Real-time Analytics Query Performance with DB2 for z/OS

Terry Purcell
Mon, 24-Oct, 5:00 PM-5:45 PM
DN1700
Where does DB2 z fit in the analytics space?

Where does DB2z fit into the Analytics landscape?

Where should each analytics workload reside?

What are the design considerations with Analytics on DB2 for z/OS?

How do I position IDAA or Spark and native DB2 for z/OS?

How to achieve real-time analytics?
Analytics – The changing Landscape

Integrating history/archiving into DB2

Analytics focus in DB2 for z/OS

DB2 for z/OS Tuning Considerations for Analytics
BI/DW and Analytics Landscape with DB2 z

Many customers have “off-platform” BI/DW environments
– Moving DB2 z data regularly to these platforms
– It is estimated that there are “7 copies on average” of OLTP data on other platforms used for analytics or other purposes
 • www.redbooks.ibm.com
 • “Reducing Data Movement Costs in z Systems Environments”
 – Focused on benefit of IDAA in reduced data movements
 – Also applicable to DB2 for z/OS directly
Challenges of Typical ETL Processing with Moving Data

• Processing pattern
 • Move data from original data source(s) through ETL tools or custom transformation programs to target DW/DM
 • Typically, data is stored several times in intermittent staging areas

• Myth: main purpose to transform data (cleansing, merging etc)
• Reality: majority of the ETL processing is generating history after the fact
 • SLA of OLTP data generation workloads
 • Little communication between OLTP and DW teams

• Problems
 • Latency of data typically >1 day, not acceptable any longer
 • Amount of data ever increasing -> prolonging ETL window
Scope of analytics (types)

Excerpts - Blog post by Nin Lei (CTO, IBM Big Data & Analytics for zSystems hardware)

– Strategic analytics
 • Workloads consuming large amount of data, requiring a system architecture with massive parallelism.
 – Year-over-year or month-to-month sales analysis.
 – Data mining to explore how to categorize customers’ behaviors.
 – Fraud detection models to reduce losses.

– Tactical analytics (or in-transaction analytics)
 • More single-customer oriented and thus smaller/targeted data.
 – Identify items purchased by current customer in the past year to recommend the appropriate products for that customer.
 – A phone company call center rep wants to know the customers phone call patterns - to upsell the customer with a more profitable plan.
 – Fraud detection analysis of prior purchase history
Where does Strategic Analytics belong?

Strategic analytics (traditional BI/DW)
– The realm of “shared nothing” or highly parallelized architectures.
 • For DB2 for z/OS – IDAA is an excellent candidate to
 – Reduce data movement (latency) compared with other off-platform solutions
 – Benefit from zSystems quality of service
 • Native DB2 for z/OS requires targeted tuning and parallelism
 – Likely to discourage many customers due to skill/effort, and CPU cost

– IDAA has brought (strategic) analytics back to DB2 for z/OS
 • Accelerating DB2 queries
 • Allowing other data sources to be made accessible to DB2 applications
– Spark opens up new opportunities to the business/application developers
Where does Tactical Analytics belong?

Tactical analytics
 – “In-transaction Analytics”
 – Operational analytics

 – Basically - If the analytics is part of the transaction
 • Then analytics should be performed on or close to the operational data.

 – “Tuned” analytics on DB2 for z/OS can meet transactional concurrency needs
 • IDAA typically better with poorly indexed (tuned) workloads
What is your definition of Real-time Analytics?

Is the Analysis happening in real-time?
– Within the scope of a transaction, or point-of-sale.

Is the data current (the data is in real-time)?
– Or analysis of historical or near real-time data?

Moving data results in latency
– If you copy data from your OLTP system – its not real-time anymore
 • So only the OLTP system can be truly real-time

Not all applications require “real-time” data
– For example, real-time analysis of near real-time data (purchase history during a sale)
How this changes the Analytics Opportunity

Moving analytics to the location of the data, results in:

– Reduced latency required for Analysis of data
 • Real-time or near real-time
– Reduced security risk of multiple copies of enterprise data
– zSystems qualities of service for business critical analytics
– Ability to integrate analytics within the scope of a transaction

Hybrid Transaction Analytics Processing (HTAP) with zSystems

– DB2 for z/OS for OLTP and in-transaction analytics
 • And in-frequent strategic analytics
– IDAA for strategic analytics
 • And ability to converge other data sources into the accelerator (incl competitors DBMSs)
– Apache Spark on z/OS or zLinux
 • Application developer friendly framework for in-place analysis of (potentially) disparate data sources (DB2, IMS, VSAM)
Analytics – The changing Landscape

