
IBM Software

Thought Leadership White Paper

Systems and software development

A mobile application
development primer
A guide for enterprise teams working on mobile application projects

2 A mobile application development primer

Executive summary
Industries of all varieties have begun to realize that the target
audiences for their business applications have shifted in massive
numbers from the use of traditional personal computers, such as
desktops and laptops, to using mobile devices such as smart
phones and tablets for accessing the internet and for obtaining
the information they seek. This applies if the intended audience
for the application is a direct customer of the enterprise
(Business-to-Consumer apps, or “B2C”), or if the targeted user
is an employee or business partner (“B2E” and “B2B”, or
Business-to-Employee and Business-to-Business apps). Across
the globe, more people are now using mobile devices that they
can carry with them wherever they go, and which are more user-
friendly and intuitive to use, as their primary means of obtaining
information and requesting services over the internet.

This crucial shift in end user behavior has motivated enterprises
to develop mobile channels for their existing business applica-
tions, and to plan for new kinds of applications that can exploit
the unique characteristics of the mobile devices on the market.
As with all major evolutions in the information technology
industry, the first years of this shift have seen frantic activity to
meet demand and create market presence without considering
more strategic issues such as application development costs,
maintainability, quality and security. As the mobile application
market matures and the initial rush to market settles, these more
comprehensive software development issues are being brought
into focus by those in the enterprise responsible for longer-term
planning and economics.

IBM has established a reputation as a prudent and responsible
software development partner for enterprises in many industries.
A recent paper from IBM Global Services, titled “Establishing
an effective application strategy for your mobile enterprise,”1
provides a broad overview of IBM’s recommendations

for planning, developing, deploying and managing mobile appli-
cations. This paper covers one topic of that broader paper and
focuses on a comprehensive approach for development of mobile
business applications. The technique described combines best
practices for collaborative software lifecycle management with
newer requirements unique to the creation of mobile applica-
tions. The content of this paper is intended to provide value for
all of the roles involved in mobile enterprise business application
development projects: architects planning for mobile projects;
development teams making implementation decisions; project
managers establishing the details of the project activities; test
organizations addressing these new applications; and executives
that need an understanding of how these new mobile apps fit
with the existing enterprise applications and development
processes.

Unique challenges for mobile application
development
The creation of applications intended to execute on newer
mobile devices such as smart phones and tablets involves unique
requirements and challenges.

Form factors and user input technology
The first and most obvious unique aspect of mobile applications
is that the form factor for display and user interaction is signifi-
cantly different from prior forms of software. Smart phones
usually provide only a four-inch area in which to display the
application content and offer lower screen resolution pixel
density compared to personal computer (PC) displays, which are
trending toward greater display sizes and number of screen
pixels. Even tablet devices have generally lower display sizes
than PCs, especially when compared to the large f lat-screen
displays in use for newer desktop PCs.

IBM Software 3

A smaller form factor means that the amount of data displayed
to the end user, and layout of that data, needs to be different for
these applications than for apps expected to run on PC devices.
Significantly less data can be displayed at one time and therefore
it must be exactly the “right” data, most relevant to what the
user needs at that point in the application.

Another obvious physical difference for mobile applications
is that the mechanisms for user input are different. Mobile
devices have pioneered the use of non-keyboard “gestures” as an
effective and popular method of user input. Touch, swipe, and
pinch gestures must be planned for and supported in a satisfying
mobile application user experience. These tactile end user input
mechanisms have proven to be so popular that they are now
being retrofitted into traditional desktop PC systems such as the
Apple “Lion” OS X release and Windows 8 “Metro” OS. In
addition to tactile user input, mobile devices are a natural target
for voice-based user input. In fact, the traditional keyboard
typing form of user input is probably the least effective and
least popular mechanism for input delivery from mobile
application users.

Besides input directly from the end user, mobile devices have
the capability to receive input from other sources, such as geo-
location input from the GPS component of the device and
image information from the camera typically built into the
device. These unique forms of input must be considered during
mobile application design and development. They offer new and
valuable mechanisms to make mobile apps more powerful and
useful than applications with a more limited array of input
possibilities.

