
Open Data Analytics for z/OS
1.1

Installation and Customization Guide

IBM

SC27-9033-00

Note

Before using this information and the product it supports, read the information in “Notices” on page
191.

This edition applies to Version 1 Release 1 of IBM® Open Data Analytics for z/OS® (5655-OD1) and to all subsequent
releases and modifications until otherwise indicated in new editions.

Last updated: 2022-07-29
© Copyright International Business Machines Corporation 2016, 2021.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.
© Rocket Software, Inc. 2016, 2021.

Contents

Figures.. vii

Tables.. ix

About this information.. xi

How to send your comments to IBM...xiii
If you have a technical problem..xiii

Summary of changes for IBM Open Data Analytics for z/OS Installation and
Customization Guide.. xv

Part 1. Introduction... 1

Chapter 1. Introduction to IBM Open Data Analytics for z/OS... 3

Chapter 2. Planning for installation... 5
Planning considerations... 5

Product overview.. 5
Skill requirements... 5
Time requirements..5

Preinstallation considerations..5
Installation user ID... 5
Requisite products.. 6
Required resources... 6

Part 2. Installation.. 9

Chapter 3. Installing IBM Open Data Analytics for z/OS.. 11

Part 3. Customization.. 13

Chapter 4. Customizing your environment for z/OS Spark... 15
Using the Spark configuration workflow ...16
Upgrading Spark configuration workflows ..20

Assigning an owner to new or changed steps ... 22
Verifying the Java and bash environments..26
Verifying configuration requirements for z/OS UNIX System Services...28
Setting up a user ID for use with z/OS Spark...28
Verifying the env command path.. 32
Customizing the Apache Spark directory structure...32

Creating the Apache Spark configuration directory...33
Updating the Apache Spark configuration files..34
Creating the Apache Spark working directories...35

Configuring networking for Apache Spark... 37
Configuring z/OS Spark client authentication..41

Creating and configuring digital certificates and key rings..43
Configuring Policy Agent...46

 iii

Defining security authorization for Policy Agent..47
Creating the Policy Agent configuration files... 48
Configuring PROFILE.TCPIP for AT-TLS..49
Defining the AT-TLS policy rules...49
Starting and stopping Policy Agent.. 53
Configuring additional authorities and permissions for the Spark cluster....................................53
Restricting the ability to start or stop the Spark cluster..56
Starting the Spark cluster... 57

Configuring IBM Java... 57
Creating jobs to start and stop Spark processes...58
Setting up started tasks to start and stop Spark processes ...60

Procedures for each Spark cluster... 61
Define the routing of the log output... 61
Set and export common environment variables..62
Define the RACF started profile for started tasks.. 63
WLM configuration.. 64
Stopping the started tasks..64
Canceling the started tasks.. 64
Automating the starting of tasks.. 64

Configuring memory and CPU options...65
Configuring z/OS workload management for Apache Spark...73

Overview of Apache Spark Processes.. 73
Assigning job names to Spark processes...73
Overview of WLM classification.. 77
Defining WLM service classes for Spark...78
Defining WLM report classes for Spark.. 82
Defining WLM classification rules for Spark...82
Other Apache Spark attributes...83

Chapter 5. Customizing the Data Service server...85
Preparing to customize.. 85
Required naming conventions... 86
Creating server data sets... 86
Defining security authorizations.. 87
Configuring Workload Manager (WLM).. 87
APF-authorizing LOAD library data sets.. 88
Copying target libraries.. 88
Configuring support for code pages and DBCS ...88
Creating the Global Registry log stream.. 89
Customizing the server initialization member...89
Configuring the started task JCL..90
Configuring the ISPF application... 91
Configuring generation data set retrieval.. 91
Configuring delimited data support... 93

Chapter 6. Installing the Data Service Studio... 95
Verifying the studio installation... 96
Installing the JDBC driver.. 96
Installing the Python dsdbc module..97

Chapter 7. Installing the JDBC Gateway...99
Starting the JDBC Gateway server...101
Launching the JDBC Gateway administrative console..102

Chapter 8. z/OS IzODA Livy Installation and Customization..105
Customizing z/OS IzODA Livy ..106
Customizing user access for z/OS IzODA Livy .. 108

iv

Chapter 9. Customizing Anaconda ... 113

Part 4. Verification...115

Chapter 10. Verifying the IBM Open Data Analytics for z/OS customization...117
Using the IBM Open Data Analytics for z/OS Spark Configuration Checker 118

Chapter 11. Verifying the Data Service server installation...121

Chapter 12. Verifying the IBM Open Data Analytics for z/OS product...123

Chapter 13. Verifying the z/OS IzODA Livy installation.. 131

Part 5. Resource monitoring...135

Chapter 14. Resource monitoring for Apache Spark.. 137
Spark web interfaces... 137
Configuring Spark web interfaces..140
Securing Spark web interfaces.. 141
Event log directory and file permissions... 142
Enabling the Spark history service.. 142
Spark log files... 143
Using RMF to monitor Spark workload.. 144

Interactive performance reports with Monitor III...144
Long-term reporting with the Postprocessor...148

Using z/OS and z/OS UNIX commands to monitor Spark workload... 149
Using IBM Health Checker for z/OS to monitor Spark workload.. 151

Part 6. Troubleshooting..153

Chapter 15. Troubleshooting issues with Apache Spark..155

Appendix A. Migrating to a new version of Apache Spark.................................... 159

Appendix B. Sample configuration and AT-TLS policy rules for z/OS Spark client
authentication... 163

Appendix C. Sample z/OS IzODA Livy AT-TLS policy rules................................... 169

Appendix D. Memory and CPU configuration options... 171

Appendix E. Spark properties specific to the z/OS environment.......................... 177

Appendix F. Data sets.. 181

Appendix G. Restrictions..185

Appendix H. Apache Spark in a mixed-endian environment.................................187

Accessibility.. 189

Notices..191
Trademarks.. 192

 v

Index.. 193

vi

Figures

1. Example of components in a typical Spark cluster.. 3

2. Network ports used in a typical Apache Spark environment...38

3. Sample job to start the master and worker.. 59

4. Sample job to stop the master and worker.. 59

5. Sample Spark cluster in client deploy mode.. 69

6. Logical view of a sample WLM classification scenario... 77

7. Livy/Spark key ring setup..108

8. The Apache Spark master web UI.. 138

9. The Apache Spark worker web UI.. 139

10. The Apache Spark application web UI... 140

11. The Spark history server web UI.. 143

12. Example of the RMF Storage Delays report... 146

13. Example of the RMF Common Storage report..146

14. Example of the RMF Storage Frames report.. 146

15. Example of the RMF Storage Memory Objects report... 147

16. Example of the RMF Processor Delays report..147

17. Example of the RMF Processor Usage report...147

18. Example of the RMF zFS File System report.. 148

19. Example of the RMF Workload Activity report for a Spark service class...148

 vii

viii

Tables

1. Planning checklist for a first-time installation..6

2. Scope of environment variables... 29

3. Apache Spark working directories.. 35

4. Network ports used by the Spark cluster... 38

5. Network ports used by the Spark driver... 39

6. Suggested initial memory sizing for a Spark cluster.. 66

7. Customization checklist.. 85

8. Livy working directories.. 106

9. Supported environments per deploy mode..107

10. Spark UI configurations.. 140

11. Apache Spark log files.. 143

12. Selected fields in the RMF Workload Activity report... 149

13. z/OS system commands to monitor Spark workload...150

14. z/OS UNIX shell commands to monitor Spark workload...150

15. Example network port configurations.. 163

16. Environment variables that control memory settings..171

17. Spark properties that control memory settings...171

18. Environment variables that control CPU settings.. 172

19. Spark properties that control CPU settings..172

20. Spark properties that affect application and cluster parallelism.. 173

21. IBM JVM runtime options that control resource usage... 174

22. IBM z/OS configuration parameters...175

23. Spark properties specific to the z/OS environment... 177

 ix

24. Data sets created by INSTPAC... 181

x

About this information

This information supports IBM Open Data Analytics for z/OS (5655-OD1).

Purpose of this information
This information describes how to prepare for installation, install, customize, and verify IBM Open Data
Analytics for z/OS in your environment.

Who should read this information
This information is intended for z/OS system programmers and system administrators who are
responsible for installing and customizing IBM Open Data Analytics for z/OS. The customization
information is also of interest to application developers who want to understand how various
customization and tuning actions might affect the performance of their applications.

While IBM values the use of inclusive language, terms that are outside of IBM's direct influence are
sometimes required. In this manual, we reference some instances of third-party software that contain
non-inclusive command names, and we have had to include those terms in code examples.

© Copyright IBM Corp. 2016, 2021 xi

xii Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

How to send your comments to IBM

We invite you to submit comments about the z/OS product documentation. Your valuable feedback helps
to ensure accurate and high-quality information.

Important: If your comment regards a technical question or problem, see instead “If you have a technical
problem” on page xiii.

Submit your feedback by using the appropriate method for your type of comment or question:
Feedback on z/OS function

If your comment or question is about z/OS itself, submit a request through the IBM RFE Community
(www.ibm.com/developerworks/rfe/).

Feedback on IBM Knowledge Center function
If your comment or question is about the IBM Knowledge Center functionality, for example search
capabilities or how to arrange the browser view, send a detailed email to IBM Knowledge Center
Support at ibmkc@us.ibm.com.

Feedback on the z/OS product documentation and content
If your comment is about the information that is provided in the z/OS product documentation library,
send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

• Your name, company/university/institution name, and email address
• The following deliverable title and order number: Open Data Analytics for z/OS Installation and

Customization Guide, SC27-9033-00
• The section title of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive authority to use or distribute the
comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that are provided for
sending documentation comments. Instead, take one or more of the following actions:

• Go to the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

© Copyright IBM Corp. 2016, 2021 xiii

http://www.ibm.com/developerworks/rfe/
http://www.ibm.com/developerworks/rfe/
mailto:ibmkc@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

xiv Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Summary of changes for IBM Open Data Analytics for z/OS
Installation and Customization Guide

The following changes are made to Version 1 Release 1.

New
The following information is new.

August 2022

• Changes throughout the manual for software prerequisite of z/OS Java Version 8, SR7 FP10 or
higher

December 2021

• Changes throughout the manual for Spark version 2.4.8.2

September 2021

• Changes throughout the manual for the removal of support for Spark version 2.3.4
• Changes throughout the manual for Spark version 2.4.8.0

June 2021

• Added a section to Chapter 15, “Troubleshooting issues with Apache Spark,” on page 155 warning
not to use SHAREPORT when assigning TCPIP PORT definitions to Spark

• Changes throughout the manual for Spark version 2.3.4.10
• Changes throughout the manual for Spark version 2.4.7.4

March 2021

• Changes throughout the manual for Spark version 2.3.4.8
• Changes throughout the manual for Spark version 2.4.7.2

November 2020

• Changes throughout the manual for Spark version 2.4.7

August 2020

• Changes throughout the manual for Spark version 2.4.6
• A new section, “Using _BPX_ACCT_DATA to assign accounting information to Spark processes” on

page 76

June 2020

• A new section, “Event log directory and file permissions” on page 142

Prior to June 2020

• Changes throughout “Setting up started tasks to start and stop Spark processes ” on page 60 for
History Server and Shuffle service support, including a new section, “Procedures for each Spark
cluster” on page 61 (March 2020)

• Changes throughout the manual for Spark version 2.3.4, including changes to “Using the Spark
configuration workflow ” on page 16 and “Upgrading Spark configuration workflows ” on page 20.
(November 2019)

• The default value for the globalmax parameter is increased from 5000 to 50000. (September
2019)

• The newest supported version of Bourne Again Shell (Bash) is 4.3.48. (September 2019)

© Copyright IBM Corp. 2016, 2021 xv

• A new section, “Configuring Spark web interfaces” on page 140. (September 2019)
• A new section, “Restricting the ability to start or stop the Spark cluster” on page 56. (September

2019)
• Updated descriptions for configuration workflows in “Using the Spark configuration workflow ” on

page 16. (September 2019)
• Appendix B, “Sample configuration and AT-TLS policy rules for z/OS Spark client authentication,”

on page 163 and Appendix C, “Sample z/OS IzODA Livy AT-TLS policy rules,” on page 169 have
extensive changes. Note that this information has replaced Appendix C, "z/OS IzODA Livy Pagent
policies." (September 2019)

• A new chapter, Chapter 2, “Planning for installation,” on page 5, provides tips on planning the
installation and deployment of IzODA. (June 2019)

• New information for z/OS IzODA Livy support (June 2019):

– Introductory description of Livy in Chapter 1, “Introduction to IBM Open Data Analytics for z/OS,”
on page 3

– An additional migration note in Chapter 3, “Installing IBM Open Data Analytics for z/OS,” on page
11

– Chapter 8, “z/OS IzODA Livy Installation and Customization,” on page 105
– Chapter 13, “Verifying the z/OS IzODA Livy installation,” on page 131
– z/OS IzODA Livy Pagent policies

• Added Spark worker fails with ICH408I message with NEWJOBNAME insert to Part 6,
“Troubleshooting,” on page 153. (June 2019)

• The system messages were moved from this guide to the new Open Data Analytics for z/OS System
Messages. (March 2019)

• A new section, “Upgrading Spark configuration workflows ” on page 20, which includes “Assigning
an owner to new or changed steps ” on page 22. (March 2019)

• The JDBC Gateway is a Data Service distributed application server that allows direct connectivity to
JDBC data sources. See Chapter 7, “Installing the JDBC Gateway,” on page 99. (March 2019)

• New sample policy for when AT-TLS is used as the Spark client authentication method, in Appendix
C, “Sample z/OS IzODA Livy AT-TLS policy rules,” on page 169. (December 2018)

• A new table of Spark configuration options, Table 20 on page 173. (December 2018)
• New entries in Table 23 on page 177. (December 2018)
• The Spark REST server port is disabled. See the migration notes in Chapter 3, “Installing IBM Open

Data Analytics for z/OS,” on page 11 for more information. (December 2018)
• New section, “Other Apache Spark attributes” on page 83, that describes increasing

the parallelism of your Spark applications and allowing multiple Spark applications to run
simultaneously. (December 2018)

• This version has received editorial updates. (September 2018)
• A new section, “Using the Spark configuration workflow ” on page 16. (September 2018)
• New blog link locations in the What to Do Next part of Chapter 12, “Verifying the IBM Open Data

Analytics for z/OS product,” on page 123. (September 2018)
• “Verifying the env command path” on page 32 is updated to include a fixed APAR number. (June

2018)
• “Updating the Apache Spark configuration files” on page 34 is updated to provide clarification

about Apache Derby configuration. (June 2018)
• A note is updated in the task, “Creating the Apache Spark working directories” on page 35, to

provide guidance on temporary file system usage. (June 2018)
• A new network port for the PySpark daemon is added to “Configuring networking for Apache Spark”

on page 37. (June 2018)

xvi Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

• Step 3b in “Configuring memory and CPU options” on page 65 is updated to clarify the amount of
native memory that is required. (June 2018)

• A new property, spark.python.daemon.port, is added to Appendix E, “Spark properties specific
to the z/OS environment,” on page 177. (June 2018)

• An appendix is added for Data Service server messages and codes. (June 2018)
• “Automating the starting of tasks” on page 64 is updated to provide clarification about the sample

procedures that are included in IBM Open Data Analytics for z/OS. (April 2018)
• A new topic, “Define the routing of the log output” on page 61, is added for using started tasks.

(April 2018)
• The following enhancements are available when customizing the Data Service server (April 2018):

– You can now manually create the Global registry log stream. See “Creating the Global Registry log
stream” on page 89.

– Using a virtual table rule, you can read a subset of a generation data group. See “Configuring
generation data set retrieval” on page 91.

– Delimited data can now be used with virtual tables. See “Configuring delimited data support” on
page 93.

• The following topics are updated to introduce the environment verification function (March 2018):

– A new migration note is added to Chapter 3, “Installing IBM Open Data Analytics for z/OS,” on
page 11.

– The Spark property, spark.zos.environment.verify is added to Appendix E, “Spark
properties specific to the z/OS environment,” on page 177.

• A note is added to the table, Table 4 on page 38, for the SPARK_MASTER_PORT configuration
property. (March 2018)

• Step 4, in “Creating and configuring digital certificates and key rings” on page 43, is updated to
include an additional command. (March 2018)

• A note and a new step are added to the task, “Configuring additional authorities and permissions for
the Spark cluster” on page 53. (March 2018)

• A note is added to “Creating jobs to start and stop Spark processes” on page 58 to provide
clarification. (March 2018)

• The following topics introduce the task, “Setting up started tasks to start and stop Spark processes ”
on page 60 (March 2018):

– “Set and export common environment variables” on page 62
– “Define the RACF started profile for started tasks” on page 63
– “WLM configuration” on page 64
– “Stopping the started tasks” on page 64
– “Canceling the started tasks” on page 64
– “Automating the starting of tasks” on page 64

• “Using the IBM Open Data Analytics for z/OS Spark Configuration Checker ” on page 118 is added to
introduce the Configuration Checker tool. (March 2018)

• Step 4, in “Securing Spark web interfaces” on page 141, is updated to include an additional option.
(March 2018)

• Chapter 15, “Troubleshooting issues with Apache Spark,” on page 155 includes new
troubleshooting information. (March 2018)

• An appendix is added for IBM Open Data Analytics for z/OS system messages. (March 2018)
• A note and performance considerations are added to Chapter 3, “Installing IBM Open Data Analytics

for z/OS,” on page 11. (December 2017)
• “Verifying the env command path” on page 32 includes an updated task description. (December

2017)

Summary of changes for IBM Open Data Analytics for z/OS Installation and Customization Guide xvii

• An important note is added to “Creating jobs to start and stop Spark processes” on page 58.
(December 2017)

• The following topics introduce enhanced job name specification options (December 2017):

– Chapter 3, “Installing IBM Open Data Analytics for z/OS,” on page 11
– “Assigning job names to Spark processes” on page 73
– “Using the spark.zos.executor.jobname.template” on page 74
– “Using the spark.zos.driver.jobname.template” on page 75
– Appendix E, “Spark properties specific to the z/OS environment,” on page 177

• The following topics introduce a new client authentication method, Trusted Partner (December
2017):

– “Configuring z/OS Spark client authentication” on page 41
– “Creating and configuring digital certificates and key rings” on page 43
– “Defining the AT-TLS policy rules” on page 49
– “Configuring additional authorities and permissions for the Spark cluster” on page 53
– “Starting the Spark cluster” on page 57
– The spark-defaults.conf configuration file option,
spark.zos.master.authenticate.method is introduced. For more information, see
Appendix E, “Spark properties specific to the z/OS environment,” on page 177.

• A checklist for customizing the Data Service server is added. See “Preparing to customize” on page
85. (December 2017)

• “APF-authorizing LOAD library data sets” on page 88 contains updated information about required
APF authorizations. (December 2017)

• “Configuring additional authorities and permissions for the Spark cluster” on page 53 and Chapter
12, “Verifying the IBM Open Data Analytics for z/OS product,” on page 123 include updated content
and code samples. (December 2017)

• The task, “Securing Spark web interfaces” on page 141, is added. (December 2017)
• Chapter 15, “Troubleshooting issues with Apache Spark,” on page 155 includes an updated error

message when Spark scripts fail. (December 2017)
• Appendix A, “Migrating to a new version of Apache Spark,” on page 159 includes updated migration

actions. (December 2017)
• Appendix C, “Sample z/OS IzODA Livy AT-TLS policy rules,” on page 169 is updated to include a new

sample policy. (December 2017)
• All of the links to external Apache Spark websites are updated for Spark version 2.2.0. (December

2017)
• All instances of WLM APAR OA50845 are updated to the latest WLM APAR OA52611. (December

2017)
• “Creating and configuring digital certificates and key rings” on page 43 and “Defining security

authorization for Policy Agent” on page 47 include updated code samples. (September 2017)
• “Configuring additional authorities and permissions for the Spark cluster” on page 53 provides

further clarification on Spark permissions. (September 2017)
• The following topics include updated job names (September 2017):

– “Using _BPX_JOBNAME to assign job names to Spark processes” on page 76
– “Overview of WLM classification” on page 77
– “Defining WLM service classes for Spark” on page 78
– “Defining WLM report classes for Spark” on page 82
– “Defining WLM classification rules for Spark” on page 82
– “Interactive performance reports with Monitor III” on page 144

xviii Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

– “Long-term reporting with the Postprocessor” on page 148
• Chapter 12, “Verifying the IBM Open Data Analytics for z/OS product,” on page 123 adds two

new installation verification procedures to verify the IBM Open Data Analytics for z/OS product.
(September 2017)

Summary of changes for IBM Open Data Analytics for z/OS Installation and Customization Guide xix

xx Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Part 1. Introduction

© Copyright IBM Corp. 2016, 2021 1

2 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization Guide

Chapter 1. Introduction to IBM Open Data Analytics
for z/OS

This topic provides a brief introduction to the product components and terminology in IBM Open Data
Analytics for z/OS (IzODA).

Product components
IBM Open Data Analytics for z/OS consists of the following components:
z/OS IzODA Spark (FMID HSPK120)

z/OS IzODA Spark (z/OS Spark) is built on Apache Spark, a high-performance, general execution
engine for large-scale data processing. One of its key features is the capability to perform in-
memory computing. Unlike traditional large data processing technologies, Spark allows caching of
intermediate results in memory rather than writing them to disk, thereby dramatically improving the
performance of iterative processing.

z/OS IzODA Mainframe Data Service (FMID HMDS120)
z/OS IzODA Mainframe Data Service (Data Service or MDS) provides integration facilities for both IBM
Z data sources and other off-platform data sources. The Data Service provides your Apache Spark
application with optimized, virtualized, and parallelized access to a wide variety of data.

z/OS IzODA Anaconda (FMID HANA110)
z/OS IzODA Anaconda includes Python and Anaconda Python packages for data science, which
provide data scientists with a comprehensive solution for integrating computations to the data.

Figure 1 on page 3 illustrates the components in a typical Spark cluster.

Figure 1. Example of components in a typical Spark cluster

The components are described in “Terminology” on page 4.

© Copyright IBM Corp. 2016, 2021 3

z/OS IzODA Livy
z/OS IzODA Livy is built on Apache Livy. It is a REST service used in conjunction with Spark that enables
users to submit Spark jobs without having the Spark client installed. This enables developers to harness
the data analytics power that Spark is capable of providing from within a web or mobile application. Jobs
are submitted to the Livy server through REST API that contains information about the Spark application
to be run. An interactive Scala or Python session with Livy can also be started.

Terminology
The following terms and abbreviations appear throughout this documentation:
Master

The Spark daemon that allocates resources across applications.
Worker

The Spark daemon that monitors and reports resource availability and, when directed by the master,
spawns executors. The worker also monitors the liveness and resource consumption of the executors.

Executor
A process that the worker creates for an application. The executors perform the actual computation
and data processing for an application. Each application has its own executors.

Driver program
The process that runs the main function of the application and creates the SparkContext.

SparkContext
Coordinates all executors in the cluster and sends tasks for the executors to run.

Apache Toree
Open source software that provides the foundation for interactive applications to connect to and use
z/OS Spark.

Jupyter Notebook
An open source web application that provides an interactive application development environment for
data scientists.

Deploy mode
Distinguishes where the driver process runs. In cluster deploy mode, the framework starts the driver
inside the cluster. In client deploy mode, the submitter starts the driver from outside the cluster. If
you use Jupyter Notebook and Apache Toree to interact with Spark, you are likely using client deploy
mode. The default is client deploy mode.

Local mode
A non-distributed, single-JVM deployment mode in which all of the Spark execution components—
driver, master, worker, and executors—run in the same JVM.

Cluster mode
Not to be confused with cluster deploy mode, Spark in cluster mode means that, unlike local mode,
each Spark execution component—driver, master, worker, and executors—runs in a separate JVM. An
application can be submitted to a Spark cluster in both cluster deploy mode and client deploy mode.

Cluster manager
The software that manages resources for the Spark cluster. Apache Spark supports Standalone,
Mesos, and YARN. Only the Standalone cluster manager is available for Open Data Analytics for z/OS.

Task
A unit of work that is sent to one executor.

4 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization Guide

Chapter 2. Planning for installation

Use the information in this chapter and the IBM Open Data Analytics for z/OS (IzODA) software
requirements to plan the installation and deployment of IzODA.

For a complete listing of the IzODA hardware and software requirements including prerequisites and
co-requisites, see Program Directory for IBM Open Data Analytics for z/OS.

Planning considerations

Product overview
IBM Open Data Analytics for z/OS (IzODA) consists of three components: Spark, MDS, and Anaconda.

Skill requirements
SMPE skills are required for IBM Open Data Analytics for z/OS installation.

The configuration of IBM Open Data Analytics for z/OS requires more than the typical system
programming permissions and expertise. The installation and configuration span several roles that may
be performed by one or more individuals. Table 1 on page 6 lists the roles that may be needed for the
required and optional customization tasks.

Given the number of tasks and roles involved, close collaboration is key to successfully getting IBM Open
Data Analytics for z/OS (IzODA) up and running. Use of this high-level roadmap will help coordinate,
organize, and keep track of all installation and configuration tasks.

The amount of time that is required to install and configure IzODA components depends on such factors
such as:

• The current z/OS UNIX and TCP/IP configuration
• The availability of prerequisite software and maintenance
• Whether OMVS segments are defined for IzODA users.

Time requirements
Experience has shown that the installation and configuration process of IzODA requires from one to five
days to complete. This time requirement is for a clean installation performed by an experienced system
programmer. If problems are encountered, or if the required skills are not available, the setup will take
longer

Preinstallation considerations
For detailed instructions on the SMP/E installation of the product, see Program Directory for IBM Open
Data Analytics for z/OS (GI13-4348-00).

Installation user ID
The user ID that is used to install IzODA, or to install maintenance, must have the following attributes:

• UID(0) or READ access or higher to the BPX.SUPERUSER facility class
• Be connected to a group that has a GID
• Have READ access or higher to the following facility classes:

– BPX.FILEATTR.PROGCTL
– BPX.FILEATTR.APF

© Copyright IBM Corp. 2016, 2021 5

– BPX.FILEATTR.SHARELIB
• Have WRITE access to the following paths:

– /usr/lpp/IBM/izoda/spark
– /usr/lpp/IBM/izoda/anaconda

For a complete listing of the IzODA installation user ID requirements, see Program Directory for IBM Open
Data Analytics for z/OS.

Requisite products
IzODA has a list of prerequisite software that must be installed and operational before the product will
work.

For a complete listing of the IzODA software requirements including prerequisites, see Program Directory
for IBM Open Data Analytics for z/OS.

Plan ahead to have these requisite products available, as it might take some time, depending on the
policies at your site. The key requisites for a basic setup are the following:

• z/OS V2R1 or higher
• z/OS ICSF V2R1 or higher
• IBM 64-bit SDK for z/OS Java Version 8, SR7 FP10 or higher.

Required resources
The configuration of IzODA requires more than the typical system programming permissions and
expertise; therefore, assistance from others might be needed. Table 1 on page 6 lists the
administrators who are needed for the required and optional customization tasks.

These are the book numbers referenced in Table 1 on page 6:

Table 1. Planning checklist for a first-time installation. Planning checklist

Complete? Task IT Role/Skills Publications

Installation

Planning installation
options on z/OS

z/OS system
programmer

Program Directory for
IBM Open Data Analytics
for z/OS and PSP
buckets

Procuring, installing, and
configuring prerequisite
products, except IzODA

z/OS system
programmer

Program Directory for
IBM Open Data Analytics
for z/OS and PSP
buckets

Installing IzODA z/OS system
programmer with UNIX
skills

Program Directory for
IBM Open Data Analytics
for z/OS, Part 2,
“Installation,” on page
9, and PSP buckets

Configuring Spark

Verifying environment
and UNIX System
Services configuration
requirements.

z/OS system
programmer, security
administrator

Chapter 4, “Customizing
your environment for
z/OS Spark,” on page
15

6 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization Guide

Table 1. Planning checklist for a first-time installation. Planning checklist (continued)

Complete? Task IT Role/Skills Publications

Creating a user ID z/OS system
programmer, security
administrator

Chapter 4, “Customizing
your environment for
z/OS Spark,” on page
15

Customizing Apache
Spark directory
structure

z/OS system
programmer, security
administrator

Chapter 4, “Customizing
your environment for
z/OS Spark,” on page
15

Configuring network,
ports, and firewalls

z/OS system
programmer, network
administrator

Chapter 4, “Customizing
your environment for
z/OS Spark,” on page
15 and Chapter 5,
“Customizing the Data
Service server,” on page
85

Configuring client
authentication for
Apache Spark

z/OS system
programmer, security
administrator, network
administrator

Chapter 4, “Customizing
your environment for
z/OS Spark,” on page
15

Configuring memory and
CPU options

z/OS system
programmer, security
administrator

Chapter 4, “Customizing
your environment for
z/OS Spark,” on page
15

Configuring WLM z/OS system
programmer, security
administrator

Chapter 4, “Customizing
your environment for
z/OS Spark,” on page
15

Configuring MDS

Create required data
sets and security
application to use with
the server.

z/OS system
programmer, security
administrator

Chapter 5, “Customizing
the Data Service server,”
on page 85

Configuring WLM z/OS system
programmer, security
administrator

Chapter 5, “Customizing
the Data Service server,”
on page 85

Setting up security
authorizations and APF-
authorize LOAD library
data sets

z/OS system
programmer, security
administrator

Chapter 5, “Customizing
the Data Service server,”
on page 85

Configure MDS server to
read optionally selected
z/OS data

IMS administrator, Db2
administrator, CICS
administrator, security
administrator

Open Data Analytics for
z/OS Solutions Guide

Chapter 2. Planning for installation 7

Table 1. Planning checklist for a first-time installation. Planning checklist (continued)

Complete? Task IT Role/Skills Publications

Optionally configure
MDS server to read
distributed data

Administrator of
distributed server

Chapter 7, “Installing
the JDBC Gateway,” on
page 99 and Open
Data Analytics for z/OS
Solutions Guide

Configuring Anaconda

Environmental setup
and Post-SMP/E
installation instructions

z/OS system
programmer with UNIX
skills

Chapter 9, “Customizing
Anaconda ,” on page
113

Verifying IzODA

Verifying IzODA
customization

z/OS system
programmer with UNIX
skills

Chapter 10, “Verifying
the IBM Open Data
Analytics for z/OS
customization,” on page
117

Verifying Data Service
server installation

z/OS system
programmer

Chapter 11, “Verifying
the Data Service server
installation,” on page
121

Verifying IzODA product z/OS system
programmer with UNIX
skills

Chapter 12, “Verifying
the IBM Open Data
Analytics for z/OS
product,” on page 123

8 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization Guide

Part 2. Installation

© Copyright IBM Corp. 2016, 2021 9

10 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Chapter 3. Installing IBM Open Data Analytics for
z/OS

You can install IBM Open Data Analytics for z/OS (IzODA) by using CBPDO or, alternatively, SystemPac or
ServerPac.

Before you begin
Ensure that the following software requirements for Open Data Analytics for z/OS have been met:

• IBM z/OS V2.1 or later
• The minimum required Java™ level is IBM 64-Bit SDK for z/OS Java Technology Edition V8, Service

Refresh 7, FP 10. However, if the RELEASE file in the Spark installation directory indicates that the
product was built with a later Java level, IBM urges you to use that Java level.

• Bourne Again Shell (bash) version 4.2.53 or version 4.3.48.

For the latest list of requirements, see the information in the Preventive Service Planning (PSP) bucket.

Migration notes: If you already use IBM z/OS Platform for Apache Spark, note the following differences in
Open Data Analytics for z/OS:

• IzODA changes the level of Apache Spark. For more information, see Appendix A, “Migrating to a new
version of Apache Spark,” on page 159.

• IzODA changes the default z/OS Spark installation directory to /usr/lpp/IBM/zspark/spark/
sparknnn (for instance, /usr/lpp/IBM/zspark/spark/spark32x).

• IzODA uses UTF-8 encoding. For details, see “Setting up a user ID for use with z/OS Spark” on page 28
and “Network port configurations” on page 163.

• As of the December 2018 release, the Spark REST server port is disabled. You can enable connections
to the REST port (such as when using cluster deploy mode) in your local spark-defaults.conf file, but the
port will not function properly until you complete the setup to secure and enable the REST port.. For
details, see “Configuring networking for Apache Spark” on page 37.

• IzODA introduces client authentication, which is enabled by default and requires additional setup.
Apache Spark will not function properly until you complete the setup for client authentication or disable
the client authentication function. For details, see “Configuring z/OS Spark client authentication” on
page 41.

• IzODA changes the way you assign job names to executor and driver processes. IzODA no longer honors
the specification of spark.executorEnv._BPX_JOBNAME on the command line or in an application.
For details, see “Assigning job names to Spark processes” on page 73.

• If the PTF for APAR PI93605 is installed, Spark master and worker daemons will perform
environment verification during initialization and will fail to start if the verification fails. The reason
for termination can be found in the daemon's log. You can disable this feature by setting the
spark.zos.environment.verify to false in spark-defaults.conf.

• z/OS IzODA Livy (Livy) is delivered through Anaconda (HANA11) and introduced in APAR (PH11339).
The SMP/E APPLY process installs the Livy package into the Anaconda directory, but does not make
them available for use. See Chapter 8, “z/OS IzODA Livy Installation and Customization,” on page 105
for instructions on how to get started with using the z/OS IzODA Livy package.

Additional migration note: If you are installing the PTF for APAR PI89136, note the following changes
that are introduced by the APAR:

• APAR PI89136 changes the level of Apache Spark to 2.2.0. For more information, see Appendix A,
“Migrating to a new version of Apache Spark,” on page 159.

• If you specify an incorrect job name prefix, Spark worker daemon will fail rather than ignoring the error.
For more information, see “Assigning job names to Spark processes” on page 73.

© Copyright IBM Corp. 2016, 2021 11

• If client authentication is enabled, and you submit an application to the Spark master port in cluster-
deploy-mode, then the Spark driver will run under the ID of the user who did the submit.

Note: Open Data Analytics for z/OS currently has some restrictions on Apache Spark functionalities. For a
list of restrictions, see Appendix G, “Restrictions,” on page 185.

Note: A new service (PTF) level for Open Data Analytics for z/OS (FMID HSPK120) might provide a new
version of Apache Spark. Before installing a new PTF, see Appendix A, “Migrating to a new version of
Apache Spark,” on page 159.

About this task
Open Data Analytics for z/OS is supplied in a Custom-Built Product Delivery Offering (CBPDO, 5751-CS3).
For installation instructions, see Program Directory for IBM Open Data Analytics for z/OS.

You can also install Open Data Analytics for z/OS with a SystemPac or ServerPac. For information about
the various z/OS product installation offerings, see z/OS Planning for Installation.

Service updates for Open Data Analytics for z/OS are provided as PTFs that perform a full replacement
of the product. Therefore, you can use a PTF to update your existing installation or to perform a new
installation.

IBM recommends that you mount your z/OS Spark file system from the same system on which the Spark
cluster will be run.

Procedure
Complete the following steps to install Open Data Analytics for z/OS on your system.
1. Choose the most appropriate method for installing Open Data Analytics for z/OS.
2. Use the information in Program Directory for IBM Open Data Analytics for z/OS to install Open Data

Analytics for z/OS on your system.

Results
Open Data Analytics for z/OS is installed on your z/OS system.

What to do next
Before you use Open Data Analytics for z/OS for the first time, follow the customization instructions in
Part 3, “Customization,” on page 13.

12 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Part 3. Customization
Customize your z/OS environment for z/OS Spark.

© Copyright IBM Corp. 2016, 2021 13

14 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Chapter 4. Customizing your environment for z/OS
Spark

Before you can use z/OS Spark, you must customize your environment for it and its dependent products.
Complete this task after you install Open Data Analytics for z/OS but before your first use of it.

Before you begin
Follow the instructions in Chapter 3, “Installing IBM Open Data Analytics for z/OS,” on page 11 to install
Open Data Analytics for z/OS on your system.

About this task
The default program location for z/OS Spark is /usr/lpp/IBM/zspark/spark/.

Procedure
Complete the following tasks to customize your environment for z/OS Spark. You can use the z/OS Spark
configuration workflow as described in “Using the Spark configuration workflow ” on page 16 or you can
follow these individual steps. You will need access to a TSO session, an OMVS session (preferably through
a Putty terminal):

__ a. “Verifying the Java and bash environments” on page 26
__ b. “Verifying configuration requirements for z/OS UNIX System Services” on page 28
__ c. “Setting up a user ID for use with z/OS Spark” on page 28
__ d. “Verifying the env command path” on page 32
__ e. “Customizing the Apache Spark directory structure” on page 32

__ i) “Creating the Apache Spark configuration directory” on page 33
__ ii) “Updating the Apache Spark configuration files” on page 34

__ iii) “Creating the Apache Spark working directories” on page 35
__ f. “Configuring networking for Apache Spark” on page 37

__ g. “Configuring z/OS Spark client authentication” on page 41
__ h. “Configuring IBM Java” on page 57
__ i. “Creating jobs to start and stop Spark processes” on page 58
__ j. “Setting up started tasks to start and stop Spark processes ” on page 60

__ k. “Configuring memory and CPU options” on page 65
__ l. “Configuring z/OS workload management for Apache Spark” on page 73

Results
You have customized your environment for z/OS Spark.

What to do next
Continue with Chapter 5, “Customizing the Data Service server,” on page 85.

© Copyright IBM Corp. 2016, 2021 15

Using the Spark configuration workflow
Using the Spark configuration workflow to configure Spark.

About this task
You can use the the Workflows task in IBM z/OS Management Facility (z/OSMF) to configure Spark (FMID
HSPK120). The information and commands are similar to those described in this manual.

The z/OSMF interface simplifies the configuration steps, collects input, discovers details about your
installation, helps you manage task assignments to members of your team, and runs configuration jobs.
The parts of the configuration workflow are as follows:

workflow-spark-config.xml
The workflow definition file. Specify the fully-qualified path to this file on the 'Create Workflow' dialog
in the z/OSMF workflow task. The workflow definition and the other supporting files in this directory
will then load into z/OSMF

workflow-spark-config-*.rexx
These REXX programs support various workflow tasks. The programs are invoked by the z/OSMF
workflow. Do not run them manually unless directed by IBM Support.

workflow-spark-config-attls*.template
Template files for configuration of Application Transparent Transport Layer Security (AT-TLS) and
client authentication. These files are processed as input by the workflow code, but they can serve as a
model for manually configuring AT-TLS and client authentication.

These workflow files are located in the Spark installation directory under the zos-workflow directory
for the Spark releases supported by the workflow. The default installation directory is /usr/lpp/IBM/
izoda/spark/sparknnn, where nnn is the current Spark version (for example, /usr/lpp/IBM/
izoda/spark/spark24x for Spark 2.4.8). Note that for all Spark 2.4 releases, nnn is 24x. (for
example, /usr/lpp/IBM/izoda/spark/spark24x for Spark 2.4.8).

Procedure
1. Create and run the workflow using a UID 0 user.
2. From the Workflows task on z/OSMF, locate the Workflows table.

16 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

3. Click the Actions drop down menu and select Create Workflow...
4. From the Create Workflow dialog, enter the fully-qualified path to the workflow-spark-
config.xml file in the Workflow definition file field.

Leave the 'Workflow variable input file' field empty. In the 'System' field, select the local z/OS system
name.

Chapter 4. Customizing your environment for z/OS Spark 17

5. Click Next > .
6. Ensure the 'Owner user ID' field is the same as the current UID 0 user.

Check the Assign all steps to owner user ID checkbox.

7. Click Finish.

Read and run the steps in the order presented in the workflow.

18 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Note: The workflow can be used to copy and modify an existing Spark configuration to be a new
configuration or to update an existing configuration. To use the workflow for these purposes, read and
follow the instructions in step 2 - How to use this workflow to copy or upgrade from a previous Spark
configuration.

What to do next
You may assign certain steps to other users who have other skills or authority such as your Security
Administrator or Network administrator depending on how your organization divides configuration work.
IBM Open Data Analytics for z/OS also provides a workflow that provides step-by-step instructions for
tuning and allocating resources. That workflow exists at the following location: https://github.com/IBM/
IBM-Z-zOS/tree/master/zOS-Workflow/IzODA%20Workflows

Note that customization steps need to be done in sequential order.

For more information about the Workflows task in z/OSMF,
see the following location: https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/
com.ibm.zosmfworkflows.help.doc/izuWFhpWorkflowsTask.html

Chapter 4. Customizing your environment for z/OS Spark 19

https://github.com/IBM/IBM-Z-zOS/tree/master/zOS-Workflow/IzODA%20Workflows
https://github.com/IBM/IBM-Z-zOS/tree/master/zOS-Workflow/IzODA%20Workflows
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zosmfworkflows.help.doc/izuWFhpWorkflowsTask.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zosmfworkflows.help.doc/izuWFhpWorkflowsTask.html

Upgrading Spark configuration workflows
Upgrading Spark configuration workflows.

About this task
You may optionally upgrade your existing Spark configuration workflow in order to receive fixes or new
function. You can then run any new or changed steps as needed. Note that you may also need to run
subsequent steps that have dependencies on any changes. Steps that need to be rerun will no longer be
marked as Complete. The Spark configuration workflow supports running all of the steps again; however,
any changes you have made to the configuration manually might be overwritten.

Another option is to delete or archive the old instance of the Spark configuration workflow and create a
new one using the new xml file. After creating a new instance, you will need to run all of the steps again.

Only one instance of a given workflow can be active at a time. Follow these steps to upgrade the
workflow:

Procedure
1. Select the previous instance of the Spark configuration workflow in the Workflows Task.
2. From the Actions menu, select the 'Create New Based on Existing' action.

The Create New Based on Existing window is displayed.

3. Input the file name of the workflow (for example, /usr/lpp/IBM/izoda/spark/spark24x/zos-
workflow/workflow-spark-config.xml) and select the appropriate system. Use the same
system name used when you created the original workflow instance.

Click Next>.

The Create New Based on Existing - Replace Workflow window is displayed:

20 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

4. Ensure 'Copy variable values based on upgrade definition' is checked. Unchecking this means the
upgrade will discard your previous data input for the workflow, such as SPARK_HOME and other
configuration values.

By default the workflow notes and workflow history are copied to the new workflow instance. You may
uncheck 'Copy workflow notes' or 'Copy workflow history' to omit them. Workflow notes are created
by users of the workflow. Workflow history is a z/OSMF-managed log of activity in the workflow, which
might be useful to IBM support for certain workflow issues.

5. Make a choice under Step Attributes:
Copy step attributes based on upgrade definition

(Default) This copies your previous input and retains the status of the steps and job output from
the previous workflow. Steps that have changed, or were affected by changes in the new workflow
version may have their step status and job output discarded when the new instance is created.
Steps affected by such changes and any new steps will also have their ownership changed to
'Unassigned.' It is easy to locate the steps you need to run after the upgrade by looking at the step
status or by filtering on the State column. However, extra work is required as the workflow owner
must assign the owner to all of the affected steps.

See “Assigning an owner to new or changed steps ” on page 22 for instructions.

Note: With this option, if you run a step with a state of Complete again, z/OSMF does not update
the step status if the step fails. It will also not change the status of steps that depend on the step.

Assign all steps to owner user ID
Assigns all steps to you, the workflow owner. However, it will not copy step status or job output
from the previous workflow. It will be more difficult to locate steps that changed.

Chapter 4. Customizing your environment for z/OS Spark 21

No copy and assign
Does not copy step attributes and job output, nor will it assign steps. This option is not
recommended for the Spark configuration workflow.

6. Click Finish.

z/OSMF cancels the original workflow, creates the new instance of the workflow, and copies data as
you specified.

What to do next
Go to “Assigning an owner to new or changed steps ” on page 22.

Assigning an owner to new or changed steps
Assigning an owner to new or changed steps while upgrading Spark configuration workflows.

About this task
Any steps IBM added to the workflow, or changed in some important way, must now be assigned an
owner. After you perform these actions, the Perform tab of the steps is enabled so that step actions can
be performed.

Procedure
1. Look for a state of Unassigned in the State column for all of the workflow steps.

2. Use the filter functionality on the table to make this easier. Click the Filter link under the State column
to specify a filter. Parent steps appear when more than one step matches, even though the parent's
status does not match the filter.

The owner of the workflow selects the unassigned step(s) in the workflow and selects Assignment and
Ownership → Add Assignees from the Actions menu.

22 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

3. Select a user to own the step.

The user that you want to assign could be the workflow owner or you.

4. The step status shows as Assigned. If you used the filter in the table, change it to show the rows with
Assigned state.

Chapter 4. Customizing your environment for z/OS Spark 23

The new step owner receives a z/OSMF notification and must open the Spark Configuration workflow.
5. The new step owner selects the steps assigned to them, selects the Accept action from the actions

menu, and clicks OK on the Accept Step window.

24 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Note that until Accept Step is run, the Perform tab on the step remains disabled, and the step actions
cannot be performed

What to do next
The step(s) will show as 'Ready.' Again, you will need to adjust the filter to see the group.

Chapter 4. Customizing your environment for z/OS Spark 25

Verifying the Java and bash environments
Complete this task to verify your Java and bash environments for use with IBM Open Data Analytics for
z/OS.

Procedure
1. Ensure that the system on which you intend to run Open Data Analytics for z/OS contains an instance

of IBM 64-Bit SDK for z/OS Java Technology Edition V8 Service Refresh 7 (Java 8 SR7). If the RELEASE
file in the Spark installation directory indicates that the product was built with a later Java level, IBM
urges you to use that Java level.

The default path to IBM 64-Bit SDK for z/OS Java Technology Edition V8 is /usr/lpp/java/
J8.0_64. If your path is different, make note of it.

Path to IBM 64-Bit SDK for z/OS
Java Technology Edition V8:

2. Ensure that the installed bash shell level is 4.2.53 or 4.3.48.
a) Open an SSH or Telnet shell environment and run the following command:

bash -version

• If bash is on your path, the command returns information about the installed version. For
example, the following sample output indicates that a version of bash that is too old is installed
on the system:

ID > bash -version
GNU bash, version 2.03.0(1)-release (i370-ibm-mvs)
Copyright 1998 Free Software Foundation, Inc.

26 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

The following sample output indicates that the minimum required version of bash is already
installed on the system:

ID > bash -version
GNU bash, version 4.2.53(2)-release (i370-ibm-openedition)
Copyright (C) 2011 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later
 <http://gnu.org/licenses/gpl.html>

This is free software; you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

• If bash is not on your path, search your system for bash. The default path to bash 4.2.x and 4.3.x
are /usr/bin/bash-4.2 and /usr/bin/bash-4.3 respectively, though your system might
contain more than one instance of bash. Go to all the directories where you find instances of bash
and run ./bash -version to call the instance and check the version.

Tip: You can use the find command to search for bash. For instance, the following command
searches for all files named bash from the root (/) directory:

find / -name "bash"

Note the following points about this command:

• This command traverses your whole system and will likely take some time to complete.
• You will see access errors if you run the command from a user ID that does not have sufficient

authority to traverse and access all of the directories and files in your system.
• You can narrow the search to directories that are likely candidates for product installations, such

as /usr/bin and /usr/lpp.
b) If bash is not installed or a version other than 4.2.53 or 4.3.48 are installed, obtain and install the

4.2.53 or 4.3.48 level of bash. You can obtain the proper levels of bash from z/OS IzODA Anaconda
(FMID HANA110), or download them from Rocket z/OS Open Source Community Downloads
(www.rocketsoftware.com/ported-tools).
Select to download bash and follow the instructions to register with Rocket. You can then download
the archive file and the "Getting Started" document.

Tip: The bash installation process involves the following actions:

i) Creating a mount point and file system on z/OS to hold the bash files
ii) Uploading in binary the archive file into your new file system

iii) Extracting the archive file with gzip –d filename.tar.gz
iv) Extracting the file with tar –xvfo filename.tar

When the correct version of bash is installed, a set of directories (/bin and /man) exists that
represents the bash shell code. Make note of the path to the bash /bin directory.

Path to the bash /bin directory:

What to do next
Continue with “Verifying configuration requirements for z/OS UNIX System Services” on page 28.

