documents in collection
batch1 and two documents in collection batch2:

// Get collection batch1
DBCollection batch1 = db.getCollection("batch1");

// Create three documents to insert in collection batch1
BasicDBObject dbObj1 = new BasicDBObject("name", "Joe1");
dbObj1.put("_id", 1);

BasicDBObject dbObj2 = new BasicDBObject("name", "Joe2");
dbObj2.put("_id", 2);

BasicDBObject dbObj3 = new BasicDBObject("name", "Joe3");
dbObj3.put("_id", 3);

// Get collection batch2
DBCollection batch2 = _db.getCollection("batch2");

// Create two documents to insert in collection batch2
BasicDBObject dbObj4 = new BasicDBObject("name", "Joe4");
dbObj4.put("_id", 4);

BasicDBObject dbObj5 = new BasicDBObject("name", "Joe5");
dbObj5.put("_id", 5);

db.startBatch();

// Insert three documents into collection batch1

batch1.insert(dbObj1);
batch1.insert(dbObj2);
batch1.insert(dbObj3);

// Insert two documents into collection batch2

batch2.insert(dbObj4);
batch2.insert(dbObj5);

db.endBatch();

Fire and forget mode
Fire and forget mode enables multi-threaded, asynchronous inserts and can be set on the collection to
enhance performance for inserts.

Fire and forget mode can only be activated when applications use a connection pool. If an application
enables fire and forget for a single connection, the mode setting is ignored and the insert will be executed
single-threaded.

Chapter 3. Solution planning 13

The number of threads used for fire and forget is 10 by default. This value can be changed by setting the
asyncMaxThreadCount in the nosql.properties file. For example, to set the number of threads to
100, use nosql.asyncMaxThreadCount=100.

To enable fire and forget mode, the collection must set the WriteConcern value to either NONE or NORMAL.
Other WriteConcern values such as SAFE and JOURNAL_SAFE disable fire and forget mode because they
guarantee writes to the database. See the Java documentation for more information on WriteConcern.

The downside to using this mode is that the data is not guaranteed to be written to the server. Moreover,
the application will not see an exception raised if an error did occur during an insert. However, for
application scenarios that can tolerate loss of data, the performance gain from using this mode can be
significant.

14 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

Chapter 4. Working with JSON documents with the
Java API

You can create, modify, or remove JSON documents that are stored in a Db2 database.

The NoSQL capability in Db2 enables JSON documents that are stored in a Db2 database server to be
manipulated in the following three ways:

• The JSON capability for Java API provides a set of methods for storing, retrieving, and manipulating
JSON documents. These methods can be called by Java applications directly through the API to work
with the documents in the database. Because the Db2 database server is the data store, this component
translates the operations that are requested in the method invocations into SQL statements.

• The JSON command-line interface (CLI) is a command shell for issuing administrative commands
for JSON document collections, and for running queries and update operations against the JSON
collections. The JSON CLI very similar to the Db2 command line processor.

• The JSON wire listener is a server application that intercepts the Mongo wire protocol. This wire listener
acts as a mid-tier gateway server between MongoDB applications and Db2. It uses the NoSQL for JSON
API to interface with the Db2 database server as the data store. You can run a MongoDB application that
is written in application programming languages (such as Java, NodeJS, PHP, and Ruby), or you can use
the MongoDB CLI to communicate with the Db2 server.

Java APIs
The Java API provides a set of methods for storing, retrieving, and manipulating JSON documents.

Connect to a Db2 database
The JSON API uses JDBC connections to perform various database operations, such as connecting to a
Db2 database.

To use the database you must get an instance of a DB object. This object can be initialized with a
Connection JDBC connection, or DataSource, or the database URL, user name, and password.

The following snippet from a Java program demonstrates how to connect to a Db2 database:

 //Create a context and a dataSource
 Context initialContext = new InitialContext();
 DataSource dataSource = (DataSource)initialContext.lookup("jdbc/myDB2");
 //The dataSource instance becomes a cache key for metadata for the target database
 DB db = NoSQLClient.getDB(dataSource);

The following overloaded methods are available to get a DB instance:

• NoSQLClient.getDB(java.sql.Connection)

• NoSQLClient.getDB(javax.sql.DataSource)

• NoSQLClient.getDB(String, String, String)

The string arguments for the third instance of the getDB method take the following arguments:
jdbcUrl

Specifies a URL that can be used to connect with a JDBC connection.
user

Specifies a user name that can be used to connect the database.
password

Specifies a password.

© Copyright IBM Corp. 2014, 2024 15

Note: This DB instance must not be shared between threads. Each thread must make its own
NoSQLClient.getDB() method call.

Table 3. Methods on DB to control transactional behavior

Method Description

public void startTransaction() Gets a connection if needed, and sets auto-commit
to false. If a connection pool or data source is
being used, it puts the DB in single connection
mode until a future commitTransaction() or
rollbackTransaction().

public void commitTransaction() Commits a transaction started by
startTransaction().

public void rollbackTransaction() Rollback a transaction that was started by
startTransaction().

public void setAutoCommit(boolean
autoCommit)

Sets auto-commit if the Db2 server is using single
connection mode. It is an error to call this method
in DataSource mode.

Note: The transaction APIs described in this table are not applicable for the fire and forget mode.

Obtain a single-mode connection when you are using the transaction APIs to avoid situations where
starting a transaction forcibly changes the connection pool mode into single-mode.

Documents are not inserted if an error occurs. With these APIs, either all or none of the documents are
inserted.

Store JSON documents in a Db2 database
JSON documents are stored in collections (or tables) in the database. These documents are represented
as a map of key value pairs where the keys are strings. The values can be primitive Java objects like
String, Integer, Double, java.util.Date, as well as nested JSON documents represented by other
DBObject instances.

JSON documents are represented by DBObject instances of the interface. A common implementation is
by using BasicDBObject object. JSON arrays are represented by BasicDBList class. You can manually
construct the objects, or you can use BasicDBObjectBuilder class for friendly syntax.

A collection is represented by DBCollection class. Before you can insert your documents, you must get
a DBCollection from a DB instance.

The following snippet from a Java program demonstrates how to get a collection:

DBCollection empColl = db.getCollection("employees");
 BasicDBObject obj = new BasicDBObject();
 obj.put("name", "Joe");
 obj.put("age", 50);
 obj.put("salary", 60000);
 empColl.insert(obj);

By default, insert operations wait for success confirmation from the database. If you want
to increase throughput at the expense of write safety, you can use WriteConcern.NONE or
WriteConcern.NORMAL, in which case inserts are queued, batched, and inserted with less frequent
commits drastically increasing speed, but also increasing transaction log space requirements on Db2
server side. The Db2 server is still providing atomicity, consistency, isolation, and durability (ACID). It is
the API that is relaxing the rules for speed.

 DBCollection empColl = db.getCollection("employees");
 for(int i=0; i<100; i++){
 //Queues the object to be inserted
 empColl.insert(dbObject[i], com.ibm.nosql.json.api.WriteConcern.NORMAL);

16 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

 }
//Waits until all work sent from this thread on this db instance is processed
db.waitQueue();

Select JSON documents from a Db2 database
You can use one of several overloaded DBCollection.find() methods to select documents.

The following snippet from a Java program demonstrates how to select JSON documents:

DBCollection empColl = db.getCollection("employees");
 //Looking for employees that are named 'Joe'
 DBCursor cursor = empColl.find(new BasicDBObject("name", "Joe"));
 try{
 while(cursor.hasNext()){
 DBObject obj = cursor.next();
 doSomething(obj);
 }
 }finally{
 //Close the cursor no matter what
 cursor.close();
 }

Here are some example of the overloaded DBCollection.find() method:

DBCollection.find(com.ibm.nosql.json.api.DBObject query)
DBCollection.find(com.ibm.nosql.json.api.DBObject query, DBObject fields)
DBCollection.find(com.ibm.nosql.json.api.DBObject, com.ibm.nosql.json.api.DBObject, int, int)
DBCollection.findOne(com.ibm.nosql.json.api.DBObject)

To obtain specific the query output, consider using the following methods:

DBCursor.sort(com.ibm.nosql.json.api.DBObject)
DBCursor.limit(int)
DBCursor.skip(int)

Create indexes on JSON fields
You can create indexes on JSON data by using the DBCollection.ensureIndex(DBObject) method.

The following snippet from a Java program demonstrates how to create indexes on JSON fields:

 //Create an ascending integer index on 'age'
 db.collection.ensureIndex({age:[1, "$int"]});
 //Create ascending varchar(50) (default type) index
 //on 'manager.name' nested object field
 db.collection.ensureIndex({"manage.name":1}});

The following snippet from a Java program demonstrates how to create a compound (composite) index
that contains multiple fields:

 //Create compound index with two fields: name ascending
 //with type varchar(20), and age descending as integer
 db.collection.ensureIndex({name:[1, "$string", 20], age:[-1, "$int"]});

For details, see the DBCollection.ensureIndex(com.ibm.nosql.json.api.DBObject) method
for more details on index creation.

Import or export JSON data
You can use the importFile() and exportFile() Java APIs to import or export JSON data from a Db2
database.

You can use the com.ibm.nosql.json.api.DBCollection#importFile(String) method to
import files with the *.js extension. A second integer parameter of this method indicates the commit
frequency.