Usability and user interaction design
Several factors motivate the need for more attention to usability
and user interaction design for mobile applications. One is the
difference in form factors and user input methods. It is much

more difficult and time consuming to plan how to display only
the data that is precisely necessary than it is to simply display all
possible data and let the end users visually sift through it for
what they want. An analogy for the written word is that it is
harder to write a concise abstract than it is to write an entire
paper. The mobile app designer has to consider the screen real
estate. When an application needs to present a broader scope of
data, with multiple layers of detail, it is usually better to use a
progressive discovery approach that allows the user to “drill
down” into incrementally greater levels of detail that is focused
on fewer specific items.

The rich variety of input methods available on mobile devices
also is a motivation for early design work to identify and use
more efficient ways to deliver input data than the simple “just
type it in a form” design that is a default for traditional web
and PC applications. Extensive keyboard typing for mobile
apps must be avoided in order to reduce end user frustration,
particularly with drastically smaller touch keyboards and lack of
traditional typing feedback. Identifying non-keyboard ways in
which information can be gathered and delivered to the mobile
app is a significant design challenge.

There is yet another more subtle motivation for extra attention
to the design effort for mobile applications. The way in which
end users interact with mobile devices and the applications run-
ning on them is different from how they interact with stationary
PCs and even laptops. End users of a mobile device are typically
holding the device in their hand while also interacting with the
surrounding reality of their physical situation. These application
users typically cannot concentrate intently on the mobile app for
very long before they need to switch their attention to their
physical surroundings. The interaction model for users of
mobile apps is short, interrupted, and “bursty,” meaning that
they need to very quickly complete the application task before
switching attention.

4 A mobile application development primer

All of these factors drive the need for more investment in
user-centered design for mobile applications very early in the
development project. Ideally, these usability considerations and
design aspects should be codified in the requirements for the
mobile application and then linked to the later stage develop-
ment deliverables, along with the tests that validate that the user
interaction and “consumeability” of the app is as satisfying as
possible.

Choice of implementation technology
There is a spectrum of implementation choices for mobile
applications in the market. There is no one perfect answer for
the choice of implementation for a mobile application, and all
of the choices across the spectrum have their advantages and
disadvantages. Therefore, the challenge for mobile development
teams is to understand the trade-offs between the technologies
and make a choice based on the specific application require-
ments. The previously-referenced IBM Global Services paper
includes a concise description of the implementation choices,
along with a comparison table. This paper provides a few sup-
plemental considerations.

The choice of implementation technology for a mobile project
will have an impact on other decisions related to the application’s
development. It may limit the choices for development tools.
The implementation choice will likely have an impact on the
team roles and structure. It may have an impact on how the
application is tested and verified, and how it is distributed and
delivered to the end user. So, the choice of implementation
approach for a mobile application is a crucial, early-stage
decision to be made very carefully.

Native application implementation
A “native” implementation means that you are writing the appli-
cation using the programming language and programmatic
interfaces exposed by the mobile operating system of a specific

type of device. For example, a native implementation for an
iPhone will be written using the Objective-C language and the
iOS operating system Application Programming Interfaces
(APIs) that Apple supplies and supports.

Native application implementation has the advantage of offering
the highest fidelity with the mobile device. Since the APIs used
are at a low level and are specific to the device for which the
application is dedicated, the application can take full advantage
of every feature and service exposed by that device.

Native implementations of mobile apps are completely non-
portable to any other mobile operating system. A native Apple
iOS app must be totally rewritten if it is to run on an Android
device. That makes this choice a very costly way of implement-
ing a mobile business application.

Web applications
Newer smart phones and tablets come with advanced web
browsers pre-installed, and it is very feasible to implement a
mobile business application that is a standard web application,
plus special style sheets to accommodate the mobile form factor
and approximate the mobile device “look and feel.” Mobile
applications implemented using this approach support the widest
variety of mobile devices, since web browser support for
JavaScript and HTML5 is fairly consistent. There are several
commercial and open source libraries of Web 2.0 widgets that
help with this approach. The web programming model for
mobile application implementation also has an advantage for
enterprises that already have developers trained in the languages
and techniques for web application development.

The disadvantage of pure web application implementation is that
such apps have no access to functions and features that run
directly on the mobile device, such as the camera, contact list,

5IBM Software

and so forth. However, if your mobile application does not
depend on local services running on the device, the pure web
application approach could be sufficient. As the HTML5
specification matures and becomes more widely supported by
the mobile web browsers, many of the services local to the
mobile devices will become exposed for pure web applications
through that W3C programming standard.