Chapter 4. Customizing your environment for z/OS Spark 27

http://www.rocketsoftware.com/ported-tools
http://www.rocketsoftware.com/ported-tools

Verifying configuration requirements for z/OS UNIX System
Services

Spark runs in a z/OS UNIX System Services (z/OS UNIX) environment. Complete this task to ensure that
the configuration requirements for z/OS UNIX are met.

Procedure
1. If this is the first time you are running applications in z/OS UNIX, see z/OS UNIX System Services

Planning to ensure that your z/OS UNIX environment is properly configured and customized.

For instance, Spark should not be run as UID 0.

However, if you choose to run Spark as UID 0 in an environment where multiple users are mapped
to UID 0, you might encounter problems with the wrong shell profile being read and the required
environment variables not being set. For instance, $HOME/.profile might be read for user BOB
mapped to UID 0, when you really wanted the shell profile for SPARKID (also mapped to UID 0) to be
read.

For alternatives to setting multiple user IDs as UID 0, see "Superusers in z/OS UNIX" in z/OS UNIX
System Services Planning.

2. Optional: Consider enabling health checks for z/OS UNIX and other z/OS system services. for more
information, see IBM Health Checker for z/OS User's Guide.

See “Using IBM Health Checker for z/OS to monitor Spark workload” on page 151 for a list of health
checks that you might find helpful.

What to do next
Continue with “Setting up a user ID for use with z/OS Spark” on page 28.

Setting up a user ID for use with z/OS Spark
Complete this task to set up a user ID for use with z/OS Spark.

About this task
For this task, you can either create a new user ID to use for z/OS Spark, or you can use an existing user ID.

Note: The user ID of the Spark worker daemon requires READ access to the BPX.JOBNAME profile in the
FACILITY class to change the job names of the executors and drivers.

Procedure
1. Choose or create an appropriate user ID for use with z/OS Spark.

Specifically, this is the user ID under which the Spark cluster is started, known as the Spark ID in
this documentation. The Spark ID should have a non-zero UID (not a superuser) and should not have
access to any data beyond what it needs for running a Spark cluster. Ensure that the default shell
program in the OMVS segment for the Spark ID is set to the bash shell. Also, ensure that the user ID
has, at a minimum, the authority to create directories and extract archived or compressed files.

Tip: If you need to change or create a user ID, work with your security administrator to do so.

Using an existing user ID
If you intend to use an existing user ID, you might need to first update the OMVS segment to
set bash as the default shell program for the user ID. Complete the following steps to determine
whether the PROGRAM attribute of the OMVS segment is valid for the target user ID.

a. Use SSH to log on using the user ID.
b. Run echo $SHELL and review the output.

28 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

If bash is still not listed as the default shell for the user ID, a potential reason is because /etc/
profile is explicitly invoking a shell other than bash. If so, work with your system administrator
to update /etc/profile to define the operative shell in the OMVS segment.

The following code provides an example of how /etc/profile might override the bash shell set
in the OMVS segment with another shell:

if [-z "$STEPLIB"] && tty -s;
then
 export STEPLIB=none
 exec -a $0 $SHELL -
fi

Creating a new user ID
If you intend to create a new user ID for z/OS Spark, establish the OMVS segment during creation.

The following JCL example shows how to create a new user ID and group for the Spark ID,
SPARKID, which will be used to run z/OS Spark:

//SPARK JOB (0),'SPARK RACF',CLASS=A,REGION=0M,
// MSGCLASS=H,NOTIFY=&SYSUID
//*--*/
//RACF EXEC PGM=IKJEFT01,REGION=0M
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
ADDGROUP SPKGRP OMVS(AUTOGID) OWNER(SYS1)
ADDUSER SPARKID DFLTGRP(SPKGRP) OMVS(AUTOUID HOME(/u/sparkid) -
 PROGRAM(/shared/rocket/bash-4.2/bin/bash)) -
 NAME('Spark ID') NOPASSWORD NOOIDCARD
ALTUSER SPARKID PASSWORD(SPARKID) NOEXPIRED
/*

Notes:

• Use of AUTOGID and AUTOUID in the example is based on a local preference. Your coding might
differ.

• Set the PROGRAM attribute to define the path to your own installation of bash 4.2.53 or 4.3.48
that you noted previously.

The chosen user ID is now properly set up to run z/OS Spark. Use this user ID for all remaining
customization steps that require a user ID.

2. Configure the z/OS UNIX shell environment for both your Spark ID and all users of z/OS Spark.

z/OS Spark requires certain environment variables to be set. Consider the scope under which you want
this environment to take effect. For example:

• Do you want to configure Spark for all users or a subset of users?
• Do you have other Java applications that require a different level of Java or require different

(conflicting) Java settings?

At a high level, this environment can be set for all users of both shells, an individual user's shell
environment, or, for some settings, for users only when they issue Spark commands. Minimally, you
must set up the environment for the Spark ID and for each user of Spark.

Use the information in Table 2 on page 29 to decide where to set each environment variable. This
information applies for users with either a login shell of bash or /bin/sh.

Table 2. Scope of environment variables

Environment variables set in this file… Have this scope…

/etc/profile All users, all the time

$HOME/.profile for specific users Specific users, all the time

spark-env.sh Specific users, only for Spark commands

Chapter 4. Customizing your environment for z/OS Spark 29

Note: The spark-env.sh file is discussed in more detail in “Updating the Apache Spark configuration
files” on page 34.

Values that you set for environment variables in the $HOME/.profile file override the values for
those variables in the /etc/profile system file. Values that you set in spark-env.sh override any
values previously set in either /etc/profile or $HOME/.profile.

Tip: If the Spark ID does not already have a $HOME/.profile file, create one now.

a) Determine which of the files listed in Table 2 on page 29 you want to update.
(Creation and customization of the spark-env.sh file will be discussed later.)

b) For the files (listed in Table 2 on page 29) that you determined need to be updated, edit each to set
the environment variables, as follows:

• Set JAVA_HOME to point to the location of IBM 64-Bit SDK for z/OS Java Technology Edition V8.
• Set PATH to include the /bin directory of IBM 64-Bit SDK for z/OS Java Technology Edition V8.

Tip: You can set this value by using $JAVA_HOME.
• Set PATH to prioritize the path to the /bin directory of bash 4.2.53 or 4.3.48 higher than any

earlier version of bash that exists on your system.
• Set IBM_JAVA_OPTIONS to provide file encoding to UTF-8.
• Set _BPXK_AUTOCVT to ON to enable the automatic conversion of tagged files. APAR PH01619

adds this to spark-env.sh and spark-env.sh.template by default.
• Include an export statement to make all the variables available to the z/OS UNIX shell

environment.

The following example illustrates how to code the .profile file for these environment variable
settings:

Spark ID .profile
JAVA_HOME=/shared/java/java_1.8_64
PATH=$JAVA_HOME/bin:/shared/rocket/bash-4.2/bin:$PATH:$HOME:
IBM_JAVA_OPTIONS="-Dfile.encoding=UTF8"
_BPXK_AUTOCVT=ON

This line sets the prompt
PS1='$LOGNAME':'$PWD':' >'

This line exports the variable settings
export JAVA_HOME PATH IBM_JAVA_OPTIONS _BPXK_AUTOCVT PS1

The same syntax applies for /etc/profile, $HOME/.profile, and spark-env.sh.
c) If you set the environment variables in the profile (as in either of the first two rows in Table 2 on

page 29), skip to step “2.d” on page 30 now. Otherwise, if you set the environment variables only
in spark-env.sh (as in the third row in Table 2 on page 29), issue the following command in an
SSH or Telnet shell environment to source the spark-env.sh file:

source spark-env.sh

d) In an SSH or Telnet shell environment, run the following command to verify that the bash version is
set properly.

bash -version

The command returns a version number of 4.2.53 or 4.3.48. If it does not, ensure that the PATH
value in the file you updated in step “2.b” on page 30 lists the latest version of the bash /bin
directory before any other bash installations.

e) In an SSH or Telnet shell environment, run the following command to verify that the correct level of
bash is set as the default.

ps -p $$

30 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

The command returns the value of the process ID and indicates the shell program that is used, for
example:

SPARKID:/u/sparkid: >ps -p $$
 PID TTY TIME CMD
 16777299 ttyp0000 0:00 /shared/rocket/bash-4.2/bin/bash

This example output shows that the installation path is correctly set to the 4.2.53 installation of
bash as provided on the PROGRAM attribute of the user ID OMVS segment.

If the latest copy of bash is not listed, something in /etc/profile is overriding the shell. Ensure
that /etc/profile is correct.

f) In an SSH or Telnet shell environment, issue the following command to verify that JAVA_HOME is
set to IBM 64-Bit SDK for z/OS Java Technology Edition V8.

java -version

You should see output similar to the following example:

java version "1.8.0_231"
Java(TM) SE Runtime Environment (build 8.0.7.0 - pmz6480sr7 - 20191107_01(SR7))
IBM J9 VM (build 2.9, JRE 1.8.0 z/OS s390x-64-Bit
Compressed References 20191106_4321 (JIT enabled, AOT enabled)
OpenJ9 - f0b6be7
OMR - 18d8f94
IBM - 233dfb5)
JCL - 20191016_01 based on Oracle jdk8u231-b10

If the output is incorrect or Java is not found, issue the following command:

echo $JAVA_HOME

The command returns the path to IBM 64-Bit SDK for z/OS Java Technology Edition V8. If it does
not, ensure that the JAVA_HOME value is set correctly in the file you updated in step “2.b” on page
30.

g) In an SSH or Telnet shell environment, run the following command to verify the correct file
encoding.

echo $IBM_JAVA_OPTIONS

The command returns -Dfile.encoding=UTF8. If it does not, ensure that the
IBM_JAVA_OPTIONS value is set correctly in the file you updated in step “2.b” on page 30.

h) In an SSH or Telnet shell environment, run the following command to verify the automatic
conversion of tagged files.

echo $_BPXK_AUTOCVT

The command returns ON. If it does not, ensure that the _BPXK_AUTOCVT value is set correctly in
the file you updated in step “2.b” on page 30.

3. Permit the SPARKID to spawn USS address spaces with specific job names.
The z/OS Spark worker spawns new address space using the job name specifications in the spark-
defaults.conf file.
Action required:

Permit the SPARKID to the BPX.JOBNAME profile in the security product. For RACF, this would be
PERMIT BPX.JOBNAME CLASS(FACILITY) ID(SPARKID) ACCESS(READ)

Results
Your chosen user ID is now ready for use with z/OS Spark.

Chapter 4. Customizing your environment for z/OS Spark 31

What to do next
Continue with “Verifying the env command path” on page 32.

Verifying the env command path
Complete this task to verify the path for the env command.

About this task
Before Spark 2.2.0 (introduced by APAR PI89136), the shell scripts for IBM Open Data Analytics for z/OS
Spark require /usr/bin/env. If your system doesn't have /usr/bin/env, complete this task to create
a symbolic link for /usr/bin/env.

Spark 2.2.0 changes the shell scripts to use /bin/env, which is a more common set-up. If your system
doesn't have /bin/env, use the steps that are outlined in this task as a guideline to create a symbolic
link for /bin/env.

Procedure
1. Ensure that /usr/bin/env exists and provides a correct listing of the environment.

In an SSH or Telnet shell environment, run the following command to verify the location and contents
of env:

/usr/bin/env

The command returns a list of name and value pairs for the environment in your shell.

If /usr/bin/env does not exist, complete the following steps to set it up:

a) Locate the env program on your system.
A potential location is in /bin/env.

b) Create a symbolic link (symlink) so that /usr/bin/env resolves to the true location of env.
For example:

ln -s /bin/env /usr/bin/env

c) In an SSH or Telnet shell environment, run the following command to verify that the symlink works.

/usr/bin/env

The command returns a list of name and value pairs for the environment in your shell.
2. Verify that the symbolic link for the env command persists across system IPLs.

Depending on how /usr/bin/ is configured on your system, the symbolic link for /usr/bin/env
might not persist across an IPL without additional setup. Ensure that your IPL setup includes creation
of this symbolic link, if necessary. For instance, you can update your /etc/rc file to include the
command to create the symbolic link. The /etc/rc file is typically used to customize commands for
z/OS UNIX application services.

What to do next
Continue with “Customizing the Apache Spark directory structure” on page 32.

Customizing the Apache Spark directory structure
IBM Open Data Analytics for z/OS installs Apache Spark into a z/OS file system (zFS) or hierarchical
file system (HFS) directory. This documentation refers to the installation directory as SPARK_HOME. The
default installation directory is /usr/lpp/IBM/zspark/spark/sparknnn, where nnn is the current
Apache Spark version (for instance, /usr/lpp/IBM/izoda/spark/spark24x for Spark 3.2.0).

32 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

By default, Apache Spark runs from the installation directory, and most of its configuration files, log files,
and working information are stored in the installation directory structure. On z/OS systems, however,
the use of the installation directory for all of these purposes is not ideal operating behavior. Therefore,
by default, Open Data Analytics for z/OS installs Apache Spark in a read-only file system. The following
tasks describe how to set up customized directories for the Apache Spark configuration files, log files,
and temporary work files. While you can customize the directory structure used by Apache Spark, the
examples here follow the Filesystem Hierarchy Standard.

Plan to work with your system programmer who has authority to update system directories.

Note: SPARK_HOME is an environment variable that is used by many Apache Spark scripts. This variable
must contain the path to the z/OS Spark installation directory. In step “2” on page 29 of “Setting up a
user ID for use with z/OS Spark” on page 28, it was determined which files needed to be updated to set
thez/OS UNIX shell environment. Update the files modified in that step to set and export the SPARK_HOME
environment variable. For example:

export SPARK_HOME=/usr/lpp/IBM/izoda/spark/spark24x

Creating the Apache Spark configuration directory
Complete this task to create a customized directory for the Apache Spark configuration files.

About this task
The default Apache Spark configuration directory is $SPARK_HOME/conf. In accordance with the
Filesystem Hierarchy Standard (FHS), this task creates a new configuration directory under /etc. This
task also ensures that the user ID that will run Apache Spark programs has read/write access to the new
directory and sets the SPARK_CONF_DIR environment variable to point to the new directory.

Procedure
1. Open an SSH or Telnet shell environment and create a new directory under /etc for the Apache Spark

configuration files.

For example, to create the /etc/spark/conf directory, enter the following command:

mkdir -p /etc/spark/conf

2. Provide read/write access to the new directory to the user ID that runs Open Data Analytics for z/OS.
3. Ensure that the SPARK_CONF_DIR environment variable points to the new directory.

For example:

export SPARK_CONF_DIR=/etc/spark/conf

Note: The SPARK_CONF_DIR environment variable can be set and exported as in this example in the
$HOME/.profile or the /etc/profile as determined in Step 2 in “Setting up a user ID for use with
z/OS Spark” on page 28.

Results
You now have a customized directory to hold the Apache Spark configuration files.

What to do next
Continue with “Updating the Apache Spark configuration files” on page 34.

Chapter 4. Customizing your environment for z/OS Spark 33

Updating the Apache Spark configuration files
Complete this task to copy the Apache Spark configuration files to your new configuration directory and
update them.

About this task
There are three main Apache Spark configuration files:
spark-env.sh

A shell script that is sourced by most of the other scripts in the Apache Spark installation. You can
use it to configure environment variables that set or alter the default values for various Apache Spark
configuration settings. For sample contents of this file, see Appendix B, “Sample configuration and
AT-TLS policy rules for z/OS Spark client authentication,” on page 163.

spark-defaults.conf
A configuration file that sets default values for the Apache Spark runtime components. You can
override these default values on the command line when you interact with Spark using shell scripts.
For sample contents of this file, see Appendix B, “Sample configuration and AT-TLS policy rules for
z/OS Spark client authentication,” on page 163.

log4j.properties
Contains the default configuration for log4j, the logging package that Apache Spark uses.

You can find templates of these configuration files and the default spark-defaults.conf and
spark-env.sh files in the $SPARK_HOME/conf directory. Note that spark-defaults.conf and
log4j.properties files are ASCII files. If you have set _BPXK_AUTOCVT=ON as specified in “Setting up
a user ID for use with z/OS Spark” on page 28, you can edit them without any explicit conversion.

The spark-shell and spark-sql interactive command line interfaces ($SPARK_HOME/bin/spark-
shell and $SPARK_HOME/bin/spark-sql) have built-in support for the Apache Hive metastore
service, which contains an embedded instance of the Apache Derby database. By default, these interfaces
automatically create metastore_db and spark-warehouse directories and the derby.log file in the
directory from which they are invoked. Therefore, you must either invoke spark-shell or spark-sql
from a writable directory or set up your configuration files to point to writable directories. If you have
multiple users running these interfaces, ensure that they use different writable directories so that one
user does not attempt to use another user's database.

To set the location of the metastore_db directory, configure the javax.jdo.option.ConnectionURL
property in the hive-site.xml file. You can find a sample hive-site.xml file in $SPARK_HOME/conf.
For more information about Hive metastore configuration, see Hive Metastore Administration (https://
cwiki.apache.org/confluence/display/Hive/AdminManual+MetastoreAdmin).

To set the location of the spark-warehouse directory, configure the spark.sql.warehouse.dir
property in the spark-defaults.conf file, or use the --conf spark.sql.warehouse.dir
command-line option to specify the default location of the database in warehouse.

To set the location of the derby.log file, configure the following property in the spark-
defaults.conf file or as a command-line option to point to the desired Derby log file location:

spark.driver.extraJavaOptions -Dderby.stream.error.file=derby_log_file_location

If you do not need separate directories for the metastore_db directory and the derby.log file, you can
configure the Derby system directory by specifying the following property in the spark-defaults.conf
file:

spark.driver.extraJavaOptions -Dderby.system.home=derby_sys_dir

By default, both the metastore_db directory and the derby.log file will be created in this Derby
system directory.

For more information about Apache Derby configuration, see https://db.apache.org/derby/docs/10.14/
tuning/.

34 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

https://cwiki.apache.org/confluence/display/Hive/AdminManual+MetastoreAdmin
https://cwiki.apache.org/confluence/display/Hive/AdminManual+MetastoreAdmin
https://db.apache.org/derby/docs/10.14/tuning/
https://db.apache.org/derby/docs/10.14/tuning/

For more information about Apache Spark support for Apache Hive, see http://spark.apache.org/docs/
2.4.8/sql-programming-guide.html.

Procedure
1. Copy the template or default configuration files into your new configuration directory.

For example:

cp $SPARK_HOME/conf/spark-env.sh.template $SPARK_CONF_DIR/spark-env.sh
cp $SPARK_HOME/conf/spark-defaults.conf.template $SPARK_CONF_DIR/spark-
defaults.conf
cp $SPARK_HOME/conf/log4j.properties.template $SPARK_CONF_DIR/log4j.properties

2. Update the configuration files as necessary as you complete the rest of the customization procedures
for Open Data Analytics for z/OS.

If necessary, remember to complete step “2.b” on page 30 now. Also, set and export the
SPARK_CONF_DIR environment variable as described in step “3” on page 33 of “Creating the Apache
Spark configuration directory” on page 33.

What to do next
Continue with “Creating the Apache Spark working directories” on page 35.

Creating the Apache Spark working directories
Complete this task to create the Apache Spark working directories.

About this task
Table 3 on page 35 lists some of the working directories that Apache Spark uses. The sizes of these
directories might need to be large depending on the type of work that is running; this is true particularly
for the SPARK_LOCAL_DIRS directory.

Table 3. Apache Spark working directories

Directory contents Default location Environment variable Suggested new
directory

Log files $SPARK_HOME/logs SPARK_LOG_DIR Under /var, such
as /var/spark/logs

Working data for the
worker process

$SPARK_HOME/work SPARK_WORKER_DIR Under /var, such
as /var/spark/work

Shuffle and RDD data /tmp SPARK_LOCAL_DIRS Under /tmp,
such as /tmp/spark/
scratch

PID files /tmp SPARK_PID_DIR Under /tmp, such
as /tmp/spark/pid

Procedure
1. As you did in “Creating the Apache Spark configuration directory” on page 33, follow your file system

conventions and create new working directories for Apache Spark.

Note: Consider mounting the $SPARK_WORKER_DIR and $SPARK_LOCAL_DIRS directories on
separate zFS file systems to avoid uncontrolled growth on the primary zFS where Spark is located.
The sizes of these zFS file systems depend on the activity level of your applications and whether
auto-cleanup or rolling logs is enabled (see step “4” on page 36). If you are unsure about the sizes,
500 MB is a good starting point. Then, monitor the growth of these file systems and adjust their sizes

Chapter 4. Customizing your environment for z/OS Spark 35

http://spark.apache.org/docs/2.4.8/sql-programming-guide.html
http://spark.apache.org/docs/2.4.8/sql-programming-guide.html

accordingly. Avoid using temporary file systems (TFS) for these directories if you expect significant
growth, as TFS can use a large amount of real memory.

2. Give the following users read/write access to the newly created working directories:

• The user ID who runs z/OS Spark (SPARKID in these examples)
• The end user IDs who will be using z/OS Spark.

Assuming those users belong to the same UNIX user group, you may issue:

chmod ug+rwx /var/spark/logs
chmod ug+rwx /var/spark/work
chmod ug+rwx /tmp/spark/scratch
chmod ug+rwx /tmp/spark/pid

3. Update the $SPARK_CONF_DIR/spark-env.sh script with the new environment variables pointing
to the newly created working directories.
For example:

export SPARK_WORKER_DIR=/var/spark/work

4. Configure these directories to be cleaned regularly.
a) Configure Spark to perform cleanup.

By default, Spark does not regularly clean up worker directories, but you can configure it to do so.
Change the following Spark properties in $SPARK_CONF_DIR/spark-defaults.conf to values
that support your planned activity, and monitor these settings over time:
spark.worker.cleanup.enabled

Enables periodic cleanup of worker and application directories. This is disabled by default. Set
to true to enable it.

spark.worker.cleanup.interval
The frequency, in seconds, that the worker cleans up old application work directories. The
default is 30 minutes. Modify the value as you deem appropriate.

spark.worker.cleanup.appDataTtl
Controls how long, in seconds, to retain application work directories. The default is 7 days,
which is generally inadequate if Spark jobs are run frequently. Modify the value as you deem
appropriate.

For more information about these properties, see http://spark.apache.org/docs/2.4.8/spark-
standalone.html.

b) Configure Spark to enable rolling log files.

Be default, Spark retains all of the executor log files. You can change the following Spark properties
in $SPARK_CONF_DIR/spark-defaults.conf to enable rolling of executor logs:

spark.executor.logs.rolling.maxRetainedFiles
Sets the number of latest rolling log files that are going to be retained by the system. Older log
files will be deleted. The default is to retain all log files.

spark.executor.logs.rolling.strategy
Sets the strategy for rolling of executor logs. By default, it is disabled. The valid values are:
time

Time-based rolling. Use spark.executor.logs.rolling.time.interval to set the
rolling time interval.

size
Size-based rolling. Use spark.executor.logs.rolling.maxSize to set the maximum
file size for rolling.

spark.executor.logs.rolling.time.interval
Sets the time interval by which the executor logs will be rolled over. Valid values are:

• daily

36 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

http://spark.apache.org/docs/2.4.8/spark-standalone.html
http://spark.apache.org/docs/2.4.8/spark-standalone.html

• hourly
• minutely
• Any number of seconds

spark.executor.logs.rolling.maxSize
Sets the maximum file size, in bytes, by which the executor logs will be rolled over.

For more information about these properties, see http://spark.apache.org/docs/2.4.8/
configuration.html.

c) Create jobs that clean up or archive the following directories listed in Table 3 on page 35:

$SPARK_LOG_DIR
$SPARK_WORKER_DIR, if not configured to be cleaned by Spark properties
$SPARK_LOCAL_DIRS

z/OS UNIX ships a sample script, skulker, that you can use as written or modify to suit your
needs. The -R option can be useful, as Spark files are often nested in subdirectories. You can
schedule skulker to run regularly from cron or other in-house automation tooling. You can find
a sample skulker script in the /samples directory. For more information about skulker, see
"skulker - Remove old files from a directory" in z/OS UNIX System Services Command Reference.

5. Optional: Periodically check all file systems involved in Spark (such as $SPARK_HOME and any others
mounted under it or elsewhere).

• You can specify the FSFULL parameter for a file system to that it generates operator messages as the
file system reaches a user-specified threshold.

• Look for the number of extents, which can impact I/O performance for the disks involved. Perform
these steps to reduce the number of extents:

a. Create and mount a new zFS.
b. Use copytree, tar, or similar utilities to copy the key directories from the old file system to the

new one.
c. Unmount the old file system and re-mount the new file system in its place.

For more information, see "Managing File System Size" in z/OS DFSMSdfp Advanced Services.

Note: Update the BPXPRMxx member of parmlib with the new file systems.

Results
You have completed the customization of your Apache Spark directory structure.

What to do next
Continue with “Configuring networking for Apache Spark” on page 37.

Configuring networking for Apache Spark
Complete this task to configure the port access and other networking customization that Apache Spark
requires.

About this task
Apache Spark makes heavy use of the network for communication between various processes, as shown
in Figure 2 on page 38.

Chapter 4. Customizing your environment for z/OS Spark 37

http://spark.apache.org/docs/2.4.8/configuration.html
http://spark.apache.org/docs/2.4.8/configuration.html

Figure 2. Network ports used in a typical Apache Spark environment

These ports are further described in Table 4 on page 38 and Table 5 on page 39, which list the ports
that Spark uses, both on the cluster side and on the driver side.

Table 4. Network ports used by the Spark cluster

Port name Default port
number

Configuration property* Notes

Master web UI 8080 spark.master.ui.port or
SPARK_MASTER_WEBUI_PORT

The value set by the
spark.master.ui.port property
takes precedence.

Worker web UI 8081 spark.worker.ui.port or
SPARK_WORKER_WEBUI_PORT

The value set by the
spark.worker.ui.port takes
precedence.

History server web
UI

18080 spark.history.ui.port Optional; only applies if you use the
history server.

38 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Table 4. Network ports used by the Spark cluster (continued)

Port name Default port
number

Configuration property* Notes

Master port 7077 SPARK_MASTER_PORT SPARK_MASTER_PORT (or the
default, 7077) is the starting point
for connection attempts and not the
actual port that might be connected.
In addition, the value can be 0, which
means it uses a random port number.
Therefore, SPARK_MASTER_PORT (or
the default, 7077) might not be the
port that is used for the master. This
statement is true for all methods
of starting the master, including
BPXBATCH, the start*.sh scripts,
and the started task procedure.

Note: You should not choose 0 for
SPARK_MASTER_PORT if you intend
to use client authentication.

Master REST port 6066 spark.master.rest.port Not needed if the REST service is
disabled. If you wish to use the
REST service and are planning to use
authentication, you should configure
AT-TLS port authentication for this
port. Note that as of APAR PH03469,
it is disabled by default.

Worker port (random) SPARK_WORKER_PORT

Block manager port (random) spark.blockManager.port

External shuffle
server

7337 spark.shuffle.service.po
rt

Optional; only applies if you use the
external shuffle service.

PySpark daemon (random) spark.python.daemon.port Optional; only applies if you use
PySpark. APAR PI98042 (for Spark
2.2.0) is required to use this property.

Table 5. Network ports used by the Spark driver

Port name Default port
number

Configuration property* Notes

Application web UI 4040 spark.ui.port

Driver port (random) spark.driver.port

Block manager port (random) spark.blockManager.port The value set by the
spark.driver.blockManager.po
rt property takes precedence

Driver block
manager port

(Value of
spark.block
Manager.por
t)

spark.driver.blockManage
r.port

 If
spark.driver.blockManager.po
rt is not set, the
spark.blockManager.port
configuration is used.

Chapter 4. Customizing your environment for z/OS Spark 39

*The Spark properties in the Configuration property column can either be set in the spark-
defaults.conf file (if listed in lower case) or in the spark-env.sh file (if listed in upper case).

Spark must be able to bind to all the required ports. If Spark cannot bind to a specific port, it
tries again with the next port number. (+1). The maximum number of retries is controlled by the
spark.port.maxRetries property (default: 16) in the spark-defaults.conf file.

Note: The external shuffle server port does not support the port binding retries functionality.

The port binding retries functionality also implies a limit on the number of simultaneous
instances of those ports across all Spark processes that use the same configuration. Assume the
spark.port.maxRetries property is at default (16), here are a few examples:

• If the Spark application web UI is enabled, which it is by default, there can be no more than 17 Spark
applications running at the same time, due to the 18th Spark driver process will fail to bind to an
Application UI port.

• When both spark.blockManager.port and spark.driver.blockManager.port are set, there
can be no more than 17 executor processes running at the same time, because the 18th executor
process will fail to bind to a Block manager port.

• When spark.blockManager.port is set but spark.driver.blockManager.port is not set, the
combined total of executor and driver processes cannot exceed 17, as the 18th process will fail to bind
to a Block manager port.

Careful consideration is needed and you may need to increase the spark.port.maxRetries value
if you are going to run multiple Spark applications at the same time, and/or planning to utilize a high
number of executors within the cluster simultaneously.

Procedure
1. For your planned deployment and ecosystem, consider any port access and firewall implications for

the ports listed in Table 4 on page 38 and Table 5 on page 39, and configure specific port settings, as
needed.
For instance, if your application developers need to access the Spark application web UI from outside
the firewall, the application web UI port must be open on the firewall.

Each time a Spark process is started, a number of listening ports are created that are specific to the
intended function of that process. Depending on your site networking policies, limit access to all ports
and permit access for specific users or applications.

On z/OS, you can use settings in z/OS Communications Server and RACF to enforce controls. For
instance, you can specify PORT UNRSV DENY in your TCPIP.PROFILE to deny all applications access
to unreserved ports for TCP or UDP. You can also specify PORT UNRSV SAF to grant specific access
to specific users, such as the user ID that starts the Spark cluster and the Spark users. For more
information about the PORT statement, see z/OS Communications Server: IP Configuration Reference.

2. Consider your planned usage of the REST server.

The REST server interface, which listens on port 6066 by default, is currently disabled by default. As
of APAR PH03469, the REST server supports TLS client authentication and Spark applications can be
submitted through this interface.

3. Configure Spark environment variables for common enterprise networking configurations.
You can set each of the following environment variables in the spark-env.sh file:
SPARK_PUBLIC_DNS

For environments that use network address translation (NAT), set SPARK_PUBLIC_DNS to the
external host name to be used for the Spark web UIs. SPARK_PUBLIC_DNS sets the public DNS
name of the Spark master and workers. This allows the Spark Master to present in the logs a URL
with the host name that is visible to the outside world.

SPARK_LOCAL_IP
Set the SPARK_LOCAL_IP environment variable to configure Spark processes to bind to a specific
and consistent IP address when creating listening ports.

40 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

SPARK_MASTER_HOST
On systems with multiple network adaptors, Spark might attempt the default setting and give up if
it does not work. Set the SPARK_MASTER_HOST (known as SPARK_MASTER_IP prior to Spark 2.0)
to avoid this.

What to do next
Continue with “Configuring z/OS Spark client authentication” on page 41.

Configuring z/OS Spark client authentication
Complete the following tasks to enable authentication for connections to the Spark master port.

z/OS Spark client authentication is enabled by default. Spark does not function properly until you
complete the setup for client authentication or disable the client authentication function.

The z/OS UNIX System Services APAR OA57666 is required for z/OS Spark client authentication to work
properly.

If you want to defer the use of client authentication (for instance, for early testing in a secure
test environment), you can disable this function by setting the following property in the spark-
defaults.conf file.

spark.zos.master.authenticate false

Note: If client authentication is disabled and you start your Spark cluster and driver under different user
IDs, then some functions, such as the spark-sql command line interface, might not work properly. This
is because the directories that are created by the Spark cluster might not be permissible to the Spark
driver.

If client authentication is enabled, you can specify one of the following client authentication methods:
Application Transparent Transport Layer Security (AT-TLS)

This is the default Spark client authentication method that uses digital certificates along with AT-TLS.
You need to set up digital certificates for the Spark cluster and its users, as well as an AT-TLS policy.

Trusted Partner
If all connections to the master port are internal, then you can consider using the Trusted
Partner client authentication method, which doesn't require client certificates. However, this method
continues to use AT-TLS for server authentication. A connection is internal if both endpoints belong in
the same sysplex, the data flowing through the connection is never exposed outside of the sysplex,
and the link or interface that is used is one of the following types:

• CTC
• HiperSockets interface (iQDIO)
• MPCPTP (including XCF and IUTSAMEH)
• OSA-Express QDIO with CHPID type OSX or OSM
• Loopback
• Both connection partners are owned by the same multihomed stack

Trusted Partner requires additional security configuration for the cluster and its users.

For more information about internal connections, see "Sysplex-specific connection routing
information" in z/OS Communications Server: IP Programmer's Guide and Reference.

You can specify the wanted authentication method (ATTLS or TrustedPartner) in the spark-
defaults.conf file. For example:

spark.zos.master.authenticate.method ATTLS

The APAR PI89136 is required to use Trusted Partner client authentication method.

Chapter 4. Customizing your environment for z/OS Spark 41

Note: The workers must have the same spark.zos.master.authenticate and
spark.zos.master.authenticate.method options as the master in order for the worker to register.

Note: APAR PH01619 adds a restriction of registering workers with the master. In order
to register workers with masters, they must contain the same authentication configurations,
spark.zos.master.authenticate and spark.zos.master.authenticate.method; otherwise, they will be
rejected with one of the following messages (and it will appear in the worker log):

• Master's client authentication does not match Worker's
• Master's client authentication method does not match Worker's

About Application Transparent Transport Layer Security (AT-TLS)
AT-TLS is a z/OS Communications Server feature that transparently implements the TLS protocol in the
TCP layer of the stack. As defined by the TLS protocol, AT-TLS uses digital certificates to authenticate the
server and optionally the client, and encrypts the data that is flowing between the server and the client.

During client authentication, the Spark master acts as a server and accepts connections from the Spark
worker and Spark users, which act as clients. Once the Spark master validates the client’s digital
certificate, a secure connection will be established and all subsequent data-flow between the server
and the client will be encrypted.

For more information about AT-TLS, see "Application Transparent Transport Layer Security data
protection" in z/OS Communications Server: IP Configuration Guide.

Using AT-TLS as the client authentication method
You can use AT-TLS with level 2 client authentication to secure communications between the Spark
master and its clients. Specifically, you can create digital certificates for end users and use the certificates
to authenticate those users when they connect to the Spark master port. Each of the certificates must
map to a valid z/OS user ID, as required by level 2 client authentication. When a client attempts to
connect to the Spark master port, the Spark master daemon queries AT-TLS to ensure that the following
conditions exist:

• Communication between the client and the server is encrypted.
• A trusted relationship is established.
• A client certificate is matched to a local z/OS user ID.

Using Trusted Partner as the client authentication method
Using AT-TLS as the client authentication method requires a digital certificate for each user that is
connecting to the Spark master port. If you know that all connections to the master port are internal, you
can consider using the Trusted Partner client authentication method instead, which doesn't require client
certificates. However, this method continues to use AT-TLS for server authentication.

Complete the following tasks to configure client authentication for Spark on z/OS.

Note: These tasks show examples using RACF commands and configurations. If you use a different
security product, use the equivalent SAF facilities for that product.

__ 1. “Creating and configuring digital certificates and key rings” on page 43
__ 2. “Configuring Policy Agent” on page 46
__ 3. “Defining security authorization for Policy Agent” on page 47
__ 4. “Creating the Policy Agent configuration files” on page 48
__ 5. “Configuring PROFILE.TCPIP for AT-TLS” on page 49
__ 6. “Defining the AT-TLS policy rules” on page 49
__ 7. “Starting and stopping Policy Agent” on page 53
__ 8. “Configuring additional authorities and permissions for the Spark cluster” on page 53

42 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

__ 9. “Starting the Spark cluster” on page 57

Creating and configuring digital certificates and key rings
Complete this task to create and configure digital certificates and key rings that are needed for z/OS Spark
client authentication.

About this task
The TLS protocol relies on digital certificates that are signed by a trusted certificate authority (CA) to
authenticate the end points. The following configuration uses an internal CA. You might consider using
an internal CA when only users within your company or organization need access to Spark. If you have
already configured an internal CA for use with other products, you can reuse any existing end-user
certificates for Spark.

This configuration uses a one-to-one certificate-to-user ID association. That is, one certificate maps to
one user.

Digital certificates can be managed through RACF, PKI Services, or other security products.

Tip: If you are using AT-TLS as the client authentication method and plan to have a large number of Spark
users (50 or more), consider using PKI Services, which provides additional management functionality for
larger environments.

• For more information about digital certificates in RACF, see "Planning your certificate environment" and
"Setting up your certificate environment" in z/OS Security Server RACF Security Administrator's Guide.

• For more information about PKI Services, see "Introducing PKI Services" in z/OS Cryptographic Services
PKI Services Guide and Reference.

The following steps show examples using RACF commands, and subsequent configuration steps assume
the CA definitions (such as labels) that appear in these examples.

Procedure
1. If you do not already have an internal CA defined, use RACF as the CA to create a CA certificate.

• AT-TLS as the client authentication method:

RACDCERT GENCERT CERTAUTH SUBJECTSDN(OU('SPARK Local CA') O('IBM') C('US'))
WITHLABEL('SPARK Local CA') NOTAFTER(DATE(2030/01/01)) SIZE(1024)

• Trusted partner as the client authentication method:

RACDCERT GENCERT CERTAUTH SUBJECTSDN(OU('SPARK Local CA TP') O('IBM') C('US'))
WITHLABEL('SPARK Local CA TP') NOTAFTER(DATE(2030/01/01)) SIZE(1024)

For more information about the RACDCERT command, see z/OS Security Server RACF Command
Language Reference.

2. Create a server certificate and key ring for the user ID that will be used to start the Spark cluster
(SPARKID in these examples).

• AT-TLS as the client authentication method:

a) Create a certificate for the Spark cluster that is signed by the CA.

RACDCERT GENCERT ID(SPARKID) SIGNWITH(CERTAUTH LABEL('SPARK Local CA'))
KEYUSAGE(HANDSHAKE) WITHLABEL('Spark Server Cert') SUBJECTSDN(CN('SPARK TEST
SERVER') O('IBM') L('Poughkeepsie') SP('New York') C('US'))
NOTAFTER(DATE(2030/01/01))

b) Create an SSL keyring (SparkRing in these examples).

RACDCERT ADDRING(SparkRing) ID(SPARKID)

c) Connect the Spark server certificate to the SSL key ring.

Chapter 4. Customizing your environment for z/OS Spark 43

RACDCERT ID(SPARKID) CONNECT(ID(SPARKID) LABEL('Spark Server Cert')
 RING(SparkRing) USAGE(PERSONAL) DEFAULT)

d) Connect the CA certificate to the SSL key ring.

RACDCERT ID(SPARKID) CONNECT(CERTAUTH LABEL('SPARK Local CA') RING(SparkRing))

e) Allow the Spark cluster ID (SPARKID) to access its key ring.

PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(SPARKID)
ACCESS(READ)
PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(SPARKID)
ACCESS(READ)

f) Refresh the RACF FACILITY class profiles.

SETROPTS RACLIST(FACILITY) REFRESH

You can issue the following command to verify your setup:

RACDCERT LISTRING(SparkRing) ID(SPARKID)

• Trusted partner as the client authentication method:

a) Create a server certificate that is signed by the CA.

RACDCERT GENCERT ID(SPARKID) SIGNWITH(CERTAUTH LABEL('SPARK Local CA TP'))
KEYUSAGE(HANDSHAKE) WITHLABEL('Spark Server Cert TP') SUBJECTSDN(CN('SPARK TEST
SERVER') O('IBM') L('Poughkeepsie') SP('New York') C('US'))
NOTAFTER(DATE(2030/01/01))

b) Create an SSL keyring (SparkRingTP in these examples).

RACDCERT ADDRING(SparkRingTP) ID(SPARKID)

c) Connect the Spark server certificate to the SSL key ring.

RACDCERT ID(SPARKID) CONNECT(ID(SPARKID) LABEL('Spark Server Cert TP')
RING(SparkRingTP) USAGE(PERSONAL) DEFAULT)

d) Connect the CA certificate to the SSL key ring.

RACDCERT ID(SPARKID) CONNECT(CERTAUTH LABEL('SPARK Local CA TP') RING(SparkRingTP))

e) Allow the Spark cluster ID (SPARKID) to access its key ring.

PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(SPARKID)
ACCESS(READ)
PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(SPARKID)
ACCESS(READ)

f) Refresh the RACF FACILITY class profiles.

SETROPTS RACLIST(FACILITY) REFRESH

You can issue the following command to verify your setup:

RACDCERT LISTRING(SparkRingTP) ID(SPARKID)

3. Configure the Spark end users (SPARKUSR in these examples).

• AT-TLS as the client authentication method:

Create and connect a client certificate and a key ring for each Spark end user.

a) Create a client certificate that is signed by the CA.

44 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

RACDCERT GENCERT ID(SPARKUSR) SIGNWITH(CERTAUTH LABEL('SPARK Local
CA')) KEYUSAGE(HANDSHAKE) WITHLABEL('Spark Client Cert')
SUBJECTSDN(CN('SPARK TEST SERVER') O('IBM') L('Poughkeepsie') SP('New
York') C('US')) NOTAFTER(DATE(2030/01/01))

Note: For end users who will be using off-platform Jupyter Notebook environments to connect to
Spark on this z/OS system, export their certificates and send them to the system administrator of
the system from which those clients will connect (for instance, a distributed system administrator
for JupyterHub or a z/OS system administrator using a different security database). The remote
system administrator will need to set up these client certificates to be used when connecting to this
z/OS system. Specifically, to export the client certificate (public and private key) and CA certificate
(public key) into a PKCS#12 (.p12) certificate package, issue the following RACF command:

RACDCERT EXPORT(LABEL('Spark Client Cert')) ID(SPARKUSR)
 DSN('SPARKADM.SPARKUSR.P12') FORMAT(PKCS12DER) PASSWORD('password')

In this example:
SPARKADM

The system programmer who is configuring certificates.
SPARKUSR

The end user.
password

The password used to access the contents of the package.
This creates a p12 package in the SPARKADM.SPARKUSR.P12 data set.

b) Create an SSL keyring. The same key ring name (SparkRing) is used here for setup simplicity.

RACDCERT ADDRING(SparkRing) ID(SPARKUSR)

c) Connect the client certificate to the end user's key ring.

RACDCERT ID(SPARKUSR) CONNECT(ID(SPARKUSR) LABEL('Spark Client Cert')
RING(SparkRing) USAGE(PERSONAL) DEFAULT)

d) Connect the CA certificate to the end user's key ring.

RACDCERT ID(SPARKUSR) CONNECT(CERTAUTH LABEL('SPARK Local CA')
RING(SparkRing))

e) Allow the end user's user ID to access its key ring.

PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(SPARKUSR) ACCESS(READ)
PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(SPARKUSR) ACCESS(READ)

f) Refresh the RACF FACILITY class profiles

SETROPTS RACLIST(RDATALIB) REFRESH

• Trusted partner as the client authentication method:

With Trusted Partner as the client authentication method, you do not need to setup client certificate
for each end user. Instead, you give the clients access to the CA's virtual key ring. The clients
need to have access to the CA's certificate on the key ring to validate the server's certificate. You
can accomplish this by administering a profile in either the FACILITY or the RDATALIB class. Using
the FACILITY class provides global control of all rings, whereas using the RDATALIB class provides
granular control of a specific ring. The RDATALIB class profile takes precedence over the FACILITY
class profile if both are defined.

• When using the RDATALIB class:

RDEFINE RDATALIB CERTIFAUTH.IRR_VIRTUAL_KEYRING.LST UACC(NONE)
PERMIT CERTIFAUTH.IRR_VIRTUAL_KEYRING.LST CLASS(RDATALIB) ID(SPARKUSR)

Chapter 4. Customizing your environment for z/OS Spark 45

ACCESS(READ)
SETROPTS RACLIST(RDATALIB) REFRESH

Note: If the RDATALIB class is not already active, activate and RACLIST it first:

SETROPTS CLASSACT(RDATALIB) RACLIST(RDATALIB)
SETROPTS RACLIST(RDATALIB) REFRESH

• When using the FACILITY class:

PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(SPARKUSR) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

For more information about virtual key rings, see "RACF and key rings" in z/OS Security Server RACF
Security Administrator's Guide.

What to do next
Continue with “Configuring Policy Agent” on page 46.

Configuring Policy Agent
Complete this task to configure Policy Agent to run as a z/OS started task. You can skip this task if a Policy
Agent started task is already configured on your system.

About this task
Policy Agent reads, parses, and installs AT-TLS policies in the TCP/IP stack. The policies contain
information that is necessary to negotiate secure connections.

Policy Agent runs as a z/OS UNIX process, so it can be started either from the z/OS UNIX shell or as a
z/OS started task. This task uses a z/OS started task procedure to start Policy Agent.

For more information about Policy Agent and running Policy Agent as a started task, see "Policy Agent and
policy applications" in z/OS Communications Server: IP Configuration Reference.

Procedure
Create the following sample procedure to start Policy Agent as a z/OS started task.

//PAGENT PROC
//PAGENT EXEC PGM=PAGENT,REGION=0K,TIME=NOLIMIT,
// PARM=('ENVAR("_CEE_ENVFILE=DD:STDENV")/-l SYSLOGD')
//*
//* For information on the above environment variables, refer to the
//* IP CONFIGURATION GUIDE. Other environment variables can also be
//* specified via STDENV.
//*
//* UNIX file containing environment variables:
//STDENV DD PATH='/etc/pagent.env',PATHOPTS=(ORDONLY)
//*
//* Output written to stdout and stderr goes to the data set or
//* file specified with SYSPRINT or SYSOUT, respectively. But
//* normally, PAGENT doesn't write output to stdout or stderr.
//* Instead, output is written to the log file, which is specified
//* by the PAGENT_LOG_FILE environment variable, and defaults to
//* /tmp/pagent.log. When the -d parameter is specified, however,
//* output is also written to stdout.
//*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)

In this example, /etc/pagent.env points to the Policy Agent environment file.

• For more information about starting Policy Agent as a z/OS started task, see "Starting Policy Agent as a
started task" in z/OS Communications Server: IP Configuration Reference.

46 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

• For more information about starting Policy Agent from the z/OS UNIX shell, see "Starting Policy Agent
from the z/OS Shell" in z/OS Communications Server: IP Configuration Reference.

Tip: For information about the overall configuration of Policy Agent, see "Steps for configuring the Policy
Agent" in z/OS Communications Server: IP Configuration Guide.

What to do next
Before you can start Policy Agent, you must define the appropriate security authorizations.

Continue with “Defining security authorization for Policy Agent” on page 47.

Defining security authorization for Policy Agent
Complete this task to define the appropriate security authorizations for Policy Agent.

About this task
The policies managed by Policy Agent can significantly affect system operation. Therefore, you must
restrict the list of z/OS user IDs under which Policy Agent is allowed to run. To do this, you must define
certain resources and controls in your system’s security management product, such as RACF.

Procedure
Complete the following steps to set up security definitions for Policy Agent in RACF.
1. Define the PAGENT user ID.

In this example, Policy Agent runs under the z/OS user ID named PAGENT and has a default group
(DFLTGRP) of OMVSGRP and an OMVS segment with a UID of 0.

ADDUSER PAGENT DFLTGRP(OMVSGRP) OMVS(UID(0) HOME('/'))

2. Define the PAGENT started task to RACF.

In this example, Policy Agent runs as a z/OS started task named PAGENT. To define the Policy Agent
started task to RACF, use the RDEFINE command to create the PAGENT.* profile in the STARTED
class. (The SETROPTS commands are included for completeness. These commands have no effect
when the STARTED class is already activated.)

SETROPTS CLASSACT(STARTED)
SETROPTS RACLIST(STARTED)
SETROPTS GENERIC(STARTED)
RDEFINE STARTED PAGENT.* STDATA(USER(PAGENT))
SETROPTS RACLIST(STARTED) REFRESH
SETROPTS GENERIC(STARTED) REFRESH

3. Grant Policy Agent the ability to make socket requests during TCP/IP stack initialization.

A TCP/IP stack initializes before Policy Agent installs policies into the stack. During the initialization
window, only user IDs that are permitted to the EZB.INITSTACK.sysname.tcpname profile in the
SERVAUTH class can make socket requests.