Chapter 4. Working with JSON documents with the Java API 17

The following snippet from a Java program demonstrates how to import JSON data:

//Import data and commit after every 100 rows
db.collection.importFile("/temp/myjsondata.js", 100)

You can use the DBCollection.exportFile(String) method to export files with the *.js extension.

The following snippet from a Java program demonstrates how to export JSON data:

//Export data
 db.collection.exportFile("/temp/myjsondata.js")

Each of the *.js import or export files contains one JSON object on each line of the file in plain text
format.

You can also use the JSON Java API to import files, where the first row of the file identifies field names.
To import a csv file, the name must end with .csv instead of .js. The file extension provides input
information to the API about the file format.

JSON command-line interface (CLI)
Use the command-line interface (CLI) to interact dynamically with the JSON collections and harness the
capability of NoSQL. The CLI requires a Java runtime environment (JRE) of Version 1.5 or later.

There are three ways to interact with the command line:

• Start an interactive shell by specifying the URL, user ID, and password.

The following is a sample command to start the interactive shell:

java -cp nosqljson.jar;db2jcc4.jar;db2jcc_license_cisuz.jar;
js.jar com.ibm.nosql.json.cmd.NoSqlCmdLine
--url jdbc:db2://localhost:50000/jsondb --user tonysun --password ****

• Run a .js file. The command line runs the .js file instead of through a shell. The application ends after
all the commands are completed.

The following is a sample command to run a JavaScript file:

java -cp nosqljson.jar;db2jcc4.jar;db2jcc_license_cisuz.jar;
js.jar com.ibm.nosql.json.cmd.NoSqlCmdLine
--url jdbc:db2://localhost:50000/jsondb; --user tonysun
--password **** --file "file.js"

• Evaluate a command, by using the eval command. The command line runs a one line command, and
then the applications ends.

The following is a sample command:

java -cp nosqljson.jar;db2jcc4.jar;db2jcc_license_cisuz.jar;
js.jar com.ibm.nosql.json.cmd.NoSqlCmdLine
--url jdbc:db2://localhost:50000/jsondb; --user tonysun
--password **** --eval "db.things.find()"

Starting the command-line interface
To start the JSON command-line interface (CLI), run the db2nosql script. The script uses the specified
connection information to establish a connection to the Db2 database that is used as the JSON data store.
If you do not specify connection parameters, the script prompts you for the required values.

Command syntax
db2nosql

options

18 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

Command parameters
--url url

Specifies a URL for connecting to the database.
--user user_ID

Specifies a user ID for connecting to the database.
--password password

Specifies a password for connecting to the database. JRE version 1.6 masks a typed password.
However, JRE version 1.5 does not.

--file file_name
Specifies a JavaScript file that contains a list of one-line JavaScript commands that are used as input
on the command-line.

--enable [true | false]
Specifies whether JSON artifacts are to be created. If the value is true, the --enable parameter
creates all the necessary artifacts for JSON in the database. If the value is false, the SQL statements
that create JSON artifacts are shown as output but are not issued.

--disable [true | false]
Specifies whether JSON artifacts are to be deleted. If the value is true, the --disable parameter
deletes the artifacts that were created for JSON in the database. If the value is false, the SQL
statements that delete JSON artifacts are shown as output but are not issued.

--schema schema_name
Specifies the optional schema name that represents the JSON namespace. If you specify this
parameter, the schema name is used as the qualifier for the collection name. The JSON namespace is
conceptually similar to a MongoDB database.

quiet
Limits the verbosity of the output.

Usage notes
Consider the following usage notes:

• The CLI requires a JRE of Version 1.5 or later.
• Using the eval and file commands together is not supported.

Command-line options
The following command-line options are supported.

aggregate() - Retrieve JSON documents command
Runs a sequence of tasks to retrieve documents from a collection, including attributes and calculated
values. Tasks can occur multiple times as long as the syntax sequence is valid.

Syntax diagram
db . collection . aggregate (task

Command parameters
task

This parameter specifies one or more of the following options:
$distinct

Retrieves distinct values for specific fields.
$group

Sets a grouping key and collects grouped values.

Chapter 4. Working with JSON documents with the Java API 19

$limit
Returns at most the specified number of documents from the result set.

$match
Filters documents.

$project
Selects fields for the document to retrieve. You can specify fields to include, not exclude.

$skip
Skips the specified number of documents.

$sort
Sorts the data on the specified fields.

Example
Calculate the average price of books per author in a category.

db.books.aggregate(
 {$match: { category: "Fantasy" }},
 {$project: {author:1, price:1}},
 {$group: {_id: {author:1}, avgPrice:{$avg:"$price"}}}
)

Sample output it as follows:

Row 1:
 {
"_id":"Tolkien, J.R",
"avgPrice":15.5
 }
Row 2:
 {
"_id":"Verne, Jules",
"avgPrice":6.35
 }
2 rows returned

count() - Find the number of documents command
Finds the number of documents in a collection.

Syntax diagram
db . collection . count (query)

Command parameters
query

This optional parameter specifies a filter for selecting a subset of documents and returns a count.

Example
Example 1: Get the number of documents in the books collection:

db.books.count()

Sample output is as follows:

15

Example 2: Get the number of documents for an author:

db.books.count({author: "Tolkien, J.R"})

20 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

Sample output is as follows:

2

createCollection() - Creates a collection
Creates a new collection with the specified characteristics.

Syntax diagram
db . collection . createCollection (name ,

tableSpec

)

Command arguments
name

Specifies a collection name. It must be alphanumeric with no special characters except $.
tableSpec

This optional parameter specifies the selection criteria for indexes. The options are as follows:
_id

Specifies ID definition. It must be one of the following data types:

• $int
• $long
• $number
• $date
• $timestamp
• $string: length
• $binary: length

compress (YES | NO) YES | NO)
Specifies whether to compress the collection.

tablespace
Specifies the name of the table space.

inline
Specifies the bufferpool space usage. It is of type integer.

systemTime (sysStartField | sysEndField)
Specifies the system time for sysStartField and sysEndField variables.

businessTime (busStartField | busEndField)
Specifies the business time for busStartField and busEndField variables.

Example
Example 1: Create a collection called "media" with _id of type SQL BIGINT.

db.createCollection(“media”, {_id: “$long”)})

Sample output:

Collection: TEST."media" created. Use db.media.

Chapter 4. Working with JSON documents with the Java API 21

distinct() - Find distinct values command
Finds distinct values for the submitted query.

Syntax diagram
db . collection . distinct (attribute

,
query

,
query

,

limit
,

query
,

limit

,

offset

)

Command parameters
attribute

This string parameter specifies the field for which to find distinct values. It can be a string data type or
an object.

query
This optional string parameter specifies a filter for selecting a subset of documents.

limit
This optional string parameter returns at most the specified number of documents from the result set.

offset
This optional string parameter finds the document that the query requested after skipping a specified
number of rows.

Example
Example 1: Issue an SQL query:

db.books.distinct("author")

Sample output is as follows:

[christie, granger, marsh]

Example 2: Get distinct values for the state and city, with no limit on the results, but skip the first three
rows:

db.books.distinct({"state":1, "city":1}, {}, 0, 3)

Sample output is as follows:

Row 1:
{ state: AZ,
city: AB
}
Row 2:
(...)

22 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

drop() - Drop a collection command
Drops a collection and associated objects, such as indexes on the collection.

Syntax diagram
db . collection . drop ()

Command parameters
None

Example
Drop the books collection:

db.books.drop()

Sample output is as follows:

OK

ensureIndex() - Creates a new index
Creates a new index on a specific field of a collection.

Syntax diagram
db . collection . ensureIndex (indexSpec

indexName , unique

)

db . collection . ensureIndex (indexSpec

indexOptions

)

Command arguments
indexSpec

This argument specifies a field in the document on which the index is to be created. It might include a
data type definition

indexName
This argument specifies a name for an index. A name is generated if it is not specified.

unique (true | false)
This optional argument specifies whether the index is unique.

indexOptions
This optional argument can have one of the following options:
name

This argument specifies a name of an index. A name is generated if not specified.
array (false)

This argument specifies an array of elements. Db2 for z/OS does not support a JSON index on an
array or an array element.

unique (true | false)
This argument specifies whether the index is unique.

Chapter 4. Working with JSON documents with the Java API 23

Example
Example 1: Create an index on field 'author' in ascending order, by using the default type string with
default length 50.

db.books.ensureIndex({"author": 1})

Sample output:

Index <books_xauthor> was created successfully.

Example 2: Create an index on field 'category' with type string and field length 40.

db.books.ensureIndex({"category": [1, "$string", 40]})

Sample output:

Index <books_xcategory> was created successfully.

Example 3: Create an index on field price with type number in descending order, name it mypriceidx.

db.books.ensureIndex({"price": [-1, "$number"]}, “mypriceidx”)

Sample output:

Index <mypriceidx> was created successfully.

exportFile() - Export JSON documents to a file command
Exports JSON documents from a collection into a file.

Syntax diagram
db . collection . exportFile (file_name)

Command parameters
file_name

This parameter specifies the fully qualified name of a file from which to export data.

Example
Export the books collection from the books.js file:

db.books.exportFile("C:\\books.js")

Sample output is as follows:

28 objects were exported in 200 milliseconds.