Another consideration that differs between web applications and
native applications is the manner in which the application is
distributed and made available on the device. Native applications
must be downloaded and installed from some kind of “App
Store,” such as the publicly accessible Apple iTunes store or
Google’s Android Marketplace. The app store distribution
mechanism has the advantage of allowing the mobile app to
easily be located using search algorithms. Enterprises sometimes
appreciate the market visibility and end user feedback that
mobile app stores facilitate.

The downside of app stores, especially the public ones, is that
they sit directly between the enterprise and its intended target
audience. All mobile application updates must go through the
app store, and it can be difficult to remotely control and manage
the mobile app that has been delivered through app store mech-
anisms. Web applications aren’t distributed through an app store.
The end user simply enters the web address for the application
into the mobile web browser, and the application is delivered
over the Internet. Updating the mobile web application is as easy
as updating the server or servers that host the app. The next
time any user accesses the web site, the new version of the
mobile app is downloaded to the device.

Hybrid mobile application implementation
Hybrid mobile application implementation is a form of
compromise between pure native implementation and pure
web implementation.

You write the mobile apps using industry standard web program-
ming languages and techniques such as HTML5 and JavaScript.
But, you package the app into a natively installable format that is
distributed through the app store mechanism.

Hybrid apps are linked to additional native libraries that allow
the app to have access to native device features from the single
application code base. Because the bulk of a hybrid application is
implemented using technology not unique to any single device,
most of the code for the application is portable and reusable
across many different mobile operating systems. However, small
segments of native code also can be integrated with the hybrid
app. So the developer can decide how much of the application
implementation is a shared, common code base and how much is
device-specific customization.

You can also choose how much of the code to package as a
“native” installable app delivered through the app store and how
much to download over the network. The first elements of the
app to be displayed can be packaged for installation directly on
the device, so they load quickly when the user launches the app.
Other, more dynamic elements can be structured as web pages
that are managed on a server and always provide the latest ver-
sion of the application when accessed.

For the average mobile business application, many industry ana-
lysts have a strong conviction that the economics of code reuse
and f lexible application development will favor the compromise
hybrid approach over the long term.

Mobile application build and delivery
Because of the strong business motivations to deliver mobile
applications into the market quickly, mobile development proj-
ects typically have extremely aggressive time lines. Inception-
to-delivery periods of a few months are common. The pressure
to deliver mobile apps quickly results in the adoption of agile
development methods for most mobile projects.

6 A mobile application development primer

An important element in agile development practices is continu-
ous integration and builds. Application changes delivered by
developers need to be processed immediately for all of the
mobile operating systems on which the application is required to
execute. If the mobile application is a hybrid or native imple-
mentation, several different builds of the application need to be
triggered each time a change set for the application is delivered
by a developer. The build setup and configuration for each sup-
ported mobile environment will be different from the others,
and it is most likely that a small “farm” of build servers will need
to be provisioned and available to handle these builds of the
mobile application for multiple operating systems.

Testing
Another area where mobile application development poses a
huge challenge is testing. Testing for mobile applications repre-
sents a quantum leap in complexity and cost over more tradi-
tional applications. Unlike traditional PC and web applications,
the range of potentially supported mobile devices and release
levels is staggering. It is quite common to see test matrices for
mobile projects that contain hundreds, and even thousands, of
permutations of device, mobile OS level, network carrier, locale,
and device orientation combinations.

There are more variables thrown into the equation for mobile
testing that aren’t relevant for other kinds of software. The same
model of device may function in a subtly different way when
connected to a different carrier network. Also, the quality of the
network connection can have a profound impact on the behavior
of a mobile application. Even the movement of the mobile
device itself may be an important factor in the behavior of the
application since some applications specifically exploit device
movement.

The majority of mobile apps have a multi-tier architecture, with
the code running on the device itself the “front-end” client to
data, and services supplied by more traditional middle-tier and
data center “back-ends.” Effective and comprehensive testing of
mobile apps requires addressing all tiers of the application, not
only the code on the mobile device. The setup and availability of
test versions of the middle tier and back-end services can present
very large cost and complexity challenges for mobile applications
testing.