The following example shows the RACF commands to define a generic EZB.INITSTACK.** resource
profile and grants READ access to the PAGENT user ID.

SETROPTS GENERIC(SERVAUTH)
SETROPTS CLASSACT(SERVAUTH) RACLIST(SERVAUTH)
RDEFINE SERVAUTH EZB.INITSTACK.** UACC(NONE)
PERMIT EZB.INITSTACK.** CLASS(SERVAUTH) ACCESS(READ) ID(PAGENT)
SETROPTS RACLIST(SERVAUTH) REFRESH

In addition to PAGENT, also grant READ access to the following applications:

• OMPROUTE
• SNMP agent and subagents

Chapter 4. Customizing your environment for z/OS Spark 47

• NAMED
• Other applications that do not require AT-TLS but that you want to start prior to general applications

4. Grant access to authorized users to manage the PAGENT started task.

To restrict management access to the PAGENT started task, define a MVS.SERVMGR.PAGENT profile in
the OPERCMDS resource class and permit authorized users access to this profile, as in the following
example:

SETROPTS CLASSACT(OPERCMDS)
SETROPTS RACLIST (OPERCMDS)
RDEFINE OPERCMDS (MVS.SERVMGR.PAGENT) UACC(NONE)
PERMIT MVS.SERVMGR.PAGENT CLASS(OPERCMDS) ACCESS(CONTROL) ID(PAGENT)
SETROPTS RACLIST(OPERCMDS) REFRESH

5. Consider restricting access to the pasearch command.

You can use the z/OS UNIX pasearch command to display policy definitions. The output from
this command indicates whether policy rules are active and shows the policy definition attributes.
However, you might not want every user to be able to see the policy definitions. To restrict access
to the pasearch command, define an appropriate resource profile in the SERVAUTH resource class,
as described in step 1 of "Steps for configuring the Policy Agent" in z/OS Communications Server: IP
Configuration Guide.

What to do next

Continue with “Creating the Policy Agent configuration files” on page 48.

Creating the Policy Agent configuration files
Complete this task to create Policy Agent configuration files.

About this task
You can use the IBM Configuration Assistant for z/OS Communications Server to update the Policy Agent
configuration files, or you can update them manually. For more information, see "Options for configuring
AT-TLS security" in z/OS Communications Server: IP Configuration Guide.

Procedure
1. Create a file to contain the environment variable that points to the PAGENT configuration file.

The default configuration file is /etc/pagent.env, but you can specify a different location in the
Policy Agent started task JCL that you created in “Configuring Policy Agent” on page 46.

In this example, the pagent.env file defines the following PAGENT environment variables:
PAGENT_CONFIG_FILE

Points to the PAGENT configuration file (pagent.conf)
PAGENT_LOG_FILE

Points to the PAGENT log file. In this example, Policy Agent logs messages to the syslog daemon
and is the recommended practice. For information about setting up the syslog daemon, see
"Configuring the syslog daemon" in z/OS Communications Server: IP Configuration Guide.

LIBPATH
Policy Agent needs access to one or more DLLs at run time. Set the LIBPATH environment variable
to include the /usr/lib directory, which normally includes all of the required DLLs.

TZ
Defines the local time zone.

PAGENT_CONFIG_FILE=/etc/pagent.conf
PAGENT_LOG_FILE=SYSLOGD

48 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

LIBPATH=/usr/lib
TZ=EST5EDT

2. Create the PAGENT configuration file (pagent.conf).

The following example shows the contents of the pagent.conf file:

LOGLEVEL 511 turns on all trace levels for Policy Agent
LOGLEVEL 511
TcpImage TCPIP FLUSH PURGE
TTLSConfig /etc/pagent/TCPIP_TTLS.policy

The /etc/pagent/TCPIP_TTLS.policy file is the AT-TLS policy to be defined in “Defining the
AT-TLS policy rules” on page 49.

What to do next

Continue with “Configuring PROFILE.TCPIP for AT-TLS” on page 49.

Configuring PROFILE.TCPIP for AT-TLS
Complete this task to configure TCP/IP to enable AT-TLS support.

About this task
You must enable AT-TLS support in the TCP/IP profile data set (PROFILE.TCPIP).

Procedure
Add the following statement to the PROFILE.TCPIP data set to enable AT-TLS support:

TCPCONFIG TTLS

For more information about the TCPCONFIG TTLS statement, see z/OS Communications Server: IP
Configuration Reference.

Wait until you finish “Defining the AT-TLS policy rules” on page 49 before recycling TCP/IP or refreshing
its profile.

What to do next

Continue with “Defining the AT-TLS policy rules” on page 49.

Defining the AT-TLS policy rules
Complete this task to define the AT-TLS policy rules in the policy configuration file.

About this task
An AT-TLS policy configuration file contains the AT-TLS rules that identify specific types of TCP traffic,
along with the type of TLS/SSL to be applied to those connections. If a rule match is found, AT-TLS
transparently provides TLS protocol control for the connection based on the security attributes that are
specified in the actions that are associated with the rule.

Procedure
1. Configure your AT-TLS policy rules.

The content of your AT-TLS policy depends on the Spark client authentication method that you choose.

Sample AT-TLS policies are provided in Appendix B, “Sample configuration and AT-TLS policy rules
for z/OS Spark client authentication,” on page 163. For more information about AT-TLS policy file

Chapter 4. Customizing your environment for z/OS Spark 49

syntax, structure, and the like, see "AT-TLS policy configuration" in z/OS Communications Server: IP
Configuration Guide.

• AT-TLS as the client authentication method:

a. Create the PortGroup and the associated PortRange statements. By default Spark uses port
7077 as the master port, and supports port binding retries via the spark.port.maxRetries
configuration setting (default: 16) mentioned in the previous section. Hence, we include the initial
value and the entire retry range in the PortRange statement.

PortGroup SparkClusterGrp_ATTLS
{
 PortRangeRef SparkMaster_ATTLS
}
PortRange SparkMaster_ATTLS
{
 Port 7077-7093
}

You may optionally include the Master REST port (default: 6066, supports port binding
retries) and the External shuffle server port (default: 7337) in the PortGroup by creating the
corresponding PortRange statements and reference to them:

PortGroup SparkClusterGrp_ATTLS
{
 PortRangeRef SparkMaster_ATTLS
 PortRangeRef SparkMasterRest_ATTLS
 PortRangeRef SparkExtShuffleServer_ATTLS
}
PortRange SparkMaster_ATTLS
{
 Port 7077-7093
}
PortRange SparkMasterRest_ATTLS
{
 Port 6066-6082
}
PortRange SparkExtShuffleServer_ATTLS
{
 Port 7337
}

Note: If the Master REST port is protected by the AT-TLS policy rules then it will not be accessible
from outside of the sysplex (e.g., from a web browser) until you export the client certificates
into a, for example, PKCS#12 (.p12) certificate package. For instructions, see “Creating and
configuring digital certificates and key rings” on page 43.

b. Define the Inbound and Outbound rules for the port
group, and the associated TTLSGroupAction(GroupAct_TTLS_On)
and TTLSEnvironmentAction(EnvAct_SparkServer_ATTLS and
EnvAct_SparkClient_ATTLS) when the rules are triggered.

TTLSRule SparkServer_ATTLS
{
 Direction Inbound
 LocalPortGroupRef SparkClusterGrp_ATTLS
 TTLSGroupActionRef GroupAct_TTLS_On
 TTLSEnvironmentActionRef EnvAct_SparkServer_ATTLS
}
TTLSRule SparkClient_ATTLS
{
 Direction Outbound
 RemotePortGroupRef SparkClusterGrp_ATTLS
 TTLSGroupActionRef GroupAct_TTLS_On
 TTLSEnvironmentActionRef EnvAct_SparkClient_ATTLS
}

50 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

c. Create the TTLSGroupAction statement. This statement enables TLS security for the selected
connections.

TTLSGroupAction GroupAct_TTLS_On
{
 TTLSEnabled On
}

d. Create the corresponding TTLSEnvironmentAction statements for the Inbound and
Outbound TTLSRules. The server side (Inbound) assumes the ServerWithClientAuth
handshake role and the client side (Outbound) assumes the Client role. For
simplicity, both sides use the same TTLSKeyRingParmsRef(KeyRing_ATTLS) and
TTLSEnvironmentAdvancedParmsRef(EnvAdv_TLS).

TTLSEnvironmentAction EnvAct_SparkServer_ATTLS
{
 HandshakeRole ServerWithClientAuth
 EnvironmentUserInstance 0
 TTLSKeyRingParmsRef KeyRing_ATTLS
 TTLSEnvironmentAdvancedParmsRef EnvAdv_TLS
}
TTLSEnvironmentAction EnvAct_SparkClient_ATTLS
{
 HandshakeRole Client
 EnvironmentUserInstance 0
 TTLSKeyRingParmsRef KeyRing_ATTLS
 TTLSEnvironmentAdvancedParmsRef EnvAdv_TLS
}

e. Create the TTLSKeyRingParm sand TTLSEnvironmentAdvancedParms statements. Use the
same SSL keyring name (SparkRing) as during the server/client certificate creation steps in
the previous section. ClientAuthType of SAFCheck is needed to enforce level 2 client
authentication.

TTLSKeyRingParms KeyRing_ATTLS
{
 Keyring SparkRing
}
TTLSEnvironmentAdvancedParms EnvAdv_TLS
{
 ClientAuthType SAFCheck
 TLSv1 Off
 TLSv1.1 Off
 TLSv1.2 On
}

• Trusted Partner as the client authentication method:

a. Create the PortGroup and the associated PortRange statements. By default Spark uses port
7077 as the master port, and supports port binding retries via the spark.port.maxRetries
configuration setting (default: 16). Therefore, include the initial value and the entire retry range in
the PortRange statement.

PortGroup SparkClusterGrp_TP
{
 PortRangeRef SparkMaster_TP
}
PortRange SparkMaster_TP
{
 Port 7077-7093
}

b. Define the Inbound and Outbound rules for the port
group, and the associated TTLSGroupAction(GroupAct_TTLS_On) and
TTLSEnvironmentAction(EnvAct_SparkServer_TP and EnvAct_SparkClient_TP) when
the rules are triggered.

TTLSRule SparkServer_TP
{
 Direction Inbound
 LocalPortGroupRef SparkClusterGrp_TP

Chapter 4. Customizing your environment for z/OS Spark 51

 TTLSGroupActionRef GroupAct_TTLS_On
 TTLSEnvironmentActionRef EnvAct_SparkServer_TP
}
TTLSRule SparkClient_TP
{
 Direction Outbound
 RemotePortGroupRef SparkClusterGrp_TP
 TTLSGroupActionRef GroupAct_TTLS_On
 TTLSEnvironmentActionRef EnvAct_SparkClient_TP
}

c. Create the TTLSGroupAction statement. This statement enables TLS security for the selected
connections.

TTLSGroupAction GroupAct_TTLS_On
{
 TTLSEnabled On
}

d. Create the corresponding TTLSEnvironmentAction statements for the Inbound and Outbound
TTLSRules. The server side (Inbound) assumes the Server handshake role, and uses the SSL
keyring specified in the TTLSKeyRingParms statement (KeyRing_TP) that follows. The client
side (Outbound) assumes the Client role, and uses the CA's virtual key ring to access the
CA's certificate via the “Keyring *AUTH*/*” syntax. For simplicity, both sides use the same
TTLSEnvironmentAdvancedParmsRef(EnvAdv_TLS_TP).

TTLSEnvironmentAction EnvAct_SparkServer_TP
{
 HandshakeRole Server
 EnvironmentUserInstance 0
 TTLSKeyRingParmsRef KeyRing_TP
 TTLSEnvironmentAdvancedParmsRef EnvAdv_TLS_TP
}
TTLSEnvironmentAction EnvAct_SparkClient_TP
{
 HandshakeRole Client
 EnvironmentUserInstance 0
 TTLSKeyRingParms
 {
 Keyring *AUTH*/*
 }
 TTLSEnvironmentAdvancedParmsRef EnvAdv_TLS_TP
}

e. Create the TTLSKeyRingParms and TTLSEnvironmentAdvancedParms statements. Use the
same SSL keyring name (SparkRingTP) as during the server/client certificate creation steps in the
previous section.

TTLSKeyRingParms KeyRing_TP
{
 Keyring SparkRingTP
}
TTLSEnvironmentAdvancedParms EnvAdv_TLS_TP
{
 TLSv1 Off
 TLSv1.1 Off
 TLSv1.2 On
}

2. Recycle TCP/IP to pick up the profile changes that you made earlier, or issue the following MVS system
command to refresh its profile:

VARY TCPIP,,OBEYFILE,DSN=new_tcpip_profile

What to do next

Continue with “Starting and stopping Policy Agent” on page 53.

52 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Starting and stopping Policy Agent
This task assumes that Policy Agent is running as a z/OS started task.

Procedure
• Issue the MVS START command to start Policy Agent as a started task.

For example:

S PAGENT

• To perform a normal shutdown of Policy Agent, issue the MVS STOP command.
For example:

P PAGENT

What to do next
Continue with “Configuring additional authorities and permissions for the Spark cluster” on page 53.

Configuring additional authorities and permissions for the Spark cluster

About this task
Complete this task to configure additional authorities and permissions that are needed within the Spark
cluster.

Note: If you change the authority of an active Spark process, you might need to restart the process for the
change to take effect.

Procedure
1. Ensure that Spark client authentication is enabled.

Spark client authentication is enabled by default. However, you might have disabled it in a controlled
test environment to simplify your initial setup and testing. Enable client authentication now (or verify
that it is still enabled) by setting the following property in the spark-defaults.conf file:

spark.zos.master.authenticate true

2. Specify the Spark client authentication method to use. There are 2 Spark client authentication
methods - AT-TLS (ATTLS), which is the default, and Trusted Partner (TrustedPartner). Specify
spark.zos.master.authenticate.method to be either ATTLS or TrustedPartner in the
spark-defaults.conf file.

• Use AT-TLS as the client authentication method:

spark.zos.master.authenticate.method ATTLS

• Use Trusted Partner as the client authentication method:

spark.zos.master.authenticate.method TrustedPartner

3. Configure the Spark cluster user ID (SPARKID in earlier examples) to have authority to change the
user IDs of the Spark executors to those of the authenticated end user IDs. To do this, configure the
SURROGAT class profile for the surrogate user ID.
For example:
a) Issue the following RACF commands to define a generic profile that allows SPARKID (a non-UID 0

user ID) to switch to any other z/OS user ID that has a defined z/OS UNIX segment:

SETROPTS CLASSACT(SURROGAT) RACLIST(SURROGAT) GENERIC(SURROGAT)
RDEFINE SURROGAT BPX.SRV.** UACC(NONE)

Chapter 4. Customizing your environment for z/OS Spark 53

PERMIT BPX.SRV.** CLASS(SURROGAT) ACCESS(READ) ID(SPARKID)
SETROPTS GENERIC(SURROGAT) RACLIST(SURROGAT) REFRESH

b) Issue the following command to verify that the profile setup is successful:

RLIST SURROGAT BPX.SRV.** AUTHUSER

4. Configure the z/OS system that hosts the Spark cluster to honor ACLs that will be set by the Spark ID
that is running the cluster.
For example, issue the following RACF command:

SETROPTS CLASSACT(FSSEC)

5. Change the permissions on the Spark working directory and Spark local directory so that both
SPARKID and the end users can write to them. This customization assumes that the end user and
the SPARKID belong to the same UNIX group.
Add the sticky bit so that users can only delete their own files. For example, issue the following
commands from the z/OS UNIX shell:

chmod ug+rwx $SPARK_WORKER_DIR
chmod +t $SPARK_WORKER_DIR
chmod ug+rwx $SPARK_LOCAL_DIRS
chmod +t $SPARK_LOCAL_DIRS

Note: If you enabled event logging (as described in “Enabling the Spark history service” on page 142),
perform this step for the event log directory as well.

You can issue the following command to verify the proper settings:

ls -ld $SPARK_WORKER_DIR $SPARK_LOCAL_DIRS

The output should be similar to the following example:

drwxrwxr-t 2 SPARKID SYS1 8192 Aug 8 08:51 /var/spark/work
drwxrwxr-t 2 SPARKID SYS1 8192 Aug 8 08:51 /tmp/spark/scratch

Note: -t in the output can also appear as -T if your userid has a umask that does not set the execute
permission for other users.

6. Grant the Spark cluster user ID READ access to the BPX.SERVER FACILITY class profile, so the Spark
master daemon can verify whether the client is authorized to connect to the master port.

RDEFINE FACILITY BPX.SERVER UACC(NONE)
PERMIT BPX.SERVER CLASS(FACILITY) ID(SPARKID) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

7. If you are using Trusted Partner as the Spark client authentication method, complete the following:
a) Configure the Spark cluster user ID (SPARKID) to have authority to obtain its connection partner's

routing information and security credentials. To do this, grant the user ID READ access to the
following SERVAUTH class profile:

EZB.IOCTL.sysname.tcpprocname.PARTNERINFO

where:
sysname

Specifies the system name that is defined in the sysplex.
tcpprocname

Specifies the TCP/IP procedure name.

Tip: You can specify a wildcard on segments of the profile name.

RDEFINE SERVAUTH EZB.IOCTL.*.*.PARTNERINFO UACC(NONE)
PERMIT EZB.IOCTL.*.*.PARTNERINFO CLASS(SERVAUTH) ID(SPARKID) ACCESS(READ)
SETROPTS RACLIST(SERVAUTH) REFRESH

54 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

b) If the client (Spark driver and worker) is on a different TCP/IP stack than the master daemon, create
a common security daemon name within your sysplex.

RDEFINE SERVAUTH EZBDOMAIN APPLDATA('security_domain_name')
SETROPTS RACLIST(SERVAUTH) REFRESH

where:
security_domain_name

Specifies the name of the security domain. The name is not case sensitive and is limited to 255
characters.

You can display the defined EZBDOMAIN by issuing:

RLIST SERVAUTH EZBDOMAIN

c) Mark the file $SPARK_HOME/lib/zos-native/libspark_zos_ioctl.so as controlled
(trusted), if it is not already.

To verify whether the file has the controlled attribute on, issue the following command:

ls -E $SPARK_HOME/lib/zos-native

The output should be similar to the following:

-rwxr-xr-x -ps- 1 SPARKID SPKGRP 81920 Oct 13 13:43 libspark_zos_ioctl.so

If the file does not have the p extended attribute, then it is not marked as controlled. To mark
the file as controlled, issue the following command from a user ID that has READ access to the
BPX.FILEATTR.PROGCTL resource in the FACILITY profile:

extattr +p $SPARK_HOME/lib/zos-native/libspark_zos_ioctl.so

d) Grant the Spark cluster user ID (SPARKID) and every end user ID (SPARKUSR) READ access to the
AZK.SPARK.MASTER.CONNECT XFACILIT class profile.

RDEFINE XFACILIT AZK.SPARK.MASTER.CONNECT UACC(NONE)
PERMIT AZK.SPARK.MASTER.CONNECT CLASS(XFACILIT) ID(SPARKID) ACCESS(READ)
PERMIT AZK.SPARK.MASTER.CONNECT CLASS(XFACILIT) ID(SPARKUSR) ACCESS(READ)
SETROPTS RACLIST(XFACILIT) REFRESH

e) If you are using started tasks to start the master and worker, after you installed JZOS, you must
define a PROGRAM profile for the JZOS load module (JVMLDM86) and permit SPARKID read access
to the profile.

For example, issue the following RACF commands:

RDEFINE PROGRAM JVMLDM86 ADDMEM('datasetname'/volser/NOPADCHK)
SETROPTS WHEN(PROGRAM) REFRESH
PERMIT JVMLDM86 CLASS(PROGRAM) ID(SPARKID) ACCESS(READ)
SETROPTS WHEN(PROGRAM) REFRESH

For more information about started tasks, see “Setting up started tasks to start and stop Spark
processes ” on page 60.

What to do next
• If you previously completed the overall configuration of z/OS Spark, continue with “Starting the Spark

cluster” on page 57.
• If you have not yet completed your initial configuration of z/OS Spark, continue with “Configuring IBM

Java” on page 57.

Chapter 4. Customizing your environment for z/OS Spark 55

Restricting the ability to start or stop the Spark cluster
Complete this task to restrict the ability to start or stop the Spark cluster components (such as, Master
and Worker) via the shell scripts located in the $SPARK_HOME/sbin directory.

Note: For restricting the ability to start or stop the Spark cluster components via started tasks, see
“Define the RACF started profile for started tasks” on page 63.

About this task
Apache Spark provides Bash shell scripts for starting the individual components, such as the Master, the
Worker, or the History server. However, when carefully allocating resources for the Spark cluster via WLM,
having extra cluster components can disrupt the expected port, storage and zIIP allocations.

Setting the Spark “sbin” directory contents to be unreadable and unexecutable
By default, the contents of the $SPARK_HOME/sbin directory have permissions of “755”, or “rwxr-xr-x”.
To restrict users from starting their own Spark cluster, the permissions of the directory and its contents
can be changed to “700” or “rwx------“. This would prevent users from using the scripts within the
directory to start Spark cluster components, seeing the contents of the Spark “$SPARK_HOME/sbin”
directory, and copying the scripts to their own directories (where they could set their own permissions
and bypass the execution restrictions). Alternately, you could use permission value “750” (or “rwxr-x---”)
in the commands that follow to allow userids within the Spark group to start or stop the Spark cluster
components (and potentially, start their own cluster, as they might do if they were testing a new spark-
defaults.conf setting, for example).

Following are commands to alter permission of sbin:

Assume the zFS file system is SYS1.SPARK.ZFS for Spark and the mountpoint is /usr/lpp/IBM/
izoda/spark/, from TSO OMVS or a Putty session, logged in as the owner of the SPARK_HOME directory:

tsocmd "mount filesystem('SYS1.SPARK.ZFS') type(zfs) mode(rdwr)
mountpoint('/usr/lpp/IBM/izoda/spark')"

cd $SPARK_HOME
chmod -R 700 ./sbin

tsocmd "mount filesystem('SYS1.SPARK.ZFS') type(zfs) mode(read)
mountpoint('/usr/lpp/IBM/izoda/spark')"

Similarly, to back out this change, return to the same OMVS or Putty shell and issue these commands:

tsocmd "mount filesystem('SYS1.SPARK.ZFS') type(zfs) mode(rdwr)
mountpoint('/usr/lpp/IBM/izoda/spark')"

cd $SPARK_HOME
chmod -R 755 ./sbin

tsocmd "mount filesystem('SYS1.SPARK.ZFS') type(zfs) mode(read)
mountpoint('/usr/lpp/IBM/izoda/spark')"

Finally, if you want to allow just one of the scripts (such as the Spark configuration checker) to be open to
execution by anyone, use these commands:

tsocmd "mount filesystem('SYS1.SPARK.ZFS') type(zfs) mode(rdwr)
mountpoint('/usr/lpp/IBM/izoda/spark')"

cd $SPARK_HOME
chmod -R 700 ./sbin chmod 711 ./sbin/
chmod 755 ./sbin/spark-configuration-checker.sh

tsocmd "mount filesystem('SYS1.SPARK.ZFS') type(zfs) mode(read)
mountpoint('/usr/lpp/IBM/izoda/spark')"

Some of these commands use the -R command (recursive) flag; others do not. You can reuse the "755"
form for any other shell scripts in that directory for which you want to allow execution. Note that some

56 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

scripts invoke other scripts in the ./sbin directory, and will need to have their permissions changed as
well.

Note: The SMP/E install process will reinstall the scripts when PTFs are applied. Because of this, you will
need to re-do the chmod commands each time after applying service. You may want to consider creating
a post-install BPXBATCH job to execute the commands shown previously in this section.

Note: It is still possible for “motivated” users to acquire their own copy of the scripts via download from
the open source world and use them to start the cluster component. The changes shown in this section
prevent only inadvertent or unplanned usage by users.

Using standard z/OS MVS command authorization
Most installations will have tight controls over which operators are allowed to use START, STOP and
CANCEL commands. If you have used the supplied SAZKSAMP examples to create Started Task JCL for
the Spark Master and Worker, you may want to update the RACF controls over the START and STOP of
those started tasks to further secure the Spark cluster environment. Refer to “MVS Commands, RACF
Access Authorities, and Resource Names” in z/OS MVS System Commands. For example, you might need
to define new resources like MVS.START.STC.AZKMSTR and MVS.STOP.STC.AZKMSTR to control the
Master. (Similar names would exist for the Worker; for example, MVS.START.STC.AZKWRKR.)

Starting the Spark cluster

About this task
If you have completed all of the tasks to enable client authentication for Apache Spark and you have
previously completed all of the tasks in your overall configuration of z/OS Spark, you can start your Spark
cluster as usual.

However, if you have just configured client authentication as part of your initial overall configuration of
z/OS Spark, skip this procedure and do not start the Spark cluster until you have completed all of the
remaining configuration tasks for z/OS Spark, as directed in "What to do next."

Procedure
After completing all of the tasks to enable client authentication and configure z/OS Spark, start the Spark
cluster and run your Spark applications as usual. If a worker or driver is unable to be authenticated, it fails
to connect to the master port.

With z/OS Spark client authentication enabled, an application that is submitted to the master port has its
executors started under the user ID of that application. An application that is submitted to the REST port,
which is the port for cluster deploy mode, is considered part of the Spark cluster and therefore has both
the driver and executors run under the user ID of the Spark cluster.

What to do next
If you have not yet completed your initial configuration of z/OS Spark, continue your configuration
activities with “Configuring IBM Java” on page 57.

Configuring IBM Java
Spark runs as several Java virtual machine (JVM) processes. Complete this task to ensure that IBM Java is
properly configured.

Procedure
1. See Hints and Tips for Java on z/OS (www.ibm.com/systems/z/os/zos/tools/java/faq/javafaq.html) to

ensure that your Java configuration has the appropriate settings.
Also see “IBM Java configuration options” on page 173 for additional settings.

Chapter 4. Customizing your environment for z/OS Spark 57

http://www.ibm.com/systems/z/os/zos/tools/java/faq/javafaq.html

2. Set _CEE_DMPTARG to store Java dumps on a separate mount point outside of $SPARK_HOME.
For more information, see JVM
environment settings (https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/
com.ibm.java.zos.80.doc/diag/appendixes/env_var/env_jvm.html).

For information about the order in which Java applies dump settings, see Dump
agent environment variables (https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/
com.ibm.java.zos.80.doc/diag/tools/dumpagents_env.html).

3. Configure large page memory allocation for Java.
For information about configuration and best practices for setting maximum java heap sizes,
see Configuring large page memory allocation (https://www.ibm.com/support/knowledgecenter/
SSYKE2_8.0.0/com.ibm.java.zos.80.doc/user/alloc_large_page.html).

4. If you have Java applications that use compression, ensure that zEDC is properly configured.
For more information, see zEnterprise Data Compression (https://www.ibm.com/support/
knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/user/zedc_compression.html).

What to do next
To use jobs to start and stop Spark processes, continue with “Creating jobs to start and stop Spark
processes” on page 58.

To use started tasks to start and stop Spark processes, continue with “Setting up started tasks to start
and stop Spark processes ” on page 60.

Creating jobs to start and stop Spark processes
You can use BPXBATCH to start and stop Spark processes, such as the master and worker.

Note: We recommend that you use started tasks rather than BPXBATCH (see “Setting up started tasks
to start and stop Spark processes ” on page 60). However, if you prefer, you can use BPXBATCH, as
described in this section.

The examples of jobs are based on the following assumptions:

• The user ID that starts and stops the Spark cluster is SPARKID.
• The default shell program for SPARKID is bash.
• Spark is installed in /usr/lpp/IBM/zspark/spark/sparknnn, where nnn is the Spark version (for

instance, /usr/lpp/IBM/zspark/spark/spark32x for Spark 3.2.0).

Important: Be sure that all of the required environment variables, such as JAVA_HOME, are set in the
environment that is started by BPXBATCH. You can accomplish this in one of the following ways:

• Export the environment variables in one of the bash startup files.

Invoke the bash command with the -l option in BPXBATCH. The -l option on the bash command
instructs bash to run a login shell, in which bash first reads, and runs commands from the file /etc/
profile, if the file exists. After reading that file, bash looks for ~/.bash_profile, ~/.bash_login,
and ~/.profile in that order, reads and runs commands from the first one that exists and is readable.
You can export your environment variables in ~/.bash_profile, for example, so they are added to the
environment.

• Use the STDENV DD statement to pass environment variables to BPXBATCH. You can specify a file
that defines the environment variables or specify them directly in the JCL. For more information about
using the STDENV statement, see "Passing environment variables to BPXBATCH" in z/OS UNIX System
Services User's Guide.

Sample job to start the master and worker
Figure 3 on page 59 shows an example of a BPXBATCH job to start the master and worker.

58 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/diag/appendixes/env_var/env_jvm.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/diag/appendixes/env_var/env_jvm.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/diag/appendixes/env_var/env_jvm.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/diag/tools/dumpagents_env.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/diag/tools/dumpagents_env.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/diag/tools/dumpagents_env.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/user/alloc_large_page.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/user/alloc_large_page.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/user/zedc_compression.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/user/zedc_compression.html

The -l and -c options on the bash command instruct bash to run a login shell with the entire shell
command sequence given between the single quotation marks ('). The semicolons (;) in the command
sequence separate different shell commands.

//SPARKMST JOB 'SPARK START',CLASS=K,MSGCLASS=A,
// NOTIFY=&SYSUID,SYSTEM=HOST,USER=SPARKID
//PRTDS EXEC PGM=BPXBATCH,REGION=0M
//STDPARM DD *
SH /bin/bash -l -c 'cd /usr/lpp/IBM/izoda/spark/spark23x/sbin;start-master.sh;
sleep 5;start-slave.sh spark://hostname.yourcompany.com:7077'
//SYSOUT DD SYSOUT=*
//STDIN DD DUMMY
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//

Figure 3. Sample job to start the master and worker

The bash command in the sample start job issues the following sequence of commands:

1. Change directories to the Spark installation directory where the administration commands are located.

cd /usr/lpp/IBM/izoda/spark/spark23x/sbin

2. Start the master.

start-master.sh

3. Sleep for 5 seconds to allow the master time to start.

sleep 5

4. Start the worker.

start-slave.sh spark://hostname.yourcompany.com:7077

where hostname.yourcompany.com is the name of the host where the master is listening on port 7077.
You can also issue these commands directly from the z/OS UNIX shell as a quick test of your Spark
configuration.

Sample job to stop the master and worker
Figure 4 on page 59 shows an example of a BPXBATCH job to stop the master and worker. Its logic is
similar to the start job, except that it first stops the worker and then stops the master.

//SPARKSTP JOB 'SPARK STOP',CLASS=K,MSGCLASS=A,
// NOTIFY=&SYSUID,SYSTEM=HOST,USER=SPARKID
//PRTDS EXEC PGM=BPXBATCH,REGION=0M
//STDPARM DD * SH /bin/bash -l -c 'cd /usr/lpp/IBM/izoda/spark/spark23x/sbin;
stop-slave.sh;sleep 5;stop-master.sh'
//SYSOUT DD SYSOUT=*
//STDIN DD DUMMY
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//

Figure 4. Sample job to stop the master and worker

What to do next
Test your start and stop jobs to ensure that your setup is correct. Then, continue with “Configuring
memory and CPU options” on page 65.

Chapter 4. Customizing your environment for z/OS Spark 59

Setting up started tasks to start and stop Spark processes
Complete this task to set up started tasks to start and stop Spark processes.

About this task
The following list provides the benefits of using this feature.

• Allows the Spark master, worker, history server, and shuffle service to run on z/OS consistent with
running other MVS batch jobs, job steps, or started tasks.

– Handles START, STOP, and CANCEL command options and writes messages to the MVS console.
For more information about the messages that are issued, see Open Data Analytics for z/OS System
Messages.

– Can be extended to take advantage of all of the capabilities that JZOS provides. These capabilities
include the use of SYSOUT for output directories, MVS data sets, and DD statements.

• Maintains flexible configuration of the Java execution environment and the z/OS UNIX System Services
environment that the Spark master and worker require.

• Automation

– Allows the Spark master, worker, history server, and shuffle service to be managed through customer
automation products and policies.

– Allows automation products to start and stop the master and worker with no parameters, with the
assurance that the worker is started using the master port for which the master is actually started.

– Allows the worker to retry starting for a period of time if the master is not yet started.
– Allows enterprise automation management strategies to be applied to the Spark master and worker.

These strategies include the following:

- Started task dependencies such as staging the starting and stopping of Spark started tasks based
on the availability of other started tasks. These tasks can include but are not limited to OMVS, MDS,
TCPIP, and Database Servers (Db2, IMS, and more).

- Failure recovery by restarting the Spark master and worker on any system under automation
management control.

The examples of started tasks are based on the following assumptions:

• JZOS Batch Launcher and Toolkit in IBM 64-Bit SDK for z/OS Java Technology Edition V8 is installed and
operational. For installation and configuration instructions and information about messages and return
codes from JZOS, see JZOS Batch Launcher and Toolkit: Installation and User's Guide.

• If you are using Trusted Partner authentication, ensure that a PROGRAM profile is defined for the
load module, JVMLDM86. For instructions, see Step 11 in “Configuring additional authorities and
permissions for the Spark cluster” on page 53.

• For each Spark cluster, the spark-env.sh contains a unique SPARK_IDENT_STRING. Do not specify
$USER or allow it to default to $USER.

• The user ID that starts and stops the Spark cluster is the SPARKID that is previously created the
SPKGRP is the group that is previously created.

• The default shell program for SPARKID is bash.
• Spark is installed in /usr/lpp/IBM/zspark/spark/sparknnn, where nnn is the Spark version. For

example, /usr/lpp/IBM/zspark/spark/spark32x for Spark 3.2.0.
• Spark is configured as described in this document and the required environment variables are set in the

following procedures. For more information, see “Set and export common environment variables” on
page 62.

• OMVS must be initialized before the master can start.
• The directories that are specified by the following environment variables, or the defaults taken when

not specified, must exist and have the appropriate authorities. For more information, see “Creating the
Apache Spark working directories” on page 35.

60 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

– SPARK_HOME
– SPARK_CONF_DIR
– SPARK_LOG_DIR
– SPARK_PID_DIR
– SPARK_LOCAL_DIRS
– SPARK_WORKER_DIR

Procedures for each Spark cluster
To create a procedure (master, worker, history server, shuffle service) for a Spark cluster, copy and edit
the applicable sample procedure that is included in IBM Open Data Analytics for z/OS. The procedure
needs to be put in a data set in your PROCLIB concatenation, such as SYS1.PROCLIB.

There are four sample procedures. The high-level qualifier (hlq) depends on your installation. In this
document, the default high-level qualifier is AZK.

• hlq.SAZKSAMP(AZKMSTR) - Master
• hlq.SAZKSAMP(AZKWRKR) - Worker
• hlq.SAZKSAMP(AZKHIST) - History Server
• hlq.SAZKSAMP(AZKSHUF) - Shuffle service

Follow the instructions in the sample procedure. For example, SPARK_CONF_DIR must be set and
exported in the procedure. It will not default to $SPARK_HOME/conf.

Note that there are instances where the procedure for the Shuffle service cannot be used. The Shuffle
service can be started in two ways:

• By invoking sbin/start-shuffle-service.sh or the new started task
• Internally, by the worker when spark.shuffle.service.enabled=true configuration is set.

By default, the Spark Shuffle service starts and runs under the Spark Worker when
spark.shuffle.service.enabled=true.

Do not use the started task (or shell script) during the following:

1. When starting the Shuffle service inside the worker process with the
spark.shuffle.service.enabled=true configuration (this is a prerequisite for dynamic allocation).

2. When enabling dynamic allocation with the spark.dynamicAllocation.enabled=true config.

If using one or both of these features, the worker or Shuffle service (started via the first service) will
fail with a port binding error. The second service to be started will fail as both services bind the Shuffle
service port (spark.shuffle.service.port, default 7337).

Note: spark.shuffle.service.enabled has no effect on the Shuffle service when it is started via the shell
script or started task. It is a property used by the worker only.

When starting the Spark started tasks manually, you should ensure that the Master (and optional History
and Shuffle servers) have initialized before starting the Worker. When starting via automation, they can be
started in parallel, as the Worker will wait a limited amount of time for the Master to initialize. Spark users
may encounter errors if Spark jobs are submitted before all started tasks have initialized.

Define the routing of the log output
When using started tasks to start and stop Spark processes, the routing of the log output is dependent
upon a combination of settings in the $SPARK_CONF_DIR/log4j.properties file and the values for
the STDERR or STDOUT DD cards in the master and worker procedures.

Chapter 4. Customizing your environment for z/OS Spark 61

For example, using the default values in the $SPARK_CONF_DIR/log4j.properties file, as shown in
the following sample, will route the log output to the value in the STDERR DD card:

log4j.rootCategory=INFO, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err

Using the default values for both the $SPARK_CONF_DIR/log4j.properties file and the STDERR DD
card of //STDERR DD SYSOUT=&SOUT directs both the JZOS output and the Spark output to SYSOUT.

Changing the log4j.appender.console.target value to System.out will route the log output to the
value in the STDOUT DD card.

Alternatively, to route the Spark log output to a USS file in the $SPARK_LOG_DIR directory, if you are
using the default values for the $SPARK_CONF_DIR/log4j.properties file, you must specify the full
path for the log file by using the value that is set for $SPARK_LOG_DIR on the STDERR DD card. The
following examples show the specifications for the master and the worker log files for a cluster that is
denoted as Cluster1 where the value of $SPARK_LOG_DIR is /var/spark/logs. You must specify a
unique file name for the master and a unique file name for the worker. If you are starting more than one
cluster, you must specify unique file names for each master and worker across all clusters.

The following example is for the master procedure.

//STDERR DD PATH='/var/spark/logs/azkmstrCluster1.err',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

The following example is for the worker procedure.

//STDERR DD PATH='/var/spark/logs/azkwrkrCluster1.err',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

By default, the master and worker log files are created with PATHMODE=SIRWXU, which is equivalent to
z/OS UNIX file access attributes of “700” (“rwx------“). As such, the user ID that starts/stops the Spark
cluster (SPARKID in these examples) has full access to the log files, and no access for anyone else. You
may change this behavior by modifying the PATHMODE parameter value. For more information about the
PATHMODE parameter, see "PATHMODE parameter" in z/OS MVS JCL Reference.

When using started tasks to start and stop Spark processes, the log files are not rotated as when using
other methods for starting the master and worker. It is recommended that you not specify OAPPEND for
the PATHOPTS to avoid file growth.

Set and export common environment variables
Complete this task to set and export common environment variables.

About this task
Environment variables are needed by both the AZKMSTR and AZKWRKR procedures. In addition, the
environment variables that are needed by the JZOS launcher must be exported. However, the /etc/
profile and .profile scripts are not run when the JZOS launcher is run.

Therefore, it is easiest to create a common script to set and export the environment variables. IBM Open
Data Analytics for z/OS or IzODA provides a script template.

The template is installed in $SPARK_HOME/conf and is called spark-zos-started-
tasks.sh.template. It needs to be copied and modified, and then put into the $SPARK_CONF_DIR
with your other scripts.

The template is modeled after the sample procedure (PROC) in JZOS Batch Launcher and Toolkit:
Installation and User's Guide. The environment variables are loaded from this script, rather than set
directly in the PROC as shown in the sample. In addition, this script loads the spark-env.sh script and
sets up other environment variables as needed for the started tasks.

62 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Procedure
1. Copy the template into your configuration directory. For example:

cp $SPARK_HOME/conf/spark-zos-started-tasks.sh.template
$SPARK_CONF_DIR/spark-zos-started-tasks.sh

2. Update $SPARK_CONF_DIR/spark-zos-started-tasks.sh as necessary.

Define the RACF started profile for started tasks
Complete this task to define the RACF started profile for started tasks.

About this task
From TSO, or from JCL that runs IKJEFT01, you must define the RACF profiles to the started tasks. Use
the names of the procedures for the started tasks for each cluster that you defined for your installation in
place of AZKMSTR, AZKWRKR, AZKHIST, and AZKSHUF in the following example procedure.

Procedure
1. Enter the following command to define the RACF started profile to the master started task:

RDEFINE STARTED AZKMSTR.* STDATA(USER(SPARKID) GROUP(SPKGRP))

2. Enter the following command to define the RACF started profile to the worker started task:

RDEFINE STARTED AZKWRKR.* STDATA(USER(SPARKID) GROUP(SPKGRP))

3. Enter the following command to define the RACF started profile to the history service:

RDEFINE STARTED AZKHIST.* STDATA(USER(SPARKID) GROUP(SPKGRP))

4. Enter the following command to define the RACF started profile to the shuffle service:

RDEFINE STARTED AZKSHUF.* STDATA(USER(SPARKID) GROUP(SPKGRP))

5. Enter the following command to set the RACF options previously specified:

SETROPTS RACLIST(STARTED) REFRESH

Results
After successfully completing the previous tasks, you should have a defined RACF started profile to the
master and worker started tasks, the history service, and the shuffle service.

Note: If you attempt to start AZKMSTR before you complete the steps in this task, you might be prompted
with the following messages:

SY1 s azkmstr
SY1 IRR813I NO PROFILE WAS FOUND IN THE STARTED CLASS FOR
 AZKMSTR WITH JOBNAME AZKMSTR. RACF WILL USE ICHRIN03.
SY1 $HASP100 AZKMSTR ON STCINRDR
SY1 $HASP373 AZKMSTR STARTED
SY1 ICH408I JOB(AZKMSTR) STEP(STARTING) CL(PROCESS)
 OMVS SEGMENT NOT DEFINED
SY1 $HASP395 AZKMSTR ENDED

Note:

The master task and the worker task must be started with the same user unless the user used to start the
worker task has UID(0).

Note:

If the master was started as a started task, the worker must be started as a started task.

Chapter 4. Customizing your environment for z/OS Spark 63

WLM configuration
Configure the AZKMSTR and AZKWRKR started tasks to use the same service class that you previously
specified in the Spark master and worker daemons. For more information about WLM service classes for
Spark, see “Defining WLM service classes for Spark” on page 78.

You must define both the master and worker started task procedures to a WLM service class for every
cluster for which started task procedures were created.

Stopping the started tasks
The started tasks are stopped by using the following stop commands with no parameters.

stop azkwrkr
stop azkmstr
stop azkhist
stop azkshuf

If a worker is started for a master task, the worker task is stopped when the master task is stopped.
The system looks at the file that is created when the worker is started for this instance, which contains
the process ID for the worker process. It does so by using the same naming convention that the shell
scripts use (identified by SPARK_IDENT_STRING), and ensures that the worker is either a java process or
JVMLDM86 (JZOS).

When the worker is stopped due to the master being stopped, the worker process is ended immediately.
This action results in a return code of 0143 in the HASP395 message on the console when the worker
stops. This return code is normal and appears as seen in the following example.

stop azkmstr
$HASP395 AZKWRKR ENDED - RC=0143
$HASP395 AZKMSTR ENDED - RC=0000

Canceling the started tasks
The started tasks can be canceled by using the following cancel command:

cancel azkwrkr
cancel azkmstr
cancel azkhist
cancel azkshuf

If a worker is started for a master task and the master task is canceled, the worker task is not ended and
is left in a state with no master associated to it. The worker task is reattached upon the restart of the
master or can be manually ended by stopping or canceling it.

Automating the starting of tasks
Complete this task if you want to automate the starting of tasks.

About this task
The following one-time steps are optional, but allow the following benefits:

• Allows automation products to start and stop the master and worker with no parameters, with the
assurance that the worker is started using the master port for which the master is actually started.

• Allows the worker to retry starting for a period of time if the master is not yet started.

Procedure
1. If you have modified the $SPARK_CONF_DIR/log4j.properties file, complete the following tasks.

If you do not have a $SPARK_CONF_DIR/log4j.properties file, no action is required.

64 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

a) Ensure that log4j.rootCategory is set to INFO, DEBUG, or ALL, and that the appender is
console such as, log4j.rootCategory=INFO, console.

b) The log4j.appender.console.target parameter can be specified as either System.err
or System.out if the procedure previously created for starting the master uses the correct
corresponding card (STDERR or STDOUT) as described in the next step.

For more information, see “Define the routing of the log output” on page 61.

Note: log4j.appender.console.target=System.err is the default and the following
examples, which refer to the sample procedure hlq.SAZKSAMP(AZKMSTR), use STDERR. The high-
level qualifier (hlq) depends on your installation. In this document, the default high-level qualifier is
AZK.

2. Change the DD statement in the master procedures for each cluster to specify a
unique z/OS UNIX System Services file in an existing directory. If you specified
log4j.appender.console.target=System.err in the previous step, change the DD statement
to STDERR. If you specified log4j.appender.console.target=System.out in the previous step,
change the DD statement to STDOUT. An example is provided in the sample procedure, AZKMSTR,
which shows the STDERR that can be used for a cluster that is denoted as Cluster1.

Note: It is recommended, but not required, that you use the directory that you specified for
the $SPARK_LOG_DIR environment variable in the spark-env.sh file. If you don't use the
$SPARK_LOG_DIR directory path, the path must exist and SPARKID must have authority to read and
write to it.

//STDERR DD PATH='/var/spark/logs/azkmstrCluster1.err',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

3. Set and export the SPARK_ZOS_MASTER_LOG environment variable in the worker procedure for each
cluster, to the same z/OS UNIX System Services file that is specified in the corresponding master
procedure. An example is provided in the sample procedure, AZKWRKR. The following example shows
the setting for the master for a cluster that is denoted as Cluster1.

export SPARK_ZOS_MASTER_LOG=/var/spark/logs/azkmstrCluster1.err

Results
When the master is started with no parameters, values are either taken from the environment variables, if
set, or the defaults are used. SPARK_MASTER_HOST does not have a default, and therefore must be set in
the spark-env.sh file.

When the master is started by using the automation technique for started tasks, the INFO messages are
written to the file that is specified in Step “2” on page 65. These messages include the port number to
which the master is bound, the master host, and the process ID for the master.

When the worker is started with no parameters, it reads the file that is specified in
SPARK_ZOS_MASTER_LOG and finds the port number and any other values that are needed to ensure
that the master is started. This is the same file that is written by the master when the cluster is started. If
the master is not started, it retries for a period of time to allow the master time to start.

Configuring memory and CPU options
Complete this task to configure the memory and CPU options for Apache Spark.

About this task
Apache Spark is designed to consume a large amount of CPU and memory resources in order to achieve
high performance. Therefore, it is essential to carefully configure the Spark resource settings, especially
those for CPU and memory consumption, so that Spark applications can achieve maximum performance
without adversely impacting other workloads.

Chapter 4. Customizing your environment for z/OS Spark 65

Setting the memory and CPU options for your Spark workload can be an ongoing task. It is good practice
to regularly monitor the actual resource consumption and identify potential bottlenecks by using the
variety of monitoring tools described in Chapter 14, “Resource monitoring for Apache Spark,” on page
137. After obtaining performance measurements, you can fine tune your Spark workload.

For a quick reference to various Spark and z/OS system configuration options that you might wish to
consider when tuning your environment for Open Data Analytics for z/OS, see Appendix D, “Memory and
CPU configuration options,” on page 171.

Procedure
1. Determine the system resources that Spark needs.

Before you modify the memory and CPU settings for your Spark cluster, determine an amount of
resources to give to your Spark workload. For a detailed discussion about sizing Spark workloads, see
Resource Tuning Recommendations for IBM z/OS Platform for Apache Spark (https://www.ibm.com/
support/techdocs/atsmastr.nsf/WebIndex/WP102684).

a) Determine the amount of memory and processor that your Spark cluster is allowed to use.

When assessing the amount of memory to allot for Apache Spark, consider the following
parameters:

• The amount of physical memory available on the system. Workloads perform best with minimal
paging.

• The amount of memory required by other (possibly more important) subsystems, such as Db2.
• The amount of memory required by supporting software that interacts with Apache Spark, such

as z/OS IzODA Mainframe Data Service (MDS).
• Other work that might run at the same time as Apache Spark.

Guidelines:

• IBM suggests that you start with at least 6 GB of memory for the Spark cluster, not including MDS.
If you have installed WLM APAR OA52611 and you use WLM to manage your Spark workload, you
can also cap the amount of physical memory that the Spark cluster can use to avoid impacting
other workloads. Table 6 on page 66 lists the suggested initial memory sizes for the components
in a Spark cluster.