24 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

find() - Find JSON document command
Find JSON documents according to filter criteria. You can also specify fields to be included or excluded,
determine the sort order, limit the number of documents, and page through results with an offset.

Syntax diagram
db . collection . find (

query
,

select

. sort

sort

. limit

limit

. skip

offset

)

Command parameters
query

This optional parameter specifies a filter for selecting a subset of documents.
select

This optional parameter specifies fields to include or exclude in the query.
sort sort

This optional parameter specifies a JSON object that indicates the sort criteria:
1

Sort by ascending order.
-1

Sort by descending order.
This parameter can include the data type, including $int, $long, $number, $date, $timestamp,
$string: length, and $binary: length.

limit limit
This optional parameter specifies a JSON object that restricts the number of documents.

offset offset
This optional parameter specifies a JSON object that indicates the number of rows to skip.

Example
Find books in a collection. The collection name is case sensitive.

db.books.find()

Sample output is as follows:

Row 1:
{
"_id":{"$oid":"519b8727cd1552ed65b47a20"},
"isbn":"123-456-789",
"author":"Verne, Jules",
"title":"Journey to the Center of the Earth",
"abstract":"Classic science fiction novel in an unusual setting",
"price":6,
"pages":276,
"category":"Fantasy",
"sales": 500.5
}

Chapter 4. Working with JSON documents with the Java API 25

findAndModify() - Find and update documents command
Finds documents and updates them with new values.

Syntax diagram
db . collection . findAndModify (specification)

Command parameters
specification

This parameter specifies a JSON object with the following optional content:
query document

This parameter specifies a query object for filtering documents.
fields document

This parameter specifies a query object for selecting fields to return.
sort document

This parameter specifies a query object that defines the sort order to apply before selecting the
first document.

remove true
This parameter specifies a query object that removes the document. When it is true, the selected
document is removed. The default is false.

update document
This parameter specifies a query object that contains the update.

new (true | false)
If the value is true, this parameter returns the updated document instead of the original. If
the value is false, the old document is returned (discarded except for use by time travel
functionality).

insert (true | false)
If the value is true, this parameter inserts a new document, if the query does not return a
document. If the value is false, this parameter updates the document or returns an error if the
document is not present.

fullResponse (true | false)
If the value is true, the parameter returns the document or documents that are the result of the
query. Also, a status object is returned that contains the write result and the last error. If the value
is false, the parameter returns only the document.

Example
Find the first document with the name Joe and update the age field with the value 6:

db.mycollection.findAndModify({query : {name : "Joe"}, update : {$set : {age : 6}}})

Sample output is as follows:

{
"lastErrorObject":
{
"updatedExisting":true,
"n":1,
"err": null ,
"ok":1
},
"value":
{
"_id":{"$oid":"51cdc007927a75e5a8c327e3"},
"name":"Joe",
"age":5

26 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

}
}

findOne() - Find the first offset document
Find the first document that matches the query after you skip a specified number of rows.

Syntax diagram
db . collection . findOne (

query
,

select

. skip

offset

)

Command arguments
query

This optional argument specifies a filter to select a subset of documents.
select

This optional argument specifies a selection of fields to include or exclude in the query.
offset offset

This optional argument specifies a JSON object to skip some rows.

Example
Example 1: Use the db.collection.findOne() method to return a single record.

db.books.findOne({author: "Tolkien, J.R"}, {title: 1, price:1})

Sample output:

{
 "_id":{"$oid":"51f94b6a6bca2ee58280ef28"},
 "title":"The Hobbit",
 "price":5.0
 }

getCollectionNames() - View collection names for a schema command
Returns the names of all JSON collections in a Db2 database.

Syntax diagram
db . getCollectionNames ()

Command parameters
None.

Example
View all the collection names:

db.getCollectionNames()

Sample output is as follows:

[media, books, booksnest]

Chapter 4. Working with JSON documents with the Java API 27

getIndexes() command - View JSON indexes for a collection command
Returns index information that identifies and describes the existing indexes for a collection.

Syntax diagram
db . collection . getIndexes (

filter

)

Command parameters
filter

This optional parameter specifies the selection criteria for indexes. The options are as follows:
ID

Get details for the index with the specified identifier.
key

Get details for indexes with the specified attribute.
name

Get details for the index with the specified name.

Example
View a list of all indexes and type markers in the specified namespace:

db.books.getIndexes()

Sample output is as follows:

[{"v":0,"_id":57,"key":{"_id_":1},"ns":"TEST.books","name":"_id_","unique":true},
{"v":0,"_id":63,"key":{"author":1},"ns":"TEST.books","name":"books_xauthor","unique":false}]

Example 2: View a list of all indexes and type markers in the specified namespace:

db.books.getIndexes({"name": "_id_"})

Sample output is as follows:

[{"v":0,"_id":57,"key":{"_id_":1},"ns":"TEST.books","name":"_id_","unique":true}]

group() - Group values JSON command
Groups values for the collection in a query. More command options are available by using the
aggregate() command with the $group task.

Syntax diagram
db . collection . group (definition

,
query

,
query

,

limit
,

query
,

limit

,

offset

)

28 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

Command parameters
definition

This parameter specifies the fields that must be grouped.
query

This parameter specifies a filter for selecting a subset of documents.
limit

This parameter specifies an integer value that indicates the maximum size of the result set.
offset

This parameter finds the document that the query requested after skipping a specified number of
rows.

Example
Calculate the average price of books per author:

db.books.group({"_id": {"author": 1}, "sumqty": {"$sum": "$qty"}})

Sample output is as follows:

Row 1:
{
"_id":"Doe",
"sumqty":17481
}
Row 2:
{
"_id":"Smith",
"sumqty":5926
}

help() - Lists help commands
Lists possible commands for the collection commands.

Command parameters
Lists commands that can be applied for a collection.

importFile() - Import JSON documents from file command
Imports JSON documents from a file into a collection.

Syntax diagram
db . collection . importFile (file_name ,

commit_frequency

)

Command parameters
file_name

This parameter specifies the fully qualified name of a file from which to import data.
commit_frequency

This optional parameter specifies the batch size for commit operations. Larger batches generally
improve performance.

Example
Import documents from a file that is named books.

Chapter 4. Working with JSON documents with the Java API 29

db.books.importFile("C:\\books.js")

Sample output is as follows:

28 objects were imported in 4030 milliseconds.

importMongoSample() - Import some JSON documents from MongoDB
Import a specified number of JSON documents from a collection in a MongoDB database.

Syntax diagram
db . collection . importMongoSample (hostname , portnr ,

dbname , collection , rows

userid , pwd

)

Command parameters
hostname

This argument specifies the name of the server that hosts the MongoDB database.
portnr

This argument specifies the port number of the MongoDB database.
dbname

This argument specifies the database name of the MongoDB database.
collection

This argument specifies the collection name in the MongoDB database.
rows

This argument specifies the - number of documents to import. If it is set to 0, then it imports all
documents.

userid
This optional argument specifies the user name with which to connect to the MongoDB database.

pwd
This optional argument specifies the password for this user name.

importMongo() - Import JSON documents from MongoDB
Import JSON documents from a collection in a MongoDB database.

Syntax diagram
db . collection . importMongo (hostname , portnr , dbname ,

collection

userid, ? pwd

)

Command parameters
hostname

This argument specifies the name of the server that hosts the MongoDB database.
portnr

This argument specifies the port number of the MongoDB database.

30 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

dbname
This argument specifies the database name of the MongoDB database.

collection
This argument specifies the collection name in the MongoDB database.

userid
This optional argument specifies the user name with which to connect to the MongoDB database.

pwd
This optional argument specifies the password for this user name.

Example
Example 1: Update the specified fields in a document.

db.test.importMongo("remoteServer", 27017, "medialib", "DVD")

insert() - Insert a JSON document command
Inserts a JSON document into a collection. If the collection does not exist, it is created automatically.

Syntax diagram
db . collection . insert (document)

Command parameters
document

This parameter specifies the JSON document to insert.

Example
Insert a JSON document into a collection:

db.books.insert({
 isbn: "123-456-789",
 author: "Verne, Jules",
 title: "Journey to the Center of the Earth",
 abstract: "Classic science fiction novel in an unusual setting",
 price: 6.00,
 pages: 276,
 category: "Fantasy",
 sales: 500.50
 })

Sample output is as follows:

OK

markType() - Specifies the data type
Specifies a data type for a JSON field in a collection.

Syntax diagram
db . collection . markType ({ field : type })

Command parameters
field

This string argument specifies an attribute name.

Chapter 4. Working with JSON documents with the Java API 31

type
This argument specifies a data type, or null to remove the data type. The following data types are
supported:

• $int
• $long
• $number
• $date
• $timestamp
• $string: length
• $binary: length

Example
Example 1: Mark the 'x' field as integer type, and sort by 'x' in ascending order.

db.c.insert({x:-100})
db.c.insert({x:-10})
db.c.markType({x:"$int"})
db.c.find().sort({x:1})

Sample output:

Row 1:
{
"_id":{"$oid":"51f08bbdeefadf1d37d08bd9"},
"x":-100
}
Row 2:
{
"_id":{"$oid":"51f08bc3eefadf1d37d08bda"},
"x":-10
}

Example 2: Mark the 'x' field as string type, and sort by 'x' in ascending order

db.c.markType({x:["$string",20]})
db.c.find().sort({x:1})

Sample output:

Row 1:
{
"_id":{"$oid":"51f08bc3eefadf1d37d08bda"},
"x":-10
}
Row 2:
{
"_id":{"$oid":"51f08bbdeefadf1d37d08bd9"},
"x":-100
}

printDDL() - Print the DDL
Prints the default DDL of a collection.