Many mobile projects start by using manual testing approaches.
This is the most obvious way to begin testing quickly. You would
have to buy all of the various mobile devices that you plan to
support with the app, and pay someone, or more likely a team of
people, to tediously go through a written script of instructions
describing the tests on every one of those devices for every build
of the application. Such manual testing is extremely expensive
and inefficient. Nevertheless, manual testing does serve an
important purpose by providing a mechanism for obtaining
crucial usability feedback for the app.

Instead of buying the real mobile devices, you could rely on
mobile device simulators and emulators for your testing. Using
this approach, a software program running on a desktop work-
station takes the place of a real device. The use of simulators and
emulators for mobile application testing can be valuable for tasks
such as developer unit testing. Some of the device emulators are
excellent, but some are not that good at replicating the real
device. Therefore, in either manual or automated testing, some
form of testing on the real mobile device is always essential.

There are mobile app testing solutions that rely on running an
agent program on the device that a test script can interact with
in an automated execution. This approach has the f lexibility of

7IBM Software

using either real physical devices or emulators for testing, with
the added efficiency of automation. However, the test organiza-
tion bears the costs of setting up the devices to be tested and
installing the test agent on them.

Another approach to address the mobile app testing challenge is
to make use of what can be called a “device cloud.” A cloud can
expose resources that are actually mobile devices instead of
general-purpose computers. Instead of “renting” a Linux virtual
machine for a few hours or days of testing, you can rent a spe-
cific model and release of a mobile device. This approach saves
the enterprise the costs of purchasing maybe hundreds of devices
and managing all of them for testing.

How is mobile development similar to
other software development?
Even though there are unique aspects to mobile application
development, many of the roles and tasks involved in the overall
development lifecycle are the same as for enterprise-class devel-
opment of other kinds of software. In the paper “Measuring
Agility and Architectural Integrity,”2 Walker Royce describes the
key techniques and practices for effectively delivering software
using agile and test-first principles. The software delivery prac-
tices in Walker’s paper are a perfect fit for mobile development
projects.

Full lifecycle for the project
The lifecycle of a software development project generally follows
a similar pattern, regardless of the type of software being cre-
ated. It starts with the business decision, based on some analysis,
to invest in the application. Requirements for the application are
captured and elaborated. These application requirements are
further decomposed into user stories and feature work items,
which are assembled into a plan of work for the iterations and
releases to be completed for delivery of the application. Team

members acting in various roles are assigned the work items and
use various tools to complete the work and deliver whatever that
work result consists of into the project. The resulting application
is tested and certified to deliver the requirements. The exact
process and lifecycle followed for software projects at a particular
company usually is tailored to that specific enterprise’s goals and
policies.

This lifecycle is the same for mobile applications. Mobile appli-
cation development is generally characterized by small teams,
use of existing infrastructure, and highly user-interactive applica-
tions. Agile methods and test-first principles are ideally suited
for such a scenario. Though the specific requirements for a
mobile app development are likely different from some other
software development, the tools and processes for gathering,
elaborating and communicating those requirements are the
same. The need to link the requirements to the code changes
that deliver the implementation of those requirements also is the
same for mobile applications as it is for other software. In other
words, the f low of the project and the need for integration and
traceability across the project is the same for mobile and other
software development projects.

Integration of multiple tools
There are very few, if any, software development projects that
can be delivered using one single development tool. Most
projects involve a wide range of tools from different vendors,
designed to meet the needs of a specific role or task in the
overall lifecycle of the project.

For example, an individual developer of code for a mobile
application may find that a simple code construction tool,
matched to the mobile platform on which the application is to
execute, will suffice for his or her needs. However, that tool is

8 A mobile application development primer

missing features that facilitate the collaboration and coordination
needed when an agile development team is involved in creating
the application.

By integrating the individual developer’s code construction tool
with a compatible collaborative team development platform,
agile teams can achieve improved efficiencies and quality.

Need for collaboration across the team
Mobile applications are typically created by a small team with
varying skills and expertise. A typical team may consist of a
couple of developers of the fundamental business logic and web
services, a couple of user interface (UI) developers, a user experi-
ence designer, a few testers, and a team leader or manager.

Given the typically aggressive time frames for delivering mobile
apps, even a small team must operate at peak efficiency. Any
delay due to misunderstanding or miscommunication between
team members can throw off the entire delivery schedule.