Table 6. Suggested initial memory sizing for a Spark cluster

Component Default size Suggested initial size

Spark master 1 GB 1 GB

Spark worker 1 GB 1 GB

Spark driver 1 GB 2 GB

Spark executor 1 GB 2 GB

Total 4 GB 6 GB

• Spark workloads are zIIP-eligible. If you have installed WLM APAR OA52611 and you use WLM to
manage your Spark workload, you can use the honor priority attribute to minimize the amount of
Spark work that is processed by the general processors (GPs). IBM suggests that you start with at
least two zIIPs and one GP.

For more information about using the metering and capping functions provided by WLM APAR
OA52611 for your Spark workload, see “Configuring z/OS workload management for Apache Spark”
on page 73.

b) Determine how many concurrent Spark applications your Spark cluster must support.
This depends on your business requirements, the amount of resources available on your system,
and the application requirements.

66 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

https://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102684
https://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102684

Alternatively, you can run multiple Spark clusters instead of configuring a single Spark cluster for
multiple applications. This can be beneficial in the following cases:

• You have applications with different workload priorities (for instance, production vs.
development). Although you can configure a single cluster that supports multiple applications,
separate clusters might simplify the configuration and administration of each cluster as priority
requirements change.

• You need to isolate workloads for security reasons or because of the nature of the data being
analyzed.

If you do run multiple Spark clusters on the same z/OS system, be sure that the amount of CPU
and memory resources assigned to each cluster is a percentage of the total system resources.
Over-committing system resources can adversely impact performance on the Spark workloads and
other workloads on the system.

c) For each Spark application, determine the amount of executor heap that it requires.

An executor heap is roughly divided into two areas: data caching area (also called storage memory)
and shuffle work area. In Spark 1.5.2 with default settings, 54 percent of the heap is reserved for
data caching and 16 percent for shuffle (the rest is for other use). In Spark 2.0.2 and higher, instead
of partitioning a fixed percentage, it uses the heap for each area, as needed. To properly estimate
the size of the executor heap, consider both the data caching and shuffle areas.

To achieve optimal results, it is best to cache all of the data that Spark needs in memory to avoid
costly disk I/O. When raw data is encapsulated in a Java object, the object is often larger than the
size of the data that it holds. This expansion factor is a key element to consider when projecting
how large the data cache should be. Ideally, the expansion factor is measured by persisting sample
data to an RDD or DataFrame and using the Storage tab on the application web UI to find the
in-memory size. When it is not possible to measure the actual expansion factor for a set of data,
choosing a value from 2x to 5x of the raw data size for RDDs, and 1x to 2x of the raw data size for
DataFrames should provide a reasonable estimate. Without considering the shuffle work area, you
can determine the preliminary heap size using the equations:

in-memory data size = raw data size × estimated or measured expansion factor

executor heap = in-memory data size ÷ fraction of heap reserved for cache

The amount of memory needed for the shuffle work area depends entirely on the application.
Shuffling happens when the application issues operations like groupByKey that requires data to
be transferred. When the amount of shuffle memory is not adequate for the required shuffle
operations, Spark spills the excess data to disk, which has a negative impact on performance. You
can find occurrences and amounts of shuffle spills executor stderr log file, such as in the following
example:

INFO ExternalSorter: Thread 106 spilling in-memory map of 824.3 MB to disk (1 time so far)
INFO ExternalSorter: Thread 102 spilling in-memory map of 824.3 MB to disk (1 time so far)
INFO ExternalSorter: Thread 116 spilling in-memory map of 824.3 MB to disk (1 time so far)

For more information about Spark memory management settings, see "Memory Management" in
http://spark.apache.org/docs/2.4.8/configuration.html.

d) Determine the number of executors for each application.
To do this, consider the following points:

• There is some startup cost associated with initializing a new Java virtual machine. Each executor
runs within its own JVM, so the total overhead associated with JVM startup increases with each
additional executor.

• Garbage collection (GC) costs are generally higher for large heaps. IBM Java can typically run
with up to 100 GB heap with little GC overhead. If your application requires larger heap space,
consider using multiple executors with smaller heaps. You can use the Spark application web UI
to monitor the time spent in garbage collection.

Chapter 4. Customizing your environment for z/OS Spark 67

http://spark.apache.org/docs/2.4.8/configuration.html

• Efficient Spark applications are written to allow a high degree of parallelism. The use of multiple
executors can help avoid the contention that can occur when too many threads execute in parallel
within the same JVM.

• There is increased overhead when multiple executors need to transfer data to each other.
e) For each Spark application, determine the size of the driver JVM heap. This only applies if your

driver runs on a z/OS system.

The driver heap should be large enough to hold the application results returned from the
executors. Applications that use actions like collect or take to get back a sizable amount of
data may require large driver heaps. If the returned data exceeds the size of the driver heap,
the driver JVM fails with an out-of-memory error. You can use the spark.driver.memory and
spark.driver.maxResultSize Spark properties to tune the driver heap size and the maximum
size of the result set returned to the driver.

The driver process can either run on behalf of the user invoking the Spark application, inheriting
the user's z/OS resource limits (client deploy mode), or it can use the backend cluster resources
(cluster deploy mode). Generally, application developers tend to use client deploy mode while
building their applications (for instance, using Jupyter notebooks or interactive spark-shell).
Then, production-ready applications are submitted in cluster deploy mode.

If the Spark driver runs in cluster deploy mode, the driver is considered part of the cluster;
therefore, the resources it uses (such as spark.driver.memory) are taken from the total amount
allotted for the Spark cluster.

2. Update the Spark resource settings.

After you determine the resource requirements for your Spark workload, you can change the Spark
settings and system settings to accommodate them.

Note: Applications can override almost all of the settings in the spark-defaults.conf file.
However, it is good practice to set them in the configuration file or in the command line options,
and not within the applications. Setting them in applications could cause applications to fail because of
conflicts with system-level limits or because of system resource changes.

Figure 5 on page 69 shows a sample Spark cluster with various settings that are described later
in this topic. The figure shows the Spark resource settings, their defaults (in parentheses) and their
scopes (within the dashed lines). z/OS constraints, such as address space size (ASSIZEMAX) and
amount of storage above the 2-gigabyte bar (MEMLIMIT) apply to these processes, as usual.

68 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Figure 5. Sample Spark cluster in client deploy mode

a) Set the number of processors and amount of memory that a Spark cluster can use by setting the
following environment variables in the spark-env.sh file:
SPARK_WORKER_CORES

Sets the number of CPU cores that the Spark applications can use. The default is all cores
on the host z/OS system. Note that Spark sees each zIIP that is enabled for simultaneous
multithreading (SMT) as having two cores.

SPARK_WORKER_MEMORY
Sets the amount of virtual memory that Spark applications can use. The default is the total
system memory, minus 1 GB.

Both settings apply to the amount of resources that the executors and cluster-deploy-mode drivers
can use. They do not include the resources used by the master and worker daemons because the
daemons do not process data for the applications.

b) Set the number of cores that a Spark application (including its executors and cluster-deploy-mode
drivers) can use by setting the following properties in the spark-defaults.conf file:
spark.deploy.defaultCores

Sets the default number of cores to give to an application if spark.cores.max is not set. The
default is all the cores on the system.

spark.cores.max
Sets the maximum number of cores to give to an application. The default is to use the
spark.deploy.defaultCores value.

c) Set the number of concurrent applications that a Spark cluster can support.

This number is controlled by the amount of resources allotted to the Spark cluster and how much
can be used by each application.

Chapter 4. Customizing your environment for z/OS Spark 69

Assuming there is enough memory, the number of concurrent applications that a Spark cluster can
support is expressed by the following equation:

SPARK_WORKER_CORES ÷ spark.cores.max (or spark.deploy.defaultCores)

Example: If you set SPARK_WORKER_CORES=15 and spark.cores.max=5, the Spark cluster can
allow up to 15 ÷ 5 = 3 applications to run concurrently, assuming there is enough memory for all of
them.

There is no Spark setting that controls the amount of memory that each application can use.
To ensure that the Spark cluster can support the desired number of concurrent applications, set
SPARK_WORKER_MEMORY to an appropriate value. See step “2.g” on page 70 for more information.

d) Set the amount of resources that each executor can use by setting the following properties in the
spark-defaults.conf file:
spark.executor.cores

Sets the number of cores that each executor can use. The default is all CPU cores on the
system.

spark.executor.memory
Sets the amount of memory that each executor can use. The default is 1 GB.

e) Set the amount of resources that each driver can use by setting the following properties in the
spark-defaults.conf file:
spark.driver.cores

Sets the number of cores that each driver can use. The default is 1.
spark.driver.memory

Sets the amount of memory that each driver can use. The default is 1 GB.
spark.driver.maxResultSize

Sets a limit on the total size of serialized results of all partitions for each Spark action (such as
collect). Jobs will fail if the size of the results exceeds this limit; however, a high limit can
cause out-of-memory errors in the driver. the default is 1 GB.

f) Set the number of executors for each Spark application.

This number depends on the amount of resources allotted to the application, and the resource
requirements of the executor and driver (if running in cluster deploy mode).

As discussed earlier, you can use spark.cores.max (or spark.deploy.defaultCores) to set
the number of cores that an application can use. Assuming there is enough memory, the number of
executors that Spark will spawn for each application is expressed by the following equation:

(spark.cores.max (or spark.deploy.defaultCores) − spark.driver.cores (if in cluster
deploy mode)) ÷ spark.executor.cores

Example: If you set spark.cores.max=5, spark.driver.cores=1, and
spark.executor.cores=2 and run in cluster deploy mode, the Spark worker spawns (5 − 1)
÷ 2 = 2 executors.

g) Use the following set of equations to determine a proper setting for SPARK_WORKER_MEMORY to
ensure that there is enough memory for all of the executors and drivers:

executor_per_app = (spark.cores.max (or spark.deploy.defaultCores) −
spark.driver.cores (if in cluster deploy mode)) ÷ spark.executor.cores

app_per_cluster = SPARK_WORKER_CORES ÷ spark.cores.max (or
spark.deploy.defaultCores)

SPARK_WORKER_MEMORY ≥ (spark.executor.memory × executor_per_app × app_per_cluster) +
spark.driver.memory (if in cluster deploy mode)

h) Set the amount of memory to allocate to each daemon-like process—specifically, the master,
worker, and the optional history server— by setting the SPARK_DAEMON_MEMORY environment
variable in the spark-env.sh file.
The default is 1 GB and is satisfactory for most workloads.

70 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

There is no corresponding processor setting for the Spark daemon processes.
3. Update system resource settings.

In addition to the Spark settings, there are system-level settings that are required or recommended for
your Spark workload to function properly and efficiently.

Continue by determining and setting values for the system-level settings shown in Figure 5 on page 69.

a) Set _BPX_SHAREAS=NO.

The worker process spawns the executor processes. If the _BPX_SHAREAS environment variable
is set to YES, the new executor process runs in the same address space as its parent. If
_BPX_SHAREAS is set to NO, the executor runs in its own address space. Because executor
processes typically consume a large amount of system resources, IBM suggests that you set
_BPX_SHAREAS=NO for easier resource management and isolation, and to increase available
resources for the executor.

b) Set the MEMLIMIT value.

z/OS uses the MEMLIMIT setting to control the amount of 64-bit virtual memory that an address
space can use. For the user ID that starts the Spark cluster, the MEMLIMIT value must be set to the
largest JVM heap size (typically, spark.executor.memory) plus the amount of native memory
needed. For the user ID that submits the application to the cluster, the MEMLIMIT must be set
to spark.driver.memory plus the amount of native memory needed. The required amount of
native memory varies by application. 1 GB is typically needed if the JVM heap size is less than 16
GB and 2 GB is typically needed if the JVM heap size is greater than 16 GB.

Spark has the ability to use off-heap memory, which is configured through the
spark.memory.offHeap.enabled Spark property and is disabled by default. If you enable
off-heap memory, the MEMLIMIT value must also account for the amount of off-heap memory
that you set through the spark.memory.offHeap.size property in the spark-defaults.conf
file.

If you run Spark in local mode, the MEMLIMIT needs to be higher as all the components run in the
same JVM; 6 GB should be a sufficient minimum value for local mode.

You can set the MEMLIMIT value in any of the following ways:

• Recommended: Set the MEMLIMIT value in the OMVS segment of the security profile for the user
ID that you use to start Spark. For instance, you can use the RACF ALTUSER command to set
the MEMLIMIT for a user ID. For more information about the ALTUSER command, see "ALTUSER
(Alter user profile)" in z/OS Security Server RACF Command Language Reference.

• Specify the MEMLIMIT parameter on the JCL JOB or EXEC statement, which overrides the
MEMLIMIT value in the user's security profile, if you start your Spark cluster from z/OS batch.
For more information, see "MEMLIMIT parameter" in z/OS MVS JCL Reference.

• Use the IEFUSI exit, which overrides all of the other MEMLIMIT settings. Therefore, if you use the
IEFUSI exit, be sure to make exceptions for Spark jobs. For more information, see "IEFUSI - Step
Initiation Exit" in z/OS MVS Installation Exits.

• Set the system default in the SMFPRMxx member of parmlib. The system default is used if
no MEMLIMIT value has been set elsewhere. The default value is 2 GB. You can use the
DISPLAY SMF,O operator command to display the current settings. For more information, see
"SMFPRMxx (system management facilities (SMF) parameters)" in z/OS MVS Initialization and
Tuning Reference.

To check the MEMLIMIT setting for a specific user ID, you can issue the ulimit command in the
z/OS UNIX shell while logged in with that user ID. The following example shows the command
response:

/bin/ulimit -a
core file 8192b
cpu time unlimited
data size unlimited
file size unlimited
stack size unlimited

Chapter 4. Customizing your environment for z/OS Spark 71

file descriptors 1500
address space unlimited
memory above bar 16384m

c) Ensure that the settings in your BPXPRMxx parmlib, especially the MAXASSIZE parameter, meet the
suggested minimums for Java.

For the suggested minimum values, see Working with BPXPRM settings (https://www.ibm.com/
support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/user/zos_bpxprm.html) in IBM
SDK, Java Technology Edition z/OS User Guide (www.ibm.com/support/knowledgecenter/
SSYKE2_8.0.0/pdf/en/sdkandruntimeguide.zos.80_8.0.pdf). For more information about the
BPXPRMxx member, see "BPXPRMxx (z/OS UNIX System Services parameters)" in z/OS MVS
Initialization and Tuning Reference.

You can set some of these parameters at the user ID level, such as the maximum address space
size (the ASSIZEMAX value in the OMVS segment of the security profile for the user ID), by using
the RACF ALTUSER command. For more information about the ALTUSER command, see "ALTUSER
(Alter user profile)" in z/OS Security Server RACF Command Language Reference.

d) Ensure that you have enough extended common service area (ECSA) and extended system queue
area (ESQA) memory configured on your system to account for Spark usage.

For instance, Spark memory-maps large files to improve performance. However, the use of memory
map services can consume a large amount of ESQA memory. For more information, see "Evaluating
virtual memory needs" in z/OS UNIX System Services Planning.

You can use the RMF reports to monitor the ECSA and ESQA usage by your Spark cluster. For more
information, see Chapter 14, “Resource monitoring for Apache Spark,” on page 137.

e) Consider using z/OS workload management (WLM) to manage Spark workload. With WLM, you
define performance goals and assign a business importance to each goal. The system then decides
how much resource, such as CPU or memory, to give to a workload to meet the goal. WLM
constantly monitors the system and adapts processing to meet the goals. You can also use WLM to
cap the maximum amount of CPU time and physical memory used by Spark. For more information,
see “Configuring z/OS workload management for Apache Spark” on page 73.

f) Consider using simultaneous multithreading (SMT) to improve throughput. Beginning with IBM
z13®, you can enable SMT on zIIPs. Open Data Analytics for z/OS is zIIP-eligible and might benefit
from SMT. When executing on a system configured with sufficient zIIP capacity, the benchmarks
demonstrated in Resource Tuning Recommendations for IBM z/OS Platform for Apache Spark
(https://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102684) showed throughput
improvements of 15 to 20 percent when SMT was enabled.

g) Ensure that the system has enough large pages to accommodate all requests.

When available, 1M pageable large pages are the default size for the object heap and code cache
for Java on z/OS. Large pages provide performance improvements to applications such as Spark
that allocate a large amount of memory. The use of 1M pageable large pages requires IBM
zEnterprise EC12, or later, with the Flash Express feature (#0402).

When the system's supply of pageable 1M pages is depleted, available 1M pages from the LFAREA
are used to back pageable 1M pages. Adjust your LFAREA to account for the Spark JVMs. You can
set the size of the LFAREA in the IEASYSxx member of parmlib.

For more information about configuring large pages for Java, see Configuring
large page memory allocation (https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/
com.ibm.java.zos.80.doc/user/alloc_large_page.html). For more information about the IEASYSxx
parmlib member, see "IEASYSxx (system parameter list)" in z/OS MVS Initialization and Tuning
Reference.

What to do next
When you have completed configuring memory and CPU options, continue with “Configuring z/OS
workload management for Apache Spark” on page 73.

72 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/user/zos_bpxprm.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/user/zos_bpxprm.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/pdf/en/sdkandruntimeguide.zos.80_8.0.pdf
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/pdf/en/sdkandruntimeguide.zos.80_8.0.pdf
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/pdf/en/sdkandruntimeguide.zos.80_8.0.pdf
https://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102684
https://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102684
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/user/alloc_large_page.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/user/alloc_large_page.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/user/alloc_large_page.html

Configuring z/OS workload management for Apache Spark
One of the strengths of the IBM Z platform and the z/OS operating system is the ability to run multiple
workloads at the same time within one z/OS image or across a Parallel Sysplex®. Workloads usually
have different, often competing, performance and resource requirements that must be balanced to
make the best use of an installation's resources, maintain the highest possible throughput, and achieve
the best possible system responsiveness. The function that makes this possible is dynamic workload
management, which is implemented in the workload management component of z/OS.

With z/OS workload management (WLM), you define performance goals and assign a business importance
to each goal. You define the goals for work in business terms, and the system decides how much resource,
such as CPU or memory, to assign so as to meet the goal. WLM constantly monitors the system and
adapts processing to meet the goals.

You can configure WLM to manage Open Data Analytics for z/OS workloads to optimize system
performance.

Overview of Apache Spark Processes
Apache Spark uses a master/worker architecture. A Spark cluster typically has multiple processes, each
running in its own Java virtual machine (JVM).

The following list describes the most significant processes:

• The master daemon allocates resources across applications.
• The worker daemon monitors and reports resource availability and, when directed by the master,

spawns executors. The worker also monitors the liveness and resource consumption of the executors.
• The executor performs the actual computation and data processing for the application.
• The driver program runs the main function of the application and creates a SparkContext.

The master and worker processes are generally lightweight. By contrast, the executors attempt to use all
available system resources by default. You can use the spark-defaults.conf file, spark-env.sh file,
and command line parameters to constrain the number of CPU cores and amount of memory that each
executor can consume. These parameters, however, are static and require that the Spark processes be
restarted for changes to take effect. (For more information about the Apache Spark configuration options,
see http://spark.apache.org/docs/2.4.8/configuration.html. For more information about tuning the Apache
Spark cluster, see http://spark.apache.org/docs/2.4.8/tuning.html.)

The worker process spawns the executor processes. If the _BPX_SHAREAS environment variable is set
to YES, the new executor process will run in the same address space as its parent. If _BPX_SHAREAS is
set to NO, the executor will run in its own address space. Because executor processes usually consume
a large amount of system resources, IBM suggests that you set _BPX_SHAREAS=NO for easier resource
management and isolation, and to increase available resources for the executor.

The following list describes other processes you might use in your z/OS IzODA Spark configuration:

• The Shuffle service allows executors to transfer (shuffle) data across executors, as needed.
• The History server uses previously saved event logs to display detailed information about running and

completed Spark applications. History server reconstructs the Web UI that is normally only available
while the SparkContext for an application is running.

WLM provides a more dynamic way to manage the performance of your Spark workloads.

Assigning job names to Spark processes
Assigning unique job names to Spark processes helps to identify the purpose of each process, correlate a
process to an application, and facilitate the grouping of processes into a WLM service class.

You can use Spark properties and the _BPX_JOBNAME environment variable to assign job names to
executors, drivers, and other Spark processes. If you are using started tasks to start various Spark
processes, you may use the job names you setup for the started task instead.

Chapter 4. Customizing your environment for z/OS Spark 73

http://spark.apache.org/docs/2.4.8/configuration.html
http://spark.apache.org/docs/2.4.8/tuning.html

Note: The user ID of the Spark worker daemon requires READ access to the BPX.JOBNAME profile in the
FACILITY class to change the job names of the executors and drivers.

Note: A specification that yields a job name that is more than 8 characters, raises an exception.

Setting the job name of the executors
A system programmer can specify the spark.zos.executor.jobname.prefix or the
spark.zos.executor.jobname.template property in the spark-defaults.conf configuration file
to define a job name.

The APAR PI89136 is required to use spark.zos.executor.jobname.template.

If spark.executorEnv._BPX_JOBNAME is specified in the spark-defaults.conf file, the
_BPX_JOBNAME environment variable takes precedence. Only the executor job name or job name prefix
specified in the spark-defaults.conf file is honored; any such settings that are specified in an
application or on the command line are ignored.

Using the spark.zos.executor.jobname.prefix
A system programmer can specify the spark.zos.executor.jobname.prefix property in the
spark-defaults.conf configuration file to define a job name prefix which, when combined with some
or all of an application instance number, forms the job name of the executors. An application instance
number is the last four digits of an application ID and is unique to each application within a Spark
cluster. Application IDs appear on both the master and application web UIs. The actual job names of the
executors will consist of the defined prefix plus as many digits of the corresponding application instance
number, starting from the last (right-most) digit, as can fit to form an 8-character job name.

For example, if you specify spark.zos.executor.jobname.prefix=SPARKX, the job name of the
executors for application 0001 will be SPARKX01. Since z/OS job names are limited to eight characters,
no special character is used to differentiate separate executor instances for the same application; that is,
all executors for application 0001 will have the same job name.

The spark-defaults.conf file contains a default setting of
spark.zos.executor.jobname.prefix=ODASX. If no executor prefix is specified in the spark-
defaults.conf file, the job names of the executors follow the z/OS UNIX default of a user ID with
a numeric suffix. For details, see “Using _BPX_JOBNAME to assign job names to Spark processes” on
page 76.

Using the spark.zos.executor.jobname.template
A system programmer can specify a template for generating job names by using the
spark.zos.executor.jobname.template property in the spark-defaults.conf configuration
file. The template property provides further customization when you are generating job names for
executors. The template uses variables that can be substituted for several pieces of information about the
work that the executor is running. These variables include cluster, application, and executor.
cluster

The number that is specified by spark.zos.cluster.instanceNumber.

Default length: 1

application
The application instance number.

Default length: 4

executor
The executor instance number.

Default length: 1

A number of digits can be specified for each, for example:

74 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

<executor:2>
The least 2 significant digits of the executor instance number are used.

For example, ODA<cluster:1><application:2><executor:2> where cluster number is 2,
application number is 0312, and executor is 0000, would yield ODA21200.

Note: The spark.zos.executor.jobname.template property supersedes
spark.zos.executor.jobname.prefix options.

Setting the job name of the driver in cluster deploy mode
A system programmer can specify the spark.zos.driver.jobname.prefix or
spark.zos.driver.jobname.template property in the spark-defaults.conf configuration file
to define a job name.

The APAR PI89136 is required to use spark.zos.driver.jobname.template.

Only the driver job name prefix or job name template setting that is specified in the spark-
defaults.conf file is honored; any such settings that are specified in an application or on the command
line are ignored.

Using the spark.zos.driver.jobname.prefix
A system programmer can specify the spark.zos.driver.jobname.prefix property in the spark-
defaults.conf configuration file to define a job name prefix which, when combined with some or all
of a driver instance number, forms the job name of the driver in cluster deploy mode. A driver instance
number is the last four digits of a driver ID and is unique to each driver within a Spark cluster. The driver
IDs of cluster deploy-mode applications appears on the master web UI. The actual job name of the driver
will consist of the defined prefix plus as many digits of the corresponding driver instance number, starting
from the last (right-most) digit, as can fit to form an 8-character job name.

For example, if you specify spark.zos.driver.jobname.prefix=SPARKD, the job name of the driver
with driver instance number 0001 will be SPARKD01.

Note: The driver prefix does not apply to drivers in client deploy mode since client-deploy-mode driver
processes are already up and running before the configuration file is read; thus, their job names cannot be
changed.

The spark-defaults.conf file contains a default setting of
spark.zos.driver.jobname.prefix=ODASD. If no driver prefix is specified in the spark-
defaults.conf file, the job name of the driver in cluster deploy mode follows the z/OS UNIX default of a
user ID with a numeric suffix.

Using the spark.zos.driver.jobname.template
A system programmer can specify a template for generating job names by using the
spark.zos.driver.jobname.template property in the spark-defaults.conf configuration file.
The template property provides further customization when you are generating job names for the driver.
The template uses variables that can be substituted for several pieces of information about the work that
the driver is running. These variables include cluster and driver.
cluster

The number that is specified by spark.zos.cluster.instanceNumber.

Default length: 1

driver
The driver instance number.

Default length: 4

For example, ODA<cluster:1><driver:2> where cluster number is 6 and driver number is 0312,
would yield ODA612.

Chapter 4. Customizing your environment for z/OS Spark 75

Note: The spark.zos.driver.jobname.template property supersedes
spark.zos.driver.jobname.prefix options.

Using _BPX_JOBNAME to assign job names to Spark processes
When a new z/OS UNIX process is started, it runs in a z/OS UNIX initiator (a BPXAS address space). By
default, this address space has an assigned job name of userIDx, where userID is the user ID that started
the process, and x is a decimal number. You can use the _BPX_JOBNAME environment variable to set the
job name of the new process. Assigning a unique job name to each Spark process helps to identify the
purpose of the process and makes it easier to group processes into a WLM service class.

The following example shows a portion of a script that assigns different job names for the master and
worker processes before starting them:

_BPX_JOBNAME='ODASM1A' /usr/lpp/IBM/izoda/spark/spark23x/sbin/start-master.sh
sleep 5
export _BPX_SHAREAS=NO
_BPX_JOBNAME='ODASW1A' /usr/lpp/IBM/izoda/spark/spark23x/sbin/start-slave.sh spark://
127.0.0.1:7077

A system programmer can set the job name of the executor address space by setting
spark.executorEnv._BPX_JOBNAME in the spark-defaults.conf configuration file as in the
following example:

spark.executorEnv._BPX_JOBNAME ODASX1A

If the job name of the executor is set in this manner, all Spark executors will have the same job name.

If spark.executorEnv._BPX_JOBNAME is specified in the spark-defaults.conf file, the
_BPX_JOBNAME environment variable takes precedence. Only the executor job name or job name prefix
specified in the spark-defaults.conf file is honored; any such settings that are specified in an application
or on the command line are ignored.

Tip: If you use the Jupyter Kernel Gateway with Apache Toree to access Spark, it is good practice to
use the same naming convention for the Toree instances. For instance, if you set _BPX_JOBNAME=ODASD
for the Toree instances and set spark.zos.executor.jobname.prefix=ODASX for the executors
and you have client authentication enabled, you can then classify the driver and the executors for user
Elpida's application by using transaction name and user ID qualifiers, such as TN=ODAS* and UI=Elpida.

In addition to the master, worker, driver, and executors, your Spark environment may have additional
processes, such as the Spark history server. You can also use _BPX_JOBNAME to assign unique job names
to those processes.

Setting _BPX_JOBNAME requires appropriate privileges. For more information about _BPX environment
variables, see z/OS UNIX System Services Planning.

Using _BPX_ACCT_DATA to assign accounting information to Spark processes
In addition to using _BPX_JOBNAME, you may assign accounting information to your Spark processes
by using the _BPX_ACCT_DATA environment variable. You may use_BPX_ACCT_DATA instead of
_BPX_JOBNAME to classify work. If you are using started tasks for Spark processes, you will use the
job name or job accounting data to classify the work with WLM and you will not need these environment
variables.

The following example shows how to start the master specifying the _BPX_ACCT_DATA variable:

_BPX_ACCT_DATA=’SPARKDAT’ $SPARK_HOME/sbin/start-master.sh

Use this same method (prefixing _BPX_ACCT_DATA=’xxx’ on the command) to start other IzODA
processes such as the worker, Shuffle service, History server, and Livy with accounting information.
Depending on your WLM and Spark configuration you might also need to specify _BPX_JOBNAME as
shown in “Using _BPX_JOBNAME to assign job names to Spark processes” on page 76 to set the job
name.

76 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

In client deploy and cluster deploy spark-submits, the accounting information for spawned executors is
set by starting the worker with _BPX_ACCT_DATA. For local deploy mode spark-submits, only a single
address space is produced and can be passed accounting data as shown in the previous example.

Overview of WLM classification
You specify goals for the WLM services for Open Data Analytics for z/OS work in the same manner as
for other z/OS workloads, by associating the work with a service class. In the service class, you assign
goals to the work, along with the relative importance of each goal. You can also assign limits for CPU and
memory capacity to be available to a service class. To associate incoming work with a particular service
class, you must also define classification rules.

Example of a WLM classification scenario
Figure 6 on page 77 shows a logical view of a the WLM configuration for a sample classification scenario.

Figure 6. Logical view of a sample WLM classification scenario

In Figure 6 on page 77, four service classes are defined: ODAS1SCH, ODAS2SCH, ODAS2SCL, and
ODAS2SCD.

• The ODAS2SCH and ODAS2SCL service classes are associated with the ODAS2RGH resource group,
which allows 50 percent GP capacity and has no memory limit.

• The ODAS2SCD service class is associated with the ODAS2RGL resource group, which allows only 10
percent GP capacity and has a memory limit of 20 GB.

Four classification rules are defined that classify work as follows:

Chapter 4. Customizing your environment for z/OS Spark 77

• All processes in Spark cluster 1, whose names match the ODAS%1* pattern, are classified into the
ODAS1SCH service class. User Angie's executor receives its job name by using the _BPX_JOBNAME
environment variable.

• Master and worker processes in Spark cluster 2, whose names match the ODAS%2* pattern, are
classified into the ODAS2SCH service class.

• The executor for user Jill in Spark cluster 2 has a job name of ODASX002 and is
classified into the ODAS2SCL service class. The job name is generated by specifying the
spark.zos.executor.jobname.prefix property.

• The executor for user Bob in Spark cluster 2 has a job name of ODASX003 and is
classified into the ODAS2SCD service class. The job name is generated by specifying the
spark.zos.executor.jobname.prefix property.

All service classes in Spark cluster 2 (ODAS2SCH, ODAS2SCL, and ODAS2SCD) are grouped together into
the ODAS2 report class. Further, the ODASWL workload groups both Spark clusters together.

The topics that follow discuss each of these WLM components in more detail.

Defining WLM service classes for Spark
A service class is a named group of work with similar performance goals, resource requirements, or
business importance. Based on your business needs, you can define one or more service classes for
your Apache Spark cluster. For example, you might choose to define any of the following types of service
classes:

• One service class for all Spark processes, including z/OS IzODA Mainframe Data Service (FMID
HMDS120)

• One service class with a higher importance for the master, worker, and driver, and another service class
with a lower importance for the executors

• One service class for each type of Spark application
• One service class for each Spark cluster. For instance, you might have one Spark cluster for application

development and another for production applications.

Note: You can define up to 100 service classes in a Parallel Sysplex. However, to simplify policy
management, you might want to reuse existing service classes for your Spark workload rather than define
new ones. For instance, you can place the Spark master and worker daemons in a service class with other
OMVS daemons.

To define a service class, you first need to determine the following information:

• Service class name and description
• Name of the workload associated with the service class
• Name of the resource group associated with the service class
• Whether the service class is CPU-critical or requires high I/O priority
• Performance periods, goals, and importance
• Whether honor priority needs to be set, if WLM APAR OA52611 is installed

– This option ensures that eligible work will run on zIIPs and not GPs. See Honor Priority and zIIP-
eligiblity considerations later in this section.

• Memory limits (if any) to be set on the resource group, if WLM APAR OA52611 is installed

Workloads
A WLM workload is a named collection of work to be reported as a unit. You might consider defining a
Spark workload for easy resource monitoring. To create a workload, select the 2. Workloads option on the
Definition Menu in the WLM ISPF application.

Example: The following figure shows an example of creating a workload called ODASWL:

78 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

 Create a Workload
Command ===> __

Enter or change the following information:

Workload Name ODASWL_ (Required)
Description Sample Spark workload___________

Resource groups
A WLM resource group is a way of limiting or guaranteeing the availability of general purpose processor
capacity to one or more service classes. WLM APAR OA52611 also provides the ability to limit the physical
memory, at a system level, consumed by all address spaces that belong to a resource group.

If the physical memory consumption by address spaces associated with a resource group is at or near
its memory limit, the system may take action against the address spaces. For instance, the system might
initiate paging (within the address spaces that are associated with the resource group), suspend storage
requesters, or, in certain situations, abnormally end (abend) entire address spaces. IBM suggests using
the memory limit attribute as an upper limit so that, under normal conditions, resource consumption will
operate well below the limit.

Typically, Spark workloads are resource intensive, so you might wish to consider defining resource groups
to ensure that your Spark workload does not impact other workloads that, in business terms, are more
important. In addition, Spark executors are generally good candidates to have their physical memory
usage capped, since they typically consume a lot of memory. However, you might see performance
degradation or even termination of your Spark applications if they reach their memory limit. In the case of
termination, Spark applications usually observe an ABEND SEC6. Another situation that can occur is if an
executor is not executing or responding for an extended period, such as in a heavy paging situation that
is initiated by approaching a resource group's memory limit, the executor might be declared lost by the
driver. This might prompt the spawning of a new replacement executor and it becomes possible to have
two or more executors running in the same resource group, performing the same computation. In a highly
competitive resource situation, the driver might declare that it cannot finish successfully and terminates.
IBM suggests that you not place the Spark master and worker daemons in a memory-limited resource
group, so that the Spark cluster stays alive even if the system terminates executors.

IBM suggests that you consider your Spark configuration when using WLM to limit resources available
to Spark processes. The SPARK_WORKER_CORES parameter should be set to a value less than or
equal to the number of processors available to the Spark executors after WLM-imposed limits. The
SPARK_WORKER_MEMORY parameter should also be set to a value less than or equal to the memory
limit defined for the executors' resource group. Setting appropriate values for these parameters helps
Spark to dispatch work within its limits and help reduce unintended consequences. (For more information
about the Apache Spark configuration options for standalone mode, see http://spark.apache.org/docs/
2.4.8/spark-standalone.html.)

For more information about memory limits for resource groups, see "Storage Management Overview" in
z/OS MVS Initialization and Tuning Guide and "Defining service classes and performance goals" in z/OS
MVS Planning: Workload Management. For more information about monitoring resource consumption by
Spark applications, see Chapter 14, “Resource monitoring for Apache Spark,” on page 137.

To create a resource group, select the 3. Resource Groups option on the Definition Menu in the WLM
ISPF application. You can define up to 32 resource groups in a Parallel Sysplex; however, to simplify
policy management, you might wish to reuse existing resource groups for your Spark workload rather than
define new ones.

Example: The following figure shows an example of creating a resource group called ODASRG with a
maximum capacity of 10 percent of the LPAR share in the general processor pool and a memory limit of
20 GB:

Chapter 4. Customizing your environment for z/OS Spark 79

http://spark.apache.org/docs/2.4.8/spark-standalone.html
http://spark.apache.org/docs/2.4.8/spark-standalone.html

 Create a Resource Group
Command ===> __

Enter or change the following information:

Resource Group Name : ODASRG_ (required)
Description Sample Spark resource group

Define Capacity:
2 1. In Service Units (Sysplex Scope)
 2. As Percentage of the LPAR share (System Scope)
 3. As a Number of CPs times 100 (System Scope)
Minimum Capacity ________
Maximum Capacity 10______
Include Specialty Processor Consumption NO____(YES or NO)

Memory Limit (System Scope) 20______ GB

Other service class attributes
You can define the rest of the service class attributes on the Create a Service Class panel. To create a
service class, select the 4. Service Class option on the Definition Menu in the WLM ISPF application.

CPU Critical and I/O Priority Group
You can use the CPU Critical attribute and the I/O Priority Group attribute to give higher CPU and I/O
priorities to the work in the service class. Spark workloads do not typically require higher CPU or I/O
priorities.

Honor Priority and zIIP-eligiblity considerations

Running z/OS workloads on System z Integrated Information Processors (zIIPs) reduces software
licensing costs as compared to running on general processors (GPs). Most Spark workloads are
zIIP-eligible. IBM suggests that you start with at least two zIIPs and one GP. You may use WLM to
prevent Spark work from spilling over to GPs.

WLM APAR OA52611 also provides the ability to exclude a service class from the system-wide
Honor Priority defaults. By setting the Honor Priority attribute to NO on a service class, work in that
service class that is eligible to run on specialty processors (such as zIIPs) does not overflow to
general-purpose CPs (GPs) when there is insufficient capacity on the specialty processors. The default
is to use the IFAHONORPRIORITY and IIPHONORPRIORITY parameters that are specified in the
IEAOPTxx member of parmlib.

You can set the Honor Priority attribute to NO if you want to minimize the amount of Spark work
processed by the GPs. However, give careful consideration to setting Honor Priority attributes to NO
on service classes, especially in the case of highly utilized specialty processors. For instance, a Spark
service class restricted to zIIPs may consume much of the zIIP capacity and cause other zIIP-eligible
workloads, such as IBM Db2, to overflow to GPs.

In addition, Spark applications, by default, fall into the default OMVS service class. If the default
OMVS service class is restricted to specialty engines, other processes in the same service class, such
as terminals or ssh sessions, might become unresponsive. Spark applications might also experience
timeouts during driver and executor communication if they are waiting for CPU time for too long.
Monitor these timeouts and adjust the timeout values in the Spark configuration accordingly. For more
information about monitoring Spark resources, see Chapter 14, “Resource monitoring for Apache
Spark,” on page 137.

zIIP-eligible work can incur some serialization cost and will resolve on GPs. For Spark, this might
happen as the worker splits work amongst multiple executors. Consider the following trends when
planning your environment:

1. A greater number of executors allows work to resolve faster, but incurs GP runtime to resolve
serialization issues.

2. A smaller number of executors allows work to stay on zIIPs, but finishes at a slower speed.

See “Configuring memory and CPU options” on page 65 for the configuration values that influence the
number of executors created by Spark.

80 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Performance periods
Performance periods are available for work that has variable resource requirements and for which
your goals change as the work uses more resources. For each performance period, you specify a goal,
and importance level, and an optional duration.

Goals
There are three types of goals:

• Response time goals indicate how quickly you want your work to be processed. The response time
represents the time that WLM is aware of the unit of work and it is measured differently for different
subsystems. It is not an end-to-end response time. Response time goals are not appropriate for
all types of work, such as long-running jobs or workloads that do not have frequent transaction
completions. There are two types of response time goals:

– Average response time goals are typically used for transactions that have extremely homogenous
response times.

– Percentile response time goals are used to set a response time target for a given percentage of
transactions (for instance, 80 percent of transactions within 3 seconds).

• Execution velocity goals define how fast work should run when ready, without being delayed for
processor, storage, I/O access, and queue delay. Execution velocity goals are intended for work for
which response time goals are not appropriate, such as started tasks or long-running work.

• Discretionary goals are for low-priority work for which you do not have any particular performance
goal. WLM processes the work using resources not required to meet the goals of other service
classes. Note that the honor priority option is insignificant for discretionary service classes because
work assigned to these service classes never gets help from GPs.

The type of goal that is best suited for your Spark workload depends on the workload itself.

• For long-running Spark applications, such as model training or streaming workloads, IBM suggests
using velocity goals.

• For short-running Spark applications, such as machine learning model evaluations, a response time
goal might be more appropriate.

• For exploratory data science and experimental or new workloads, a discretionary goal might be a
better fit.

When determining workload goals, also consider how honor priority has been set for the service class.
For instance, if a Spark service class has high velocity goals and is set to use only zIIPs, these two
settings might interfere with each other under certain conditions and cause an undesired state for the
Spark applications and their workload priorities.

Duration
Duration is the length of the performance period, in service units. For a given period, if the work in that
period does not complete by the time the specified number of service units have been used, the work
moves into the next performance period and its associated goal. You do not specify a duration if there
is only one period or on the last period in a service class.

Importance
Importance is the relative importance of the service class goal and is only used when work is not
meeting its goal. WLM uses the importance value to decide the order in which work should receive
resources when that work is not achieving its goal. Importance is expressed in five levels: 1 to 5, with
1 being the highest importance.

Example: The following figure shows an example of creating a service class called ODASSC1 for the
ODASWL workload:

Chapter 4. Customizing your environment for z/OS Spark 81

 Create a Service Class Row 1 to 2
Command ===> __

Service Class Name ODASSC1 (Required)
Description Sample Spark service class
Workload Name ODASWL (name or ?)
Base Resource Group ODASRG (name or ?)
Cpu Critical NO (YES or NO)
I/O Priority Group NORMAL (NORMAL or HIGH)
Honor Priority NO (DEFAULT or NO)

Specify BASE GOAL information. Action Codes: I=Insert new period,
E=Edit period, D=Delete period.

 -- Period -- ------------------- Goal -------------------
Action # Duration Imp. Description
 __ _ _________ _ __
 __ 1 _________ 3 Execution velocity of 50

The following figure shows the definition of the velocity goal for period 1:

 Execution velocity goal

 Enter an execution velocity for period 1

 Velocity . . . 50 (1-99)

 Importance . . 3 (1=highest, 5=lowest)
 Duration . . . _________ (1-999,999,999, or
 none for last period)

 F1=Help F2=Split F5=KeysHelp F9=Swap
 F12=Cancel

Defining WLM report classes for Spark
WLM allows you to specify report classes to report on a subset of work running in a single service class
and to combine work running in different service classes within one report class. Although report classes
are optional, they can be useful if you have multiple service classes defined for your Spark workload or if
you commingle your Spark and non-Spark workloads in the same service classes. For instance, you might
have separate service classes set up for Spark executor processes and non-executor processes. You can
put both service classes in the same report class and monitor the resource usage as a whole. The RMF
workload activity report shows the performance metrics and resource utilization for work in each service
class and report class. For more information about the RMF workload activity report, see z/OS RMF Report
Analysis.

To create a report class, select the 7. Report Classes option on the Definition Menu in the WLM ISPF
application.

Example: The following figure shows an example of creating a report class called ODASRC:

 Create a Report Class
 Command ===> __

 Enter or change the following information:

 Report Class name ODASRC_ (Required)
 Description Sample Spark Report Class ______

Defining WLM classification rules for Spark
After you have the service classes and, optionally, the report classes defined for Spark, you can define
classification rules for your Spark work. WLM uses classification rules to map work coming into the system
to a specific service class and report class. The classification is based on work qualifiers. The first qualifier
is the subsystem type that receives the work request. The subsystem type for work that is processed in
z/OS UNIX (which Spark workloads are) is OMVS.

The OMVS subsystem type supports the following secondary qualifiers:

82 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

• Sysplex name (PX)
• System name (SY)
• Transaction name or job name (TN)
• User ID (UI)
• Accounting Information (AI)

For instance, if you use a dedicated user ID to start the Spark cluster, this user ID could serve as
a classification mechanism. If you have enabled client authentication, you can also define a separate
service class for each user based on the user ID and job name. For more information about enabling client
authentication, see “Configuring z/OS Spark client authentication” on page 41.

You can also use masking (%) or wildcard (*) notation as a way to group work to the same service class or
report class. In earlier examples, all Spark job names are prefixed with ODAS. You can easily group these
jobs into the same WLM service class by specifying a classification rule for the OMVS subsystem by using
a qualifier of transaction name ODAS*. Alternatively, you can place the master, worker, and driver in one
service class (based on transaction name qualifiers of ODASM*, ODASW*, and ODASD*, respectively) and
place the executors in another service class (based on a transaction name qualifier of ODASX*).

Tip: IBM suggests classifying any significant Spark workload into its own service class or classes.

Note: z/OS IzODA Mainframe Data Service (FMID HMDS120) uses different classification rules. For more
information about configuring WLM for the Data Service server, see Chapter 5, “Customizing the Data
Service server,” on page 85.

To create classification rules, select the 6. Classification Rules option on the Definition Menu in the WLM
ISPF application.

Example: The following figure shows an example of creating a classification rule that uses the transaction
name qualifier ODAS* to group work into the ODASSC1 service class and ODASRC report class:

 Modify Rules for the Subsystem Type Row 1 to 1 of 1
 Command ===> ___ Scroll ===> PAGE

 Subsystem Type . : OMVS Fold qualifier names? Y (Y or N)
 Description . . . Sample OMVS classification rule

 Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 -------Qualifier-------- -------Class--------
 Action Type Name Start Service Report
 DEFAULTS: OMVSDFSC OMVSDFRC
 ____ 1 TN ODAS* ___ ODASSC1 ODASRC

For more information about planning for and using WLM, see z/OS MVS Planning: Workload Management
and z/OS MVS Programming: Workload Management Services.

Other Apache Spark attributes
Once you have secured your Apache Spark environment and defined it to WLM, you can further customize
your environment. This section describes two ways in which to do that:

• Increasing the parallelism of your Spark applications
• Allowing multiple Spark applications to run simultaneously.

Increasing parallelism attributes
Spark is well-known for its ability to parallelize the processing of data. Often, this involves careful tuning
of the attributes within spark-defaults.conf. Even then, the Spark Master may decide to execute the
program such that it is not consuming all the resources available to it. In such a case, you may want to
consider using dynamic allocation.

Dynamic Allocation (see Appendix D, “Memory and CPU configuration options,” on page 171) allows the
Spark Master to start and stop executors as needed and as system resources allow. For example, if an

Chapter 4. Customizing your environment for z/OS Spark 83

application has partitioned its data appropriately, it may be possible for the Spark Master to request more
executors be added to the application, allowing the application to execute more efficiently and complete
earlier.

When using Dynamic Allocation, it is more likely that data will be shuffled among the executors. Toward
that end, you must also enable the Spark Shuffle server (also described in Appendix D, “Memory and CPU
configuration options,” on page 171).

This causes the executors to make their shuffle data accessible to other executors by storing it on the
Worker. (This may increase the amount of storage needed by the worker.)

You can also read about the shuffle server and dynamic allocation on the Apache Spark website.

Scheduling multiple Apache Spark applications
Any Apache Spark cluster has the ability to run multiple applications. Generally, however, most Spark
installations are configured by default to run just one application, using all the resources available
memory and CPU. z/OS IzODA Spark has addressed this issue.

Starting with APAR PI03469, Spark 2.2.0.8 and higher includes a new setting
(spark.zos.master.app.alwaysScheduleApps=true) that enables z/OS IzODA Spark to schedule
multiple applications to execute at the same time, even if it seems to use more memory or CPU than the
Spark Master sees in the system. In this way, more applications can execute and Workload Manager can
better manage resources.

By setting spark.zos.master.app.alwaysScheduleApps to true in spark-defaults.conf, each
application that registers with the master will be allowed to execute in a “virtual” cluster (subject to
limitations; more details later). New applications can get all resources on the cluster, independent of the
resources already allocated to other applications. This gives z/OS Workload Manager a chance to manage
cores and memory on Spark's behalf instead of requiring Spark and the system programmer to tune the
available resources for applications to run concurrently.

The number of concurrently running applications can be limited by setting
spark.zos.maxApplications in spark-defaults.conf. The default is 5.
spark.zos.maxApplications is valid only if spark.zos.master.app.alwaysScheduleApps is
true.

Note that there are still limits on the memory and cores an application can use. A single application
cannot receive more cores than SPARK_WORKER_CORES or more memory than SPARK_WORKER_MEMORY
specifies across all its executors. However, be aware that multiple applications could each receive
SPARK_WORKER_CORES or SPARK_WORKER_MEMORY. Also be aware that the memory and cores allocated
to the driver do not introduce limits. Furthermore, the scheduler will still obey the “Memory and CPU
configuration options” in Appendix D, “Memory and CPU configuration options,” on page 171. Resource
contention could result if too many applications are concurrently running with too many resources, so it
is important to adjust your configuration options accordingly and tailor your WLM policy to ensure proper
operation within your system.