Example
Print the DDL for a collection:

db.collection.printDDL()

Sample output is as follows:

32 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

CREATE TABLE furniture (CLOB(16M) NOT NULL,DATA BLOB(16M)
INLINE LENGTH 3000,PRIMARY KEY(ID))

remove() - Remove data from a collection command
Removes all the data or specified data from a collection. Index definitions are retained.

Syntax diagram
db . collection . remove (

query
)

Command parameters
query

This optional string parameter specifies a JSON query to filter a subset of data.

Example
Example 1: Remove all documents from the books collection.

db.books.remove()

Sample output is as follows:

Removed 15 row(s).

Example 2: Remove a book from the collection by specifying an ISBN:

db.books.remove({isbn: "123-456-789"})

Sample output is as follows:

Removed 1 row(s).

removeIndex() - Remove a JSON index command
Removes the specified index from a collection

Syntax diagram
db . collection . removeIndex (index_spec)

Command parameters
index_spec

This parameter specifies an index name or the JSON definition of the index that is to be removed.

Example
Example 1: Remove the mypriceidx index by referring to the index name:

db.books.removeIndex("mypriceidx")

Sample output is as follows:

Index <mypriceidx> was removed successfully.

Example 2: Remove an index by specifying the index characteristics.

Chapter 4. Working with JSON documents with the Java API 33

db.books.removeIndex({"author": 1})

Sample output is as follows:

Index <books_xauthor> was removed successfully.

rename() - Rename a collection command
Renames a collection.

Syntax diagram
db . collection . rename (new_name ,

forceDrop

)

Command parameters
new_name

This parameter specifies a new name for the collection. It must be alphanumeric, with no special
characters except for $.

forceDrop(true | false)
If true, this optional parameter drops the existing collection newName.

Example
Rename the books collection to oldbooks:

db.books.rename("oldbooks")

Sample output is as follows:

 Collection Renamed

sampleSchema() - Return document structure command
Returns the structure of JSON documents in a collection.

Syntax diagram
db . collection . sampleSchema (

rows
)

Command parameters
rows

This optional parameter specifies a number of rows to sample. If you set the parameter to 0 or do not
provide a value, the structures of all documents in a collection are returned.

Example
View the structure of a JSON document in the books collection:

db.books.sampleSchema()

Sample output is as follows:

 {
 "._id":"15;type:ObjectId",

34 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

 ".abstract":"15;type:String",
 ".author":"15;type:String",
 ".category":"12;type:String",
 ".isbn":"15;type:String",
 ".pages":"14;type:Integer",
 ".price":"14;type:Double",
 ".sales":"13;type:Double",
 ".title":"15;type:String",
 ".year_published":"5;type:Integer"
 }

save() - Save a document command
Saves an inserted or updated JSON document in a collection. If a document in a collection has the same
ID as a new document, the existing document is replaced. Otherwise, the new document is inserted.

Syntax diagram
db . collection . save (document)

Command parameters
document

This parameter specifies the JSON document to save.

Example
Save a JSON document in a collection:

db.books.save({isbn: "123-456-239",
 "author": "Verne, Jules", "title": "Mysterious Island" })

Sample output is as follows:

OK

sqlQuery() - Run a JSON SQL query command
Runs an SQL query at the database level.

Syntax diagram
db . sqlQuery (sql ,

params parameters

)

Command parameters
sql

This string parameter specifies an SQL query. It might contain parameter markers.
parameters

This optional string parameter specifies a list of parameter values to match any markers in the query.

Example
Issue an SQL query:

db.sqlQuery("select count(*) from test.products")

Sample output is as follows:

Chapter 4. Working with JSON documents with the Java API 35

sqlUpdate() - Run a JSON SQL update query command
Runs an SQL update query at the database level.

Syntax diagram
db . sqlUpdate (sql ,

parameters

)

Command parameters
sql

This string parameter specifies an SQL update query. It might contain parameter markers.
parameters

This optional string parameter specifies a list of parameter values to match any markers in the query.

Example
Issue an SQL query:

db.sqlUpdate("update test.products set price = 9.80 where pid=45")

Sample output is as follows:

stats() - Prints collection statistics
Prints statistics for the collection. Unavailable values are set to -1.

Syntax diagram
db . collection . stats (

scale

)

Command arguments
scale

This optional argument specifies the scale of the size field in the collection statistics. The following
values are supported:

• 0 = bytes (default)
• 1 = KB
• 2 = MB
• 3 = GB

Any other numerical values are ignored.

Example
Example 1: Collect statistics for the books collection.

db.books.stats()

Sample output:

{
 "ns":"TEST.books",
 "count":15,

36 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

 "size":234567,
 "avgObjSize":309.0,
 "numExtents":-1,
 "nindexes":2,
 "totalIndexSizes":-1,
 "indexSizes":[{"books_xauthor": -1},{"_id_":-1}],
 "ok":1
 }

timeTravel() - Set JSON time travel queries command
Sets system or business time for JSON time travel queries against a Db2 database.

Syntax diagram
db . timeTravel (system_time ,

business_time

)

Command parameters
system_time

This parameter specifies a YYYY-MM-DD formatted string or time stamp. The default value is the
current date.

business_time
This optional parameter specifies a YYYY-MM-DD formatted string or time stamp. The default value is
the current date.

Example
Example 1: Create a collection with time travel enabled:

db.createCollection("timetravel", {systemTime:"sys",businessTime:"bus"})

Sample output is as follows:

Collection: TEST."timetravel" created. Use db.timetravel.

Example 2: Insert a document with business start and end times:

db.timetravel.insert({name:"Joe", age:5, bus_start:"1990-05-30", bus_end:"1996-08-13"})

Sample output is as follows:

OK

Example 3: Change the business time to 2012:

db.timeTravel(null, "2012-01-15")

Sample output is as follows:

Setting system time: current date and business time: 2012-01-15

Chapter 4. Working with JSON documents with the Java API 37

update() - Update JSON documents command
Updates a JSON document or documents in a collection.

Syntax diagram
db . collection . update (query , updFields

upsert , multi

)

Command parameters
query

This parameter specifies a filter to select a subset of documents. The command can return an empty
result set.

updFields
This parameter specifies an object with attribute names and values that must be updated. This
parameter uses the $set operator to set the new value for a field.
upsert (true | false)

If the value is true, this optional parameter updates a document or inserts missing documents. If
the value is false, it only updates the documents. The default value is false.

multi (true | false)
If the value is true, this optional parameter updates all matching documents. If the value is
false, only the first matching row is updated. The default value is false.

Example
Update the specified fields in a document:

db.books.update({isbn: "123-456-234"}, {$set: {pages: 299}})

Sample output is as follows:

Updated 1 rows.

Wire listener
The JSON wire listener acts as a mid-tier gateway server between MongoDB applications and the Db2
database server. This wire listener leverages JSON API to interface with the Db2 database.

You can use a Mongo application that is written in one of the supported application languages (such as
Java, NodeJS, or pymongo), or use the Mongo command-line interface to communicate with the Db2
database.

Configuring the wire listener
You must configure the wire listener to communicate with the Db2 database server.

Before you begin
Install the following prerequisite software for the wire listener:

• Java JRE Version 1.6 or later
• The wire listener library (db2NoSQLWireListener.jar)
• The JSON library for NoSQL (nosqljson.jar)

38 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

• The JDBC driver (db2jcc4.jar)

Procedure
To configure the wire listener:
1. Configure the Db2 database server and client to access the JSON API for NoSQL.
2. Start the wire listener server in one of two ways:

• On Windows operating systems, run the wplistener.bat script.
• On Linux® and UNIX operating systems, run the wplistener.sh script.

Applications that are based on community drivers must specify the wire listener host and port as well
as a valid JSON namespace.

What to do next
Register the wire listener.

wpListener -help -
Displays usage help for the listener.

Syntax diagram
wpListener -help

Command parameters
—help

Specifies usage help for the listener.

Example
View usage information for the wire listener:

wpListener -help

wpListener -shutdown -
Stops the JSON wire listener.

Syntax diagram
wpListener -shutdown -mongoPort port -noSQLHost host_name

-userid userid

-password password

-dbName db_name -logPath path

-debug -useOriginalListener -testCmdLine threads

Command parameters
-mongoPort port

This parameter specifies a port that is listening for Mongo client requests.

Chapter 4. Working with JSON documents with the Java API 39

-noSQLHost host_name
This parameter specifies the name of the host that is to be shut down because it is running the wire
listener.

-userid userid
This parameter specifies the user ID for the backend server.

-password password
This optional parameter specifies the password for the user ID for the backend server.

-dbName db_name
This parameter specifies the name of the Db2 database that is used as the NoSQL data store.

-logPath path
This parameter specifies the path for storing log files.

-debug
This optional parameter enables debugging for the wire listener.