Mobile application projects supported across different mobile
operating systems require code sharing and reuse. One devel-
oper may specialize in Android and another in iOS skills. Clear
understanding of the work that team members are expected to
perform, and when they need to deliver it, is essential. Project
requirements, timelines, plans and so on are shared in that case
whereas only source code, tests, and builds may differ.

Integrated change management, software version control
All code changes associated with a particular work item need to
be tied together into a specific “change set,” or list of changed
source code files, that is delivered in one shot so that the full
code change can be tracked as a unit. Ideally, this process of
assembling a change set should be as unobtrusive and seamless as
possible, so it does not cause interruption of the developers’ con-
centration on the logic they are creating.

The processes for version control and merge/rollback also need
to be automatic and intuitive. Any time a developer has to switch
their working context in order to perform some kind of task, it
represents a point of interruption and a potential “speed bump”
in the development process.

Need for traceability across the project
The typical agile team approach to software development is to
define multiple short iterations in which a small set of applica-
tion enhancements are to be implemented and validated. A typi-
cal agile iteration is from two to four weeks long. The team
leader can work with the team to map work items from a back-
log list into the specific iterations and assign the work items to
individual developers.

As the developers pick up the work items and begin to make
progress on them, their effort needs to be automatically
recorded and made available to the team leader to track and
view. This makes the information about what has been com-
pleted, what is being worked on at the moment, and what is still
to be done, easy to track and view in a dashboard presentation.
Everyone on the team needs to be able to see how the iteration
is progressing and the status of the work items planned for that
iteration.

When the testers on the team start the functional testing of the
mobile application, they need to open work items in the shared
development project for defects uncovered during the course of
testing. If the test case that failed is linked to a particular change
set or feature item in the project plan, then the information
about the code that was changed, and is likely to be associated
with the test case failure, can automatically be entered into the
defect data. Furthermore, if the change set is linked to the origi-
nal requirement that motivated the code change, there is trace-
ability throughout the whole project lifecycle, from the original
requirement to the test case that verified that the requirement
was delivered in the application.

9IBM Software

This kind of “whole project view” and end-to-end traceability is
extremely important for any kind of software development proj-
ect, but especially relevant to mobile application development
teams working on tight schedules and employing agile develop-
ment methods. These kinds of lean development teams cannot
afford to spend time tracking down details about whether and
when a particular requirement was verified and delivered.

Choosing a mobile application
development solution
The IBM approach to mobile enterprise application develop-
ment combines years of experience in the field of general
enterprise software development processes with new tools and
techniques that are specific to mobile devices and their
underlying software foundations.

With extensive expertise in the design and deployment of
enterprise software across a wide array of industries, IBM offers
customized solutions for the development needs of mobile appli-
cation projects. IBM itself has gone through a transformation to
employ agile methods across thousands of projects involving tens
of thousands of developers.

Collaborative Lifecycle Management (CLM) for full project
visibility
Without integrations throughout the mobile application delivery
lifecycle, development teams are left to operate in silos. When
silos form, product delivery effectiveness suffers. In order to
deliver compelling mobile enterprise application solutions that
respond to changing market needs and standards, software
engineering teams must perform efficiently and manage all of
the lifecycle work products collaboratively.

The IBM Rational solution for mobile business application
development offers an integrated lifecycle management platform
that supports collaborative tasks and helps link the various

artifacts developed over the course of the product lifecycle. This
solution also enacts delivery workflows and provides task man-
agement capabilities to run the mobile application development
project effectively. It is augmented with integration of mobile-
specific capabilities in the phases of the project lifecycle where
such capabilities are needed.

Agile team collaborative development tools such as
IBM® Rational® Team Concert™ software enable the
definition of multiple short iterations within the overall project.
Work items can easily be moved from the project backlog to a
particular iteration plan.

As the developers edit files inside mobile application code
development tools integrated with the software version control
system, a change set is automatically updated and maintained.
The developers don’t have to do anything to produce the change
set other than edit the files they need to work on.

Change sets can be shared among members of the team before
being fully integrated with the main code stream. Therefore, a
change set created by the web service developer, altering the for-
mat of data supplied by the web service, can be shared with the
UI developer working on the logic that displays the new data,
without the rest of the team being affected. Once both UI code
changes and web service code changes are matching and deemed
ready, they can be integrated in one synchronized task into the
mainline code stream for the rest of the team to pick up and use.