Integrating history/archiving into DB2

Analytics focus in DB2 for z/OS

DB2 for z/OS Tuning Considerations for Analytics
ETL Modernization – History Generation DB2 Temporal

• **DB2 10 delivered Temporal support**

• **Concept of period** (SYSTEM_TIME and BUSINESS_TIME periods)
 o Period is represented by a pair of datetime columns, one column stores start time, the other one stores end time
 o **SYSTEM_TIME period** captures DB2’s creation and deletion of records. DB2 SYSTEM_TIME versioning automatically keeps historical versions of records
 o **BUSINESS_TIME period** allows users to create their own valid period for a given record. Users maintain the valid times for a record.

• **DML syntax** allow query/update/delete data for periods of time
 o `SELECT ... FROM STT/BTT FOR SYSTEM_TIME AS OF exp/FROM exp1 TO exp2/BETWEEN exp1 AND exp2 ...;`
ETL Modernization - History Generation
DB2 System Temporal...

Current SQL Application

Audit History

Current

History Generation

Auditing SQL Application Using ASOF

Transparent/automatic Access to satisfy ASOF Queries

Jul 2008
Aug 2008
Sep 2008

Sep 2008
Aug 2008
Jul 2008
Temporal Auditing Support

- DB2 system versioning feature provides an auditing solution to track
 - WHEN the data is modified.

- To meet regulatory compliance requirements, it is quite common and mandatory to audit and track
 - WHO modified the data, and
 - WHAT action (SQL statement) caused the data modification.

- New syntax to define non-deterministic generated expression columns.

- ON DELETE ADD EXTRA ROW clause is also added
 - Intended to be used when the system-period temporal table contains a non-deterministic generated expression column.
ETL Modernization - History Generation
DB2 Archive Transparency

- Querying and managing tables that contain a large data is a common problem
 - Performance of maintaining large table is a key customer pain point

- One known solution is to archive inactive/cold data to a different environment
 - Challenges on the ease of use and performance:
 - How to provide easy access to both current and archived data within single query
 - How to make data archiving and access “transparent” with minimum application changes
DB2 11 Archive Transparency -- archive data
... from OLTP current table to DB2 archive table

```
SET SYSIBMADM.MOVE_TO_ARCHIVE = 'Y';
*** INSERT/UPDATE disabled ***
OR
SET SYSIBMADM.MOVE_TO_ARCHIVE = 'E';
*** INSERT/UPDATE enabled ***
DELETE FROM PROJECT_AET
WHERE STATUS = 'C' OR STATUS = 'F';
```

```sql
current data
```

```
Finished Project B
Finished Project D
```

```
archive data
```
What is DB2 Archive Transparency -- retrieve data ... from OLTP current table and DB2 archive table

PROJECT_AET

<table>
<thead>
<tr>
<th>ID</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>A</td>
</tr>
<tr>
<td>1003</td>
<td>A</td>
</tr>
<tr>
<td>1006</td>
<td>C</td>
</tr>
</tbody>
</table>

PROJECT_ARC

<table>
<thead>
<tr>
<th>ID</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1002</td>
<td>F</td>
</tr>
<tr>
<td>1004</td>
<td>C</td>
</tr>
<tr>
<td>1005</td>
<td>F</td>
</tr>
</tbody>
</table>

EMPLOYEE_AET

<table>
<thead>
<tr>
<th>EMPID</th>
<th>PROJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td>1001</td>
</tr>
<tr>
<td>A3</td>
<td>1005</td>
</tr>
<tr>
<td>E5</td>
<td>1003</td>
</tr>
<tr>
<td>E5</td>
<td>1006</td>
</tr>
</tbody>
</table>

EMPLOYEE_ARC

<table>
<thead>
<tr>
<th>EMPID</th>
<th>PROJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1002</td>
</tr>
<tr>
<td>C2</td>
<td>1005</td>
</tr>
</tbody>
</table>

UDF (proj_id) ... return (SELECT COUNT(*) FROM EMPLOYEE_AET WHERE PROJ = proj_id)

SELECT UDF (ID) AS EMP_COUNT, ID AS PROJ_ID FROM PROJECT_AET WHERE STATUS <> 'C';