Therefore, if all settings other than spark.zos.maxApplications and
spark.zos.master.app.alwaysScheduleApps are default, the total amount of memory
the master could allocate is (spark.zos.maxApplications * (SPARK_WORKER_MEMORY
+ spark.driver.memory)) and the total for cores is (spark.zos.maxApplications
* (SPARK_WORKER_CORES + spark.driver.cores)). It is important to adjust your
SPARK_WORKER_MEMORY and SPARK_WORKER_CORES accordingly.

Note: Spark Drivers only appear in the master Web UI if applications are submitted in cluster-deploy
mode. If an application is submitted via client-deploy mode, its driver does not contribute to the used
memory and cores on the Web UI.

Note that on the master Web UI, you may observe more memory or cores in use than are available. This is
normal behavior in this “virtual cluster” environment.

84 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Chapter 5. Customizing the Data Service server
After you install Mainframe Data Service, customize the server for use.

Before you begin
You must install Data Service and apply all available maintenance before customizing the server. To apply
server maintenance, you should acquire available PTFs and apply them to the server so you will have the
most current available code for your installation.

Preparing to customize
Before you start to customize IBM Open Data Analytics for z/OS, familiarize yourself with the
customization tasks.

The following table describes each significant customization task. Use this checklist to guide you through
the customization process.

Table 7. Customization checklist

Step Task description For more information

1 Review the required naming conventions that
must be followed when configuring the server
subsystem ID and the server initialization
member.

See “Required naming conventions” on page
86.

2 Create the server data sets using
the hlq.SAZKCNTL members AZKDFDIV,
AZKGNMP1 and AZKEXSWI.

See “Creating server data sets” on page 86.

3 Set up the security application to
use with the server using one of
the following hlq.SAZKCNTL members:
AZKRAVDB, AZKA2VDB, AZKTSVDB.

See “Defining security authorizations” on page
87.

4 Configure Workload Manager (WLM) for
optimum performance of the server.

See “Configuring Workload Manager (WLM)”
on page 87.

5 APF-authorize the product LOAD library data
sets.

See “APF-authorizing LOAD library data sets”
on page 88.

6 Create a copy of the product libraries
(optional).

See “Copying target libraries” on page 88.

7 Configure the server to support DBCS
(optional).

See “Configuring support for code pages and
DBCS ” on page 88.

8 Create the Global Registry log stream
(optional).

See “Creating the Global Registry log stream”
on page 89.

9 Customize the server to access your data
sources in hlq.SAZKEXEC(AZKSIN00).

See “Customizing the server initialization
member” on page 89. Then, see "Configuring
access to data sources" in the Solutions Guide
for the specific types of data sources the
server should access.

10 Configure the started task JCL located in
hlq.SAZKCNTL(AZK1PROC) before you can
start the server.

See “Configuring the started task JCL” on page
90.

© Copyright IBM Corp. 2016, 2021 85

Table 7. Customization checklist (continued)

Step Task description For more information

11 Configure the CLIST that invokes the ISPF
panels by using hlq.SAZKEXEC(AZK).

See “Configuring the ISPF application” on
page 91.

12 Verify the installation by creating a virtual
table and accessing its underlying VSAM file
(optional).

See Chapter 11, “Verifying the Data Service
server installation,” on page 121.

Required naming conventions
You must follow the Data Service server naming conventions when configuring the server subsystem ID
and the server initialization member.

The server subsystem name must follow the pattern xZKy, where x is any alphabetic character A - Z and y
is any alphanumeric character A-Z or 0-9.

Depending on what you name the server subsystem, the server initialization member must follow the
same naming convention as the server subsystem name, for example, xZKyIN00.

Note: The default server naming conventions used throughout this guide are AZKS for the server
subsystem name and AZKSIN00 for the server initialization member.

Creating server data sets
The AZKDFDIV and AZKGNMP1 members of hlq.SAZKCNTL create data sets for the Trace Browse, the
global variable checkpoint, and the data-mapping facility (DMF) that are used by the Data Service server.
The AZKGNMP1 member also copies distributed data sets into user-modifiable data sets. The AZKEXSWI
member builds the Web interface objects.

Procedure
1. Customize the AZKDFDIV member in hlq.SAZKCNTL to meet your requirements. The AZKDFDIV

member contains comments that describe how to customize the variables.
2. Submit the AZKDFDIV member.
3. Customize the AZKGNMP1 member in hlq.SAZKCNTL to meet your requirements. The AZKGNMP1

member contains comments that describe how to customize the variables.
4. Submit the AZKGNMP1 member.

Note: The map data set created in this step should be the first concatenated data set in the DD
statement AZKMAPP located in the server started task. See hlq.SAZKCNTL(AZK1PROC). The user
and server should have read and write permissions to this data set. The system-provided data set
(hlq.SAZKSMAP) should be the last data set in the AZKMAPP concatenation. The user and server
should only have read access to the data set. The administrator will need read and write permissions.

5. Customize the AZKEXSWI member in hlq.SAZKCNTL to meet your requirements. The AZKEXSWI
member contains comments that describe how to customize the variables.

Note: The data set named on the RECEIVE command in the AZKEXSWI member is later used in the
server initialization member AZKSIN00 for the SWICNTLDSN parameter definition, as follows:

swiobj = SHLQ2||".SAZKOBJ"
"MODIFY PARM NAME(SWICNTLDSN) VALUE("||swiobj||")"

6. Submit the AZKEXSWI member.

86 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Defining security authorizations
To use an external security product, such as RACF, ACF2, or Top Secret, define the started task name to
the security product and authorize the data set.

Procedure
To define the server and other required permissions for your security product, customize the appropriate
security option located in the hlq.SAZKCNTL library, and submit the job:

• AZKRAVDB is for IBM Resource Access Control Facility (RACF) security.
• AZKA2VDB is for CA ACF2 (Access Control Facility) security.
• AZKTSVDB is for CA Top Secret Security (TSS).

Results
Make sure that your z/OS Security Administrator reviews the security definitions. You might need to
change definitions to meet requirements at your site.

Configuring Workload Manager (WLM)
To get optimum performance from the server, define the server to WLM. The Data Service server should
be prioritized slightly below the data provider in your WLM environment. It is not sufficient to simply add
the STC to a WLM service class as the server will create independent enclaves for each connection.

About this task
The server should be configured to use a medium to high performing WLM velocity goal as its default
service class.

Procedure
1. Create a WLM Classification rule.

a) Go to the WLM ISPF application, and select option 6 (Classification Rules).
b) Select option 1 to Create.
c) Set the Subsystem Type to AZK, and provide an optional description.
d) Under the Class/Service Column next to DEFAULTS, set the desired default service class name. If

a desired service class does not exist, then create one using option 4 (Service Classes) under the
Primary WLM menu. Press enter and PF3 to save.

2. Define the Data Service started task AZK1PROC to a WLM service class.
a) Go to the WLM ISPF application, and select option 6 (Classification Rules).
b) For the STC WLM-subsystem type, select Modify.
c) Add an entry for AZK1PROC.
d) Add an appropriate service class for the started task and define it relative to existing workload

resource management objectives.
e) Add a unique Report class for the started task.

3. Activate the new WLM policy definition.

Chapter 5. Customizing the Data Service server 87

APF-authorizing LOAD library data sets
You must authorize for APF (Authorized Program Facility) all LOAD library data sets allocated to the Data
Service server.

About this task
All LOAD library data sets allocated to the Data Service server in the server started task JCL must be
APF-authorized.

These LOAD library data sets are allocated to the following ddnames:

• STEPLIB

You must authorize the LOAD library AZK.SAZKLOAD.
• AZKRPCLB

You must authorize the LOAD library AZK.SAZKRPC.

If any data sets allocated to these ddnames are not APF-authorized, the Data Service server will issue the
error message AZK0051S during startup identifying the ddname and data set name of each unauthorized
library. Startup processing will discontinue and the server will shut down.

Procedure
The APF authorize should be done dynamically using the SETPROG APF command, and then made
permanent for the next IPL (initial program load) by updating the appropriate system PARMLIB member.

Copying target libraries
It is recommended that copies be made of the target libraries to preserve any prior customization, as
applying new maintenance often replaces existing PDS members.

Configuring support for code pages and DBCS
You can configure the server to support Japanese code pages and double-byte character sets (DBCS).

About this task
To support different code pages and double-byte character sets, you must manually customize the server
initialization member.

Procedure
1. Locate the server configuration member. The server initialization member is shipped in data set

member hlq.SAZKEXEC(AZKSIN00) and may have been copied to a new data set for customization in
the step “Copying target libraries” on page 88.

2. In the member, locate the DEFINE DATABASE statement for your subsystem, and verify that the
CCSID value is set correctly for the subsystem.

3. Locate the comment Set CCSID for non-DB2 data, as shown in the following example:

/*-------------------------------------*/
/* Set CCSID for non-DB2 data */
/*-------------------------------------*/

if DoThis then
 do
 "MODIFY PARM NAME(SQLENGDFLTCCSID) VALUE(1047)"

4. Change DontDoThis to DoThis to enable the parameters.
5. Update the following parameter:

88 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Parameter Description Valid values

SQLENGDFLTCCSID Specifies the CCSID to use for
SQL engine tables. All host
tables except for Db2 are
assumed to be stored in this
CCSID. Where possible, this
CCSID should match the client
CCSID used when connecting.

CCSID value

Sample values:

• 1047 (LATIN OPEN SYS EB)
• 931 (JAPAN MIX EBCDIC)
• 1390 (JAPAN MIX EBCDIC)

Creating the Global Registry log stream
You can manually create the Global Registry log stream instead of having the server dynamically create it.

Before you begin
Confirm the following prerequisites:

• The GLBLREGISTRYEHLQ parameter is not set to NOLOGSTREAMS in the server initialization file
AZKSIN00.

• The server is not running. This customization step should be performed before any instance of the
server is started unless the NOLOGSTREAMS parameter is specified.

About this task
To manually create the Global Registry log stream, you must customize and run either the AZKLSGBL or
AZKLSGBO customization job before the server is started.

Procedure
Customize and run one of the following jobs before the server is started:

• If a coupling facility is used, use batch job hlq.SAZKCNTL(AZKLSGBL).
• If a coupling facility does not exist within your SYSPLEX environment, then create the DASD-only log

stream structure using the batch job hlq.SAZKCNTL(AZKLSGBO).

Customizing the server initialization member
The server initialization member AZKSIN00 is a REXX program that you use to set product parameters
and define links and databases. You must customize the server initialization member for your installation
environment.

About this task
The server initialization member is shipped in data set member hlq.SAZKEXEC(AZKSIN00) and may have
been copied to a new data set for customization in the step “Copying target libraries” on page 88.

As you go through the installation, you accept or set parameter values in the server initialization member.

If you are installing the server for the first time, it is recommended that all the default values be accepted.
You can change the values as needed later.

If you are installing a new version of the server over a previous version, the previous server member might
contain parameter values that you modified to meet specific requirements in your environment. In this
case, you should review the initialization member for the previous version for any customizations that
need to be made to the initialization member for the new version.

Chapter 5. Customizing the Data Service server 89

Procedure
1. Find the line that contains “SHLQ1” and provide your own high-level qualifier to define the ISPF data

sets. For example: “SHLQ1=AZK”
2. If you created copies of your target libraries to preserve customizations, find the line that contains

“SHLQ2” and provide your own high-level qualifier to define the Event Facility (SEF) data sets. Ensure
that the HLQ results in proper data set references for these features.
For example: “SHLQ2=AZK.AZKS”. If you did not create copies of the target libraries, then "SHLQ2"
should contain the same value as "SHLQ1".

3. Review the following default values for the TCP/IP parameters and change the values as necessary.
The following example shows the section of the initialization member in which to make the changes:

 “MODIFY PARM NAME(OEPORTNUMBER) VALUE(1200)”
 “MODIFY PARM NAME(WSOEPORT) VALUE(1201)”
 “MODIFY PARM NAME(TRACEOERW) VALUE(YES)”
 “MODIFY PARM NAME(OEKEEPALIVETIME) VALUE(30)”
 "MODIFY PARM NAME(PARALLELIO) VALUE(YES)"
 “MODIFY PARM NAME(OEPIOPORTNUMBER) VALUE(1204)”

Configuring the started task JCL
To configure the started task JCL, modify the AZK1PROC (subsystem default ID) member that is in the
hlq.SAZKCNTL library.

About this task
The AZK1PROC member contains the JCL procedure that is required to run the main address space
(started task).

Procedure
1. Add the HLQ name of the libraries to the hlq parameter.

This parameter sets the server data set allocations to the correct data set names.
2. Confirm that the SYSEXEC DD statement allocates the correct data set name that contains

the customized server initialization member AZKSIN00. This data set was created in job
AZKGNMP1 previously in the step “Creating server data sets” on page 86. The default name is
hlq.SAZKEXEC(AZKSIN00).

3. Ensure that the DD AZKMAPP concatenation points to the hlq.SAZKMAP data set created in the
previous installation job AZKGNMP1. This data set should be first in the concatenation and is used for
storing user-defined virtual table maps. The hlq.SAZKMAP data set, which contains the default virtual
table maps that are part of the product distribution, should be placed last.

4. The server runs as a z/OS started task. Under normal circumstances, the server starts at system
startup and stops before the system shuts down. To start the server on demand, use the following
console command:

S AZKS

where AZKS is the subsystem name of the server instance you defined.

Note: If you use a procedure name other than the SSID provided in the example, then you issue the
start command using that procedure name.

5. If you use an automation package to start the system, associate the START command with the VTAM
initialization complete message (IST020I), the TCP/IP initialization complete message (EZB6473I), or
both messages.

6. To verify that the startup is successful, look for the following entries in the server Job Entry Subsystem
(JES) log.

90 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

SD74391I OE stack binding port 1200 to IP address 0.0.0.0
SD74391I OE stack binding port 1201 to IP address 0.0.0.0
SD74391I OE stack binding port 1202 to IP address 0.0.0.0

What to do next
If you want to stop the server, issue the following console command:

P AZKS

If you issue a CANCEL command, all available connections terminate with an abend, and the server shuts
down immediately.

Configuring the ISPF application
Configure and invoke the ISPF application.

Before you begin
The server must be started before you can invoke the ISPF application.

Procedure
1. Edit the hlq.SAZKEXEC(AZK) member, and replace the data set name in the following statement

with the data set name that you chose for the hlq.SAZKLOAD library:

llib='hlq.SAZKLOAD'

2. Copy the hlq.SAZKEXEC(AZK) member to a data set that is allocated to the SYSPROC allocation for
all TSO users.

Before starting the ISPF application, you must configure and start your server. See “Configuring the
started task JCL” on page 90

When the server starts, the ISPF data sets are dynamically allocated.
3. To invoke the ISPF application, go to the ISPF command shell and enter the following command:
EX ‘hlq.SAZKEXEC(AZK)’ ‘SUB(AZKS)’
Where:

• hlq is the high level qualifier.
• AZKS is the subsystem name of the server instance you defined.

All ISPF clients will communicate with the specified subsystem.

Configuring generation data set retrieval
You can configure the server to read only a subset of generation data sets (GDSs) by activating a VTB rule.

About this task
To read only a subset of generation data sets in a generation data group (GDG), you must enable virtual
rule AZKGDGS1 and use the prefix GDG__ in your SQL statement.

A VTB rule is provided that allows a subset of the GDG to be read. VTB rule AZKGDGS1 is invoked by the
SEF every time a table with the prefix GDG__ is found in the SQL statement.

The table name in the SQL statement must be of the form:

GDG__NumGens_RelGen_MapName

Where:

• GDG__ is a constant indicating a generation data set request.

Chapter 5. Customizing the Data Service server 91

• NumGens is a required number 0 through 999 indicating the number of generations to read.
• RelGen is an optional number 0 through 999 indicating the relative generation at which to start reading.

A value of 0 is equivalent to a suffix of (0) in a JCL allocation; a value of 1 is equivalent to (-1), and so on.
• MapName is the table defined in the map data set.

For example, the following request will result in generations HLQ.GDG.STAFF(-3) through
HLQ.GDG.STAFF(-6) being retrieved:

SELECT * FROM GDG__4_3_STAFF

Where the STAFF table specifies a base data set name of HLQ.GDG.STAFF. In other words, with this
request, four generations will be read in descending generation order beginning with relative generation 3
(that is, generations 3, 4, 5, and 6).

Use the procedure in this task to enable sample rule AZKGDGS1.

Additional details:

When a request is made to allocate a data set, it will first be determined if the data set name represents
a GDG base name. If so, a CSI lookup call will be made to return the associated GDS data set names.
If a VTB rule does not specify the number of generations to read and MapReduce is disabled, or if
there is a single generation, the GDG will be allocated using its base data set name, and normal system
concatenation of generation data sets will occur. If MapReduce is enabled and there are multiple active
generation data sets, a number of I/O processing tasks will be created. The number of I/O tasks is
determined as follows:

1. If VPD is in use, the number of VPD I/O threads specified.
2. If MRC is in use, the number of active Client threads defined in the MRC request.
3. If neither VPD nor MRC is in use, the number of I/O threads will be equal to the lesser of the following:

• The number of active generation data sets in the GDG
• The number of generations requested by a VTB rule
• The number of MapReduce tasks specified in the ACIMAPREDUCETASKS configuration

When the number of I/O tasks is equal to or less than the number of generation data sets, each task will
read one or more complete data sets. When the number of I/O tasks exceeds the number of generation
data sets, some tasks will be idle.

Procedure
1. Customize the server configuration member (AZKSIN00) to enable virtual table rule events by

configuring the SEFVTBEVENTS parameter in the member, as follows:

"MODIFY PARM NAME(SEFVTBEVENTS) VALUE(YES)"

2. Access the VTB rules, as follows:
a) In the IBM Open Data Analytics for z/OS - Primary Option Menu, specify option E, Rules Mgmt.
b) Specify option 2, SEF Rule Management.
c) Enter VTB for Display Only the Ruleset Named.

3. Enable the rule by specifying E next to AZKGDGS1 and pressing Enter.
4. Set the rule to Auto-enable by specifying A next to AZKGDGS1 and pressing Enter.

Setting a rule to Auto-enable activates the rule automatically when the server is re-started.

92 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Configuring delimited data support
To be able to process delimited data using virtual tables, you must configure a virtual table rule to activate
delimited data processing and optionally define delimiter values.

About this task
Data Service provides the ability to process delimited data from files, MQ data, and log streams using
virtual tables mapped to MQ or z/OS files. The most common form of delimited data is comma separate
value files (.csv).

When delimited data processing is activated, processing occurs in column order, so the delimited data
must include a value for each column in the map in the correct order to prevent errors. Data conversion
errors will occur if the delimited data is not compatible with the host types of the columns. If conversion
fails, diagnostic information related to the error is automatically logged for troubleshooting problems.

Delimited processing is supported through virtual table rules only. Using virtual table rule options, you
can enable delimited data processing, set column and string delimiter values, and control header record
processing.

A sample rule, AZKMDDLM, is provided that documents these settings. Use the following procedure to
configure the sample rule.

Procedure
1. Customize the server configuration member (AZKSIN00) to enable virtual table rule events by

configuring the SEFVTBEVENTS parameter in the member, as follows:

"MODIFY PARM NAME(SEFVTBEVENTS) VALUE(YES)"

2. Access the VTB rules, as follows:
a) In the IBM Open Data Analytics for z/OS - Primary Option Menu, specify option E, Rules Mgmt.
b) Specify option 2, SEF Rule Management.
c) Enter VTB for Display Only the Ruleset Named.

3. Customize the AZKMDDLM rule, as follows:
a) Specify S next to AZKMDDLM to edit the rule.
b) Find the vtb.optbdlcv variable and set to 1 to activate delimited processing for a map.
c) Update additional rule options as needed. The following table describes the VTB rule options that

support delimited data processing.

VTB variable Description

vtb.optbdlcv Set to 1 to activate delimited processing for a map.

vtb.optbdlco Set the column delimiter. The default value is the comma
character (,). For example, if you use the colon character (:) as
the column delimiter, specify vtb.optbdlco = ':'.

vtb.optbdlch Set the character field or string delimiter. The default value is the
quotation mark character ("). For example, if you use the hash
character (#) as the string delimiter, specify vtb.optbdlch =
'#'.

vtb.optbdlhr Set to 1 to identify and remove the header record containing
column names. If specified without a header prefix, the system
compares the first token in each line to the first column name in
the table to recognize and discard the header. The default is no
header checking.

Chapter 5. Customizing the Data Service server 93

VTB variable Description

vtb.optbdlhp Define prefix data that identifies the beginning of a header line
to be discarded. The specified value can contain a maximum
of 32 bytes. This value is compared to the beginning of each
delimited line of data before any tokenization is performed. For
example, vtb.optbdlhp = '"NAME","ADDRESS"'.

Note: If an optbdlhp value is defined, it supersedes any
optbdlhr setting and the optbdlhr value is ignored.

d) Save your changes and exit the editor.
4. Enable the rule by specifying E next to AZKMDDLM and pressing Enter.
5. Set the rule to Auto-enable by specifying A next to AZKMDDLM and pressing Enter.

Setting a rule to Auto-enable activates the rule automatically when the server is re-started.

94 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Chapter 6. Installing the Data Service Studio
The Data Service Studio is an Eclipse-based user interface that allows you to create and manage
metadata on the Data Service server that is required to provide access to your mainframe and non-
mainframe data.

Before you begin
Before installing the Data Service Studio, verify that all installation prerequisites are met:

System component Requirement

Permissions You have appropriate user logon credentials and user privileges on your
client system to install the Data Service Studio. For example, to install the
studio on Windows, you need administrator authority; ensure that your user
profile has the appropriate privileges to write to the target system location.

Supported operating
systems

Windows 7, 8, 10

Linux – Red Hat Enterprise Linux 6.7 or higher; Ubuntu 16 or higher

macOS (Sierra)

System memory A minimum of 4 GB is recommended.

Hard disk space A minimum of 1 GB is recommended.

Software Installing the Data Service Studio as a plug-in to your existing Eclipse
environment requires Eclipse Kepler 4.3 (or higher) and Java 1.7 or Java
1.8.

About this task
You can choose to install the Data Service Studio software in a new Eclipse environment (a full install) or
as a plug-in within an existing Eclipse environment (a plug-in install):
Full install

A full install installs the Data Service Studio software in a new Eclipse environment on Windows. This
method includes the installation of Windows Eclipse (64-bit), JRE 1.7, and the Data Service plug-in.
This installation method is recommended for Windows 64-bit users who are installing the studio for
the first time.

Plug-in install
A plug-in install installs only the Data Service plug-in. This installation method is recommended for
the following users:

• Users on all supported platforms other than Windows 64-bit
• Existing Eclipse users that want to reuse their own Java runtime and Eclipse installation
• Users wanting to upgrade their existing Data Service Studio installation with a newer version of the

Data Service plug-in

Procedure
1. From the z/OS mainframe, transfer the installation member hlq.SAZKBIN(AZKBIN1) to a folder on your

workstation using the File Transfer Protocol (FTP) in binary mode.
2. Rename the file to azk-studio.zip.
3. Create a new installation folder for the Data Service Studio.
4. Double-click the azk-studio.zip, and then extract the contents to the installation folder.

© Copyright IBM Corp. 2016, 2021 95

5. In the installation folder, navigate to the studio\install folder that was created, and then select
one of the following installation methods:

• To perform a full install, installing the Data Service Studio software in a new Eclipse environment,
complete the following steps:

a. In the studio\install folder, run the setup.bat script.
b. After the installation completes, launch the Data Service Studio using the shortcut created on

the desktop or in the Start menu.
• To perform a plug-in install, installing the Data Service Studio software as a plug-in to an existing

Eclipse environment, complete the following steps:

a. From your Eclipse application, click Help > Install New Software, and then click Add.
b. On the Add Repository dialog box, click Archive.
c. Locate the mds.zip file in the studio\install folder, and then click Open.
d. Enter the software file name, a name for the repository, and then click OK.
e. Select the check box next to the file, and then click Next.
f. Complete the remaining installation wizard steps, and then restart Eclipse when prompted.

6. To begin using Data Service Studio, open the Data Service perspective using the menu option Window
> Open Perspective.

Verifying the studio installation
Verify that you can connect from the Data Service Studio to the server and browse metadata on the server.

Procedure
1. On the Server tab, click Set Server.

2. Provide information for the following fields and click OK:
Field Description

Host The z/OS LPAR name on which the Data Service server is running.

Port The JDBC port number that the server is using. During customization, the port
number is specified in the server configuration file; the parameter name is
OEPORTNUMBER. To locate this number, use SDSF on the mainframe to browse
the server JOB output and search for OEPORTNUMBER.

Userid The user ID that the server will use to authenticate the connection.

User Password The password that corresponds to the user ID being used to connect to the server.

The Server tab displays the new server connection. You can now browse the server metadata and
configure the interfaces for the solutions that you want to use.

Installing the JDBC driver
Java-based applications and tools use the JDBC driver to access data that is made available through Data
Service.

About this task
The JDBC driver is a Type 4 driver that is written in Java and implements the network protocol for the
Data Service.

The JDBC driver requires Java 1.7 or higher and is supplied as a ZIP archive file that contains the
following components:

96 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

• dv-jdbc-[version #].jar (the driver core implementation file)
• log4j-api-[version #].jar (logging framework API file)
• log4j-core-[version #].jar (logging framework implementation file)
• log4j2.xml (sample logging configuration file)

Procedure
1. From the mainframe, transfer the driver installation member hlq.SAZKBIN(AZKBIN2) to your

development workstation using the File Transfer Protocol (FTP) in binary mode.
2. Rename the file to JDBCdriver.zip.
3. On your development workstation, create a directory, and then extract the contents of the

JDBCdriver.zip archive into that directory.
4. To use the drivers with Data Service instead of the JDBC driver shipped with the studio, create a

directory on the mainframe and FTP the driver files in binary mode to that directory. For example:
<mount_point>/DSDriver. The <mount_point>/DSDriver path is used with the spark-submit
command.

What to do next
For details about the JDBC driver, see the Solutions Guide.

Installing the Python dsdbc module
You can access z/OS data from Python applications using Mainframe Data Service and the IzODA
Anaconda component.

Querying Data Service virtual tables from Python applications requires the IzODA Anaconda component
and use of the Python dsdbc module. The Python dsdbc module is an implementation of the Python DB
2.0 API (https://www.python.org/dev/peps/pep-0249/) which enables Python developers on z/OS to use
a simple, portable framework to access the Data Service. The dsdbc module is available with the IzODA
Anaconda component.

Note: When using the IzODA Anaconda component, Python applications do not use the JDBC driver for
data access; the non-Java based Python dsdbc module is used for data access.

To install and configure IzODA Anaconda, see Chapter 9, “Customizing Anaconda ,” on page 113. No
additional modifications to the Data Service server are required.

Chapter 6. Installing the Data Service Studio 97

https://www.python.org/dev/peps/pep-0249/

98 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Chapter 7. Installing the JDBC Gateway
The JDBC Gateway is a Data Service distributed application server that allows direct connectivity to JDBC
data sources. Install the JDBC Gateway to connect directly to JDBC data sources.

Before you begin
Before installing the JDBC Gateway, review the following points:

• For an overview of the JDBC Gateway solution, see "JDBC Gateway" in the Solutions Guide.
• The following terminology is used in the installation procedure:

– JDBC Gateway server. The server is the backend component that allows communication with the Data
Service server.

– JDBC Gateway administrative console. The administrative console is the front-end web component
that you use to configure your data sources. Only a single user (web client) can access the JDBC
Gateway administrative console at a time. When installing the JDBC Gateway, you must specify a
specific user ID for this purpose. This user ID is an internal application ID that allows access to the
web user interface.

– Port for the Web UI. This port will be used to access the Web-based administrative console and is
specified during the installation procedure.

Note: The JDBC Gateway also uses another port to listen for incoming DRDA requests. This DRDA
listener port is set later when configuring the JDBC Gateway.

• Before installing the JDBC Gateway, verify that all installation requirements are met, as follows:

System component Requirement

Permissions You have appropriate user logon credentials and user privileges on your
client system to install the JDBC Gateway. For example, to install and
deploy the JDBC Gateway on Windows, you may need to run with
administrator privileges depending on the target location.

Supported platforms The JDBC Gateway is a pure Java application and therefore can be
deployed on any platform that supports Java 8 or higher.

System memory Minimum of 1 GB

Hard disk space Minimum of 500 MB

Software – Java 8 is required to install and deploy JDBC Gateway.
– One of the following web browsers (with JavaScript support enabled)

must be used to access the JDBC Gateway administrative console:

- Google Chrome browser V50.0.2661.102 or later
- Mozilla Firefox V47.0.1 or later
- Microsoft Edge V25.10586.0.0 or later
- Microsoft Internet Explorer V10 or later
- Apple Safari browser V9.0.3 or later

– Database connectivity requires an appropriate JDBC driver for each type
of data source that is accessed.

About this task
Use the following procedure to install the JDBC Gateway. This installation installs the JDBC Gateway
server and administrative console.

© Copyright IBM Corp. 2016, 2021 99

During the installation, you must specify a user ID to be used for the JDBC Gateway administrative
console. When using the JDBC Gateway administrative console, only a single user can access the
administrative console at a time.

As part of the installation, the following actions occur:

• The jgate.properties file is created, which contains the site-specific settings.
• Start and stop scripts appropriate to the platform are created. The installer creates cmd scripts if you

are running on Windows and sh scripts if you are running on Unix or Linux.

Considerations for USS installation: For installation in USS, it is recommended that you define the
following environment variables:

export IBM_JAVA_OPTIONS="-Dfile.encoding=ISO8859-1"
export _BPXK_AUTOCVT=ON

When the installer generates start and stop scripts, the following actions occur depending on these
variables:

• If you have not set the recommended environment variables, the scripts will be generated in EBCDIC.
You can run the gateway as normal for Unix using the following command: sh startServer.sh

• If you set the IBM_JAVA_OPTIONS variable, the scripts will be generated in ASCII, and you will need
to use the following command: chtag -tc ISO8859-1 <file>. (Tagging in USS basically means
_BPXK_AUTOCVT must be ON if you want to edit or execute the script in the shell.)

Files generated by the JDBC Gateway, such as log files and the jgate.properties file, will
be generated in ASCII regardless of the aforementioned environment variable settings (except for
jetty.out, which is in EBCDIC). In order to browse these files natively in USS, you must use the chtag
command and set _BPXK_AUTOCVT=ON.

Procedure
1. From the z/OS mainframe, transfer the installation member hlq.SAZKBIN(AZKBINJ) to your

workstation using the File Transfer Protocol (FTP) in binary mode.
2. Rename the file to jdbc-gateway.zip.
3. On your host machine, create a directory to host the JDBC Gateway, and then extract the contents of

the installation file into that directory.
The extracted contents will include the JDBCGatewaySetup11.jar file.

Note: If your host machine does not have an unzip utility, extract the contents of the installation file on
a Windows workstation and copy the JDBCGatewaySetup11.jar file to the host machine.

4. At a command prompt in the directory, run the following command:

java -jar JDBCGatewaySetup11.jar

The installer launches.
5. Enter the following information at the prompts:

Prompt Description

You are about to install JDBC
Gateway. Do you want to proceed?
(Y/n)

Enter Y to continue with the installation, or enter
n to cancel the installation.

Specify the installation directory
(local directory\JDBCGateway):

Enter the path of the directory where to install
the application, or press Enter to use the default
value as indicated.

Set login for JDBC Gateway admin Web
page (admin):

Enter the user ID to be used for the JDBC
Gateway administrative console, or press Enter
to use the default value admin.

100 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Prompt Description

Set password for JDBC Gateway admin
Web page:

Enter the password for the administrative console
user ID. The password must be at least five
characters in length.

Confirm your password: Re-enter the password for the administrative
console user ID.

Set port for the Web UI (8080): Enter the number of an available TCP/IP port
for the application, or press Enter to use the
default value 8080. This port number will be used
when launching the JDBC Gateway administrative
console.

Installation completed. Do you want
to start the JDBC Gateway now? (Y/n)

Enter Y to start the server, or enter n to exit the
installation.

Note: If you enter Y, the server starts within the
same shell.

Results
The JDBC Gateway has been installed and is ready for use. Information about the activity of the JDBC
Gateway is available in the Java Console and in the log files.

If you specified to start the server, information about the startup process is displayed.

What to do next
• To start to the server, see “Starting the JDBC Gateway server” on page 101.
• To launch the administrative console, see “Launching the JDBC Gateway administrative console” on

page 102.

Starting the JDBC Gateway server
Start the JDBC Gateway server so that you can connect directly to JDBC data sources.

Before you begin
The JDBC Gateway must be installed. See Chapter 7, “Installing the JDBC Gateway,” on page 99.

About this task
Use the following procedure to start the JDBC Gateway server.

Information about the startup and additional activity of the JDBC Gateway is available in the Java Console
and in the following log file:

home_dir_for_user_profile\Application Data\IBM\JDBC Gateway\log\jetty.out

Procedure
1. At a command prompt in the JDBC Gateway installation directory, run one of the following commands:

• For Windows: startServer
• For Linux or Unix: sh startServer.sh

Information about the startup process is displayed using the following format:

Using settings file: home_dir_for_user_profile\Application Data\IBM\JDBC Gateway\Settings\jgate.properties
Server is starting. It will be available on: http://localhost:port

Chapter 7. Installing the JDBC Gateway 101

Server process ID: processID
See home_dir_for_user_profile\Application Data\IBM\JDBC Gateway\log\jetty.out for server status information.

2. Wait for the JDBC Gateway server startup process to complete, which is indicated by the following
message in the jetty.out log file:

date time : JGATE Server started and ready to accept connections on port port_number

3. Optional: To stop the JDBC Gateway server, run the following command in the JDBC Gateway
installation directory:

• For Windows: stopServer
• For Linux or Unix: sh stopServer.sh

Results
The JDBC Gateway server has been started and is ready for use. Information about the activity of the
JDBC Gateway is available in the Java Console and in the log files.

What to do next
Start the JDBC Gateway administrative console. See “Launching the JDBC Gateway administrative
console” on page 102.

Launching the JDBC Gateway administrative console
Launch the JDBC Gateway administrative console so that you can configure connections to JDBC data
sources.

Before you begin
The JDBC Gateway server must be installed and active. See Chapter 7, “Installing the JDBC Gateway,” on
page 99 and “Starting the JDBC Gateway server” on page 101.

About this task
Use the following procedure to start the JDBC Gateway administrative console.

Only a single user (web client) can access the JDBC Gateway administrative console at a time.

Note: The JDBC Gateway does not require an external web application server. It contains its own Jetty
web application server.

Procedure
1. In a web browser, launch the JDBC Gateway administrative console using the following URL:

http://server:port

where:

• server is the machine name or address where the JDBC Gateway server is running
• port is the port specified during the installation

2. Enter the Username and Password specified during installation.

The JDBC Gateway administrative console launches.

Results
The JDBC Gateway administrative console is running and ready for use. Information about the activity of
the JDBC Gateway is available in the Java Console and in the log files.

102 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

What to do next
Configure access to data sources in the JDBC Gateway and the Data Service server. See "Configuring
access to data sources using the JDBC Gateway" in the Solutions Guide.

Chapter 7. Installing the JDBC Gateway 103

104 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Chapter 8. z/OS IzODA Livy Installation and
Customization

Before you can use z/OS IzODA Livy, you must customize your environment for it and its dependent
products.

Before you begin
Follow the instructions in Chapter 3, “Installing IBM Open Data Analytics for z/OS,” on page 11 to install
Open Data Analytics for z/OS on your system.

About this task
Once installed, the default program location for z/OS IzODA Livy is /usr/lpp/IBM/izoda/anaconda/
extras/apache-livy.

Complete the tasks in this topic to customize your environment for z/OS Livy. You will need access to a
TSO session and an OMVS session (preferably through a Putty terminal).

About z/OS IzODA Livy
The Livy server is a REST service used in conjunction with Spark that allows users to submit Spark jobs
without having the Spark client installed. It provides two modes of job submission for the end users:

• Batch mode: For submitting Spark application files such as Scala JARs and Python .py files.
Conceptually this is equivalent to users using spark-submit for application submission.

• Session mode: For submitting Scala or Python application code interactively. Conceptually this is
equivalent to users using interactive shell such as spark-shell or pyspark shell.

After the Spark job is received, the Livy server submits the application to the Spark cluster on behalf of
the user.

Installing z/OS IzODA Livy
Complete this task to install the z/OS IzODA Livy package onto your system using Anaconda. IBM
recommends the System Programmer to perform the install of Livy into the Anaconda base environment.

1. Determine the Anaconda environment that you will be using for the install. The System Programmer
will be using the base environment (already created).

• If you are not the System Programmer, IBM recommends first creating your own conda environment
for the install. For example:

conda create -n myenv python

2. Activate your environment. The System Programmer will use the base environment.

conda activate myenv

3. Enter the following:

conda install apache-livy

Setting up a user ID for use with z/OS IzODA Livy
Complete this task to set up a user ID for use with z/OS IzODA Livy. For this task, you can either create a
new user ID to use for z/OS IzODA Livy, or you can use an existing user ID.

© Copyright IBM Corp. 2016, 2021 105

Choose or create an appropriate user ID for use with z/OS IzODA Livy. Specifically, this is the user ID
under which the Livy server is started, known as the Livy server user ID in this documentation.

The Livy server will be submitting Spark application to the Spark cluster on behalf of the Livy end users.
Therefore, the Livy server user ID must have the appropriate authorities for submitting Spark application
to the Spark cluster as any other Spark end user. If z/OS Spark client authentication is enabled, refer to
“Configuring z/OS Spark client authentication” on page 41 for details about setting up the Spark end user
ID with the appropriate authorities.

Before starting the Livy server, you must have the appropriate authorities to either access or create (if
they do not already exist) the directories that are specified by the following environment variables, or the
defaults taken when not specified:

LIVY_CONF_DIR
LIVY_LOG_DIR
LIVY_PID_DIR

IBM also recommends you set the LIVY_HOME environment variable to the Livy installation directory.

Customizing z/OS IzODA Livy
Before you can use z/OS IzODA Livy, you must customize your environment for it and its dependent
products.

Configuring the z/OS IzODA Livy working directories
Complete this task to configure z/OS IzODA Livy to run using your desired configurations. The following
table lists some of the working directories that z/OS IzODA Livy uses:

Table 8. Livy working directories

Directory contents Default location Environment variable Suggested new
directory

Log files $LIVY_HOME/logs $LIVY_LOG_DIR Under /var, such as /var/
livy/logs

Configuration files $LIVY_HOME/conf $LIVY_CONF_DIR Under /var, such as /var/
livy/conf

PID files /tmp $LIVY_PID_DIR Under /tmp, such
as /tmp/livy/pid

1. Follow your file system conventions and create new working directories for z/OS IzODA Livy.
2. Ensure the Livy server user ID (created in Chapter 8, “z/OS IzODA Livy Installation and Customization,”

on page 105) has read/write access to the newly created working directories.
3. Ensure that these directories, specifically $LIVY_LOG_DIR, get cleaned regularly.

Creating the Livy configuration files from template
This task creates the livy.conf, livy-env.sh and log4j.properties configuration files in the Livy
server user ID’s $LIVY_CONF_DIR directory.

Create the files by using the template files located in the $LIVY_HOME/conf directory. For example:

cp $LIVY_HOME/conf/livy-env.sh.template $LIVY_CONF_DIR/livy-env.sh
cp $LIVY_HOME/conf/livy.conf.template $LIVY_CONF_DIR/livy.conf
cp $LIVY_HOME/conf/log4j.properties.template $LIVY_CONF_DIR/log4j.properties

106 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Updating the Livy configuration files from template
You will need to configure the Livy server by using the livy.conf and livy-env.sh configuration files
located in $LIVY_CONF_DIR directory.

1. The following parameters should be set in the livy.conf configuration file:

a. Set livy.spark.master to the Master URL of your Spark cluster. For example:

livy.spark.master = spark://master:7077

b. Set livy.spark.deploy-mode to the deploy mode that your Spark cluster accepts.

Note: When setting the livy.spark.deploy-mode to cluster, Livy session mode submissions
are no longer available. In addition, batch job Livy submits with PySpark applications are not
supported. Both of these are available only if the livy.spark.deploy-mode configuration is set
to client. See Table 9 on page 107 for more information.

Table 9. Supported environments per deploy mode

Client Cluster

Spark session (Scala) Supported Not supported

Sparky Session (Python) Supported Not supported

Spark batch job Supported Supported

Sparky batch job Supported Not supported

livy.spark.deploy-mode = client

c. Set livy.file.local-dir-whitelist to the directories that contain your Spark application
files, separated by commas:

livy.file.local-dir-whitelist =
/usr/lpp/IBM/izoda/spark/spark23x/examples/jars/,
path/to/directory2containing/jar-files

d. You may also modify the host IP address and the Livy server port by setting livy.server.host
and livy.server.port:

livy.server.host = localhost
livy.server.port = 8998

If you have changed the SPARK_LOCAL_IP environment variable, you will likely have to change the
livy.server.host as well. By default, the Livy server uses port 8998.

e. You may also modify the session timeout value by setting the livy.server.session.timeout
configuration. We support the following suffixes: “us” (microseconds), “ms” (milliseconds), “s”
(seconds), “m” or “min” (minutes), “h” (hours), and “d” (days):

livy.server.session.timeout-check = true
livy.server.session.timeout = 1h

If livy.server.session.timeout-check is set to false, livy.server.session.timeout will be ignored.
2. Update the $LIVY_CONF_DIR/livy-env.sh with the environment variables pointing to the newly

created working directories during the “Configuring the z/OS IzODA Livy working directories” on page
106 task.

For example:

LIVY_LOG_DIR=/var/livy/logs
LIVY_PID_DIR=/tmp/livy/pid

Chapter 8. z/OS IzODA Livy Installation and Customization 107

Customizing user access for z/OS IzODA Livy
Complete this task to configure user access for z/OS IzODA Livy.

About this task
Similar to Spark, z/OS IzODA Livy supports the use of AT-TLS authentication at the Livy server port for
enhanced security. It can be achieved by configuring the necessary digital certificates and key ring for the
Livy end users and creating the corresponding AT-TLS policy rules.

IBM recommends using AT-TLS authentication at the Livy server port along with AT-TLS as the z/OS Spark
client authentication. You may defer setting up authentication on both Livy and Spark during, for instance,
early testing in a secure test environment.

Creating and configuring digital certificates and key rings
Complete this task to create and configure digital certificates and key rings that are needed for z/OS Livy
authentication.

In these examples, a new set of internal CA, key ring and digital certificates are created for enabling
AT-TLS authentication between the Livy end user and the Livy Server, that is separated from the Spark
ones discussed in previous chapter. By doing so, the System Programmer can authorize access to the Livy
server and the Spark cluster independently. This configuration assumes one-to-one certificate-to-user ID
association; that is, one certificate maps to one user.

When both Livy AT-TLS authentication and Spark client authentication are enabled, the certificate setup
(as shown in Figure 7 on page 108) consists of:

• Livy server/client certificates, signed by the Livy internal CA (“LIVY Local CA” in these examples),
connected to the Livy SSL key ring (“LivyRing” in these examples).

• Spark server/client certificates, signed by the Spark internal CA (“SPARK Local CA” as discussed
previously), connected to the SparkSSL key ring (“SparkRing” as discussed previously).

Figure 7. Livy/Spark key ring setup

The Livy end user ID who will be submitting Spark jobs via Livy needs to own a Livy client certificate. End
users who own both a Spark and a Livy client certificate can submit Spark jobs either via Livy or to the
cluster directly, for example, via spark-submit.

108 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Because the Livy server will be submitting applications to the Spark cluster on behalf of the Livy end
users, the Livy server user ID needs to own a Livy server certificate (connected to the Livy key ring) as well
as a Spark client certificate (connected to the Spark key ring).

Digital certificates can be managed through RACF, PKI Services, or other security products.

Procedure:

1. If you do not already have an internal Livy CA defined, use RACF as the CA to create a Livy CA
certificate. For example:

RACDCERT GENCERT CERTAUTH SUBJECTSDN(OU('LIVY Local CA') O('IBM') C('US'))
WITHLABEL('LIVY Local CA') NOTAFTER(DATE(2030/01/01)) SIZE(1024)

For more information about the RACDCERT command, see z/OS Security Server RACF Command
Language Reference.

2. Create a certificate and key ring for the user ID that will be used to start the Livy server:

The following RACF commands assume that you have already created the Spark Client Certificate for
SPARKUSR. If not, see “Creating and configuring digital certificates and key rings” in “Configuring z/OS
Spark client authentication” on page 41

a. Create a Livy certificate that is signed by the Livy CA.

RACDCERT GENCERT ID(SPARKUSR) SIGNWITH(CERTAUTH LABEL('LIVY Local CA'))
KEYUSAGE(HANDSHAKE)
WITHLABEL('Livy Server Cert') SUBJECTSDN(CN('LIVY TEST SERVER') O('IBM')
L('Poughkeepsie') SP('New York')
C('US')) NOTAFTER(DATE(2030/01/01)) ALTNAME(DOMAIN('livyServer-host-addr')
IP(xxx.xxx.xxx.xxx))

b. Create a Livy SSL key ring (Livy Ring in these examples).

RACDCERT ADDRING(LivyRing) ID(SPARKUSR)

c. Connect the Livy server certificate to the Livy key ring.

RACDCERT ID(SPARKUSR) CONNECT(ID(SPARKUSR) LABEL('Livy Server Cert')
RING(LivyRing) USAGE(PERSONAL) DEFAULT)

d. Connect the Livy CA certificate to the Livy key ring.

RACDCERT ID(SPARKUSR) CONNECT(CERTAUTH LABEL('LIVY Local CA') RING(LivyRing))

e. Allow the Livy server user ID (SPARKUSR) to access the its key ring.

PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(SPARKUSR) ACCESS(READ)

PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(SPARKUSR) ACCESS(READ)

f. Refresh the RACF FACILITY class profiles:

SETROPTS RACLIST(FACILITY) REFRESH

3. Create and connect a certificate and a key ring for each Livy end user (LIVYUSR in these examples):

a. Create a client certificate that is signed by the Livy CA.

RACDCERT GENCERT ID(LIVYUSR) SIGNWITH(CERTAUTH LABEL('LIVY Local CA'))
KEYUSAGE(HANDSHAKE)
WITHLABEL('Livy Client Cert') SUBJECTSDN(CN('LIVY TEST SERVER') O('IBM')
L('Poughkeepsie') SP('New York')
C('US')) NOTAFTER(DATE(2030/01/01))

Note: In order to connect to the Livy server from off-platform Livy interfaces, this certificate will
need to be exported. Refer to “Exporting Livy user certificates” on page 110.

b. For users who will be connecting to the Livy server, create an SSL key ring for each user withthe
same name as in step 2b.

Chapter 8. z/OS IzODA Livy Installation and Customization 109

RACDCERT ADDRING(LivyRing) ID(LIVYUSR)

c. Connect the client certificate to the end user’s key ring.

RACDCERT ID(LIVYUSR) CONNECT(ID(LIVYUSR) LABEL('Livy Client Cert')
RING(LivyRing) USAGE(PERSONAL) DEFAULT)

d. Connect the Livy CA certificate to the end user’s key ring.

RACDCERT ID(LIVYUSR) CONNECT(CERTAUTH LABEL('LIVY Local CA') RING(LivyRing))

e. Allow the end user’s user ID to access its key ring.

PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(LIVYUSR)
ACCESS(READ)

PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(LIVYUSR) ACCESS(READ)

f. Refresh the RACF FACILITY class profiles:

SETROPTS RACLIST(FACILITY) REFRESH

Exporting Livy user certificates
Complete this task to export the Livy user certificates for use by off-platform Livy interfaces.

Digital certificates can be exported through RACF PKI services or other security products. In the following
example, RACF is used to extract the certificates into a PKCS#12 certificate package (.p12) and openssl
to convert the .p12 into the PEM format. PEM is one of many formats available. Work with your security
administrator if certificates are needed in other formats.