IBM Mobile Enterprise strategy delivers a mobile application
runtime
The combination of a collaborative lifecycle management
platform integrated with code development tools specifically
targeted for mobile applications is an important component of
the IBM comprehensive mobile application solution. However,

10 A mobile application development primer

some of the challenges for enterprise-class mobile application
development cannot be addressed by development tools and
practices. In order to deliver the capability for a single, common
mobile application programming model, we offer IBM Mobile
Enterprise software runtimes.

The IBM mobile business application development solution
combines powerful team development capabilities embodied
in IBM Rational Collaborative Lifecycle Management with the
mobile tools and runtime capabilities delivered in the
IBM Mobile Enterprise solution.

A comprehensive testing approach
The implication of comprehensive, multi-tier mobile application
testing is that more than one test execution capability must be
used and coordinated into a single application quality result.
IBM Rational Quality Manager software is an excellent choice
for tying together and managing the various test execution
engines that are required for mobile testing. Our test environ-
ment enables you to enact an integration testing first approach
that can help eliminate the big issues earlier in the lifecycle and
improve economic governance. Walker Royce’s paper,
“Measuring Agility and Architectural Integrity,” describes in
detail the technique for testing the hardest problems first.

As described in a previous section of this paper, there are several
techniques for testing and validating mobile apps in use in the
market today. Managers of an effective development project will
employ all of the applicable techniques against its mobile appli-
cation because each technique has its strengths and weaknesses.
There is no single perfect answer for mobile app testing, and the
various techniques available are not mutually exclusive. The
most effective testing strategy balances the use of all forms of
mobile test execution and compiles the results from each into a
comprehensive overall mobile application “quality metric”.

Examples of the techniques for mobile app testing supported by
the IBM approach include:

Manual testing
Manual testing is the most common approach for mobile testing
in use in the industry today. However, manual testing is also the
most time-consuming, error-prone and costly technique for
mobile testing. Solutions that organize the manual test cases,
guide the tester through execution and store the test results can
substantially reduce the costs. Rational Quality Manager soft-
ware offers these capabilities.

Emulators and simulators
Emulators come with all of the native mobile operating system
development kits. Simulators are available from several sources,
including IBM, which offers mobile simulators as part of the
development tools for the IBM Mobile Enterprise solution.

Protocol virtualization, application tier isolation
Because mobile applications have a multi-tier architecture, the
process of setting up the infrastructure to support test execution
of the code on the mobile device can be time-consuming and
costly. Cost and deployment delays can be minimized by using
the IBM Rational solution. Test teams can avoid the need to
setup complex middleware environments in support of test exe-
cution for code running on the mobile devices. The Rational
solution can emulate the middle tier and back-end services and
protocols so the test execution can concentrate on the client tier
of the mobile app that is running on the device itself.

On-device instrumentation and agents
Ultimately, there is a requirement to replace manual functional
verification with some form of automated testing of the code
that is executing on the mobile device. There are a variety of
approaches that have been created by different vendors. A typical
approach is to place some kind of additional code on the device

11IBM Software

where the automated testing is to occur. This code acts as a local
“on device” agent that drives automated user input into the
application and monitors the behavior of the application result-
ing from this input. This technique for automating the mobile
function tests is quite complementary to the other techniques
described in this document, and can be used very effectively in
combination with these other techniques.

Device clouds
The cost of owning and setting up and managing all of the dif-
ferent combinations of mobile test devices is prohibitive, even
for very well-funded projects. A technique that can address this
problem is to employ a “device cloud” testing solution. This
approach is effective at reducing the cost of ownership for the
huge variety of device types that exist and can be expected to be
employed by the users of the mobile app once it gets into pro-
duction. IBM offers integration between the overall mobile test-
ing management solution, Rational Quality Manager software,
and a variety of business partners who have device clouds.

Conclusion
As more and more enterprises in all industries realize the need
for mobile versions of their business applications, there is a need
for an enterprise-class approach to mobile app development.
IBM has established such an approach.

The IBM approach to mobile application development empha-
sizes five key themes:

●● Simplify the mobile app user experience.
●● Integrate first for improved economic governance of the

mobile app project.
●● Ensure traceability of requirements to tests that verify those

requirements.
●● Enact ultra-agile methods.
●● Evolve automated regression test suites for rapid deployment

and reduced cost-of-change.