SET SYSIBMADM.GET_ARCHIVE = 'Y';
*** employee & project ***
*** current & archive table ***

SET SYSIBMADM.GET_ARCHIVE = 'N';
*** employee & project ***
*** current table only ***
History Generation in DB2 for z/OS

Goal is to integrate history generation into the operational system
– With minimal impact to the Operational System
 • Assuming history data is not retrieved within that OLTP system
 • Potentially improve OLTP performance by moving data out of “active” tables

– System/business Temporal, Temporal auditing, and Transparent archive
 • Each solving a complementary business problem

• IDAA also has tight integration with each history generation solution, including
 – High Performance Storage Saver (empty partition in DB2, partition exists in IDAA)
 – Accelerator Only Tables (AoTs – Proxy table in DB2, data only appears in IDAA)
Analytics – The changing Landscape

Integrating history/archiving into DB2

Analytics focus in DB2 for z/OS

DB2 for z/OS Tuning Considerations for Analytics
Analytics Queries on DB2z - What do they look like?

What are the attributes of an Analytics Query?
– Analytics queries often involve
 • More tables in a query – joins, subqueries, table expressions etc
 • More complex expressions (in WHERE clause or select list)
 • More rows being processed when compared with OLTP
 • More rows joined, sorted etc
 • Views that contain joins or UNION ALL
 – Views may contain more columns/tables than query requires

NOTE: Avoiding ETL results in transformations occurring within the SQL

Today’s OLTP workloads have similar complexity
– CICS/COBOL applications were written with efficiency as part of the design
– Today’s workloads are developed for speed of deployment, not performance
DB2 Analytics Enhancements

Recent DB2 releases have significant functional and performance focus on Analytics

- DB2 9 through 12
 - DB2 12 major focus due to HTAP and also new SAP analytics workloads

From DB2 9 thru 12 OLAP SQL function

- Rank/Dense rank/Row number
- Moving sum/average
- Grouping sets, ROLLUP/CUBE
- Median, Lag, Lead, Percentile
DB2 11 for z/OS Analytics Performance

DB2 11 Internal Workload measurements

* NOTE: IBM results were obtained in isolated testing for internal measurement purposes only
 * Customer results cannot be predicted due to variability of workloads
DB2 12 (High Level) Performance

Query focus based upon new(er) workloads

– Complex views or table UDFs
 • UNION ALL
 • Outer joins
 • Join predicates with (stage 2) expressions
 • CASE expressions, CAST functions, scalar functions

– Query - General Bottlenecks
 • Sort/workfile reductions
 • Reducing prepare cost and frequency
 • I/O performance
 • Reduce unnecessary prefetch scheduling

– OLTP (engine) focus
 • Index tree traversal
 • Reduced getpage cost for pinned objects (PGSTEAL(NONE))
 • Reduced latch contentions, remove scalability limitations
DB2 12 for z/OS Analytics Performance

Initial performance measurements showing promising results
- 2-3 times acceleration for new analytics or poorly clustered workloads
- Up to 25% CPU saving for traditional query workloads
- Minor improvement for IDAA targeted (scan based) workloads

- NOTE: IBM results were obtained in isolated testing for internal measurement purposes only
 - Customer results cannot be predicted due to variability of workloads
Analytics – The changing Landscape

Integrating history/archiving into DB2

Analytics focus in DB2 for z/OS

DB2 for z/OS Tuning Considerations for Analytics
Tuning for Analytics on DB2 for z/OS

Strategic (traditional BI/DW) Analytics
– If near-real time is sufficient (as it generally is)
 • Perfect candidate for DB2 z with IDAA
– For real-time
 • DB2 z requires sufficient resources (CPU, memory, WF space/DASD)
 • Targeted tuning
 – Partitioning, clustering, indexing (out of scope for this presentation)
 – Potentially MQTs (although DB2 z does not support incremental update)

Tactical (transactional) Analytics
– Since analytics is against the scope of the transaction
 • Existing OLTP indexing may suffice
Tuning for Analytics on DB2 for z/OS

Many recent DB2 performance enhancements may require minimal degree of tuning to:
- Ensure optimal performance
- Minimize analytics impact on OLTP workloads

Some configuration discussed
- Sparse index
- DPSIs
- Parallelism
- Compression
- Sort/Workfile (incl RID overflow, DRDA impact)
- Optimizer statistics recommendations
IMDC/Sparse index – Performance considerations