Example
Stop the wire listener:

wpListener -shutdown -mongoPort 27017 -noSQLHost host -userid db2admin

wpListener -start -
Starts the JSON wire listener.

Syntax diagram
wpListener -start -mongoPort port -userid userid

-password password

-dbName db_name -logPath path -registrationFile registration_file

-debug -minTCPThreads threads -maxTCPThreads threads

Command parameters
-mongoPort port

This parameter specifies a port that is listening for messages that are based on the MongoDB wire
protocol.

-userid userid
This parameter specifies the user ID for the backend server.

-password password
This optional parameter specifies the password for the user ID for the backend server.

-dbName db_name
This parameter specifies the name of the Db2 database that is used as the NoSQL data store.

-logPath path
This parameter specifies the path for storing log files.

-registrationFile registration_file
This parameter specifies a registration file that contains credentials.

-debug
This optional parameter enables debugging for the wire listener.

40 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

-minTCPThreads threads
This optional parameter specifies the maximum number of transaction control protocol threads.

-minTCPThreads threads
This optional parameter specifies the minimum number of transaction control protocol threads.

Example
Example 1: Start the wire listener without wire listener authentication:

wpListener -start -mongoPort 27017 -userid db2admin
-password pwd -debug dbName sample
-logPath c:/temp/logs

Example 2: Start the wire listener with wire listener authentication:

wpListener -start -mongoPort 27017 -userid db2admin
-password pwd -debug dbName sample
-logPath c:/temp/logs -registrationFile c:/temp/credentials.bin

Chapter 4. Working with JSON documents with the Java API 41

42 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

Chapter 5. Working with JSON documents by using
SQL

You can store and retrieve JSON data directly by using SQL.

The JSON functions rely on the JSON documents being stored in an internal binary format named BSON
(Binary JSON) in Db2.

You can also store and retrieve JSON values in Db2 columns without parsing or indexing on specific fields
inside the JSON document. Use a CLOB or VARCHAR column to hold the value and query and update
based on another key column in the table.

Related tasks
Tuning routines with storage-consuming parameter lists (Db2 Performance)

JSON_VAL
The JSON_VAL function provides an SQL interface to extract and retrieve JSON data into SQL data types
from BSON objects. The JSON_VAL function returns an element of a JSON document that is identified by
the JSON field name that is specified in search-string. The value of the JSON element is returned in the
data type and length that is specified in result-type.

JSON_VAL (json-value , search-string , result-type)

The schema is SYSIBM.

json-value
An expression that returns a BLOB value. The json-value must contain a BSON representation of a
JSON document.

search-string
A character or graphic string constant that is not longer than 2048 bytes. search-string contains the
path-qualified JSON field name. If the value is not CCSID 1208, the value is converted to CCSID 1208
before the function is evaluated.

result-type
A character string constant that is not longer than 32 bytes that specifies the characteristics for the
result of the function. The constant is not case-sensitive. The string ':na' can be appended to the data
type to indicate that json-value must not contain a JSON array. Leading blanks can be specified before
':' and trailing blanks can be specified after ':'. For example, ' s:40', 's :40', 'b: 10', 'ts: na ', 's:40 :na',
and 's:40: na ' can be specified. The result-type value must contain a data type specification from the
following table.

Table 4. Supported constant values for the data type portion of result-type.

result-type SQL data type of the result

n DECFLOAT(34)

i INTEGER

l BIGINT

f DOUBLE

d DATE

ts TIMESTAMP(6)

© Copyright IBM Corp. 2014, 2024 43

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_tuneroutinewlmspas.html

Table 4. Supported constant values for the data type portion of result-type. (continued)

result-type SQL data type of the result

t TIME

s:n VARCHAR(n), where n is an integer constant 1 -
32672. The CCSID of the result is the CCSID for
Unicode mixed data (1208).

b:n VARCHAR(n) FOR BIT DATA, where n is an integer
constant 1 - 32672.

u INTEGER, with values 0 or 1.

The JSON field name can identify a scalar value or a JSON array value. If ':na' is specified as part of
result-type, the result must not be an array. If ':na' is not specified in result-type and the result is an
array, the value of the first element of the identified array is returned.

The result of the JSON_VAL function is the data type and length that is specified by result-type. The
result can be null.

The result is determined by the following criteria:

• If the JSON field name is not found in json-value, the result is the null value.
• If the BSON_TYPE of the JSON field in json-value is BSON_DBREF or BSON_UNDEFINED, the result

is the null value.
• If result-type is 'u', the result value describes the value of the specified JSON field in json-value. The

result depends on the following values of the JSON field:
1

A value exists and the value is not the null value or an empty string. For example:
{name:"Joe"}.

0
A value exists and the value is the null value. For example: {name:null}.

null
A value does not exist. For example: { }.

• Otherwise, if necessary, the value of the specified JSON field in json-value is converted to result-
type. If the value of the JSON field cannot be converted to result-type, the null value is returned. For
example, assume that the value of the JSON field is an arbitrary string that cannot be converted to
an integer, and result-type is 'i'. The null value is returned. If the length of the data is longer than
the length specified by result-type, the result is the null value. Also, if the result is VARCHAR or a
datetime value (DATE, TIME, or TIMESTAMP), the encoding scheme is Unicode.

Notes
Assignment of arguments to parameters:

When the JSON_VAL function is invoked and arguments are assigned to the parameter types of the
function, or the result of the function is assigned to the target on return from the function, implicit cast
is not used.

Statement concentrator:
Constant values that are specified as arguments cannot be replaced with parameter markers for use
with the statement concentrator.

CREATE INDEX statement considerations:
The following considerations apply to CREATE INDEX statements that invoke the JSON_VAL function:

• If key-expression invokes the JSON_VAL function and the first argument is a LOB column, the
column must be defined as an inline LOB.

44 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

• If key-expression invokes the JSON_VAL function, the function invocation must meet the following
conditions:

– The invocation of the JSON_VAL function must be the outermost expression for key-expression.
– If the first argument is a column, that column must be contained in a table in a partition-by-

growth table space.
– The third argument must end with the string ':na', to indicate that the first argument does not

contain a JSON array.
• If key-expression invokes the JSON_VAL built-in function, the CREATE INDEX statement must not

reference any LOB columns other than the LOB column that is the argument to the JSON_VAL
function. Such a CREATE INDEX statement can refer only to a single LOB column.

Examples

Example 1: Assume that the DATA column in table 'table1' contains a row with the following JSON
document:

{
 name:"Joe",
 age:5,
 phone:["555-666-7777", "444-789-1234"],
 address:{
 street:"ABC st",
 zipcode:"95141"
 }
}

You can use the JSON_VAL function to find addresses with a zip code of '95141'.

SELECT * FROM "table1"
 WHERE JSON_VAL(DATA, 'address.zipcode', ‘s:5’)='95141';

Example 2: The following examples show how you can use the search-string argument. Assume that the
table 'json_table' contains four rows with the following JSON objects. Each JSON object is stored as BSON
in a BLOB column named DATA.

{
 name: "Joe",
 isMarried:true,
 phone: 82113456,
 partner:
 {
 name: "Kate",
 isMarried:true,
 phone: 82113111,
 son:
 {
 name: "Lock",
 isMarried:false,
 phone: 81231232, 81231233
}
}
}

{
 name:"Mary"
 isMarried:-1,
 phone: “82111432”
 partner: “NULL”
}

{
 name:"Henry",
 isMarried:0,
 phone: “NULL”
}

{
 name:"Bill",
 isMarried:false
}

Chapter 5. Working with JSON documents by using SQL 45

Extract the name of the object:
You can use the JSON_VAL function to extract the name of the object whose partner's son's name
(search-string of 'partner.son.name') is 'Lock' and return the value as VARCHAR(40).

SELECT JSON_VAL(data, 'name' , 's:40') FROM json_table
 WHERE JSON_VAL(data, 'partner.son.name' , 's:40') = 'Lock';

The result is 'Joe'.
Extract the name of the partner's partner:

You can use the JSON_VAL function to extract the name of the partner's partner (search-string of
'partner.partner') for each row and return the value as VARCHAR(40).

SELECT JSON_VAL(data, 'partner.partner ' , 's:40') FROM json_table ;

This example returns four rows, each containing the null value because the search string
'partner.partner' does not exist for the objects in any row.

JSON_LEN
The JSON_LEN user-defined function returns the number of elements in an element of type array inside a
JSON document. NULL is returned if an element is not an array.

JSON_LEN( injson , inelem)

The schema is SYSTOOLS.

injson
An expression that returns a JSON document in binary format (extended BSON).

inelem
A character or graphic string constant that is not longer than 2048 bytes. inelem contains the path-
qualified JSON field name to be searched for.

The result of the function is an integer.

Example

Assume that table T1 contains following JSON document in a column C1 as a BSON format.

{array: [10,20,30,40]}

Following query returns the number of elements in ‘array’.

SELECT SYSTOOLS.JSON_LEN(C1, 'array') as Length
FROM T1;

 +----------------+
 | LENGTH |
 +----------------+
1_| 4 |
 +----------------+

JSON_TYPE
The JSON_TYPE user-defined function returns the BSON type of the given element.

JSON_TYPE( injson , inelem , maxlength)

The schema is SYSTOOLS.