1. Create the .p12 package.

For example, from TSO, issue the following command to create a .p12 packages in the LIVYUSR’s
dataset where ‘password’ is the password used to access the contents of the package:

RACDCERT EXPORT(LABEL('Livy Client Cert'))
ID(LIVYUSR)
DSN('LIVYUSR.P12')
FORMAT(PKCS12DER)
PASSWORD('password')

2. Transfer (for example, FTP) the .p12 package as binary to the remote system. Issue the openssl
command on the remote system to display the contents of the package. You will be prompted twice for
the password used during the export. For example:

openssl pkcs12 -info -in LIVYUSR.P12 -passin pass:"password"

3. In PEM format, extract the client certificate, the CA certificate, and the private key from the .p12
package to three separate files.

a. Extract the client certificate.

For example, to extract the client certificate into a pem-encoded file, issue the following:

openssl pkcs12 -in LIVYUSR.P12 -passin pass:"password" -out
livyusr.orig.pem -clcerts -nokeys

This creates a file "livyusr.orig.pem". This file cannot be used until some informational lines
are removed.

Specifically, lines outside the BEGIN and END lines should be removed. Here is an example of what
these look may like:

 Bag Attributes
 friendlyName: Livy Client Cert
 localKeyID: 00 00 00 01

110 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

 subject=/C=US/ST=New York/L=Poughkeepsie/O=IBM/CN=Livy Client
 issuer=/C=US/O=IBM/OU=LIVY Local CA

To remove these lines, you may edit the file directly or issue the following command to convert it:

openssl x509 -in livyusr.orig.pem -out livyusr.pem

b. Extract the CA certificate into a PEM-encoded file. For example:

openssl pkcs12 -in LIVYUSR.P12 -passin pass:"password" -out
ca.orig.pem -cacerts -nokeys

To remove the informational lines, as above, either edit the file, or issue the following commands:

openssl x509 -in ca.orig.pem -out ca.pem

Note: If you have a chain of certificate authorities, you may need to edit the file directly to remove
each instance instead of issuing the openssl x509 command.

c. Extract the private key into a PEM-encoded file. When issuing the following command, you will be
prompted for the password twice. For example:

openssl pkcs12 -in LIVYUSR.P12 -passin pass:"password" -out
livyusrkey.pem -nocerts -nodes

Edit livyusrkey.pem to remove the informational lines. Here is an example of what these look
may like:

 Bag Attributes
 friendlyName: Livy Client Cert
 localKeyID: 00 00 00 01
 subject=/C=US/ST=New York/L=Poughkeepsie/O=IBM/CN=Livy Client
 issuer=/C=US/O=IBM/OU=LIVY Local CA

4. Verify the end user certificate (once CA certificate is extracted). For example:

openssl verify -CAfile ca.pem livyusr.pem

You should see output similar to the following:

livyusr.pem: OK

Defining the AT-TLS policy rules for z/OS IzODA Livy
Complete this task to define the AT-TLS policy rules for z/OS IzODA Livy in the policy configuration file.

About this task:

These example policy rules assume you are using AT-TLS as the z/OS IzODA Spark client authentication
method, and previously completed the steps described in “Configuring z/OS Spark client authentication”
on page 41 for setting up the AT-TLS policy rules.

You can find sample AT-TLS policy rules for z/OS IzODA Livy in Appendix C, “Sample z/OS IzODA
Livy AT-TLS policy rules,” on page 169. Work with your network administrator to configure a policy
that incorporates AT-TLS or Trusted Partner client authentication for Spark in conjunction with AT-TLS
authentication for Livy.

Procedure:

1. Create the PortRange statement. By default, Livy uses port 8998 as the server port.

PortRange LivyServer_ATTLS
{
Port 8998
}

Chapter 8. z/OS IzODA Livy Installation and Customization 111

2. Define the Inbound and Outbound TTLSRules. These rules reference the same TTLSGroupAction
(GroupAct_TTLS_On) that has already been set up for Spark.

TTLSRule LivyServer_ATTLS
{
 Direction Inbound
 LocalPortRangeRef LivyServer_ATTLS
 TTLSGroupActionRef GroupAct_TTLS_On
 TTLSEnvironmentActionRef EnvAct_LivyServer_ATTLS
}
TTLSRule LivyClient_ATTLS
{
 Direction Outbound
 RemotePortRangeRef LivyServer_ATTLS
 TTLSGroupActionRef GroupAct_TTLS_On
 TTLSEnvironmentActionRef EnvAct_LivyClient_ATTLS
}

3. Create the corresponding TTLSEnvironmentAction statements for the Inbound and Outbound
TTLSRules. These rules reference the same TTLSEnvironmentAdvancedParms (EnvAdv_TLS)
that has already been set up for Spark.

TTLSEnvironmentAction EnvAct_LivyServer_ATTLS
{
 HandshakeRole ServerWithClientAuth
 EnvironmentUserInstance 0
 TTLSKeyRingParmsRef KeyRing_Livy
 TTLSEnvironmentAdvancedParmsRef EnvAdv_TLS
}
TTLSEnvironmentAction EnvAct_LivyClient_ATTLS
{
 HandshakeRole Client
 EnvironmentUserInstance 0
 TTLSKeyRingParmsRef KeyRing_Livy
 TTLSEnvironmentAdvancedParmsRef EnvAdv_TLS
}

4. Create the TTLSKeyRingParms statement. Use the same SSL keyring name (LivyRing) as during the
server/client certificate creation steps in the previous section.

TTLSKeyRingParms KeyRing_Livy
{
 Keyring LivyRing
}

112 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Chapter 9. Customizing Anaconda
z/OS IzODA Anaconda (FMID HANA110) contains the Anaconda data science ecosystem, which consists
of the Anaconda package manager and a library of packages that data scientists and application
developers can assemble into specific stacks of runtime capabilities to support particular data science
applications.

Anaconda is primarily a Python-based environment favored by data scientists who are familiar with the
analytics capabilities that have been built around the Python language. This environment complements
and overlaps some of the capabilities that are available in z/OS IzODA Spark (FMID HSPK120). Together,
Anaconda and z/OS Spark provide a complete data science platform that can support a broad range of
analytics applications.

A more complete description of the Anaconda environment is available at Anaconda (https://
www.continuum.io/).

Note: Users of Spark 2.2.0 and earlier who are migrating to a newer level of Python should continue to
use Python 3.6.

Anaconda package management
Anaconda package management is provided through the conda command line interface. This is used
to manage the root environment of installed packages. A base set of packages is provided with the
Anaconda component, and a repository of additional packages is available through the IzODA channel
hosted in the Anaconda Cloud. For a complete list of available packages, see Package Repository for
IzODA (https://anaconda.org/IzODA/repo).

Anaconda repositories
Anaconda repositories are dynamic and flexible. The conda package manager can be used to install
or uninstall any version of a package whenever it is published to a repository. This capability allows
Anaconda to be framework for managing all types of functional packages, and makes it ideal for handling
runtime environments based on open source.

Detailed information about all of the capabilities of the Anaconda ecosystem on z/OS, as well as the
installation and configuration of the z/OS IzODA Anaconda component, is available on github at Anaconda
Overview.

© Copyright IBM Corp. 2016, 2021 113

https://www.continuum.io/
https://www.continuum.io/
https://anaconda.org/IzODA/repo
https://anaconda.org/IzODA/repo
https://izoda.github.io/site/anaconda/anaconda/
https://izoda.github.io/site/anaconda/anaconda/

114 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Part 4. Verification

© Copyright IBM Corp. 2016, 2021 115

116 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Chapter 10. Verifying the IBM Open Data Analytics
for z/OS customization

Some simple checks can verify that the basic installation and customization of IBM Open Data Analytics
for z/OS was successful.

Before you begin
Follow the instructions in Part 3, “Customization,” on page 13 to customize your environment and Open
Data Analytics for z/OS.

About this task
Complete the following steps to verify the successful installation and customization of Open Data
Analytics for z/OS on your system.

Procedure
The spark-shell command attempts to create metastore_db in the current directory. If you do
not have the hive-site.xml file set up, and if your SPARK_HOME directory is read-only, you must
invoke spark-shell from a writable directory. For more information, see “Updating the Apache Spark
configuration files” on page 34.

The following steps assume that you are using a writable directory other than SPARK_HOME.
1. Open an SSH or Telnet shell environment and navigate to a user-writable directory, such as your home

directory.
2. Run the following command to open the Open Data Analytics for z/OS shell:

$SPARK_HOME/bin/spark-shell

where:
SPARK_HOME

The environment variable that contains the path to the Open Data Analytics for z/OS installation
directory.

After a series of messages, the Open Data Analytics for z/OS prompt appears:

scala>

3. From the Open Data Analytics for z/OS prompt, run the following command, which should return the
value 1000:

sc.parallelize(1 to 1000).count()

4. From the Open Data Analytics for z/OS prompt, enter the following command to verify that the help
information is displaying properly:

:help

The returned help information resembles the following example:

All commands can be abbreviated, e.g. :he instead of :help.
Those marked with a * have more detailed help, e.g. :help imports.

:help [command] print this summary or command-specific help
:history [num] show the history (optional num is commands to show)
:h? <string> search the history
:imports [name name ...] show import history, identifying sources of names
:implicits [-v] show the implicits in scope
:javap <path|class> disassemble a file or class name

© Copyright IBM Corp. 2016, 2021 117

:load <path> load and interpret a Scala file
...

5. Enter the following command to exit the spark-shell:

:quit

6. From the z/OS UNIX prompt, run the following command to verify that Open Data Analytics for z/OS
can generate an approximate value for Pi:

$SPARK_HOME/bin/run-example SparkPi

The returned information resembles the content in the following sample, with "Pi is roughly
3.13742" within the content:

SPARKID:~ $ $SPARK_HOME/bin/run-example SparkPi
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
18/08/21 16:33:15 INFO SparkContext: Running Spark version 2.2.0
18/08/21 16:33:16 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform...
using builtin-java classes where applicable
18/08/21 16:33:16 INFO SparkContext: Submitted application: Spark Pi
…
18/08/21 16:33:20 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
18/08/21 16:33:20 INFO DAGScheduler: ResultStage 0 (reduce at SparkPi.scala:38) finished in 0.713 s
18/08/21 16:33:20 INFO DAGScheduler: Job 0 finished: reduce at SparkPi.scala:38, took 1.057874 s
Pi is roughly 3.140575702878514
18/08/21 16:33:20 INFO SparkUI: Stopped Spark web UI at http://…
…
18/08/21 16:33:20 INFO ShutdownHookManager: Shutdown hook called
18/08/21 16:33:20 INFO ShutdownHookManager: Deleting directory
/tmp/spark/scratch/spark-3d5858dc-bb8b-4538-8f6a-7712e9151b12

Results
You have successfully verified the basic installation and customization of Open Data Analytics for z/OS on
your z/OS system. For information about verifying other aspects of the product, such as the master and
workers, see http://spark.apache.org/docs/2.4.8/.

Using the IBM Open Data Analytics for z/OS Spark Configuration
Checker

About this task
The Configuration Checker tool, which is included in IBM Open Data Analytics for z/OS Spark starting from
IzODA Spark 2.2.0, verifies and displays some of your IzODA Spark settings.

Note: If you are using Spark 2.2.0, APAR PI93605 is required to use the checker.

Procedure
The IzODA Spark Configuration Checker must be invoked from the user ID under which the Spark cluster
is started. In this documentation, it is referred to as the Spark ID. To run the IzODA Spark Configuration
Checker, invoke the following command:

$SPARK_HOME/sbin/spark-configuration-checker.sh

Where:
$SPARK_HOME

Specifies the IzODA Spark installation directory.

The tool also supports the following parameters:
-v, --verbose

Provides lists of checks, configuration files, settings, and solutions for errors or warnings as output.
-c, --color

Adds colors to the output.

118 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

http://spark.apache.org/docs/2.4.8/

-h, --help
Displays the usage of the checker.

For example, to run the IzODA Spark Configuration Checker in colorized verbose mode, you can issue the
following command:

$SPARK_HOME/sbin/spark-configuration-checker.sh -v -c

Results
After the tool is executed and completes successfully, the IzODA Spark Configuration Checker will
produce a report of possible errors and warnings. IBM suggests that you review the report carefully,
fix the reported errors, and take any warnings under advisement.

Example

The following example is sample output from the Configuration Checker. Note that for the purposes of
brevity, some lines have been removed and replaced with an ellipsis.

./sbin/spark-configuration-checker.sh -v -c
=-=-=-=-=-=-=-= CHECKS =-=-=-=-=-=-=-=
Pass Obtaining environment variables
Pass Checking SPARK_HOME
Pass Checking if SPARK_CONF_DIR is default
Pass Checking Java version
Warn Checking if Worker is using a random port
...
=-=-=-=-=-=-=-= INFORMATION =-=-=-=-=-=-=-=
SPARK_HOME: /spark/Spark_Srvlib/spark24x
Spark Version: 2.4.8

JAVA_HOME: /usr/lpp/java/java800/J8.0_64
Java Location: /usr/lpp/java/java800/J8.0_64/bin/java
Java Version: 1.8.0 SR7 FP10 - 64-bit

Bash Location: /sparklg01/MiniConda/bin/bash
Bash Version: 4.3.48(2)

Spark Configuration
 /u/Wellie1/conf/spark-defaults.conf
 spark.zos.driver.jobname.prefix ODASD
 spark.master.rest.enabled true
 spark.sql.orc.impl hive
 spark.files.overwrite true
 spark.zos.executor.jobname.prefix ODASX
 spark.zos.master.authenticate true
 spark.executorEnv.PYTHONHASHSEED 0
 spark.zos.master.authenticate.method ATTLS
 spark.sql.warehouse.dir /u/Wellie1/conf/..

 /u/Wellie1/conf/spark-env.sh
 SPARK_MASTER_HOST alps.pok.ibm.com
 SPARK_DAEMON_JAVA_OPTS -Dfile.encoding=UTF8
 SPARK_LOCAL_DIRS /tmp/spark/scratch
 _BPX_SHAREAS NO
 SPARK_PID_DIR /tmp/spark/pid
 _BPXK_AUTOCVT ON
 JAVA_HOME /usr/lpp/java/java800/J8.0_64
 SPARK_MASTER_PORT 7077
 USER ${USER:-$(whoami)}
 _EDC_ADD_ERRNO2 1
 SPARK_WORKER_DIR /u/Wellie1/conf/../work
 SPARK_LOG_DIR /u/Wellie1/conf/../logs

 Environmental Variables
 SPARK_HOME /spark/Spark_Srvlib/spark24x
 _BPX_SHAREAS NO
 SPARK_LOGS /u/Wellie1/logs
 _BPXK_AUTOCVT ON
 JAVA_HOME /usr/lpp/java/java800/J8.0_64
 IBM_JAVA_OPTIONS -Dfile.encoding=UTF8
-Dconsole.encoding=IBM-1047 -
 Xmx4g -Xss1024k
-XX:MaxPermSize=512m -XX:ReservedC
 odeCacheSize=512m
...

Chapter 10. Verifying the IBM Open Data Analytics for z/OS customization 119

Spark Ports
 Master 7077 - Range (7077-7093)
 Master Web UI 8080 - Range (8080-8096)
...
Spark Directories
 Name Spark Worker Directory
 Path /u/Wellie1/conf/../work
 File System OMVS.WELLIE1
 Size 843.8 MB
 Used Space 17.8 MB - 3%
 Free Space 825.9 MB - 97%
 Mount /u/Wellie1
 Permissions rwxrwxr-t
...

OMVS Information
 UID 0000000011
 PROCUSERMAX NONE
 MMAPAREAMAX NONE
 ...
=-=-=-=-=-=-=-= ERRORS =-=-=-=-=-=-=-=
=-=-=-=-=-=-=- WARNINGS -=-=-=-=-=-=-=
Spark: WARNING: Worker port is set to random.
 INFO: Having a Spark port set as random may prevent proper port bindings.
 SOLUTION: Set the Spark port to a valid port number.
...
Please refer to the IzODA Installation and Customization Guide for more details.

120 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Chapter 11. Verifying the Data Service server
installation

To verify the server installation, create a sample VSAM file and a virtual table, and then run a query that
accesses the VSAM data.

Procedure
1. Create the sample VSAM file on the mainframe that hosts the server. Run the AZKGNSTF member in

the hlq.SAZKCNTL data set to allocate and load the sample VSAM file.
The job should complete with a condition code of 0.

2. Create the staffvs virtual table. Run the AZKIVVS1 member in the hlq.SAZKCNTL data set to
perform a batch extract of the sample VSAM file listing and create a virtual table that formats the result
set that is returned from the VSAM file.
This step runs a query against the sample VSAM file. The job should complete with a condition code of
0.

© Copyright IBM Corp. 2016, 2021 121

122 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Chapter 12. Verifying the IBM Open Data Analytics
for z/OS product

After you verify the two individual FMIDs that are part of the IBM Open Data Analytics for z/OS product,
verify that both components work together.

About this task
In the following procedure, the SPARK_HOME environment variable contains the path to the z/OS
Spark installation directory. By default, the configuration settings for your Spark cluster reside in the
$SPARK_HOME/conf directory. These configuration settings may be kept in any directory and pointed
to by the SPARK_CONF_DIR environment variable. This approach can be useful if you want to isolate
your cluster settings from a specific installation, such as for migration or for multi-cluster installation
scenarios.

Complete the following steps to verify the operation of the Open Data Analytics for z/OS product on your
system.

Procedure
1. Start the Spark master daemon on your z/OS image.

From a z/OS UNIX session, issue the following command:

$SPARK_HOME/sbin/start-master.sh -h host_IP_address -p sparkMaster-port

where:
$SPARK_HOME

An environment variable that contains the installation path for z/OS Spark.
host_IP_address

The IP address for this z/OS system. In this documentation, this value is shown as xxx.xxx.xxx.xxx.
sparkMaster-port

The Spark master daemon port. The default is 7077.

The Spark master daemon attempts to define the port that you specify on the -p parameter. If this
port is not available, it increments the -p value by one and attempts to bind to the next available port.
It is imperative to check the Spark master daemon log file (located in the $SPARK_LOG_DIR directory)
to determine the port number on which the Spark master daemon is listening.

It is helpful to look at an example of an actual Spark master daemon log file for some pertinent
information that you will need.

Example: The following output shows a portion of a valid Spark master daemon log file, spark-
${USER}-org.apache.spark.deploy.master.Master-1-host.out, that was generated after
issuing the following command:

$SPARK_HOME/sbin/start-master.sh -h xxx.xxx.xxx.xxx -p 7077

If your Spark master daemon log does not look like this example, compare the contents of the Spark
Command: line in your log file to the one shown here and look for any differences. (You will not see the
Registering worker message in your log file until you start the Spark worker daemon in the next
step.) Different versions of Apache Spark can also generate different log file contents.
 Spark Command: /usr/lpp/java/java800/J8.0_64/bin/java -cp
 /usr/lpp/IBM/Spark/sbin/../conf/:/usr/lpp/IBM/Spark/jars/*
 -Dfile.encoding=UTF8 -Xmx1g org.apache.spark.deploy.master.Master --host
 xxx.xxx.xxx.xxx --port 7077 --webui-port 8080 -h xxx.xxx.xxx.xxx -p 7077
 ==
 Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties

© Copyright IBM Corp. 2016, 2021 123

 18/08/21 10:39:39 INFO Master: Started daemon with process name: 65639@hostname
 18/08/21 10:39:39 WARN NativeCodeLoader: Unable to load native-hadoop library for your
 platform... using builtin-java classes where applicable
 18/08/21 10:39:40 INFO SecurityManager: Changing view acls to: SPARKID
 18/08/21 10:39:40 INFO SecurityManager: Changing modify acls to: SPARKID
 18/08/21 10:39:40 INFO SecurityManager: Changing view acls groups to: …
 18/08/21 10:39:40 INFO SecurityManager: Changing modify acls groups to: …
 A 18/08/21 10:39:40 INFO SecurityManager: z/OS client authentication is
 enabled, using method ATTLS. Make sure your environment is configured properly for this
method.
 See IzODA Installation and Customization Guide for more information.
 18/08/21 10:39:40 INFO SecurityManager: SecurityManager: authentication disabled; ui acls
 disabled; users with view permissions: Set(SPARKID); groups with view permissions: Set();
users
 with modify permissions: Set(SPARKID); groups with modify permissions: Set()
 18/08/21 10:39:40 WARN NetUtil: Failed to find the loopback interface
 B 18/08/21 10:39:40 INFO Utils: Successfully started service 'sparkMaster' on port 7077.
 B 18/08/21 10:39:40 INFO Master: Starting Spark master at spark://xxx.xxx.xxx.xxx:7077
 18/08/21 10:39:40 INFO Master: Running Spark version 2.2.0
 18/08/21 10:39:40 INFO Master: Performing master environment verification
 C 118/08/21 10:39:40 INFO Utils: Successfully started service 'MasterUI' on port 8080.
 C 18/08/21 10:39:40 INFO MasterWebUI: Started MasterWebUI at http://xxx.xxx.xxx.xxx:8080
 D 18/08/21 10:39:40 INFO Utils: Successfully started service on port 6066.
 D 18/08/21 10:39:40 INFO StandaloneRestServer: Started REST server for submitting
 applications on port 6066
 18/08/21 10:39:40 INFO Master: I have been elected leader! New state: ALIVE
 18/08/21 10:40:03 WARN ZosNativeUtil: TLS connection pending, will retry.
 TTLSi_Stat_Policy=4, TTLSi_Stat_Conn=1, TTLSi_Sec_Type=6
 18/08/21 10:40:04 INFO Master: Registering worker xxx.xxx.xxx.xxx:1026 with 10 cores,
 4.0 GB RAM, from user ID SPARKID

Note the following information from the log file:

• The messages that are prefixed by A identify the z/OS Client authentication options that
were selected. In this example, z/OS Client Authentication is enabled and using ATTLS as its
authentication method.

• The messages that are prefixed by B identify the port number that is being used for the Spark
master daemon. In this example, the Spark master daemon successfully bound to and is using host
IP address xxx.xxx.xxx.xxx and port 7077.

• The messages that are prefixed by C identify the port number that the Spark master daemon is
using for the MasterUI port. In this example, the Spark master daemon successfully bound to and is
using port 8080 for the MasterUI port.

• The messages that are prefixed by D identify the port number that the Spark master daemon is
using for its REST port. Note that finding these message is optional for verifying the IzODA product.
The REST server interface, which listens on port 6066, is disabled by default. As of APAR PH03469,
IzODA supports TLS client authentication on the REST server port and applications can be securely
submitted through this interface. For details, see “Configuring networking for Apache Spark” on page
37. In this example, the Spark master daemon successfully bound to and is using port 6066 for the
REST port. .

Write down each of these port numbers for your configuration; you will need them later in this
procedure.

sparkMaster port:

MasterUI port:

REST port:

2. Start the Spark worker daemon on your z/OS image.
From a z/OS UNIX session, issue the following commands:

$SPARK_HOME/sbin/start-slave.sh spark://host_IP_address:sparkMaster-port

where:
$SPARK_HOME

An environment variable that contains the installation path for z/OS Spark.

124 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

host_IP_address
The IP address (xxx.xxx.xxx.xxx) for this z/OS system.

sparkMaster-port
The Spark master daemon port. The default is 7077.

It is helpful to look at an example of an actual Spark worker daemon log file for some pertinent
information that you will need.

Example: The following output shows a portion of a valid Spark worker daemon log file, spark--
org.apache.spark.deploy.worker.Worker-1-host.out, that was generated after issuing the
following command:

$SPARK_HOME/sbin/start-slave.sh spark://xxx.xxx.xxx.xxx:7077

 Spark Command: /usr/lpp/java/J8.0_64/bin/java -cp
 /usr/lpp/IBM/Spark/sbin/../conf/:/usr/lpp/IBM/Spark/jars/* -Dfile.encoding=UTF8

-Xmx1g org.apache.spark.deploy.worker.Worker --webui-port 8081
spark://xxx.xxx.xxx.xxx:7077
==
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
18/08/21 10:42:48 INFO Worker: Started daemon with process name: 16842871@hostname
18/08/21 10:42:48 WARN NativeCodeLoader: Unable to load native-hadoop library for your
platform... using builtin-java classes where applicable

18/08/21 10:42:48 INFO SecurityManager: Changing view acls to: SPARKID
18/08/21 10:42:48 INFO SecurityManager: Changing modify acls to: SPARKID
18/08/21 10:42:48 INFO SecurityManager: Changing view acls groups to: …
18/08/21 10:42:48 INFO SecurityManager: Changing modify acls groups to: …
18/08/21 10:42:48 INFO SecurityManager: SecurityManager: authentication disabled;
ui acls disabled;
users with view permissions: Set(SPARKID); groups with view permissions: Set();
users with modify permissions: Set(SPARKID); groups with modify permissions: Set()
18/08/21 10:42:48 WARN NetUtil: Failed to find the loopback interface

 E 18/08/21 10:42:48 INFO Utils: Successfully started service 'sparkWorker' on port 1028.
 E 18/08/21 10:42:49 INFO Worker: Starting Spark worker xxx.xxx.xxx.xxx:1028
 with 10 cores, 4.0 GB RAM
 18/08/21 10:42:49 INFO Worker: Running Spark version 2.2.0
 18/08/21 10:42:49 INFO Worker: Spark home: /usr/lpp/IBM/Spark

 18/08/21 10:42:49 INFO Worker: Performing worker environment verification
 18/08/21 10:42:49 INFO ZosSafUtil: READ access to SAF BPX.SRV.* SURROGAT class profile
 permission check
 for SPARKID is successful
 F 18/08/21 10:42:49 INFO Utils: Successfully started service 'WorkerUI' on port 8081.
 F 18/08/21 10:42:49 INFO WorkerWebUI: Bound WorkerWebUI to 0.0.0.0, and started at
 http://xxx.xxx.xxx.xxx:8081
 18/08/21 10:42:49 INFO Worker: Connecting to master xxx.xxx.xxx.xxx:7077...
 18/08/21 10:42:49 INFO TransportClientFactory: Successfully created connection to

xxx.xxx.xxx.xxx/9.57.2.76:7077 after 37 ms (0 ms spent in bootstraps)
18/08/21 10:42:50 INFO Worker: Successfully registered with master
spark://xxx.xxx.xxx.xxx:7077

Note the following information from the log file:

• The messages that are prefixed by E identify the port number that is being used for the Spark
worker daemon. In this example, the Spark worker daemon successfully bound to and is using port
1028.

• The messages that are prefixed by F identify the port number that the Spark worker daemon is
using for the WorkerUI port. In this example, the Spark worker daemon successfully bound to and is
using port 8081 for the WorkerUI port.

Write down each of these port numbers for your configuration; you will need them later in this
procedure.

sparkWorker port:

WorkerUI port:

Now that you have successfully started the Spark master daemon and Spark worker daemon
processes on the z/OS system, you can now use the spark-submit command to run the same

Chapter 12. Verifying the IBM Open Data Analytics for z/OS product 125

SparkPi sample that you ran via the interactive spark-shell command in Chapter 10, “Verifying the
IBM Open Data Analytics for z/OS customization,” on page 117.

3. Issue the following command on a single line, to run the SparkPi sample in client-deploy mode:

• $SPARK_HOME/bin/spark-submit --class org.apache.spark.examples.SparkPi
 --master spark://host-IP-addr:sparkMaster-port
 $SPARK_HOME/examples/jars/spark-examples_2.11-sparkVersion.jar

where:
$SPARK_HOME

An environment variable that contains the installation path for z/OS Spark.
host_IP_address

The IP address (xxx.xxx.xxx.xxx) for this z/OS system.
sparkMaster-port

The Spark Master port. The default is 7077.
sparkVersion

z/OS Spark version number (2.4.8)

After you issue the spark-submit command, you should see the application’s driver log as stderr
and an approximation of pi as stdout.

Example: The following output shows an example of the messages that result from the Spark submit.
18/08/21 11:54:14 INFO DAGScheduler: Job 0 finished: reduce at SparkPi.scala:38, took 3.470622
s
 G Pi is roughly 3.140555702778514
18/08/21 11:54:14 INFO SparkUI: Stopped Spark web UI at http://XXX.XXX.XXX.XXX:4040
18/08/21 11:54:14 INFO StandaloneSchedulerBackend: Shutting down all executors
18/08/21 11:54:14 INFO CoarseGrainedSchedulerBackend$DriverEndpoint: Asking each executor
to shut down
18/08/21 11:54:14 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint
stopped!
18/08/21 11:54:14 INFO MemoryStore: MemoryStore cleared
18/08/21 11:54:14 INFO BlockManager: BlockManager stopped
18/08/21 11:54:14 INFO BlockManagerMaster: BlockManagerMaster stopped
18/08/21 11:54:14 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint:
OutputCommitCoordinator stopped!
18/08/21 11:54:14 INFO SparkContext: Successfully stopped SparkContext
18/08/21 11:54:14 INFO ShutdownHookManager: Shutdown hook called
18/08/21 11:54:14 INFO ShutdownHookManager: Deleting directory
/tmp/spark/scratch/spark-95ed4711-ec2d-41fd-9b64-ab5cd6a03ebc

The messages that are prefixed by G are stdout of the application. All other messages are stderr. In
this example, the SparkPi application approximated Pi to be 3.140555702778514.

To determine whether the spark-submit command completed successfully, look for the
approximation of Pi. You can also use the Spark MasterUI port via a web browser to view the state of
the completed application (step 5).

4. (Optional) Issue the following command on a single line, to run the SparkPi sample in cluster-deploy
mode:

• $SPARK_HOME/bin/spark-submit --class org.apache.spark.examples.SparkPi
 --master spark://host-IP-addr:sparkRest-port
 $SPARK_HOME/examples/jars/spark-examples_2.11-sparkVersion.jar

where:
$SPARK_HOME

An environment variable that contains the installation path for z/OS Spark.
host_IP_address

The IP address (xxx.xxx.xxx.xxx) for this z/OS system.
sparkREST-port

The Spark Master REST port. The default is 6066.

126 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

sparkVersion
z/OS Spark version number (2.4.8)

Example: The following output shows an example of the messages that result from the submit. You
will not see any response back from your z/OS UNIX session beyond these messages.
Running Spark using the REST application submission protocol.
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
18/08/21 13:35:34 INFO RestSubmissionClient: Submitting a request to launch an application in
spark://xxx.xxx.xxx.xxx:6066.
18/08/21 13:35:36 INFO RestSubmissionClient: Submission successfully created as
driver-20180821133535-0000. Polling submission state...
18/08/21 13:35:36 INFO RestSubmissionClient: Submitting a request for the status of submission
driver-20180821133535-0000 in spark://xxx.xxx.xxx.xxx:6066.
18/08/21 13:35:36 INFO RestSubmissionClient: State of driver driver-20180821133535-0000
is now RUNNING.
18/08/21 13:35:36 INFO RestSubmissionClient: Driver is running on worker worker
-20180821104249-9.57.2.76-1028 at 9.57.2.76:1028.
18/08/21 13:35:36 INFO RestSubmissionClient: Server responded with
CreateSubmissionResponse:
{
 "action" : "CreateSubmissionResponse",
 "message" : "Driver successfully submitted as driver-20180821133535-0000",
 "serverSparkVersion" : "2.2.0",
 "submissionId" : "driver-20180821133535-0000",
 "success" : true
}

To determine whether the spark-submit command completed successfully, use the Spark MasterUI
port via a web browser (steps 4, 5, 6).

5. Point your web browser to the following URL:

http://host_IP_address:MasterUI-port

where:
host_IP_address

The IP address (xxx.xxx.xxx.xxx) for this z/OS system.
MasterUI-port

The Spark MasterUI port. The default is 8080.

In your browser window, you see a page that resembles the following example:

Look for the following indicators of successful completion:

• In the Completed Applications section (second-to-bottom highlighted section of the figure), look for
the Spark Pi in the Name column and FINISHED in the State column.

Chapter 12. Verifying the IBM Open Data Analytics for z/OS product 127

• In the Completed Drivers section (bottom highlighted section of the figure), look for
org.apache.spark.examples.SparkPi in the Main Class column and FINISHED in the State
column.

If you did not perform the optional cluster-deploy mode submission in step 4, skip to step 8.
6. In the Completed Drivers section, click the link in the Worker column for the

org.apache.spark.examples.SparkPi main class.

The link has the format worker-yyyymmddttttttt-host_IP_address-WorkerPort. When you
click it, you see a page that resembles the following example:

7. In the Finished Drivers section, click the stdout link in the Logs column for the
org.apache.spark.examples.SparkPi main class to display the value of SparkPi.

8. Use the interactive spark-shell command to run a small program to access the STAFFVS VSAM data
set that was created and loaded in Chapter 11, “Verifying the Data Service server installation,” on page
121.

a) Issue the following command to start the interactive spark-shell:

$SPARK_HOME/bin/spark-shell --jars path_to_DVDriver/dv-jdbc-version_number.jar

Result: The spark-shell provides an automatic, implied Spark context (sc) where you can run a
Scala program.

b) Enter the following Scala statements to access and display the STAFFVS VSAM data set by using the
Rocket DV JDBC driver:

val dfReader = spark.read
.format("jdbc")
.option("driver", "com.rs.jdbc.dv.DvDriver")
.option("url", "jdbc:rs:dv://host_IP_address:AZKSport;DSN=AZKS;DBTY=DVS")
.option("dbtable", "AZKSQL.STAFFVS")
.option("user", "userID")
.option("password", "password")
val df = dfReader.load()
df.show()

where:
host_IP_address

The IP address for this z/OS system.
AZKSport

The Rocket MDSS port. The default is 1200.
userID

The z/OS user ID that has permission to read the STAFFVS data set.

128 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

password
The password for userID.

Result: You see the first 20 rows of the STAFFVS data set, as in the following example display:

scala> val dfReader = spark.read
dfReader: org.apache.spark.sql.DataFrameReader = org.apache.spark.sql.DataFrameReader@53ef76cf

scala> .format("jdbc")
res7: org.apache.spark.sql.DataFrameReader = org.apache.spark.sql.DataFrameReader@53ef76cf

scala> .option("driver", "com.rs.jdbc.dv.DvDriver")
res8: org.apache.spark.sql.DataFrameReader = org.apache.spark.sql.DataFrameReader@53ef76cf

scala> .option("url", "jdbc:rs:dv://xxx.xxx.xxx.xxx:1200;DSN=AZKS;DBTY=DVS")
res9: org.apache.spark.sql.DataFrameReader = org.apache.spark.sql.DataFrameReader@53ef76cf

scala> .option("dbtable", "AZKSQL.STAFFVS")
res10: org.apache.spark.sql.DataFrameReader = org.apache.spark.sql.DataFrameReader@53ef76cf

scala> .option("user", "xxxxxxx")
res11: org.apache.spark.sql.DataFrameReader = org.apache.spark.sql.DataFrameReader@53ef76cf

scala> .option("password", "xxxxxxxx").load()
res12: org.apache.spark.sql.DataFrame = [STAFFVS_KEY_ID: int, STAFFVS_DATA_NAME_L: int ... 4 more fields]

scala> val df = dfReader.load()
df: org.apache.spark.sql.DataFrame = [STAFFVS_KEY_ID: int, STAFFVS_DATA_NAME_L: int ... 4 more fields]

scala> df.show()
+--------------+-------------------+-----------------+-----------------+----------------+----------------+
|STAFFVS_KEY_ID|STAFFVS_DATA_NAME_L|STAFFVS_DATA_NAME|STAFFVS_DATA_DEPT|STAFFVS_DATA_JOB|STAFFVS_DATA_YRS|
+--------------+-------------------+-----------------+-----------------+----------------+----------------+
10	7	SANDERS	20	MGR	7
20	6	PERNAL	20	SALES	8
30	8	MARENGHI	38	MGR	5
40	7	O'BRIEN	38	SALES	6
50	5	HANES	15	MGR	10
60	7	QUIGLEY	38	SALES	0
70	7	ROTHMAN	15	SALES	7
80	5	JAMES	20	CLERK	0
90	7	KOONITZ	42	SALES	6
100	5	PLOTZ	42	MGR	7
110	4	NGAN	15	CLERK	5
120	8	NAUGHTON	38	CLERK	0
130	9	YAMAGUCHI	42	CLERK	6
140	5	FRAYE	51	MGR	6
150	8	WILLIAMS	51	SALES	6
160	8	MOLINARE	10	MGR	7
170	8	KERMISCH	15	CLERK	4
180	8	ABRAHAMS	38	CLERK	3
190	7	SNEIDER	20	CLERK	8
200	8	SCOUTTEN	42	CLERK	0
+--------------+-------------------+-----------------+-----------------+----------------+----------------+
only showing top 20 rows

Results
You have now verified that the z/OS Spark and Mainframe Data Service components of Open Data
Analytics for z/OS successfully work together on your z/OS system.

What to do next
To perform additional installation verification, run the following installation verification programs that are
available on GitHub.
Anaconda/ODL Installation Verification Program (IVP) with Jupyter Notebook (izoda.github.io/site/
anaconda/ivp-jupyter-notebook/)

IBM provides this installation verification program (IVP) to get started with Anaconda and Optimized
Data Layer (ODL) stacks of IzODA. By completing this IVP, you ensure that Anaconda and ODL are
installed successfully and that you are able to run data visualizations and analysis on mainframe data
sources.

IzODA Installation Verification Program (IVP) with PySpark (izoda.github.io/site/anaconda/ivp-
pyspark/)

IBM provides this installation verification program (IVP) to get started with the Anaconda and PySpark
stacks of IzODA. After completing this IVP, you ensure that Anaconda and PySpark are installed

Chapter 12. Verifying the IBM Open Data Analytics for z/OS product 129

https://izoda.github.io/site/anaconda/ivp-jupyter-notebook/
https://izoda.github.io/site/anaconda/ivp-jupyter-notebook/
https://izoda.github.io/site/anaconda/ivp-pyspark/
https://izoda.github.io/site/anaconda/ivp-pyspark/

successfully and that you are able to run simple data analysis on mainframe data sources by using
Spark dataframes.

130 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Chapter 13. Verifying the z/OS IzODA Livy
installation

z/OS IzODA Livy installation verification program.

Before you begin
Follow the instructions in Part 3, “Customization,” on page 13 to customize your environment and Open
Data Analytics for z/OS.

About this task
Complete the following steps to verify the successful installation and customization of z/OS IzODA Livy on
your system.

Starting the Livy Server
1. If livy.spark.master is set to a Spark master URL in the livy.conf configuration file, start the

corresponding Spark cluster.
2. Start an OMVS session with the user ID chosen as the Livy server user ID, and start the Livy server by

issuing the following:

$LIVY_HOME/bin/livy-server start

A message is issued that indicates the Livy server has started, displaying the location of the Livy server
log file.

3. If livy.spark.master is set to a Spark master URL in the livy.conf configuration file, verify the
Livy server user ID has been set up correctly for submitting Spark applications to the Spark cluster via
spark-submit. From the Livy server user ID OMVS session, issue the following:

$SPARK_HOME/bin/spark-submit --class
org.apache.spark.examples.SparkPi --master spark://host-IP-
addr:sparkMaster-port $SPARK_HOME/examples/jars/spark-
examples_2.11-sparkVersion.jar

where:
$SPARK_HOME

An environment variable that contains the installation path for z/OS Spark.
host-IP-addr

The IP address (xxx.xxx.xxx.xxx) for this z/OS system.
sparkMaster-port

The Spark Master port. The default is 7077.
SparkVersion

The z/OS Spark version number (2.4.8).
4. If the Livy server is protected by AT-TLS client authentication, import the PKCS#12 (.p12) certificate

package extracted during the "Exporting Livy user certificates" section of “Customizing z/OS IzODA
Livy ” on page 106 into a web browser. For instructions on importing PKCS#12 certificate package into
the web browser, consult the Web browser's documentation.

5. Connect to the Livy server UI by navigating to this web address with a web browser:

https://livyServer-host-IP-addr:livyServer-port/ui/ (or http:// if the Livy server is not protected by
AT-TLS client authentication)

where:

© Copyright IBM Corp. 2016, 2021 131

livyServer-host-IP-addr
The IP address (xxx.xxx.xxx.xxx) for this z/OS system.

livyServer-port
The Livy server port. The default is 8998.

6. Confirm the connection is successful and that the Livy server has started:

Performing session mode Livy job submission to the Spark cluster
An application or application code that can perform the HTTP POST, GET and DELETE operations is
needed for performing session mode Livy job submission. This section shows how to do so from a remote
system using Python with the Requests library.

This section makes the following assumptions:

• Default Livy server port (8998) is used.
• The Livy server is protected by AT-TLS client authentication.
• In the livy.conf configuration file, livy.spark.master is set to a Spark master URL and
livy.spark.deploy-mode is set to client.

• The end user’s certificate package has been extracted into PEM format (livyusr.pem, ca.pem and
livyusrkey.pem) and resides on the remote system.

1. On the remote system, start a Python interactive shell from the directory where the .pem files reside.
2. Create a Livy session mode session:

import json, pprint, requests, textwrap
host = 'https://alpsxxxx.pok.ibm.com:8998'
data = {'kind': 'spark'}
headers = {'Content-Type': 'application/json'}
r = requests.post(host + '/sessions',
data=json.dumps(data), headers=headers,
cert=('cert_sprkid5.pem', 'key_sprkid5.pem'), verify=False)
r.json()

The output is the following:

{'id': 0, 'name': None, 'appId': None, 'owner': None,
'proxyUser': None, 'state': 'starting', 'kind': 'spark',
'appInfo': {'driverLogUrl': None, 'sparkUiUrl': None},
'log': ['stdout: ', '\nstderr: ']}

3. Ensure that the session has completed starting up by checking that the state of the session has
reached the "idle" phase.

132 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

session_url = host + r.headers['location']
r = requests.get(session_url, headers=headers)
cert=('livyusr.pem', 'livyusrkey.pem'), verify=False)
r.json()

The output is the following:

{'id': 0, 'name': None, 'appId': None, 'owner': None,
'proxyUser': None, 'state': 'idle', 'kind': 'spark',
'appInfo': {'driverLogUrl': None, 'sparkUiUrl': None},
'log': ['19/05/16 15:41:41 INFO BlockManager: Using
org.apache.spark.storage.RandomBlockReplicationPolicy for
block replication policy', '19/05/16 15:41:41 INFO
BlockManagerMaster: Registering BlockManager
BlockManagerId(driver, localhost, 57060, None)', '19/05/16
15:41:41 INFO BlockManagerMasterEndpoint: Registering block
manager localhost:57060 with 434.4 MB RAM,
BlockManagerId(driver, localhost, 57060, None)', '19/05/16
15:41:41 INFO BlockManagerMaster: Registered BlockManager
BlockManagerId(driver, localhost, 57060, None)', '19/05/16
15:41:41 INFO BlockManager: Initialized BlockManager:
BlockManagerId(driver, localhost, 57060, None)', '19/05/16
15:41:42 INFO SparkEntries: Spark context finished
initialization in 1842ms', "19/05/16 15:41:42 INFO
SharedState: Setting hive.metastore.warehouse.dir ('null')
to the value of spark.sql.warehouse.dir
('file:$LIVY_HOME/bin/spark-warehouse').", "19/05/16
15:41:42 INFO SharedState: Warehouse path is
'file:$LIVY_HOME/bin/spark-warehouse'.", '19/05/16 15:41:43
INFO StateStoreCoordinatorRef: Registered
StateStoreCoordinator endpoint', '19/05/16 15:41:43 INFO
SparkEntries: Created Spark session.']}

4. Pass in the Scala code via a Python dictionary data, with the key being code and the value being the
code that is to be run in the session. The output may display the state as either waiting or running.

statements_url = session_url + '/statements'
data = {'code': '1 + 1'}
r = requests.post(statements_url, data=json.dumps(data),
headers=headers, cert=('livyusr.pem', 'livyusrkey.pem'),
verify=False)
r.json()

The output is the following:

{'id': 0, 'code': '1 + 1', 'state': 'waiting', 'output':
None, 'progress': 0.0}

5. Obtain the results. Repeat this step if the session is still in ‘running’ state and has not reached the
‘available’ state.

statement_url = host + r.headers['location']
r = requests.get(statement_url, headers=headers)
cert=('livyusr.pem', 'livyusrkey.pem'), verify=False)
pprint.pprint(r.json())

The output is the following:

{'code': '1 + 1',
 'id': 0,
 'output': {'data': {'text/plain': 'res0: Int = 2\n'},
 'execution_count': 0,
 'status': 'ok'},
 'progress': 1.0,
 'state': 'available'}

6. Close the session.

requests.delete(session_url, headers=headers,
cert=('livyusr.pem', 'livyusrkey.pem'), verify=False)

Chapter 13. Verifying the z/OS IzODA Livy installation 133

Performing batch mode Livy job submission to the Spark cluster
An application or application code that can perform the HTTP POST operation is needed for performing
batch mode Livy job submission. This section shows how to do so from a Unix-based remote system using
cURL (curl).

This section assumes the following:

• Default Livy server port (8998) is used.
• The Livy server is protected by AT-TLS client authentication.
• In the livy.conf configuration file, livy.spark.master is set to a Spark master URL and
livy.spark.deploy-mode is set to client.

• Using z/OS Spark version 2.4.8 at its default installation directory (/usr/lpp/IBM/izoda/spark/
spark24x).

• The end user’s certificate package has been extracted into PEM format (livyusr.pem, ca.pem and
livyusrkey.pem) and residing on the Unix-based remote system.

• The end user’s certificate PKCS#12 package (.12) has been imported into a web browser.

1. On the Unix-based remote system, go to the directory where the .pem files reside.
2. Submit the SparkPi sample to the Livy server by issuing the following:

curl -X POST --verbose -k --cert ./usera.pem --cacert
./ca.pem --key ./livyusrkey.pem --data '{"file":
"/usr/lpp/IBM/izoda/spark/spark24x/examples/jars/spark-
examples_2.11-2.4.8.jar", "className":
"org.apache.spark.examples.SparkPi"}' -H "Content-Type:
application/json" https://xxx.xxx.xxx.xxx:8998/batches

3. Connect to the Livy server web UI with a web browser. Verify a batch session has been created and has
reached the ‘success’ state eventually.

4. Click on ‘session’ link on the web UI and verify that the ‘stdout’ section of the log contains the “Pi is
roughly” output message:

Stopping the Livy server
1. From the Livy server user ID OMVS session, issue the following:

$LIVY_HOME/bin/livy-server stop

134 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Part 5. Resource monitoring

© Copyright IBM Corp. 2016, 2021 135

136 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Chapter 14. Resource monitoring for Apache Spark
Whether you use the Apache Spark configuration files or z/OS workload management (WLM) to manage
your Spark resources, it is good practice to monitor the actual resource usage over time and fine tune your
setup accordingly.

Spark web interfaces
Apache Spark provides a suite of web user interfaces (UIs) that you can use to monitor the status and
resource consumption of your Spark cluster.

Apache Spark provides the following UIs:

• Master web UI
• Worker web UI
• Application web UI

The application web UI is particularly useful to identify potential performance issues with your Spark
cluster.

Some sections of the web UIs only appear if relevant information is available. For instance, the master
web UI omits the driver information section if a driver has not been running in the cluster.

You can access the Spark web UIs by pointing your web browser to:

http://host_IP:ui_port

where:
host_IP

The IP address for the z/OS system on which Spark runs
ui_port

The Spark web UI port number

For more information about where to find the port numbers, see “Configuring networking for Apache
Spark” on page 37.

Note: The layout of the web UIs that are shown in the following examples are for Apache Spark 2.0.2. The
UIs might look different for other releases of Apache Spark.

Master web UI
The master web UI provides an overview of the Spark cluster and displays the following information:

• Master URL and REST URL
• CPUs and memory available to the Spark cluster
• Worker status and its allotted resources
• Information about the active and completed applications, such as their status, allotted resources, and

duration
• Information about the active and completed drivers, such as their status and allotted resources

You can use the master web UI to identify the amount of CPU and memory resources that are allotted to
the Spark cluster and to each application. Spark sees each SMT-enabled zIIP as having two cores.

The master web UI also provides an overview of the applications. For instance, if an application is in the
WAITING state, it likely does not have sufficient resources to run.

Figure 8 on page 138 shows an example of the master web UI.

© Copyright IBM Corp. 2016, 2021 137

Figure 8. The Apache Spark master web UI

Worker web UI
The worker web UI provides an overview of the executors and drivers that are spawned by the worker
process. It displays information about the allotted resources, status, and provides links to log files for
each of these child processes. You can use this web UI to see how many executors are currently running
and the amount of resources allotted to each.