DB2 11 provides simple accounting/statistics data for sparse index
- Sparse IX disabled – If > 0
 - Suggest reducing MXDTCACH or allocating more memory to the system
- Sparse IX built WF – If > 0
 - Increase MXDTCACH (if above counter is = 0) or reduce WF BP VPSEQT (if high sync I/O)

Memory considerations for sparse index
- Default DB2 setting for MXDTCACH is conservative
- Customers generally undersize WF BP (compared to data BPs)
 - And often set VPSEQT too high (close to 100) for sort BP

- If sync I/O seen in WF BP or PF requests & issues with PF engines
 - Consider increasing MXDTCACH given sufficient system memory
 - Consider increasing WF BP size and setting VPSEQT=90
Recent DPSI performance enhancements

A “partitioned” index means excellent utility performance
- But historically there was one sweet spot ONLY for DPSIs
 - When local predicates in the query could limit partitions to be accessed
- Outside of the DPSI sweet spot – performance often suffers compared with NPIs

DB2 11 improves join performance for DPSIs
- By page range screening for join predicates (when join by partitioning columns)
- By exploiting parallelism when partitioned by non-join columns
Parallelism to alleviate DPSI query performance

Outside of sweet spot(s) - Parallelism can improve DPSI performance
 – You must have fewer (larger) partitions – rather than many smaller partitions
 – Think 12 partitions or less – rather than 100s
 • Parallelism cannot save DPSI performance with 100s of partitions
 – Unless your CPU resources can support 100s of parallel degrees
 • This may seem counterintuitive for utility performance
 – Except……if larger/fewer parts mean DPSIs rather than NPIs – net is utility improvement
 • DPSI part-level join parallelism controlled by zparm PARAMDEG_DPSI
Parallelism considerations

Number of degrees
– Default PARAMDEG=0 which equals 2 * # of total CPs
 • Can be too high if few zIIPs
 • Conservative recommendation is 2 * # of zIIPs
 • Very conservative – set PARAMDEG=2 & PARA_EFF=100

Parallelism requires sufficient resources
– Specifically – zIIP processors
 • Since 80% of child tasks are zIIP eligible
 • Parallelism may increase CPU consumption up to 20%

– NOTE: DB2 12 increases parallel child task offload to 100%
DRDA performance implications

Isolation level has an impact on performance
- Default isolation level is CS(2).
 - Dynamic SQL's will use SYS*200 packages for default isolation level(CS).
 - Other isolations will use different packages (Eg:SYS*300 for RS)
 - In CLI, application can set isolation level using connection attribute, db2cli.ini or db2dsdriver.cfg file.

 - Best performance (of course) is ISOLATION UR

Disable default of CURSOR HOLD used by ODBC/JDBC
- As WITH HOLD disables DB2 in-memory sorts
- Can be changed by setting CURSORHOLD=0 in db2cli.ini file
Sort / Workfile Recommendations

In-memory (from V9 to 11) is avoided if CURSOR WITH HOLD
 – See previous slide

FETCH FIRST n ROWS
 – Recommended to use if less than FULL result set required
 • Better to tell DB2 you will only fetch a maximum of 500 rows
 – If FETCH FIRST value is < FULL result set
 • Will reduce sort workfile usage
Sort / Workfile Recommendations

Ensure adequate WF BP, VPSEQT & datasets

- Sort requirements can increase with Analytics
 - Goal is to minimize impact Analytics has on OLTP work
- Set VPSEQT=90 for sort (due to sparse index, tag sort and/or DGTTs)
 - Evaluate sync I/Os in WF BP
 - may indicate sparse index spilling to WF
 - Or, usage of tag sort (row length > 4k)

- Provide multiple physical workfiles placed on different DASD volumes
 - To avoid WF spacemap contention
 - Sort workfile placement example
 » 4-way Data Sharing Group
 » Assume 24 volumes are available
 » Each member should have 24 workfile tablespaces on separate volumes
 » All members should share all 24 volumes (i.e. 4 workfiles on each volume)
Sort and the VARCHAR curse

Benefit of VARCHAR is flexibility in column length

– Allowing ONLY the required length to be stored without the need to store trailing blanks
 • Saving space in indexes and data (without need for compression)