46 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

injson
An expression that returns a JSON document in binary format (extended BSON).

inelem
A character or graphic string constant that is not longer than 2048 bytes. inelem contains the path-
qualified JSON field name to be searched for.

maxlength
maxlength specifies the maximum length of the return value of the binary field of this user-defined
function. The default is 2048. If the length of the field value is greater than 2048, then this function
returns a null value.

The result of the function is an integer.

The following table shows the BSON type that is returned for the corresponding data types or null value.

Table 5. BSON type returned

BSON type Data type

1 64-bit binary floating point

2 UTF-8 string

3 Embedded document

4 Array

5 Binary data

6 Undefined – deprecated

7 ObjectID

8 Boolean

9 UTC datetime

10 Null value

11 Regular expression

12 DBPointer – Deprecated

13 Javascript code

14 Deprecated

15 JavaScript code with Scope

16 32-bit integer

17 Timestamp

18 64-bit integer

0xFF Min key

0x7F Max key

Example

Assume that table T1 contains following simple JSON document in a column C1 as a BSON format.

{name: “Mike”, age: 20}

Chapter 5. Working with JSON documents by using SQL 47

The following query returns BSON type for ‘name’ and ‘age’ in JSON document.

SELECT SYSTOOLS.JSON_TYPE(C1, 'name', 2048) AS Name,
 SYSTOOLS.JSON_TYPE(C1, 'age' , 2048) AS Age;

 +---------------------------------+
 | NAME | AGE |
 +---------------------------------+
1_| 2 | 16 |
 +---------------------------------+

The value 2 is the BSON type for a string and 16 is the BSON type for an integer.

JSON_TABLE
The JSON_TABLE user-defined function returns a table with two columns. First column is the BSON type
and second column is the string value.

JSON_TABLE( injson , inelem , rettype)

The schema is SYSTOOLS.

injson
An expression that returns a JSON document in binary format (extended BSON).

inelem
A character or graphic string constant that is not longer than 2048 bytes. inelem contains the path-
qualified JSON field name to be searched for.

rettype
A character string constant that is no longer than 32 bytes that specifies the characteristics for the
result of the function. rettype must contain a data type specification, see “JSON_VAL” on page 43. The
value is not case-sensitive.

The result of the function is a table with the format that is shown in the following table. All the columns
are nullable.

Table 6. Table returned

Column name Data type Contains

TYPE INTEGER The type of the element.

VALUE VARCHAR(2048) The value of the element.

Notes
The JSON_TABLE function follows the CCSID rules for user-defined functions, which means that it returns
a string data type in the appropriate CCSID of the application encoding scheme. So, you might need to use
the CAST function to avoid problems with the encoding of returned data.

Example

Assume that table T1 contains the following three rows of a JSON document, in BSON format, in a column
C1.

{person: {name: “Mike”, age: 25}}
{person: {name: “John”, age: 42}}
{person: {name: “Kevin”, age: 34}}

48 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

The following query returns a table with two columns: TYPE and VALUE.

SELECT X.*
FROM T1, TABLE(SYSTOOLS.JSON_TABLE(C1,'person', 's:50')) X

 +----------------------------------
 | TYPE | VALUE
 +----------------------------------
 1_| 3 | {name:"Mike",age:25}
 2_| 3 | {name:"John",age:42}
 3_| 3 | {name:"Kevin",age:34}
 +----------------------------------

TYPE contains the BSON type of element ‘person’ and VALUE contains the value of ‘person’. The TYPE 3 is
the BSON type for an embedded document (nested JSON object).

JSON2BSON
The JSON2BSON user-defined function converts the specified JSON document in string format to an
equivalent binary representation in BSON format. If you are using the JSON_VAL function to retrieve JSON
field values from a JSON document, that document must be in BSON format.

JSON2BSON( injson)

The schema is SYSTOOLS.

injson
An expression that returns a CLOB (JSON document in text format) that is no larger than 16 MB.

The result is a BLOB(16 MB) that contains the converted BSON value.

If the input string contains an invalid JSON format, or if the converted value cannot fit into a BLOB(16 MB),
an error is returned.

Example

The following example inserts a row into a table, which contains a BLOB column that holds a JSON
document:

INSERT INTO CUSTOMER_LIST
 (CUSTID, ADDRESS_LINE1, CITY, STATE, ZIP, PROFILE)
 VALUES('12345',' 333 Oak Street', 'San Jose', 'CA', '95110',
 SYSTOOLS.JSON2BSON('{"name":"Joe Stockton", "age":28, "interests":
["gardening","camping"]}'));

Related tasks
Tuning routines with storage-consuming parameter lists (Db2 Performance)

BSON2JSON
The BSON2JSON user-defined function converts a JSON document in binary format (extended BSON) into
a readable JSON text format.

BSON2JSON( inbson)

The schema is SYSTOOLS.

inbson
An expression that returns a document in binary format (extended BSON) that is no larger than 16 MB.

The result is a CLOB (16 MB) that contains a JSON document in a readable text format.

Chapter 5. Working with JSON documents by using SQL 49

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_tuneroutinewlmspas.html

If the input value does not contain a valid BSON formatted expression, or if the converted value cannot fit
into a 16 MB CLOB, an error is returned.

Notes
The BSON2JSON function follows the CCSID rules for user-defined functions, which means that it returns
a string data type in the appropriate CCSID of the application encoding scheme. So, you might need to use
the CAST function to avoid problems with the encoding of returned data.

Example

The following SQL statement uses BSON2JSON to convert the content of the BLOB column that is named
PROFILE to a readable format as part of a SELECT statement. The example assumes that PROFILE
contains data that was inserted in a valid BSON format:

SELECT CUSTID, CITY, SYSTOOLS.BSON2JSON(PROFILE)
FROM CUSTOMER_LIST
WHERE CUSTID = '12345';

Related tasks
Tuning routines with storage-consuming parameter lists (Db2 Performance)

Creating a column to store JSON data
JSON data can be stored in BSON format in a column in Db2.

About this task

Procedure
Issue the CREATE TABLE SQL statement and specify BLOB as the data type for the column to contain
JSON data.

Example
The following example creates a CALL_RECORDS column to store JSON data.

CREATE TABLE CLAIMS (CLAIM_ID VARCHAR(10),
 POLICY_NUM VARCHAR(12),
 CUSTOMER_ID VARCHAR(8),
 STATUS VARCHAR(20),
 CALL_RECORDS BLOB);

Inserting JSON data into a table
You can use the JSON2BSON function to insert JSON data into a table.

About this task
The JSON2BSON function is used to convert a value into its binary representation before it is inserted into
a table. JSON2BSON requires a CLOB data type as the single input parameter.

Procedure
Issue the INSERT SQL statement and specify the JSON2BSON function.

Example
The following example inserts a JSON document string into the table:

50 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

https://www.ibm.com/docs/en/SSEPEK_12.0.0/perf/src/tpc/db2z_tuneroutinewlmspas.html

INSERT INTO CLAIMS (CLAIM_ID, POLICY_NUM, CUSTOMER_ID, STATUS, CALL_RECORDS)
 VALUES ('AB0033789',
 'GL0000336512',
 '09736814',
 'CLOSED',
 SYSTOOLS.JSON2BSON('{"calls": [{"dateOfCall": "2014-02-26", "associate":
"Steven Barnes",
 "conversationNotes": "Customer provided details of
accident and witness
 contact information. Stated that her local agent was
unavailable."}],
 "satisfactionSurveyResult":"needs improvement" }'
)
);

Updating JSON data in a table
You can use the JSON2BSON function to update JSON data in a table.

Procedure
To update JSON data in a table:
1. Query and retrieve the JSON data from a JSON column.
2. Modify the contents of the JSON column.
3. To push the updated column value back into the table, issue the UPDATE SQL statement and specify

the JSON2BSON function.

Example
The following example updates the JSON document in the table:

UPDATE CLAIMS SET CALL_RECORDS = SYSTOOLS.JSON2BSON('{"calls": [
 {"dateOfCall": "2014-02-26",
 "associate": "Steven Barnes",
 "conversationNotes": "Customer provided
details of accident
 and witness contact information. Stated
that her local
 agent was unavailable."},
 {"dateOfCall": "2014-02-29",
 "associate": "Paula Garcia",
 "conversationNotes": "Client asked about
status of the
 damage estimate."}],
 "satisfactionSurveyResult":"needs
improvement" }');

Retrieving data that is inside a JSON document
You can use the JSON_VAL function to retrieve data that is inside a JSON document.

Before you begin
The examples in this procedure assume that you have created and populated the following tables:

• The CLAIMS table:

– Define CLAIMS as shown in “Creating a column to store JSON data” on page 50.
– Populate CLAIMS as shown in “Inserting JSON data into a table” on page 50.

• The ASSOCIATES table:

– Define ASSOCIATES like this:

CREATE TABLE ASSOCIATES
 (ASSOC_ID CHAR(6), NAME VARCHAR(40));

Chapter 5. Working with JSON documents by using SQL 51

– Populate ASSOCIATES like this:

INSERT INTO ASSOCIATES (ASSOC_ID, NAME) VALUES ('000100','Paula Garcia');
INSERT INTO ASSOCIATES (ASSOC_ID, NAME) VALUES ('000200','Steven Barnes');
INSERT INTO ASSOCIATES (ASSOC_ID, NAME) VALUES ('000300','Roger McCarthy');

Procedure
Issue the SELECT SQL statement and specify the JSON_VAL function.