This approach enables mobile specific tools and technology to
be used with the same efficiency and rigor as other kinds of
enterprise application development.

About the author
Leigh Williamson is an IBM Distinguished Engineer who has
been working in the Austin, Texas lab since 1988, contributing
to IBM’s major software projects including OS/2, DB2®,
AIX®, OpenDoc, Java, Component Broker, and WebSphere®
Application Server. He is currently a member of the
IBM Rational Software Chief Technology Officer team,
inf luencing the strategic direction for products in the Rational
brand and leading the solution definition for mobile application
development. Leigh holds a BS degree in Computer Science
from Nova University and a Masters degree in Computer
Engineering from the University of Texas.

For more information
To learn more about IBM Rational solutions for mobile applica-
tion development, please contact your IBM marketing represen-
tative or IBM Business Partner, or visit the following website:
ibm.com/software/solutions/mobile-enterprise/

Additionally, IBM Global Financing can help you acquire the IT
solutions that your business needs in the most cost-effective and
strategic way possible. We’ll partner with credit-qualified clients
to customize an IT financing solution to suit your business goals,
enable effective cash management, and improve your total cost
of ownership. IBM Global Financing is your smartest choice to
fund critical IT investments and propel your business forward.
For more information, visit: ibm.com/financing

 © Copyright IBM Corporation 2012

 IBM Corporation
Software Group
Route 100
Somers, NY 10589

 Produced in the United States of America
April 2012

 IBM, the IBM logo, ibm.com, Rational and Rational Team Concert are
trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might
be trademarks of IBM or other companies. A current list of IBM trademarks
is available on the Web at “Copyright and trademark information” at
ibm.com/legal/copytrade.shtml

 Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

 Microsoft, Windows, Windows NT, and the Windows logo are trademarks
of Microsoft Corporation in the United States, other countries, or both.

 Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

 This document is current as of the initial date of publication and may be
changed by IBM at any time. Not all offerings are available in every country
in which IBM operates.

 It is the user’s responsibility to evaluate and verify the operation of
any other products or programs with IBM products and programs.
THE INFORMATION IN THIS DOCUMENT IS PROVIDED
“AS IS” WITHOUT ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING WITHOUT ANY WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND ANY WARRANTY OR CONDITION OF
NON-INFRINGEMENT. IBM products are warranted according to the
terms and conditions of the agreements under which they are provided.

1 IGS paper, “Establishing an effective application strategy for your mobile
enterprise,” ibm.com/common/ssi/cgi-bin/ssialias?subtype=WH&infotype=
SA&appname=GTSE_EN_OS_USEN_C&htmlfid=ENW03007USEN&
attachment=ENW03007USEN.PDF

2 Walker Royce, “Measuring Agility and Architectural Integrity” whitepaper,
www.ijsi.org/ijsi/ch/reader/view_abstract.aspx?file_no=i92

RAW14302-USEN-00

Please Recycle

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/common/ssi/cgi-bin/ssialias?subtype=WH&infotype=SA&appname=GTSE_EN_OS_USEN_C&htmlfid=ENW03007USEN&attachment=ENW03007USEN.PDF
http://www.ibm.com/common/ssi/cgi-bin/ssialias?subtype=WH&infotype=SA&appname=GTSE_EN_OS_USEN_C&htmlfid=ENW03007USEN&attachment=ENW03007USEN.PDF
http://www.ibm.com/common/ssi/cgi-bin/ssialias?subtype=WH&infotype=SA&appname=GTSE_EN_OS_USEN_C&htmlfid=ENW03007USEN&attachment=ENW03007USEN.PDF
www.ijsi.org/ijsi/ch/reader/view_abstract.aspx?file_no=i92
http://www.ibm.com/software/solutions/mobile-enterprise/
http://www.ibm.com/financing

	Untitled
	IBM SoftwareThought Leadership White Pap
	Systems and software development
	A mobile application development primer
	A guide for enterprise teams working on
	2A mobile application development primer
	Executive summary
	Unique challenges for mobile application
	IBM Software3
	Mobile application build and delivery
	How is mobile development similar to oth
	Choosing a mobile application developmen
	A comprehensive testing approach
	About the author
	For more information