– For sort however, columns that are part of the sort key are padded to full length for the sort
 • Example where 100 bytes is stored in VARCHAR 128 vs 512 length

```sql
SELECT DISTINCT VARCHAR128COL FROM TABLE
vs
SELECT DISTINCT VARCHAR512COL FROM TABLE
```

Varchar 512 is 4 times the sort key size of 128
DB2 Optimizer and the Statistics Challenge

DB2 cost-based optimizer relies on statistics about tables & indexes
– Customers often gather only standard or default statistics
 • E.g. RUNSTATS TABLE(ALL) INDEX(ALL) KEYCARD

Queries would often perform better if DB2 optimizer could exploit more complete statistics
– What to collect?
 • May be less critical for simple OLTP queries
 • Becomes more important as statement complexity or number of objects increase
– DB2 11 added externalization of missing statistics by the optimizer
– DB2 12 completes the integration with statistics profile
Optimizer externalization of missing statistics

- **Bind**
- **Rebind**
- **Prepare**

Optimizer:

- **Optimize**
- **Statistics in Catalog Tables**
- **New in V11**
 - Missing stats?
 - Conflicting stats?
 - **Statsin**
 - **DSNZPARM - minutes**
 - In memory recommendations
- **Statistics Profiles**
 - **Added in V12**
 - **SYSSTATFEEDBACK**
 - Automatically used by **RUNSTATS USE PROFILE**
Notices and disclaimers

Copyright © 2016 by International Business Machines Corporation (IBM). No part of this document may be reproduced or transmitted in any form without written permission from IBM.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM.

Information in these presentations (including information relating to products that have not yet been announced by IBM) has been reviewed for accuracy as of the date of initial publication and could include unintentional technical or typographical errors. IBM shall have no responsibility to update this information. THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IN NO EVENT SHALL IBM BE LIABLE FOR ANY DAMAGE ARISING FROM THE USE OF THIS INFORMATION, INCLUDING BUT NOT LIMITED TO, LOSS OF DATA, BUSINESS INTERRUPTION, LOSS OF PROFIT OR LOSS OF OPPORTUNITY. IBM products and services are warranted according to the terms and conditions of the agreements under which they are provided.

IBM products are manufactured from new parts or new and used parts. In some cases, a product may not be new and may have been previously installed. Regardless, our warranty terms apply.

Any statements regarding IBM's future direction, intent or product plans are subject to change or withdrawal without notice.

Performance data contained herein was generally obtained in a controlled, isolated environments. Customer examples are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual performance, cost, savings or other results in other operating environments may vary.

References in this document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business.

Workshops, sessions and associated materials may have been prepared by independent session speakers, and do not necessarily reflect the views of IBM. All materials and discussions are provided for informational purposes only, and are neither intended to, nor shall constitute legal or other guidance or advice to any individual participant or their specific situation.

It is the customer’s responsibility to insure its own compliance with legal requirements and to obtain advice of competent legal counsel as to the identification and interpretation of any relevant laws and regulatory requirements that may affect the customer’s business and any actions the customer may need to take to comply with such laws. IBM does not provide legal advice or represent or warrant that its services or products will ensure that the customer is in compliance with any law.
Notices and disclaimers continued

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products. IBM does not warrant the quality of any third-party products, or the ability of any such third-party products to interoperate with IBM’s products. IBM EXPRESSLY DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents, copyrights, trademarks or other intellectual property right.

IBM, the IBM logo, ibm.com, Aspera®, Bluemix, Blueworks Live, CICS, Clearcase, Cognos®, DOORS®, Emptoris®, Enterprise Document Management System™, FASP®, FileNet®, Global Business Services®, Global Technology Services®, IBM ExperienceOne™, IBM SmartCloud®, IBM Social Business®, Information on Demand, ILOG, Maximo®, MQIntegrator®, MQSeries®, Netcool®, OMEGAMON, OpenPower, PureAnalytics™, PureApplication®, pureCluster™, PureCoverage®, PureData®, PureExperience®, PureFlex®, pureQuery®, pureScale®, PureSystems®, QRadar®, Rational®, Rhapsody®, Smarter Commerce®, SoDA, SPSS, Sterling Commerce®, StoredIQ, Tealeaf®, Tivoli®, Trusteer®, Unica®, urban(code)®, Watson, WebSphere®, Worklight®, X-Force® and System z® Z/OS, are trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at: www.ibm.com/legal/copytrade.shtml.
Thank You DN1700