Figure 9 on page 139 shows an example of the worker web UI.

138 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Figure 9. The Apache Spark worker web UI

Application web UI
Each Spark application launches its own instance of the web UI. The application web UI provides a wealth
of information about the Spark application and can be a useful tool to debug the application. This web UI
has the following tabs:

• The Jobs tab displays a summary page of all jobs in the Spark application and a detailed page for each
job. The summary page shows high-level information, such as the status, duration, and progress of all
jobs and the overall event timeline. When you click on a job on the summary page, you see the detailed
page for that job. The detailed page further shows the event timeline, DAG visualization, and all stages
of the job.

• The Stage tab displays a summary page that shows the current state of all stages of all jobs in the Spark
application, and, when you click on a stage, a detailed page for that stage. The details page shows the
event timeline, DAG visualization, and all tasks for the stage.

• If the application has persisted RDDs, the Storage tab displays information about the RDDs. The
summary page shows the storage levels, sizes and partitions of all RDDs, and the detailed page shows
the sizes and using executors for all partitions in an RDD.

• The Environment tab displays the values for the different environment and configuration variables,
including Java, Spark, and system properties.

• The Executors tab displays summary information about the executors that were created for the
application, including memory and disk usage and task and shuffle information. The Storage Memory
column shows the amount of memory used and reserved for caching data.

• If the application executes Spark SQL queries, the SQL tab displays information, such as the duration,
jobs, and physical and logical plans for the queries.

• The web UI includes a Streaming tab if the application uses Spark streaming. This tab displays
scheduling delay and processing time for each micro-batch in the data stream, which can be useful
for troubleshooting the streaming application.

From a resource monitoring perspective, the Executors tab provides information about the amount of
memory, disk, and cores used by each executor for the application.

From a performance monitoring perspective, the Executors tab displays garbage collection (GC) time and
shuffle information for each executor. The Storage tab displays the percentage of RDD data that can be
cached in memory.

Figure 10 on page 140 shows an example of the worker web UI.

Chapter 14. Resource monitoring for Apache Spark 139

Figure 10. The Apache Spark application web UI

Configuring Spark web interfaces
Complete this task to configure and customize the Spark web interfaces.

About this task
The Apache Spark web interfaces can be configured and customized by a number of configuration
properties. For more information about Apache Spark web interfaces, see “Spark web interfaces” on
page 137.

Table 10. Spark UI configurations

Configuration name Default Configuration property Notes

Spark UI kill True spark.ui.killEnabled Allows jobs and stages
to be killed from the web
UI

Spark web interface kill button
By default, Spark provides the ability to kill applications, jobs, and stages through the web interface of the
Spark master and Spark application. This ability is available to anyone that can access the web interface
of the respective process. Depending on your required configuration, you may want to control if this is
enabled within your Spark environment.

Depending on which Spark process web interface page you are viewing, the kill button appears in different
locations. Within the Spark master web interface, the kill button appears on the Running Applications
table and the Running Drivers table. Within the Spark application web interface, the kill button appears on
the Active Jobs table, on the Jobs tab, and the Active Stages table, on the Stages tab.

140 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

This feature can be disabled by updating your spark-defaults.conf with the property,
spark.ui.killEnabled and setting it to false. If set to false while starting the Spark master, the kill
button will not appear on the Spark master web interface and you will no longer be able to kill a
running application or running driver. If set to false while starting a Spark application, either through
spark-submit or spark-shell, the kill button will not appear on the Spark application web interface and
you will no longer be able to kill an active job or active stage.

Securing Spark web interfaces
Complete this task to secure Spark web interfaces.

About this task
The Apache Spark web interfaces can be secured with https/SSL by way of Spark SSL settings. For more
information about Apache Spark web interfaces, see “Spark web interfaces” on page 137.

Procedure
1. Generate a public-private key pair. Then, wrap the public key in a digital certificate, and store the

private key and the certificate in a keystore. The following example uses the Java keytool tool to
generate a self-signed certificate.

keytool -genkeypair -keystore /u/sparkid/.keystore \
-keyalg RSA -alias selfsigned \
-dname "CN=mysparkcert L=Poughkeepsie S=NY C=US" \
-storepass examplestorepass -keypass examplekeypass

2. Export the generated certificate and import it into a Java truststore. The following example again uses
the Java keytool tool.

keytool -exportcert -keystore /u/sparkid/.keystore \
-alias selfsigned -storepass examplestorepass -file test1.cer

keytool -importcert -keystore /u/sparkid/.truststore \
-alias selfsigned \
-storepass examplestorepass -file test1.cer -noprompt

3. Update the spark-defaults.conf file to enable SSL for Spark WebUI, by using the keystore and
truststore that is setup in the previous steps.

spark.ssl.enabled true
spark.ssl.trustStore /u/sparkid/.truststore
spark.ssl.trustStorePassword examplestorepass
spark.ssl.keyStore /u/sparkid/.keystore
spark.ssl.keyStorePassword examplestorepass
spark.ssl.keyPassword examplekeypass
spark.ssl.protocol TLSv1.2

4. Start your Spark cluster as normal. When you point your web browser to the Spark web interface, it
automatically redirects to the SSL port, which is typically the non-SSL port plus 400. For example,
http://127.0.0.1:8080 would be directed to https://127.0.0.1:8480.

You can also use the spark.ssl.ui.port option to set the SSL port for the Spark web UI. The
spark.ssl.ui.port option can be specified in spark-defaults.conf.

Note: If you are using a self-signed certificate, like the one in the previous example, you might need
to install the certificate in your web browser. Self-signed certificates are generally rejected by web
browsers, since they are not signed by a known certificate authority and therefore not trusted.

Results
The specified Spark web interfaces are secure.

Chapter 14. Resource monitoring for Apache Spark 141

Event log directory and file permissions
Complete this task to set permissions for your Apache Spark event logs for future reading through the
Spark history service.

About this task
The event log directory stores the event logs when enabled for your applications. These files are then
used by the Spark history server to reconstruct the application’s web UI.

Procedure
Complete the following steps to enable event logging and point the history server to the event logs.
1. Create the event log directory:

mkdir -p /var/spark/events

2. Ensure the owner and group of the directory correspond to the user who is running the Spark history
server:

chown SPARKID:SPKGRP /var/spark/events

3. Ensure the permissions of the event log directory are set properly:

ls -l /var/spark/events

4. Change permissions of the event log directory if necessary. Apache Spark advises a default of 777:

chmod ### /var/spark/events

5. Set the sticky bit on the event log directory. This permits users to delete only the files from this
directory which they own:

chmod +t /var/spark/events

6. Add the following statement to your spark-defaults.conf file, where ### is the permissions you’d like
the application to create the file with. Default is 770:

spark.zos.app.eventLog.permission ###

Enabling the Spark history service
Complete this task to enable the Apache Spark history service to view information about completed
applications.

About this task
The information that the application web UI displays is, by default, only available when the application is
active. To view the information after an application completes, you must enable event logging before
starting the application. The Spark history server can then use the event logs to reconstruct the
application’s web UI.

Procedure
Complete the following steps to enable event logging and point the history server to the event logs.
1. Add the following statements to your spark-defaults.conf file:

spark.eventLog.enabled true
spark.eventLog.dir event-log-directory
spark.history.fs.logDirectory event-log-directory

142 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

where event-log-directory is the directory you configured in “Event log directory and file permissions”
on page 142, where each Spark application stores its event log files, such as file:///var/spark/
events.

Important: Use the event log directory only for event logging. Unexpected errors can occur if Spark
finds non-event log files in the event log directory.

2. To start the history server, issue the following command from bash:

$SPARK_HOME/sbin/start-history-server.sh

where SPARK_HOME is an environment variable that contains the installation path for z/OS Spark.
After the history server is started, you can use your browser to access the event logs and reconstructed
application web UI for completed applications.
3. Point your web browser to the history server URL:

http://host_IP:history_server_port

where:
host_IP

The IP address for the z/OS system on which Spark runs.
history_server_port

The Spark history server UI port number. The default port number is 18080.

Figure 11 on page 143 shows an example of the history server web UI.

Figure 11. The Spark history server web UI
4. Click an entry in the App ID column of the history server web UI to see the reconstructed application

web UI for that application.
5. To stop the history server, issue the following command from bash:

$SPARK_HOME/sbin/stop-history-server.sh

Spark log files
Apache Spark log files can be useful in identifying issues with your Spark processes.

Table 11 on page 143 lists the base log files that Spark generates.

Table 11. Apache Spark log files

Log file Location

Master logs $SPARK_LOG_DIR/spark-userID-org.apache.spark.deploy.master.Master-
instance-host.out

Worker logs $SPARK_LOG_DIR/spark-userID-org.apache.spark.deploy.master.Worker-
instance-host.out

Chapter 14. Resource monitoring for Apache Spark 143

Table 11. Apache Spark log files (continued)

Log file Location

Driver logs (client deploy mode) Printed on the command line by default

Driver logs (cluster deploy mode)

• stdout

• stderr

• $SPARK_WORKER_DIR/driverID/stdout

• $SPARK_WORKER_DIR/driverID/stderr

Executor logs

• stdout

• stderr

• $SPARK_WORKER_DIR/applID/executorID/stdout

• $SPARK_WORKER_DIR/applID/executorID/stderr

In the Location column:
userID

The user ID that started the master or worker.
instance

The master or worker instance number.
host

The short name of the host on which the master or worker is started
driverID

The ID of the driver. You can find this ID on the application web UI.
executorID

The ID of the executor. You can find this ID on the application web UI.

You can customize the Spark directories shown in the table. For more information about the purpose of
these directories and their suggested locations, see “Creating the Apache Spark working directories” on
page 35.

Tip: It is a good practice to periodically clean up or archive your Spark directories to avoid errors caused
by low file system space. For instance, you can use the z/OS UNIX shell command, skulker, in a
regularly scheduled tool to remove old files in a directory.

Using RMF to monitor Spark workload
The z/OS Resource Measurement Facility (RMF) is a tool for z/OS performance measurement and
management. RMF collects performance data for z/OS and Parallel Sysplex environments and generates
reports that allow you to monitor and tune your systems according to your business needs.

RMF uses three monitors to gather data:

• Short-term data collection with Monitor III
• Snapshot monitoring with Monitor II
• Long-term data gathering with Monitor I and Monitor III

The system operator starts all monitors as background sessions with a variety of options that determine
the type of data to collect and where to store it. For more information about setting up the RMF monitors,
see z/OS RMF User's Guide.

All three RMF monitors create reports, as does the Postprocessor. The following topics provide an
overview of the reports that are most relevant to monitoring a Spark workload. For complete information
about RMF reports, see z/OS RMF Report Analysis.

Interactive performance reports with Monitor III
The interactive Monitor III reporter runs in a TSO/E session under ISPF and provides system or sysplex
performance reports in the following ways:

• Displays your current system status in real-time mode

144 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

• Shows previously collected data that is still available in either in-memory buffers or pre-allocated VSAM
data sets

You can use Monitor III to quickly identify storage and processor delays for your active Spark workload.
To start an interactive Monitor III session, enter the TSO/E command RMF and select Monitor III from
the RMF - Performance Management panel. From the RMF III Primary Menu, you can select the specific
performance metrics that you want to see. To further filter the report by job class and service class, you
can issue the following command:

report_name job_class,service_class

where:
report_name

The short name of the report
job_class

One of the following job class names:

ALL (or A)
ASCH (or AS)
BATCH (or B)
OMVS (or O)
STC (or S)
TSO (or T)

service_class
The service class name

Example: To get the Storage Delays report for the ODASSC1 OMVS service class, enter this command:

STOR O,ODASSC1

The following Monitor III reports are of particular interest for monitoring Spark workloads:

• Storage Delays report
• Common Storage report
• Storage Frames report
• Storage Memory Objects report
• Processor Delays report
• Processor Usage report
• zFS File System report

Based on the performance measurements that you observe from these reports, you can fine tune the
resource assignments for your Spark workload. For instance, you can modify the number of cores and
amount of memory for your executors in the spark-defaults.conf configuration file. (For more
information, see “Configuring memory and CPU options” on page 65.) Or, if you use WLM to manage
your Spark workload, you can adjust the importance and performance goals of your Spark workload. (For
more information, see “Configuring z/OS workload management for Apache Spark” on page 73.)

Storage Delays report
The Storage Delays report (STOR) displays storage delay information for all jobs. Here you can find out
if your Spark jobs suffer any delays due to memory constraints. A non-zero value in the DLY % column
indicates that there is a delay due to memory constraints. Figure 12 on page 146 shows an example of
this report.

Chapter 14. Resource monitoring for Apache Spark 145

 RMF V2R2 Storage Delays Line 1 of 7

Samples: 60 System: SYS1 Date: 03/13/17 Time: 15.55.00 Range: 60 Sec

 Service DLY ------- % Delayed for ------ -- Working Set --
Jobname C Class % COMM LOCL SWAP OUTR OTHR Central Expanded

ODASW1A O ODASSC1 0 0 0 0 0 0 36823
ODASM1A O ODASSC1 0 0 0 0 0 0 38759
ODASX1A O ODASSC1 0 0 0 0 0 0 183K

Figure 12. Example of the RMF Storage Delays report

Common Storage report
The Common Storage report (STORC) provides information about the use of common storage (CSA, ECSA,
SQA, and ESQA) within a system. You can use this report to identify whether Spark is using an excessive
amount of common storage (such as for memory-mapped files). Figure 13 on page 146 shows an example
of this report.

 RMF V2R2 Common Storage Line 323 of 340

Samples: 60 System: SYS1 Date: 03/13/17 Time: 22.42.00 Range: 60 Sec

 ---- Percent ---- ------- Amount --------
System Information CSA ECSA SQA ESQA CSA ECSA SQA ESQA
 IPL Definitions 1856K 501M 4384K 63M
 Peak Allocation Values 21 25 28 133 393K 124M 1248K 84M
 Average CSA to SQA Conversion 0 7 0 34M
 Average Use Summary 21 25 14 131 385K 124M 618K 83M
 Available at End of Range 79 75 86 23 1471K 377M 3766K 15M

 Unalloc Common Area: 5028K

 Service ELAP -- Percent Used - ----- Amount Used -----
Jobname Act C Class ASID Time CSA ECSA SQA ESQA CSA ECSA SQA ESQA
ODASX1A O ODASSC1 0329 12.1M 0 0 0 0 0 0 0 160
ODASW1A O ODASSC1 0326 8.3H 0 0 0 0 0 0 0 160
ODASM1A O ODASSC1 0326 8.3H 0 0 0 0 0 0 0 160

Figure 13. Example of the RMF Common Storage report

Storage Frames report
The Storage Frames report (STORF) displays detailed frame counts, auxiliary slot count, and page-in rate
for each address space. For instance, it tells you the average number of frames used by each Spark
process (ACTV column) and the paging rate (PGIN RATE column). Keeping the paging rate as close to zero
as possible helps improve performance. For instance, increasing the memory limit for the resource group
with which Spark address spaces are associated may help lower the paging rate. Figure 14 on page 146
shows an example of this report.

 RMF V2R2 Storage Frames Line 1 of 7

Samples: 60 System: SYS1 Date: 03/13/17 Time: 15.55.00 Range: 60 Sec

 Service -- Frame Occup.-- - Active Frames - AUX PGIN
Jobname C Class Cr TOTAL ACTV IDLE WSET FIXED DIV SLOTS RATE

ODASX1A O ODASSC1 183K 183K 0 183K 716 0 0 0
ODASM1A O ODASSC1 38759 38759 0 38759 669 0 0 0
ODASW1A O ODASSC1 36823 36823 0 36823 614 0 0 0

Figure 14. Example of the RMF Storage Frames report

Storage Memory Objects report
The Storage Memory Objects report (STORM) displays information about the use of memory objects
for each active address space and within the system. A memory object is a contiguous range of virtual

146 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

addresses that is allocated by jobs in units of megabytes on a megabyte boundary. This report can help
you assess the total amount of memory that Spark is using. It also shows the fixed and pageable 1M
frames used by Spark address spaces. Spark generally does not require the use of fixed large frames, and
it might have a negative impact on the overall system health if Spark JVMs are tuned to use them. Figure
15 on page 147 shows an example of this report.

 RMF V2R2 Storage Memory Objects Line 1 of 7

Samples: 60 System: SYS1 Date: 03/13/17 Time: 15.55.00 Range: 60 Sec

----MemObj---- ---Frames--- --1MB Fixed-- --2GB Fixed-- -1MB Pageable-
Fixed 1M 10 Shared 424K Total 111K Total 12 Initial 22056
Fixed 2G 1 Common 280K Common 13 %Used 8.3 Dynamic 4109
Shared 28 %Used 39.2 %Used 3.9 %Used 100
Common 631

 Service --Memory Objects- --1M Frames- 2G-Fr ------Bytes------
Jobname C Class ASID Total Comm Shr Fixed Pgable Fixed Total Comm Shr

ODASM1A O ODASSC1 0618 351 0 0 0 69 0 13.7G 0 0
ODASX1A O ODASSC1 0634 347 0 0 0 541 0 45.8G 0 0
ODASW1A O ODASSC1 0345 334 0 0 0 65 0 13.1G 0 0

Figure 15. Example of the RMF Storage Memory Objects report

Processor Delays report
The Processor Delays report (PROC) displays all jobs that were waiting for or using the processor during
the reporting interval. Here you can see if your Spark jobs suffer any delays due to processor constraints.
Figure 16 on page 147 shows an example of this report.

 RMF V2R2 Processor Delays Line 1 of 10

Samples: 60 System: SYS1 Date: 03/13/17 Time: 15.55.00 Range: 60 Sec

 Service CPU DLY USG EAppl ----------- Holding Job(s) -----------
Jobname CX Class Type % % % % Name % Name % Name

ODASX1A O ODASSC1 CP 3 2 0.360
 IIP 0 23 24.30
ODASM1A O ODASSC1 CP 2 0 0.000
 IIP 2 0 0.012
ODASW1A O ODASSC1 CP 2 0 0.000
 IIP 0 0 0.023

Figure 16. Example of the RMF Processor Delays report

Processor Usage report
The Processor Usage report (PROCU) displays all jobs that were using a general-purpose or special-
purpose processor during the reporting interval. You can use this report to understand the CPU usage of
your Spark jobs. Combined with the Processor Delay report, you can assess whether you need to change
the performance goals or importance of your Spark workload. Figure 17 on page 147 shows an example of
this report.

 RMF V2R2 Processor Usage Line 1 of 5

Samples: 60 System: SYS1 Date: 03/13/17 Time: 15.55.00 Range: 60 Sec

 Service --- Time on CP % --- ----- EAppl % -----
Jobname CX Class Total AAP IIP CP AAP IIP

ODASX1A O ODASSC1 0.360 0.000 0.218 0.360 24.30
ODASW1A O ODASSC1 0.000 0.000 0.000 0.000 0.023
ODASM1A O ODASSC1 0.000 0.000 0.000 0.000 0.012

Figure 17. Example of the RMF Processor Usage report

Chapter 14. Resource monitoring for Apache Spark 147

zFS File System report
The zFS File System report (ZFSFS) measures zFS activity on the basis of single file systems. With this
report, you can monitor the I/O rates and response times associated with the file systems that Spark
uses. Figure 18 on page 148 shows an example of this report.

 RMF V2R2 zFS File System - SVPLEX3 Line 23 of 46

 Samples: 120 Systems: 4 Date: 03/09/17 Time: 15.07.00 Range: 120 Sec

 ------ File System Name -------------------- I/O Resp Read XCF
 System Owner Mode Size Usg% Rate Time % Rate

 OMVSSPA.SPARK.PLX3.ZFS
 *ALL D0 RO 1440M 60.5 0.000 0.000 0.0 0.000

Figure 18. Example of the RMF zFS File System report

Long-term reporting with the Postprocessor
You can use the RMF Postprocessor to generate long-term overview reports for your Spark workload.
Unlike the interactive Monitor III sessions, Postprocessor reports allow you to analyze your Spark
workload performance over the long term and fine tune its resource assignments. For more information
about running the Postprocessor and other report options, see z/OS RMF User's Guide.

Workload Activity report
The Workload Activity report (WLMGL) presents a summarized view of a WLM-managed workload. You
can select to view this report for a specific service class, report class, WLM workload, and various other
types. For instance, if you place all of your Spark processes in a single service class, you can generate a
Workload Activity report that tells you the actual amount of memory and CPU consumed by that workload.
Figure 19 on page 148 shows an example of the Workload Activity report for the ODASSC1 service class.

 W O R K L O A D A C T I V I T Y
 PAGE 48
 z/OS V2R2 SYSPLEX ZPETPLX2 DATE 02/13/2017 INTERVAL 30.00.057 MODE = GOAL

 RPT VERSION V2R2 RMF TIME 17.29.35

REPORT BY: POLICY=WLMPOL01 WORKLOAD=ODASWL SERVICE CLASS=ODASSC1 RESOURCE GROUP=ODASRG
 CRITICAL =NONE HONOR PRIORITY=NO
 DESCRIPTION =Sample Spark service class

-TRANSACTIONS- TRANS-TIME HHH.MM.SS.TTT --DASD I/O-- ---SERVICE--- SERVICE TIME ---APPL %--- --PROMOTED-- ----STORAGE----
AVG 4.19 ACTUAL 716 SSCHRT 5.5 IOC 202338 CPU 276.626 CP 0.57 BLK 0.000 AVG 167913.4
MPL 4.19 EXECUTION 715 RESP 2.3 CPU 16393K SRB 2.816 AAPCP 0.00 ENQ 0.000 TOTAL 702887.3
ENDED 441 QUEUED 1 CONN 2.2 MSO 1972M RCT 0.039 IIPCP 0.14 CRM 0.000 SHARED 0.00
END/S 0.24 R/S AFFIN 0 DISC 0.0 SRB 166881 IIT 0.228 LCK 3.098
#SWAPS 135 INELIGIBLE 0 Q+PEND 0.1 TOT 1989M HST 0.000 AAP N/A SUP 0.000 -PAGE-IN RATES-
EXCTD 0 CONVERSION 0 IOSQ 0.0 /SEC 1105K AAP N/A IIP 20.85 SINGLE 0.0
AVG ENC 0.00 STD DEV 1.195 IIP 213.360 BLOCK 0.0
REM ENC 0.00 ABSRPTN 264K SHARED 0.0
MS ENC 0.00 TRX SERV 264K HSP 0.0

TRANSACTION APPL% : TOTAL : CP 0.55 AAP/IIP ON CP 0.14 AAP/IIP 20.85
 MOBILE : CP 0.00 AAP/IIP ON CP 0.00 AAP/IIP 0.00

Figure 19. Example of the RMF Workload Activity report for a Spark service class

Table 12 on page 149 describes some of the fields in the Workload Activity report that are more relevant
to Spark.

148 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Table 12. Selected fields in the RMF Workload Activity report

Field heading Entries

SERVICE TIME CPU
Time, in seconds, consumed on general-purpose and special-
purpose processors.

IIT
I/O interrupt time, in seconds.

IIP
zIIP service time, in seconds.

APPL % CP
Percentage of the processor time used by transactions running on
general-purpose processors.

IIPCP
Percentage of the processor time used by zIIP-eligible transactions
running on general-purpose processors. This is a subset of the APPL
% CP value.

IIP
Percentage of the processor time used by transactions executed on
zIIPs.

STORAGE AVG
Weighted average number of central storage frames allocated to
active ASIDs.

TOTAL
Total number of central storage frames allocated to resident ASIDs.

PAGE-IN RATES SINGLE
Average rate at which pages are read into central storage while
transactions are resident in central storage.

BLOCK
Rate of demand page-ins from DASD for blocked pages.

Using z/OS and z/OS UNIX commands to monitor Spark workload
You can use z/OS system commands and z/OS UNIX shell commands to monitor your Apache Spark
workload, especially its usage of system resources.

You can incorporate the system commands or shell commands into automated tools as part of the regular
system checkup, or you can issue the commands directly to diagnose a particular problem.

z/OS system commands to monitor Spark workload
Table 13 on page 150 lists some z/OS system commands that you can use to monitor Spark workload. For
more information about these commands, see z/OS MVS System Commands. For more information about
the response to the DISPLAY OMVS command, refer to the response message IDs in z/OS MVS System
Messages, Vol 3 (ASB-BPX).

Chapter 14. Resource monitoring for Apache Spark 149

Table 13. z/OS system commands to monitor Spark workload

z/OS system command Description

DISPLAY OMVS,LIMITS[,PID=process_id] Displays information about current z/OS UNIX
parmlib limits, their high-water marks, and current
system usage. When the PID parameter is
specified, LIMITS displays high-water marks and
current usage for an individual process.

Although you should monitor the usage of all
system resources, Spark workload particularly
impacts these limits:

• MAXMMAPAREA, the maximum number of data
space pages that can be allocated for memory
mapping of z/OS files

• MAXPROCSYS, the maximum number of
processes that can be active at the same time

• MAXPIPES, the maximum number of named or
unnamed pipes that can be oped in the system at
one time

DISPLAY OMVS,PIPES[,{ALL|UID=uid}] Displays summary information about the z/OS
UNIX pipe usage. The default is to list the two
UIDs with the highest pipe create count. If you
specify ALL, all UIDs with a pipe create count are
displayed.

DISPLAY OMVS,U=userid Displays process information for all processes
associated with the specified TSO/E user ID. If
you have a dedicated user ID under which all
Spark processes run, you can use this command
to display information about all of those processes.

z/OS UNIX shell commands to monitor Spark workload
Table 14 on page 150 lists some z/OS UNIX shell commands that you can use to monitor Spark workload.
For more information about these commands, see z/OS UNIX System Services Command Reference. For
more information about the zfsadm command suite, see z/OS File System Administration.

Table 14. z/OS UNIX shell commands to monitor Spark workload

z/OS UNIX shell command Description

df [-kPStv] [file ...] Displays the amount of free space left on a file
system. You can use this command to monitor free
space left on file systems that Spark uses.

skulker [-iw] [-r|-R] [-l logfile]
directory days_old

Finds and deletes old files in directory, based
on comparing the file's access time to the age
specified by days_old.

zfsadm fsinfo -exceptions Lists all file systems that are low on space or that
had applications fail due to low space errors.

zlsof -t [-p pid] [-u user] Shows a tally of all open files, sockets, and pipes,
filtered by process ID (pid) or user, if specified.
You can use this command to monitor different file
types opened by Spark.

150 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Table 14. z/OS UNIX shell commands to monitor Spark workload (continued)

z/OS UNIX shell command Description

ulimit -a Displays the resource limits on processes created
by the user. For instance, you can use this
command to display the file descriptor limit of your
Spark processes.

Using IBM Health Checker for z/OS to monitor Spark workload
IBM Health Checker for z/OS is an MVS component that identifies potential problems before they impact
your availability or cause outages.

Health Checker checks the current, active z/OS and sysplex settings and definitions for a system and
compares the values to those suggested by IBM or defined by you. It produces output in the form of
detailed messages to inform you of potential problems and suggested actions.

Consider enabling the z/OS UNIX System Services health checks and other system-level checks that
might be relevant to your Spark workload. The following health checks might be of particular interest
when running Spark workload:

• RACF_UNIX_ID
• RSM_MEMLIMIT
• RSM_AFQ IEA_ASIDS
• USS_AUTOMOUNT_DELAY
• USS_FILESYS_CONFIG
• USS_MAXSOCKETS_MAXFILEPROC
• USS_CLIENT_MOUNTS
• USS_KERNEL_PVTSTG_THRESHOLD
• USS_KERNEL_STACKS_THRESHOLD
• VSM_CSA_THRESHOLD
• VSM_SQA_THRESHOLD

For more information about these health checks and about Health Checker in general, see IBM Health
Checker for z/OS User's Guide.

Chapter 14. Resource monitoring for Apache Spark 151

152 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Part 6. Troubleshooting

© Copyright IBM Corp. 2016, 2021 153

154 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Chapter 15. Troubleshooting issues with Apache
Spark

Use the following information to troubleshoot issues you might encounter with Apache Spark.

You can also use Apache Spark log files to help identify issues with your Spark processes. See “Spark log
files” on page 143 for more information about where to find these log files.

Multiple Spark applications cannot run simultaneously with the
"alwaysScheduleApps" setting enabled
Symptom: Multiple Spark applications cannot run simultaneously with the "alwaysScheduleApps" setting
enabled, even when there is sufficient memory and CPU (zIIP) resources:

21/02/09 15:34:10 INFO Master: Attempted to re-register application at same address:
dipn.ipc.us.aexp.com:4056

The following are examples of repeating Spark messages in this instance:

21/02/09 15:34:19 WARN Master: Unknown application app-20210209153410-0352 requested 1 total
executors.
21/02/09 15:34:19 WARN Master: Unknown application app-20210209153409-0351 requested 1 total
executors.
21/02/09 15:34:20 WARN Master: Unknown application app-20210209153407-0350 requested 1 total
executors.
21/02/09 15:34:20 WARN Master: Unknown application app-20210209153410-0352 requested 1 total
executors.

Spark issues the following messages when the second and subsequent applications try to use the same
port as the first application:

21/01/15 10:01:23 DEBUG TransportServer: Shuffle server started on port: 4056
21/01/15 10:01:23 INFO Utils: Successfully started service 'sparkDriver' on port 4056.

Cause: Spark expects to find ports in use if they are already being used by another Spark application, and
has its own error handling that moves to the next port in the Spark port range. Using SHAREPORT defeats
that logic and causes applications to interfere with each other.

Response: Do not use SHAREPORT when assigning TCPIP PORT definitions to Spark.

Spark commands fail with an EDC5111I message, and ICH408I message appears on
the z/OS console
Symptom: Spark worker daemon fails to create executors with the following error:

18/01/22 13:11:14 ERROR ExecutorRunner: Error running executor
java.io.IOException: Cannot run program "/usr/lpp/java/java800/J8.0_64/bin/java"
(in directory"/u/usr1/work/app-20180122131112-0000/0"): EDC5111I Permission
 denied.
 at java.lang.ProcessBuilder.start(ProcessBuilder.java:1059)
 at
org.apache.spark.deploy.worker.ExecutorRunner.org$apache$spark$deploy$worker
$ExecutorRunner$$fetchAndRunExecutor(ExecutorRunner.scala:167)
 at org.apache.spark.deploy.worker.ExecutorRunner$$anon$1.run
 (ExecutorRunner.scala:73)
Caused by: java.io.IOException: EDC5111I Permission denied.
 at java.lang.UNIXProcess.<init>(UNIXProcess.java:189)
 at java.lang.ProcessImpl.start(ProcessImpl.java:167)
 at java.lang.ProcessBuilder.start(ProcessBuilder.java:1040)
 ... 2 more

The following message appears on the z/OS console:

© Copyright IBM Corp. 2016, 2021 155

SY1 ICH408I USER(USR1) GROUP(SYS1) NAME(####################)
 /u/usr1/work/app-20180122131112-0000/0
 CL(DIRSRCH) FID(E2D7D2F0F0F10002000000014BA847EA)
 INSUFFICIENT AUTHORITY TO CHDIR
 ACCESS INTENT(--X) ACCESS ALLOWED(GROUP ---)
 EFFECTIVE UID(0000000012) EFFECTIVE GID(0000000500)

Cause: When z/OS Spark client authentication is enabled, the Spark executor processes run under the
user ID of the driver. However, the z/OS system that hosts the Spark cluster is not configured to accept
ACL's set by Spark, which is needed for the executors to access Spark directories.

Response: Configure the z/OS system that hosts the Spark cluster to accept ACL's. For example, issue the
following RACF command:

SETROPTS CLASSACT(FSSEC)

For more information, see “Configuring z/OS Spark client authentication” on page 41.

Spark scripts fail with FSUM6196 and EDC5129I messages
Symptom: Spark scripts fail with the following error message:

env: FSUM6196 bash: not executable: EDC5129I No such file or directory

Cause: Apache Spark expects to find the bash shell in the user's PATH environment variable, but bash
cannot be found when the spark-script attempts to invoke bash.

Response: Ensure that the PATH environment variable includes the directory where the bash executable
is installed. For example, if bash is located at /usr/bin/bash-4.2/bin/bash, ensure that PATH
includes /usr/bin/bash-4.2/bin.

Spark scripts fail with FSUM7332 message
Symptom: Spark scripts fail with the following error message:

failed to launch org.apache.spark.deploy.master.Master:
/usr/lpp/IBM/izoda/spark/spark23x/bin/spark-class 76:
FSUM7321 Unknown option "posix"

Cause: Apache Spark expects to find the env command in /usr/bin, but it cannot be found. Either
the /usr/bin/env symbolic link is missing or it is not pointing to /bin/env. It is possible that creation
of this symbolic link was missed during Spark setup or that the symbolic link was lost after a system IPL.

Response: Ensure that /usr/bin/env exists and is a symbolic link to /bin/env, and that the symbolic
link persists across system IPLs. For more information, see “Verifying the env command path” on page
32.

An error occurs when starting the master, but the master starts correctly
Symptom: When starting the master, the following error occurs:

bash-4.2$ $SPARK_HOME/sbin/start-master.sh
starting org.apache.spark.deploy.master.Master,
logging to /u/user/Billy/logs/spark--org.apache.spark.deploy.master.Master-1-ALPS.out
failed to launch org.apache.spark.deploy.master.Master:
full log in /u/user/Billy/logs/spark--org.apache.spark.deploy.master.Master-1-
ALPS.out

Cause: Apache Spark polls for a number of seconds to repeatedly check to see if the master started
successfully. If your system is under heavy load, this message might appear, but it generally means that
the check finished polling for success before the master startup completed.

Response: Check the master log, or issue the ps command and look for the master process to definitively
see whether or not the master started successfully.

156 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Only one Spark executor is started
Symptom: You specified --num-executors 2 on a spark-submit, but only one executor was started.

Cause: The --num-executors parameter is only valid in YARN mode, which is not supported on z/OS.
Instead, the number of executors is determined by your resource settings.

Response: For more information about resource settings, see “Configuring memory and CPU options” on
page 65.

Shell script displays unreadable characters
Symptom: When running a shell script, it displays unreadable characters on the screen, such as:

./start-master.sh: line 1: syntax error near
unexpected token `$'\101\123\124\105\122^''

Cause: Incorrect file encoding or downlevel bash shell.

Response: Ensure that the file encoding is in EBCDIC, not ASCII, and is not tagged as ASCII. You can
check the tagging of a file by issuing the ls -T shell command. Also, ensure that your bash shell level is
4.2.53 or 4.3.48. You can check the bash level by issuing the bash -version command.

Spark-shell fails with java.lang.ExceptionInInitializerError error message
Symptom: Spark-shell fails with the following error message:

java.lang.ExceptionInInitializerError …. Scala signature
package has wrong version expected: 5.0 found: 45.0 in scala.package

Cause: Your JVM is likely running with the wrong default encoding.

Response: Ensure that you have the following environment variable set:

IBM_JAVA_OPTIONS=-Dfile.encoding=UTF8

For more information about setting environment variables, see “Setting up a user ID for use with z/OS
Spark” on page 28.

The Spark master fails with JVMJ9VM015W error
Symptom: The Spark master fails to start and gives the following error:

JVMJ9VM015W Initialization error for library j9gc28(2):
Failed to instantiate compressed references metadata; 200M requested
Error: Could not create the Java Virtual Machine.
Error: A fatal exception has occurred. Program will exit.

Cause: The master JVM could not obtain enough memory to start. Memory is most likely constrained by
your ASSIZEMAX setting.

Response: For more information about setting the ASSIZEMAX parameter, see “Configuring memory and
CPU options” on page 65.

A Spark application is not progressing and shows JVMJ9VM015W error in the log
Symptom: The Spark master and worker started successfully; however, the Spark application is not
making any progress, and the following error appears in the executor log:

JVMJ9VM015W Initialization error for library j9gc28(2):
Failed to instantiate heap; 20G requested
Error: Could not create the Java Virtual Machine.
Error: A fatal exception has occurred. Program will exit.

Chapter 15. Troubleshooting issues with Apache Spark 157

Cause: The executor JVM could not obtain enough memory to start. Memory is most likely constrained by
your MEMLIMIT setting or IEFUSI exit.

Response: For more information about setting the MEMLIMIT parameter or using the IEFUSI exit, see
“Configuring memory and CPU options” on page 65. Also see "Displaying process limits" in z/OS UNIX
System Services Planning.

Spark commands fail with an EDC5157 message, or BPXP015I and BPXP014I
messages appear on the z/OS console
Symptom: Spark commands fail with the following error message:

17/08/08 13:51:40 INFO StandaloneAppClient$ClientEndpoint: Executor updated:
app-20170808135140-0000/0 is now FAILED (java.io.IOException: Cannot run program
"/usr/lpp/java/java800/J8.0_64/bin/java" (in directory "/u/user1/work/
app-20170808135140-0000/0"):
EDC5157I An internal error has occurred.)

The following messages appear on the z/OS console:

BPXP015I HFS PROGRAM /bin/setfacl IS NOT MARKED PROGRAM CONTROLLED.
BPXP014I ENVIRONMENT MUST BE CONTROLLED FOR SURROGATE (BPX.SRV.uuuuuuuu)
 PROCESSING.

Cause: Apache Spark 2.1.1 and later requires that the _BPX_SHAREAS environment variable be set to NO
when starting the cluster, but it is currently set to YES.

Response: Under your Spark user ID (for instance, SPARKID), ensure that the $SPARK_CONF_DIR/
spark-env.sh file contains _BPX_SHAREAS=NO, and that the master and worker processes were started
using that spark-env.sh ile. Verify that the SPARK_CONF_DIR and _BPX_SHAREAS environment
variable are set properly for any BPXBATCH jobs that run start-master.sh and start-slave.sh.
Consider restarting the master and worker processes to ensure the proper setting is used.

Spark worker or driver cannot connect to the master and the log files show
"java.io.IOException: Failed to connect" error messages
Symptom: The Spark master starts successfully, but the worker or the driver is unable to connect to it.
The following error message is repeated several times in the worker or application log:

org.apache.spark.SparkException: Exception thrown in awaitResult
...Caused by: java.io.IOException: Failed to connect to ip_address:port

Cause: The worker or driver is unable to connect to the master due to network errors.

Response: Check your network connectivity. If you have Spark client authentication enabled, verify that
your AT-TLS policy is set up correctly and that the worker or driver has a valid digital certificate. For more
information about client authentication, see “Configuring z/OS Spark client authentication” on page 41.

Spark worker fails with ICH408I message with NEWJOBNAME insert
Symptom: Spark worker fails with the following error message:

ICH408I USER(SPARKID)
GROUP(SPARKGRP) NAME(####################)
CL(PROCESS)
INSUFFICIENT AUTHORITY TO NEWJOBNAME

Cause: The IzODA Apache Spark worker spawns drivers and executors using the jobname prefixes or
templates specified in spark-defaults.conf. The SPARKID userid will not be authorized to create jobs with
specified jobnames unless authorized.

Response: Permit the SPARKID userid to the BPX.JOBNAME profile with READ access..

158 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Appendix A. Migrating to a new version of Apache
Spark

IBM z/OS Platform for Apache Spark (FMID HSPK110) and IBM Open Data Analytics for z/OS (FMID
HSPK120) are built on Apache Spark. Different service (PTF) levels of these products might provide
different versions of Apache Spark. Perform the following steps if you are migrating from one version of
Apache Spark to another.

Before you begin
If you previously installed IBM z/OS Platform for Apache Spark, Version 1.1.0, or IBM Open Data
Analytics for z/OS, Version 1.1.0, determine the Apache Spark version that is provided. You can find
the Apache Spark version in the RELEASE file in the Spark installation directory. The following sample
output indicates that a version of Apache Spark 2.2.0 is provided.

IBM Open Data Analytics for z/OS - Spark, Version 2.2.0 built for Hadoop 2.7.7
Built with Java JRE 1.8.0 IBM ZOS build 8.0.5.17 - pmz6480sr5fp17-20180627_01(SR5 FP17)
Built from Git zos_Spark_2.2.0.12 (revision bcb96e0f31e4e4e7f82d85c72ec31478419cbd39)
Built via Jenkins job Spark/zos_Spark_2.2.0.12, Build#20
Build flags: -Phive -Phive-thriftserver -Phadoop-2.7

Important: Mixing different Spark components, such as Spark master and worker, from different Apache
Spark versions could yield undesirable and unpredictable results. A Spark cluster, for example, might not
function properly if the master daemon is started from Apache Spark 2.0.2 whereas the worker daemon is
started from Apache Spark 2.2.0.

Important: IBM urges you to install and test the new version of Apache Spark on a test system before
you install it on a production system. IBM also recommends that you back up any custom files, such as
spark-defaults.conf and spark-env.sh, before installing the new version.

Before installing the new version of Apache Spark
Complete the following steps to understand the impact of migrating to a newer version of Apache Spark
on your applications and to update your level of Java.

1. Determine whether your Spark setup resides in a mixed-endian environment.

A mixed-endian environment exists if part of your Apache Spark setup, typically the worker, runs on
an IBM Z platform, and another part, typically the driver, runs on a different platform. The Spark driver
is the process that hosts your Spark application, and it can run as an independent process or inside
a third-party product, such as Scala Workbench (including Jupyter Notebook) or Spark Job Server.
Apache Spark 2.x.x no longer supports mixed-endian environments in client deploy mode. If this is the
environment that you use, see Appendix H, “Apache Spark in a mixed-endian environment,” on page
187 for information about possible alternatives.

2. Review the new functionality in the new version of Apache Spark and the changes to the Spark APIs
to determine any changes that you might need to make to your applications before migration. Use the
information at the following links to learn about the changes. Be sure to consider the changes for each
in between Apache Spark version. For example, if you are migrating from Apache Spark 2.0.2 to 2.2.0,
you need to consider the changes for Apache Spark 2.1.0, 2.1.1, and 2.2.0.

• For high-level information about new features; changes, removals, and deprecations made to the
Apache Spark APIs; performance improvements and known issues, see the following links.

– If your previous Apache Spark version is 1.5.2, start here:

- Spark Release 1.6.0 (spark.apache.org/releases/spark-release-1-6-0.html)
- Spark Release 1.6.1 (spark.apache.org/releases/spark-release-1-6-1.html)

© Copyright IBM Corp. 2016, 2021 159

http://spark.apache.org/releases/spark-release-1-6-0.html
http://spark.apache.org/releases/spark-release-1-6-1.html

- Spark Release 1.6.2 (spark.apache.org/releases/spark-release-1-6-2.html)
- Spark Release 2.0.0 (spark.apache.org/releases/spark-release-2-0-0.html)
- Spark Release 2.0.1 (spark.apache.org/releases/spark-release-2-0-1.html)
- Spark Release 2.0.2 (spark.apache.org/releases/spark-release-2-0-2.html)

– If your previous Spark version is 2.0.2, you can start here:

- Spark Release 2.1.0 (spark.apache.org/releases/spark-release-2-1-0.html)
- Spark Release 2.1.1 (spark.apache.org/releases/spark-release-2-1-1.html)

– If your previous Apache Spark version is 2.1.1, you can start here:

- Spark Release 2.1.2 (spark.apache.org/releases/spark-release-2-1.2.html)
- Spark Release 2.1.3 (spark.apache.org/releases/spark-release-2-1-3.html)
- Spark Release 2.2.0 (spark.apache.org/releases/spark-release-2-2-0.html)

– If your previous Apache Spark version is 2.2.0, you can start here:

- https://spark.apache.org/releases/spark-release-2-2-1.html
- https://spark.apache.org/releases/spark-release-2-2-2.html
- https://spark.apache.org/releases/spark-release-2-2-3.html
- https://spark.apache.org/releases/spark-release-2-3-0.html
- https://spark.apache.org/releases/spark-release-2-3-1.html
- https://spark.apache.org/releases/spark-release-2-3-2.html
- https://spark.apache.org/releases/spark-release-2-3-3.html
- https://spark.apache.org/releases/spark-release-2-3-4.html

• If you are migrating from Apache Spark version 1.5.2, see Spark 2.0 deprecations and removals
(https://issues.apache.org/jira/browse/SPARK-11806).

• The Spark SQL and Spark ML projects have additional migration changes for each version of Apache
Spark. See the following resources for details.

– http://spark.apache.org/docs/2.4.8/sql-programming-guide.html.
– http://spark.apache.org/docs/2.4.8/ml-guide.html. Note that as of Apache Spark 2.0, the RDD-

based APIs in the spark.mllib package have entered maintenance mode; consider how this
might affect your applications.

– Spark MLlib Old Migration Guides (spark.apache.org/docs/2.0.2/ml-migration-guides.html).
• The following Spark projects have no specific migration steps. However, they might document new

behaviors as of the Spark version.

– http://spark.apache.org/docs/2.4.8/streaming-programming-guide.html
– http://spark.apache.org/docs/2.4.8/structured-streaming-programming-guide.html
– http://spark.apache.org/docs/2.4.8/graphx-programming-guide.html

3. Based on your findings from the information in step “2” on page 159, update your applications as
needed to work with the new Spark version.

4. If you are using an older Java level than the one indicated in the RELEASE file, consider updating your
Java level.

5. Ensure that any other open source or third-party software in your environment that interacts with
Spark supports the new version of Apache Spark. For example, some versions of Scala Workbench do
not work with the new versions of Apache Spark.

Installing the new version of Apache Spark
Install IBM Open Data Analytics for z/OS Spark, FMID HSPK120 and its service updates (PTFs).

For installation guidelines, see Program Directory for IBM Open Data Analytics for z/OS.

160 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

http://spark.apache.org/releases/spark-release-1-6-2.html
http://spark.apache.org/releases/spark-release-2-0-0.html
http://spark.apache.org/releases/spark-release-2-0-1.html
http://spark.apache.org/releases/spark-release-2-0-2.html
http://spark.apache.org/releases/spark-release-2-1-0.html
http://spark.apache.org/releases/spark-release-2-1-1.html
http://spark.apache.org/releases/spark-release-2-1-2.html
http://spark.apache.org/releases/spark-release-2-1-3.html
https://spark.apache.org/releases/spark-release-2-2-0.html
https://spark.apache.org/releases/spark-release-2-2-1.html
https://spark.apache.org/releases/spark-release-2-2-2.html
https://spark.apache.org/releases/spark-release-2-2-3.html
https://spark.apache.org/releases/spark-release-2-3-0.html
https://spark.apache.org/releases/spark-release-2-3-1.html
https://spark.apache.org/releases/spark-release-2-3-2.html
https://spark.apache.org/releases/spark-release-2-3-3.html
https://spark.apache.org/releases/spark-release-2-3-4.html
https://issues.apache.org/jira/browse/SPARK-11806
https://issues.apache.org/jira/browse/SPARK-11806
http://spark.apache.org/docs/2.4.8/sql-programming-guide.html
http://spark.apache.org/docs/2.4.8/ml-guide.html
http://spark.apache.org/docs/2.0.2/ml-migration-guides.html
http://spark.apache.org/docs/2.4.8/streaming-programming-guide.html
http://spark.apache.org/docs/2.4.8/structured-streaming-programming-guide.html
http://spark.apache.org/docs/2.4.8/graphx-programming-guide.html

After installing the new version of Apache Spark
1. Recompile applications that use any of the changed Spark APIs.
2. Consider using the Spark workflow to configure the new release of Spark. If not using the workflow,

examine any new Apache Spark configuration options and make necessary changes to your spark-
defaults.conf and spark-env.sh configuration files.

For the current list of configuration options, see http://spark.apache.org/docs/2.4.8/
configuration.html. A new Apache Spark version might introduce new configuration options as well
as deprecate existing ones.

Note: For the contents of the spark-defaults.conf and spark-env.sh configuration files,
you can find IBM-supplied default values in spark-defaults.conf.template and spark-
env.sh.template.

3. If you use the spark-submit or spark-sql command line interface, you must either invoke them
from a writable directory or change your configuration files. For more information, see “Updating the
Apache Spark configuration files” on page 34.

Appendix A. Migrating to a new version of Apache Spark 161

http://spark.apache.org/docs/2.4.8/configuration.html
http://spark.apache.org/docs/2.4.8/configuration.html

162 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Appendix B. Sample configuration and AT-TLS policy
rules for z/OS Spark client authentication

The following examples show the sample configuration settings and AT-TLS policy rules that you can use
in your spark-env.sh and spark-defaults.conf (both located in the SPARK_CONF_DIR directory)
and TCPIP-TTLS.policy AT-TLS policy file, under each of the z/OS Spark client authentication models.
They assume the network port configurations as shown in Table 15 on page 163, and you should modify
them to values that are suitable for your environment.