Example

The following example uses the JSON_VAL function to extract data from a JSON document for retrieval
through a SELECT clause.

SELECT CLAIM_ID,
 JSON_VAL(CALL_RECORDS, 'satisfactionSurveyResult', 's:25')
 AS "SATISFACTION SURVEY RESULT"
 FROM CLAIMS
 WHERE CLAIM_ID = 'AB0033789';

The output should look like this.

CLAIM_ID SATISFACTION SURVEY RESULT

AB0033789 needs improvement

The following example uses the JSON_VAL function to extract a value that is inside the JSON document
for use in a WHERE clause predicate:

SELECT CUSTOMER_ID, CLAIM_ID, SYSTOOLS.BSON2JSON(CALL_RECORDS)
 AS "CALL RECORD"
 FROM SYSADM.CLAIMS
 WHERE JSON_VAL(CALL_RECORDS,
 'satisfactionSurveyResult', 's:25') = 'needs improvement' ;

The output should look like this.

CUSTOMER_ID CLAIM_ID CALL RECORD

09736814 AB0033789 {"calls":[{"dateOfCall":"2014-02-26","associate":"Steven
Barnes","conversationNotes":"Customer provided details of
accident and witness contact information. Stated that her local
agent was unavailable."}],"satisfactionSurveyResult":"needs
improvement"}

The following example uses the JSON_VAL function to extract a value that is inside the JSON document
for use in a JOIN predicate:

SELECT C.CUSTOMER_ID, C.CLAIM_ID, SYSTOOLS.BSON2JSON(C.CALL_RECORDS)
 AS "CALL RECORD",
 A.NAME, A.ASSOC_ID
 FROM CLAIMS C, ASSOCIATES A
 WHERE JSON_VAL(C.CALL_RECORDS, 'satisfactionSurveyResult', 's:25') =
 'needs improvement'
 AND JSON_VAL(C.CALL_RECORDS, 'calls.associate', 's:40') = A.NAME;

You should receive results like these:

52 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

CUSTOMER_ID CLAIM_ID CALL RECORD NAME ASSOC_ID

09736814 AB0033789 {"calls":
[{"dateOfCall":"2014-02-26","associate":"Steven
Barnes","conversationNotes":"Customer
provided details of accident and witness contact
information. Stated that her local agent was
unavailable."}],"satisfactionSurveyResult":"needs
improvement"}

Steven
Barnes

000200

Example SQL statements with JSON2BSON, BSON2JSON, and
JSON_VAL functions

The following examples show how you can use SQL with the JSON2BSON, BSON2JSON, and JSON_VAL
functions to work with JSON data.

Example: Creating tables to store JSON data
The following example creates tables to store JSON data.

CREATE TABLE JSONPO(ID INTEGER NOT NULL,
 DATA BLOB(16M) INLINE LENGTH 25000,
 PRIMARY KEY(ID)) CCSID UNICODE;

CREATE TABLE JSONCUSTOMER
 (ID INTEGER NOT NULL,
 DATA BLOB(16M) INLINE LENGTH 25000,
 PRIMARY KEY(ID)) CCSID UNICODE;

CREATE TABLE JSONPOTXT(DATA VARCHAR(5000)) CCSID UNICODE;

Example: Creating an index on a table with JSON data
The following example creates an index on Customer.age column and Customer.name column in the
JSONCUSTOMER table.

CREATE INDEX IX2 ON JSONCUSTOMER (JSON_VAL(DATA, 'Customer.age', 'i:na'),
 JSON_VAL(DATA, 'Customer.name', 's:20:na'));

Example: Inserting JSON data into a table

The following example inserts purchase order JSON data into the JSONPO table, and customer
information into the JSONCUSTOMER table.

INSERT INTO JSONPO VALUES (
 101,
 SYSTOOLS.JSON2BSON(
 '{"PO":{"@id": 101,
 "@orderDate": "2014-11-18",
 "customer": {"@cid": 999},
 "items": {
 "item": [{"@partNum": "872-AA",
 "productName": "Lawnmower",
 "quantity": 1,
 "USPrice": 149.99,
 "shipDate": "2014-11-20"
 },
 {"@partNum": "945-ZG",
 "productName": "Sapphire Bracelet",
 "quantity": 2,
 "USPrice": 178.99,
 "comment": "Not shipped"
 }
]
 }
 }
 }')

Chapter 5. Working with JSON documents by using SQL 53

);

INSERT INTO JSONPO VALUES (
 102,
SYSTOOLS.JSON2BSON(
 '{"PO":{"@id": 102,
 "@orderDate": "2014-12-20",
 "customer": {"@cid": 888},
 "items": {
 "item": [{"@partNum": "872-AA",
 "productName": "Lawnmower",
 "quantity": 1,
 "USPrice": 749.99,
 "shipDate": "2014-12-21"
 },
 {"@partNum": "837-CM",
 "productName": "Digital Camera",
 "quantity": 2,
 "USPrice": 199.99,
 "comment": "2014-12-22"
 }
]
 }
 }
 }'));

INSERT INTO JSONCUSTOMER VALUES (
 101,
 SYSTOOLS.JSON2BSON(
 '{"Customer":{"@cid": 999,
 "name": "Michael",
 "age": 31,
 "telephone": "234-343-2343",
 "country": "USA"
 }
 }'));

INSERT INTO JSONCUSTOMER VALUES (
 102,
 SYSTOOLS.JSON2BSON(
 '{"Customer":{"@cid": 888,
 "name": "George",
 "age": 29,
 "telephone": "133-144-9999",
 "country": "USA"
 }
 }'));

The following example inserts a JSON document into a VARCHAR column. JSON2BSON is not needed for
this operation.

INSERT INTO JSONPOTXT VALUES (
 '{"PO":{"@id": 103,
 "@orderDate": "2014-06-20",
 "customer": {"@cid": 888},
 "items": {
 "item": [{ "@partNum": "872-AA",
 "productName": "Lawnmower",
 "quantity": 1,
 "USPrice": 749.99,
 "shipDate": "2014-06-21"
 },
 { "@partNum": "837-CM",
 "productName": "Digital Camera",
 "quantity": 2,
 "USPrice": 199.99,
 "comment": "2014-06-22"
 }
]
 }
 }
 }');

54 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

Examples: Displaying JSON data
The following example displays the entire JSON data as text from the JSONPO table.

SELECT ID, SYSTOOLS.BSON2JSON(DATA)
FROM JSONPO;

The following example converts BSON format to JSON format and displays the entire JSON data as text.

SELECT SYSTOOLS.BSON2JSON(SYSTOOLS.JSON2BSON((SELECT DATA FROM JSONPOTXT)))
FROM SYSIBM.SYSDUMMY1;

The following example displays customer ID JSON data in descending order.

SELECT SYSTOOLS.BSON2JSON(DATA)
FROM JSONPO
ORDER BY JSON_VAL(DATA, 'PO.customer.@cid', 'i') DESC;

Examples: Retrieving JSON data
The following example retrieves the name of customers who are older than 30.

SELECT JSON_VAL(DATA,'Customer.name', 's:20') "Name"
FROM JSONCUSTOMER
WHERE JSON_VAL(DATA,'Customer.age', 'i') > 30;

The following example retrieves 2014 purchase orders from table JSONPO.

SELECT SYSTOOLS.BSON2JSON(DATA)
FROM JSONPO
WHERE YEAR(JSON_VAL(DATA,'PO.@orderDate', 'd')) = 2014;

The following example retrieves the first item that was purchased by a customer who is older than 30
years old.

SELECT JSON_VAL(T2.DATA,'PO.items.item.0.productName', 's:10') AS "Item"
FROM JSONCUSTOMER T1, JSONPO T2
WHERE JSON_VAL(T1.DATA, 'Customer.@cid', 'i') = JSON_VAL(T2.DATA, 'PO.customer.@cid', 'i')
AND
 JSON_VAL(T1.DATA,'Customer.age', 'i') > 30;

Example: Updating JSON data in a table
The following example updates the Customer information.

UPDATE JSONCUSTOMER
SET DATA = SYSTOOLS.JSON2BSON('{"Customer":{"@cid": 777,
 "name": "George",
 "age": 29,
 "telephone": "566-898-1111",
 "country": "USA"
 }
 }')
WHERE JSON_VAL(DATA, 'Customer.@cid', 'i:na') = 888;

Example: Deleting JSON data in a table
The following example deleted JSON data in a table:

DELETE FROM JSONCUSTOMER
WHERE JSON_VAL(DATA, 'Customer.@cid', 'i:na') = 777;

Chapter 5. Working with JSON documents by using SQL 55

56 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

Information resources for Db2 for z/OS and related
products

You can find the online product documentation for Db2 12 for z/OS and related products in IBM
Documentation.

For all online product documentation for Db2 12 for z/OS, see IBM Documentation (https://
www.ibm.com/docs/en/db2-for-zos/12).

For other PDF manuals, see PDF format manuals for Db2 12 for z/OS (https://www.ibm.com/docs/en/
db2-for-zos/12?topic=zos-pdf-format-manuals-db2-12).