Network port configurations

Table 15. Example network port configurations

Port name Default port number Port number in example
configuration

Master port 7077 7077

Mast REST port 6066 6066

Worker port (random) 7177

Block manager port (random) 7511

External shuffle server 7337 7337

PySpark daemon (random) 7722

Driver port (random) 7277

Driver block manager port (value of
spark.blockManager.port)

7611

For more information about configuring the Spark configuration files for z/OS Spark client authentication,
see “Configuring additional authorities and permissions for the Spark cluster” on page 53.

For more information about configuring the AT-TLS policies for z/OS Spark client authentication, see
“Defining the AT-TLS policy rules” on page 49.

You can find detailed information about the syntax of each AT-TLS policy statements in "AT-TLS policy
statements in z/OS Communications Server: IP Configuration Reference

• When AT-TLS is the client authentication method.

spark-defaults.conf

Set this value to false if you want to disable client authentication on the master port
The default is true. This option only applies to client deploy mode.
spark.zos.master.authenticate.method indicates the authentication method to use.
spark.zos.master.authenticate true

Method used for client authentication. Valid values are ATTLS (default) and TrustedPartner.
Only applicable if spark.zos.master.authenticate is enabled. See IzODA Installation
and Customization Guide for more information on required configuration for each method.
spark.zos.master.authenticate.method ATTLS

The REST server does not support client authentication nor application-layer TLS.
Only enable this once you have adequate security in place for the REST port.
spark.master.rest.enabled false

spark.driver.blockManager.port 7611

© Copyright IBM Corp. 2016, 2021 163

spark.driver.port 7277
spark.blockManager.port 7511
spark.python.daemon.port 7722

uncomment and set these if not using default values
spark.master.rest.port 6066
spark.shuffle.service.port 7337

uncomment this to enable external shuffle server
spark.shuffle.service.enabled true

spark-env.sh

uncomment and set this if not using default value
SPARK_MASTER_PORT=7077
SPARK_WORKER_PORT=7177

AT-TLS policy rules

##
AT-TLS POLICY AGENT CONFIGURATION FILE FOR SPARK ON Z/OS
##
###
SparkClusterGrp_ATTLS contains the PortRange references
for the Spark cluster ports that support AT-TLS security.
##
For detailed usage information and configuration
instructions of these ports, please refer to the
IzODA Installation and Customization Guide
##
When port-binding fails (due to, e.g., port already in
use), it will retry on sequential ports to a number of times
equal the value of spark.port.maxRetries (default: 16).
This value can be configured in spark-defaults.conf.
##
(The Shuffle Server port does not support port range retry.)
##
Considering this behavior, we recommend configuring
a PortRange to account for the retry behavior for
ports that support port range retry:
##
port_number - (port_number + spark.port.maxRetries)
###
PortGroup SparkClusterGrp_ATTLS
{
 PortRangeRef SparkMaster_ATTLS
 PortRangeRef SparkMasterRest_ATTLS
 PortRangeRef SparkExtShuffleServer_ATTLS
}
PortRange SparkMaster_ATTLS
{
 Port 7077-7093
}
PortRange SparkMasterRest_ATTLS
{
 Port 6066-6082
}
PortRange SparkExtShuffleServer_ATTLS
{
 Port 7337
}
###
##
KeyRing_ATTLS defines the keyring that will be used during
Spark AT-TLS authentication.
##
###
TTLSKeyRingParms KeyRing_ATTLS
{
 Keyring SparkRing
}
###
##
SparkServer_ATTLS and SparkClient_ATTLS are the rules that work

164 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

together to encrypt the network traffic among the ports defined
in the SparkClusterGrp_ATTLS section.
##
###
TTLSRule SparkServer_ATTLS
{
 Direction Inbound
 LocalPortGroupRef SparkClusterGrp_ATTLS
 TTLSGroupActionRef GroupAct_TTLS_On
 TTLSEnvironmentActionRef EnvAct_SparkServer_ATTLS
}
TTLSRule SparkClient_ATTLS
{
 Direction Outbound
 RemotePortGroupRef SparkClusterGrp_ATTLS
 TTLSGroupActionRef GroupAct_TTLS_On
 TTLSEnvironmentActionRef EnvAct_SparkClient_ATTLS
}
###
##
EnvAct_SparkServer_ATTLS and EnvAct_SparkClient_ATTLS
establish the environment for the connections that match the
corresponding TTLSRules, using the role and keyring specified.
##
###
TTLSEnvironmentAction EnvAct_SparkServer_ATTLS
{
 HandshakeRole ServerWithClientAuth
 EnvironmentUserInstance 0
 TTLSKeyRingParmsRef KeyRing_ATTLS
 TTLSEnvironmentAdvancedParmsRef EnvAdv_TLS
}
TTLSEnvironmentAction EnvAct_SparkClient_ATTLS
{
 HandshakeRole Client
 EnvironmentUserInstance 0
 TTLSKeyRingParmsRef KeyRing_ATTLS
 TTLSEnvironmentAdvancedParmsRef EnvAdv_TLS
}
###
##
GroupAct_TTLS_On is the group action that enables TLS
security for connections utilizing it.
##
###
TTLSGroupAction GroupAct_TTLS_On
{
TTLSEnabled On
}
###
##
EnvAdv_TLS is an advanced environment parms object
enforcing the following conditions on the server:
- The server can only utilize TLSv1.2 when accepting
a connection,
- The server must use level 2 client authentication
in the TLS handshake.
##
###
TTLSEnvironmentAdvancedParms EnvAdv_TLS
{
 ClientAuthType SAFCheck
 TLSv1 Off
 TLSv1.1 Off
 TLSv1.2 On
}

• When Trusted Partner is the client authentication method.

spark-defaults.conf

Set this value to false if you want to disable client authentication on the master
port. The default is true. This option only applies to client deploy mode.
spark.zos.master.authenticate.method indicates the authentication method to use.
spark.zos.master.authenticate true

Method used for client authentication. Valid values are ATTLS (default) and TrustedPartner.
Only applicable if spark.zos.master.authenticate is enabled. See IzODA Installation
and Customization Guide for more information on required configuration for each method.

Appendix B. Sample configuration and AT-TLS policy rules for z/OS Spark client authentication 165

spark.zos.master.authenticate.method TrustedPartner

The REST server does not support client authentication nor application-layer TLS.
Only enable this once you have adequate security in place for the REST port.
spark.master.rest.enabled false

spark.driver.blockManager.port 7611
spark.driver.port 7277
spark.blockManager.port 7511
spark.python.daemon.port 7722

uncomment and set these if not using default values
spark.master.rest.port 6066
spark.shuffle.service.port 7337

uncomment this to enable external shuffle server
spark.shuffle.service.enabled true

spark-env.sh

" uncomment and set this if not using default value
" SPARK_MASTER_PORT=7077
SPARK_WORKER_PORT=7177

Trusted Partner policy rules

##
TRUSTED PARTNER POLICY AGENT CONFIGURATION FILE FOR SPARK ON Z/OS
##
###
SparkClusterGrp_TP contains the PortRange references
for the Spark cluster ports that support Trusted Partner
security.
##
For detailed usage information and configuration
instructions of these ports, please refer to the
IzODA Installation and Customization Guide
##
When port-binding fails (due to, e.g., port already in
use), it will retry on sequential ports to a number of times
equal the value of spark.port.maxRetries (default: 16).
This value can be configured in spark-defaults.conf.
##
(The Shuffle Server port does not support port range retry.)
##
Considering this behavior, we recommend configuring
a PortRange to account for the retry behavior for
ports that support port range retry:
##
port_number - (port_number + spark.port.maxRetries)
###
PortGroup SparkClusterGrp_TP
{
 PortRangeRef SparkMaster_TP
}
PortRange SparkMaster_TP
{
 Port 7077-7093
}
###
##
KeyRing_TP defines the keyring that will be used during
Spark Trusted Partner authentication.
##
###
TTLSKeyRingParms KeyRing_TP
{
 Keyring SparkRingTP
}
###
##
SparkServer_TP and SparkClient_TP are the rules that work
together to encrypt the network traffic among the ports defined
in the SparkClusterGrp_TP section.
##
###

166 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

TTLSRule SparkServer_TP
{
 Direction Inbound
 LocalPortGroupRef SparkClusterGrp_TP
 TTLSGroupActionRef GroupAct_TTLS_On
 TTLSEnvironmentActionRef EnvAct_SparkServer_TP
}
TTLSRule SparkClient_TP
{
 Direction Outbound
 RemotePortGroupRef SparkClusterGrp_TP
 TTLSGroupActionRef GroupAct_TTLS_On
 TTLSEnvironmentActionRef EnvAct_SparkClient_TP
}
###
##
EnvAct_SparkServer_TP and EnvAct_SparkClient_TP
establish the environment for the connections that match the
corresponding TTLSRules, using the role and keyring specified.
##
###
TTLSEnvironmentAction EnvAct_SparkServer_TP
{
 HandshakeRole Server
 EnvironmentUserInstance 0
 TTLSKeyRingParmsRef KeyRing_TP
 TTLSEnvironmentAdvancedParmsRef EnvAdv_TLS_TP
}
TTLSEnvironmentAction EnvAct_SparkClient_TP
{
 HandshakeRole Client
 EnvironmentUserInstance 0
 TTLSKeyRingParms
 {
 Keyring *AUTH*/*
 }
 TTLSEnvironmentAdvancedParmsRef EnvAdv_TLS_TP
}
###
##
GroupAct_TTLS_On is the group action that enables TLS
security for connections utilizing it.
##
###
TTLSGroupAction GroupAct_TTLS_On
{
 TTLSEnabled On
}
###
##
EnvAdv_TLS_TP is an advanced environment parms object
enforcing the following conditions on the server:
- The server can only utilize TLSv1.2 when accepting
a connection.
##
###
TTLSEnvironmentAdvancedParms EnvAdv_TLS_TP
{
 TLSv1 Off
 TLSv1.1 Off
 TLSv1.2 On
}

Appendix B. Sample configuration and AT-TLS policy rules for z/OS Spark client authentication 167

168 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Appendix C. Sample z/OS IzODA Livy AT-TLS policy
rules

The following example shows the sample AT-TLS policies that you can use in you TCPIP_TTLS.policy
AT-TLS policy file for z/OS IzODA Livy. This is meant to be used in conjunction with sample AT-TLS policies
shown in Appendix B, “Sample configuration and AT-TLS policy rules for z/OS Spark client authentication,”
on page 163 when AT-TLS is used as the Spark client authentication method..

For more information about AT-TLS policies, see Chapter 8, “z/OS IzODA Livy Installation and
Customization,” on page 105. You can find detailed information about the syntax of each AT-TLS policy
statement in "AT-TLS policy statements" in z/OS Communications Server: IP Configuration Reference.

AT-TLS policies when AT-TLS is used as the Spark client authentication method
###
##
LivyServer_ATTLS is the port the Livy Server listens
on for connections from external clients. This port
supports AT-TLS security.
##
The Livy Server port does not support port range retry.
##
By default, livy-server binds to the port specified on
livy.server.port in $LIVY_CONF_DIR/livy.conf.
##
###
PortRange LivyServer_ATTLS
{
Port 8998
}
###
##
KeyRing_Livy defines the keyring that will be used during
Livy Server AT-TLS authentication.
##
###
TTLSKeyRingParms KeyRing_Livy
{
Keyring LivyRing
}
###
##
LivyServer_ATTLS and LivyClient_ATTLS are the rules that
encrypt network traffic going into and out of the Livy Server
port.
##
The LivyClient_ATTLS rule is necessary only if you are going
to submit jobs to the Livy Server from either the same LPAR or
the same Sysplex. It is not needed if you will be only using
external HTTP clients.
##
###
TTLSRule LivyServer_ATTLS
{
Direction Inbound
LocalPortRangeRef LivyServer_ATTLS
TTLSGroupActionRef GroupAct_TTLS_On
TTLSEnvironmentActionRef EnvAct_LivyServer_ATTLS
}
TTLSRule LivyClient_ATTLS
{
Direction Outbound
RemotePortRangeRef LivyServer_ATTLS
TTLSGroupActionRef GroupAct_TTLS_On
TTLSEnvironmentActionRef EnvAct_LivyClient_ATTLS
}
###
##
EnvAct_LivyServer_ATTLS and EnvAct_LivyClient_ATTLS
establish the environment for the connections that match the
corresponding TTLSRules, using the role and keyring specified.

© Copyright IBM Corp. 2016, 2021 169

##
Remove the EnvAct_LivyClient_ATTLS section if the corresponding
TTLSRule is not present.
##
###
TTLSEnvironmentAction EnvAct_LivyServer_ATTLS
{
HandshakeRole ServerWithClientAuth
EnvironmentUserInstance 0
TTLSKeyRingParmsRef KeyRing_Livy
TTLSEnvironmentAdvancedParmsRef EnvAdv_TLS
}
TTLSEnvironmentAction EnvAct_LivyClient_ATTLS
{
HandshakeRole Client
EnvironmentUserInstance 0
TTLSKeyRingParmsRef KeyRing_Livy
TTLSEnvironmentAdvancedParmsRef EnvAdv_TLS
}

170 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Appendix D. Memory and CPU configuration options
You can configure a variety of memory and CPU options within Apache Spark, IBM Java, and z/OS.

Apache Spark configuration options
There are two major categories of Apache Spark configuration options: Spark properties and environment
variables.

Spark properties control most application settings and can be configured separately for each application.
You can set these properties in the following ways, in order from highest to lowest precedence:

1. Directly on a SparkConf passed to your SparkContext
2. At run time, as command line options passed to spark-shell and spark-submit
3. In the spark-defaults.conf properties file

In addition, you can configure certain Spark settings through environment variables, which are read from
the $SPARK_CONF_DIR/spark-env.sh script.

Table 16 on page 171 through Table 19 on page 172 summarize some of the Spark properties and
environment variables that control memory and CPU usage by Spark applications.1,2

Table 16. Environment variables that control memory settings

Environment variable Default value Description

SPARK_WORKER_MEMORY Total memory on
host system minus 1
GB

Total amount of memory that a worker can give to
executors.

Note: This value should equal the product of
spark.executor.memory times the number of
executor instances.

SPARK_DAEMON_MEMORY 1 GB Amount of memory to allocate to the Spark master and
worker daemons.

Table 17. Spark properties that control memory settings

Spark property Default value Description

spark.driver.memory 1 GB Amount of memory to use for the driver process (that
is, where SparkContext is initialized).

Note: In client mode, this property must not be set
through the SparkConf directly in your application.
Instead, set this through the --driver-memory
command line option or in your default properties file.

spark.driver.maxResultSi
ze

1 GB Limit of the total size of serialized results of all
partitions for each Spark action (for instance, collect).

Note: Jobs will fail if the size of the results is
above this limit. Having a high limit may cause out-of-
memory errors in the driver.

1 http://spark.apache.org/docs/2.4.8/configuration.html
2 http://spark.apache.org/docs/2.4.8/spark-standalone.html

© Copyright IBM Corp. 2016, 2021 171

http://spark.apache.org/docs/2.4.8/configuration.html
http://spark.apache.org/docs/2.4.8/spark-standalone.html

Table 17. Spark properties that control memory settings (continued)

Spark property Default value Description

spark.executor.memory 1 GB Amount of memory to use per executor process.

Note: This sets the heap size of the executor JVM.

spark.memory.fraction 0.6 Fraction of (heap space - 300 MB) used for execution
and storage. The lower this value is, the more
frequently spills and cached data eviction occur. The
purpose of this property is to set aside memory for
internal metadata, user data structures, and imprecise
size estimation in case of sparse, unusually large
records.

spark.memory.storageFrac
tion

0.5 Amount of storage memory that is immune to eviction,
expressed as a fraction of the size of the region set
aside by spark.memory.fraction. The higher this
value is, the less working memory may be available to
execution and tasks may spill to disk more often.

spark.memory.offHeap.ena
bled

false If set to true, Spark attempts to use off-heap memory
for certain operations. If off-heap memory use is
enabled, spark.memory.offHeap.size must be
positive.

spark.memory.offHeap.siz
e

0 The absolute amount of memory, in bytes, that can
be used for off-heap allocation. This setting has no
impact on heap memory usage, so if your executors'
total memory consumption must fit within some
hard limit, be sure to shrink the JVM heap size
accordingly. This must be set to a positive value when
spark.memory.offHeap.enabled is set to true.

Table 18. Environment variables that control CPU settings

Environment variable Default value Description

SPARK_WORKER_CORES All cores on host
system

Number of cores to use for all executors.

Note: This value should equal the product of
spark.executor.cores times the number of
executor instances.

Table 19. Spark properties that control CPU settings

Spark property Default value Description

spark.deploy.defaultCore
s

Infinite Default number of cores to give to applications if they
do not set a spark.cores.max value.

spark.cores.max (Not set) Maximum number of cores to give to an application
across the entire cluster. If not set, the default is the
spark.deploy.defaultCores value.

spark.driver.cores 1 Number of cores to use for the driver process, only in
cluster mode.

172 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Table 19. Spark properties that control CPU settings (continued)

Spark property Default value Description

spark.executor.cores All cores on host
system

Number of cores to use on each executor. Setting
this parameter allows an application to run multiple
executors, provided that there are enough cores on the
worker (SPARK_WORKER_CORES); otherwise, only one
executor per application runs on each worker.

Table 20. Spark properties that affect application and cluster parallelism

Spark property Default value Description

spark.zos.master.app.alw
aysScheduleApps

false Use this property to enable the Spark Master to
start applications, even when the current applications
appear to be using all the CPU and memory. This
enables the system to start and then manage the
resources across the applications, according to the
WLM policy.

spark.zos.maxApplication
s

5 When
spark.zos.master.app.alwaysScheduleApps is
set to true, specifies the maximum number of
applications that can be scheduled to run concurrently.
This value should be set based on resources available
according to the current WLM policy.

spark.dynamicAllocation.
enabled

false Specifies the Spark Master can request that the
Spark Worker add or remove executors based on the
workload and available resources.

spark.shuffle.service.en
abled

false Specifies that the worker should start
the Spark Shuffle service, which allows
executors to transfer (shuffle) data across
executors, as needed. This is required when
spark.dynamicAllocation.enabled is true.

For more information about the Apache Spark configuration options, see http://spark.apache.org/docs/
2.4.8/configuration.html. For more information about tuning the Apache Spark cluster, see http://
spark.apache.org/docs/2.4.8/tuning.html.

IBM Java configuration options
In addition to the Apache Spark settings, you can use IBM JVM runtime options to manage resources
used by Apache Spark applications.

You can set the IBM JVM runtime options in the following places:
IBM_JAVA_OPTIONS

Use this environment variable to set generic JVM options.
SPARK_DAEMON_JAVA_OPTS

Use this environment variable to set additional JVM options for the Apache Spark master and worker
daemons.

spark.driver.extraJavaOptions
Use this Apache Spark property to set additional JVM options for the Apache Spark driver process.

spark.executor.extraJavaOptions
Use this Apache Spark property to set additional JVM options for the Apache Spark executor process.
You cannot use this option to set Spark properties or heap sizes.

Appendix D. Memory and CPU configuration options 173

http://spark.apache.org/docs/2.4.8/configuration.html
http://spark.apache.org/docs/2.4.8/configuration.html
http://spark.apache.org/docs/2.4.8/tuning.html
http://spark.apache.org/docs/2.4.8/tuning.html

Table 21 on page 174 summarizes some of the IBM JVM runtime options that control resource usage.

Table 21. IBM JVM runtime options that control resource usage

Option Default value Description

-Xmx Half of the available memory,
with a minimum of 16 MB and
a maximum of 512 MB

Maximum heap size.

Note: Set Spark JVM heap sizes via Spark properties
(such as spark.executor.memory), not via Java
options.

-Xms 4 MB Initial heap size.

-Xss 1024 KB Maximum stack size.

-Xcompressdrefs Enabled by default when the
value of the -Xmx option is less
than or equal to 57 GB

Enables the use of compressed references.

-Xlp 1M pageable pages, when
available, are the default size
for the object heap and the
code cache. If -Xlp is specified
without a size, 1M non-pageable
is the default for the object
heap.

Requests that the JVM allocate the Java object heap
using large page sizes (1M or 2G). Instead of -Xlp, you
can use -Xlp:codecache and -Xlp:objectcache
to set the JIT code cache and object heap separately.

Note: There is a limit to the number of large pages that
are available on a z/OS system. Consult your system
administrator before changing this setting.

-Xmn (Not set) Sets the initial and maximum size of the new
area to the specified value when using the
-Xgcpolicy:gencon option.

For more information about IBM Java on z/OS, see IBM SDK, Java Technology Edition z/OS User Guide
(www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/pdf/en/sdkandruntimeguide.zos.80_8.0.pdf).

z/OS configuration parameters
The z/OS operating system provides additional configuration options that allow the system administrator
to ensure that no workloads use more resources than they are allowed. Be sure that any application-level
configuration does not conflict with the z/OS system settings. For example, the executor JVM will not
start if you set spark.executor.memory=4G but the MEMLIMIT parameter for the user ID that runs the
executor is set to 2G.

Typically, you can modify these settings in the following ways (in order from highest to lowest
precedence):

1. Use the ALTUSER RACF command to modify the resource settings in the OMVS segment of the security
profile for the user ID under which Apache Spark runs.

2. Use the IEFUSI exit, which receives control before each job step starts.
3. Set the system-wide defaults in the appropriate SYS1.PARMLIB member.

Table 22 on page 175 summarizes some of the z/OS configuration options that might be relevant to your
Open Data Analytics for z/OS environment.

174 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/pdf/en/sdkandruntimeguide.zos.80_8.0.pdf
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/pdf/en/sdkandruntimeguide.zos.80_8.0.pdf

Table 22. IBM z/OS configuration parameters

Parameter Default value Description Where to set

MEMLIMIT 2 GB Amount of virtual storage above the
bar that an address space is allowed
to use.

Note: Set the MEMLIMIT for the
Spark user ID to the largest JVM heap
size (executor memory size) plus the
amount of native memory that Spark
processing might require (typically, at
least 2 GB).

• MEMLIMIT parameter in the
SMFPRMxx parmlib member
(sets the system-wide default)

• MEMLIMIT parameter on JCL
JOB or EXEC statements

• IEFUSI exit
• MEMLIMIT variable in

the OMVS security profile
segment

MAXMMAPAREA 40960 Maximum amount of data space
storage, in pages, that can be
allocated for memory mapping of
z/OS UNIX files.

• MAXMMAPAREA parameter
in the BPXPRMxx parmlib
member (sets the system-
wide default)

• MMAPAREAMAX variable in
the OMVS security profile
segment

MAXASSIZE 200 MB Maximum address space size for a
new process.

Note: The JVM will fail to start if
the MAXASSIZE for the Spark user
ID is too small. The recommended
minimum for Java is 2,147,483,647
bytes.

• MAXASSIZE parameter in the
BPXPRMxx parmlib member
(sets the system-wide default)

• IEFUSI exit
• ASSIZEMAX variable in

the OMVS security profile
segment

MAXCPUTIME 1000 Maximum CPU time, in seconds, that
a process can use.

• MAXCPUTIME parameter in
the BPXPRMxx parmlib
member (sets the system-
wide default)

• CPUTIMEMAX variable in
the OMVS security profile
segment

MAXPROCESSOR 25 Maximum number of concurrently
active processes for a single z/OS
UNIX user ID.

• MAXPROCUSER parameter
in the BPXPRMxx parmlib
member (sets the system-
wide default)

• PROCUSERMAX variable in
the OMVS security profile
segment

For more information about z/OS parmlib members, see z/OS MVS Initialization and Tuning Reference.

Appendix D. Memory and CPU configuration options 175

176 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Appendix E. Spark properties specific to the z/OS
environment

Table 23 on page 177 lists the Spark properties that are specific to Spark running on z/OS systems as part
of IBM Open Data Analytics for z/OS.

You set these properties in the spark-defaults.conf file.

Table 23. Spark properties specific to the z/OS environment

Spark property Default value Description

spark.zos.master.authenticat
e

true Specifies whether Spark authenticates connections
to the Spark master port. The authentication
method that is used is indicated by
spark.zos.master.authenticate.method.

spark.zos.master.authenticat
e.method

ATTLS Specifies the method that Spark is to use to
authenticate connections to the Spark master port.

The value, ATTLS, requires AT-TLS
with client authentication. The value,
TrustedPartner, requires that all connections
are internal. This property is ignored if
spark.zos.master.authenticate=false is
specified.

spark.zos.cluster.instanceNu
mber

Specifies the instance number of the Spark cluster.

spark.zos.driver.jobname.pre
fix

ODASD Specifies the job name prefix for drivers in cluster
deploy mode. The suffix will be as many digits of the
corresponding driver instance number as can fit to
form an 8-character job name, starting from the last
(rightmost) character of the driver instance number.

For example, if you specify
spark.zos.driver.jobname.prefix=SPARKD,
the job name of the driver with a driver instance
number of 0001 will be SPARKD01.

The spark-defaults.conf file
contains a default setting of
spark.zos.driver.jobname.prefix=ODASD.
Note that this job name prefix applies only to drivers
in cluster deploy mode. For client deploy mode, you
can continue to use the _BPX_JOBNAME environment
variable to set the job name of the driver.

© Copyright IBM Corp. 2016, 2021 177

Table 23. Spark properties specific to the z/OS environment (continued)

Spark property Default value Description

spark.zos.driver.jobname.tem
plate

Specifies the job name template for drivers in cluster
deploy mode. The template property provides further
customization when you are generating job names for
the driver. The template uses variables that can be
substituted for several pieces of information about the
work that the driver is running. These variables include
cluster and driver.

For example, ODA<cluster:1><driver:2> where
cluster number is 6 and driver number is 0312, would
yield ODA612.

spark.zos.executor.jobname.p
refix

ODASX Specifies the job name prefix for executors. The suffix
will be as many digits of the corresponding application
instance number as can fit to form an 8-character job
name, starting from the last (rightmost) character of
the application instance number. All executors for the
same application will have the same job name.

For example, if you specify
spark.zos.executor.jobname.prefix=SPARKX,
the job names of the executors for application instance
number 0001 will be SPARKX01.

The spark-defaults.conf file
contains a default setting of
spark.zos.executor.jobname.prefix=ODASX.
If no executor prefix is specified in spark-
defaults.conf, the executor job names follow the
z/OS UNIX default (user ID with a numeric suffix).

spark.zos.executor.jobname.t
emplate

Specifies the job name template for executors. The
template property provides further customization
when you are generating job names for executors. The
template uses variables that can be substituted for
several pieces of information about the work that the
executor is running. These variables include cluster,
application, and executor.

For example,
ODA<cluster:1><application:2><executor:2>
where cluster number is 2, application number is
0312, and executor is 0000, would yield ODA21200.

178 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Table 23. Spark properties specific to the z/OS environment (continued)

Spark property Default value Description

spark.zos.environment.verify true Specifies whether Spark should perform environment
verification during master and worker daemon
initialization. If enabled, Spark verifies that the
daemons have the proper authority to perform the
necessary functions. The daemons are terminated if
they fail the verification. The results of the verification
can be found in the daemon logs.

This property requires the Spark cluster user
ID to have READ access to the BPX.SERVER
FACILITY class profile, unless client authentication
is not enabled (spark.zos.master.authenticate
is false). The configuration instructions for client
authentication describe this in detail.

spark.python.daemon.port Specifies the port for the PySpark daemon to listen
on. This property is only applicable if you are
using PySpark. The value must be between 1024
- 65535 (inclusive), or 0 to specify a random
port. The number of retries is determined by
spark.port.maxRetries. For Spark 2.2.0, APAR
PI98042 is required to use this property.

spark.zos.master.app.alwaysS
cheduleApps

False Specifies whether Spark should start applications
when resources such as CPU and memory appear to
be all in use. This enables the system to manage the
applications according to the policies established by
WLM.

spark.zos.maxApplications 5 When
spark.zos.master.app.alwaysScheduleApps is
set to true, specifies the maximum number of
applications that can be scheduled to run concurrently.
This value should be set based on resources available
according to the current WLM policy.

Appendix E. Spark properties specific to the z/OS environment 179

180 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Appendix F. Data sets
The following table lists the data sets that installation member INSTPAC creates.

The installation data sets have the format hlq.data_set_name_suffix, where hlq is the high level qualifier
and data_set_name_suffix is as listed in the table.

Any data set prefixed with the subsystem ID (SSID) is a data set created during post-installation to allow
user modification. These post-installation data sets have the format hlq.SSID.data_set_name_suffix.

Table 24. Data sets created by INSTPAC

Data set name
suffix

SMP/E data
type

SMP/E data
definition

Data set
organi-
zation

Record
format

Logical
record
length

Block
size

tracks

AAZKCNTL USER2 ASDBCNTL PO-E FB 80 32720 180

AAZKDBRM USER1 ASDBDBRM PO-E FB 80 32720 300

AAZKEXEC EXEC ASDBEXEC PO-E FB 80 32720 450

AAZKHTML TEXT ASDBHTML PO-E VB 32765 32760 15

AAZKHTX PRODXML ASDBHTX PO-E VB 19036 19040 15

AAZKJLOD PROGRAM ASDBJLOD PO-E U 0 6000 15

AAZKLIST UTOUT ASDBLIST PO-E FBA 133 32718 45

AAZKMAP DATA ASDBMAP PO-E FB 1024 31744 15

AAZKMLIB MSG ASDBMLIB PO-E FB 80 32720 15

AAZKMOD MOD ASDBMOD PO-E U 0 6144 1800

AAZKOBJ USER3 ASDBOBJ PO-E FB 80 32720 1275

AAZKPLIB PNL ASDBPLIB PO-E FB 80 32720 105

AAZKRPC PROGRAM ASDBRPC PO-E U 0 6000 750

AAZKSAMP SAMP ASDBSAMP PO-E FB 80 32720 270

AAZKSLIB SKL ASDBSLIB PO-E FB 80 32720 15

AAZKSWI DATA ASDBSWI PO-E FB 80 32720 30

AAZKTLIB TBL ASDBTLIB PO-E FB 80 32720 15

AAZKXATH EXEC ASDBXATH PO-E FB 80 32720 15

AAZKXCMD EXEC ASDBXCMD PO-E FB 80 32720 15

AAZKXEXC EXEC ASDBXEXC PO-E FB 80 32720 15

AAZKXGLV EXEC ASDBXGLV PO-E FB 80 32720 15

AAZKXPUB EXEC ASDBXPUB PO-E FB 80 32720 15

AAZKXRPC EXEC ASDBXRPC PO-E FB 80 32720 15

AAZKXSQL EXEC ASDBXSQL PO-E FB 80 32720 15

AAZKXTOD EXEC ASDBXTOD PO-E FB 80 32720 15

AAZKXVTB EXEC ADVSXVTB PO-E FB 80 32720 15

© Copyright IBM Corp. 2016, 2021 181

Table 24. Data sets created by INSTPAC (continued)

Data set name
suffix

SMP/E data
type

SMP/E data
definition

Data set
organi-
zation

Record
format

Logical
record
length

Block
size

tracks

SAZKXATH EXEC SSDBXATH PO-E FB 80 32720 15

SAZKCLOD MOD SSDBCLOD PO-E U 0 6000 270

SAZKXCMD EXEC SSDBXCMD PO-E FB 80 32720 15

SAZKCNTL USER2 SDBCNTL PO-E FB 80 32720 180

SAZKDBRM USER1 SSDBDBRMX PO-E FB 80 32720 15

SAZKEXEC EXEC SSDBXEXC PO-E FB 80 32720 15

SAZKEXEC EXEC SSDBEXEC PO-E FB 80 32720 450

SAZKXGLV EXEC SSDBXGLV PO-E FB 80 3 2720 15

SAZKHTML TEXT SSDBHTML PO-E VB 32756 32760 15

SAZKHTX PRODXML SSDBHTX PO-E VB 19036 19040 15

SAZKINST SMP/E does not
maintain this
data set.

PO-E FB 80 32720 18

SAZKJLOD PROGRAM SSDBJLOD PO-E U 0 6000 15

SAZKLIST UTOUT SSDBLIST PO-E FBA 133 32718 45

SAZKLOAD MOD SSDBLOAD PO U 0 6000 4500

SAZKMAP DATA SSDBMAP PO-E FB 1024 31744 15

SAZKOBJ USER3 SSDBOBJ PO-E FB 80 32720 1125

SAZKXPUB EXEC SSDBXPUB PO-E FB 80 32720 15

SAZKXRPC EXEC SSDBXRPC PO-E FB 80 32720 15

SAZKRPC PROGRAM SSDBRPC PO-E U 0 6000 375

SAZKSAMP SAMP SSDBSAMP PO-E FB 80 32720 300

SAZKMDL1 SMP/E does not
maintain this
data set.

SDBLMOD PO-E U 0 6000 18

SAZKMDL2 SMP/E does not
maintain this
data set.

SDBLMOD2 PO-E U 0 6000 18

SAZKMENU MSG SHDWMLIB PO-E FB 80 32720 15

SAZKPENU PNL SHDWPLIB PO-E FB 80 32720 210

SAZKSLIB SKL SHDWSLIB PO-E FB 80 32720 15

SAZKTENU TBL SHDWTLIB PO-E FB 80 32720 15

SAZKXSQL EXEC SSDBXSQL PO-E FB 80 32720 15

SAZKXWWW DATA SSDBSWI PO-E FB 80 32720 30

182 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Table 24. Data sets created by INSTPAC (continued)

Data set name
suffix

SMP/E data
type

SMP/E data
definition

Data set
organi-
zation

Record
format

Logical
record
length

Block
size

tracks

SWI.OBJ1 SMP/E does not
maintain this
data set.

PO-E VB 4092 12288 30

SAZKXTOD EXEC SSDBXTOD PO-E FB 80 32720 15

Note: SMP/E does not maintain this data set.

Appendix F. Data sets 183

184 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Appendix G. Restrictions

The following restrictions currently exist for IBM Open Data Analytics for z/OS Version 1.1.0:

• The R programming language is not supported.
• Hive on Spark is not supported.
• Running Spark on YARN or Mesos is not supported.
• Apache Thrift server is not supported.
• The use of multiple workers is not supported.
• Mixed-endian environments in client deploy mode are not supported.

© Copyright IBM Corp. 2016, 2021 185

186 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Appendix H. Apache Spark in a mixed-endian
environment

IBM Open Data Analytics for z/OS uses Apache Spark 3.2.0 which does not support mixed-endian
environments in client deploy mode.

A mixed-endian environment exists if part of your Apache Spark setup, typically the worker, runs on
an IBM Z platform (big-endian), and another part, typically the driver, runs on a different platform
(little-endian). The Spark driver is the process that hosts your Spark application, and it can run as
an independent process or inside a third-party product, such as Scala Workbench (including Jupyter
Notebook) or Spark Job Server. However, there are third-party solutions that address this problem and
allow Spark applications to run in a mixed-endian environment. See the following alternatives for more
details.

If you currently run Apache Spark in a mixed-endian environment and deploy the driver in client mode,
consider using one of the following alternatives:

• Deploy the driver in cluster mode. A cluster-mode deployment launches the driver inside the Spark
cluster. The default for Apache Spark 3.2.0 is client mode, which launches the driver outside the cluster.
Note that Scala Workbench does not support cluster-mode deployment.

For more information about cluster deploy mode, see .
• Consider migrating to a solution that supports Spark in a mixed-endian environment. For instance,

Jupyter Notebook Extension to Kernel Gateway (NB2KG) running on an x86 platform can connect to
Apache Spark on z/OS through the Jupyter Kernel Gateway to Apache Toree on z/OS (KG2ATz).

• If you use a third-party products to host your Spark driver and the product runs on the Linux® platform,
consider migrating it to a Linux on z Systems® platform.

• Start your application from a z/OS system, as follows:

1. Assemble application and package dependencies into a self-contained JAR file using a build
management tool, such as SBT or Apache Maven. For more information about self-contained
applications, see Quick Start: Self-Contained Applications (spark.apache.org/docs/latest/quick-
start.html#self-contained-applications).

2. Transfer the JAR file to the z/OS UNIX System Services (z/OS UNIX) environment on which your
Apache Spark cluster resides, if it is not already there. For information about transferring files to
the z/OS UNIX environment, see "File transfer directly to or from z/OS UNIX" in z/OS UNIX System
Services User's Guide.

3. Perform spark-submit from the z/OS system on which your Apache Spark cluster resides in one of
the following ways:

– Remotely connect to the z/OS UNIX environment and run the spark-submit script from a z/OS
UNIX interface, such as the standard shell or the ISPF interface.

– Use FTP or Java to submit a batch job that invokes the spark-submit script.

- For information about submitting a job via FTP, see "Interfacing with JES" in z/OS
Communications Server: IP User's Guide and Commands.

- For information about submitting a job via Java, see Submit batch jobs from Java on z/OS
(https://www.ibm.com/developerworks/systems/library/es-batch-zos.html).

© Copyright IBM Corp. 2016, 2021 187

http://spark.apache.org/docs/latest/quick-start.html#self-contained-applications
http://spark.apache.org/docs/latest/quick-start.html#self-contained-applications
https://www.ibm.com/developerworks/systems/library/es-batch-zos.html
https://www.ibm.com/developerworks/systems/library/es-batch-zos.html

188 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Accessibility

The publications for IBM Open Data Analytics for z/OS are available in IBM Knowledge Center and Adobe
Portable Document Format (PDF) and comply with accessibility standards. If you experience difficulties
when you use any of the information, notify IBM through one of the comment methods described in “How
to send your comments to IBM” on page xiii.

© Copyright IBM Corp. 2016, 2021 189

190 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

Notices

This information was developed for products and services offered in the U.S.A. or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

© Copyright IBM Corp. 2016, 2021 191

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not
be liable for any damages arising out of your use of the sample programs.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" (www.ibm.com/legal/copytrade.shtml).

Rocket is a registered trademark of Rocket Software, Inc.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle, its
affiliates, or both.

UNIX is a registered trademark of The Open Group in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

192 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Index

A
accessibility

contact IBM 189
ACF2 87
Anaconda 97
Apache Spark

configuring directory structure for 32
configuring memory and CPU options for 65
configuring workload management (WLM) for 73
in mixed-endian environments 187
migrating to 159
sample configuration files 163

APF (Authorized Program Facility)
LOAD library 88

AT-TLS policy
sample for z/OS IzODA Livy
169

authentication, configuring 41
automation

starting started tasks 64
AZKDFDIV member 86
AZKSIN00 member 89

B
bash, level 26

C
certificates, configuring 43
checklist, customization 85
client authentication, configuring 41
code page 88
commands for monitoring workload 149
configuration checker 118
configuration files

samples for Apache Spark
spark-defaults.conf 163
spark-env.sh 163, 164

configuration options, memory and CPU 171
configuring

APF-authorizing 88
ISPF client 91
security authorizations 87
server component 85
server file 89
Spark workflow 16
started task JCL 90
web interfaces 140
Workload Manager (WLM) 87

copying
target libraries 88

CPU configuration options 171
creating

SWIOBJ data set 86
system data sets 86

customization
started tasks 60
verification 117

customization checklist 85
customizing

additional authorities and permissions 53, 56
configuring Apache Spark directory structure

creating configuration directory 33
creating working directories 35
updating configuration files 34

configuring Apache Spark memory and CPU options 65
configuring certificates and key rings 43
configuring client authentication 41
configuring Java 57
configuring Policy Agent 46
configuring TCP/IP for AT-TLS 49
defining AT-TLS policy rules 49
defining security for Policy Agent 47
Policy Agent configuration files 48
setting up a user ID 28
starting Policy Agent 53
stopping Policy Agent 53
verifying env command path 32
verifying Java and bash 26
verifying z/OS UNIX 28

D
Data Service server

configuring 85
naming conventions 86
starting 90
stopping 90

Data Service Studio
download 95
installing 95

data sets
created by installation 181

Data Studio
verifying installation 96

DBCS 88
default subsystem name 89
delimited data, configuring 93
digital certificates 43
directory structure, configuring for Apache Spark 32
double-byte character set 88
Downloading

studio component 95

E
event log directory 142

F
feedback xiii

Index 193

G
generation data set, configuring access 91
Global Registry log stream, creating 89

H
history service 142

I
IBM Health Checker for z/OS 151
IBM Java, configuring 57
installation

data sets 181
installation user ID 5
planning checklist 6
planning for 5
required resources 6
required skills 5
requisite products 6
time requirements 5
verification 117

installing
JDBC Gateway 99
studio component 95

ISPF client 91

J
Java, level 26
JDBC Gateway

installing 99
starting the administrative console 102
starting the server 101

K
key rings 43

L
LOAD library 88
log files 143

M
memory and CPU options, configuring for Apache Spark 65
memory configuration options 171
mixed-endian environments 187
monitoring, resource, See resource monitoring

N
naming conventions

Data Service server 86
network ports 37, 63
networking

configuration 37, 63
Notices 191

P
performance, system 73
planning for installation

checklist 6
installation user ID 5
product overview 5
required resources 6
required skills 5
requisite products 6
time requirements 5

Policy Agent
starting 53

Policy Agent, configuration files 48
Policy Agent, configuring 46
Policy Agent, security for 47
ports, network 37, 63
preparation

customizing 15
product verification 123
PTF level, considerations for updating 159
Python 97

R
RACF 87
Resource Measurement Facility (RMF), z/OS 144
resource monitoring

history service 142
IBM Health Checker for z/OS 151
Spark log files 143
using z/OS RMF

Monitor III reports 144
Postprocessor 148

web interfaces 137
z/OS and z/OS UNIX commands
149

restrictions 185

S
securing

Spark web interfaces 141
security

configuring client authentication 41
security authorizations

ACF2 87
RACF 87
Top Secret Security 87

sending to IBM
reader comments xiii

server event facility (SEF)
configure delimited data 93
configure GDG access 91

server file 89
SMP/E 88
Spark properties, z/OS-specific 177
Spark workflow

upgrading 20, 22
started task JCL 90
started tasks

automation 64
customization 60

194 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

started tasks (continued)
set and export environment variables 62

summary of changes for IBM Open Data Analytics for z/OS
Installation and Customization Guide xv
system data sets

creating 86
system performance 73

T
target libraries 88
TCP/IP, configuring for AT-TLS 49
Top Secret Security 87

U
updating to latest PTF level, considerations 159
user interface (UI), web 137, 140
using

configuration checker 118
IzODA configuration checker 118

V
verification

configuration checker 118
customization 117
installation 117

verifying 121
verifying installation

Data Studio 96

W
web user interface (UI) 137, 140
workload management (WLM), configuring for Apache Spark
73
Workload Manager (WLM)

configuring 87
workloads 73

Z
z/OS commands for workload monitoring 149
z/OS IzODA Livy

sample AT-TLS policy
169

z/OS UNIX requirements 28

Index 195

196 Open Data Analytics for z/OS : IBM Open Data Analytics for z/OS V1.1.0 Installation and Customization
Guide

IBM®

SC27-9033-00

	Contents
	Figures
	Tables
	About this information
	How to send your comments to IBM
	If you have a technical problem

	Summary of changes for IBM Open Data Analytics for z/OS Installation and Customization Guide
	Part 1. Introduction
	Chapter 1. Introduction to IBM Open Data Analytics for z/OS
	Chapter 2. Planning for installation
	Planning considerations
	Product overview
	Skill requirements
	Time requirements

	Preinstallation considerations
	Installation user ID
	Requisite products
	Required resources

	Part 2. Installation
	Chapter 3. Installing IBM Open Data Analytics for z/OS

	Part 3. Customization
	Chapter 4. Customizing your environment for z/OS Spark
	Using the Spark configuration workflow
	Upgrading Spark configuration workflows
	Assigning an owner to new or changed steps

	Verifying the Java and bash environments
	Verifying configuration requirements for z/OS UNIX System Services
	Setting up a user ID for use with z/OS Spark
	Verifying the env command path
	Customizing the Apache Spark directory structure
	Creating the Apache Spark configuration directory
	Updating the Apache Spark configuration files
	Creating the Apache Spark working directories

	Configuring networking for Apache Spark
	Configuring z/OS Spark client authentication
	Creating and configuring digital certificates and key rings
	Configuring Policy Agent
	Defining security authorization for Policy Agent
	Creating the Policy Agent configuration files
	Configuring PROFILE.TCPIP for AT-TLS
	Defining the AT-TLS policy rules
	Starting and stopping Policy Agent
	Configuring additional authorities and permissions for the Spark cluster
	Restricting the ability to start or stop the Spark cluster
	Starting the Spark cluster

	Configuring IBM Java
	Creating jobs to start and stop Spark processes
	Setting up started tasks to start and stop Spark processes
	Procedures for each Spark cluster
	Define the routing of the log output
	Set and export common environment variables
	Define the RACF started profile for started tasks
	WLM configuration
	Stopping the started tasks
	Canceling the started tasks
	Automating the starting of tasks

	Configuring memory and CPU options
	Configuring z/OS workload management for Apache Spark
	Overview of Apache Spark Processes
	Assigning job names to Spark processes
	Setting the job name of the executors
	Using the spark.zos.executor.jobname.prefix
	Using the spark.zos.executor.jobname.template

	Setting the job name of the driver in cluster deploy mode
	Using the spark.zos.driver.jobname.prefix
	Using the spark.zos.driver.jobname.template
	Using _BPX_JOBNAME to assign job names to Spark processes
	Using _BPX_ACCT_DATA to assign accounting information to Spark processes

	Overview of WLM classification
	Defining WLM service classes for Spark
	Defining WLM report classes for Spark
	Defining WLM classification rules for Spark
	Other Apache Spark attributes
	Increasing parallelism attributes
	Scheduling multiple Apache Spark applications

	Chapter 5. Customizing the Data Service server
	Preparing to customize
	Required naming conventions
	Creating server data sets
	Defining security authorizations
	Configuring Workload Manager (WLM)
	APF-authorizing LOAD library data sets
	Copying target libraries
	Configuring support for code pages and DBCS
	Creating the Global Registry log stream
	Customizing the server initialization member
	Configuring the started task JCL
	Configuring the ISPF application
	Configuring generation data set retrieval
	Configuring delimited data support

	Chapter 6. Installing the Data Service Studio
	Verifying the studio installation
	Installing the JDBC driver
	Installing the Python dsdbc module

	Chapter 7. Installing the JDBC Gateway
	Starting the JDBC Gateway server
	Launching the JDBC Gateway administrative console

	Chapter 8. z/OS IzODA Livy Installation and Customization
	Customizing z/OS IzODA Livy
	Customizing user access for z/OS IzODA Livy

	Chapter 9. Customizing Anaconda

	Part 4. Verification
	Chapter 10. Verifying the IBM Open Data Analytics for z/OS customization
	Using the IBM Open Data Analytics for z/OS Spark Configuration Checker

	Chapter 11. Verifying the Data Service server installation
	Chapter 12. Verifying the IBM Open Data Analytics for z/OS product
	Chapter 13. Verifying the z/OS IzODA Livy installation

	Part 5. Resource monitoring
	Chapter 14. Resource monitoring for Apache Spark
	Spark web interfaces
	Configuring Spark web interfaces
	Securing Spark web interfaces
	Event log directory and file permissions
	Enabling the Spark history service
	Spark log files
	Using RMF to monitor Spark workload
	Interactive performance reports with Monitor III
	Long-term reporting with the Postprocessor

	Using z/OS and z/OS UNIX commands to monitor Spark workload
	Using IBM Health Checker for z/OS to monitor Spark workload

	Part 6. Troubleshooting
	Chapter 15. Troubleshooting issues with Apache Spark

	Appendix A. Migrating to a new version of Apache Spark
	Appendix B. Sample configuration and AT-TLS policy rules for z/OS Spark client authentication
	Appendix C. Sample z/OS IzODA Livy AT-TLS policy rules
	Appendix D. Memory and CPU configuration options
	Appendix E. Spark properties specific to the z/OS environment
	Appendix F. Data sets
	Appendix G. Restrictions
	Appendix H. Apache Spark in a mixed-endian environment
	Accessibility
	Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	P
	R
	S
	T
	U
	V
	W
	Z