© Copyright IBM Corp. 2014, 2024 57

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_12.0.0/home/src/tpc/db2z_12_prodhome.html
https://www.ibm.com/docs/en/db2-for-zos/12
https://www.ibm.com/docs/en/db2-for-zos/12
https://www.ibm.com/docs/en/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/en/db2-for-zos/12?topic=zos-pdf-format-manuals-db2-12
https://www.ibm.com/docs/en/db2-for-zos/12?topic=zos-pdf-format-manuals-db2-12

58 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785 US

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

© Copyright IBM Corp. 2014, 2024 59

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice
as shown below:

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. (enter the year or years).

Programming interface information
This information is intended to help you to plan for and administer Db2 12 for z/OS. This information
also documents General-use Programming Interface and Associated Guidance Information and Product-
sensitive Programming Interface and Associated Guidance Information provided by Db2 12 for z/OS.

General-use Programming Interface and Associated Guidance Information
General-use Programming Interfaces allow the customer to write programs that obtain the services of
Db2 12 for z/OS.

General-use Programming Interface and Associated Guidance Information is identified where it occurs by
the following markings:

GUPI General-use Programming Interface and Associated Guidance Information… GUPI

Product-sensitive Programming Interface and Associated Guidance Information
Product-sensitive Programming Interfaces allow the customer installation to perform tasks such as
diagnosing, modifying, monitoring, repairing, tailoring, or tuning of this IBM software product. Use of such
interfaces creates dependencies on the detailed design or implementation of the IBM software product.
Product-sensitive Programming Interfaces should be used only for these specialized purposes. Because
of their dependencies on detailed design and implementation, it is to be expected that programs written
to such interfaces may need to be changed in order to run with new product releases or versions, or as a
result of service.

Product-sensitive Programming Interface and Associated Guidance Information is identified where it
occurs by the following markings:

Product-sensitive Programming Interface and Associated Guidance Information...

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered marks of International Business Machines
Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at: http://www.ibm.com/legal/copytrade.shtml.

60 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

http://www.ibm.com/legal/copytrade.shtml

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions:

Applicability: These terms and conditions are in addition to any terms of use for the IBM website.

Personal use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Rights: Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes,
see IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies”
and the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Notices 61

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy

62 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

Glossary

The glossary is available in IBM Documentation

For definitions of Db2 for z/OS terms, see Db2 glossary (Db2 Glossary).

© Copyright IBM Corp. 2014, 2024 63

https://www.ibm.com/docs/en/SSEPEK_12.0.0/glossary/src/gloss/db2z_gloss.html

64 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

Index

A
accessibility

keyboard vii
shortcut keys vii

aggregate() JSON command 19

B
BSON2JSON

example 53
BSON2JSON function 49

C
commands

JSON
aggregate() 19
count() 20
distinct() 22
drop() 23
exportFile() 24
find() 25
findAndModify() 26
getCollectionNames() 27
getIndexes() 28
group() 28
help() 29
importFile() 29
insert() 31
remove() 33
removeIndex() 33
rename() 34
sampleSchema() 34
save() 35
sqlQuery() 35
sqlUpdate() 36
timeTravel() 37
update() 38
wpListener -help 39
wpListener -shutdown 39
wpListener -start 40

count() JSON command 20

D
disability vii
distinct() JSON command 22
drop() JSON command 23

E
example

BSON2JSON 53
JSON_VAL 53
JSON2BSON 53

exportFile() JSON command 24

F
find() JSON command 25
findAndModify() JSON command 26
function

BSON2JSON 49
JSON_LEN 46, 48
JSON_VAL 43
JSON2BSON 49

G
general-use programming information, described 60
getCollectionNames() JSON command 27
getIndexes() JSON command 28
group() JSON command 28
GUPI symbols 60

H
help() JSON command 29

I
importFile() JSON command 29
insert() JSON command 31

J
JSON

batching 12
collections 2
command-line interface (CLI)

db2nosql script 18
command-line options 19
commands

aggregate() 19
count() 20
distinct() 22
drop() 23
exportFile() 24
find() 25
findAndModify() 26
getCollectionNames() 27
getIndexes() 28
group() 28
help() 29
importFile() 29
insert() 31
remove() 33
removeIndex() 33
rename() 34
sampleSchema() 34
save() 35

Index 65

JSON (continued)
commands (continued)

sqlQuery() 35
sqlUpdate() 36
timeTravel() 37
update() 38
wpListener -help 39
wpListener -shutdown 39
wpListener -start 40

comparison operators 10
connecting to a Db2 database 15
connection management 9
create indexes on JSON fields 17
data evaluation operators 11
db.collection.ensureIndex() 23
db.collection.findOne() 27
db.collection.importMongo() 30
db.collection.importMongoSample() 30
db.collection.markType() 31
db.collection.stats() 36
db.createCollection() 21
documents 2
fire and forget mode 13
import or export JSON data 17
installation requirements 5
Java APIs 15
key concepts 1
lazy fetches 12
logical operators 9
namespaces 2
nested objects 3
NoSQL properties for the client 5
operators

comparison 10
data evaluation 11
logical 9

performance features 12
printDDL() 32
properties

nosql.asyncMaxThreadCount 5
nosql.connectionPoolSize 5
nosql.traceFile 6
nosql.traceLevel 6

query operators 9
security model 11
select JSON documents from a DB2 database 17
solution planning 9
store documents in a Db2 database 16
wire listener 38
wire listener authentication 11
wire protocol listener 38

JSON documents
working with 15

JSON_LEN function 46, 48
JSON_VAL

example 53
JSON_VAL function 43
JSON2BSON

example 53
JSON2BSON function 49

L
links

links (continued)
non-IBM Web sites
61

P
product-sensitive programming information, described 60
programming interface information, described 60
PSPI symbols 60

R
remove() JSON command 33
removeIndex() JSON command 33
rename() JSON command 34

S
sampleSchema() JSON command 34
save() JSON command 35
shortcut keys

keyboard vii
sqlQuery() JSON command 35
sqlUpdate() JSON command 36
syntax diagram

how to read viii

T
timeTravel() JSON command 37

U
update() JSON command 38

W
wpListener -help JSON command 39
wpListener -shutdown JSON command 39
wpListener -start JSON command 40

66 Db2 12 for z/OS: JSON Application Development (Last updated: 2024-03-12)

IBM®

Product Number: 5650-DB2
 5770-AF3

	Contents
	About this information
	Who should read this information
	Db2 Utilities Suite for z/OS
	Terminology and citations
	Accessibility features for Db2 for z/OS
	How to send comments
	How to read syntax diagrams

	Chapter 1. Key JSON concepts
	JSON namespaces
	JSON collections
	JSON documents
	JSON nested objects

	Chapter 2. JSON installation requirements
	NoSQL properties
	nosql.asyncMaxThreadCount property
	nosql.connectionPoolSize property
	nosql.traceFile property
	nosql.traceLevel property

	Chapter 3. Solution planning
	Connection management
	Query operators
	JSON logical operators
	JSON comparison operators
	Data evaluation operators

	Security model
	Wire listener authentication

	Performance features
	Lazy fetches
	JSON batching
	Fire and forget mode

	Chapter 4. Working with JSON documents with the Java API
	Java APIs
	Connect to a Db2 database
	Store JSON documents in a Db2 database
	Select JSON documents from a Db2 database
	Create indexes on JSON fields
	Import or export JSON data

	JSON command-line interface (CLI)
	Starting the command-line interface
	Command-line options
	aggregate() - Retrieve JSON documents command
	count() - Find the number of documents command
	createCollection() - Creates a collection
	distinct() - Find distinct values command
	drop() - Drop a collection command
	ensureIndex() - Creates a new index
	exportFile() - Export JSON documents to a file command
	find() - Find JSON document command
	findAndModify() - Find and update documents command
	findOne() - Find the first offset document
	getCollectionNames() - View collection names for a schema command
	getIndexes() command - View JSON indexes for a collection command
	group() - Group values JSON command
	help() - Lists help commands
	importFile() - Import JSON documents from file command
	importMongoSample() - Import some JSON documents from MongoDB
	importMongo() - Import JSON documents from MongoDB
	insert() - Insert a JSON document command
	markType() - Specifies the data type
	printDDL() - Print the DDL
	remove() - Remove data from a collection command
	removeIndex() - Remove a JSON index command
	rename() - Rename a collection command
	sampleSchema() - Return document structure command
	save() - Save a document command
	sqlQuery() - Run a JSON SQL query command
	sqlUpdate() - Run a JSON SQL update query command
	stats() - Prints collection statistics
	timeTravel() - Set JSON time travel queries command
	update() - Update JSON documents command

	Wire listener
	Configuring the wire listener
	wpListener -help -
	wpListener -shutdown -
	wpListener -start -

	Chapter 5. Working with JSON documents by using SQL
	JSON_VAL
	JSON_LEN
	JSON_TYPE
	JSON_TABLE
	JSON2BSON
	BSON2JSON
	Creating a column to store JSON data
	Inserting JSON data into a table
	Updating JSON data in a table
	Retrieving data that is inside a JSON document
	Example SQL statements with JSON2BSON, BSON2JSON, and JSON_VAL functions

	Information resources for Db2 for z/OS and related products
	Notices
	Programming interface information
	Trademarks
	Terms and conditions for product documentation
	Privacy policy considerations

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	P
	R
	S
	T
	U
	W

